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1. Introduction

If there is a problem about the Liar paradox, it is not so much the puzzle it presents, but the
vast number of solutions that have been proposed for it. In view of the extensive literature on
the Liar paradox!, the problem is not to solve it, but how to solve it. The large number of
purported solutions might even lead to the contention that there is no real solution.2 Of course,
between a particular philosophical puzzle and the opinion that there must be a unique right
solution there is a considerable amount of speculation, especially if a completely satisfactory
solution has not yet been found. And that seems to be the case for the Liar: there are a number
of reasonable proposals, but none of them is obviously the right one.

The present paper is an attempt to add another reasonable proposal to the list. I will not
argue that the present proposal is the right one. I will of course make a case for it. The theory
of this paper is an extension of Barwise and Etchemendy's Austinian account of truth and
circular propositions (Barwise and Etchemendy [1987]). The main ingredient of the present
proposal is a form of dynamic semantics.3 The idea that paradoxical sentences have a certain
'context change potential' also derives from Barwise and Etchemendy. They take the view that
one of the lessons of the Austinian account is that the Liar shows that there is a "contextual
parameter, one corresponding to Austin's described situation, a parameter whose value
necessarily changes [my italics] with the utterance of, or reasoning about, a sentence like the
Liar." (BE 175)* We will use update semantics for formalizing this idea (Veltman [1991]). Its
main ideas are explained in section 2 below.

The theory of this paper is an extension of Barwise and Etchemendy's Austinian
account in a very literal sense: we take over the ontology and the formal language, and devise
a dynamic semantics for that language. I will assume the reader to be familiar with the
Austinian account, as well as the theory of non-well-founded sets that is used to develop it.
Nevertheless I will give a short summary of the Austinian account, in the hope that this will
give the uninitiated reader a rough idea of its main aspects.>

The ontology of the Austinian account comprises four classes of entities: a class SOA
of states of affairs, a class SIT of situations, a class TYPE of types, and a class PROP of
propositions. States of affairs are of the form <H,a,c;i> (where H is a set theoretic atom, a is
Max or Claire, ¢ is one of the standard cards, and ie {0,1}), or of the form <Tr,p;i> for some
proposition pe PROP (where Tr is a set theoretic atom, i€ {0,1}). The latter states of affairs
are called semantical facts. Situations are sets of states of affairs. Types are of the form [o] for

some state of affairs ¢, or of the form [AX] or [vX] for some set of types X. Propositions are
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of the form {s;T} for some situation s and some type T.6
These objects are constructed in Aczel's theory of non-well-founded sets. As a
consequence there are propositions that are constituents of themselves. For example, there

exist a proposition p satisfying the identity
p={s;[Tr,p;1]}

But what is specifically 'Austinian' of these propositions is that they have two main
constituents, the situation the proposition is about and the type. Moreover, the situation the
proposition is about can also be a constituent of the type of the proposition, as in a proposition
q satisfying the identity

q={s;[Tr,{s;[Tr,q;11};11}
Notice that in Aczel's set theory p and q are actually identical.

The class of true propositions is defined as follows: a proposition of the form {s;[c]}
is true iff oes; {s;[AX]} is true iff {s;T} is true for all Te X; and {s;[vX]} is true iff {s;T} is
true for some Te X.

Next a class of situations of special interest is singled out: a possible situation is a
situation that is coherent (that is, if a state of affairs ¢ is in s then the dual of ¢ is not in s) and
respects its semantical facts (i.e., if <Tr,p;1>e s then p is true, and if <Tr,p;0>€ s then p is
not true).

The formal language has the following structure. The basic formulas are the form
(a Has ¢), where a is Max or Claire, c is one of the standard cards; or of the form True(this),
where this is the primitive symbol called propositional reflexive; or of the form True(that;),
where i< and that; is a primitive symbol called a propositional demonstrative. If @, y are
formulas then so are True@, @, (pAY), (¢vVY) and L. An occurrence of this is loose in @ if
it is not in the scope of the symbol "J". A sentence is a formula without loose occurrences of
this.

The semantics for this language is developed in two steps. For each ¢ a parametric
proposition Val(¢) is defined. Such a parametric proposition contains the situation

indeterminate s, and may contain the propositional indeterminates p and g; (i<®).

(i)  Val(a Has¢)={s;[H.a,c;1]}

(i)  Val(True(thatj))={s;[Tr,qi;11}
(i)  Val(True(this))={s;[Tr.p;1]}
(iv)  Val(True y)={s;[Tr,Val(y);1]}
(v)  Val(—y)={s;Type(Val(y))*}
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(vi)  Val(yax)={s;[A{Type(Val(y)), Type(Val(x))}] }
(vii)  Val(yvx)={s:[V {Type(Val(y)), Type(Val(x))}] }
(viii)  Val(dy)=p, where the parametric proposition p is the unique solution to the equation

p=Val(y)(p.q1,...)-

Here * is a negation operation on parametric types defined by: [6]*=[c"], where ¢' is the dual
of o; [AX]*=[V{T*ITe X}]; [VX]*=[A{T*ITe X}]. Type(Val(@)) is the type constituent of
the parametric proposition Val(@). Aczel's set theory includes a socalled Solution Lemma,
which guarantees that equations as in clause (viii) do indeed have unique solutions.

Finally, the parameters in the parametric proposition Val(@) are filled in by the context.
On the Austinian account, propositions are the semantic counterparts of statements. A
statement is a triple <@,s,c>, where ¢ is a formula, s a situation, and ¢ an assignment (a
function of demonstratives to propositions). The proposition expressed by @ in context <s,c>,
notation Exp(@,s,c), is defined as Val(@)(s/s, gi/c(that,),...,gi/c(thaty),...).

For example, the Liar is rendered as the sentence —True(this), where the scope
symbol "4" indicates that, in any occasion of use of the sentence, the occurrence of the
propositional reflexive this refers to the same proposition as the whole sentence. On the
Austinian account, if this sentence is used to make a statement about a situation s, it expresses

a circular proposition fg, which has the following form:
() fs={s; [Tr,f;0]}

So Exp(J»—True(_tﬂ),s)=fS (we will usually not mention the assignment ¢ when discussing
formulas that do not contain demonstratives). The Austinian proposition fg is true if the
semantical fact <Tr,f5;0> is a member of s. Since by definition a possible situation respects its
semantical facts, i.e. it only contains correct semantical information, the proposition fg is not
true if s is a possible situation. So suppose s is indeed a possible situation, and consider the

situation s':
) s'=su{<Tr,f5;0>}

Then s' will also be a possible situation, because the additional semantical fact is correct (i.e.
fs is not true). Moreover, s'#s since <Tr,f5;0>¢ s (again, because fg is not true). So possible
situations are incomplete in the following sense: although their Liar proposition will not be
true, the information that this is so cannot be reflected in the situation itself. But it can be
reflected in a larger situation: the situation s' is possible.

The procedure can be repeated ad infinitum: since s' is a possible situation, the Liar

proposition that is about s', i.e.
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(3 fy={s; [Trfs;0]}
is not true, so the situation s" given by
@) s"=s'U{<Trfg;0>)

is a possible situation. And so on.

The analysis is attractive, because without contradiction the fact that a Liar proposition
is not true can be actual, although it cannot be a fact of the situation the proposition is about.
And the problem with the Liar always seemed to be that once you accept its not being true as a
fact, you wind up contradicting yourself. On the other hand, equations (1)-(4) above only
report some connections between some objects in Barwise and Etchemendy's ontology.
Although the Austinian semantics assigns the proposition in (1) to the Liar sentence if it is
used to make a statement about s, and the proposition in (3) if it is used to make a statement
about §', the 'context-shifts' in (2) and (4) are not in any way triggered by the semantics. If it
is really so important that the Liar brings about a change, then this 'context change potential’
deserves to be regarded as an aspect of the meaning of the Liar. Moreover, saying that an
utterance changes the described situation comes down to classifying the utterance as a
performative speech act. But in the case of the Liar that seems to be wrong. I would rather say
that an utterance of the Liar changes the information state of someone, than say that an
utterance changes the described situation. If it changes any situation at all, it changes the
discourse situation, or, more precisely, it changes the information of the participants of the
discourse.

In this paper we will show that these objections can be met quite easily. The objections
point in the direction of a dynamic, information oriented semantics. We will extend Barwise
and Etchemendy's semantics with a form of update semantics. Update semantics is precisely
what we need, since its central conception is that the meaning of a sentence is a relation
between information states. A theoretical pay-off of the extended semantics will be a

semantics for discourses with circular cross-references.

2. Basic ideas

In dynamic semantics, the meaning of a sentence is given by update conditions rather
than by truth conditions. Veltman uses the following slogan: "You know the meaning of a

sentence if you know the change it brings about in the information state of anyone who wants
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to incorporate the piece of news conveyed by it" (Veltman [1991]). One way of explicating
this is by taking the meaning of a sentence to be a relation between information states.

What are information states? Intuitively, an information state models the information
that a cognitive agent has of a real situation. This can be described by the set of situations that
the agent cannot distinguish from the actual situation. So a proper information state can be
seen as a set of situations. Under this perspective, there are two ways in which there can be
lack of information. First, a set of situations that is not a singleton is in some sense
'disjunctive', since for all the agent knows, the actual situation could be one of many she
thinks possible. Second, situations are partial, they do not settle all issues. Getting better
informed can thus be seen as a combination of two things: elimination of options and filling in
more detail of other options.

In concreto, consider the sentence (Max Has a4 A), and let ¢ be a set of possible
situations. The update of ¢ with (Max Has a4 A) can now be explained thus:

(5) [[Max Has aA]J] (o) = {t| 3se o: t=sU{(H,Max,aA;1)} and t is possible }

Those situations in o that cannot be consistently extended with the fact that Max has the ace of
spades will be eliminated, and the remaining ones are extended with this fact. In general, the
meaning of a sentence in this set-up will be a function from sets of possible situations to sets
of possible situations.

Although this is the basic picture, in the implementation below we will follow
a different line. We will not define updates as functions on sets of situations, but as relations
between situations. It is clear that any binary relation R between situations determines a
unique function on the higher level, given by Fr(c)={t | 3s€ o: sRt}. Conversely, if F is a
function on sets of situations that distributes over arbitrary unions, there is a unique binary
relation R on situations such that F=Fg, namely R={<s,t>lte F({s})}. So the two approaches
are interchangeable as long as the functions on the higher level are distributive. But for the
fairly simple language we will devise a dynamic semantics for, this is the case.”

What kind of relations are we after? The slogan we started with gives the following
clue: two situations s and t stand in the update relation [@] of a sentence @ only if t contains the
information already in s and additionally covers the information presented by ¢. From a
semantical point of view, this will be the only respect in which t may differ from s: t is an
option that is minimal (w.r.t. C) in the set of all options that are stronger than s and cover the

information of ¢. These considerations give two global constraints on update relations:
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(6) for all s and t, if s [@] t then st (Update)
@) for all s and t, if s [@] t then for no t', tc t and s [@] t' (Minimality) 8

It may happen that for some particular option s an update doesn't change anything, that is,
s [@] s. Apparently, s already covered the information of ¢. In this case we say that s
supports .2 On the face of it, then, another reasonable constraint on update relations is

success. That is, if you are in state s and ¢ brings you to state t, then t supports .
(8) forallsandt,if s[@]t then t[Q]t (Success)

As a consequence of Barwise and Etchemendy's 'dynamic' analysis of the Liar, it turns out
that success does not hold in general. That is, we take it that their analysis shows that it is
possible to ‘incorporate the piece of news' of a statement with the Liar. In section 4 we will
- see in detail why this is so. We will now proceed to give a precise definition of update

relations of sentences of the formal language under consideration.

3 The dynamic semantics

Our informal discussion of update relations gave us the following picture: if t is an update of s
with @, then t is a state stronger than s that covers the information of @; moreover there is no
state weaker than t with this property. In the formal implementation of these ideas, we will
take advantage of Barwise and Etchemendy's static semantics. First we estimate in advance

the possible updates of a given situation:

1 Definition. Let s be a situation, and ¢ be an assignment of propositions to

propositional demonstratives. R(s,c), the set of relevant facts for s under c, is given by
R(s,c)=def{ o€ SOAI [6]=Type(Exp(,s,c)) for some simple formula ¢}

Here Type(Exp(@,s,c)) is the type constituent of the proposition Exp(¢,s,c). A formula is
simple if it has one of the following forms: (a Has ¢), —(a Has ¢), True(this),—True(this),
True@ or —Trueq.

The set of possible updates of s for c, is:

U(s,c) =def {tl sctcsUR(s,c)}

2 Definition. If P is a set of situations then WP =def { se Pl =3te P: tc s}
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3 Definition. By simultaneous recursion we define, for any formula ¢, and any
assignment c, the positive update relation of @ and the negative update relation of ¢. In the
following, s ranges over situations, t over parametric situations. p is the indeterminate that is
used in the static semantics to fix the reference of the propositional reflexive this. t is an

additional situation indeterminate.

() s [a Has ¢]¢ t iff t=s U {<H,a,c;1>}
s[aHasc]zt iff t=s U {<H,a,c;0>)}

(i) s [True(this)]¢ t iff t=sU{<Tr,p;1>}
s [True(this)]z t iff t=su{<Tr,p;0>}

(i) s [True(thatj)]d t iff t=sU{<Tr,c(thatj);1>}
s [True(thatj)]z t iff t=su{<Tr,c(that;),0>}

(iv) s [Trueltt iff t=sU{<Tr,Exp(o,s,c);1>}
s [Trueo]; t iff t=sU{<Tr,Exp(9,s,c);0>}

V)  s[-elFtiff s[elct
s [plc t iff s[@]dt

(vi) s [paylttiff te p{ueU(s,c)l Ivcu: s [@lEv and Fvcu: s [y]iv}
s [pay]c t iff te pf{ue U(s,c)l Ivcu: s [@lev or Ivcu: s [y]ev}

(vii)) s [evylt t iff te p{ueU(s,c)l Ivcu: s [@]Ev or Ivcu: s [y]Ev})
s [evyl: t iff te p{ueU(s,c)l Ivcu: s [@lev and Ivcu: s [y]ev)

(viti) s[d@]Et iff thereisat such thats [@]F t, and t=F(t) for the
unique solution F of the system of equations:
t=t
p = Exp(¢.s.c)
S [l(p]; t iff thereisat such thats [@]; t', and t=F(t) for the
unique solution F of the system of equations:
t=t
p = Exp(9,s,¢)

Basically, the definition is a dynamic version of the double recursion that has become usual in
partial logic. We are mainly interested in the positive update relations, and the negative

relations are a technical device that is needed for negation. However, the negative relations do
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have an intuitive meaning that resembles the meaning of the positive relations: roughly, s[@]&t
can be read as "t is the weakest extension of s that covers the information of ¢", and s[@]ct can
be read as "t is the weakest extension of s that rejects the information of ¢".

The constraints of Update and Minimality we discussed in the previous section are

satisfied:

4 Lemma. Let ¢ be a sentence, s a situation, and ¢ an assignment for ¢. Then:
@  sleltt = sct (Update)
(ii) s[0l¥ t = —Ju(scuct A s [@]Tu) (Minimality)

This can be shown with formula induction, where the the corresponding versions of Update
and Minimality for the negative relations [@]; have to be proven simultaneously. We will omit
proofs as simple as this.

The most important non-properties are:

s[el¥t = tloltt (Success)
s[elfsasct = tlp]tt (Persistence)

These properties fail for sentences that are context dependent in the following way. In an
update of s with Trueg, a semantical fact with s as a constituent will be added to s. But
t [True@]¢ t will only hold if the corresponding semantical fact with t instead of s is a member
of t. In fact, this form of context dependency can be seen as an instance of the following

connection with Barwise and Etchemendy's static set-up:
s[@lTt = {t; Type(Exp(@,s,c))} is true (Weak success)

So an output t of an update of s with ¢ will cover the information of ¢ about s, but not
necessarily the information of @ about t. For sentences like (a Has ¢) everything is 'normal’,
that is, they are successful and persistent.

Besides Weak success, there are some other important connections between the static
and the dynamic semantics. These are given by the next lemmata. The simple proofs are

omitted again.

5 Lemma. Let @ be a sentence, s a situation, and ¢ an assignment for ¢. Then:
()  slelts & Exp(@,s,c)is true (Support)
(ii) s [plc s & Exp(—@,s,c) is true (Refutation)
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6 Proposition. Statically indiscernible sentences have the same update relation. More
precisely, let ¢ and y be sentences, s and t situations, and ¢ an assignment defined for both ¢
and . Moreover, suppose Exp(9,s,c) = Exp(y,s,c). Then s [@]¢ tiff s [w]E t, and s [@]ct
iff s [y]c t.

4 Dynamic notions of paradoxality

In this section we will investigate the dynamic behaviour of paradoxical sentences. The
dynamic semantics of the previous section will only be interesting if we restrict the update
relations to possible situations. We want information to be 'consistent’ information, and we
are interested in those updates that bring us to information states that are 'consistent’ too.

Let's introduce some terminology.

7 Definition. A sentence is tangible if there are possible situations s and t and an
assignment ¢ such that s[@]¢t; acceptable if there is a possible situation s and an assignment ¢

such that s[@]¢s.

By lemma 5(i), acceptability comes down to static consistency, whereas tangibility can be
seen as dynamic consistency.

Since the paradoxical sentences we deal with in this paper all involve truth, we start
our discussion by looking at sentences of the form True@ . Let s and t be possible situations, ¢
an assignment, and suppose s[True@]¢t. By definition 3, t=sU{<Tr,Exp(9,s,c);1>}. This
means that the information of s is extended with the information that the proposition expressed
by @ about s under c is true. Since by assumption t is a possible situation, its semantical
information must be correct, that is to say that Exp(@,s,c) is true. Conversely, suppose s is
possible and that Exp(@,s,c) is true. Then su{<Tr,Exp(¢,s,c);1>} is a possible situation
since s is possible and the additional semantical information given by <Tr,Exp(@,s,c);1> is
correct. Summarizing, we see that the dynamic treatment of truth is connected with the static

treatment in the following way:

8 Proposition. For all sentences @, possible situations s and assignments ¢ for ¢: there

is a possible situation t such that s[True@]¢t if and only if Exp(,s,c) is true.

By lemma 5(i) this implies that True is tangible if and only iff ¢ is acceptable.
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On possible situations the update relation of Trueq combines 'forward' and
'backward' aspects: the forward aspect is the addition of semantical information, the
backward aspect is the test for truth of ¢ in the antecedent of the update; these are combined in
the sense that the forward action can only be carried out if the backward test has a positive
outcome. Hence we can call ¢ a pre-condition of True.

The connection between the truth of ¢ and an update of True¢ is not a direct
consequence of the connection between sentences and update relations, but of the coherence
conditions that must be observed by possible situations. In definition 3, we could have taken a

clause like
s [True@]? t iff t=sU{<Tr,Exp(9,s,c);1>} and Exp(9,s,c) is true

as definition of the positive update relation of ¢, but in view of proposition 8 above, this gives
the same result for possible situations.10

Consider a situation s that does not contain the fact that Max has the Ace of Spades nor
the fact that he doesn't. An update of s with (Max Has 4 A) will yield a situation t which
contains the appropriate fact. An update of s with True(Max Has a4 A) is not possible, since
the relevant fact is missing. So it seems that it is possible to learn that Max has the Ace of

Spades by accepting (Max Has 4 A), although it's not possible to learn this by hearing

True(Max Has 4 A). But is that realistic? The argument rests on a false assumption on the
meaning of 'learn’ in the present setting. If ¢ is an information state (a set of possible
situations), its 'global' update with True¢ (see section 2) can be defined as [Trued](c) = {t|
Jse o: s [@]*t and t is possible }. Now if ¢ is a descriptive sentence (i.e. it is built up from
atoms and Boolean connectives only) the following holds: if te [True¢](c) then Exp(¢,t) is
true. It may well be that not for all te 6, Exp(¢,t) is true. So we have 'learned' that ¢ is true by
the update with True¢. We should think of 'learning' in terms of the full information states,
not merely in terms of the situations that are the alternatives in such a state.

By some simple considerations similar to those above, it can be seen that sentences of

the form —True@ behave as follows:

9 Proposition. For all @, possible situations s and assignments ¢ for ¢: there is a

possible situation t such that s[—True]{t if and only if Exp(,s,c) is not true.

We will now discuss some concrete examples.
The Liar: 1—True(this). Let s be a possible situattion. We want to find a possible situation t
such that s[J«—-True(this)]'c*t. Definition 3 leads to the following calculations. By 3(viii) we



Dynamic Notions of Paradoxality 11

must find a t' such that s [—True(this)]? t' and t'=F(t) for the unique solution F of the system
of equations t =t' and p = Exp(—=True(this),s,c). By 3(iv), t'=sU{<Tr,p;0>}, and by the
static semantics, Exp(—True(this),s,c)= {s;[Tr,p;0]}. So we have to solve the system of

equations given by:
t=su{<Tr,p;0>} p={s[Tr,p;0]}

If F is the unique solution of these equations, then F(p) will be the Liar proposition fs about s,
i.e. fs ={s;[Trfs;0]}. By the static semantics fs=Exp(~L-rTrue( this),s,c). So we conclude:

s [{=True(this)]¥ t iff t=suU{<Tr,Exp({—True(this),s,c);0>}

But is t a possible situation? The answer is a definite YES. If s is a possible situation, then we
know from the static semantics that the proposition Exp(J«—True(;Lis_),s,c) is not true. But
then the situation su{<Tr,Exp(i—.True(ghﬁ),s,c);O>} is a possible situation, since s is
possible and the additional semantic information is correct. Since s was arbitrary, this means
that every possible situation can be updated with the Liar. Moreover, such an update must be
insuccessful in the sense that it cannot bring you in a state t such that t[4—True(this)]¢t, for
this would imply by lemma 5(i) that Exp(l«-—.True(M),t,c) is true, which cannot be if tis a

possible situation. So no update with the Liar can bring you to a state in which it is accepted.

10 Definition. A sentence @ is anti-succesful if s[@]tt implies not t[@]Et, for all

possible situations s,t and assignments c.

It is not hard to see that anti-success is equivalent with unacceptability. Besides the Liar, all
instances of the schemata gA—Trueq and {(@A—True(this)) are anti-successful.

Of course, anti-sucess would be a trivial property if it did only apply to intangible
sentences. The real surprise is that a sentence can be tangible without being acceptable. These
kind of sentences do not comply with the basic intuition that updates should be successful. In
a sense sentences that are tangible but unacceptable could be called 'dynamically paradoxical'.
But there is no real paradox, just strange, or rather unexpected, behavior. Notice that a
classical contradiction like @A—@ is not in this class, since it is both intangible and

unacceptable.

The Truthteller: {True(this). Calculations similar to those for the Liar give us that
s [{True(this)]F t iff t=sU{ <Tr,Exp(~LTrue(mi§),s,c); 1>}

If s and t are possible situations something peculiar happens. Since t is a possible situation,
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Exp(iTrue(Lhig),s,c) is true, in which case <Tr,Exp(~LTrue(m),s,c);1> € s. But then t=s!

12 Definition. A sentence @ has the property of pre-conditional success if for all c and

all possible s,t: s[@]¢t implies s=t.

If a sentence @ has pre-conditional success, then you can only accept the information
presented by @ if you already have this information. This is a rather strange property, since it
expresses something very close to question begging. Besides the Truthteller, all sentences of
the form l((p/\True(M)) have pre-conditional success.

An update of a sentence with pre-conditional success requires initial truth of that

sentence. From this it is clear that:
13 Proposition. @ has pre-conditional success if and only if @A—True@ is intangible.

Contingent paradoxes: Suppose @ is a closed sentence. Then the sentence of the form
J,((pA—.True(ms)) behaves much like the Liar, since it is anti-successful. It is tangible if and
only if @ is tangible and ¢ does not have the property of pre-conditional success. The
difference with the Liar is that, depending on ¢, it need not be the case that every possible
situation has an update, for if —@ is acceptable, a state that accepts —@ cannot have an update
with 4 (@A—True(this)).

Sentences of the form 4(@v—True(this)) can also have Liar-like effects. Let o be
J/((pvﬁTrue(Lh_ig)). By the static semantics, o is indiscernible form ov-Truea. If @ is
intangible, then both ¢ and o are unacceptable. From this it easily follows that o is anti-
successful, and that every possible situation has an update with oo (which will be an update
with the 'disjunct’' —Truea). If @ is tangible the behaviour is as follows. If @ is true in s, then
s[¢]s, in which case s[a]s and by update and minimality s will be the only output. If —@ is
true in s, the only output for an update of s with a is su{<Tr,Exp(a.,s);0>}. If neither ¢ nor

—@ is true in s, then an update of s with o can 'choose' any of the disjuncts.

The intrinsic sentence: next consider the sentence l«(True( this)v—True(this)), the double wide

scope reading of
This proposition is true or this proposition is not true

Abbreviate the formula by 1. Barwise and Etchemendy's axiom 4 tells us that 1 is indiscernible

from True 1 v—True .11 Every possible situation can be updated with every sentence of the
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form (True@v—True@). However, depending on ¢, there need not be a possible situation in
which (True@v—True) is accepted. But for True 1 v—True t there are possible situations that
accept it, as well as possible situation that don'y accept it. We leave the verification of these

facts to the reader.

We conclude this section with some logical issues. Technical details and proofs can be found
in the appendix. In what follows, we consider the language without demonstratives, so
assignments are irrelevant. Barwise and Etchemendy give a deductive characterization of the

following relation of indiscernibility:
)] for all s, Exp(@,s) = Exp(y.s)

They construct a deductive system that is sound and complete with respect to indiscernibility;
moreover indiscernibility is shown to be a decidable relation.!2 Notice that indiscernibility can
be seen as an 'intensional’ relation, since sentences with the same truth conditions need not
express the same proposition. So, another interesting relation is the relation of static

equivalence given by
(S) for all possible situations s, Exp(9,s) is true iff Exp(y,s) is true

Moreover, the dynamic semantics naturally gives rise to the following relation of dynamic

equivalence:
D) for all possible situations s,t, s[@]Ftiff s[y]*t

It is possible to give sound and complete proof theoretic characterizations of both (S) and (D).
Moreover, both relations are decidable (see appendix). The three notions of equivalence are

interrelated as follows:
IcDcS

All inclusions are proper: A@ and @ are not indiscernible, but dynamically equivalent; the
Liar and its negation are statically equivalent, but not dynamically. The decidability of static
and dynamic equivalence has some interesting corollaries, for it turns out that many semantic
properties we have discussed above are decidable. That is, the following properties of

sentences are all decidable:

¢ is tangible ¢ is anti-successful

¢ is acceptable ¢ has pre-conditional success
This can be seen as follows. Let L be short for (Max Has a A)A—(Max Has a4 A). Then ¢ is
tangible if and only if ¢ is not dynamically equivalent with L; and the latter is decidable. @ is
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acceptable if and only if @ is not statically equivalent with L. Decidability of anti-success now
follows from proposition 11 and the decidability of acceptability. Decidability of pre-
conditional success follows from proposition 13 and the decidability of tangibility. Whether

success is also a decidable property is still open (the conjecture being: decidable).

5 Discourses

One of the main achievements of dynamic semantics, if not its ‘raison d'etre’, has been its
ability to account for the semantic structure of discourses, in particular anaphoric structure. In
this section we develop a semantics for texts with 'propositional anaphors'. We conceive of a
discourse as a sequence of sentences, and develop a conception of a reading of a discourse, in
such a way that the propositional demonstratives thatj of our formal language get the force of
"the proposition expressed by the i-th sentence of this sequence”. Our main objective for

doing so is to be able to give a description of texts with circular cross-reference.

15 Definition. A discourse is a finite sequence of sentences. Notation: D=@1;...;¢n

Our notion of a reading of a discourse is governed by the following idea. Reflecting on what
happens if someone reads a story, we can say that the result of reading is a sequence of
pictures. The next-picture relation corresponds with the effect of processing a sentence of the
text. So we can concieve of a reading of a discourse as a sequence of situations produced by a
sequence of updates.

We will exploit the fact that the formal language we are working with contains
propositional demonstratives by allowing these demonstratives to be linked to sentences in the
discourse. This enables us to analyze semantical paradoxes that consist of several sentences

that refer to each other.

16 Definition. A discourse D=@1;...;¢n is closed if i<n for all thatj occurring in D.

17 Definition. A reading of a closed discourse D=@1;...;¢n consists of a sequence of
contexts <s1,C1>;...;<Sn+1.Cn+1> such that:
1) all s are possible situations, for 1<i<n

@)  siloilcisi+1, for 1<i<n
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(iii)  ci(thatj)=Exp(@;j,si.ci), for all 1<i,j<n

Clauses (ii) reflects the sequential nature of a reading of a discourse. Clause (iii) fixes the
interpretation of propositional demonstratives in a discourse. The idea behind the clause is that
the interpretation of demonstratives is governed by 'paging' through the text. Suppose you are
in state s§ and and you are about to read ¢g, but g turns out to have an occurrence of that;3.
Clause (iii) tells you that you that you must interpret that 3 as @13 in your current state. This
proposal seems to give a correct account of what happens when you read a text and hit upon
an expression of the form "the 13-th sentence of this text".

One of the consequences of this procedure is that the interpretation of a demonstrative
in a discourse will not be uniform, since different occurrences of the demonstrative may refer
to different propositions. But in this respect demonstratives do not behave differently from
sentences, because multiple occurrences of context-dependent sentences will also express
different propositions.

Of course the condition of clause (iii) is circular, but, as always in Aczel's set theory,

the Solution Lemma comes to the rescue.

18 Lemma. If D=¢1;...;¢n is a closed discourse and s a situation, then there is an
assignment ¢ such that c(thatj)=Exp(¢j,s,c) for all 1<i<n . This assignment is unique in its
values relevant for demonstratives in D, that is: if d(thatj)=Exp(®i,s,d) for all 1<i<n, then
c(thatj)=d(thatj) for all 1<i<n.

Proof: Use the solution lemma to obtain the unique solution of the following system of

equations in the indeterminates ¢1.,...,4n:

a1=Val(¢1)(s.41,....4n)

an=Val(¢n)(s,41,....4n)
Let F be the solution, and define ¢ by c(thatj)=F(gj) for 1<i<n, and undefined otherwise.
Then c(thatj) = F(gi) = Val(¢(s,F(Q1),....F(qn)) = Val(@i)(s,c(thaty),...,c(thaty)) =
Exp(¢i,s,c), where the last identity follows from the fact that @i can contain no other
demonstratives than the ones shown, since D is closed. Now any assignment d satisfying
d(thatj)=Exp(¢j,s,d) for all 1<i<n determines a solution of the above system of equations. By

the solution lemma, solutions are unique, so for the relevant values we must have
c(thatj)=d(thatj).]
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What happens if some @j in D contains thatj, for example in the case that @j is —True(thatj)?
Then for any i, cj(thatj) = Exp(—True(thatj),si,ci) = {si;[Tr,ci(thatj);0]}, i.e. ci(thatj) is the
Liar proposition fsj about sj! So in this case we could substitute l—True(this) for @j without
changing the reading of the discourse.

What does the semantics of discourses have to say about Liar cycles, for example the

discourse
(LC1) True(thaty); —True(thaty)

Does it have any readings? If a sequence of contexts <s1,c1>;<s2,62>;<s3,c3> is a reading,
then by definition 17, the following conditions must obtain:

@  s2=s10{<Tr,c1(that); 1>}

()  s3=s2U{<Tr,co(that;);0>}

(i)  c1(that;) = Exp(True(thato),s1,c1) = {s1;[Tr,c1(thatz); 1]}

(iv)  c1(thatp) = Exp(—True(thaty),s1,c1) = {s1;[Tr,c1(that;);0]}

(v)  co(thaty) = Exp(True(thatp),s2,c2) = {s2;[Tr.c2(thaty);11)

(vi)  c2(thaty) = Exp(—True(that1),52,c2) = {s2;[Tr.c2(that1);0]}

Moreover, s1, s2 and s3 all have to be possible situations. So we must have:

(vil) <Tr,c1(thaty);0> € s1 by (i) and (iv)
(viii) <Tr,c1(that);1> ¢ s1 by (vii) and (iii)
(ix)  <Tr,c2(that);1>¢ s2 by (ii) and (v)

With the help of the Solution Lemma it is not hard to construct possible situations that meet
these conditions. So the discourse has readings.

But what do the conditions mean? Condition (vii) means that in any successful reading
of the cycle, your initial information s; must already contain the semantic information that the
proposition expressed by the first sentence is not true. So suppose si is a possible situation
satisfying (vii). By combining (iii) and (iv) we see that the first sentence expresses that it is

true that the first sentence expresses a proposition that is not true:
c1(thaty) = {s1;[Tr,{s1;[Tr.c1(that1);0]};11}

But since you already believe c1(that;) (i.e. the proposition expressed by the first sentence
about s1) not to be true, you can consistently add this additional semantic information. Hence
sy (as in (i)) is also a possible situation. Now the second sentence claims that in your current
state (i.e. s) the first sentence still expresses a proposition that is not true. Intuitively, this is
correct, since this is what you initially believed and has been acknowledged by the first

sentence. Formally, there is an itch: it might be so that in s; you believe that the first sentence
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expresses a false proposition of sj, but you also believe that once you will be in s the first

sentence will be true. This predicament is described by
x) <Tr,Exp(True(thaty),s2,c2);1> € s1

But given that sj and s are possible situations, you cannot have this information, since by (v)
and (vi), (x) implies that Exp(True(thaty),s2,c2) is not true.

Summarizing, we see that a possible situation sy is the initial state of a reading of the
Liar Cycle if and only if it contains the semantical information that the proposition expressed
by the first sentence of the cycle is not true. So although the cycle has readings, it has no
unbiased reading, since the initial state of a reading must contain the 'semantic prejudice' that
the first sentence is not true.

In Barwise and Etchemendy's treatment of the Liar Cycle the formulas True(that,) and
—True(that,) are used to make statements about the same situation s, and that, is taken to refer
to Exp(—True(that,),s) and vice versa. The results are: Exp(True(that,),s) is not true if s is a
possible situation; there are possible situations s such that Exp(—True(that,),s) is true, but if s
is T-closed for expressible propositions, then Exp(—True(that;),s) is not true.!3 The
important difference with our analysis of the Liar cycle is not so much the result as the fact
that we treat it as a sequence. The problem described by Barwise and Etchemendy involves
two speakers who both make a claim about the same situation; the problem described here
involves a text and the changes of information it induces upon the reader. These are different
problems, so a comparison of the outcomes seems rather senseless (but see below).

As a second example we take a contingent Liar cycle:
Max Has & A; True(that3); —True(that;) v—True(that)

This discourse has readings. We will not spell out any detail, but leave it to the reader to
verify that: a possible situation sy is the initial state of a reading of the contingent cycle if and
only if (a) s1 does not contain the information that Max does not have the ace of spades
(<H,Max, a A;0>¢ s1); moreover (b) s1 contains the information that after processing the first
sentence (i.e. in the state sp=s1U{<H,Max,a A;1>}), the proposition expressed by the second
sentence is not true (i.e. <Tr,Exp(True(that3),s2,c2);0>€ s1).

The examples have in common that they have no unbiased readings, that is, the initial
state of a reading cannot be the empty situation. In this respect, readings of discourses are
comparable to updates of single sentences, since the input of an update of True cannot be the
empty situation either. There are more similarities. For example, we can call a discourse

acceptable if it has a reading in which the first and the last (hence all) situations are the same.



18 Dynamic Semantics and Circular Propositions

For example, the Liar cycle is unacceptable. This follows immediately from Barwise and
Etchemendy's static analysis of the cycle. In effect, a discourse is acceptable if and only if it is
‘consistent in the static analysis. So in a sense the static versions are special cases of the
dynamic versions.

The final part of this section deals with manipulations of demonstratives in a
discourse. In the informal discussion on the concept of a reading of a discourse, we decided
to treat a demonstrative that; in a discourse as having the force of "the i-th sentence of this
text". We show that our formalization is correct in this respect: substitution of the i-th sentence
of a discourse for some occurrence of thatj doesn't change the descriptive content of the

discourse.

19 Definition. If <51,C1>;...;<Sn+1,Cn+1> is a reading of the discourse @i;...;@p, then
$1;---;Sn+1 18 a trace of @,...,@n. Two discourses are strongly equivalent if they have the

same traces.

So we abstract from the contribution of the demonstratives, and focus on the descriptive
content of a discourse, which can be seen as a labeled graph in logical space. Several weaker
notions of equivalence are of interest; for example, we could also abstract from the 'stylistic'
features of the discourse and only consider the input-output behaviour of the discourse as a

whole. But we will not pursue this here.

20 Citation principle. Let D=@1;...;¢ be a discourse in which some ¢i has an
occurrence of thatj, where j<n. Let the discourse E be the result of substituting @i(pj/thatj) for
¢i in D, where @j(¢j/that;j) is the result of substituting @j for one or more occurrences of thatj
in ¢;. Then D and E are strongly equivalent.

Proof: let <sj,c1>;...;<sn+1,cn+1> be a reading of D. Use the fact that
ci(th_atj)=Exp((pj,si,ci) to prove with induction on the complexity of ¢i that
Exp(cpi,si,ci)=Exp((pi((pj/th_atj),si,ci). Conclude that <s1,c1>;...;<sp+1,Cn+1> is also a

reading of E. Use the same argument for the converse. [J
We can even do better: in some cases, we can eliminate demonstratives altogether.

21 Definition. A discourse D=¢1;...;¢n is well-founded if its referential structure is

well-founded (that is, the relation Rp defined as
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{<i,j>I i,j<n and thatj occurs in ¢j} is conversely well-founded).

22 Elimination principle. Every closed and well-founded discourse is strongly
equivalent with a discourse that doesn't contain demonstratives.

Proof: since the referential structure RD is conversely well-founded, there is a pair
<i,j>e RD such that for no k, <j,k>e Rp. What this means is that Mj occurs in ¢j, and that
@j doesn't contain demonstratives. We now substitute @j for every occurrence of thatj in the
discourse. By the citation principle we obtain a strongly equivalent discourse D'. Moreover,
D' has no occurrences of _thitj anymore, and it is still a well-founded and closed discourse. By

repeating this procedure we can get rid of all demonstratives.[]

Well-foundedness is not a necessary condition. In some cases we can replace circular
reference via propositional demonstratives with circular reference via a propositional reflexive.

The following proposition is a generalization of the remarks immediately following lemma 18.

23 Non-well-founded elimination. Suppose D=@71;...;¢p is a discourse, and for
some i (1<i<n), (a) all occurrences of thatj in ¢j are not within the scope of any d,or (b) @i is
of the form ly and y has no occurrences of |. Define ¢j'=)@j(this/that;) if (a) holds,
(pf:i\p(@/th_ati) if (b) holds. The discourse obtained by substitution of ;' for ¢ in D is
strongly equivalent with D.

Proof: omitted.[J 14

In general, citation and elimination will increase the average length of the sentences in the

discourse. This can be illustrated by the Contingent Liar cycle:
Max Has a A; True(that3); —True(that]) v —True(that)

Two applications of the citation principle, followed by one application of non-well-founded

elimination and one more citation, give the strongly equivalent discourse: !5

Max Has a4 A; Truc(i(-ﬂTrue(Max Has a4 A) v —True(True(this))));
l(—True(Max Has aA) v —True(True(this)))

The moral to be drawn is a platitude: cross-references in a text allow for a more concise
presentation. The effect of citation and elimination is that global computational procedures
(‘paging’ back and forth in order to link demonstratives to sentences) are replaced by longer

local procedures (increase of sentence length).
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6 Problems and prospects

As it stands, the approach developed in this paper is an extension of Barwise and
Etchemendy's Austinian framework. The dynamic semantics formalizes the idea that
propositions expressed by sentences like the Liar bring about a change of information. A
theoretical pay-off was that we were able to construct a semantics for texts with circular cross-
reference. Of course, the Austinian semantics deserves credit for providing the background in
which the dynamic semantics could be developed. On the other hand the dependence has two
disadvantages. First, it makes the dynamic approach vulnerable to criticism that might be
launched against the Austinian set-up. Second, it is not clear to which extent the results
depend on the static semantics and the ontology, rather than on the dynamic semantics that is
built on top of it; thus it is hard to estimate the value of the dynamic approach. Here I will not
attempt to treat these two issues in full detail, but instead I will briefly discuss some important

questions and problems.

(1) The logic is too weak. One argument against Barwise and Etchemendy's implementation
of the Austinian approach is that the logic is too weak. The reason for this is the fact that the
Austinian propositions have too much syntactical structure. For example, a sentence of the
form (aA) has the same truth conditions as o but expresses a different proposition. Hence
True(aaa) and Trueo do not have the same truth conditions. By contrast, @Ay and
—(—@v-y) do express the same proposition and thus have the same truth conditions. I see no
good reason why de Morgan's Law is more fundamental than idempotency of conjunction.
The distinction in behaviour is a consequence of an accidental choice of modeling techniques
(conjunction and disjunction signs become 'constituents' of the types of the propositions, but
negation is a defined operation). The price to be paid is that the following representation

principle does not hold:

(RP) if o and w have the same truth conditions and the same falsity conditions, then so do

Trueq and Truey

(where the falsity conditions of a formula are the truth conditions of its negation). Given the
analytic task of providing an account of truth and self-reference, this is too high a price. It is
to be hoped that it is possible to equip the Austinian account with a different notion of
proposition in such a way that (RP) holds. Notice that I do not claim that propositions should
be exhausted by truth conditions. The familiar substitutivity puzzles in intensional contexts

suggest they should not. I do claim that non-truth-conditional distinctions between two
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sentences @ and y cannot induce truth-conditional distinctions between True¢ and Truey. But
this is not to deny that there are sentential operators (such as "John believes that ...") which

behave differently in this respect.

(2) Non-well-foundedness. Those readers who feel uneasy about non-well-founded sets
should notice the following. Working in ZFC- (i.e. ZFC without the axiom of foundation)
Aczel constructs an inner model of ZFC- + the axiom of anti-foundation (Aczel[1988], chapter
3). Trivially, every model of ZFC is a model of ZFC-. This means that we can translate talk of
non-well-founded sets into talk of well-founded sets (of course, the 'translation' of the non-
well-founded € will not be the well-founded € ). So in principle it is possible to do without
non-well-founded sets. It is to be expected, however, that the set-theoretical coding would
rather obscure than clarify matters. The attractive aspect of the theory of non-well-founded
sets is that it provides an elegant mathematical tool for modeling self-reference. Compared to
Go6del numbering this modeling is more direct and less artificial.

So the important question is not whether Barwise and Etchemendy really need non-
well-founded sets, but whether or not the sort of circularity they model by them really exists.
There are at least two basic claims of their theory of truth that imply non-well-foundedness:
(1) circular propositions exist; (2) situations can support semantical information about any
situation whatsoever, in particular about itself, or even about a larger situation. Gupta has
argued that (1) is not essential for the Austinian semantics.!6 But (2) is crucial, especially in
connection with the idea that the truth of a statement depends on the situation the statement is
about. Much of the results of the dynamic semantics developed in this paper depend on (2)
and the use of 'context-dependent' semantical facts for representing truth. For example, in a
dynamic version of Barwise and Etchemendy's Russellian semantics the Liar is simply

inconsistent (i.e., it has an empty update relation).

(3) Semantical facts. The representation of truth by semantical facts also distinguishes
Barwise and Etchemendy's approach from other theories of truth and self-reference, e.g.
those of Kripke, Gupta and Herzberger.!” A sentence True@ is true in a situation s iff the
semantical fact <Tr,Exp(¢,s);1> is a member of s. This semantical fact is of the form
<Tr,{s;X};1>. What is represented is not the truth of a sentence but the truth of a statement
consisting of a sentence and a described situation. But in Kripke's theory the evaluation clause
for sentences of the form Trueg is basically: <D,T,F> = True@ iff ¢eT (where T is the
extension and F the anti-extension of the truth predicate). What is represented by Kripke's
scheme is truth of a sentence.

I favour Barwise and Etchemendy's scheme of representation. The reason is that I
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think that partiality is a central feature of most occasions on which we use natural language. In
partial semantics the basic notion of truth will be "truth on the basis of the available evidence"
(Veltman [1985], p.155). So truth is a relation between available evidence s and a sentence @.
If we want to reflect this relation internally, then both relata will be significant for the
representation. This does not force us to adopt all details of Barwise and Etchemendy's
Austinian framework. But it does point in the direction of a representation of truth that

employs constructions that look a lot like Barwise and Etchemendy's semantical facts.

(4) Revisions and updates. The dynamic semantics of this paper describes a process, and so
do the theories of Kripke, Gupta and Herzberger. But the processes are of a different kind.
An update s[@]t is intended to describe the change of information of someone who has initial
information s, accepts the message of ¢, and so arrives at a new information state t. The
process of the KGH approaches describes a 'revision' of the extension and anti-extension of
the truth predicate, and, moreover, in a jump from a model to the successor model in the
sequence all sentences are considered. The basic goal of the process is that at some stage a
model is obtained with a fairly strong representation of truth.

Granted the different nature of the processes, it might seem that we can mimic the
revision process by updates. The important observation is that whenever s is a possible
situation, Exp(@,s) is true if and only if there is a unique possible situation t such that
s[True@]t, namely t=sU{<Tr,Exp(@,s);1>}; likewise, if Exp(¢,s) is not true, the situation
t=sU{<Tr,Exp(@,s);0>} is the unique possible situation t such that s[—True@]t. So maybe we

could simulate a revision jump by two parallel simultaneous updates:
t (s) = U{tl tis possible and J¢: s[Truep]t}
n (s) = U{tl tis possible and 3¢: s[—True@]t}
p(s)=t1(s)n(s)
But this proposal fails to achieve its goal. Though the revision ¢ (s) is a possible situation

whenever s is, it does not satisfy:

gy Exp(o,s) is true = Exp(Trueg, ¢ (s)) is true
(N)  Exp(@,s) is not true = Exp(—True@, ¢ (s)) is true

It is possible to construct an operation that satisfies the first clause (not so for the second) but

the connection with updates would be lost.

In conclusion, I do not think that the form of the dynamic semantics of this paper is

final. It was motivated by some remarks of Barwise and Etchemendy and initially I thought



Problems and Prospects 23

that I was just formalizing these ideas, thus obtaining an extension of the Austinian semantics.
However, I've come to think that the dynamic approach can stand on its own, and should not
be made all-dependent on the peculiarities of Barwise and Etchemendy's Austinian set-up.
Under this perspective an improvement of the theory could as well be a revision of the
Austinian set-up as a choice for a difterent framework. But I'm not yet sure what is the right

way to go.
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Appendix: Logical issues

The following notational conventions are useful: "sk=@" abbreviates "Exp(@,s) is true";
"Vpst" abbreviates "for all possible situations s and t". Other symbols used in the meta
language have their usual meaning.

What we are after then, is a characterization of the following two notions of

equivalence:

D)  Vpst(s[eltt & slylty)
S) Vpst( SEQ & SFO)

Here we take @ to range over sentences that don't contain demonstratives. As usual, we do
not characterize these equivalence relations directly, but instead characterize the corresponding

notions of implication. For static equivalence (S) this gives:
(s) Vpst( SEQ — SFQ)

For dynamic equivalence (D) this gives

(*)  Vpst(s[e]t — s[y]t)

(We will drop the superscript + from now on). But this notion is a bit hard to handle. The
reason is that (*) requires an exact match between the information change induced by ¢ and
the change induced by y. For example, a rule for conjunction like pAy=>¢ fails for (*), since
in general an update with ¢ will require a smaller expansion than an update of Ay. We could
use the rule QAY=(QAW)AQ, which is correct for (*). In effect, all rules for (*) would have a
copy of the antecedent in the consequent. This can be avoided by taking the following
observation at face value: the gist of QAY=(QAY)AQ is that "every QAY-jump covers a @-

jump". This gives as notion of implication:
(d) Vpst( s[e]t = Jt'ct: sfy]t')

A paraphrase in English: every update with ¢ involves an update with y. The formal
justification of this notion is that the equivalence corresponding to (d) is precisely (D). We

omit the simple proof of this fact (hint: use minimality of updates).

A.1 Definition Let I" and A be non-empty sets of sentences.
@ I' Eg A iff there are sentences @1,...,¢ne " and y1,...,yme A such that

Vps( SEQIA...AQn = SEY]V...VYm)
(i1) I' Ep A iff there arc sentences @1,...,¢pne " and y1,...,yme A such that
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Vpst( s[@1A...A@n]t = Jt'ct: s[y1v...vym]t)

Barwise and Etchemendy give a synatactic characterization of indiscernibility, the equivalence

relation given by
@ for all s, Exp(¢,s)=Exp(vy,s)

The system has has the following axioms and rules:

(Al) o0 (R1) if &y then y&0

(A2) —(QAY)ES(—oVv—Y) (R2) if gy and ye&y then &y

(A3) —(evy)(—oA—Y) (R3) Substitution: if gy then y & % [o/v]
(Ad) J«(p@(p(}h_iﬁ/i(p) (R4) Identity of Indiscernibles

where in (A4) (p(;}Lis/l(p) is the result of substituting 1@ for all loose occurrences of this in @;
and in (R3) y [@/y] is the result of substituting y for one or more occurrences of @ in x. It
would take up too much space to explain the rule Identity of Indiscernibles (vide BE 111-
112). Barwise and Etchemendy also show that indiscernibility is decidable. We will be lazy
here and simply make one rule which inputs all equivalences @<\ that are correct for (I). We
use "I @& y" as an abbreviation for "¢y is provable in Barwise and Etchemendy's
deductive system".

We present the deductive systems in the form of a sequent calculus.

A.2 Deduction rules

In the following list, I" and A are finite sets of sentences. If every occurrence of I in a rule is
accompanied by a side formula, then I'= is allowed in that rule, otherwise it isn't. Similarly
for A. TU{ @} is written as T,@. @[o/B] is the result of substituting the sentence 3 for one or

more occurrences of the sentence o in @.

Identity: — Weakening: I'=4 =4
=0 Ie=A I'=0,A
cu: L9=A T'=0A S“bSﬁmﬁ%r% IFoepB IFyesd
I'=A Indiscenibles: olo/Bl=0[y/d]
Ie=A y=A AR: '=0¢,A I'svy,A

Foay=A T,pAy=A I'=0Ay,A
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R I'=¢,A I'=s>y,A L INe=A T,y=A
vR: vL:
I'=evw,A I'=0vy,A ILovy=A
N T ex falso:
Ex falso I,0,m0=A ox 1aiso I,¢,~Truep=A
L. _Le=4 TR [=TruepA
[, Truep=A I'=¢,A

015--0k=>V1,....¥m-A
True@i,...,TrueQk,~Truey,...,mTrueym=A

=T (k=0)

The notions of proof and of provability of a sequent are as usual in sequent calculus.

A.3 Definition An s-proof is a proof in which any of the above rules may be used.

A d-proof is an s-proof in which the rule T ex falso is not used.
In the s-system the rule —T can be derived, but only with the help of the T ex falso rule.

A.4 Definition Let I" and A be non-empty sets of sentences.

@) I' kg A iff there are finite sets I''cI” and A'CA for which there is an s-proof of
I'=A'.

(i) I' k3 A iff there are finite sets I''cI” and A'cA for which there is a d-proof of
I's=A"

Notice that the derivability relations are thus compact by definition.
We will prove soundness, completeness and decidability for k4 and k. We give
details only for the dynamic notion F ¢ (simplified versions of the techniques below also

work for ). First some preliminaries.

A.5 Definition Consider the following conditions:
@) Every occurrence of — in ¢ is immediately in front of a formula of the form (a Has ¢),
True(this) or Truewy.

(i1) Every occurrence of { in @ is in the scope of some occurrence of True.
If a formula ¢ satisfies clause (i) then @ is in negation normal form. If @ satisfies both (i) and

(ii) then it is in normal form.
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Observe that a formula @ is in normal form if and only if one of the following four conditions
obtains:
@) @ is (a Has ¢) or —(a Has ¢);
(ii) ¢ is True(this) or —True(this);
(i)  @is Truey or ~Truey, where V is a formula in negation normal form;
(iv)  @is of the form WAy or yvy, where both y and y are normal form formulas.
A sentence @ is in normal form if and only if one of the following three conditions obtains:
(i)'  ¢is(aHasg)or—(aHasg)
(iii)" @ is Truey or —~Truey, where V is a sentence in negation normal form;
(iv)' @is of the form YAy or yvy, where both  and  are normal form sentences.
This will enable us to prove properties of normal form sentences with induction on the
complexity of these sentences (the base clauses being both (i)' and (iii)’).

Next we present a slight strengthening of Barwise and Etchemendy's normal form
lemma (BE 110). The proof is an explicitation of Barwise and Etchemendy's proof and is
omitted here

A.6 Normal form lemma There is an effective operation .NF such that for every
formula @, @ is indiscernible from (pNF and (pNF is in normal form. Moreover, if @ is in

normal form, then pNF=¢. O

The completeness proof uses techniques familiar from completeness proofs for intuitionistic
logic (Aczel [1968], Thomason [1968]). The important difference with completeness proofs
for static notions of consequence is that in the dynamic case the model construction has to
provide two models (situations) instead of just one, since update relations are binary relations
between situations. This is reflected in the notion of update theory below. Typically, an
update with True@ requires the 'pre-condition’ @ to be true in the antecedent of the update;
therefore, an update theory consist of two sets of sentences P and U, where P is to keep track

of the pre-conditions of the sentences in U (for which an update has to be constructed).

A.7 Definition Let A, T', P and U be sets of sentences.

@) A is d-consistent iff there is some @ such that A¥ d¢

(i) A is saturated iff for every @ and v, if (pvy)e A then e A or ye A
(i)  Ais a d-theory within T iff for every eI, if Al do then pe A
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(iv)  <P,U> is an update theory within T iff the following conditions obtain:
(@) both P and U are consistent saturated d-theories within I
(b) PcUcrI
© if Truepe U then @eP
(d)  if =Truepe U then ¢ P
W) A set of formulas A is rich iff the following conditions hold:
(a) A is closed under subformulas
(b)  if pe A then pNFeA

A.8 Lemma
1) For every set of sentences A there is a rich set of sentences I" such that ACT".
(ii) There is an effective operation ¥ such that for each finite set of sentences A, y(A) is a
- rich and finite set with ACy(A).
Proof: The first part is trivial. For (ii) we first define an effective operation that assigns to

each formula ¢ in negation normal form a set of formulas that is finite and rich and contains @:

f(a Has ¢) = {(a Has ¢)} f(—=Trueg) = {True®, ~Truep} U f(p)
f(True(this)) = { True(this)} f@Ay) = { @Ay, (0AW)NF} U f(@)u f(y)
f(True) = {Truep} U f(¢) fevy) = {ovy, (evy)NF} U f()u f(y)
f(—(a Has ¢)) = {(a Has ¢), —(a Has ¢} f(do) = (Lo} U {w(this o) | yef()}

f(—True(this)) = { True(this), —True(this)}

That for each negation normal form formula @, f(@) is finite and rich and contains @, is
checked by induction. The only problematic case is closure under .NF of f(1¢), where one

needs a (long) sub-induction to show that

if ye f(¢) then (y(this/d¢))NF = (yNF)(this/¢)

where it is important that 1 is in negation normal form.

Next, define two operations on finite sets of formulas as follows:

cA = {yl y is a subformula of some ge A}
nA = {yNF|ye A}

and define y by
Y(A) = cA U ncA L cncA U U{f(y) | yecncA & \|INF gcncA}

Observe that this is well-defined: if we decompose a normal form formula and hit upon a

formula not in normal form this can only be because we have a normal form formula Truey
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and W is not in normal form; but then y (and its subformulas) will be in negation normal

form. It is easy to check that y(A) has the desired properties.

A.9 Lemma If A is a d-theory within T, and T is rich, then ¢NF € ANT" for every gpe ANT.
Proof: If pe AT, then ¢eT and Al g¢. So AF g NF by the rule of Substitution of
Indiscernibles, and @NF eT" since I is rich. So @NF €A since A is a d-theory within T’, so
oNF eAnT.00

A.10 Saturation lemma Suppose A ¥ &, I is rich and AuDCT. Then there is an update
theory <P,U> within I'" such that ACU and U ¥ .
Proof: Suppose AK ® and AudcT. Let ¢Q,...,Qk,... be an enumeration of all
sentences in I" in which each sentence of I occurs countably many times. Define an increasing
sequence of sets of sentences in the following way:
©  Up=A

Upu if Up,@n#dd
@+1) Unsl ={ nV{¢n} n(?n d

Un otherwise
Now put U=upUp. We use the same technique to construct the set of preconditions P, except
that we have an enumeration y(,...,yk.... of U in which each sentence occurs countably

many times; and the property we want to preserve is 4 d¥, where ¥ is given by:
Y= {yel' | =Truey € U} U {yel|lyeU}
We start with the set of those preconditions of U we want to be fullfilled:

(1) Pg ={wyel | Truey € U}

Phu if Pp,on 4 d¥
@+1) Pns ={ nV{on} n(P'n d
Pn otherwise

Put P=UpPp. We leave it to the reader to check that U and P have the desired properties. We
only show that, given that U is a d-theory within I', the d-consistency of P follows from the
—T rule. First observe that it is sufficient to show that P¥ q¥. By compactness, it is
sufficient to show that no finite subset of P proves ¥; and this will follow if no Py proves V.

First, suppose Pol ¢, i.e.
{yel' I Truey € U} 4 {yel' | =Truey € U} U {yel| ye U}
Then by the rule =T

{Trueylye T, Trueye U} U{—TrueylyeI',—Trueye U} {4 {yel| ye U}
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so U Fd {weT| ye U}, which can't be, since U is a d-theory within I'. For the induction
step use the Cut rule and the induction hypothesis. O

The idea is to use update theories for constructing counter examples. In fact, at this point we
could go directly to the update construction lemma (A.13). Instead we make a small detour
which will facilitate the proof of decidability below. It turns out to be more convenient to

construct updates from sets of sentences that are defined without mentioning derivability.

A.11 Definition Let P, U, I" be sets of sentences. Then <P,U> is a syntactic update
within I" if the following conditions obtain:

1 PcUcT, and I is rich

(i)  if geT, then @e P iff pNFeP; if pe T, then ¢e U iff pNFe U

(i) if wyaxel then yayeU iff yeU and e U

(iv) ifyvyeT then yvyeU iff yeU or xeU

(v)  if yayxeT then yaxeP iff yeP and xeP "

(vi)  if yvyeT then yvyeP iff yeP orxeP

(vii)  if Truepe U then peP

(viii)  if —Truepe U then @¢ P

(ix)  there are no @,ye U such that @ is indiscernible from —y

Remark. If I is finite and rich, then the set of syntactic updates within I" is recursive:
clearly, {<P,U> | PcUCI} is finite in this case, and the remaining clauses in A.11 express
decidable properties if P, U, " are finite (for (ii) it is crucial that NF i recursive; for (ix),

recall that indiscernibility is decidable).

A.12 Lemma If <P,U> is an update theory within I', then <P,U> is a syntactic
update within T
A.13 Update construction lemma Let <P,U> be a syntactic update within I'. Then

there are possible situations s and t such that:
(1) yel'= (Exp(y,s) is true & yeP)
2) yel' = (3tct: s[y]t' & yel)

Proof: Consider the equation:

s = {o | [6]=Type(Val(y)) for some simple sentence ye P}
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Let s=F(s), where F is the unique solution of the equation. It is essential here that the
indeterminate s is the situation indeterminate that Barwise and Etchemendy use in the static

semantics. Next define t by:
t=s U {c | [6]=Type(Exp(y,s)) for some simple sentence ye U}

We now show that

(D yel = (Exp(y,s)istrue & yeP)

First, we show this for normal form sentences y. For simple sentences (1) is immediate from
the construction of s; and for the disjunction and conjunction cases (1) follows from the
induction hypotheses and clauses (v) and (vi) in definition A.11. Secondly, we show (1) in
general: if we T and Exp(y,s) is true, then Exp(yNF s) is true, so yNFe P (by (1)), so ye P
(by A.11(ii)). Conversely, if weT and yeP, then yNF e PAIT, so Exp(yNF s) is true, so
Exp(y,s) is true.

A similar argument shows that:

2) yel' = (3tct s[y]t' & yel)

What remains is to show that s and t are possible situations. Since sct, it is sufficient to show
that t is possible:

- suppose for some state of affairs ¢ both it and its dual 6* are in t. By construction of s
and t and the fact that PCU, there are simple sentences W and % in U such that y and —) are
indiscernible. But this contradicts A.11(ix).

- suppose <Tr,p,1>€et. By construction of t, p=Exp(y,s) for some sentence Trueye U.
Hence ye P by A.11(vii), and so by (1) above, Exp(y,s) is true.

- suppose <Tr,p,0>et. By construction of t, p=Exp(y,s) for some sentence
—Trueye U. So y¢ P by A.11(viii). Moreover ye T, since =Trueye U, I is rich and Uc
I'. So by (1), Exp(y,s) is not true.d

A.14 Dynamic completeness theorem For all set of sentences A and all sentences @,
A=q® if and only if A g®.
Proof: Use lemmas A.12 and A.13.0

A.15 Theorem {<I',A> IT'FdA and T and A are finite} is decidable.
Proof: It is sufficient to show that {<@,y> | @F gy } is decidable. Let y be the effective

operation of lemma A.8. Then :

ot gy iff there is a syntactic update <P,U> within Y({,y}) such that ¢e U and yg U
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The effectiveness of ¥ and the remark immediately after lemma A.11 guarantee that non-

derivability is decidable. Hence derivability is also decidable. O

We conclude with an observation on anti-success, the typical property of the Liar.

A.16 Theorem ¢ is anti-successful if and only if there is a finite set of sentences
{®1,....0n} such that ¢ 4 @1A—True@],..., pnA—True@p

Proof: If oF d vism(yir—Trueyj) then @F g vicm(yia—Trueysj), but by the T ex falso
rule this implies that ¢ is unacceptable. So for every possible situation t, not t{@]t, so a fortiori
Vpst( s[o]t — not t[@]t ).

For the converse we argue by contraposition. Suppose that there is no finite set of
sentences {@1],....¢n} such that ¢ Fd @1A—True@i,..., pnA—Truegn. Let @ be the set of
all sentences of the form yA—Truey. Then by compactness, ¢ #dP. By lemma A.10, we
can find a consistent saturated d-theory A with @€ A and A ¥ (.

Now consider the equation

(a) s = {o | [6]=Type(Val(y)) for some simple sentence ye A}

and define t by t=dfF(s), where F is the unique solution of (a). Then show that
(b)  tly]tiff yeA

which is simple (it is again sufficient to consider normal forms only). What remains to show
is that t is a possible situation. t must be coherent, by the construction of t and the fact that A
is d-consistent; moreover, if Trueye A then ye A (since A is a d-theory), which together with
(b) suffices to show that t respects its positive semantical facts. For the negative semantical
facts, suppose that ~Trueye A; if ye A, then AF 4 wA—Truey, which contradicts A t#¢®,
so Y& A which by (b) implies that Exp(y,t) is not true.[]

The theorem shows that our earlier observation that {—True(this) and all instances of

@A—True@ and 4 (pA—True(this)) are anti-successful was not a coincidence.
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Notes

1 See the references in Martin [1970], Martin [1984] and Visser [1989].

2 The feeling that there is no real solution to the semantic paradoxes (yet) is also expressed by Kripke and
Visser, who write, respectively: "I do not regard any proposal, including the one to be advanced here, as
definitive in the sense that it gives the interpretation of the ordinary use of 'true', or the solution to the
semantic paradoxes.” (Kripke [1975], in Martin [1984], p. 63); "But perhaps there is no true solution, maybe
we should be content with a number of ways to block the paradox, the choice among which is to be governed
by local considerations of utility and simplicity.” (Visser [1989], p. 624).

3 Dynamic semantics gained a lot of momentum with the development of Discourse Representation Theory by
Kamp and Heim (Kamp [1984], Heim [1982]), though the basic ideas where already formulated in Stalnaker
[1972] and Seuren [1976]. For more recent developments see Barwise [1986], Groenendijk and Stokhof [1990],
[1991], van Benthem [1990], Veltman [1991].

4 Throughout this paper, references to Barwise and Etchemendy [1987] will have the form (BE pagenumber).

5 The Austinian account comprises chapters 8 to 13 of Barwise and Etchemendy [1987], and chapter 3 provides
a good introduction to Peter Aczel's theory of non-well-founded sets. More technical information about this set
theory can be found in Aczel [1988].

6 So, propositions are modeled as sets of the form {s;T}. Barwise and Etchemendy leave it open what kind of
construction is meant, as long as {s;T} is some set having s and T as components. I think of {s;T} as non-
standard notation for the ordered pair <s,T>. A similar remark applies to the sequences [Tr,f5;0] and [AX].

7 Probably modalities are not distributive. See Veltman's treatment of might in Veltman[1991].

8 We use "c" for "is a subset of" and " " for "is a proper subset of".

9 Notice that Update and Minimality imply that, if s supports @, then s is the unique update of s with ¢.

10 As John Etchemendy pointed out, another option is to distinguish the described situation from the
antecedent of an update. An update relation would then be a ternary relation between situations. A typical
clause would be: s [Trueglgt iff t=su{<Tr,Exp(9,d,c);1>} ; here d is the described situation. This is
roughly the same semantics as in Groeneveld[1989]; identify s and d, and the result is the semantics of the
present paper. So why should we identify s and d? The reason is that we are picturing the information change
of an agent which can't tell the difference: she has only partial knowledge of the described situation d, and what
she knows about d is modeled as the set of those situations she is not able to distinguish from d.

11 Axiom 4 amounts to the indiscernibility of ¢ and @(this/4¢), where ¢(this/{ @) is the result of
substituting L@ for all loose occurrences of this in ¢.

12 For the Austinian completeness theorem see BE 152; but the real work is done in chapter 7, BE 107-115.

13 BE 148, proposition 16.
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14 Barwise and Etchemendy observe that in their version of the Liar Cycle,

Exp(True(ﬂ;a_[z),s)=Exp(~LTrue(—.True(this)),s) and Exp(ﬂTrue(m_ml),s)=Exp(l—nTrue(True(this)),s) (vide BE
149). For the sequential version of the Liar Cycle, the discourse True(that,);—True(that;), we find the same
correspondence. By non-well-founded elimination the discourse is strongly equivalent to { True(—True(this)) ;

—True(d True(—True(this))). The last formula of this sequence is statically indiscernible from
1 —True(True(this)), hence both formulas also have the same update relation. The indiscernibility can be shown
with the rule Identity of Indiscernibles; intuitively, they express the same proposition since the 'unfolding' of

the formulas is the same, namely an infinite repetition of —TrueTrue.

15 Use the copy and paste options of your favorite word processor to see how this works.

16 Gupta writes: "However, I should note that the idea of circular propositions is not at all central to their

diagnosis of the Liar. A philosopher who eschews propositions and takes objects of truth to be sentences can

put forward a diagnosis essentially similar to the one they offer. Barwise and Etchemendy's attitude towards the

role of propositions is somewhat vacillating. At one point in their book (p.138) they suggest that the

ambiguities they claim to find in the Liar cannot be accounted for by the sentential theorist. At another point
(p. 175) they allow that such a theorist may take truth to depend on a contextual parameter, one that reflects

the situation the statement is about." (Gupta [1989], p.708)

17 Kripke [1975], Gupta [1982], Herzberger[1982].
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