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Abstract

Another construction of an ultrapower in the case of absense of Choice
is proposed. We prove that for any countable transitive model M |= ZF,
any I € M and any U € M, an ultrafilter over I in M, there exists
a countable set F of functions defined on I and taking values in M (it
is not assumed that F C M, but F includes M) such that F modulo
U is an elementary extension of M, wellfounded in the case when U is
countably additive in M .

This approach is close, or, perhaps, equal to the Spector’s extended ul-
trapowers, see [2]. In particular, it involves forcing, but not the same way
as extended ultrapowers do. Roughly it separates the forcing and the ultra-
power constituents in the Spector’s construction, definitely demonstrating
the role of either.
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by the NWO PIONIER Project ”Reasoning with Uncertainty” PGS 22 262.
tUniversity of Amsterdam.



1 The base of the ultrapower

We fix M, is a countable transitive model of ZF + DC, an indez set I € M,
and an ultrafilter U € M over I. The variable i is assumed to range over I .

We want to define the ultrapower of M via U. The set Fy = MI N M of all
functions f € M, f: I — M may be not sufficient in the case when M does
not satisfy AC or, at least, a rather strong partial form of AC, because of a lack
of choice functions necessary to prove the Lo$ theorem.

One can, of course, extend U to an ultrafilter over I in the external sense
and then define the ultrapower from outside, using all functions mapping I into
M as the base of the ultrapower. This, however, would be rather useless since
the control over the ultrapower from within M should, in general, have been
lost. The principal idea of our approach is to use a generically defined set F' of
functions mapping I into M which includes Fy and contains functions which
may not belong to M, but not all of them.

The following definition lists the properties of F' essential to guarantee that
M still keeps the control over the ultrapower. Take notice that the definition
depends on M and I but does not involve U .

Definition 1 A set of functions F' is called M, U -adequate iff

1. Every f € F maps I into some X = Xy € M which depends on f.

2. [ M -measurability] Let fi,...,fn» € F and E € M. Then the set {i :
E(f1(3), ..., fu(?))} belongs to M .

3. [Regularity]’ For any f € F' there exists f' € M I'n' M such that for any
i, if f(i) is an ordinal then f(i) = f'(4).

4. [Choice| Let fi,..., fn € F and W € M. There exists f € F' such that
Vi[@z W, f1(i), ..., fa(@), x) — W(, f1(5), -, fa(3), £(2))].

Theorem 2 There exists an M, U -adequate countable set F' .

Proof. F is constructed via forcing. We let P be the set (class in the sense of
M) of forcing conditions p € M such that, for some 7 =r(p):

1. p={(pi1,...,pr) where each p, € M is a function defined on I.

1The crucial property to verify wellfoundedness in the countably additive case.
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2. Every pi(i) is nonempty.
3. Every z € pi(i) has the form (zi,...,zx) .
4. if (z1, ..., Tp, Thy1) € Pry1(i) then (z1,...,zx) € pi(d).

We say that p € P is stronger than g iff, 1st, 7(¢) < r(p), and 2nd, pi(i) C gx(2)
for all £ <r(q) and all 3.

Let G C P be a P -generic set over M; the genericity here is understood
in the sense that G intersects every dense D C P which is € -definable with
parameters in M .

Fact 1 For any r > 1, there exists unique function f, defined on I such that
(f1(3), .o, Fr(2)) € Npeg, r(p)>r Pr(i) forall i€ 1.

Proof. For all r and i, the set {p € P:cardp,(i) =1} isdensein P. O

We claim that the family of functions F' = {f, : r > 1} is as required.
Fact 2 For any f = f, € F there exists X = X, € M such that ran f, C X .

Proof. For a suitable p € G, therefore € M, we have

Vi ((f1(i), -, fr (0)) € pr(4))-

This solves the problem. O
Fact 3 The family F is M -measurable.

Proof. Let E€ M, r,....,7n > 1, 7" = max{ry,...,m7,}. We have to prove that
the set

A= {1' : E(fn(z): ) frn(z))}

belongs to M. To prove this, let p € P be arbitrary; we show how a stronger
condition ¢ which is in some relation to E can be defined.

One can assume w.l.o.g. that 7 = r(p) > r'; otherwise expand p by

(i) = {{z1, 0y Try,  0,0,..,0 ) :(z1,...,z,) € pp(0)}

k—r emptysets

2By this requirement, each pj contains all the information which all pi, k' < k, do contain.
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forall k, 7 <k <7/, and all <.

In this assumption, we put

ph(3) = {(z1, . zr) €p(2) : B(Tryy .y @) |

J = (el p6) 0}
q:(i) = pL.(%) provided i€ J;
¢:(1)) = p-(1)\P,(3) provided i & J;
g (1) = pr(9) provided k <.

Evidently ¢ € P is stronger than p. Therefore one may assume w.l.o.g. that
a condition ¢ of this type belongs to G. But then A = J belongs to M, as
required. O

Fact 4 The family F satisfies the Choice property.

Proof. Thus let f,,,...,f., € F and W € M. We have to find f € F' such that

Vi [3z Wi, fr (), ooy Frn (), 2) —> WG, fry (), ooy fr (3), £(3))]- (1)

To prove this, let p € P be arbitrary; we again show how a stronger condition
g which is in some relation to W can be defined. One again may assume that
r=r(p) > r' =max{ry,..,m,} . Let

J={i: 3z W, fr,(5), -, fra(9),2)}
By Replacement, not Choice, and Fact 2 there exists a set X € M such that
VieJ3z € X W, frr(i), ey fra(4), T).
We then put qx(i) = px(¢) for all ¥ <7 and all 7 and, separately,

¢r1(1) = {{Z1, 0y Try ) (1, . ) € Pr(i) &
rcX & W(, f,(2), ..., fr.(3),z)} provided € J

eni(i) = (&1, 0): (21, 05) €p()}  provided i€ I\ J

Then g € P and ¢ > p. Moreover, by the construction, (1) holds for f = f,,1,
as required. O

Fact 5 The regularity property 1.3 holds for F .
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Proof. Let f = f, € F; we have to find a function f' € M, f':I — M, such
that f(i) = f'(:) whenever f(i) is an ordinal. Let, as above, p = (pi, ey Dr) €
P; r>n. Let

J={i:3z = (z1,...,z.) € p,(1) (zn, € Ord)}.
For i € J, let (i) be the least ordinal o equal to z, for an n-tuple z =
(%1, ...,z,) € p(3), and

¢.(1) = {z = (z1, ..., z.) € P, (1) : o = a(3) }.

For i & J, we set ¢.(1) = p,(i). For m <r, let ¢n = pn. Thus g€ P, ¢ > p.
Let, finally, f'(i) = (i) for i € J and (the nonessential case), say, f'(i) = p,(i)
for ¢+ & J.

Then some of the conditions ¢ of such kind belongs to G by genericity. But
if ¢ € G then f(i) = a(i) = f'(i) for ¢ € J, and f(i) is not an ordinal for
i ¢ J, asrequired. O O

2 The enlarged ultrapower

We use an M, U -adequate set of functions F as the base for the ultrapower
construction. First of all, we use the generalized quantifier notation

Ui ®(:i) to express {i:®(i)} €U.

Definition 3 Let f, g € F. We define
f*=g ifandonlyif Ui (f(z)=g(7))
freg ifandonlyif Ui(f(3)€ g(7))
F denotes the structure (F;* =,* €), the enlarged ultrapower of M .
Thus we do not factorize the ultrapower via U. Therefore the F -equality * =
is actually the equivalence on F which satisfies all logical properties of equality

with respect to * € . All the following exposition can be easily changed to deal
with * = -classes rather that elements of F' themselves.

We let F -formula and M -formula mean: € -formula having elements of F,
or respectively M, as parameters. Let ®(f,g,..) be such a formula, so that
f,g,... € F. We introduce

o(f,g,.) to denote the formula ®(f(2),9(),...)-
Thus ®[z] is an M -formula.



Proposition 4 Let ® be an F -formula, E € M. Then the set J = {i: ®M[i]}
belongs to M .

Proof. This is a reformulation of Property 1.1. O

This is very important: the involved functions may not belong to M, but the
related truth sets always belong to M. In particular, for any closed F' -formula
®, either Ui ®M[i] or Ui -~ ®M[3]. (M denotes the relativization to M .)

Theorem 5 [Los] Let ® be a closed F -formula. Then
® s truein F iff Ui ®[i] is true in M.

Proof. Just follow the canonical patterns (see e.g. Jech [1]). The essential step
3 is carried out using the Choice property 1.4. Assume, indeed, that

Ui 3z ®(f1, ..., fa,z)[t] istruein M; (2)
where fi,...fn, € F. We have to find f € F' such that
Ui Y (f1, .., fu, FIA]. (3)
By Property 1.1, there exist sets Xj,..., X, € M such that
Vi[fi(i) € X1 & ... & fu(3) € Xa).
Therefore, by the ZFC Collection in M, there exists a set X € M satisfying
Vi[3z ®M(f1, ..., fa,2)[i] — Fz€X OM(fi, ..y fry )[1])-

Let W = {{(i,21,...,Zp,2) € I X X1 X ... X Xy x X : ®M(4, 29, ..., 2,,2)}. By
Property 1.4, there exists f € F' such that

Vi[Bz W(i, f(i), - f(@), 2) — WG [, - fa(d), (D))

The set {i: 3z W(s, f1(3), ..., fn(3), )} belongs to M by Proposition 4. There-
fore, using (2), we obtain (3) for f. O

We note that M! N M C F. Indeed, let ¢ € M, g: I — M. Applying
Property 1.4 to the function f;(¢) = {g(¢)}, we easily obtain the result.

Definition 6 Those elements of F' which belong to M are called representable.
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In particular, if z € M, then the function *z, defined on I by *z(i) = =z,
all 7, belongs to F.

Proposition 7 = —— *z is an elementary embedding M into F .

Proof. Use Theorem 5, as usual. 0O

We treat M as (M;=,€), of course.
Theorem 8 Let U be countably additive in M. Then F is wellfounded 3.

Proof. In other words we have to prove that the class of all F -ordinals is
wellordered. By the Regularity property 1.3 and Theorem 5 it suffices to prove
that the representable part

{feM'NnM:FEfisanordinal} = {f € M N M : Ui (f(:) € Ord)}

is wellfounded. But this follows from DC and the assumed countable additivity
of Uin M. O
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