L=

Institute for Logic, Language and Computation

OBJECT ORIENTED APPLICATION FLOW GRAPHS

SAERR

AND THEIR SEMANTICS

revised version

Erik de Haas
Peter van Emde Boas

ILLC Prepublication Series
for Computation and Complexity Theory X-92-05

University of Amsterdam

The ILLC Prepublication Series

1990

Logic, Semantics and Philosophy of Language i i - .

LP-90-01 Jaap van der Does A Generalized Quantifier Logic for Naked Infinitives

LP-90-02 Jeroen Groenendijk, Martin Stokhof Dynamic Montague Grammar .

LP-90-03 Renate Bartsch Concept Formation and Concept Composition

LP-90-04 Aarne Ranta Intuitionistic Categorial Grammar

LP-90-05 Patrick Blackburn Nominal Tense Logic .

LP-90-06 Gennaro Chierchia The Variablity of Impersonal Subjects

LP-90-07 Gennaro Chierchia Anaphora and Dynamic Logic

LP-90-08 Herman Hendriks Flexible Montague Grammar .

LP-90-09 Paul Dekker The Scope of Negation in Discourse, towards a Flexible Dynamic
Montague grammar

LP-90-10 Theo M.V. Janssen Models for Discourse Markers

LP-90-11 Johan van Benthem General Dynamics

LP-90-12 Serge Lapierre A Functional Partial Semantics for Intensional Logic

LP-90-13 Zhisheng Huang Logics for Belief Dependence

LP-90-14 Jeroen Groenendijk, Martin Stokhof Two Theories of Dynamic Semantics

LP-90-15 Maarten de Rijke The Modal Logic of Inequality

LP-90-16 ZhishenEkHuang, Karen Kwast Awareness, Negation an Logical Omniscience

LP-90-17 Paul Dekker Existential Disclosure, Implicit Arguments in Dynamic Semantics

' Mathematical Logic and Foundations
ML-90-01 Harold Schellinx Isomorphisms and Non-Isomorphisms of Gragh Models

ML-90-02 Jaap van Oosten A Semantical Proof of De Jongh's Theorem

ML-90-03 Yde Venema Relational Games

ML-90-04 Maarten de Rijke Unary Interpretability Logic

ML-90-05 Domenico Zambella Sequences with Simple Initial Segments

ML-90-06 Jaap van Oosten Extension of Lifschitz' Realizability to Higher Order Arithmetic, and a
Solution to a Problem of F. Richman

ML.-90-07 Maarten de Rijke A Note on the Interpretability Logic of Finitely Axiomatized Theories

ML-90-08 Harold Schellinx Some Syntactical Observations on Linear Logic

ML-90-09 Dick de Jon%l']érlzuocio Pianigiani ~ Solution of a Problem of David Guaspari

ML-90-10 Michiel van balgen Randomness in Set Theory

ML-90-11 Paul C. Gilmore The Consistency of an Extended NaDSet

Computation and Complexity Theory

CT-90-01 John Tromp, Peter van Emde Boas _ Associative Storage Modification Machines

CT-90-02 Sieger van Denneheuvel, Gerard R. Renardel de Lavalette A Normal Form for PCSJ Expressions

CT-90-03 Ricard Gavalda, Leen Torenvliet, Osamu Watanabe, José L. Balcizar Generalized Kolmogorov Complexity
in Relativized Separations

CT-90-04 Harry Buhrman, Edith Spaan, Leen Torenvliet Bounded Reductions

CT-90-05 Sieger van Denneheuvel, Karen Kwast Efficient Normalization of Database and Constraint ssions

CT-90-06 Michiel Smid, Peter van Emde Boas Dynamic Data Structures on Multiple Storage Media, a Tutorial

CT-90-07 Kees Doets Greatest Fixed Points of Logic Programs

CT-90-08 Fred de Geus, Ernest Rotterdam, Sieger van Denneheuvel, Peter van Emde Boas

. Physiol(i%ical Modelling using RL

CT-90-09 Roel de Vrijer Unique Normal Forms for Combinatory Logic with Parallel
Conditional, a case study in conditional rewriting

Other Prepublications

X-90-01 A.S. Troelstra l‘{,em?rks on Intuitionism and the Philosophy of Mathematics, Revised
ersion

X-90-02 Maarten de Rijke Some Chapters on Interpretability Logic

X-90-03 L.D. Beklemishev On the Complexity of Arithmetical Interpretations of Modal Formulae

X-90-04 Annual Report 1989

X-90-05 Valentin Shehtman Derived Sets in Euclidean Spaces and Modal Logic

X-90-06 Valentin Goranko, Solomon Passy ~ Using the Universal Modality: Gains and Questions

X-90-07 V.Yu. Shavrukov The Lindenbaum Fixed Point Algebra is Undecidable

X-90-08 L.D. Beklemishev %ovapility Logics for Natural Turing Progressions of Arithmetical

eories

X-90-09 V.Yu. Shavrukov On Rosser's Provability Predicate

X-90-10 Sieger van Denneheuvel, Peter van Emde Boas An Overview of the Rule Language RL/1

X-90-11 Alessandra Carbone Provable Fixed points in IAy+€2, revised version

X-90-12 Maarten de Rijke Bi-Unary Interpretability Logic

X-90-13 K.N. Ignatiev Dzhaparidze's Polymodal Logic: Arithmetical Completeness, Fixed
Point Pro, , Craig's Pr%perty

X-90-14 L.A. Chagrova Undecidable Problems in Correspondence Theory

X-90-15 A.S. Troelstra Lectures on Linear Logic

1991
Logic, Semantics and Philosophy of Langauge
LP-91-01 Wiebe van der Hoek, Maarten de Rijke Generalized Quantifiers and Modal Logic

LP-91-02 Frank Veltman Defaults in Update Semantics

LP-91-03 Willem Groeneveld _li)ﬁ'namic Semantics and Circular Propositions

LP-91-04 Makoto Kanazawa e Lambek Calculus enriched with Additional Connectives

LP-91-05 Zhisheng Huang, Peter van Emde Boas The Sch}c{»enmakers Paradox: Its Solution in a Belief Dependence
Framewor

LP-91-06 Zhisheng Huang, Peter van Emde Boas_Belief Dependence, Revision and Persistence
LP-91-07 Henk Verkuyl, Jaap van der Does The Semantics of Plural Noun Phrases

- LP-91-08 Victor Sdnchez Valencia Categorial Grammar and Natural Reasoning
LP-91-09 Arthur Nieuwendijk Semantics and Comparative Logic
LP-91-10 Johan van Benthem Logic and the Flow of Information
Mathematical Logic and Foundations
ML-91-01 Yde Venema Cylindric Modal Logic .
ML-91-02 Alessandro Berarducci, Rineke Verbrugge On the Metamathematics of Weak Theories . .
ML-91-03 Domenico Zambella On the Proofs of Arithmetical Completeness for Interpretability Logic
ML-91-04 Raymond Hoofman, Harold Schellinx Collapsing Graph Models by Preorders
ML-91-05 A.S. Troelstra History of Constructivism in the Twentieth Century
ML-91-06 Inge Bethke Finitcr!igpe Structures within Combinatory Algebras
ML-91-07 Yde Venema Modal Derivation Rules
ML-91-08 Inge Bethke Going Stable in Graph Models
ML-91-09 V.Yu. Shavrukov A Note on the Diagonalizable Algebras of PA and ZF

ML-91-10 Maarten de Rijke, Yde Venema Sahlqvist's Theorem for Boolean Algebras with Operators

E Institute for Logic, Language and Computation

Plantage Muidergracht 24

1018TV Amsterdam
Telephone 020-525.6051, Fax: 020-525.5101

OBJECT ORIENTED APPLICATION FLOW GRAPHS
AND THEIR SEMANTICS

revised version

Erik de Haas
Peter van Emde Boas

Department of Mathematics and Computer Science
University of Amsterdam

ILLC Prepublications this is a revised version of CT-92-01

Coordinating editor: Dick de Jongh received October 1992

Object Oriented Application Flow Graphs and their Semantics

E. de Haas* P. van Emde Boas*
October 13, 1992

Abstract

In this paper we combine two paradigms that are present in programming: the Data Flow
paradigm and the Object Oriented paradigm. We constructed a language called OOAFG (Object
Oriented Application Flow Graphs), that obeys the main features of both paradigms. We constructed
a formal operational semantics for this language and the main purpose of this semantics is to show
that the intuition that underlies this combination is elegantly and naturally formalizable.

1 Introduction

There exist many paradigms in the world of programming and software development. The data flow
paradigm is an old and well understood paradigm for modelling operational processes. The object oriented
paradigm is quite new and has become very important in the last decade. At first site the two paradigms
look incompatible, because in the object oriented paradigm data flow is only known locally; the objects
contain the data and do themselves determine what messages should be send to invoke other objects to
act, that way concealing much of the information of the data flow and data processing. According to the
Data Flow paradigm however the data flow is global for it is explicitly stated where all the data flows,
i.e. which data is processed when and in what order.

The main incentive for combining the two paradigms was obtained when trying to explore the potential
parallelism in the traditional object oriented programming language Smalltalk (GR80]), using a data flow
based computation model for expressing the parallelism.

Looking informally at the programming language Smalltalk one can observe a collection of interactive
objects where every object is more or less independently executing procedures on their own data and
sending messages to other objects. But although the objects perform actions independently, parallelism
is not obtained. The objects themselves are executing their procedures sequentially, and are sequentially
sending their messages. After sending a message an objects continues when it received an answer, which
is normally the case when all the actions that had to be taken to handle the message are finished. Thus
starting with one active object only sequential computation is achieved. In more general terms the
number of active objects at the start of the computation determines the maximal number of threads in
the flow of control. If we would allow the objects themselves to execute some of their procedures and
messages in parallel, we would introduce more parallelism.

2 Towards a synthesis of the Object Oriented and the Data
Flow paradigm

In our approach to combine the principles of the Object Oriented paradigm and the Data Flow paradigm
we will start with some concepts originating from the Data Flow paradigm and add some useful features
that are essential in the Object Oriented paradigm. In this paper we will not address the question whether
the resulting programming language is fully object oriented because some confusion and discourse still
exists about this concept. Our purpose was to combine the two paradigms in order to benefit from the
useful properties of both.

*ILLC ; Department of Mathematics and Computer Science; University of Amsterdam; Plantage Muidergracht 24 1018TV
Amsterdam, The Netherlands

2.1 The Object Oriented (OO) paradigm

There exist many points of view on what is meant by the Object Oriented style of simulating the real
world as in programming and modelling. One concept most of these points of view have in common
is that if one knows what an ’object’ is, we can define Object Oriented programming or designing as a
style of programming in which a whole system is described as consisting of a collection of objects that
communicate with each other. It is however difficult, if not impossible to give a rigorous definition of the
most fundamental concept object, but in a first approximation it can be described as an integrated unit
of data and procedures acting on these data.

A methodology could safely be called Object Oriented if it is possible to describe its entities in terms
of objects, classes and methods and preferably supports a feature like inheritance for its objects and
classes. Furthermore the objects must interact with each other via messages. This definition largely
coincides with the definitions in [Mey89],[Ame86a] and [Weg89).

2.2 The Data Flow paradigm

The central structure in a programming language following the Data Flow paradigm is a directed graph
(often called net) which ties up the data flow. The graph consists of nodes and edges. The following
phrases characterize the data flow paradigm:

1. data items (tokens) are sent over the edges by the nodes;

2. a node has incomming (input) and outgoing (output) edges: it receives data items from its incom-
ming edges and puts data items on its outgoing edges;

3. A node can perform a firing: it removes data items from its incomming edges, performs some
computation and puts data items on its outgoing edges;

4. A node can perform a firing depending on the availability of tokens on its incomming edges.

Consult for a nice and formal approach to Data Flow structures for example [Kah74] or [Kok88] and for
an overview consult [TBH82].

We consider a graphical structure called Application Flow Graphs (AFG) originated from the data flow
paradigm for programming languages

AFG relates executable blocks, called components, as nodes in a directed graph. It is said that
an Application Component Manager (ACM) takes care of the actions that are needed to handle the
interaction between the components, like communication and synchronization. In order to take care of
the interaction the ACM should have access to static information of the components. For example, how
these components are related to each other in the graph, how an executable component can be executed
(which code to execute) and where it must be executed (distribution of processes) and which part of the
output of which component should be send to which other component. For that purpose the ACM should
have access to a repository where all the static information of an application is stored. Furthermore
the ACM must keep track of which component is executing at which time and which component is not
(dynamic information).

The components of an Application flow graph are completely independent of each other, and can be of
any complexity, e.g. from a simple update routine for some data structure, to a sophisticated compiler.
This independence could make these components a good candidate for reuse.

Globally seen an AFG specification consists of a collection of components, that are related to each
other as nodes in a directed graph. A component itself can be a graph of (sub)components. This way
one can construct a layered AFG specification. At the lowest level in the layering the components should
be executable. The directed edges in the graph represent the control and data flow of the specified
application. Along the edges data packets are send from one component and the other. The graph
structure of the AFG can express parallelism and and layering. Figure 1 illustrates the idea.

An Object Oriented message

; CD

1 A Flow Graph signal
cket

com;on

lent

message

signal

G
|AB(CDE)(FGH)L

Figure 1: An application flow graph (left) OO message versus AFG message (right)

method X] component wthod A f mothod P
1 | | 7280
£ 2
) 1 ethod 8 method @
i [
cbject 2
method 8
2 A
2 method R
5
method C A ntodT
‘slade data
ot cbjectn
Figure 2: a sequence of messages parallelism

2.3 The core idea

A method or language that could safely be called object oriented (OO) must consist of objects, classes,
methods and messages and furthermore support inheritance. To be a little more specific about the objects
we define an object as consisting of some (state)data and having a set of methods that can operate on this
data.

The basic idea of making AFG into an object oriented AFG is to consider data packets that travel
through the AFG-graph as the (state)data, the components that are the nodes in the AFG-graph as the
methods and the signals, carrying the data packets along the edges from one component to the other, as
the messages. In this context an object is a data packet together with a collection of components that
are associated with it.

We make the following observations. Consider a message in some traditional object oriented language
(for example Smalltalk [GR83]) and a signal in AFG. Conceptually there is a difference between them,
because in AFG a signal is associated with a data packet and in OO the message is associated with a
method.

If one thinks about the practical effect the sending of an OO message or an AFG signal has on the
data, there is not much of a difference, if one considers that both the method in OO and the component
in AFG operate in some way on the data. The method and the component could do exactly the same
thing with the data (see figure 1).

Let us take a look at what an object in a object oriented language does. When a method is executed it
sends sequentially a number of messages to some objects. These messages invoke methods to be executed
by the receiving objects. We can denote that in terms of a graph, by drawing the methods that are
executed as nodes, and drawing the directed edges between them to give the sequence of the methods.

For example suppose a method sends two messages, first one to object A and then one to object
B. The messages urge the receiving objects A and B to execute respectively method 1 and method 2.
We can map this event directly in an AFG graph by drawing the methods that are being invoked, and
associating the state data of the receiving with the signal that arrive at these methods (see figure 2).

In a traditional OO language like Smalltalk the execution of methods is always sequential, because
whenever a message is send by a method it must wait for the answer of that message before going further.
In other words after an object has send a message by executing a method, it has to wait until the method
that is invoked by that message on the receiving object is finished before it can send the next message.

In an AFG we can express parallelism, because we can denote the flow of control in term of a graph
where methods are executed in parallel. If in a graph there does not exists a directed path between two
methods, we we say these methods can run in parallel. The OO language called POOL [Ame87] also
bears parallelism. The main difference between the parallelism in POOL and in the OO version of AFG
which we will describe in this paper, will be that that in POOL we have to state explicitly when we
expect an answer back from a message i.e. we have to take care of the asynchronous message passing
explicitly in the program. In OOAFG we will not have to do so.

2.4 Objects, Classes and Inheritance

An Object is a data packet (state data) together with a collection of components (methods). We model
the data packets by saying that data packets consist of a number of fields where each field has a type.
The content of a data packet are the values stored in those fields. We associate with each data packet a
data definition that defines the structure of the data packet by enumerating its fields.

A component processes some data. We say that each component C covers a collection of fields,
denoted by f(C) = {a,b,c,...}. We call C a method of a data object o if the data packet (state data)
of a contains all the fields that C processes. In other words: C is a method of a data object a if the
data definition of o contains the cover of C i.e. let D = {p,q,r,...} be the data definition of a then
f(C) C D. This way we associate methods with state data, together forming the notion of object in the
OO paradigm. It is easy to see that it is natural to associate a component C' with a data object a if
the collection of fields covered by C is contained in «, because then the object @ contains the necessary
ingredients to be processed by C so C meets the requirements to be a method for o because it can process
the data of the right sort.

Now we have defined the objects the classes are easily defined being the data definitions for the data
objects. The data definitions define the structure of the (state) data of an object and also determine
which methods (components) are associated with that object. We can construct arbitrary classes with
their own set of methods, because we are free to use different fields for the same types of data.

We also have inheritance. A class D (i.e. a data definition) inherits the components (i.e. methods)
from all classes that consist of a subset of fields of D. So for example the class D = {a, b, c} inherits the
properties of class D’ = {a,b} and from D” = {b,c} and from D”’ = {a} etc.. In this objective class A
is a superclass of B if and only if A is a subset of B. This is a simple kind of inheritance.

3 Definition of Object Oriented Flow Graphs (OOAFG)

In this section we will present a a language that is an object oriented extension to languages that emanate
from the Application Flow Graphs paradigm. This language we call Object Oriented Application Flow
Graph language (abbreviated by OOAFG).

3.1 The features of OOAFG

A specification written in the language of OOAFG consists of graphs and definitions of data objects. In
this section we will give an informal description of OOAFG.

3.1.1 Definition of data objects

A definition of a data object (in short data definition) defines a class of data objects. A data object
consists of a collection of fields. Each field has a type: the elementary type of the data in that field. For
example a field f can be of the type number or string or complex data type etc. etc..

In other words we can say that a data definition is a set of fields with types associated to these fields.
This data definition describes from what types a class of data objects is built.

Data objects travel through a structure graph or in other words a graph gives the operation sequence
of a data object.

3.1.2 The structure graph

The structure graph consists of a set of acyclic directed graphs. These graphs have as their nodes entities
called components and between the components directed edges are drawn. The directed edges between
the components determine a partial order on the components of the graph in the following manner: A
component C; precedes a component C; in the partial ordering determined by a graph if there exists a
directed path from C; to C; in the graph.

Components and layering. A component is a procedural entity. In the framework of the object
oriented paradigm a component is a method. A component is either an atomic entity, or a compound
entity. If a component is an atomic one, it represents a basic procedural operation and we will call
it an ezecutable component. If a component is a compound one, it consists of a graph containing sub
components; we will call such a component a structural component.

With each component we associate a data definition. This data definition gives the properties a data
object must have to be processed by that component. For an executable component such a data definition
is to be given. For a structural component this data definition is composed from the data definitions of
its nodes, the components in the graph of that structural component. We will say that the nodes in the
graph of a structural component cover the data object of that structural component.

By allowing a component to consist of an entire graph, we introduce a form of layering as a feature
of the language.

Sequencing and parallelism. If there exists in a graph a directed edge from component C; to C;
then component C; succeeds sequentially component C;. If in a graph there does not exist any path from
a component Cy to a component C; then Cy and C; are in parallel or collateral, in the sense that it does
not matter if Cy is executed before, after or at the same time as C3. Note that if two components are
collateral, there does not exists any relation between them in the partial order that is given by the graph.

Choice and nondeterminism. An other construct that should be present is choice or nondeterminism.
In general terms there must exist some construct that describes that not all of the existing paths in the
graph will be traversed all the time. The most straightforward way to achieve this kind of nondeterminism
is to allow more outgoing edges for one node (component), and interpret these outgoing edges as possible
extensions of the control flow. In other words, every outgoing edge of a node can be traveled along (by
a data object that has visited the node), but it does not have to be that case. So when a node has n
outgoing edges, and a data object travels along this node, there can be 0 or 1 or 2 or ... or n different edges
that at the same time (parallel) are extensions of the control flow. Which edges and how many edges will
be traversed after executing a component, is totally dependent of what is happening inside a component,
and therefore transparent to the OOAFG model. For OOAFG this choice is nondeterministic, i.e. every
choice is possible, but only one choice of the flow will actually be made.

Iteration. We want to allow iteration, that is in terms of graphs, we want to allow loops in the structure
graph of OOAFG. We will not actually draw the loop edge, but mark a component ’repeatable’ if we want
it to be possibly iterated. When a node is marked repeatable then it will be executed one or more
times, before the flow of control for a data object continues. The number of iterations is not determined
(nondeterminism) ,

We certainly can not allow cycles in general, because cycles in the structure graph would destroy the
ordering relation we defined directly from the graph. The notion of before and after (before < after) will
have to be totally different because it will be destroyed when we allow cycles. We can illustrate this by
an example:

Example 3.1 Consider the following sentence:
After I have eaten my lunch I bring my plate to the dishwashers.

In this sentence the notion of after nicely follows the ordering of time. But if we reconsider and realize
that we will also eat lunch tomorrow, the notion of after, behaving as the plain ordering in time, fails,
and we may end up never bringing our plate to the dishwashers.

We also do not need arbitrary cycles in our graphs. We can omit arbitrary cycles and only allow loops
without loss of generality. It is shown by Bohm and Jacopini [BJ66] that formation rules for composition
and iteration are sufficient to express every flow of control one can possibly think of in terms of our
components. This means that the given composition rules in OOAFG are sufficient.

Synchronization. The partial order that is defined by the structure of the graph determines the flow
of control of the components: A component can be executed by a data object iff there do not exists any
predecessors of that component that are not yet finished operating on (part of) that data object.

It can very well be the case that some component (node) can only be started when several other
components are finished. In other words a node can have more than one incoming edge. These incoming
edges are interpreted in such a way that an execution flow can be continued, if all components that are on
a path to this node are already executed for some data object. Because we introduced nondeterminism
(there exist ’possible’ extensions) it can be the case that not all the paths to a component (node) will be
traversed.

For each data object we will allow the control flow to continue at (node) component C if there exist
no more components (nodes) on the paths to C that can be executed by this data object before executing

C.
We call this feature synchronization.

3.2 The language of OOAFG

An OOAFG specification consists of specification of a component. It is sufficient to see a specification
of an application as the specification of a component, because an application itself is seen as a component
consisting of subcomponents.

An OOAFG specification for a structural component C looks as follows:
e it contains a data definition D¢ C FIELDS x TYPES
e it contains a structure graph G¢ = (V¢, E¢)

e it contains an OOAFG specification for all the nodes of G¢ (i.e. subcomponents of C) and a
mapping gc that maps the nodes of G¢ to their OOAFG specifications.

e it contains a function fc representing a cover of the data definition of C' by mapping nodes of G¢
to fields of Dg¢.

¢ it optionally contains of the marker repeatable
e an OOAFG specification is a set

A specification for an executable component C looks as follows:
e it contains a data definition D C FIELDS x TYPES
e it contains a structure graph G¢ = (0,0)
e it contains an executable programm w¢
e it optionally contains the marker repeatable

e it is a set

@
ac
GETORDERS ‘A ig g}

4 data definition:

et v G(W)-W.gc"h’
pe ga umba

P (person) = array of
name

i\ St
report / cli

a (avallable) = boolean
] A— j A—

¢ (credit) = [-1000k , 1000k]
arrange handle when

ey dolivery unavallable

Figure 3: Example of an OOAFG

Data definitions: A data definition D defines a class of data objects consisting of a collection of fields
with their type, i.,e. D C FIELDS x TYPES where FIELDS is the set of all fields and TYPES is the
set of all types. The structure graphs consist of nodes denoting the sub components of the component
and directed edges denoting the control and data flow. The sub components themself have an OOAFG
specification. A node can be marked repeatable. A cover denotes which component (node) processes
which part of a data object (fields). We represent a sub cover by a function f : V — P(FIELDS) where
V is the set of nodes of an OOAFG-graph and P(FIELDS) the set of all sets of fields of data objects.
The function f maps a node to the set of fields this node (component) processes. We will demand that
the for each component the cover agrees with its data definition , i.e. fc(C') = D¢r where D¢ is the
data definition in the OOAFG specification of component C'.

If C' is a sub component of C we will call C the outer component of C'. We will often write f(C’)
to denote the collection of fields associated to (sub) component C' instead of fc(C’) (note that C is the
outer component of C’).

We mark a component repeatable, if the component itself is repeatable. That way we defined this
characteristic of a component internally. The reason that we defined the repeatable characteristic inter-
nally, and not externally, by giving an outer component the information which of its sub component is
repeatable, is a technical one. If we want to express the outmost component being repeatable, we do not
have to define some artificial layer around this outer component to express it to be repeatable.

The requirement that an OOAFG specification is a set is necessary and sufficient to guarantee well-
foundedness of the definition of the OOAFG specifications.

We will denote the set of Object Oriented Application Structuring specifications (i.e. the language)
by OOAFG

3.3 Illustration of OOAFG

A simple order handling application example

The component HANDLE_ORDERS (figure 2) gives a simple orders application. The component
ORDERS precedes all the other components in the graph. So first the component ORDERS will be
executed, when a data object calls HANDLE ORDERS. We want all the subcomponents of component
ORDERS to be executed, in the right ordering. After a report of the order is made one of three things
can happen: The delivery for the order can be arranged (ARRANGE DELIVERY) if the goods are in
the inventory, and the client is solvent. If the client is insolvent, the delivery can be denied (DENY
DELIVERY). If the goods are not available arrangements can be made, for example make sure that the
goods will be in the inventory soon (HANDLE WHEN UNAVAILABLE), and then repeat the order.

Note that the decision along which the flow of control will continue is made inside a component,

by triggering some of its outgoing edges (or the outgoing edges of its outer component). A so called
Application Component Manager takes care of sending the data from one component to another starting
the components and checking whether the safety conditions for the data hold.

4 Semantics of OOAFG

Below we will present the semantics of OOAFG. The semantics describe what happens executing a
OOAFG specification in terms of transitions.

4.1 Technical Preliminaries
4.1.1 Operational Semantics

A semantics is a mapping from a syntactic domain to a semantic domain. The semantics we will use for
our language is called an operational semantics and is based on a transition system. Transition systems
were first used by Hennessy and Plotkin [HP79], [Plo81], [Plo83]. A transition system is a deductive
system based on axioms and rules that specify a transition relation. In order to introduce this kind of
system we shall first explain what a transition step is. Therefore let us consider the set Configurations
consisting of tuples: < s,I > which consist of a statement s (s is a word in the language that we give
a semantics for) and some amount of information I that has been collected until now. (The actual
configurations we will use for OOAFG are more complicated; these configuration tuples only serve as an
illustration).

A transition describes what a statement s in our language can do as it next step. The intuitive
meaning of the transition: < s1,I7 >—< s2,I3 > is: executing s; one step with information I; can lead
to a new amount of information I, with s; being the remainder of s; still to be executed. Note that in
general there are different transitions possible, given some tuple.

To define our operational semantics we use a transition system, which is a syntax driven deductive
system for proving transitions. This system consists of azioms and rules. The axioms tell us what we
consider basic transitions and are of the form Ci; — C3, with C; and C; members of Configurations.
The rules tell us how we can deduce new transitions from old one and have the format %%—gf The
meaning of this rule is: if the upper transition holds, then the lower transition also holds.

Rules and Axioms together determine a transition relation
—€ Configurations x Configurations

being the set of all transitions that are derivable in the system. The derivable transitions of the system
are transitions that either are axioms or are deducible from the axioms using the rules.

It has to be remarked that some parts of the axioms and rules will be unspecified (i.e. given by a
variable). Then such a rule or axiom stands for a whole collection of axioms or rules.

Given a certain transition system we consider transition sequences < s1,I; >—< s2,I3 >— ... such
that for all n > 0 the following is derivable: < s,,I, >—< Spt1,Iny1 >

Now we can give a meaning to a program P by defining its semantics being (for example) the set of
all possible transition sequences < P, Iy >— ... where I is a basic amount of information, which has to
be defined beforehand and P is the program text.(Ip for example consists of the type declarations of the
program)

4.1.2 Variant notation

In the course of this text I will make use of the variant notation to indicate a change in some function.
Let p be a (possibly partial) function then p{y/z} is defined by:

| p(2) if z # @ (possibly undefined)
ply/z}(2) = { y fz=2
If A= {(z1,9%1),) (Tn,yn)} and z; # z; (for 1 < i,j < n and i # j) is some finite collection of pairs, we
mean by p{A} the following variant of p

P{yl/ml}"'{yn/mn}

Observe that this definition is independent of the ordering of the tuples (z;,y;)

4.1.3 Power set

Let A be a set, then P(A) denotes the set of all subsets of A (the powerset of A) and Pgy(A) denotes the
set of all finite subsets of A.

4.2 Awuxiliary Definitions
4.2.1 Labeled statements

The labels identify a data object. a, 5, ... denote labels. We denote the set of all labels by Labels. A
name of a component is a statement. We define labeled statements as being tuples < o, s > where o is
some label. We denote by LSTAT the set of labeled statements.

4.2.2 Data and values

To keep track of the values in the fields of the data objects, we will use a function of the following
signature: '
Labels — (FIELDS — VALUES)

This function assigns to each data object a function that maps the fields of a data object to a value. We
will call a function of the above signature a data state. We denote the set of all data states by A with
typical element §. We will call §(a) : FIELDS ~— VALUES the data state for object a.

To denote a change in the data state we use the variant notation. A change in the data state is given
by the (partial) function C(a,é) : FIELDS — VALUES. Given a component name C an object a
and a data state 6, C(c,6) determines a set of field/value pairs! that give the changes in the values of
some fields of object a. The domain of C(«,§) is a subset of f(C), where f is the cover of the OOAFG
specification of the outer component of C.

Because C(a, 6) is a function it holds that (z,y) € C(a,6) and (z,2) € C(a,é) only if y = z, so we
may assume for C(a,6) = {(z1,%1), (%2,¥2),...} that all z; are different. Thus we can denote with the
variant notation a change in the data state for an object a by §(a){C(«,6)}. A change in a data state §
is then denoted by §{6(a){C(a,8)}/a}, meaning that the data state is changed in such a way that the
function that 6 assigns to an object o is updated with C(a,6). We will abbreviate this by

6{1 C(a,6)}

We will also use a function Initial(a), that assigns to fields of a an initial value. We will handle this
function in the same manner as we did with C(«,§).

We also define a predicate called changes. We say changes(C, field,) only if C covers field, (i.e. field, €
f(C) for f the cover of the outer component of C. If field, € f(C) then field, can be in the domain of
C(e,6) (i.e. C(a,6) changes field,).

1A function f can be seen as a set of pairs where (z,y) € f iff f(z) =y

4.2.3 Configurations

We will formulate the semantics of OOAFG in using operational semantics. An operational semantics
consists of a transition system, that defines a relation between configurations.

A configuration in our transition system will consists of three parts:
e A set of labeled statements
e A data state that assigns values to the fields of data objects
¢ An OOAFG specification

in other words

CONFIG = P§;»(LSTAT) x A x OOAFG

Remark: We will often write a configuration down like this: < XU{< a,C >}, §, 0ooafg >. We assume
then that < a,C >¢ X. We can call < a,C >€ X a component instance of component C for the object
Q.

4.2.4 A partial-ordering on the graph of an OOAFG-specification

We construct a partial ordering on the components of an OOAFG- specification. That is on the compo-
nents of the structure graph and on the components of the structure graphs of the components of this
structure graph etc. etc..

Because we allow iteration it is possible that more than once the same component can be executed. In
order to make things go well, we have to define some ordering between the subcomponents of a component
and the component itself, because for one object it is possible to execute a structural component more
than once and therefore it is possible that for that object the component itself together with some of its
sub components can occur in the same set of labeled statements.

Let AVep denote the set of all the sub components of CP and of all the sub components of these sub
components etc. etc.. Let AEcp denote the set of all the edges of Gep and of all the edges of the the
graphs of the sub components of CP etc. etc. .

We construct a partial ordering (AVcp, X) directly from its OOAFG-specification. We define the
relation < on AVgp as follows:

for all C,C' € AVgp

1. C < C'if (C,C") € AEcp

2.C=<C

3. C < C' if there exists a C" € AVgp such that C < C" and C" < C'
4. if C X C' and C # C' then

(a) for all sub components C; € Vi holds C; < C'

(b) for all sub components C; € Vg holds C < C}

(c) for all C; € V¢ and all C; € Vg holds C; X Cj (this rule is superfluous because it
already follows from the above two plus transitivity (3))

5. for all C' € Vg holds C' X C

We could have restricted rule 5 for components that are repeatable (i.e. 5. for all C’ € V¢ holds C' <
C if C is repeatable) since the rule is used only for this special case; this restriction however turns out to
be unnecessary.

It is easy to see that (AVcp, <) is a partial-order. Because of (2) and (3) reflexivity and transitivity
are automatically satisfied by the < relation. Because the graphs are all acyclic, and because the relations

10

between a component (node) and its contained sub components (nodes) is one-way (by rule 5). The <
relation is also antisymmetric in the sense that if C; < C; and Cy # C; then =(C; < C1).

We will use the partial order to determine which component is to be executed before or after or in
parallel to which other component. We say C < C’ if C is to be executed before C’, C' X C if C is to
be executed after C' and CLC' if C is to be executed in parallel with C' (i.e. CLC' iff C'LC iff ~(C =
cve'iecve=c)). ,

The following assertion holds for a component to be allowed to be executed: A data object a can
execute a component C considering a set of labeled statements X iff there does not exist any component
C' to be executed in the set of labeled statements X by the same data object o that precedes a in X.
In other words < e, C > can be executed considering the configuration < X U {< a, C >}, 6, 00afg > if

-3<a,C' >€ X(C' 2 C and C' # C)

4.2.5 the ’safe’ predicate

We only allow changes in the values of a data object when it is safe to make them. It is safe to change some
part of a data object only if it is not possible that the same part of that data object can be executed at the
same time, for then we have inconsistent data. Considering a configuration < X U{< a, C >}, §, ooafg >,
it is safe to execute < a,C > (i.e. it is safe for a component C to change some part of the data object
a) if in X there does not exist any collateral component C' (C LC'), that is labeled with the same label
(i.e. same data object) and covers a field of the data object that is also covered by C. So

safe(C(a,6),X)
iff
V< a,C' >€ X(CLC' — —3field, € £(C)(changes(C", field,))

4.2.6 The nondeterminism

As stated before in OOAFG we allow nondeterminism. In other words if a node has several outgoing
edges, only a subset of these edges has to be traveled along by a data object that has visited that node.
This amounts to the phenomenon that considering a node C and an object «, only a subset of the nodes
that are incident with the outgoing edges of C' will be executed by (on) « after executing C. 'We will
describe this phenomenon by considering only a connected sub graph of a structure graph of a structural
component. We will call this connected sub graph a sub-structure-graph.

Let G be the OOAFG specification for some component C' consisting of a structure graph Go. We
distinguish a subset of the nodes in G¢, the set of begin nodes of C or begin components of C, being those
nodes that have no incomming edges in structure graph G¢. We define a sub-structure-graph as follows:

Definition 4.1 Hc is a sub-structure-graph of G¢ if it satisfies the following condition:

e Let Go = (Vio, Ec) and let I denote the set of begin nodes of G¢. Let He = (Vg,Eg) and Iy
the set of begin nodes for H¢. Then

1. Ig ClIc

2. H¢ is a connected sub graph of G¢ such that all the nodes of Hg are on a directed path
starting from a begin node. :

(i.e.Vv € VIb € IgTvy,...,vn € V[(b,v1), (v1,v2), .-, (Vn-1,7n), (vn,v) € V])

It is easy to see that taking a sub-structure-graph of a structural component describes the phenomenon
of nondeterminism as we need it. Traveling through the connected sub-structure-graph is equivalent with
not traveling along all edges in the whole graph.

4.2.7 The transition system

Let ’ooafg’ be the OOAFG-specification of component C'P.

11

1. ezecution of a structural component
< XU{< a,C >},6,00afg >>< X UY,§,00afg >
where
e C is structural (i.e. if G¢ is the structure graph of C then G¢ is not the empty graph)

e -3C'(< a,C' >¢ X AC' X CAC' # C) (i.e. there is no predecessor of C in X with the same
label)

o Y =U,cz < @,z > where Z is the set of nodes of a sub-structure-graph of component C

Executing a structural component amounts to replace the instance of the structural component by the
instances of the components of a sub-structure-graph of the structural component. A component C can
be executed if there do not exist any other component instances of the same data object that precedes
C.

2. ezecution of an executable component
< XU{< a,C >},6,00afg >—< X, &', ooafg >
where

e C is executable (i.e. the structure graph if C is the empty graph)

e 3C' (< a,C' >e X ANC' K CAC'#C)

o §' =6{1 C(a),6)} (i.e. 6 is updated to & by the execution of component C)

o safe(C(a, 6),X) (changes are safe)

Executing an executable component amounts to process the data fields of the executing data object. The
executable component C can be executed if it is safe to do so and if there does not exist any component
instance for the same data object that should be executed before C.
3. teration of a structural component

<XU{<aC >},600afg >>< XUY U{< a,C >},6,00afg >
where

e (C is structural and repeatable

e 3<a,0'>e X(C'XCAC'#£C)

o YV =J,cz{< @,z >} where Z is the set of nodes of a sub-structure-graph of component C
Iterating a component amounts to executing a component and create an other instance of this component.
Note that a structural component succeeds its sub components in the ordering.

4. iteration of an executable component
< XU{<a,C >},600afg >>< X U{< a,C >},6,00afg >
where

e C is executable and repeatable

e -3<a,C' > X(C'<XCAC'#£C)

e safe(C(a,6), X) (i.e. changes are safe)

o &' =6{1 C(a,6)}

12

4.2.8 Semantic mapping

Before we can give the semantics of an OOAFG specification we need some definitions.

o We call < 0,8, 00afg > a final configuration. This is justified by the observation that assuming some
fixed domain of data objects , in a configuration of the form < 0,6, ooafg > all the data objects
that satisfy the OOAFG specification ooafg are either already totally processed or not processed at
all.

o With config; 2 config, we mean that configuration config; can be transferred to config, in zero
or more transition steps (—). Naturally all the transition steps are derived from (given by) the
transition system.

e With CONFIG ; we denote the set CONFIG U {L.}.

Now we can give the semantics of an OOAFG specification in terms of a nondeterministic configuration
transformation function:

O : OOAFG — (CONFIG — P(CONFIG,))

where:
Olooafg](< X, 6,00afg >) =

{< 0,6, 00afg > CONFIG| < X, 6, 00afg >5< 0,8, ooafg >}U
{L| there exists an infinite sequence < X, §,00afg >— ... =< X, 6,,00afg >— ...}.

Because we did not demand the number of data objects to be finite and because we allow unguarded
loops in the OOAFG specification, a configuration config will in general be mapped to an infinite subset
of CONFIG | by the function that describes an OOAFG specification. In other words for an OOAFG
specification ooafg the function Ofooafg] will map config to an infinite subset of CONFIG . If we fix
the number of data objects, it is easily shown that the collection of configurations that can be reached
in one transition step starting at some specific configuration is finite, i.e. for a configuration config, the
set {config|config, — config} is finite. This can be shown by proving that the number of axioms or rules
that can be applied to a configuration is finite. K6nigs lemma then shows that O[ooafg](config) contains
1L or is finite. 4 .

The configuration transformation function Ofooafg] associates with every configuration a set of end
configurations. This way a meaning is given to a configuration. If we want to obtain a proper meaning
for an OOAFG specification, we will have to consider a proper configuration that denotes an initial state
of an environment that runs an OOAFG specification.

If we want to obtain a (uniform) semantics for an OOAFG specification that is independent of an
environment (initial data state), we have to fix the initial data state §. A proper way to do so is to
demand the initial § to have no field assigned to any value (i.e. for all fields a and for all data objects a
that §(c)(a) is undefined). A consequence of that is that the specific values of the fields have to be given
by the components when executing, and furthermore that there exist no predetermined initial values for
the fields of the data objects.

4.3 Extensions to the semantics of OOAFG

There are several extensions on the semantics os OOAFG thinkable in order to enlarge the understanding
of OOAFG and give directions towards a broader theoretical fundamentals for the concepts of OOAFG.

In the transition system for describing OOAFG we treated parallelism as interleaving of actions (an
action is in this context a change of the data state). We also constructed a semantics for OOAFG in
which we can express parallelism as {rue parallelism (i.e. more that one action can take place at one
moment in time) or even maximal parallelism (all the actions that could possibly take place in parallel
do take place at exactly the same time).

13

An other variant for the semantics of OOAFG we constructed, is to describe the semantics is term
of histories in the spirit of [BKMOZ85]. This approach gives the possibility to model side effects of the
execution of a component (i.e. a component does not only change the data state but also produces some
side effect like printing or bleeping).

We also studied the semantics of a subset of the flow graphs, the series parallel graphs. Thise graphs
are interesting because these graphs have a linear syntax where the description of such a graph can be
mapped to a mathematical description of a graph in a compositional manner.

We will not present these three extended semantics in this paper, due to lack of space.

5 Related work

In the context of the Data Flow paradigm much theoretical and practical work has been done. I already
mentioned [Kah74], [Kok88] and [TBH82]. The theoretical foundations of Object Oriented programming
are relatively unexplored. There has been done essential work on typing and inheritance (I only mention
[CW85]) but only for a very few OO languages attempts have been made to give a formal semantics.
The language POOL [ABRKS86], [ABRK89], [Rut88], [Ame86b] is one (if not the only one) language for
which a proper mathematical foundation is given. One observation that was pointed out when formulising
POOL was that it was not inherently difficult to describe the language formally with ’standard’ techniques
(see for standard techniques for example [Bak82]), but that problems turn up when one tries to reflect
the special characteristics of object oriented languages in the description. It is not easy to make good
use of the extra information that is supplied by the features of the object oriented languages like the
protection of object against each other.

6 Conclusion

We succeeded in constructing a language that bears features and characteristics of both Application Flow
Graphs and Object Oriented programming/design. A nice observation is that the principle that underlies
this combination of OO and AFG and is expressed by the language OOAFG can be described in only
four axioms. One could say that the principle that originated from combining AFG and OO is naturally
formalizable, and therefore not difficult to comprehend. We also studied extensions of this semantics (not
presented in detail in this paper) in which OOAFG proved to have also an elegant semantics in term of
true parallelism, or when inspecting side effects.

Another observation we made is that the features of OO and AFG do not inherently clash with each
other, although usually the conceptual points of view both principles take, differ widely.

7 Acknowledgements

This paper reflects the theoretical aspects of work I did, performing a student internship at ESAT
IBM Uithoorn to obtain my master degree at the University of Amsterdam. I would like to thank the
members of ESAT IBM Uithoorn and especially Ghica van Emde Boas and Gilles Schreuder, who largely
contributed to the ideas presented in this paper.

References

[Ame86a] P. America, Object Oriented programming: a theoreticians introduction, Bulletin of the Euro-
pean Association for Theoretical Computer Science, 29, 1986, pp.69-84.

[Ame86b] P. America, A proof theory for a sequential version of POOL, ESPRIT Project 415 Document
188, Philips Research Laboratories, Eindhoven, The Netherlands, 1986

[Ame87] P. America, POOL-T: A parallel object oriented Language, in A. Yonezawa, M. Tokoro (Eds.),
Object Oriented Concurrent Programming, MIT Press, 1987, pp.199-220.

[ABKR86] P. America, J.W. de Bakker, J.N. Kok, J.Rutten, Operational semantics for a parallel object

14

oriented language, in Conference Record of the 13th Symposium on Principles of Programming Languages
(POPL), St. Petersburg Florida, 1986, pp.194-208.

[ABKRS89] P.America, J.W. de Bakker, J.Rutten, J.N. Kok, Denotational semantics of a parallel object
oriented language, Information and Computation vol. 83, pp.152-205, 1989

[Bak82] J.W. de Bakker, Mathematical theory of program correctness, Information and Control, vol.54,
1982, pp.70-120.

[BKMOZ85] J.W. de Bakker, J.N. Kok, J.-J.Ch. Meyer, E.-R. Olderog, J.I. Zucker, Contrasting themes
in the semantics of imperative concurrency, Current Trends in Concurrency (J.W. de Bakker e.a. eds.),
lecture notes in computer science 244, Springer 1985.

[BJ66] C.Bohm, G. Jacopini, Flow-diagrams, Turing Machines, and Languages with Only Two Forma-
tion Rules, Comm. ACM 9 5 May 1966, pp. 366-371.

[CW85] L. Cardelli, P. Wegner, On understanding Types, Data Abstractions and Polymorphism, Com-
puting Surveys, vol. 17, nr. 4, December 1985, pp.471-522.

[GR83] A. Goldberg, D, Robson, Smalltalk-80: The language and its implementation, Addison-Wesley,
Reading, MA, 1983.

[HP79] M.C.B. Hennessy, G.D. Plotkin, Full abstraction for a simple parallel programming language,
Proceedings of the 8th MFCS (J. Becvar ed.), LNCS 74 Springer 1979, pp.108-120.

[Kah74] G. Kahn, The semantics of a simple language for parallel programming, Proceedings Informa-
tion Processing (Rosenfeld ed.), pp.471-475, North Holland, 1977.

[Kok88] J.N. Kok, Data Flow semantics, Technical report CS-R8835, Centre for Mathematics and Com-
puter Science, Amsterdam, 1988. .

[Mey88] Bertrand Meyer, Object Oriented Software Construction, Prentice Hall 1988, ISBN 0-13-629049-
3.

[Plo81] G.D. Plotkin, A structural approach to operational semantics, Technical Report DAIMI FN-19,
Aarhuis University, Computer Science department, 1981.

[P1o83] G.D. Plotkin, An operational semantics for csp, in D. Bjgrner, editor, Formal Description of
Programming Concepts II, pp. 199-233, North Holland, 1983.

[Rut88] J. Rutten, Semantic correctness for a parallel object oriented language, Report CS-R8843, Cen-
tre for Mathematics and Computer Science, Amsterdam, November 1987.

[TBHS82] P.C. Treleaven, D.R. Brownbridge, R.P. Hopkins, Data driven and demand driven computer
architecture, Computing surveys 14(1), March 1982.

[Weg89] Peter Wegner, Learning the Language, BYTE, march 1989.

15

The ILLC Prepublication Series

ML-91-11 Rineke Verbrugge Feasible Interpretability
ML-91-12 Johan van Benthem Modal Frame Classes, revisited
Computation and Complexity Theory
CT-91-01 Ming Li, Paul M.B. Vitényi Kolmogorov Complexity Arguments in Combinatorics
. CT-91-02 Ming Li, John Tromp, Paul M.B. Vitdnyi How to Share Concurrent Wait-Free Variables
CT-91-03 Ming Li, Paul M.B. Vitanyi Average Case Complexity under the Universal Distribution Equals
Worst Case Complexity

CT-91-04 Sieger van Denneheuvel, Karen Kwast Weak Equivalence
CT-91-05 Sieger van Denneheuvel, Karen Kwast Weak E%uli:llalence for Constraint Sets

CT-91-06 Edith Spaan Census Techniques on Relativized Space Classes

CT-91-07 Karen L. Kwast The Incomplete Database

CT-91-08 Kees Doets Levationis Laus

CT-91-09 Ming Li, Paul M.B. Vit4nyi gmbinagorial Properties of Finite Sequences with high Kolmogorov
mplexity

CT-91-10 John Tromp, Paul Vitan]%idl A Randomized Algorithm for Two-Process Wait-Free Test-and-Set

CT-91-11 Lane A. Hemachandra, Edith Spaan Quasi-Injective Reductions

CT-91-12 Krzysztof R. Apt, Dino Pedreschi =~ Reasoning about Termination of Prolog Programs

Computational Linguistics

CL-91-01 J.C. Scholtes Kohonen Feature Maps in Natural Lﬁlfguage Processing

CL-91-02 J.C. Scholtes Neural Nets and their Relevance for Information Retrieval

CL-91-03 Hub Priist, Remko Scha, Martin van den Berg A Formal Discourse Grammar tackling Verb Phrase Anaphora

Other Prepublications

X-91-01 Alexander Chagrov, Michael Zakharyaschev The Disjunction Prbcl)ﬁcrty of Intermediate Propositional Logics

X-91-02 Alexander Chagrov, Michael Zakharyaschev On the Undecidability of the Disjunction Property of
Intermediate Propositional Logics

X-91-03 V. Yu. Shavrukov i\:}:)&lgeb;as of Diagonalizable Algebras of Theories containing
etic

X-91-04 K.N. Ignatiev Partial Conservativity and Modal Logics

X-91-05 Johan van Benthem Temporal Logic

X-91-06 Annual Report 1990

X-91-07 A.S. Troelstra Lectures on Linear Logic, Errata and Supplement

X-91-08 Giorgie Dzhaparidze Logic of Tolerance

X-91-09 L.D. Beklemishev On Bimodal Provability Logics for IT;-axiomatized Extensions of
Arithmetical Theories

X-91-10 Michiel van Lambalgen Independence, Randomness and the Axiom of Choice

X-91-11 Michael Zakharyaschev Canonical Formulas for K4. Part I: Basic Results

X-91-12 Herman Hendriks Flexibele Categgﬁale Syntaxis en Semantiek: de proefschriften van Frans
Zwarts en Michael Moortgat

X-91-13 Max 1. Kanovich The Multiplicative Fragment of Linear Logic is NP-Complete

X-91-14 Max I. Kanovich The Horn Fragment of Linear I.XFic is NP-Complete

X-91-15 V. Yu. Shavrukov Subalgebras of Diagonalizable Algebras of Theories containing
Arithmetic, revised version

X-91-16 V.G. Kanovei Undecidable ch;ltheses in Edward Nelson's Internal Set Theo:

X-91-17 Michiel van Lambalgen Independence, Randomness and the Axiom of Choice, Revised Version

X-91-18 Giovanna Cepparello New Semantics for Predicate Modal Logic: an Analysis from a
standard point of view

X-91-19 Papers presented at the Provability Intexgretabili Arithmetic Conference, 24-31 Aug. 1991, Dept. of Phil.,
trecht Universi

1992 Annual Report 1991

Logic, Semantics and Philososhy of Langauge

LP-92-01 Vfctor Sdnchez Valencia Lambek Grammar: an Information-based Categorial Grammar
LP-92-02 Patrick Blackburn Modal Logic and Attribute Value Structures
LP-92-03 Szabolcs Mikul4s ’é‘he Completeness of the Lambek Calculus with respect to Relational
emantics
LP-92-04 Paul Dekker An l{&ilate Semantics for Dynamic Predicate Logic
LP-92-05 David 1. Beaver The Kinematics of Presultﬂ)osition
LP-92-06 Patrick Blackburn, Edith Spaan %alrlodal Perspective on the Computational Complexity of Attribute
ue Grammar
LP-92-07 Jeroen Groenendijk, Martin Stokhof A Note on Interrogatives and Adverbs of Quantification
LP-92-08 Maarten de Rijke A System of ic Modal Logic
" LP-92-09 Johan van Benthem Quantifiers in the world of Types
LP-92-10 Maarten de Rijke Meeting Some Neighbours (a dynamic modal logic meets theories of
change and knowledigrrepresentaﬁon)
LP-92-11 Johan van Benthem A note on Dynamic Arrow Logic
Mathematical Logic and Foundations
ML-92-01 A.S. Troelstra Comparing the theory of Representations and Constructive Mathematics

ML-92-02 Dmitrij P. Skvortsov, Valentin B. Shehtman Maximal Kripke-type Semantics for Modal and

Superintuitionistic Predicate Lodglcs
ML-92-03 Zoran Markovi¢ On the Structure of Kripke Models of Heyting Arithmetic
ML-92-04 Dimiter Vakarelov A Modal Theory of Arrows, Arrow LogicsI .
ML-92-05 Domenico Zambella Shavrukov’s Theorem on the Subalgebras of Diagonalizable

Algebras for Theories containing IA, + EXP
ML-92-06 D.M. Gabbay, Valentin B. Shehtman Undecidability of Modal and Intermediate First-Order Logics with
Two Individual Variables
ML-92-07 Harold Schellinx How to Broaden your Horizon
ML-92-08 Raymond Hoofman Information Systems as Coalgebras
Compution and Complexity Theory . .
CT-92-01 Erik de , Peter van Emde Boas Obf'ect Oriented Application Flow Graphs and their Semantics
CT-92-02 Karen L. Kwast, Sieger van Denneheuvel Weak Equivalence: Theory and Applications
Other Prepublications

X-92-01 Heinrich Wansing The Logic of Information Structures . .

X-92-02 Konstantin N. Ignatiev ’If'hg Closed Fragment of Dzhaparidze's Polymodal Logic and the Logic
of Z,-conservativi

X-92-03 Willem Groeneveld , ﬂm;umc Semantig and Circular Propositions, revised version

X-92-04 Johan van Benthem odeling the Kinematics of Meanin,

g
X-92-05 Erik de Haas, Peter van Emde Boas Object Oriented Application Flow Graphs and their Semantics, revised
version

