

VLADIMIR KANOVEI MICHIEL VAN LAMBALGEN

Another Construction of Choiceless Ultrapower

X-94-02, received: May 1994

ILLC Research Report and Technical Notes Series Series editor: Dick de Jongh

Technical Notes (X) Series

Institute for Logic, Language and Computation (ILLC) University of Amsterdam Plantage Muidergracht 24 NL-1018 TV Amsterdam The Netherlands e-mail: illc@fwi.uva.nl

Another construction of choiceless ultrapower

Vladimir Kanovei* Michiel van Lambalgen[†]

May 20, 1994

Abstract

Another construction of an ultrapower in the case of absense of Choice is proposed. We prove that for any countable transitive model $M \models \mathbf{ZF}$, any $I \in M$ and any $U \in M$, an ultrafilter over I in M, there exists a countable set F of functions defined on I and taking values in M (it is not assumed that $F \subseteq M$, but F includes M^I) such that F modulo U is an elementary extension of M, wellfounded in the case when U is countably additive in M.

This approach is close, or, perhaps, equal to the Spector's extended ultrapowers, see [2]. In particular, it involves forcing, but not the same way as extended ultrapowers do. Roughly it separates the forcing and the ultrapower constituents in the Spector's construction, definitely demonstrating the role of either.

^{*}Moscow Transport Engineering Institute and Moscow State University. Partially supported by the NWO PIONIER Project "Reasoning with Uncertainty" PGS 22 262.

[†]University of Amsterdam.

1 The base of the ultrapower

We fix M, is a countable transitive model of $\mathbf{ZF} + DC$, an index set $I \in M$, and an ultrafilter $U \in M$ over I. The variable i is assumed to range over I.

We want to define the ultrapower of M via U. The set $F_0 = M^I \cap M$ of all functions $f \in M$, $f: I \longrightarrow M$ may be not sufficient in the case when M does not satisfy AC or, at least, a rather strong partial form of AC, because of a lack of choice functions necessary to prove the Łoś theorem.

One can, of course, extend U to an ultrafilter over I in the external sense and then define the ultrapower from outside, using all functions mapping I into M as the base of the ultrapower. This, however, would be rather useless since the control over the ultrapower from within M should, in general, have been lost. The principal idea of our approach is to use a generically defined set F of functions mapping I into M which includes F_0 and contains functions which may not belong to M, but not all of them.

The following definition lists the properties of F essential to guarantee that M still keeps the control over the ultrapower. Take notice that the definition depends on M and I but does not involve U.

Definition 1 A set of functions F is called M, U-adequate iff

- 1. Every $f \in F$ maps I into some $X = X_f \in M$ which depends on f.
- 2. [M-measurability] Let $f_1, ..., f_n \in F$ and $E \in M$. Then the set $\{i : E(f_1(i), ..., f_n(i))\}$ belongs to M.
- 3. [Regularity]¹ For any $f \in F$ there exists $f' \in M^I \cap M$ such that for any i, if f(i) is an ordinal then f(i) = f'(i).
- 4. [Choice] Let $f_1, ..., f_n \in F$ and $W \in M$. There exists $f \in F$ such that $\forall i [\exists x \ W(i, f_1(i), ..., f_n(i), x) \longrightarrow W(i, f_1(i), ..., f_n(i), f(i))].$

Theorem 2 There exists an M, U-adequate countable set F.

Proof. F is constructed via forcing. We let P be the set (class in the sense of M) of forcing conditions $p \in M$ such that, for some r = r(p):

1. $p = \langle p_1, ..., p_r \rangle$ where each $p_k \in M$ is a function defined on I .

¹The crucial property to verify wellfoundedness in the countably additive case.

- 2. Every $p_k(i)$ is nonempty.
- 3. Every $x \in p_k(i)$ has the form $\langle x_1, ..., x_k \rangle$.
- 4. if $\langle x_1, ..., x_k, x_{k+1} \rangle \in p_{k+1}(i)$ then $\langle x_1, ..., x_k \rangle \in p_k(i)$.

We say that $p \in P$ is stronger than q iff, 1st, $r(q) \leq r(p)$, and 2nd, $p_k(i) \subseteq q_k(i)$ for all $k \leq r(q)$ and all i.

Let $G \subseteq P$ be a P-generic set over M; the genericity here is understood in the sense that G intersects every dense $D \subseteq P$ which is \in -definable with parameters in M.

Fact 1 For any $r \geq 1$, there exists unique function f_r defined on I such that $\langle f_1(i), ..., f_r(i) \rangle \in \bigcap_{p \in G, \, r(p) \geq r} p_r(i)$ for all $i \in I$.

Proof. For all r and i, the set $\{p \in P : \operatorname{card} p_r(i) = 1\}$ is dense in P. \square

We claim that the family of functions $F = \{f_r : r \ge 1\}$ is as required.

Fact 2 For any $f = f_r \in F$ there exists $X = X_r \in M$ such that ran $f_r \subseteq X$.

Proof. For a suitable $p \in G$, therefore $\in M$, we have

$$\forall i \ (\langle f_1(i), ..., f_r(i) \rangle \in p_r(i)).$$

This solves the problem. \Box

Fact 3 The family F is M-measurable.

Proof. Let $E \in M$, $r_1, ..., r_n \ge 1$, $r' = \max\{r_1, ..., r_n\}$. We have to prove that the set

$$A = \{i : E(f_{r_1}(i), ..., f_{r_n}(i))\}$$

belongs to M. To prove this, let $p \in P$ be arbitrary; we show how a stronger condition q which is in some relation to E can be defined.

One can assume w.l.o.g. that $r = r(p) \ge r'$; otherwise expand p by

$$p_k(i) = \{ \langle x_1, ..., x_r, \underbrace{\emptyset, \emptyset, ..., \emptyset}_{k-r \text{ emptysets}} \rangle : \langle x_1, ..., x_r \rangle \in p_r(i) \}$$

²By this requirement, each p_k contains all the information which all $p_{k'}$, k' < k, do contain.

for all $k, r < k \le r'$, and all i.

In this assumption, we put

$$p'_{r}(i) = \{\langle x_{1}, ..., x_{r} \rangle \in p_{r}(i) : E(x_{r_{1}}, ..., x_{r_{n}})\};$$
 $J = \{i \in I : p'_{r}(i) \neq \emptyset\};$
 $q_{r}(i) = p'_{r}(i)$ provided $i \in J;$
 $q_{r}(i) = p_{r}(i) \setminus p'_{r}(i)$ provided $i \notin J;$
 $q_{k}(i) = p_{k}(i)$ provided $k < r.$

Evidently $q \in P$ is stronger than p. Therefore one may assume w.l.o.g. that a condition q of this type belongs to G. But then A = J belongs to M, as required. \square

Fact 4 The family F satisfies the Choice property.

Proof. Thus let $f_{r_1},...,f_{r_n} \in F$ and $W \in M$. We have to find $f \in F$ such that

$$\forall i [\exists x \ W(i, f_{r_1}(i), ..., f_{r_n}(i), x) \longrightarrow W(i, f_{r_1}(i), ..., f_{r_n}(i), f(i))]. \tag{1}$$

To prove this, let $p \in P$ be arbitrary; we again show how a stronger condition q which is in some relation to W can be defined. One again may assume that $r = r(p) \ge r' = \max\{r_1, ..., r_n\}$. Let

$$J = \{i : \exists x \ W(i, f_{r_1}(i), ..., f_{r_n}(i), x)\}$$

By Replacement, not Choice, and Fact 2 there exists a set $X \in M$ such that

$$\forall i \in J \; \exists \; x \in X \; W(i, f_{r_1}(i), ..., f_{r_n}(i), x).$$

We then put $q_k(i) = p_k(i)$ for all $k \leq r$ and all i and, separately,

$$\begin{array}{rcl} q_{r+1}(i) & = & \{\langle x_1,...,x_r,x\rangle : \langle x_1,...,x_r\rangle \in p_r(i) \ \& \\ & & x \in X \ \& \ W(i,f_{r_1}(i),...,f_{r_n}(i),x)\} \quad \text{provided} \quad i \in J \\ \\ q_{r+1}(i) & = & \{\langle x_1,...,x_r,\emptyset\rangle : \langle x_1,...,x_r\rangle \in p_r(i)\} & \quad \text{provided} \quad i \in I \setminus J \end{array}$$

Then $q \in P$ and $q \ge p$. Moreover, by the construction, (1) holds for $f = f_{r+1}$, as required. \square

Fact 5 The regularity property 1.3 holds for \mathcal{F} .

Proof. Let $f = f_n \in F$; we have to find a function $f' \in M$, $f' : I \longrightarrow M$, such that f(i) = f'(i) whenever f(i) is an ordinal. Let, as above, $p = \langle p_1, ..., p_r \rangle \in P$; $r \geq n$. Let

$$J = \{i : \exists x = \langle x_1, ..., x_r \rangle \in p_r(i) \ (x_n \in \text{Ord})\}.$$

For $i \in J$, let $\alpha(i)$ be the least ordinal α equal to x_n for an n-tuple $x = \langle x_1, ..., x_r \rangle \in p_r(i)$, and

$$q_r(i) = \{x = \langle x_1, ..., x_r \rangle \in p_r(i) : x_n = \alpha(i)\}.$$

For $i \notin J$, we set $q_r(i) = p_r(i)$. For m < r, let $q_m = p_m$. Thus $q \in P$, $q \ge p$. Let, finally, $f'(i) = \alpha(i)$ for $i \in J$ and (the nonessential case), say, $f'(i) = p_r(i)$ for $i \notin J$.

Then some of the conditions q of such kind belongs to G by genericity. But if $q \in G$ then $f(i) = \alpha(i) = f'(i)$ for $i \in J$, and f(i) is not an ordinal for $i \notin J$, as required. \square

2 The enlarged ultrapower

We use an M, U-adequate set of functions F as the base for the ultrapower construction. First of all, we use the *generalized quantifier* notation

$$\mathbf{U}i \; \Phi(i) \; \text{ to express } \; \{i:\Phi(i)\} \in U.$$

Definition 3 Let $f, g \in F$. We define

$$f^* = g$$
 if and only if $\mathbf{U}i \ (f(i) = g(i))$
 $f^* \in g$ if and only if $\mathbf{U}i \ (f(i) \in g(i))$

 \mathcal{F} denotes the structure $\langle F; *=, * \in \rangle$, the enlarged ultrapower of M.

Thus we do not factorize the ultrapower via U. Therefore the \mathcal{F} -equality $^*=$ is actually the equivalence on \mathcal{F} which satisfies all logical properties of equality with respect to $^*\in$. All the following exposition can be easily changed to deal with $^*=$ -classes rather that elements of F themselves.

We let F-formula and M-formula mean: \in -formula having elements of F, or respectively M, as parameters. Let $\Phi(f, g, ...)$ be such a formula, so that $f, g, ... \in F$. We introduce

$$\Phi(f,g,...)[i]$$
 to denote the formula $\Phi(f(i),g(i),...)$.

Thus $\Phi[i]$ is an M-formula.

Proposition 4 Let Φ be an F-formula, $E \in M$. Then the set $J = \{i : \Phi^M[i]\}$ belongs to M.

Proof. This is a reformulation of Property 1.1. \Box

This is very important: the involved functions may not belong to M, but the related truth sets always belong to M. In particular, for any closed F-formula Φ , either $\mathbf{U}i \Phi^M[i]$ or $\mathbf{U}i \neg \Phi^M[i]$. (M denotes the relativization to M.)

Theorem 5 [Loś] Let Φ be a closed F-formula. Then

$$\Phi$$
 is true in \mathcal{F} iff $\mathbf{U}i \Phi[i]$ is true in M .

Proof. Just follow the canonical patterns (see e.g. Jech [1]). The essential step ∃ is carried out using the Choice property 1.4. Assume, indeed, that

$$\mathbf{U}i \exists x \ \Phi(f_1, ..., f_n, x)[i] \quad \text{is true in} \quad M; \tag{2}$$

where $f_1, ... f_n \in F$. We have to find $f \in F$ such that

$$\mathbf{U}i \ \Phi^{M}(f_{1},...,f_{n},f)[i].$$
 (3)

By Property 1.1, there exist sets $X_1, ..., X_n \in M$ such that

$$\forall i [f_1(i) \in X_1 \& ... \& f_n(i) \in X_n].$$

Therefore, by the **ZFC** Collection in M, there exists a set $X \in M$ satisfying

$$\forall i \left[\exists x \ \Phi^M(f_1, ..., f_n, x)[i] \ \longrightarrow \ \exists x \in X \ \Phi^M(f_i, ..., f_n, x)[i] \right].$$

Let $W = \{\langle i, x_1, ..., x_n, x \rangle \in I \times X_1 \times ... \times X_n \times X : \Phi^M(i, x_1, ..., x_n, x)\}$. By Property 1.4, there exists $f \in F$ such that

$$\forall i [\exists x W(i, f_1(i), ..., f_n(i), x) \longrightarrow W(i, f_1(i), ..., f_n(i), f(i))].$$

The set $\{i: \exists x \ W(i, f_1(i), ..., f_n(i), x)\}$ belongs to M by Proposition 4. Therefore, using (2), we obtain (3) for f. \square

We note that $M^I \cap M \subseteq F$. Indeed, let $g \in M$, $g : I \longrightarrow M$. Applying Property 1.4 to the function $f_1(i) = \{g(i)\}$, we easily obtain the result.

Definition 6 Those elements of F which belong to M are called *representable*.

In particular, if $x \in M$, then the function x, defined on I by x i, belongs to i.

Proposition 7 $x \longmapsto {}^*x$ is an elementary embedding M into \mathcal{F} .

Proof. Use Theorem 5, as usual. \Box

We treat M as $\langle M; =, \in \rangle$, of course.

Theorem 8 Let U be countably additive in M. Then \mathcal{F} is wellfounded ³.

Proof. In other words we have to prove that the class of all \mathcal{F} -ordinals is wellordered. By the Regularity property 1.3 and Theorem 5 it suffices to prove that the representable part

$$\{f \in M^I \cap M : \mathcal{F} \models f \text{ is an ordinal}\} \, = \, \{f \in M^I \cap M : \mathbf{U}i \; (f(i) \in \mathrm{Ord})\}$$

is well founded. But this follows from $\,DC\,$ and the assumed countable additivity of $\,U\,$ in $\,M\,$. $\,\Box\,$

References

- [1] T. Jech, Set theory, Academic Press, New York, 1978.
- [2] M. Spector, Extended ultrapowers and the Vopenka Hrbáček theorem without choice. J. Symbolic Logic, 1991, 56, no 2, 592 607.

³In the ground universe. Of course, \mathcal{F} is wellfounded from inside, that is, is a model of the **ZF** Regularity axiom, by Proposition 7.

ILLC Research Reports and Technical Notes

Coding for Research Reports: Series-Year-Number, with LP = Linguistics and Philosophy of Language; $ML = Mathematical \ Logic \ and \ Foundations; \ CL = Computational \ Linguistics; \ CT = Computation \ and \ Complexity Theory; \ X = Technical \ Notes.$

All previous ILLC-publications are available from the ILLC bureau. For prepublications before 1993, contact the bureau.

- LP-93-01 Martijn Spaan, Parallel Quantification
- LP-93-02 Makoto Kanazawa, Dynamic Generalized Quantifiers and Monotonicity
- LP-93-03 Nikolai Pankrat'ev, Completeness of the Lambek Calculus with respect to Relativized Relational Semantics
- LP-93-04 Jacques van Leeuwen, Identity, Quarrelling with an Unproblematic Notion
- LP-93-05 Jaap van der Does, Sums and Quantifiers
- LP-93-06 Paul Dekker, Updates in Dynamic Semantics
- LP-93-07 Wojciech Buszkowski, On the Equivalence of Lambek Categorial Grammars and Basic Categorial Grammars
- LP-93-08 Zisheng Huang, Peter van Emde Boas, Information Acquisition from Multi-Agent resources; abstract
- LP-93-09 Makoto Kanazawa, Completeness and Decidability of the Mixed Style of Inference with Composition
- LP-93-10 Makoto Kanazawa, Weak vs. Strong Readings of Donkey Sentences and Monotonicity Inference in a Dynamic Setting
- LP-93-11 Friederike Moltmann, Resumptive Quantifiers in Exception Sentences
- LP-93-12 Jaap van der Does, On Complex Plural Noun Phrases
- LP-93-13 Natasha Alechina, Binary Quantifiers and Relational Semantics
- LP-93-14 Mati Pentus, Lambek Calculus is L-complete
- LP-93-15 David Ian Beaver, What comes first in Dynamic Semantics
- ML-93-01 Maciej Kandulski, Commutative Lambek Categorial Grammars
- ML-93-02 Johan van Benthem, Natasha Alechina, Modal Quantification over Structured Domains
- ML-93-03 Mati Pentus, The Conjoinablity Relation in Lambek Calculus and Linear Logic
- ML-93-04 Andreja Prijatelj, Bounded Contraction and Many-Valued Semantics
- ML-93-05 Raymond Hoofman, Harold Schellinx, Models of the Untyped l-calculus in Semi Cartesian Closed Categories
- ML-93-06 J. Zashev, Categorial Generalization of Algebraic Recursion Theory
- ML-93-07 A.V. Chagrov, L.A. Chagrova, Algorithmic Problems Concerning First-Order Definability of Modal Formulas on the Class of All Finite Frames
- $ML\mbox{-}93\mbox{-}08\,$ Raymond Hoofman, Ieke Moerdijk, Remarks on the Theory of Semi-Functors
- ML-93-09 A.S. Troelstra, Natural Deduction for Intuitionistic Linear Logic
- ML-93-10 Vincent Danos, Jean-Baptiste Joinet, Harold Schellinx, The Structure of Exponentials: Uncovering the Dynamics of Linear Logic Proofs
- ML-93-11 Lex Hendriks, Inventory of Fragments and Exact Models in Intuitionistic Propositional Logic
- ML-93-12 V.Yu. Shavrukov, Remarks on Uniformly Finitely Precomplete Positive Equivalences
- ML-93-13 V.Yu. Shavrukov, Undecidability in Diagonizable Algebras
- ML-93-14 Dick de Jongh, Albert Visser, Embeddings of Heyting Algebras
- ML-93-15 G.K. Dzhaparidze, Effective Truth
- ML-93-16 Maarten de Rijke, Correspondence Theory for Extended Modal Logics
- ML-93-17 Alexander Chagrov, Michael Zakharyaschev, On the Independent Axiomatizability of Modal and Intermediate Logics
- ML-93-18 Jaap van Oosten, Extensional Realizability
- ML-93-19 Raymond Hoofman, Comparing Models of the Non-Extensional Typed l-Calculus
- ML-93-20 L.A. Chagrova, Dick de Jongh, The Decidability of Dependency in Intuitionistic Propositional Logic
- ML-93-21 Max I. Kanovich, The Relational Knowledge-Base Interpretation and Feasible Theorem Proving for Intuitionistic Propositional Logic

- CT-93-01 Marianne Kalsbeek, The Vanilla Meta-Interpreter for Definite Logic Programs and Ambivalent Syntax
- CT-93-02 Sophie Fischer, A Note on the Complexity of Local Search Problems
- CT-93-03 Johan van Benthem, Jan Bergstra, Logic of Transition Systems
- CT-93-04 Karen L. Kwast, Sieger van Denneheuvel, The Meaning of Duplicates in the Relational Database Model
- CT-93-05 Erik Aarts, Proving Theorems of the Lambek Calculus of Order 2 in Polynomial Time
- CT-93-06 Krzysztof R. Apt, Declarative programming in Prolog
- CT-93-07 Janusz A. Pomykala, Approximation, Similarity and Rough Constructions, Part I. Elementary Introduction
- CL-93-01 Noor van Leusen, László Kálmán, Computaional Linguistics
- CL-93-02 Theo M.V. Janssen, An Algebraic View On Rosetta
- CL-93-03 Patrick Blackburn, Claire Gardent, Wilfried Meyer-Viol, Talking about Trees
- X-93-01 Paul Dekker, Existential Disclosure, revised version
- X-93-02 Maarten de Rijke, What is Modal Logic?
- X-93-03 Michiel Leezenberg, Gorani Influence on Central Kurdish: Substratum or Prestige Borrowing
- X-93-04 A.S. Troelstra (editor), Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, Corrections to the First Edition
- X-93-05 A.S. Troelstra (editor), Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, Second, corrected Edition
- X-93-06 Michael Zakharyashev, Canonical Formulas for K4. Part II: Cofinal Subframe Logics
- ML-94-01 Domenico Zambella, Notes on polynomially bounded arithmetic
- ML-94-02 Domenico Zambella, End Extensions of Models of Linearly Bounded Arithmetic
- LP-94-01 Dimitar Gelev, Introducing Some Classical Elements of Modal Logic to the Propositional Logics of Qualitative Probabilities
- LP-94-02 Andrei Arsov, Basic Arrow Logic with Relation Algebraic Operators
- LP-94-03 Jerry Seligman, An algebraic appreciation of diagrams
- LP-94-04 Kazimierz Świrydowicz, A Remark on the Maximal Extensions of the Relevant Logic R
- LP-94-05 Natasha Kurtonina, The Lambek Calculus: Relational Semantics and the Method of Labelling
- LP-94-06 Johan van Benthem, Dag Westerståhl, Directions in Generalized Quantifier Theory
- CT-94-01 Harry Buhrman and Leen Torenvliet, On the Cutting Edge of Relativization: the Resource Bounded Injury Method
- CT-94-02 Alessandro Panconesi, Marina Papatriantafilou, Philippas Tsigas, Paul Vitányi, Randomized Wait-Free Distributed Naming
- CT-94-03 Ming Lee, John Tromp,
 - Paul Vitányi, Sharpening Occam's Razor (extended abstract)
- CT-94-04 Ming Lee and Paul Vitányi, Inductive Reasoning
- CT-94-05 Tao Jiang, Joel I. Seiferas, Paul M.B. Vitányi, Two heads are Better than Two Tapes
- CT-94-06 Guido te Brake, Joost N. Kok, Paul Vitányi, Model Selection for Neural Networks: Comparing MDL and NIC
- CT-94-07 Charles H. Bennett, Péter Gács, Ming Li, Paul M.B. Vitányi, Wojciech H. Zurek, Thermodynamics of Computation and Information Distance
- CT-94-08 Krzysztof R. Apt, Peter van Emde Boas and Angelo Welling, The STO-problem is NP-hard
- CT-94-09 Klaus Ambos-Spies, Sebastiaan A. Terwijn, Zheng Xizhong, Resource Bounded Randomness and Weakly Complete Problems
- CT-94-10 Klaus Ambos-Spies, Hans-Christian Neis, Sebastiaan A. Terwijn, Genericity and Measure for Exponential Time

X-94-01 Johan van Benthem, Two Essays on Semantic Modelling X-94-02 Vladimir Kanovei, Michiel van Lambalgen, Another Construction of Choiceless Ultrapower

Titles in the ILLC Dissertation Series:

- 1993-1 Transsentential Meditations; Ups and downs in dynamic semantics, Paul Dekker
- $1993\hbox{--}2\ Resource\ Bounded\ Reductions,\ Harry\ Buhrman$
- 1993-3 Efficient Metamathematics, Rineke Verbrugge
- 1993-4 Extending Modal Logic, Maarten de Rijke
- 1993-5 Studied Flexibility, Herman Hendriks
- 1993-6 Aspects of Algorithms and Complexity, John Tromp
- 1994-1 The Noble Art of Linear Decorating, Harold Schellinx
- 1994-2 Generating Uniform User-Interfaces for Interactive Programming Environments, Jan Willem Cornelis Koorn
- 1994-3 Process Theory and Equation Solving, Nicoline Johanna Drost