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1 Introduction

This paper is a continuation of Zakharyaschev [1992], where the following basic results

on modal logics with transitive frames were obtained:

e With every finite rooted transitive frame § and every set D of antichains (which were
called closed domains) in § we associated two formulas (3,9, 1) and o(3,D). We
called them the canonical and negation free canonical formulas, respectively, and
proved the Refutability Criterion characterizing the constitution of their refutation
general frames in terms of subreduction (alias partial p-morphism), the cofinality

condition and the closed domain condition.

e We proved also the Completeness Theorem for the canonical formulas providing
us with an algorithm which, given a modal formula ¢, returns canonical formulas

o(3i, Di, L), fori =1,...,n, such that

K4dp=Ka® {32, 1):i=1,...,n}

if ¢ is negation free then the algorithm instead of o(:,Di, L) can use the negation
free canonical formulas «(3;,D;). Thus, every normal modal logic containing K4

can be axiomatized by a set of canonical formulas.

*This work was partially supported by grant number 93-011-16006 from the Russian Fundamental

Research Foundation.



In this Part we apply the apparatus of the canonical formulas for establishing a number of
results on the decidability, finite model property, elementarity and some other properties
of modal logics within the field of K4.

Our attention will be focused on the class of logics which can be axiomatized by
canonical formulas without closed domains, i.e. on the logics of the form

K4 {a(5:,0,1):i € I}. (1)

Adapting the terminology of Fine [1985], we call them the cofinal subframe logics and
denote this class by CSF. As was shown in Part I, almost all standard modal logics are
in CSF. The class SF of Fine’s subframe logics, which can be represented in the form

K4 ® {a(3:,0): i € I},

turns out to be a proper subclass of CSF. In fact, this paper extends the results of Fine
[1985] to the class of cofinal subframe logics. However our approaches are quite different
in both their motivations and methods of obtaining results.

Fine introduces some special frame-based formulas - the subframe formulas - in such a
way that they can axiomatize exactly those normal extensions of K4 that are characterized
by classes of Kripke frames which are closed under forming subframes and proves the
finite model property of these logics using his powerful method of dropping points from
the canonical model.

The canonical formulas of Part I, also frame-based ones, naturally arise in the course
of analyzing the construction of general frames refuting an arbitrary given modal formula
and so are able to axiomatize all extensions of K4. The classes of subframe and cofinal
subframe logics appear then as relatively simple (but by no means trivial) classes which
can serve as a good starting point in our attack on modal logics supported by the heavy
artillery of the canonical formulas. The finite model property of logics in CSF turns
out to be then just an easy consequence of the Refutability Criterion and Completeness
Theorem.

This Part is organized in the following way.

Section 2 characterizes the canonical formulas which are provable in a given cofinal
subframe logic. As a consequence we obtain that all finitely axiomatizable logics in CSF
and even all the logics in the class which are recursively axiomatizable by canonical
formulas are decidable.

In Section 3 we prove that every cofinal subframe logic has a unique representation of
the form (1) with an independent set of canonical axioms. We show also that there are
subframe logics with infinite independent sets of axioms, and so the cardinality of SF is
that of continuum and there are undecidable recursively axiomatizable subframe logics.

The finite model property of all logics in CSF is proved in Section 4. Moreover, we
obtain an (exponential) upper bound for the size of minimal frames separating L € CSF
from ¢ € L. '

In Section 5 we give a purely frame-theoretic characterization of cofinal subframe
logics: L € CSF iff L is determined by a class of frames that is closed under forming
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cofinal subframes. Section 6 characterizes in a frame-theoretic way those logics in CSF
that are elementary, canonical and compact. And Section 7 briefly considers the quasi-
normal extensions of K4 with normal and quasi-normal canonical axioms containing no
closed domains. We characterize the canonical formulas belonging to such logics and prove
that all finitely axiomatizable logics in this class are decidable, though not necessarily have
the finite model property or are Kripke complete.

Now I am working on Part III which deals with the finite model property of logics
outside of CSF.

The results above can readily be transferred to the extensions of intuitionistic propo-
sitional logic Int (i.e. to the intermediate or superintuitionistic logics) which are axiom-
atizable by intuitionistic canonical formulas §(3,0, 1) or 4(§,0) without closed domains
(see Zakharyaschev [1989, 1993]). Unlike the modal case, there is a purely syntactic char-
acterization of subframe and cofinal subframe intermediate logics. For it was shown in
Zakharyaschev {1983, 1989] that

e an intermediate logic L is aziomatizable by implicative formulas iff it can be repre-

sented in the form
L =1Int + {4(3:,0):i € I}

and

o L is aziomatized by disjunction free formulas iff it can be represented as

L =1Int+{6(3:,0,1) :i € I}.

There are two ways of transferring those results to intermediate logics. The first one is
just to translate the proofs into the intuitionistic language. Another one uses the fact
that such properties of logics as the decidability, finite model property, etc., are preserved
while passing from a modal logic M containing S4 to its ‘superintuitionistic fragment’
pM, which contains those intuitionistic formulas whose Godel translations are in M, and
the following Modal Companion Theorem proved in Zakharyaschev [1989): A normal logic
M above S4 is a modal companion of an intermediate logic

L=1Int+ {f(3:,2i,1):i €I}
(i.e. pM = L) iff M can be represented in the form
M=540 {a(&',‘,ﬁ,-,_].) ‘1€ I} 52 {a(ejaeja-l-) 1J € J}

where each &;, for j € J, contains at least one proper cluster.

I hope that the reader has Part I at hand and so shall freely use its terminology and
notations.



2 The decidability

When proving such properties of logics as the decidability, finite model property or com-
pleteness, we may consider only the canonical formulas. Indeed, suppose a logic L and
a formula ¢ are given. By the Completeness Theorem (of Part I), we can effectively
construct canonical formulas o, ..., a, such that

Kiopp=K4don ... .

Therefore, ¢ € L iff o; € L for every i € {1,...,n}, and so L is decidable iff there is an
algorithm which is capable of deciding, given an arbitrary canonical formula o, whether
or not @ € L. It follows also from the equality above that, for every frame §, § & ¢ iff
3 € {1,...,n} § ¢ os. Thus, L has the finite model property (or is Kripke complete)
iff for every canonical formula o € L there is a finite (respectively, Kripke) frame for L
refuting a.

The following lemma turns out to be very useful for establishing deducibility relations
between canonical formulas.

Lemma 2.1 (Composition Lemma) Suppose § = (W;, R;, P), for i = 1,2,3, are
frames, f, is a (cofinal) subreduction of 3 to §2 and fp 13 a (cofinal) subreduction of 3,
to §3. Then the composition f3 = fafy 18 a (cofinal) subreduction of &1 to 3.

Proof. Since f, and f; are surjections, their composition is also a surjection. Ifz,y€
domfof; and TR,y then, by the condition (R1) in the definition of reduction (see Part
I, Section 1), fi(z)Rzfi(y) and fafi(z)Rsfafi(y). I fofi(z)Rsz for some z € Wi and
z € Wy then, by (R2), there are v € W5 and y € W, such that f1(z)Ryv, fa(v) = z and
Ry, fily) = v, i.e. fofi(y) = 2. So fof satisfies both (R1) and (R2). If X € P; then,
by (R3), f;1(X) € Py and f{'(f5 (X)) = (fof)"'(X) € P1. Thus, f; satisfies (R1) -
(R3), and so is a subreduction of § to 3.

Now suppose f; and f; are cofinal, z € Wy and yR;z for some y € domf, f;. To prove
that f; is cofinal, we must show that z € dom fal, i.e. either z is in domf; or sees a point
in dom/fs. Since f; is cofinal, either z € domf; or TRz for some 2 € domf;. In the former
case fi(y)Rafi(z), and so, by the cofinality of f,, either fi(z) € domfs, i.e. z € domfsfy,
or fi(z)Rgv for some v € domf;, and then, by (R2), there is u € W) such that zR;u and
fi(uv) = v, whence u € domff;. The latter case is considered analogously. -

Theorem 2.2 (i) Suppose L = K4 & {a(5:,0,1) : i € I}. Then, for every canonical
formula a(3,D, 1), (3,9, 1) € L iff § = (3i,0, L) for some1 € I, i.e. iff § 1s cofinally
subreducible to §; for some ¢ € I.

(ii) Suppose L = K4®{a(3:,0) : i € I}. Then, for every canonical formula a(§,9,1),
a(3,9,L) € L iff «(3,D) € L iff § = (%, 0) for some i € I, i.e. iff § 13 subreducible to
3; for some i € I.

Proof. (i) If «(3,9, L) € L then, for some i € I, § £ a(3;, 0, L), since, by the Refutabil-
ity Criterion, § }& (3,9, 1).



Now suppose that, for some i € I, 3 & o(3i, @, L), i.e. there is a cofinal subreduction
f of § to 3. Suppose also that & is a general frame refuting (3,9, ). Then there is a
cofinal subreduction g of & to 3. By the Composition Lemma, fg is a cofinal subreduction
of & to 3;, and so, by the Refutability Criterion, & ¥ a(8:,0,L). Thus, o(3,D,L1)is valid
in every general frame for L and hence o(3,9,1) € L.

(ii) is proved analogously. -

As an immediate consequence we obtain

Corollary 2.3 Every finitely aziomatizable subframe or cofinal subframe logic 13 decid-
able. 4

For the subframe logics this result was first proved by Fine [1985] and for the cofinal
subframe logics above S4 by Zakharyaschev [1984]. The intuitionistic analog of Corol-
lary 2.3 is just McKay’s [1968] Theorem on the decidability of all intermediate logics with
a finite number of disjunction free additional axioms.

Corollary 2.4 (i) L i3 a cofinal subframe logic iff, for every canonical formula (3,9, 1),
(5,0, L) € L whenever o(§,D, L) € L.

(i) L is a subframe logic iff, for every canonical formula o(3,9,1), o(3,0) € L
whenever o(§,D,1) € L. -

Thus, dealing with subframe or cofinal subframe logics, we may consider only those
canonical formulas that have no closed domains. We shall call the formulas of the form
o(3,9) and (3,0, L) the subframe and cofinal subframe formulas, respectively.

Corollary 2.5 (i) a(3,D, L) € K4{(3:,0, L) : i € I} 1ff o(3,D,1) € Kd®(3:,0,1)
for some i € I.

(i) (5,2, L) € K4 {a(5:,0) : i € I} iff (3,9, 1) € K4® o(5i,0) for somei € 1.
_'

It is natural now to ask whether a subframe or cofinal subframe logic is decidable if it is
recursively axiomatizable. In general, as we shall see in Section 3, the answer is negative.
However, the answer turns out to be positive if the logic is recursively axiomatizable by
canonical formulas.

Theorem 2.6 Suppose L € SF or L € CSF and L 1s recursively aziomatizable by
canonical formulas. Then L is decidable.

Proof. Let L be a cofinal subframe logic. By Corollary 2.4, we may assume L to be
recursively axiomatizable by some cofinal subframe formulas. According to Theorem 2.2,
a(®,D, L) € L iff there is a cofinal subreduct § of & such that a(g, 0, 1) is an axiom of L.
So our decision algorithm may be as follows. Given a formula (8,9, 1), we construct all
the cofinal subreducts &, ... ,3n of ® and then check whether at least one of the formulas
o(§1,0,1),..., (3,0, L) is an axiom of L. If the outcome of this check is positive then
a(8,D, L) € L; otherwise a(®,D, L) € L.
The case of a subframe L is considered in the same manner. -

Corollary 2.7 Every intermediate logic which is recursively aziomatizable by intuition-
istic canonical formulas without closed domains 1s decidable. -
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3 Independent axiomatization and cardinality

Suppose that I is a set of modal formulas and L = K4®T. The set of axioms I is called
independent if, forno A CT, L=K4® A.

Theorem 3.1 Every (cofinal) subframe logic L can be aziomatized by an independent set
of (cofinal) subframe formulas, and such an aziomatization is unique.

Proof. Suppose first that L is a subframe logic. Define on the set FRF of all finite
rooted frames a relation < by taking, for 3,6 € FRF,

§ < & iff & issubreducible to 3.

Using the Composition Lemma, it is not hard to show that < is a partial order on FRF.
It is clear also that < is well-founded, i.e. there is no infinite descending chain of distinct
frames in FRF.

Now suppose that L = K4 & {a(3:,0) : ¢ € I} and {3; : j € J} is the set of all
minimal (with respect to <) frames in the set {3: : i € I}. Clearly, for every i € I there
is j € J such that §; < §. Then, by Theorem 2.2, L = K4 @ {a(3;,0) : j € J} and the
subframe axioms {c(3;,0) : 7 € J} are independent. Furthermore, if there is some other
independent axiomatization L = K4® {a(3,0) : k € K } then, by Theorem 2.2, for each
j € Jthereare k € K and j' € J such that § < 3k < ;. Then j = 7', from which it
follows that §; and 3 are isomorphic, and so J C K. Likewise K C J. Therefore J = K.

If L is a cofinal subframe logic then we define on FRF another well-founded partial

order <.:
§<.® iff & is cofinally subreducible to 3.

The rest of the proof remains the same as in the preceding case.

Unfortunately, this independent axiomatization result cannot be generalized to cover
all logics above K4. For recently Alexander Chagrov and I have constructed normal modal
logics containing K4, S4, K4Grz and an intermediate logic which have no independent
axiomatizations.

Now we show that there are subframe and cofinal subframe logics with infinite indepen-
dent sets of canonical axioms, or, which is equivalent, the partially ordered sets (FRF,<)
and (FRF,<.), defined in the proof of Theorem 3.1, contain infinite antichains. It will
follow that the cardinality of the classes SF and CSF is that of continuum and that there
are undecidable recursively axiomatizable logics in these classes. (It should be noted that
these results were first formulated by Fine [1985], but his proof was incorrect. This
problem was also discussed by Kracht [1990], who believed that all subframe logics are
decidable. In Logic Notebook [1986) I mentioned the question on the cardinality of inter-
mediate subframe logics (i.e. extensions of intuitionistic propositional logic with purely
implicative axioms) as an open problem.)

Let §, = (W,, R,), for n =3,4,..., be the sequence of frames shown in Fig. 1.



Figure 1:

Lemma 3.2 For no n # m, §, is subreducible to F,.

Proof. Clearly 3, is not subreducible to 3, if n < m. So suppose that n > m and f
is a subreduction of 3, to §m. Since both a, and b, have three pairwise incomparable
(with respect to R,,) successors in Fn,, every point in f~Y(a;) and f~'(b;) must also
have at least three pairwise incomparable successors in §,. Therefore, without loss of
generality we may assume that f~'(a;) = {a;} and f~'(b;) = {b1}. It should be clear
also that f~'(a) = {a} and f~!(b) = {b}. Since a;Rma; and not b; Rnaz, we must have
Fas) = {a}; symmetrically, f~*(b;) = {b}. And, by the same argument, for each
i such that 1 < i < m, f1(a;) = {a;} and f~1(b;) = {b;}. But then we come to a
contradiction. For b,,_; does not see c in §,, while in F, by, sees all the points which
are accessible from a,, except a,, itself, and so no point in §, can be mapped by f to c
without violating (R1). -

As a consequence of Lemma 3.2 and Theorem 2.2 one can readily prove the following

Theorem 3.3 (i) There are subframe and cofinal subframe logics with infinite indepen-
dent sets of canonical atioms.

(ii) The cardinality of both SF and CSF is that of continuum.

(iii) There are a continuum of undecidable logics in SF and CSF, with infinitely many
of them being recursiwely aziomatizable (but not by canonical formulas). -

Since all the frames F, defined above are partially ordered, using the results of Za-
kharyaschev [1989] we obtain also

Theorem 3.4 (i) There are a continuum of intermediate logics with purely implicative
additional azioms.

(ii) There are a continuum of undecidable intermediate logics with implicative addi-
tional azioms, and infinitely many of them are recursively aziomatizable.



4 The finite model property

Another immediate consequence of Theorem 2.2 is the following
Theorem 4.1 All subframe and cofinal subframe logics have the finite model property.

Proof. Suppose L is a subframe or cofinal subframe logic and o(3,9,L) € L. Then, by
Theorem 2.2, § is a frame for L and, as we know, § ¢ o(3,D,1).

For the subframe logics this result was first obtained by Fine [1985]; for extensions
of S4 it was proved by Zakharyaschev [1984]. For intermediate logics Theorem 4.1 is
equivalent (as if follows from Zakharyaschev [1983, 1989)) to McKay’s [1968] Theorem,
according to which all intermediate logics with disjunction free additional axioms have

the finite model property.

Example 4.2 Using Theorem 4.1, we can give a simple proof of the well-known theorem
first proved by Bull [1966) and Fine [1971]: every estension of S4.3 has the finite model
property. (Recall that all extensions of S4.3 are normal.)

We know from Part I that

S4.3

S4 D(Elp —_ q) V] D(Clq — p)

= K4® ofe,0) ® of v, 9).

Now we show that every extension of S4.3 is a cofinal subframe logic.

By Theorem 2.2, o(§,D, L) € S4.3 iff § contains either an irreflexive point or an
antichain with at least two elements. Therefore, every extension of S4.3 is axiomatized
by some formulas o(F, D, L) such that § is a finite chain of non-degenerate clusters. Each
closed domain in such a formula consists of a single reflexive point. It remains to recall
that, by Proposition 7 of Part I, each reflexive singleton is an open domain in every model,
and so we may take ® = . -

We can strengthen Theorem 4.1 by indicating an upper bound for the number of points
in the minimal frame for L € CSF (or L € SF) which refutes a given formula ¢ ¢ L.
Define I(¢), the length of ¢, as the number of subformulas in ¢.

Theorem 4.3 (i) Suppose L is a subframe logic and ¢ ¢ L. Then there is a frame for L
refuting ¢ and containing at most 2¥) points.

(ii) Suppose L is a cofinal subframe logic and ¢ & L. Then there is a frame for L
refuting ¢ and containing at most 221 points.

Proof. (i) We consider first a subframe logic L. Let § = (W, R) be a finite frame for L
refuting . We will extract a subframe 3’ of § which refutes ¢ and contains at most 2%
points; by the Composition Lemma and Refutability Criterion, § will also be a frame for

L.
Fix a valuation % under which ¢ is false at some point in §. By induction on the
number of points in § we can construct a finite tree of clusters & = (V, S) such that there
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s a reduction f of & to 3. Define a valuation % on ® by taking (p,z) = 2(p, f(x)) for
every variable p and every z € V. By the P-morphism Theorem, 4(x,z) = B(x, f(z)) for
all formulas x.

We say a point z in & (or in §) eliminates a formula 0% if £ j£ ¥ and y | 4 for all
y € z1—C(z), where C(z) is the cluster generated by z. Let

T, = {O0% € Suby : z £ Oy & z does not eliminate Oy},

A, = {0O¢ € Suby : z |= O},
T, = {¢ € Subp : z = ¥}.
Suppose a point a eliminates Oy in & and V' is a minimal subset of V such that

(1) a € V' and :
(2)ifzreV' and Oy €T, then there is y € 21V’ eliminating O1.

By induction on |T';|, the cardinality of I';, we show that for each z € V'
|z1v’| < 2™l

If || = O then there is no point in £]V' except z, for otherwise we can remove all
such points from V" and the remaining subset of V” will again satisfy (1) and (2), contrary
to the requirement of minimality.

Suppose |I'z| = n+1. Consider first all the points y1, ..., yr in the set C(z)NV' —{z}.
Fach of them must eliminate some O € I';, for otherwise it can be removed from V'
without violating (1) and (2). Moreover, in total ,...,y, must eliminate at least
distinct formulas in T, and so the points in C(z)1V' — C(z) eliminate only the remaining
< n+1—r formulas.

Let z1,...,2 be an antichain in V' such that {z1,...,2z}1V' = C(z)1V' = C(z).
Again, each z; must eliminate some 0% € I, such that z; O for all j # i. Therefore,
T, |<n+l1-r—s withr+s2>1. So, by the induction hypothesis,

‘ziIV’| S 2n+1-—r—-a.

Thus, we have
|$1V'| S 1 +r+ 32n+1—r—-s S 2n+1’

and so
V'l < olfsl < olle)

Consider the frame § = (W', R') where W' = f(V’) and R' is the restriction of R to
W'. It is clear that |W’| < 2/¥). Let %' be the restriction of ©0 to . By induction on
the construction of ) € Suby we can prove that, for every z € W', o' (y,z) = B(Y, z).
The only non-trivial case is 1 = Ox. If B(Ox, z) = T then B(x,y) = B(x,y) =T for
all y € z1W', and so ¥'(Ox,z) = T. If ¥(0yx,z) = F then 4(Ox,z) = F for some
z € f~Y(z)NV'. By the definition of V', there is v € z1V’ such that #(x,v) = F.
Therefore, zRf(v) and B(x, f(v)) =T (x, f(v)) = F, whence %'(Ox, z) = F.

9



Thus, we have constructed a subframe § of § which refutes ¢ and has at most 2%
points.

(ii) Suppose now that L is a cofinal subframe logic and § = (W, R) is a frame for L
refuting ¢ under a valuation B. As before, we construct a subframe § = (W',R) of 3
such that |W'| < 2/¥) and § £ ». But now § is not in general a frame for L, since
it may be not a cofinal subreduct of §. So we add to W’ all the the final clusters in §
that are accessible from W'; the resulting subframe § = (Wi, R;) is a cofinal subreduct
of § and obviously refutes ¢ under the valuation %8; which is the restriction of U to Wi.
However, now § may contain too many points. Our concluding step is to construct a
reduct §, = (W,, R,) of § which also refutes ¢ and contains at most 22(#)+1 points.

Two final clusters C(z) and C(y) in § are said to be equivalent (relative to ) iff either
they are both degenerate and =, = £, or they are both non-degenerate and A, = A,
It is clear that, changing if necessary the valuation B only on points from final clusters
in §;, we can achieve the situation when §; refutes ¢ under this valuation and, for every
equivalent final clusters C(z) and C(y),

Vu € C(z)3v € C(y) Ty = Z,.

Define on W, an equivalence relation = by taking z = y iff either z = y or z and
y belong to equivalent final clusters and £, = L,. By [z] we denote the equivalence
class containing z. Let §; = (Wa, Ra) be the frame with Wy = W /= and [z} Ra[y] iff
[z] C [y]! in . It is not hard to verify that the natural map g(z) = [z] is a reduction
of 3, to 3a. Moreover, if By(p,z) # By (p,y) for some p € Suby then g(z) # g(y), and
so we may put D(p, g(z)) = Di(p, z) for all z € W) and p € Subp. By the P-morphism
Theorem, §; } o; by the Composition Lemma and Refutability Criterion, 3, is a frame
for L; and, finally, |W,| < 221, (Notice that if the frame § is partially ordered then
|Wo| < 21@+1)) o

Corollary 4.4 Suppose L is an intermediate logic aziomatizable by disjunction free for-
mulas and ¢ & L. Then there is a frame separating ¢ from L and containing at most
2K+ points.

It is worth noting that for some subframe and cofinal subframe logics the exponential
upper bound for the complexity of refutation frames we have just obtained can be reduced
to a polynomial or even linear one. For instance, Ono and Nakamura [1980] showed that
S4.3, S4.3Dum and S4.3Grz have the linear finite model property, while Chagrov [1983]
extended this result to all extensions of S4.3 and established polynomial and linear upper
bounds for some other known modal and intermediate logics. However, it is impossible to
reduce essentially the upper bound of Theorem 4.3 for all subframe and cofinal subframe
logics: in Zakharyaschev and Popov [1980] I proved the exponential lower bound for
intuitionistic propositional logic Int and hence for S4; moreover, Chagrov [1983] showed
that no intermediate logic L in the interval Int C L C Int + —p V ——p and so no normal
modal logic L in the interval S4 C L C S4.2Grz has the polynomial finite model property.

As a direct consequence of the proof of Theorem 4.3 we obtain the following
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Corollary 4.5 (i) Suppose L = K4 @ ¢ 13 a subframe logic. Then
L=K4® {a(5:,0):i=1,...,n}

for some §; containing at most 2/¥) points.
(ii) Suppose L = K4 @ ¢ is a cofinal subframe logic. Then

L=K4®{a(5,0,L):1=1,...,n}
for some §; containing at most 22P)+1 points. -

An analogous corollary holds, of course, for L = Int + ¢ with (i) an implicative or (ii)
disjunction free ¢.

Note by the way that both the problems ‘K4 @ ¢ € CSF? and ‘K4 @ ¢ € SF?
(and their intuitionistic counterparts) are algorithmically undecidable, as it follows from
Chagrov and Zakharyaschev [1991].

5 Frame-theoretic characterization

Now we give a purely frame-theoretic characterization of the cofinal subframe logics; for
the subframe ones the characterization was obtain by Fine [1985].

A general frame § = (W, R, P) is called a subframe of a general frame & = (V, S, Q) if
W C V, R is the restriction of S to W and P C Q. In other terms, § is (isomorphic to) a
subframe of & if & is subreducible to § by a map f which is a bijection from domf C V
onto W. § is called a cofinal subframe of & if § is a subframe of & and W{C W] in &'.
Alternatively, § is (isomorphic to) a cofinal subframe of & if & is cofinally subreducible
to § by a bijection f from domf onto W. Finally, a class of frames C is said to be closed
under (cofinal) subframes if every (cofinal) subframe of § is in C whenever § € C.

Theorem 5.1 (i) L i3 a cofinal subframe logic iff it i3 characterized by a class of frames
that is closed under cofinal subframes.

(ii) (Fine [1985]) L is a subframe logic off it is characterized by a class of frames that
18 closed under subframes.

Proof. (i) Suppose L is a cofinal subframe logic. We show that the class of all (general
or Kripke) frames for L is closed under cofinal subframes. Let & be a frame for L and
% a cofinal subframe of 8. Then $ is a frame for L, for otherwise $ ¢ (%,0,1) for
some «(§,0,L) € L, and so, by the Composition Lemma and Refutability Criterion,
& }= o(§,0, L) which is a contradiction.

Now suppose that L is characterized by some class of frames C that is closed under
cofinal subframes. We show that L = L', where

L'=K4® {o(3,0,1): 5L}

1This definition is somewhat different from the conventional definition of cofinality, which requires
that V = W|. A cofinal subframe in our sense is a cofinal subframe of a generated subframe in the

conventional terminology.
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Indeed, if 3 is a finite rooted frame and § [~ L then o(3,0,1) € L, for otherwise & ¥
(3,9, L) for some & € C, and hence there is a cofinal subframe § of & which is reducible
to 3; but € C, and so, by the P-morphism Theorem, § is a frame for L, which is a
contradiction. Thus, L' C L.

To prove the converse inclusion, suppose that o(3,D, L) € L. Then § i~ L, and hence
(3,0, L) € L'. Therefore, by Theorem 2.2, o(3,D,1) € L.

(ii) is proved in exactly the same way. -

Corollary 5.2 If a logic L 1s characterized by a class of frames that is closed under
cofinal subframes then L has the finite model property. -

Sometimes this Corollary makes it possible to prove the finite model property of a
logic even without knowing the constitution of its frames. For illustration let us consider

the following

Example 5.3 We are going to prove that if ¢ is a Boolean combination of formulas of
the form Mp, where M is a modality (i.e. a sequence of O and ©), then S4 @ ¢ has the
finite model property. To this end we show that & I ¢ whenever ¥ j£ ¢ for some cofinal
subframe § of & and use Corollary 5.2. Without loss of generality we may assume that §
and ® are reflexive and have a common root. We may also assume that no modality M
in ¢ has two adjacent O or two adjacent © (see Feys [1965]).

Suppose 4 is a valuation on § = (W, R, P) under which ¢ is false at some point. Define
a valuation 8 on & = (V, S, Q) by taking

Up,z) freW
B(p,z) =4 F freV-—W&3yeztW u(p,z)=F
T otherwise.

By induction on the length of M we show that, for every z € W,
B(Mp, ) = W(Mp,z).

Suppose M = ON. If 9(0ONp,z) = F then there is y € z1 such that B(Np,y) = F.
Suppose N = . Then B(p, z) = F for some z € y1W, and so #(Mp,z) = F. Suppose
N = OK. Since § is a cofinal subframe of &, there is z € y1W and, clearly, B(Np,z) = F.
Therefore, 4(Np, z) = F, and so (Mp,z) = F. If B(ONp,z) = T then B(Np,y) =T for
all y € z1; hence 4(Np,z) =T forall z € £1W, and so 4(Mp,z) =T.

The case M = ON is considered analogously.

It follows immediately that, for all z € W, B(p, ) = U(yp,z). Thus & refutes ¢ under
%, and so, by Corollary 5.2, 54 ® ¢ has the finite model property.

Tt should be noted that we cannot replace S4 in this proof with K4. As we saw in

Part 1 (Example 3), the Density Axiom OOp — Op is refuted in the frame I but valid

in §.—l
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Corollary 5.4 SF CCSF.

Proof. The fact that SF C CSF is an immediate consequence of Theorem 5.1. As
was noted by Fine [1985, p.627], S4.2 ¢ SF, but it follows from Example 5.3 that
S4.2 = S4 @ OOp — OCOp is a cofinal subframe logic. The same, of course, is true for
another well-known logic S4.1 = S4 @ OCp — <0Op.

Corollary 5.5 There are a continuum of cofinal subframe logics which are not subframe
ones.

Proof. There are a continuum of logics axiomatizable by the canonical formulas of the
form a(§;,0, L), where 3; is the frame defined in Fig. 1. And none of them is a subframe
logic, since the class of its frames is not closed under subframes. Indeed, add to §; a
new point which is seen from all the points in §; and denote the result by &;. Clearly,
&; = «(§;,0,L1) for any j, but ;, being a subframe of &;, refutes o(3:,0,1). -

Corollary 5.6 CSF is a complete sublattice of the lattice of all normal logics containing
K4. SF is a complete sublattice of CSF.

Proof. Suppose L; € CSF for i € I. Then, for each i € I, there is a set A; of cofinal
subframe formulas such that L; = K4 ® A;. So ) ;¢; Li = K4 ® |J;¢; Ai €CSF.
As to the intersection L = ;¢ L, it is clear that L is complete for the class | J;c,{F :
§ k= L;} which is closed under cofinal subframes. Therefore, by Theorem 5.1, L € CSF.
The class SF is considered analogously. -

The intuitionistic variant of Theorem 5.1 provides us with a nice frame-theoretic char-
acterization of intermediate logics axiomatizable by implicative and disjunction free for-
mulas.

Theorem 5.7 (i) An intermediate logic L is aziomatized by purely implicative formulas
iff it is characterized by a class of frames that is closed under subframes®.

(ii) An intermediate logic L is aziomatizable by disjunction free formulas iff it 1s char-
acterized by a class of frames that is closed under cofinal subframes. -

6 Elementarity, canonicity and compactness

First of all I remind the reader of the definitions of these terms. A modal logic L is
called elementary if the class of all Kripke frames for L, treated as classical models for

the first-order language with equality and binary predicate R, is elementary, i.e. there is
a set A of first-order formulas in the language such that, for every Kripke frame §,

sEL Iff §FA.

2 An intuitionistic general frame § = (W, R, P) is a subframe of an intuitionistic general frame & =
(V,S,Q) if W C V, R is the restriction of § to W and V — (W — X)|€ Q for every X € P.

13
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Figure 2:

(Here the former |= is modal while the latter one is classical.) L is canonical if, for every
descriptive frame § = (W, R, P),

L= (WR)EL

Finally, L is compact (or strongly complete) if every L-consistent set of modal formulas
has a model whose underlying Kripke frame validates L.

Fine [1985] gave a frame-theoretic characterization of these three properties for the
subframe logics. He showed that a subframe logic L is elementary (and even universal) iff
L is canonical iff L is compact iff the class of Kripke frames for L has the finite embedding
property, i.e. § |= L whenever every finite subframe of § is a frame for L. Moreover, these
properties turned out to be decidable for finitely axiomatizable subframe logics.

In this Section we obtain a generalization of Fine’s characterization to the class of
cofinal subframe logics. To formulate it we require two more definitions.

Let 3¢ = (Wc, Rc) be a frame containing a cluster C. For an ordinal £, 0 < §{ L w,
by & = (We, RY) we denote the frame which is obtained from 3¢ by replacing C with
an ascending chain of ¢ irreflexive points. More exactly, we put

We=(W -C)U{i:0<i<§}
and, fora.]l:z:,yEWe,
zRfy iff zRcy or
Y, j<lz=i&y=j&i<j) or
3 <€3z€C(z =i & zRey) or
Ji < €3z € C(y =i & zRe2).

5= (Wg,RE) is the result of replacing C in §c with an ascending chain containing £
reflexive points, i.e. ‘
R; = Ry U{{i,i) : 0 <i< &}

Fig. 2 illustrates this definition.
We say that a subreduction f of a frame & to a finite frame § is a quasi-embedding of
% into & if f~!(z) is a singleton for every point z whose cluster C(z) is not final in §. In
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such a case § is called quasi-embeddable in . For example, the frame § in Fig. 3 is quasi-
embeddable in & and cofinally quasi-embeddable in $. Note also that the subreduction
g of § to §, constructed in the proof of Theorem 4.3, is a cofinal quasi-embedding of §»
into F.

A logic L has the finite cofinal quasi-embedding property if a Kripke frame F validates
L whenever every finite frame which is cofinally quasi-embeddable in ¥ validates L.

We are now in a position to formulate and prove the main result of this Section.

Theorem 6.1 The following conditions are equivalent for each cofinal subframe logic L:
(1) L is elementary;
(2) L is canonical;
(3) L is compact;
(4) for every finite rooted frame Fc with a non-degenerate non-final cluster C

(V€<w$§'|=L)=>8C|=L
and
VM<wFHEL=>FFEL
(5) L has the finite cofinal quasi-embedding property.

Proof. (1) = (2) follows from Theorem 4.1 above and Theorem 2.2 of Fine [1975].
(2) = (3) is a direct consequence of the definition of the canonical models.

(3) = (4). Suppose that §c = (Wc, Ro) is a finite rooted frame with a non-degenerate
non-final cluster C and V€ < w 32" = L. We must prove that §¢ = L.

Let {a; : i € I} be all the points in W,,. With each a; we associate a variable p; different
from p; for any j # i and construct from them the canonical formulas o3y, 0, L) for all
¢ such that 0 < { < w. Now take the set

{-a(37,0,1): 0 < € <w}

and show that it is L-consistent.
Suppose otherwise. Then we shall have some { < w for which

(37,0, L)V a(3y,0, L) V... Va(3,0,1) € L
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But on the other hand, the natural embedding of 3{ in ¢, for ( < ¢, is cofinal (non-
finality of C in Fc is essential here), and so, according to the proof of Theorem 1 in Part
I, there is a valuation % on 32" such that all the formulas (37,9, L), for ¢ < ¢, are false
at the root of 3" under %, which is a contradiction, since 3 EL

By the compactness of L, there is a model Mm = (®,) on a Kripke frame & = (V, S)
such that

(i) all a({}g',@, 1), for 0 < £ < w, are simultaneously false at some point in oM and

(i) & = L.
Define a map f from V onto W, by taking

a; if z }£ p; and, for each § < w, the
f(z) = premise of a(3{,0, L) is true at T
undefined otherwise.

Using the proof of Theorem 1 in Part I, it is not hard to check that f is a cofinal subre-
duction of & to §7. On the other hand, we can easily construct a reduction g of 3 to
%c. Indeed, if C = {by,...,b,} then we may take

()__ z ifiL‘EWC—C
IE)= b if z =m and i = modp41(m).

By the Composition Lemma, there is a cofinal subreduction of & to ¢, and so ¢ = L,
for otherwise & £ L, contrary to (ii).

The case with § is considered in exactly the same way.

(4) = (5). Suppose otherwise, i.e. there is a frame & such that each finite frame which
is cofinally quasi-embeddable in & validates L but & [~ L. Then there exists a cofinal
subreduction f of & to a finite rooted frame § = (W, R) such that F I~ L. Starting with ¥
we construct by induction a finite rooted frame which is not a frame for L but is cofinally
quasi-embeddable in &, contrary to our assumption. At the very beginning we mark by
some signs all the non-final clusters in § which means that all of them are to be analyzed

in the sequel.

Suppose now that we have already constructed a finite rooted frame $ = (V,S) and
a cofinal subreduction ¢ of & to % such that $ [~ L and g~ !(z) is a singleton for each z
belonging to an unmarked non-final cluster in . (At the first step $ = 3)

Let C = {ao,...,ar} be a marked cluster in $ whose all immediate predecessors
Cy,...,Cm (m > 0) are unmarked and let b, € Ci,...,bm € Cp. By the induction
hypothesis, g~!(b;) = {z;} for some zy,...,Zm in &. Choose a minimal number of disjoint
sets Aj,...,A, of points in & such that

e for each i € {1,...,m} thereis j € {1,...,n} such that 4; C &
and, for each i € {1,...,n}, either
o Ai={yo,--- W}, 9(y;) = aj, for j =0,...,k, and A; is a subset of a cluster in &

or
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e A; is an infinite ascending chain ¥q,¥1,... all the points of which are either simul-
taneously irreflexive or simultaneously reflexive and g(y;) € C for 5 2 0.

The existence of such A,..., A, follows from the fact that g is a subreduction of & to 5.
(See Fig. 4.)

Our next action depends on the number of these Ay,...,A,. Note by the way that
1<n<m.

Casel. n=1.

1.1. I Ay = {v0,--, Y&}, i.e. if Ay is a part of a cluster in &, then we put %' = 9,
mark in &' all the clusters that were marked in % except C' and define a partial map g
from & onto %' by taking

'(z) = g(z) if z € (domg — g7'(C)) U A
9Z) =\ undefined otherwise.

It is clear that ' j& L, ¢’ is a cofinal subreduction of & to %' and ¢’ ~!(z) is a singleton
for each z belonging to an unmarked non-final cluster in §'. Note also that the number
of marked clusters in %’ is less then that in 5.

1.2. Suppose A, is an infinite ascending chain yo, %1, .- of irreflexive points. Then C'
is non-degenerate, and, since = $ic & L, there is, by (4), some £ < w such that ﬁg ¥ L.
(Recall that ﬁé" is obtained from $¢ by replacing C with the ascending chain 0,...,§ —1
of irreflexive points.) In this case we put § = ﬁ%", mark in &' all the clusters that were
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marked in % (the new points 0,...,€ — 1 are remained unmarked) and define a partial
map ¢ from & onto $' by taking

9(z) if z € domg — ¢7'(C)
gz)y=¢X 1 fr=y;,0<i<¢§
undefined otherwise.

Again ¢' is a cofinal subreduction, %' ¢ L, ¢ ~1(z) is a singleton for each z belonging to
an unmarked non-final cluster in ' and the number of marked clusters in &' is less than

that in $.
1.3. The case when A, is an ascending chain of reflexive points is considered in the
same way as in 1.2, but using the second part of (4), i.e. H instead of ﬁ?.

Case 2. Suppose now that n > 1. Then we first form a new frame 5" = (V",S") by
taking (see Fig. 4)
V'=(V-C)uclu...ucn,

where
C' ={ag,... 0}, i=1,...,m,

and, for all z,y € V",

zS"y iff z,yeV -C & zSy or
3,5 (z=a} & a;Sy) _ or
3l (y=al &z bl & A Cnl) or

3i,4,1 (z = a} & y = aj & C is non-degenerate).

Mark in " all the clusters that were marked in % and C,...,C™ as well. After that we
define a map g¢" from & onto $" by taking

9(z) if £ € domg — ¢~*(C)
¢'(z)=1 aj ifr=y € A & mode1 () =3
undefined otherwise.

It is not difficult to see that ¢” is a cofinal subreduction of & to 5". Moreover, 9" L,
since %" is reducible to , and g"~'(z) contains only one point if C(z) is an unmarked non-
fnal cluster in &". But the number of marked clusters in %" has become greater than that
in %. However, we need not worry. For we can now analyze the new clusters C*,...,C"
which clearly satisfy the condition of Case 1, and so we shall eventually construct a frame
%' having all the desirable properties and less marked clusters than $. Fig. 4 will help
the reader to complete the details.

(5) = (1). Given a finite rooted frame §, one can construct a first-order formula ®,
with the predicates = and R and free variables corresponding to the points in § such that
a Kripke frame & satisfies ®, iff § is cofinally quasi-embeddable in &. (An example of
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such ®, is presented below.) Then we shall have, for every Kripke frame &,

® L | iff (by (5))

there is a finite rooted frame § & L which

is cofinally quasi-embeddable in & iff (by Lemma 6.2 below)
® = 3z9,.

(Here 32®, is the existential closure of ®,.) Therefore, we can take A = {~3T®; : § ¥ L},
and then the class of frames for L will coincide with the class of classical models for A. -

We show now how one can construct ®, for a finite rooted frame § = (W, R). Let
ag, . . . ,an be all the points in §. With each point a; belonging to a non-final cluster in §

or to a final one having no predecessors 1n § we associate the individual variable z;. And

if the final cluster C(a;) has immediate predecessors in §, say, C(a;),-..,C(ax), then we

associate with a; the variables z7,...,z¥. The individual variables thus associated with

points in § will be denoted by z{, where 0 <1< n and s is either blank or 0 < s < n.
First we introduce two auxiliary formulas, namely

Ui(z) =3 3yk(/\ y: # y; A R(z,31) ARy, 32) A ... A R(yk-1,9%)),
i#j
which means ‘c sees a chain of k distinct points’, and

¥(z) = ~JyR(z,y) V 3z(R(z,z) A -3yR(z,y)),

which means ‘z is a final irreflexive point itself or sees such a point’.
Now we define @, to be the conjunction of the following formulas under all admissible

values of their parameters:
(0) R(zi,z3): a;iRaj, s is either blank or s = i and the cluster C(a;) is not final in §;
(1) ~R(z},z5): not a;Ra;;
(2)zi#zh: i #5,0<i<j <y
(3) Wa(z?): C(a;) is a final non-degenerate cluster in § containing k points;

(4) =3z \,.cx R(zi,z): Xisan antichain in § such that X = @, where X={y:XC
3

(5) V2(Ag,ex Bz}, %) — ¥(z)): X is an antichain in § such that all final clusters in
X are non-degenerate and the smallest of them contains k > 1 points;
(6) Vz(Ag ex B(zi,2) — ¥(z)): X is an antichain in § such that each final cluster in

X is degenerate;

314 should be noted that every formula of the form (4) contains only one conjunct R(z?,z) for each
a; € X. If several variables are associated with a; then there are several formulas of the form (4)
corresponding to X. For example, if X = {a;} and z}, z¥ are the variables associated with a; then we
obtain two formulas, viz., ~3zR(z],z) and ~3zR(z*,z). The same concerns the formulas of the form

(5) - (7)-
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(7) V(A ex B(zi,2) = 2(2) V W, (z)): X is an antichain in § such that X contains
both degenerate and non-degenerate clusters and k is the number of points in the smallest
non-degenerate one.

Lemma 6.2 A Kripke frame & = (V,S) satisfies @, 1ff § = (W, R) is cofinally quasi-
embeddable in &.

Proof. (=) Suppose & |= ®,[bg, ... ,bt] for some bj,...,b% € V. By (2), b # bs if 1 # j,
and so we can define a partial map f from V onto W by taking f(b!) = a; fori =0,...,n.

Now we extend f so that the resulting map g is a cofinal quasi-embedding of § in &.
First of all, if C is a final cluster in &, b € C and C(a;) is a non-degenerate final cluster
in § containing k > 1 points then, by (3), C contains at least k points and we evidently
can extend f so that C is mapped onto C(a;). The same we do for all final clusters C
containing some b¢. Let h be the resulting extension of f.

Denote by U the set domhT — domh]. If U = @ then g, the extension of f we need,
is just h. So suppose that U # . Consider the set A of all antichains X in § and define
a quasi-order relation @ on A by taking, for every X;, X, € A,

X1QX; iff X; € Xal.

We write X, = X if both X;QX, and X2QX, hold. Clearly, if X = {Z1,-.-,Zm},
Y ={y,...,u} and X =Y then m =k and {C(z1),...,Czm)} = {CW1),- -, Cyk)}-

Let X = {a;,...,a;} € A and let Bx be the set of all corresponding antichains in &
of the form {b,...,b%}. Define the following three subsets of U:

Ux={yeU:ye |J P&VzeylVZeAlze |J ¥ = 2QX)},

YeBx YeBz

FCx = {y € Ux : C(y) is a final cluster in 8},
FCx ={yeUx:Vzeyl 2 ¢ FCx}.

It is clear that Ux = Ux{, FCx = FCx1 and FCx = T"-EX_T_. Moreover, since § is finite,
Uxea Ux is a cover for U, while F'Cx UFCyx is a cover for Ux, and so {Jxe4 FCx UFCx
is a cover for U. Note also that Ux NUy =Qif X #Y.

We are in a position now to define g. Its domain will be the set domh UJxe4(FCx U
FCyx). First we put g(z) = h(z) for all z € domh. Then we consider FCx U FCx for
X € A. Suppose that this set is not empty. Then X # @ in §, for otherwise (4) is not
satisfied on b3,...,04. The following three cases are possible.

Case 1. All the final clusters in X are non-degenerate. Let C = {ai,...,a}, for
k > 1, be the smallest of them.

If FCx # @ then, by (5), each cluster in FCx contains at least k points. Define g on
FCyx so that it maps each of its clusters on C.

1f FCx # 0 then (by transfinite induction) we can define g on FC x so that g(FCx) =
C and for any z € FCx and j € {1,...,k} thereisy € =1 such that g(y) = a;.
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Case 2. All the final clusters in X are degenerate. Then FCx = @, for otherwise
(6) is not satisfied on &3, ...,b%, while FCyx, for the same reason, consists of some final
irreflexive points (i.e. dead ends) in &. Define g on FCx so that it maps FCx on some
final point in X.

Case 3. If X contains both degenerate and non-degenerate final clusters then we
divide FCx into two parts: one of them contains only irreflexive points while another
only reflexive ones. (One of these sets or even both of them may be empty.) Define g on
FCyx so that it maps the points from the first part onto some irreflexive final point in X
and the clusters from the second part on some minimal non-degenerate final cluster in X.
FCx is considered as in Case 1.

It is not hard to check now that g is a cofinal quasi-embedding of § in &.

(«) Suppose f is a cofinal quasi-embedding of § in &. For each variable z; in ®,
associated with a point a; we choose some b; € f~'(a;) and after that for each z] we
choose some &} € f~'(a;) Nb;T. Using the definition of cofinal quasi-embedding one can
readily show that our formula &, is satisfied in & on the chosen points. Indeed, take,
for instance, the conjunct R(z,-,:cj) corresponding to a;Ra;. Since both a; and a; do
not belong to final clusters in §, f~!(a;) = {b:}, f~'(a;) = {b;} and, by the definition
of reduction, b;Sb;, whence & = R(z;,z;)[bi;,b;]. Now take R(z;,z; ) corresponding to
a;Ra; with a; belonging to a final cluster in §. Then & |= R(z;,z J)[b,, b3] by our choice
of b}. Thus all the conjuncts of the form (0) are satisfied in & on the chosen points. The
sa.tisﬁa.bility of (1) - (7) can be proved in the same manner. -

Remark. If we deal with a subframe logic L then to be equivalent to the elementarity,
canonicity and compactness, the condition (4) in Theorem 6.1 must be satisfied for all (not
only non-final) non-degenerate clusters C, while (5) becomes just the finite embedding
property.

A close inspection of the definition of ®, shows that the class of Kripke frames for an
elementary cofinal subframe logic L can be axiomatized by II? sentences; for a subframe
L we can do, as was shown by Fine [1985], only with II}, i.e. universal sentences. -

Example 6.3 (a) K4Grz = K4 a(e,0) ® a(©9, 0) is neither elementary nor canonical
nor compact, since every finite linearly ordered reflexive frame validates K4Grz, while

the two point cluster is not a frame for it.
(b) GL = K4 @ o(0,0) is not elementary, canonical and compact, for each finite
linearly ordered irreflexive frame validates GL, while any non-degenerate cluster does

not.

(c) K4.1 = K4 D o(e,0, 1) & (©9,8,1), on the contrary, is elementary, canonical
and compact. Indeed, let §c be a finite frame with a non-final non-degenerate cluster
C. Then 3¢ ¢ a(e,0, L) iff ¢ has an irreflexive final point iff both 32" ¥ a(e,0, 1) and
3 I~ a(e,0, L) hold for any finite ¢. Similarly, 3¢ ¢ «(@9,0, L) iff ¢ has a final cluster
containing at least two points iff both 3f" & «(@9,, L) and 3} ¥ o(@9,0, L) hold for
any finite £.

According to Chagrova [1991], the problem of determining, given a formula ¢, whether
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K4 & ¢ is elementary turns out to be algorithmically undecidable. But if we restrict the
problem to those ¢ that axiomatize only cofinal subframe logics then it becomes decidable,
as it is claimed by the following

Theorem 6.4 There is an algorithm which, given a formula ¢ such that K4®y € CSF,
decides whether K4 @ ¢ 1s elementary and, if it 1s, constructs a first-order equivalent of

@, i.e. such ® (in R and =) thatF =@ if § k= ® for every Kripke frame §.

Proof. First we formulate the algorithm and then prove its correctness with respect to

the given specification.
Construct two sets of rooted frames:

Fi={5:5Fe & 5 <22

and

Fa={3:3 o & |3 <20}
Then, for each §c € F; with a non-final non-degenerate cluster C, we check if 32' € Fy
and 37 € F, for some ¢ and (. If the result of this check is positive for all §¢ € Fi
then L = K4 @ ¢ is elementary and ® = A 5 ~3T%; is a first-order equivalent of .
Otherwise L is not elementary.

Suppose now that the algorithm decides that L is elementary and show that L is really
clementary. Let ¢ be a finite rooted frame with a non-final non-degenerate cluster C
and &¢ £ ¢. By the proof of Theorem 4.3, there is a frame § € J, which is cofinally
quasi-embeddable in ¢ via some subreduction f. If C Ndomf = @ then § is cofinally
quasi-embeddable in both &} and &; for all £, and so &7} ¢ and &} [& . Otherwise
let C' = f(C). Then, for & € Fi, there are 32' € F; and § € F3, from which it follows
that &} ¥ ¢ and & & ¢. Thus, L satisfies (4) in Theorem 6.1 and so is elementary.
The fact that ® is a first-order equivalent of ¢ follows from Lemma 6.2 and the proofs of
Theorems 4.3 and 6.1.

On the other hand, if our algorithm tells us that L is not elementary then there is
3c € Fi such that either 32' ¢ F; for all £ or §; & F, for all £. Consider first the former
alternative. If the algorithm was wrong then %é" I~ ¢ for some finite £, and so, by the
proof of Theorem 4.3, there exists a frame $ € JF, which is cofinally quasi-embeddable in
32" via some subreduction f. Without loss of generality we may assume that 32" = o for
all ¢ < £. This means that {0,...,§ — 1} C domf. Moreover, it is clear that f(z) # f(7)
if i # j, for otherwise we can throw out all i such that there are j > ¢ with f(i) = f(j),
and % will still be cofinally quasi-embeddable in the resulting frame, which is isomorphic
to g7 for some ¢ < §. But then § < 22/0)+1 "and so |3¥| < 2UPI2 e F € Fy, which
is a contradiction. The case with ; is considered in the same way. -

It is worth also noting that as a consequence of Lemma 6.2 and the proof of Theo-
rem 4.3 one can derive

Corollary 6.5 Every cofinal subframe logic 13 elementary on the class of finite frames.
_‘
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To transfer Theorem 6.1 to the intermediate cofinal subframe logics we need to show
that the canonicity is preserved while passing from a modal logic above S4 to its su-
perintuitionistic fragment. In fact we shall prove a somewhat more general preservation
theorem. But first I remind the reader of some well-known notions and facts concerning
modal companions of intermediate logics and the correspondence between general frames
and algebras.

Let T be the Gédel translation prefixing O to every subformula of intuitionistic for-
mula. The superintuitionistic fragment of a normal modal logic M containing S4 is the
intermediate logic pM = {p : T € M}; M itself is called a modal companion of pM.
The set of all modal companions of an intermediate logic L forms the interval of logics
between 7L = S4 ® {Ty : ¢ € L} and oL = 7L ® K4Grz, the smallest and greatest
modal companions of L, respectively.

Given a modal or intuitionistic frame § = (W, R, P), by §* we denote the correspond-
ing modal or pseudo-Boolean algebra of sets in the space W with the carrier P. If3isa
modal quasi-ordered frame then §" is a topological Boolean algebra. Conversely, given a
modal or pseudo-Boolean algebra 21, by %, we denote the Stone-Jénsson-Tarski represen-
tation of %, i.e. the general frame (W,, R,, P,) where W, is the set of prime filters in 9,
Po={{VeW.:a€V}:a€a}and ViRV, if Ya € A(Oa € Vy = a € V), if A is
modal, and VR, V5 iff V; C V,, if & is pseudo-Boolean. A frame § is descriptive if it is
isomorphic to (F)+-

For every quasi-ordered modal frame § = (W, R, P), we can construct the intuitionistic
frame p§ = (pW,pR,pP), called the skeleton of §, where pW = {C(z) : z € Wi,
C(z)pRC(y) iff zRy and pP = {pX : X € P & X = X1}. If § is a frame for a
modal logic M then p§ validates its superintuitionistic fragment pM. As it follows from
Maksimova [1975, Lemma 7], if § is descriptive then the underlying Kripke frames of pF
and ((p§)*)+ are isomorphic.

Conversely, given an intuitionistic frame § = (W, R, P), by 0§ = (W, R, 0 P) we denote
the modal frame in which o P is the Boolean closure of P in the space W. If § is a frame for
an intermediate logic L then, as was shown by Maksimova and Rybakov [1974], 0§ |= o L.
For a descriptive 3, by Maksimova’s [1975] Lemma 8, we have that the underlying Kripke
frames of 0§ and ((0F)*)+ are isomorphic.

Theorem 6.6 (i) If a normal modal logic M 2 S4 is canonical then the intermediate

logic pM 1s also canonical.
(ii) If an intermediate logic L is canonical then its smallest modal companion 7L is

also canonical.

Proof. (i) Let § = (W, R, P) be a descriptive frame for pM. Then oF and so ((6§)")+
are frames for opM, from which ((¢3)*)+ E M. By Maksimova’s Lemma, o§ and
((¢08)*)4+ are based on the same frame, namely (W, R), which, by the canonicity, validates
M. Therefore, its skeleton, i.e. the same (W, R) considered as an intuitionistic frame,
validates pM.

(ii) Let § = (W,R,P) be a descriptive frame for 7L. Then p§ and so ( (p8) )+
are frames for L. By Maksimova’s Lemma (oW, pR) is the underlying Kripke frame of
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((03)*)+ and hence, by the canonicity, (oW, pR) k= L. But then one can readily show by
induction that (W, R) = Tp for every ¢ € L, which means that (W,R) =7L. 4

Remark. The canonicity is not in general preserved while passing from L to oL, witness
the pair Int and oInt = K4Grz. -

Note by the way that using Theorem 6.6 we can transfer Fine’s [1975] Theorem to
intermediate logics.

Theorem 6.7 If an intermediate logic L is clementary and Kripke complete then it is
canonical.

Proof. According to Chagrova [1990], TL is elementary and, as was shown by Za-
kharyaschev [1989, 1989a], it is Kripke complete. Therefore, by Fine’s Theorem, 7L
is canonical, and so, by Theorem 6.6, L = p7L is canonical as well.

As to the intermediate cofinal subframe logics, Theorem 6.1 degenerates into

Theorem 6.8 All intermediate logics with disjunction free additional azioms are elemen-
tary, canonical and compact®.

Proof. As was shown in Zakharyaschev [1983, 1989], every intermediate logic L with
disjunction free extra axioms can be axiomatized by intuitionistic canonical formulas
A(3,0, L) without closed domains, i.e. we have

L=1Int+{8(5,0,1):i €I}
By the Modal Companion Theorem of Zakharyaschev [1989],
rL=K4®a(e,0) ® {a(%,0,1) : i € I}

Since all §;’s are partially ordered and by Theorem 6.1, 7L is elementary and canoni-
cal. Then, according to Chagrova {1990}, L is elementary and, by Theorem 6.6 (1), it is
canonical and so compact. -

The fact that all such intermediate logics are elementary was first proved by Chagrova
[1986) and Rodenburg [1986] and their canonicity was established by Shimura [1992] who
studied the canonical models of some cofinal subframe predicate intermediate logics and
later by Zakharyaschev [1992a] with the help of Chagrova’s and Rodenburg’s result and
the intuitionistic version of Fine’s [1975] Theorem.

The last result in this section concerns the modal definability. We say a class C of
Kripke frames is modal if there is a set I' of modal formulas such that, for any frame 3,
% € Ciff § = I. Fine [1985] gave a characterization of modal classes of transitive frames
closed under subframes. Namely, such a class is modal iff it is closed under reducibility

*An intermediate logic L is called compact (or strongly complete) if, for every pair (T, A) of sets of
formulas such that L F Ayer ¥ — Vyear x for no finite I' C T' and A' C A, all formulas in I' are
simultaneously true and all formulas in A are not true at some point in a model whose underlying Kripke
frame validates L.
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and has the finite subreduction property, i.e. § € C whenever every finite rooted subreduct
of Fisin C.

Now we extend Fine’s characterization to classes of transitive frames closed under
cofinal subframes. Say that a class of frames C has the finite cofinal subreduction property
if § € C whenever every finite rooted cofinal subreduct of § is in C.

Theorem 6.9 Suppose that a class C of transitive Kripke frames is closed under cofinal
subframes. Then C is modal iff it is closed under reducibility and has the finite cofinal
subreduction property.

Proof. (=) Let L be the modal logic of the class C. Since C is closed under cofinal
subframes and by Theorem 5.1, L € CSF. Since C is modal, it coincides with the class
of all Kripke frames for L. But then, by the P-morphism Theorem, C is closed under
reducibility and, by the Refutability Criterion for the canonical formulas, it has the finite
cofinal subreduction property.

(<) Take I' = {a(®,0,1) : & is a finite rooted frame and & ¢ C} and show that C
is the class of all Kripke frames for I'. Suppose § |= I'. Then every finite rooted cofinal
subreduct of § is in C, for if & & C is such a subreduct then (8,8, L) € I, and so, by the
Refutability Criterion, § & «(®,, L), contrary to our assumption. Therefore, F € C.

Conversely, suppose § € C but § ¢ (8,0, L) for some & ¢ C. Then § is cofinally
subreducible to &, i.e. there is a cofinal subframe % of § which is reducible to &. Since C
is closed under cofinal subframes, $ € C, and so & € C, which is impossible. -

7 Quasi-normal subframe and cofinal subframe log-
ics

In the final section of this Part we briefly consider quasi-normal (i.e. not necessarily closed
under necessitation ¢/0O¢) logics containing K4 which can be axiomatized by normal and
quasi-normal canonical formulas® without closed domains. Those quasi-normal logics that
can be represented in the form

L=(K4®{aF,0):i€l})+{a5,0):j€J}+{a (5 0): ke K} (2)
are called, as in the normal case, (quasi-normal) subframe logics and those of the form

L=(K40®{a(5,0,L):i€I})+{a(3;,0,L):j € I} +{a (3&,0,1): k€ K} (3)

5In a few words I remind the reader of the difference hetween normal and quasi-normal canonical
formulas; for details see Part 1. Each quasi-normal canonical formula, denoted by a~(§,®, 1), is asso-
ciated with a frame § having irreflexive root u and a set D of antichains in §. A general frame & with
actual world w refutes o= (F, D, L) iff there is a cofinal quasi-subreduction f of & to § satisfying (CD)
for D and the actual world condition (AW): f(w) = u. The only difference between subreduction and
quasi-subreduction is that the latter can map any set of points to the irreflexive root of a frame. Finally,
the difference between o~ (F,D, 1) and o~ (F,D), the quasi-normal negation free canonical formula, is
the same as between a(§,®, 1) and o(F, D).
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are called (quasi-normal) cofinal subframe logics. The classes of quasi-normal subframe
and cofinal subframe logics are denoted by QSF and QCSF, respectively.
The example of Solovay’s logic

Figure 5:

S = (K4pO(Op—p)—0Op)+08p—p
= (K4 a(o,0)) + a(e,0),

which clearly has no Kripke frames at all, shows that Theorem 4.1 cannot be extended to
QSF and QCSF. Yet we are going to prove that all finitely axiomatizable quasi-normal
subframe and cofinal subframe logics are decidable.

We require the following notation. Given a frame § = (W, R) with irreflexive root u
and an ordinal £, 0 < £ < w, by 3;' and §; we denote the frames which are obtained from
by replacing u with the descending chains 0,.. .. ,§ —1 of irreflexive and reflexive points,
respectively. And by 32; ) = <W(w+1)c,R'(':) +1),,P(w+1)-> we denote the frame which is
obtained from § by replacing u with the infinite descending chain 0,1,... of irreflexive
points and then adding irreflexive root w, with Py,41)- containing all subsets of W — {u},
all finite subsets of natural numbers {0,1,...}, all (finite) unions of these sets and all
complements to them in the space Wu41)- (see Fig. 5). Note that if w € X € Pty
then X contains infinitely many natural numbers. Observe also that 3 is a quasi-reduct
of every frame of the form 3{, 3f or §(;)- for 0 <§ <w.

The following theorem characterizes the canonical formulas belonging to logics in @QSF
and QCSF. Its proof, as that of Theorem 2.2, heavily uses the Composition Lemma,
which is obviously generalized to compositions of (cofinal) quasi-subreductions.

Theorem 7.1 Suppose L is a subframe or cofinal subframe quasi-normal logic. Then
(i) for every finite frame § with root u, a(§,D, L) € L iff (3,u) e L and
(ii) for every finite frame ¥ with irreflezive oot u, o~ (§,D,1) € L iff (3, u) ¥ L,

(37,0) - L and <3‘{w+l).,w> W L.

Proof. (i) is proved similarly to Theorem 2.2. Details are left to the reader. (Do not
forget that Do(%;,0) € L, if L is of the form (1), and Oo(%:,0, L) € L,if L is of the form
(2), for every i € I.)
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(ii) f o= (§,D, L) € L then none of the frames (§,u), (37,0) and <3§;+1).,w> validates
L. since all of them are quasi-reducible to (,«) and so, by Theorem 3 of Part I, refute
a (§,9,1).

To prove the converse suppose that a general frame & = (V, S, Q) with actual world w
(which is the root of @) refutes o~ (§,D, L) and show that (&, w) = L. By the Refutability
Criterion for the quasi-normal canonical formulas, there is a cofinal quasi-subreduction f
of & to F satisfying (AW), i.e. f(w) = u. Consider the set U = f~!(u) € Q. Without loss
of generality we may obviously assume that U = U|. There are three possible cases.

Case 1. The point w is irreflexive and {w} € Q. Then the restriction of f to domf —
(U — {w}) is a cofinal subreduction of & to § satisfying (AW), and so, by the Refutability
Criterion and Composition Lemma, (&, w) & L.

Case 2. There is a subset X C U such that w € X € @ and, for every z € X
there exists y € £1X. Then the restriction of f to domf — (U — X)) is clearly a cofinal
subreduction of & to §] satisfying (AW), and so again (&,w) }~ L.

Case 3. If neither of the preceding cases holds then, for every X C U such that
w€ X € Q, the set Dy = X — X| of dead ends in X is a cover for X, ie. X C Dx],
and w € X — Dx € Q. Indeed, since Case 1 does not hold, w ¢ Dyx, for otherwise
{w} = Dx € Q. And if we assume that X — Dx] # @ then Y = (X — Dx])| C U,
weY €@ and Y =Y, ie. Case 2 holds, which is a contradiction.

Put

Xo = Dy, Xy = DU—X«)) cres Xn+1 = DU—(XOU...UX,.)) cee

X,=U-J X

Each of these sets, save possibly X, is an antichain of irreflexive points and belongs to
Q. Besides, X¢ C X5l = Upcecn Xe for every n < ( < w. Therefore, the map g defined
by -

_J f(r) fzeV-U
“ﬂ‘{g freX, 0<f<w

is a cofinal quasi-subreduction of & to 32:) +1) satisfying (AW).

Suppose for definiteness that L is represented in the form (1). Since <3’2:, 1y ,w> does
not validate L, it refutes at least one of L’s axioms, and we again should consider three
possible cases.

(a) 3;; 1y e x(3i, 0) for some ¢ € I, i.e. there isa subreduction h of 32:, +1y» 50 - Since
{w} & Pu+1y, either w g domh or the root h(w) of §; is reflexive. Then the composition
hg is a subreduction of & to F;, from which & & «(3:,0) and so (8, w) }= Oa(3i,0), ie.
(8, w) £ L.

(b) <3‘2;+1), ,w> I «(5;,0) for some j € J, i.e. there is a subreduction & of F[,, ). to
5, satisfying (AW). Then, as we know, h(w) is reflexive, and so hg is a subreduction of &
to 3; satisfying (AW). Therefore, (8, w) = a(3;,0).
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(c) <3{; +n)~'-"> W& o~ (8, 0) for some k € K, i.e. there is a quasi-subreduction h of

‘& +1)- b0 Bk satisfying (AW). But then hg is a quasi-subreduction of & to F satisfying
(AW), whence (8, w) I @™ (3x,0) and (8, w) j= L.
Thus, every frame with actual world refuting ™ (3,D,L) is not a frame for L, which
means that o™ (§,D,L1) € L.

Corollary 7.2 All subframe and cofinal subframe quasi-normal logics above S4 have the
finite model property. -

Example 7.3 As an illustration let us use Theorem 7.1 to characterize those normal and
quasi-normal canonical formulas that belong to Solovay’s logic S.

Clearly, either (o, ®) or (e, () is refuted at the root of every rooted Kripke frame. So
all normal canonical formulas are in S. Every quasi-normal formula o~ (3,9, 1) associated
with § containing a reflexive point is also in S, since Oaf(o,d) is refuted at the roots of
3, & and 3{:) 4+1)-- But no quasi-normal formula o™ (§,D, 1) built on irreflexive § belongs
to S because Fp,, ). | a(0,0), for to41)e contains neither infinite ascending chain nor

reflexive point, and <3{;+1).,w> E «(e,0), for {w} & Pu+i)-
This characterization together with the Completeness Theorem for the canonical for-
mulas (Theorem 4 of Part I) provide us with a new decision algorithm for S. -

Example 7.4 o(3,9,1) € $4+00p — COp = S4+«(©9,0, 1) iff either § contains an
irreflexive point or § is reflexive and all its final clusters are proper (cf. Segerberg [1971,
p.177)). 4

Theorem 7.1 reduces the decision problem for a logic L in QSF or QCSF to the
problem of verifying, given a finite frame § with root u, whether or not the frames (3, u},

(87,0) and <82’;,+1).,w> refute at least one axiom of L. The first two frames present no
difficulty for a finitely axiomatizable L. And our aim now is to show that the condition
<3‘{w +1)n‘"> l£ L can also be verified in finitely many steps.

Lemma 7.5 Suppose L is a quasi-normal (cofinal) subframe logic represented in the form
(1) (respectively, (2)) and § = (W, R) is a finite frame with irreflezwe oot u. Then
<32:, +1)-""> ¥ L iff one of the following conditions 1s satisfied:

(1) 32' is (cofinally) subreductble to §; for some i € I and some £ < |&l;

(ii) for some j € J, §; has reflezive root and § is (cofinally) subreducible to F;, with
(AW) being satisfied;

(iii) ¥ is (cofinally) quasi-subreducible to Si for some k € K and some £ < ||, with
(AW) being satisfied.

Proof. Let us suppose for definiteness that L is represented in the form (2); the form (1)
is considered analogously.
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(=) I 341y ¥ (3,9, L) for some ¢ € I then there is a cofinal subreduction f of
3’}; +1y- to &i. The map

o(z) = { f(z) if z belongs to a final cluster in f~'(f(z))

undefined otherwise

is also a cofinal subreduction of 3};;“). to §;, with g(£) # g(¢) for any distinct £,{ < w.
Let § be the result of removing from 3, ). all those points ¢ < w that are not in domg.
Clearly, § is isomorphic to '32" for some ¢ < |3;| and g is a cofinal subreduction of F to 3.

If <3{’; +1).,w> W~ (§;,0, L) for some j € J then there is a cofinal subreduction f of
3}; +1) to §; satisfying (AW). Since {w} & P+1)-, the root v = f(w) of §; is reflexive,
and so f~'(v) contains a reflexive point which belongs to W — {u}. But then the map

- {10 fzew-
is a cofinal subreduction of § to §; satisfying (AW).

Finally, if <Sz; +1)"“’> ¥ o~ (8k,0,L) for some k € K then there is a cofinal quasi-
subreduction f of 8;:, +1)e 60 Bk satisfying (AW). Let v be the root of ;. By the definition
of Sty s EVery X € Py+1)- containing w also contains some { < w. Let ¢ be the minimal
number such that f(¢) =v. Then the map

v ifr=(
g(z) =4 f(z) if z belongs to a final cluster in f~'(f(z))
undefined otherwise

is a cofinal quasi-subreduction of 32’;1 to 3 satisfying (AW). It remains, as we have
already done before, to remove from 32:_1 all those points £ < ( that are not in domg,
thus obtaining a frame which is isomorphic to some 32’, € < |3k|, and cofinally quasi-
subreducible by g to i with g(§ — 1) = v.

(<) If the first condition holds then <{y‘i’w +1).,w> refutes Oc(5;,8, L). The cofinal

subreduction f of the second condition can be extended to the map
| f(z) fzeW —{u}
g(a:)—-{v fr=¢(<w
(v is the reflexive root of 3;) which is a cofinal subreduction of 32;‘_ 1 to §; with g(w) =v,
and hence <§E"y +1).,w> ¥~ a(3;,0,1). And the third condition gives in the same way a
cofinal quasi-subreduction of ). to . satisfying (AW), from which <3:;+1).,w> W
o (Sk, wa -L) B

As a consequence of Theorem 7.1, Lemma 7.5 and the Completeness Theorem for the
canonical formulas of Part I we immediately obtain

29



Theorem 7.6 All finitely aziomatizable subframe and cofinal subframe quasi-normal log-
ics are decidable. -

Tt is not hard also to give a frame-theoretic characterization of the classes QSF and
QCSF similar to Theorem 5.1. Let us say that a frame § with actual world u is a (cofinal)
subframe of a frame & with actual world w if § is a (cofianl) subframe of ® and u = w.

Theorem 7.7 L is a (cofinal) subframe quasi-normal logic iff L is characterized by a
class of frames with actual worlds that is closed under (cofinal) subframes.

Proof. Clearly, the class of all frames with actual worlds for a (cofinal) subframe L is
closed under (cofinal) subframes.

Conversely, suppose L is characterized by a class C of frames with actual worlds that
is closed under cofinal subframes. Then one can readily show that L is axiomatized by
all the formulas (3,9, L) such that (3,u) & L and all the formulas o~ (3,8, L) such that

the root u of § is irreflexive, (F,u L, (37,0 L and {37 \.,w L. 4
1 (w+1)
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