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1 Introduction

A generalized quantifier Q as defined by Mostowski (1957) is a class of subsets of the
universe, so that a model M satisfies Qzp(z,d) if the set of elements {e : M = ple,d]}
is in Q. Examples are: the ordinary existential quantifier (interpreted as the set of all
non-empty subsets of the universe); the quantifier “there are exactly 2”; a filter quantifier
(where the only requirement on Q is that it is a filter), ” there are uncountably many” (where
the domain is uncountable, and Q contains all uncountable subsets), etc. An obvious
property of these quantifiers is extensionality: if two formulas ¢ and 1 are satisfied by
the same sets of elements, Qz is satisfied if and only if Qz% is. Actually Mostowski also
required that the generalized quantifier is invariant under permutations of the universe, thus
restricting attention to quantifiers related to cardinality. Subsequently, other generalized
quantifiers were considered which do not have the property of permutation invariance, such
as topological quantifiers or measure quantifiers. For an overview of the subject, one may
consult Barwise and Feferman (1985).

The very title of this volume makes it plain that generalized quantifiers have been studied
mostly from a model theoretic point of view. There are various sound reasons for this focus:
many quantifiers are not axiomatizable, so proof theory wouldn’t make much sense? and
even if there exists an axiomatization as in the case of the quantifier "uncountably many”,
the failure of interpolation would lead one to suspect that even if one could give a proof
theory, it would not enjoy such pleasant properties as for instance cut elimination.

Nonetheless, in van Lambalgen (1991) an attempt was made to develop Gentzen style
calculi for the filter quantifiers ”almost all” (due to H. Friedman; cf. Steinhorn (1985)) and
”co-countably many”.

1This research was supported by the Netherlands Organization for Scientific Research (NWO) under

grant PGS 22-262.
2 Although one can sometimes give a proof theory by altering the semantics; cf. M. Mostowski (1991).



The guiding intuition behind this attempt is the idea that one can set up a proof
system once one can manage dependency relations between variables bound by quantifiers.
This idea is of course not restricted to generalized quantifiers: it can also be found in
Fine’s natural deduction systems using arbitrary objects and a dependency relation (cf. his
(1985)), or in various forms of the functional interpretation of the existential quantifier (cf.
Gabbay and de Queiroz (1991)).

For example, if Q is a quantifier which determines a non-trivial free filter, we have
VyQz(z # y) but not QzVy(z # y); the failure of commutation seems to indicate that z
in some way depends on y, as it would if we were considering the quantifier combination
Vy3z. '

So we think of axioms for quantifiers such as QzQyy — QyQzy (characteristic for
"almost all”) or VyQzy A QyVzy — QzVyp (characteristic for ”co-countably many”) as
implicitely determining a dependency pattern between variables; one may now ask whether
this pattern can be made explicit, i.e. whether the properties of the dependence relation are
first order describable. For example, in the case of the existential quantifier, the dependence
can be taken to be functional, and the required first order description is given by the axioms
for Skolem functions. Indeed, as Fine shows, one can also give a graphical representation
of these dependencies. '

Somewhat surprisingly, the axioms mentioned do indeed determine a first order condition
on dependence, even conditions which are true for a paradigmatic case of dependence,
namely, linear dependence in vector spaces. It is the purpose of this paper to explore this
phenomenon, both its extent and its limits, in greater detail.

As a first step, we introduce an analogue of the expansion of a language by Skolem
functions. Consider a language Lyn which extends a first-order language with equality
by introducing a unary generalized quantifier O,. We use this notation to emphasize the
analogy between generalized quantifiers and modal operators. The dual of Oy is Ozp =4
—=O,-¢. (In the examples above a filter quantifier would correspond to 0.)

Definition 1 The standard translation * : Lyn — L(R) is defined inductively as follows:
P(z1,...,2Zn)* = P(x1,...,%0);
() =%
(1 Np2)™ =1 A3;
(Voy)* = Yoy
(O:9(2,9))* = Vz(R(z,§) — ¥*(<,7))-

O

In other words, in the formula O,%(z,§) the bound variable z depends on § in a way
determined solely by O, not by % (this is different from Skolem functions).

As in the case of Skolem functions, we would like to prove that every theory T has a
conservative extension to a theory T" such that

() T+ Opp(2,y1,- -, 9n) = Vo(R(Z, 91, - ¥n) = 22,91, -+, ¥n))-

A moment’s reflection shows that this can be true only for theories which are consistent
with the minimal logic



Definition 2 The minimal logic Ly, for Lyg is the smallest class of formulas closed with
respect to classical first-order logic and the following axiom schemata:

Al FO,T;

A2 + Vz(p — ) A Oz — Og9, provided Oz9 and Oz have the same free variables;
A3 + Ogp A0zt — Og(p Avp), provided Ozt and Oz have the same free variables;
A4 + O,p — Oy, provided y is free for z in .

O

In order to talk about azioms (that is, formulas) and not schemata, we introduce the

substitution rule
F ®(P(z1,-..,Zn))

= ®((10(:771? s azn))a

provided P(Z) and ¢(Z) have precisely the same free variables. This restriction is necessary
due to the fact that A2 entails only a restricted form of extensionality.

For theories which are consistent with the minimal model we can indeed prove that a
conservative extension T with (b) exists. First we define the required model expansion.

Definition 3 A relational model for Lyg is a triple M = < D, R,V >, where D is a non-
empty domain, V interprets predicate symbols, and R is a relation of indefinite arity on D,
called the accessibility relation. The notion of a formula being satisfied in a model under a
variable assignment is standard; the clause for O, reads as follows:

M E° Oy0(z,7) < Vd € D(R(d, (7)) = M E* (d,7))

A relational canonical model is a model where the accessibility relation is defined as
follows:
R(z,9) = /\ Ozp(z,9) — p(z, 7).
tp(z,ﬁ)Gng

The existence of T satisfying (b) now follows from

Theorem 1 Every Lnin-consistent set of Lyn formulas has a Henkin canonical relational
model.

Proof can be found in van Benthem & Alechina (1993).
O

Clearly, then, this way of making dependency patterns explicit will not work for all
unary quantifiers; for quantifiers which are not (the dual of) a filter quantifier a translation
more complicated than * might be necessary (see, however, the discussion in section 7).
But it will be seen below that this simple case already has rich theory.

Given the translation *, a quantifier axiom corresponds to a schema in the language
L(R); the main question then becomes: when can this schema be replaced by a first-order
condition on R?



The reader will have observed that both the set-up and the main problem are very much
analogous to familiar themes in modal logic: R plays the role of the accessibility relation,
and what we ask for is a Sahlqvist theorem, i.e. a characterization of a class of formulas for
which there is a first order correspondent. To be more specific we need a definition:

Definition 4 If A is a quantifier axiom, a correspondent in the sense of completeness is
a first order condition AT on R with the following two properties: for any logic L in the
language Lyo '

i if L + A has a canonical relational model, L + A has a canonical relational model where
AT holds,

ii A is satisfied on any relational model of L + At

O

In other words, L + A is complete and consistent with respect to the class of relational

models where At holds.

The correspondence theory for generalized quantifiers developed in van Benthem and
Alechina (1993) is not quite adequate for our purposes, since it is based on the notion of
frame correspondence:

Definition 5 If A is a quantifier axiom, a frame correspondent is a first order condition A*
on R such that < D, R >}= A* if and only if for any interpretation V, < D, R,V >k A

]

It will be seen below that the two notions of correspondence are different. Observe that
the frame correspondent of a given axiom is unique (up to equivalence) while the definition of
a correspondent for completeness allows in principle an axiom to have several correspondents
for completeness. We shall see that some axioms have completeness correspondents in a
stronger sense, namely, correspondents which are true in every canonical relational model
for the axiom and therefore unique.

We restate the result on frame correspondence of van Benthem and Alechina (1993)
here, and give an outline of its proof, because we shall need some concepts occurring in the
proof in the sequel.

Theorem 2 (Correspondence part of the Sahlguist theorem). All formulas of the ”Sahlquist
form” ¢ — 1, where

1. ¢ is constructed from

e atomic formulas, possibly prefized by DOz, V;

e formulas in which predicate letters occur only negatively
using A, V, Oz, 3
2. in 9 all predicate letters occur only positively

have a frame correspondent. 3

3This theorem can be made slightly more general by allowing an arbitrary long prefix of O-quantifiers
before the formula, constant formulas in the antecedent(formulas which contain only =, T and L as predicate
symbols), and also stating that a conjunction of Sahlqvist formulas is a Sahlqvist formula.
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We shall sketch the proof of the theorem here.

A formula ¥ is valid in a frame if the following second-order formula is: VP ... VFPx",
where Pi,..., P, are all predicate letters in x. If this formula is equivalent to a first-order
formula without Pi,...,P,, then x defines a first-order condition on frames. The proof of
the theorem is based on the method of minimal substitutions, due to van Benthem (1983).
After performing some syntactical transformations on x the task can be reduced to proving
that the following formula has a first-order equivalent:

VP ... VPVa(\R; A \VE(R: = P) A\ Pc — )

J i k
where A; R; corresponds to the translation of the truth conditions for ¢-quantifiers in
the antecedent, A;VZ(R; — P;) corresponds to the translations of occurrences of pred-
icate symbols preceded by O-quantifiers, A P; corresponds to occurrences of predicate
symbols not preceded by O’s, and ¥ is a positive formula. (For example, assume that
x = Oz(0yP(z,y) A S(z)) = O.5(2). Then its translation reads

VPVSVz(R(z) AVy(R(y,z) = P(z,y)) A S(z) = Vz(R(z) — S(2)))-
Here A\; R: = R(z), \;VZ(R; — B;) = Yy(R(y,z) — P(,y)), and A Py = 5(2).)

Note that we quantify over all possible assignments to the predicate symbols, so a second
order quantifier VPP can be instantiated using any suitable set of n-tuples. That is what we
are going to do. If P; occurs in the antecedent in a subformula of the form YzZ(R; — P;(z)),
the minimal substitution for this occurrence of P; is precisely the set of those tuples for
which R; holds. (In the running example, P(uy,us) := R(ug,u1) Auy = z.) If P; occurs
as a member of conjunction Ay Py, then the minimal substitution for this occurrence is a
singleton set: in the example, S(u) := u = z. Finally, the minimal substitution for P; is the
disjunction of minimal substitutions for its occurrences. (Precise definitions and details are
given in van Benthem and Alechina (1993)). Denote the result of the substitution X (In
the example, X’ is

Vz(R(z) A Yy(R(y,z) = R(y,z) Az =x) Az = = — Vz(R(2) = 2 = 7)),

which is equivalent to Vz(R(z) — Vz(R(z) — z = z)).)
x' follows from VPx* as a substitutional instance. The converse also holds, as follows.
Denote the substitutions for P; as p;. Each p; is a first-order formula. The p;’s were
chosen so that the antecedent of X' becomes trivially true except for the first-order part

AiR;
X = va(ARj A /\vz-(n,- = Ri)A N\w =w) = ¥(py,...,pn)),
that is J z
x’:vfa(/j\kj — U(p1,...,Pn))

The consequent ¥(ps,...,pn) is a first-order formula. Assume that X' is true and there is a
valuation (an assignment to predicate symbols) V' which makes the antecedent of x* true:

<D,R,V>E A\R;jAAVER; = P)A\ P
. . .

J 1



<D,R>E ARj = ¥(p1,---,n)
J

We want to show that under this valuation also the consequent of x*, ¥(Pi,...,P), is
true. First of all, observe that ¥(ps,...,pn) is true. The substitutions p; which we used are
minimal in the sense that always when the antecedent of x* is true under some assignment
of values to predicate letters, then this assignment should contain the tuples satisfying p;:

(< dy,...,dn > pi(ds,...,dn)} CV(P),

that is, < D,R,V >k Vd(pi(d) — Pi(d)). ¥(P,...,P,) follows from ¥(p1,...,ps) by
monotonicity of .

O

A disadvantage of the notion of frame correspondence is that there may be consistent
quantifier logics which are frame incomplete, i.e. logics L such that for no D, R: for allV,
< D,V,R >k A. In particular this holds for logics where the quantifier determines a free
filter, such as ’almost all’ or ’co-countably many’. It will be seen below that this is mainly
due to the property of upwards monotonicity for the filter quantifier; unlike the modal case,
where monotonicity is automatic given Kripke semantics, this property is highly non-trivial
here. Actually, inspection of the proofs below shows that this result can be strengthened:
the troublesome property is extensionality, that is, Vz(¢ = ¢) — (Oz¢p = Oz¢). This is
interesting in view of the fact that extensionality is generally taken to be the sine qua non
for logicality of a quantifier.

2 Statement of the result and idea of the proof

We now formulate the completeness part of the Sahlqvist theorem, which describes a class
of formulas ¢ defining first-order conditions on R so that for any logic L in the language of
Lyo which has a canonical model L with ¢ as an axiom is complete for the class of models
where R has the first order property corresponding to ¢. This class is strictly smaller than
the class of formulas described above. We shall call those formulas weak Sahlqvist formulas.

Theorem 3 (Completeness part of the Sahlquist theorem) All "weak Sahlguist formulas” x
of the form A Qz1 ... Qz,(A — B), where n > 0, each Q is either V or O, and

1. A is constructed from

a. atomic formulas, possibly with a quantifier prefix Qz; ... Qxk, where each Q is a
O- or V-quantifier;

b. formulas in which atomic formulas occur only negatively,

c. constant formulas (where the only predicate letters are T, L and =),
using A and V,

2. in B all predicate letters occur only positively



3. every occurrence of a predicate letter has the same free variables

have a correspondent in the sense of completeness.

All conditions of the theorem can be shown to be necessary, namely, if a formula does not
satisfy one of them, then it need not have a correspondent for completeness. The conditions
which are common with the Theorem 2, are shown to be necessary in van Benthem &
Alechina (1993). The additional conditions are: no existential quantifiers in the antecedent
and all occurrences of a predicate symbol have the same free variables. The necessity of

those is shown in section 6.
The idea of the proof of the Theorem 3 (very similar to the one used in Sambin &
Vaccaro (1989)) can be illustrated by the following example.

Example 1 Let C be a canonical® model. We show that if for every P and S
0. P(z,5) — Oz(P(z,9) V 5(z,2))
is valid in C, then the accessibility relation in C has the property R(z,§Z) — R(z,%).

Proof. It is easy to see (since the consequent is monotone in S) that the axiom above is
equivalent to O, P(z,7) — Oz(P(z,%)V L(z,2)). We translate the validity conditions using
second-order quantifiers which range only over definable relations of C (this is the difference
with the case of the frame correspondence). To emphasize this difference we use quantifiers
V. Note that due to the restricted Substitution Rule, if P is an n-place predicate symbol,
then formulas which can be substituted for P must have precisely n variable places. Using
this notation the validity condition of the axiom reads as follows:

Vo[Vz(R(z,§) — ¢(2,§)) — Ve(R(z,72) — ¢(z,9) V L(z, 2))]
This is equivalent to
Ve[vz(R(z,7) = ¢(z,9)) — Vz(R(z,5Z) — ¢(=,9))]
and, in turn, to
N\ {Vz(R(z,72) = ¢(z,9)) : Vz(R(z,7) — ¢(z,9))}
o(=,9)

Moving the conjunction inside (the proof that this can be done for any positive logical
function of ¢, is given in the Intersection Lemma; in the given case the proof is obvious),
we obtain
Vz(R(z,52) = N {¢(z,§)) : Vz(R(z,7) — ¢(z,7))})
o(z,7)
Butin C
N\ {e(z,9) : Vz(R(z,9) — o(z,7))}) = R(z,7)-

o(z 57))

4 Actually, the sufficient condition is that all positive occurrences of a predicate letter in the antecedent
have the same free variables, say, 7, all negative occurrences of a predicate letter in the antecedent and all
occurrences in the consequent have the same free variables, say, Z, and § C Z. It can be shown that in this
case the condition 3 can be forced to hold. But we assume that this holds from the very beginning to make
the formulation of the theorem readable.

SHenceforth, ”canonical model” will always mean ”canonical relational model”.
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Substituting R(z,§) instead of the infinite conjunction yields the first-order equivalent
Vz(R(z,7Z) — R(z,))-
It is easy to check that in every model where Vz(R(z,§2) — R(z, 7)) holds, the axiom
is valid.

a

The general case is slightly more complicated because to obtain a correspondent we
must sometimes move to a different canonical model, namely, to an w-saturated canonical
model. The existence of such model for every Lmin-consistent set of sentences is proved in
section 3. In a canonical w-saturated model the following lemma holds:

Intersection Lemma If B is a positive formula and X is a set of formulas with the same
free variables, closed with respect to A, then in an w-saturated model

N{B(p) : p € X} = B(\{v:v € X}).

The proof of the Theorem 3 consists of the same three ingredients: translation of the
validity conditions of an axiom (eventually accompanied by some syntactic transformations),
application of the Intersection Lemma, and making use of the fact that for some first-order
expression R with R as the only predicate symbol

RE7 = N\ {0&79) : VER(E,§) — &, 9)}-
»(Z,7)

Of course, R is nothing else than a ”minimal substitution”, but of a special kind, which
will be formally defined below.

Definition 6 Let M be a canonical model, and A a conjunction of atomic formulas which
are prefixed by universal and O-quantifiers, so that all occurrences of a predicate symbol
have the same free variables. Every occurrence of a predicate symbol P in A is therefore of
the form Q;ZP(Z,7), where Q; is the quantifier prefix of the ith occurrence. P has a good
minimal substitution in A if

M |= /\{90(57 ﬂ) : /\Qii‘P(ia 'y)} =p,
i
where p is a first-order formula built using the predicates R, =, T and Ll only.
m}

For example, we have seen that if the only occurrence of P in A is of the form O, P(z,§),
then P has a good minimal substitution in A: for every canonical model M,

M = N\{e(z,9) : Ozp(=, )} = R(z, 7).

Before we formulate the Closure Lemma, we shall get rid of a degenerate case.



Let P be preceded by a vacuous O: e.g., the only occurrence of P in A is of the form

O.P(y). Then
M E N{e®) : Op(y)} =

= Ale®) : Vz(R(z,9) — ¢(¥))} = \e(y) : 3zR(z,9) — ¢(¥)}-
If M | 3zR(z,y), then

M = N{e@) : 3zR(z,y) = ¢(¥)} = T®)-

If not, then

M = N\{p®) : 3zR(z,y) = v(y)} = L().
This means that axioms with vacuous O’s in the antecedent can have different correspon-
dents in different models.

Further on we assume that all quantifiers are non-vacuous. Formally, this corresponds
to assuming that R is always non-empty, or that the axiom ©2T(z,7) holds in all canonical
models. This is an innocuous assumption, because if R is empty, every Lyp-formula is
equivalent to a first-order formula (Oz¢ becomes equivalent to T and <Oz becomes L).

Now we can state the Closure Lemma which is proved in section 4:

Closure Lemma. Let A be a conjunction of atomic formulas prefixed by V and O-
quantifiers, so that all occurrences of a predicate symbol in A have the same free
variables. Then every atomic formula in A has a good minimal substitution, and this
minimal substitution is the same as the one used to obtain the frame correspondent.

In the proof of the Closure Lemma given in section 4 we shall assume that every quan-
tifier prefix in A contains at least one O. That this is no loss of generality can be seen as
follows.

Let P occur in A with a purely universal prefix, Vz; ... Vz,P(Z, 7). Then this occurrence
implies all other possible occurrences of P in A, and A is equivalent to a conjunction where
Vz;...Vz,P(Z,7) is the only occurrence of P.

M = N{e(Z,7) : V21 ... V2,0(2,9)} = T(3,9),

so P has a good minimal substitution in A.

3 w-saturated models and the Intersection Lemma.

Let X = {1(z), p2(z),...} be a finitely realizable type in a model M, that is, for every n
there is an element a,, in the domain of M such that ¢1(as),...,¢n(an) is true in M. If M
is just an ordinary Henkin model, there does not necessarily exist an element a such that
for every ¢ in X ¢(a) is true in M. Among other things this implies that Oz A{p : ¢ € X}
is not equivalent to A{Cz¢ : ¢ € X} in M. But in the proof we do need that

ME= Ox/\{(p:(pGX}E/\{OIQD:(pEX}

(an analogue of Esakia’s lemma). We therefore move from the original Henkin model to a
mildly saturated extension.

Theorem 4 Every consistent set of Lyg formulas has a model A which is w-saturated and
canonical, that is



i every finitely realizable type which contains finitely many parameters is realized;
ii RA(d, J) =df A‘P(-’B,J)ELVD Oz p(z, d_) — ¢(d, J)

Proof From the completeness proof for the minimal logic we know that every consistent
set of formulas has a canonical model C where

Re(z, )= N\ DOz(z,9) — @(z,9)

(P(z 737) € LVD

By the truth definition
C | Oa(z,3) & Vz(Re(z,9) = C [ ¢(=,9))

Therefore there is a first-order model C* (with R = Rg just an ordinary predicate) such

that
CkE € Lyne C* 94" € L(R)

where 9* is the standard translation of 9.

We shall use this fact to build the saturated model which we need, because one can apply
the standard procedure of constructing an w-saturated extension of C*. (While extending
a model for a generalized quantifier is much more difficult, see for example Hodges (1985).)

Take an w-saturated elementary extension of C*, A*. It is clear that

CEYveC EyY A EY,

for every sentence 1 of Lyn.

Every type finitely realizable in C is finitely realizable in C* and is therefore realized in
A*. But A* is still a first-order model; to make an Lyg model A out of it, we could take
the interpretation of R in A* to be the accessibility relation in A, i.e. stipulate

Ak O.9(z,7) & Vz(R(z,9) = AFE o, 9))-

However, it is not obvious that A is still canonical.
Instead we define the accessibility relation anew in A. A will be the expansion < A*, R4 >
of A*, where R 4 is defined on A* as

Ru(z,9) = A Vz(R(z,§) — ¢*(z,7)) = ¢"(z,9)-
*(z,§):0(,9)€Lvo

Note that the intersection is only over the formulas ¢*(z,7) such that ¢(z,§) € Lvo.
We are done if we can show that

Lemma 1 A ¢ & A* | ¢* for all formulas ¢ € Lvo.

Proof By induction on the complexity of ¢. The only non-trivial case is ¢ = Oz9(, 7)-
To prove the direction from right to left, assume that A" E (Oz9(z,§))*, that is, A* =
Va(R(z,5) — ¥ (z,7)). We want to prove A = Oyp(z,7), that is A | Vo(Ra(z,9) —
¥(,9)-
Let R(z,7) hold in A (hence in A*). By the definition of Ry, A* = Vz(R(z,9) —
*(z,7)) — ¥*(z,7). We know that A* | Vz(R(z, 7) — ¥*(z,7)). Therefore A* = ¢*
and, by the inductive hypothesis, A |= 9.

10



From left to right: let A |= Oz9(z, ), that is A |= Vz(Ra(z,§) — ¥(=, 7)). Let R(z,7)
hold in A* (hence in A. We want to show that A* = ¢* (z,7). It is enough to show that
R(z,7) implies R4(x,7). If this is so, we obtain ¥(z,y) from R(z,7) and the fact that
A = Vz(Ra(z,§) — 9(z,§)), and hence applying the inductive hypothesis we also get

P*(z,9)-
Let R(z,7). Take an arbitrary formula x* such that Vz(R(z,§) — x*(z,7)). Then
x*(z, ). This way we prove that for all x*

R(z,9) — (V&(R(z,7) = X"(z,9)) = X" (2,9))

Therefore
R(z,§) = \(Vz(R(z,9) = x*(2,9)) = X"(z,9))
X"

which means that R(z,7) implies R 4(z, 7).
[m}

Comment. C is an elementary extension of A with respect to Lyg formulas, but not
necessarily with respect to L(R) formulas if R is interpreted as R4.

Now we are ready to prove that in A the Intersection Lemma holds.

Lemma 2 (Intersection Lemma) If B is a positive formula and X is a set of formulas
with the same free variables, closed with respect to A, then in an w-saturated model

N\(B(¢): ¢ € X} = B(\{p:9€X})
Proof By induction on the complexity of B.

o B(p) = ¢: trivial, because A{p: 9 € X} = A{p:p € X}
B can be a formula with principal sign A,V,V,3,0; or Og (since B is positive).
Assume that for the components of B the claim holds.

e Let B = B; A Bs;

N{Bi(¢) ABa(p) : 0 € X} = N{Bi(y) : ¢ € X} A \{Ba(0) : p € X}

(by the associativity of A) and, by the inductive hypothesis, the latter is equivalent
to

Bi(A\{p:9 € X} ABs(A\{p:p€X})

e Let B=B;V Bs.

Assume M, = Bi(A{¢ : ¢ € X}) V B2(A{¢ : ¢ € X}). Then one of the disjuncts
is true, for example M, & = B1(A{p : ¢ € X}). By the inductive hypothesis, M, & |=
AMBi(p) : ¢ € X}. Clearly, M,& = A{B1(p) V B2(p) : ¢ € X}

For the other direction: Assume M,& & Bi(A{¢ : ¢ € X}) V Ba(A{p : ¢ € X}).
This means that M, & Bi(A{p : ¢ € X}) and M,& [ Bo(A{p : ¢ € X}). By
the inductive hypothesis, M,& £ A{Bi(p) : ¢ € X} and M,& = A{Ba(p) : ¢ € X}.
Therefore there are ¢; and @3 in X such that M,& [ Bi(p1) and M,& & Ba(p2).

11



Since Bj is also positive and therefore monotone, ¢ M, & }~ B1(yp1 A p2) and M, € &
Bs(p1 A p2), thus M, & = B1(p1 A @2) V Ba(p1 A 2). Note that X is closed under A,
therefore 1 A @2 € X. But this means that M, & = A{B1(p) V B2(¢) : ¢ € X}.

o Let B =VzB;. AN{VzBi(p): ¢ € X} =Vz A{Bi(p) : ¢ € X} (because V distributes
over \), and by the inductive hypothesis this is equivalent to VzBi(A{p: ¢ € X}).

e Let B = O,B;. This case is analogous, but since O distributes only over conjunctions
of formulas with the same free variables, it is important that all formulas in X (and
therefore in {Bi(p) : ¢ € X}) have the same free variables.

e Let B = O,B;. This is the only non-trivial part, and here we need the fact that the
model is w-saturated. First of all, it would be convenient if the set Y = {Bi(y) :
@ € X} had the following property: for every n, M EYn = Y1 Ao A Yna,
+; € Y. This is not so in general, but we can consider instead of Y the set Y =
{B1(¢1), Bi(1 A 92), Bi(p1 A 02 A @3),... : ¢; € X}. For every formula in Y,
there is a formula in Y’ which implies it (due to the monotonicity of B;). Therefore
AY’' — AY. On the other hand, Y’ CY (because X is closed under A). Therefore
AY — AY’. Analogously A{OCz%: 9 €Y} = A{Cz¥: 9P € Y’}. So, it is suffices to
prove that

Nov:9peY}=0 A{v:9 €Y’}

Since A{% : ¥ € Y'} implies ¢ for any ¥ € Y', Oz A{¢ : ¢ € Y'} implies Oz and
therefore A{<CzY : % € Y'}. This proves the implication right to left.

For the other direction, assume that the model satisfies O¢ for every 3 € Y'. Due
to the definition of Y’ and monotonicity of Bj, this means that for every n the model
satisfies Oz(¥1 A...A%y), i.e. that for every n there is an element z satisfying R(z,¢e)
and v¥1(z,€),...,¥n(z,€). Since the model is w-saturated, there is an element which
satisfies the whole set: R(u,&) A A{t(u,€) : ¢ € Y'}. Then Oz A{p: 9 € Y'} is true.

e Let B = 3z Bs: the proof is analogous to the previous case.

4 Closure Lemma

Let A be a conjunction as in the condition of the Closure Lemma. We also assume that
all quantifiers are non-vacuous and that every quantifier prefix contains at least one O-
quantifier (cf. the end of section 2).

Let A’ be the subformula of A which contains all and only occurrences of the predicate
symbol P. We shall use both the Lyp-form of A”: A; Q:zP(z,7), and its standard transla-
tion: A; VZ(R; — P(Z,9)), where i runs over the occurrences of P. In the sequel we call the
R; R-conditions. The standard translation of A’ is thus equivalent to VZ(V; R; — P(Z, 7))
P(z,7) has a good minimal substitution in A if

VR = Ne(z,9) : V3(\ R = ¢(2,9))}-

6Monotonicity in Lva is restricted to the formulas with the same free variables, but this is always the
case in this proof.
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Note that good minimal substitutions are the same expressions which were used in the proof
of Theorem 2 as minimal substitutions for occurrences of predicate symbols in the scope of
O- and V-quantifiers.

Example 2 The R-condition corresponding to O;0yP(z,y) is R(z) A R(y, z).

Example 3 Let
A' =Vz0O,P(z,y) A O:VyP(z,y)

then
A™ =VzVy(R(y, ) — P(z,y)) A VzV¥y(R(z) — P(z,y))

which is equivalent to :
VzVy(R(y,z) V R(z) — P(z,9)).

The good minimal substitution for P in A must be therefore R(y,z) V R(z).

We are going to prove the existence of good minimal substitutions for all non-vacuous
quantifier prefixes containing at least one O. From this and from the considerations in the
end of the section 2 the Closure Lemma will follow. But first we need several propositions.

Proposition 1 Let R be an R-condition, such that
R(,9) = \{#(2,7) : VE(R(Z,9) = ¢(2,9)};

then
R(z,§) = \{¥(z,92) : VEVZ(R(Z,§) — ¥(Z,72))}

and vice versa: if
R(z,9) = \{¥(e,72) : VIVZ(R(Z,9) — $(2,92))}

then
R(Z, ) = \{e(Z,7) : VE(R(Z,§) — ¢(Z,9))};

Proof. Assume R(Z,7) = N{¢(Z,9) : VZ(R(Z,§) — ¢(Z,7))}. For every ¢(Z,7) holds:
o(z,9) =Vz(p(Z,7) A T(2)). Therefore

R(Z,9) = \{V2(¢(2,9) A T(2)) : VE(R(Z,9) — VZ(¢(2,9) A T(2))}

R(z,9) = \{V2(0(,9) A T(2)) : VEVE(R(Z,9) — (#(2,9) A T(2)}
Since for every ¢, VZ(p(Z,7) A T(2)) = ¢(Z, ) A T(2),

R(z,7) = N\{e(&,9) A T(2) : V2V2(R(Z,9) — (¢(Z,7) A T(2))}
Now we prove that
R(z,9) = \{%(z,52) : VaV2(R(Z,9) - ¥(2,§2))}-

Trivially,

N{#(z,52) : VEVZ(R(Z,9) — $(Z,52)} = Ne(@,9)AT(2) : VEVZ(R(Z,9) — (¢(2, §)AT(2))}

13



and this implies that
N{®(z,32) : VaVz(R(2,7) — +(,72))} = R(Z,9)-

Since
R(z,9) — \{¥(z,72) : VaVZ(R(z,§) — $(,72))},

we have

R(Z,9) = N\{¥(&,92) : VEVZ(R(Z,9) — ¥(Z,92))}-
For the other direction of the proposition, let
R(Z,7) = \{¥(z,92) : VEVZ(R(Z,9) — $(Z,72))}-
It is easy to check that
R(z,7) = \{V2¢(2,3,2) : VE(R(Z,9) — VZ¥(Z,7,2))};

and then the reasoning goes as above: the set of ¢’s with free variables Z,7 satisfying
the same condition is larger than the set of VZ4(Z, 7, Z), therefore its conjunction implies
the given one; on the other hand, the set of ¢’s satisfying the condition is implied by R,
therefore the two sets are equivalent.

O

To prove the next proposition, we shall use the following tautology of the minimal logic:

Lppin F 0(0z0 — 0)
Proof.
1. Vz(8 — (Oz60 — 9))
0.0 — O(0.0 — 6) (from A2)
Vz(-0.0 — (Oz0 — 0))
V0,0 — Va(0g0 — 8)
-0,0 — Yz(0z0 — 6) (from Vz-0,0 = ~0.0)

-0,0 — 0.(00 — 8) (from Vzyp — Oz which follows from Al and A2)

NS vk N

0.(00 — 0) (from 2, 6)

Proposition 2 R(z,zj) = N{¢(z,Z,7) : V2VZ(R(z, z7) — ¢(2,%,9))}

Proof. The direction from left to right is trivial. The other direction: we want to prove
that

Nle(z,2,9) : V2VE(R(2,29) — #(2,2,9))} — R(2,29)

14



in other words,

AVz0.0(2,7,9) — ¢(2,,)) = \(O:4(2,2,9) = ¥(2,2,9)).
14 P

It suffices to derive A\, O0.9(z,€,9) — ¥(d, €,9) from A,VZO.¢(2,%,7) — o(d,e,j). Take
an arbitrary 1(z,Z, 7). We substitute it for 6 in the tautology derived above:

V"I_:DZ(DZ")b(z, 57 g) - 1/"(z’ 5:7 g))
We assume that the conjunction

A\ VE0.0(2,2,9) — ¢(d,&,7)
7]

holds. As a special case we obtain
VE0,(0,9(2,%,7) — $(2,%,9)) — (O:9(2,&7) — ¥(d,&9)).
Since this hold for every 1, we can derive
N\ C:%(2,€,9) — 9(d, &,9)-
¥
O

Proposition 3 If Qzi,...,Qz, contains at least one O-quantifier, and all quantifiers are
non-vacuous, and the only occurrence of P(Z,J) in A is of the form Qz, ...Qz,P(Z,9),
then P has a good minimal substitution in A.

Proof. The general form of the prefix described in the condition of this proposition, is
V("_")IDZ1V(1—")2D22 tee V(ﬁ)kDZkV('&)k+1P(i, g)a

where k > 0 (that is, there is at least one O in the prefix), and 4z = Z. The standard
translation of this formula is

VZ(R(21, (@)1,9) A - - - A R(zk, @)k, 2k—1, (@)k=1, - - - » 21, (@)1, 7) = P(Z,7))

(since there is at least one O-quantifier in the prefix).
We have to show that

i=k
R= /\ R(Zi, (u-é)Sz) g)7

i=1
where (u%)<; are the variables bound by the quantifiers preceding O, is a good minimal

substitution for P.
By propositions 1 and 2 (z;(¥%)<; € Z),

R(zi’ (u-‘z)Szag) = /\{‘P(-’E, g) : VE:(R(Z'H (uﬂz)sz, g) - (P(.'Z_I,g))}

Note that here we essentially use the fact that the z; occur in P(Z,), that is, that D-
quantifiers are non-vacuous.
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It is easy to see that

ARGz, (3)5,9) — No(@, 9) : Y5\ Blas: (62)<i,9) — 9(2,9)}-

To prove the other direction:

/\{(P(.’Z_I, :’7) : Vf(/\ R(Zi, (u-‘%)51ag) - 90(‘%’ ?7))} - AR(Z,:, (uﬂz)Si,ﬂ)’

we argue as before:

{¢(z,9) : VE(R(z, (@), 9) — ¢(Z9)} € {#(2,7) : VE(\ R(zi; (%)<i,9) — (2, 9))}

therefore

Ne@ 9) : VE(A\ Rz, (@2)<i- 9) = (& 9)} = Ne(@9) : VE(R(zi ()<, 9) = (2, 9))}

and this means that

Ne(z,9) =V5(A R(z;, (i%)<i, ) = #(Z,9))} — R(zi, (4%)<i, ¥)-
Since this holds for every 1,
Ne(@,9) : VE(\ R(zi, (62)<i,9) = ¢(3,9))} = /\ R(z, (%)<, 9),
that is, R is a good minimal substitution. O

Proposition 4 A disjunction of good minimal substitutions is a good minimal substitution,
i.e. if for every i, 1 <i< n,

Rt(zzag) = /\{(P(:i, g) IVE(R,'(E,;,:(?) - ‘P(ia ﬂ))}a

z; C I, then

vRi(zi’g) = /\{(p(:i,ﬂ) : Vj(v 7?4'(21', :'7) - (p(ff,ﬂ))}
Proof. Since for every R;
{o(z,9) : ¥2(\/ Ri(2:,9) = ¢(2,9))} € {¢(3,9) : VE(Ri(%:,9) — ¢(Z,9))};
/\{‘P(Ea '!7) : VE(R,,(Z“:I]) - ‘p(j’ ﬂ))} - /\{‘P(E: g) : V:Z_:(V Ri(z‘iag) - <p(5,:(7))},

that is, for every R;
Ri = Ne(,9) : Va(\ Ri(%,9) - #(2,9))}

and this implies

VR = Ne(3,9) : va(\ Ri(2:,9) — ¢(2,9)}-
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Now we prove that the implication holds also in the other direction. From Proposition 1
follows that if
Rz(z’ng) = /\{‘P(j)g) : VE(Ri(Eia ?7) - QO(.’Z_:, g))}a
z; C Z, then

T"'i(zi’g) = /\{¢(219g) :VZi(Ri(Zi, g) - ’l,b(il,ﬂ))}

Now, assume that
Ne(z,9) : v-'Tc(\./ Ri(2:, ) — ¢(Z,9))}

holds and none of the R;(Z;, ) holds. Then as we have just seen, there are formulas
W1,...,%n, such that for every i, VZi(Ri(Z;,9) — vi(%,§)) and —2);(Z;, 7). Take the dis-
junction of these formulas, V/; (%, 7). It also does not hold. An equivalent formula with
free variables Z, 7,

\/ ")bi(iia :‘7) v "L(E)a

belongs to the set
{e(z,9) : ¥2(\ Ri(2:, 7) — (2, 9))}

but this is false. A contradiction. O

Lemma 3 (Closure Lemma.) Let A be a conjunction of atomic formulas prefized by V and
O-quantifiers, so that all occurrences of a predicate symbol in A have the same free vari-
ables. Then every atomic formula in A has a good minimal substitution, and this minimal
substitution is the same as the one used to obtain a frame correspondent.

Proof. The lemma follows from the four propositions proved above. O

5 Syntactic transformations

We describe now the syntactic transformations which reduces the task of finding a corre-
spondent for an axiom x to a simple application of the Intersection Lemma and the Closure
Lemma, which finishes the proof of the Theorem 3.

Step 1. Assume that a formula x is of the form A;x:, where each x; is of the form
Qz1...Qzm(A — B), A and B as in the Theorem 3. Then if every conjunct in x

corresponds to a first-order condition on R in the canonical model, say sz , x itself

corresponds to a first-order condition on R (namely, a conjunction of xj) So, it
suffices to prove that every x; corresponds to a first-order condition on R.

Step 2. Writing down the validity conditions of x;, we obtain

Yo1...YonQz ... Qzm(A — B),

where Vi; are the quantifiers over definable relations corresponding to the predicate
symbols in x;. If P; is an n-place predicate symbol, then Vi; can be instantiated on
any formula with precisely n variable places.
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Assume that m > 0 (if not, we can move to the next step). Then translating the truth
conditions for the quantifiers in first-order logic, we obtain

Vor1...YouVz .. . Vzu (T — (A — BY)),

where T is a conjunction of R-conditions corresponding to the O-quantifiers in the
prefix (if there are such quantifiers). This is equivalent to

Vz1...Yzm (T = Y1 ... Voo (A* — B™)).

Step 3. A may contain disjunctions; we use the fact that

Ver...Ven(\/ A} = B*)

is equivalent to
Vo1 ...Von \(4f — BY)

]

and since V distributes over A,

A Vo1 ...Von(Af — BY)

Substituting this in the formula obtained on the previous step and applying the same
reasoning (now with conjunction in the consequent), we obtain

/\Vz1 ...z (T = V1 .. .Von(A] — B*)).

It now suffices to prove that each conjunct corresponds to a first-order condition on
R in an w-saturated canonical model.

Step 4. A; may contain constant formulas (without predicate symbols other than =, T
and 1). We move those to I'. Let A* = A’ A a, where & are constant formulas:

(L= (@AA' - B*)=TAa— (A — BY))
Let us denote I' A « as I'. Note that I is still first-order.
Step 5. A’ may contain negative formulas: those we move to the consequent using
(nAv— B*)= (v —>-nVB*)
Note that the consequenf is still positive.

Step 6. Finally, we have a formula
(%) Vz1...Vzu(T' = Vo1 ...Vou(A' — B')),

where IV is first-order, B’ is a positive first-order formula, and A’ is a conjunction of
formulas (Qz1 ... Qzkp;)*, where all quantifiers are non-vacuous.

18



Assume that there is only one predicate letter P in x. Then the reasoning goes as
follows: P occurs in A’ in subformulas of the form (Qz; ... QzxP(Z,7))*, where the
% are bound and the 7 free (rename the bound variables if necessary).

The condition (*) can be rewritten as

Vz1 ... Vam(l' — \{B'(¢(2,7)) : /_\(in(i,ﬁ))*})-

Applying the Intersection Lemma,
Va1 .. Vem(T' = B'(A{e(Z,9) : N(Qize(2,9))"})

and by the Closure Lemma (P has a good minimal substitution in A, say p), this is

equivalent to
Vz1...Vzm(T' — B'(p)),

which is a first-order statement in R.

Now we consider the general case, when there is more than one predicate symbol.
Then we eliminate the second-order quantifiers one by one in the following way. Split
A’ in two parts, A; and Az, so that Ay contains all and only occurrences of Py:

Vz1...Vam(I' = VY1 ... Von(4' — B'))

is equivalent to
V1 ... V(T = Vo1 ... V(AL A Ay — B'))

and this in turn to
V1 ... Vem(I' = Vo1 ... Von_1(A1 = Yon(A2 — B')))
And we apply the Intersection Lemma and the Closure Lemma to

V(pn(AZ - B’).

This way all second-order quantifiers which bind predicate symbols occurring both in
the antecedent and in the consequent can be eliminated.

If B contains predicate symbols which are not in the antecedent, these can be replaced
by a fixed contradiction having the same parameters as the original atomic formula;
since B is positive, and therefore monotone, the resulting formula is equivalent to the
original one. Analogously, a predicate symbol occurring only in the antecedent can
be replaced by a tautology.

Assume that A contains a predicate symbol which does not have a quantifier prefix,
that is, A — B can be written as

A' AP(z) — B(P(3)).
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By assumption, the Z are free in B. Since B is positive, B(P(Z)) can be equivalent
to B' A P(Z) or B'V P(Z).

A' AP(z) = B'V P(z)
obviously corresponds to a first order condition, namely a trivial one, and
A'AP(z) - B'AP(z)

is equivalent to
A'AP(z)— B,

the case which we treated above.

Let xT be the result of applying steps 1 — 6 to x. We proved that if x is an axiom, then
in a canonical w-saturated model xT holds. The converse holds due to the argument used
in the proof of the Theorem 2: we used the same minimal substitutions as in that proof,
hence a correspondent in the sense of completeness is a frame correspondent.

O

Coming back to the remark following Definition 5, it is not clear whether the correspon-
dent obtained in the proof of the theorem is unique. For weak Sahlqvist formulas which
contain only universal quantifiers, the correspondents are unique and equal to the frame
correspondents.

Example 4 The characteristic axiom of the ”for almost all” quantifier (the Fubini prop-

erty):
DszP(IB, Y, 2) - DyDa.‘P(za y72)

corresponds to the following condition on R:
R(y, Z) A R(z,yZ) — R(z,Z) A R(y, zZ).

Proof. Rewriting the validity conditions of the axiom gives

Vo(VaVy(R(z, 2) A R(y, 22) — ¢(z,y, 2)) — Vy¥z(R(y, 2) A R(=,yZ) — ¢(,y, 2))
which is equivalent to

N\{(V9Vz(R(y,2) A R(z,yZ) — ¢(,y, %)) : V2Vy(R(z, 2) A R(y, 22) — o(,y,2))}-
By the fntersection Lemma,

Vy¥z(R(y, Z) A R(z,y2) — \{e(z,y,2)) : VaVy(R(z, 2) A Ry, 22) — ¢(2,9,2))});
while by the Closure Lemma

Ne(z,v,2)) : VaVy(R(z, 2) A R(y, o2) = ¢(z,y, %))} = R(z, 2) A R(y, 22)

in every canonical model. Thus we obtain the correspondent

VyVz(R(y, 2) A R(z,yz) — R(z,Z) A R(y, zZ).

20



O

Example 5 The characteristic axiom of the " co-countably many” quantifier (Keisler’s ax-
iom):
VmDyP(x, Y, Z) A DszP("B, Y, 2) - DvaP(z,ya 2)

corresponds to
VaVy(R(y,z) — R(y,Z) V R(z, £))-

Proof. The axiom is valid iff
Vo (VaVy(R(y, 22) — p(z,¥,2) AVaVy(R(z, 2) = ¢(z,y, 2)) = YaVy(R(y, 2) = ¢(z,9, 7)),
namely,
Vio(VaVy(R(y, 2) V R(z, 2)) = (2,9, 2)) = YaVy(R(y, 2) = ¢(2,9,2)).
This can be rewritten as
N{vaVy(R(y, 2) = (2,9, 7)) : VaVy(R(y,22) V R(z,2)) = ¢(2,9,2)},
by the Intersection Lemma,
Vavy(R(y, 2) = Ne(z,9,2)) : VaVy(R(y,22) V R(=, 2)) = ¢(2,9,2))};
and by the Closure Lemma,

VzVy(R(y,z) = R(y,zZ) V R(z, 2)).

6 Diamonds in the Antecedent

In this section we show that not all formulas which have a frame correspondent also admit
a correspondent for completeness. Recall that the definition of Sahlqvist formulas (cf.
Theorem 2) allowed existential and O-quantifiers in the antecedent, while for weak Sahlqvist
this is not allowed. The following theorem gives the reason why.

Theorem 5 Oz — Oz(@V1) does not have a correspondent in the sense of completeness.

Proof. Let us call Oz¢ — Og(¢ V) A. Although A does have a frame correspondent,
namely R(z,9) — R(z,§Zz), we show that it does not have a correspondent for completeness,

i.e. there is no first-order condition AT so that for all canonical logics L

i if L + A has a canonical model, then there is a canonical model for L + A where the
condition AT holds;

ii A is valid in every canonical model for L + Al
Assume that such Al exists. Let L be the logic obtained by adding to Ly;n the following

axioms:
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L1 Cz=x

L2 O,z #vy

L3 Oy AOz9p — Oz(p A9)
L4 O,0,0 — 0,0.¢

L + A is consistent (this is nothing else than the logic of the ”almost all” quantifier; its
consistency can be shown by means of forcing: cf. Theorem 2.1.3 in van Lambalgen (1990)),
and it has a canonical model. Then from i it follows that there is an w-saturated canonical
model A for L and AT, Since L1 — L4 are weak Sahlqvist formulas, in A they correspond
to

a JzR(z)

b -R(z,z)

¢ R(z,9z) — R(z,7) |
d R(z,yZ) A R(y,z) — R(y,z%)

i also implies IR(R satisfies a - d and AT). This is a ¥; sentence; with the Levy-
Shoenfield Absoluteness Lemma (cf. Jech (1978), p.120) it follows that L |= 3R(R satisfies
a-d and AT), where L is the constructible universe. We show that in this case L does not
have a definable well-ordering, which is a contradiction.

Observe that A implies for every formula ¢* which is a standard translation of a Lyn
formula % :
3z(R(z,§) A ~¢*(2,§)) — Iz(R(z,§2) A ~¥*(z,9))

that is

#) Vz(R(z,32) — ¥*(2,9)) = Vz(R(z,7) — ¥"(2,9))
(Note that this follows already from extensionality: Vz(p = ) — (Ozp = Oz9); as we
shall see, this property is sufficient to derive the contradiction.)

Define S(z, z) as R(z, Z) A Vy(R(y,zZz) — = < y). Since 32Vz~S(z, Z) implies (with the
axiom of Dependent Choice, which holds in L) the existence of an infinite descending chain,
we must have Vz3zS(z, Z). Then we can choose zo with R(zo) and Vy(R(y,zo) — zo < ¥)
and z; with R(z1, o) and Vy(R(y, zoz1) — z1 < y). Due to the property (§) the following
holds:

Vy(R(y, 1) — 1 < y).
R(zo) A R(z1,z0) implies together with d R(zo, z1), therefore z1 < zo. This yields zg = z1,
a contradiction with R(z1,zo) by b (cf. Theorem 1.5.3 in van Lambalgen (1994)).

O

An immediate consequence of the theorem is that "0 over A”-combination in the an-
tecedent cannot be allowed: witness an equivalent of the axiom considered above:

Oz(¢ AY) — Oge.

Also,
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Corollary 1 Eztensionality Vz(p = ¢) — (Ozp = O,%) does not have a correspondent in
the sense of completeness.

Proof. Follows immediately from the proof of the theorem.

Corollary 2 $z¢ — Ogp does not have a correspondent in the sense of completeness.

Proof. This formula is consistent with L1 — L4 (cf. van Lambalgen (1994), where it is also
shown that together with filter axioms this formula corresponds to the property of O being
an ultrafilter), and it implies extensionality.

O

While the following argument does not prove conclusively that existential quantifiers
in the antecedent cannot be allowed, it should suffice to discourage further efforts in this

direction.

Corollary 3 If intuitionistic set theory with azioms for lawless sequences is consistent,
then Iz(z # y A ¢(z,y)) — Cz(p(z,y) V) does not have a correspondent in the sense of
completeness.

Proofsketch. For intuitionistic set theory with lawless sequences, IZFLS, see van Lambal-
gen (1992), section 5. There it is also shown that one can define a translation of Lyp into
IZFLS which makes the following axioms come out true under the translation: L1 — L4 and

O (¢(z,y) AY) — Vz(z # y — o(z,9)).

Hence L1 - L4 + Oz(¢(z,y) A ) — DOzo(z,y) is consistent, and the argument of
Theorem 5 can be applied.

O

The clause of the Theorem 3 forbidding occurrences of the same predicate letter with
different free variables is also necessary. Suppose that there is a variable in the antecedent
not occurring in the consequent, as in

Dy(DzP(xa y) — 0. P(z,2))

is equivalent to
Oy(DzP($7y) AT(z)) — O,P(z,2),

and
Vy(Oz P(z,y) — 0.P(z, z))

is equivalent to
JyO.P(z,y) — O, P(z, 2).

This shows that the class of weak Sahlqvist formulas is strictly smaller than the class of
all Sahlqvist formulas and that none of the conditions of the Theorem 3 can be dropped.
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Digression. Reflection on the proofs of Theorems 2 and 3 suggests a closer look at
the behaviour of singleton sets, which are used as minimal substitutions in the proof of the
Theorem 2 (and in modal logic) and do not occur as minimal substitutions in the proof
of the Theorem 3. Note that singletons as minimal substitutions are used precisely in
the cases ruled out in the Theorem 3. The semantical correlate of "singletons as minimal
substitutions” is distinguishability. A model is called distinguishable if every element is
uniquely determined by the set of formulas in one free variable which are true for this
element. For example, canonical models for modal logic are distinguishable. But in general,
our models will not be distinguishable. Suppose an w-saturated canonical model satisfies
O,z # y and extensionality for Oz, and d is the single element satisfying A{o(z) : ¢(d)}.
We show that Vz(R(z) — z # d). In a distinguishable model this would hold for every
element, hence R would be empty.

Suppose 3z(R(z) A z = d), then for all ¢ such that o(d), 3z(R(z) A ¢(z)). By § (or
rather its contraposition), 3z(R(z, d) A ¢(z)), hence by w-saturation 3z(R(z,d) A N\ p(z)).
It follows that R(d,d), a contradiction.

O

7 Discussion

Let us first of all compare the results of this paper with the results previously obtained for
modal logic. Recall that a modal logic L is called first order complete if there is a set A of
first order sentences in the language {R,=} (where R is the accessibility relation) such that

kL ¢ if and only if for every Kripke model M: if M E A then M k= ¢;

equivalently, i1, ¢ if and only if ¢ is true on any frame which satisfies A. Sahlqvist’s theorem
tells us that modal logics axiomatized by Sahlqvist formulas, such as K4, S4, S5, etc. are
first order complete. If we transfer this concept of first order completeness to generalized
quantifiers, we see that there is a quantifier logic axiomatized by Sahlqvist formulas which
is not first order complete, namely the ”almost all” quantifier considered in section 6. We
do have first order completeness for logics axiomatized by weak Sahlqvist formulas, but
since extensionality is not weak Sahlqvist, this result is not very interesting taken by itself.
Indeed, we can obtain even stronger negative results, as follows. The reader may have
observed that for generalized quantifier logics a stronger form of first order completeness
can be defined: the truth definition we considered above is universal, but nothing prevents
us from considering more complex truth definitions. Might we not obtain a first order
correspondent to extensionality this way? E.g. the following truth definition proposed by
Mijajlovic (1985) and Krynicki (1990) trivially yields extensionality:

Qzy(z) if and only if IyVz(R(z,y) — ¢(z)),

where R is a new binary predicate and y does not occur free in . But in this case Keisler’s
axiom for ”co-countably many”

VzOyp A O:Vye — O,V

corresponds to a schema, not to a first order condition as above.
This is not accidental. For instance, for the quantifier "almost all” it can be shown
that any truth definition, however complex, involving an accessibility relation R, will make
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at least one axiom correspond to a schema. The proof is an elaboration of the argument
in section 6 and runs as follows. Suppose there were a truth definition using R for which
»lmost all” is first order complete. Let Q denote ”almost all”. Since the logic of Q is
consistent, a ¥; sentence would be true in the universe, hence in L. In L, this 3; sentence
would imply the existence of a model for the logic of Q in the language {€,=}. Using
theorem 2.3 in van Lambalgen (1992) it can be shown that @ is closed under countable
intersections. We may now define an accessibility relation S(z,3) by

S(z,5) & )\ Qzo(z,7) — ¢(z, 7).
7

It follows that Qz¢(z,7) if and only if Vz(S(z,¥) — ¢(z,§)); the implication from left to
right is trivial and the converse implication can be obtained as follows:

N\ Qzo(z,9) = Qze(z,§)  (tautology)
['4

4
/\ Qz[Qzf(z,7) — ¢(z,7)]  (cf. the tautology derived on page 14)
@
4
Qz| /\ Qzyo(z,§) — ¢(z,§)]  (closure under countable intersections)
7]
4
QzS(z,7) (by definition)
4

Qzyo(z,7)) (monotonicity).

Hence S satisfies properties (a - d) and } defined in the proof of Theorem 5, so L
does not have a definable well-ordering. This is a contradiction; hence whatever truth
definition, involving an accessibility relation R, we choose, there will always be an axiom
not corresponding to a first order condition on R. Coming back to our earlier truth definition

Qzy(z) if and only if IyVz(R(z,y) — ¢(z)),

this means the following. It can be shown that with respect to this truth definition axioms
L1 - L3 of page 22 have first order correspondents for completeness. Hence in this case

QzQyp — QyQzyp

does not have correspondent for completeness.

The uses of correspondence theory for generalized quantifiers are therefore more re-
stricted than in the case of modal logic: we may use correspondents for specific formulas
in concrete applications (e.g. proof theory as in van Lambalgen (1991)), but in many in-
teresting cases we cannot apply correspondence theory to a generalized quantifier logic as
a whole.
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