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Abstract

We propose modal logics to reason about degrees of belief. These logics can be used
to represent a static state of belief. We also give our picture of dynamics of belief and
comment on possibilities to formalize it.

1 Introduction

A modal logic where modalities express partial believing a statement can represent incom-
plete knowledge more adequately than the standard epistemic logic. The latter cannot
express subtleties like ‘T believe neither A nor —A completely, but I have some evidence
which supports A (0.3) and some evidence which supports =4 (0.2)’. The numbers in
brackets may correspond, for example, to degrees of belief in the sense of belief functions
theory (cf. Shafer (1976) and Smets & Kennes (1994)). We shall discuss here some logics
able of representing degrees of belief.

A major contribution in this field was made by Fagin, Halpern and Megiddo (1988).
They constructed two logics, AX' and AX 0>, Which are sound and complete both with
respect to probabilistic structures (where numbers assigned to statements correspond to the
values assigned by an inner measure induced by a probability measure 1) and to Dempster-
Shafer (DS) structures.

Definition 1 A DS structure is a quadruple < W,0, Bel,V >, where W 1is a non-empty
set (of possible worlds), © is an algebra of subsets of W (such that W € © 2, and Bel is a
belief function, i.e. Bel : © — [0.1] satisfies

*This research was supported by NWO PIONIER project ‘Reasoning with uncertainty’ and EU-ESPRIT
I1I Project DRUMS-IL.

tThis research was supported by EU-ESPRIT III Project DRUMS-II and Communauté Frangaise de
Belgique ARC project BELON.

IDefinition. Let P be a probability measure on an algebra © of subsets of W. Then the inner probability
measure P. on 2% induced by P is defined by

P.(A) = maz(P(X): X C 4, X €0)

2In the cited article © = 2w,



B1 Bel(0) = 0;
B2 Bel(Q1U...UQn) > Spsrcqr,..ap(— DT Bel(Nizr Qi)
B3 Bel(W) = 1;

and V is a function which assigns propositional variables subsets of W (intuitively, V' says
in which worlds a propositional variable is true).

The intuitive meaning of belief functions can be explained in different ways. One pos-
sibility is to relate them to probability functions. B2 can be understood then by analogy
with inclusion-exclusion laws for probabilities. Inequality replacing strict equality which
holds for probabilities corresponds to the fact that one may believe in a disjunction, for
example, AV ~A, without believing in either of the disjuncts. Inner probabilities also have
this property. As the work of Fagin, Halpern and Megiddo shows, even a considerably ex-
pressive logical language cannot distinguish between belief functions and inner probability
measures (at the static level, i.e., without analysing belief revision). However, the contexts
where belief functions and probabilities can be meaningfully applied, seem to be very differ-
ent. This becomes especially clear when conditioning. i.e., changing degrees of belief after
learning new information, is considered (cf. section 4).

The language of AX’ consists of propositional variables, Boolean connectives, constants
denoting integer numbers, functional symbols + and X, a predicate symbol >, and a func-
tional symbol w. If ¢ is a propositional formula, w(p) denotes the weight (degree of belief
or inner measure) assigned to ¢. Propositional formulas are defined in a standard way; a
weight formula is a Boolean combination of basic weight formulas of the form

ajw(pr) + ... + arw(pr) > ¢,

where the a; and c are integers and ¢; propositional formulas. A conjunction of a proposi-
tional formula and a weight formula is not a well formed formula; only weight formulas are
evaluated in a model as true or false. A basic weight formula as described above is true in
a DS structure if

a1 Bel([p1]) + ... + axBel(lpk]) > ¢,

where [p;] is the set of worlds assigned to y; (the function assigning sets of worlds to
propositional formulas is an obvious extension of V).

The language of AXk, contains in addition variables ranging over real numbers and
quantifiers V and 3. The class of weight formulas is extended accordingly.

In both logics the reasoning about degrees of belief is axiomatized by the same set of

axioms: 3

W1 w(p) 2 0;
W2 w(T)=1
W3 w(l)=0;

W4 if ¢ = 1 is a propositional tautology, then w(y) = w(v);

W5 w(o1 V...V on) > Srcq,nprzo(— DI w(Aero(e:).

3We have changed the original numbering of the axioms.



The difference between the two logic is in axiomatizing numerical reasoning: AX' con-
tains seven axioms to reason about linear inequalities, and AX}, - eighteen axioms to
reason about real numbers.

Voorbraak [1993] transformed AXp into modal logic MOpo. He showed that any
weight formula of AXf, containing w(ep1),...,w(pn), is equivalent to a formula of the
form

Vzp.. Voo (w(er) = oA Aw(pn) =zn = U)A Tz zp(w(pl) = 21 A Aw(pn) = Tn)

where U is a purely arithmetical formula (containing only constants and variables denoting

numbers, +, x, > and Boolean connectives). This suggested that AX}; can be axiomatized

in the language containing modal operators P, (with the meaning 'the degree of belief in
. equals ), for every variable z. For example, the axioms W1 - W5 above become

MO1 Vz(Prp — = > 0) A3z Pyp;

MO2 Vz(P,T =z =1);

MO3 Vz(P;L — = =0);

MO4 F =9 = F VaVy(Prp A Pyyp — = =y);

MOS5 Vz,z1,. .. Zm(Pe(@1V. . Vo )AP: (Aier, 9i)A. . APz (Aier, i) — z > 0 (= 1)Hel+1gy),
where m = 2" — 1, and {[1,...,In} =P({1,...,n})\0.

In addition to these axioms, MOFpo contains two more axioms which allow to eliminate
nestings of modal operators (the nestings are allowed, but they are always eliminable).

Other axiom schemata of MOpo are the same as those of AXFo.

We propose some other logics with modal operators corresponding to degrees of belief
which do not contain explicit reasoning about numbers. Next two sections describe logics
for representing a static state of belief. The last section deals with dynamics of belief.

2 Belief operators

The models for our logics will be the same Dempster - Shafer structures as before, but
without the assumption that the belief in tautology equals 1, that is, with Bel not necessarily
satisfying B3. To stress the difference we denote the belief function which is required to
satisfy only B1 and B2 as bel. The reason for preferring such structures will become clear
in section 4.

Consider a propositional language which contains operators O, where O7 ¢ means ‘the
degree of belief in ¢ equals 7’ and 02, with the meaning ‘the degree of belief ... is at least
r’, for every real 7; we shall denote this language L(O,). The definition of a propositional
well formed formula (wff) is extended by: if ¢ is a wif, then O ¢ and 02 are wif’s.

A model M =< W,0,bel,V >, makes formulas true or false in accordance with the
following definition:

i M,wEpeweV(p);
i M,w—p& Ml
iii MwEoAYy e MuwEe& MwkEy;



iv M,w = OS¢ & bel([p]) =r, where [p] = {v e W : M,v | ¢}
v M,wl= 0Z¢ & bel([p]) >, where [p] = {v € W : M,v |= p}.

Further, we assume that © contains all definable subsets of W (i.e. all subsets Q such that
there is a formula ¢ for which Q = [¢]).

A formula ¢ is true in a model if it is true in all possible worlds of this model; a formula
is valid (= ) if it is true in all models. Finally, a formula is satisfiable if there is a model
and a possible world in this model where the formula is true. It is easy to see that ¢ is
valid if, and only if, —¢ is not satisfiable.

Observe that the O operator is not definable via the 02 operator (unlike in probabilistic
logic). In probabilistic logic, PSo =4 Plz_r—'cp (which does not hold for belief functions
in general), and P=p =g PS¢ A PZ¢. It is however possible to define O via OZ in an
infinitary language (see below).

Another point is that in our language we allow nestings of operators: one can write
expressions like Ellz/2l_‘_|1:/3p. However, since the truth of a modal formula in a model does
not depend on a possible world, a modal formula is either true in all worlds, or false in all
worlds. Namely, if M,w = O7)3p, it means that bel([p]) = 1/3. Then all worlds satisfy
O7/3p; Le, [Dlz/3p] = W. This implies bel([Df/Bp]) = bel(W); 07,07 /3p is true in M, w if
and only if D1=/2T is.

Analogously, if M, w O7/3p. then bel([p]) # 1/3. The set of worlds satisfying 07 ,p is
empty, therefore Di“/zDi’/Bp is true in M, w if and only if D1=/2J_ is (which never happens,
by the way). To summarize,

0720530 = (O3/3p A O T) V (20730 A Oy L)

In general, the nestings can be eliminated using the following valid principles (O, stands
for 02 or O7):

NF1 O, (0,9 A ) = (Osp ADY) V (200 A o,L1)
NF2 Dr(_’Ds‘p A ¢) = (U.‘»‘(P A DTJ‘) v (ﬂDs‘p A Dr"wl))

analogous to the ones used in Voorbraak (1993).

The nestings of modal operators can be made nontrivial by making bel dependent on a
possible world (cf. Fattorosi-Barnaba and Amati (1987) for probabilistic operators).

It is unlikely that a finite axiomatization for L(O,) can be found by standard means.
The situation resembles the one existing in the probabilistic logic, where the corresponding
problem for probability operators has not been solved yet. The following axiom system is
obviously sound:

Ax0 propositional tautologies and modus ponens;

Ax1 O5 L
Ax2 OZ(p — ¢) — (OZ¢ — OZ¢) ifr>s
Ax3 if}—<p—>1,b,thenl~DT2<p—>Ds?¢ ifr > s:

Ax4 Dlzgp — 07y

Ax5 O-¢p — ~0O7p if r # st



Ax6 O=p — OZy;

Ax7 O7¢p — —‘Dszgo if s >
- - - >

Ax8(2) 05 p1 A0 AOT (01 A pa) = OF o) (901 V w2);

Ax8(3)

where Az8(n) is the analogue of Voorbraak’s MO5 for n.

In case where bel does not depend on a possible world the normal form principles allowing
to eliminate nestings, NF1 and NF2, should be added.

In the class of structures where B3 holds, O T holds (then Ax3 can be replaced by
ko =F 07 ).

However, the resulting systems are probably still incomplete. One can easily show (the
argument is analogous to the one used for probability operators in van der Hoek (1992), for
example) that it is not compact: there are infinite finitely satisfiable (therefore consistent)
sets which are not satisfiable: for example

{DIZ—I/an RS N} U {_'Dlz(p}'

This fact closes the opportunity to prove completeness by the method of canonical mod-
els. What we need is to be able to express the fact that for every formula there exists a
degree of belief assigned to this formula. This could be expressed in an infinitary language:
Vre[O,l} Ore.

In probabilistic logic where analogous problem appears, there are two approaches which
can be both applied here: one (cf. Keisler (1985)) accepts infinite formulas; the other (cf.
Fattorosi-Barnaba & Amati (1987)) restricts the range of the probability function to a finite
set F C [0,1].

Assume that the range of belief function is restricted to a set F' = {0,7y,...,7,,1}. The
class of models where this holds is axiomatized by the axioms above plus

Ax9 VrEF D:-QO

The proof is analogous to the proof in Fattorosi-Barnaba & Amati (1987).

Completeness for the infinitary language is much more involved; probably it can be
proved for the case when infinite disjunctions and conjunctions are taken over admissible
sets (cf. Keisler (1985)). It is interesting that in the language with arbitrary infinite
disjunctions and conjunctions, 02 and O are interdefinable:

07¢ =4 \/ 05

s>T

= > >
Ore =4 \ OF0 A \ -OFe.
s<r §>T
The latter definition could have been written as
= > >
Ore =4 \ 09 A N\ ~OF;
s<r s>T

but this definition does not imply Vre[o,ll O ¢. In particular, from A, N Di>——1/n(p it does
not follow that O7 ¢.



3 Logic to reason about mass functions

It is well known that any belief function has a unique mass function which corresponds
to it. Given a belief function, one can compute the mass function, and vice versa. For
some reason, mass functions, although having less intuitive meaning, are more suitable for
performing conditioning. Modal operators corresponding to mass functions, as we shall
see in this section, allow for an easy completeness result (because the masses assigned to
different propositions do not interact, unlike the beliefs: cf. Ax8). Therefore we start with
considering mass structures instead of DS structures.

Definition 2 A mass structure M =< W,0,m,V >, where W and V are as before and
m: © — [0,1] satisfies the following condition:

M1 Z4co m(A) =1
Further on we consider only full mass structures:

Definition 3 A mass structure is called full if for every possible assignment of values to
the propositional variables in the language, there is a possible world in W which corresponds
to this assignment.

In a full mass structure, if ¢ and 9 are not logically equivalent, [¢] # [¢].

It is easy to see that defining a mass function on a set of possible worlds in a full model
is equivalent to defining it on the Lindenbaum algebra of formulas.

The relation between mass function and belief function is as follows:

bel(A) = Spxpcam(B).
The condition on mass function corresponding to B3 for belief functions is
M2 m(0) =0.
Under this condition the equation above becomes

Bel(4) = Spcam(B).

The language L(m) of the basic belief logic consists of a set of propositional letters
D1y --sDn,---, Boolean connectives and modal operators m; and mZ, for every real number
r. The intended meaning of m> ¢ is ‘given the available evidence, the amount of belief
specifically supporting ¢ is 7', analogously for mZ. The difference with the degree of belief
is that m corresponds to support given ezactly to ¢, and not to any proposition which implies
. That is why m, unlike bel, need not be monotone, and may assign 0 to tautologies.

A well formed formula is defined inductively as follows: a propositional variable is a wff;
if ¢ and 1) are wif’s, then —¢ and ¢ A are wif’s; if ¢ is a wff which does not contain modal
operators, m, is a wif, where m,¢ is m ¢ or mZp, with the following meaning:

vi Myw EmZp & m(fy]) =r;
vii M,w f=mZe & m(le]) 27

We could have allowed nestings of modal operators, but it makes the story too compli-
cated. Besides, the nestings are again trivial since the truth of a modal formula again does
not depend on a world.



Definition 4 The basic belief logic BBL is the smallest class of formulas closed with respect
to the following schemata of azioms and inference rules:

A0 all propositional tautologies;

Al m%w;

A2 mZp — ~-mZp if s >r:
A3 mZp — -myp if r # s:
A4 mZp — mZep ifs<r;
A5 mZp — mZyp ifs<r;
A6 A, m,%goi — A\im s where ; are pairwise nonequivalent formulas and ¥;r; = 1:

R1 if+ g and b ¢ — 9, then b+ 9,
R2 if ko =4, and ¢, ¢ are a propositional formulas, then - mZp = m>y
R3 if - ¢ =1, and @, ¥ are a propositional formulas, then - mZp = m24y

For the structures where m(@) = 0 holds (normalized structures), the following axiom
should be added: mg L. This will not influence the following result:

Theorem 1 BBL is sound, that is, for every formula ¢, & ¢ implies |= .

Proof. It suffices to show that all axioms are valid and the inference rules preserve validity.
The only nontrivial case is A6. Here we really make use of the fact that the models are full.
If not all possible valuations are present, a formula like m12/2p A mlz/zq A ﬂmfﬁp A —11n1:/2q
is satisfiable: for example, it is true in a model with just one world w which satisfies both p
and ¢, with m({w}) = 1. But in full models, nonequivalent formulas define different subsets
of W, and the sum of masses assigned to these subsets may not be greater than 1.

Theorem 2 BBL is complete: for every ¢, = ¢ tmplies - ¢.

Proof. To prove that in BBL = ¢ = | ¢, we show that I/ ¢ = [~ ¢; namely, if a formula is
not provable, then its negation is satisfiable. This amounts to proving that every consistent
formula has a model where it is satisfied in some world.

Let 1 be an arbitrary consistent formula. By propositional reasoning, ¢ can be written as
a disjunction of conjunctions, where each disjunct is a conjunction of propositional variables.
their negations, modal formulas and their negations. If 1 is consistent, then at least one
of the disjuncts is consistent. If it is satisfiable, then 9 is also satisfiable. So, it suffices to
show that any consistent conjunction as described above is satisfiable.

Assume that ¢ is of the form

PN APk AMp @t A AMpor Ay Qi AL A My O,

where m, is either m> or m2. Due to R2 and R3 we may assume that all formulas ¢;.

1 < 7 < m, are in some normal form (so that there are no two equivalent formulas which
are written differently).



For every formula ¢;, 1 <1 <[, we can leave only one conjunct mrzi @; with the maximal
r; (other conjuncts follow from this one by A5), or, if m ¢; occurs in 9, leaving just this
conjunct (all conjuncts of the form mZy;, s < r; follow by A4, and there are no conjuncts
of the form mszgoi with s > r;, otherwise 7 is inconsistent by A2). Further on we assume
that for every ¢;, 1 < i <[, there is only one conjunct of the form m p; or mrzl. ;- We also
assume that every formula ¢;, 1 < j < m, occurs in 9 with a modal operator positively;
we can always add mgcpj by Al.

Analogously, for every formula ¢;, I +1 < 7 < m, we can assume that there is only
one conjunct of the form -wm% ¢;j (take the smallest r; and apply A5), and possibly some
conjuncts of the form —mj ¢;, with s < ;.

1) is satisfiable if there is at least one model such that

(a) at least one world in this models satisfies pi1 A ... A pix;
(b) in this model, m([p1]) = 1 or m([p1]) € [r1,00], ..., m([@i]) = 71 or m([p1]) € [y, 00];
(©) m([pi+1]) # ()rig1s -+ s m([om]) # (<)rm

(d) and m is a mass function: for every ¢; 1 < j < m, there is only one value m({p;])
which is between 0 an 1, the sum of all masses is 1, and, for normalized structures,
the mass of the empty set is 0.

Since 1) is consistent, p;; A ... A pjk is also consistent, therefore in every full model there
is at least one world satisfying it.

Conditions (b) and (c) together define an interval to which m([p;]), 1 < j < m, belongs.
It is a subinterval of [0,1]. This interval is always nonempty: since mZ¢p; and ~mZy;,
s <1, can not occur in 9 (by A5). Sometimes it is a point (if m7 ¢; is in ). Sometimes
several points are excluded (corresponding to the conjuncts of the form —-m7 ;). In any
case, there is either one possible value, or infinitely many possible values for m([y;]).

A routine check shows that if one of the conditions (d), except for the summing to 1,
is violated: for example, if one of the requirements of (b) is m([p;]) = r and m([p;]) = s,
T # s, then 7 is inconsistent (in the example, by A3).

Now let us show that M1 can always be satisfied. There are three possibilities for the
assignment of values in (b):

- %=y, > 1: then a contradiction is derivable by A6 and A2, therefore this case is excluded;

- B r; = 1; then instead of m([;]) € [, oc] we must have m([;]) = ;. Suppose this
is excluded by one of the conditions in (c): then 1 is contradictory by A6. Since it is
not, this case defines a unique mass assignment to the formulas.

- 2::’17',- < 1; we can always assign the rest of the mass to some formula not among ¢;.
O

Operators for belief cannot be defined in L(m). To write a definition we would have to
find, for a given formula O ¢, a formula in the language with mass operators which is true
if, and only if, Oy is true. This is not possible, because bel([p]) = r is consistent with
infinitely many possible values of masses assigned to the subformulas of ¢ (except for the
trivial case 7 = 0). The mass assigned to ¢ is determined uniquely only if bel([¢]), for all
nonequivalent subformulas 3 of ¢, is known.



In a language with finitely many propositional variables and infinite disjunctions OF is
however definable.

Let the language contain n propositional letters, p1,. ... p,. and all nonequivalent propo-
sitional formulas which can be written in this language are py,...,pyn. Let S() be the
set of nonequivalent propositional formulas which imply ¢ (except for L).

OFe=¢ \ (mipiA...AMT pp),
<T1,ee0sTm >
where 7; € [0,1] and r; =r (1 <7 <m), and {p1,...,pm} = S(¢).
We must acknowledge that the problem can be solved in the languages of Fagin et al
(1988) and Voorbraak (1993) much easier: they can write

bel(p) = Em(p:)  pi € S(p)

or
07 =g V... Vr(mept A AME pr =11+ Ty = 7).

4 Dynamics

4.1 Cognitive changes

The difference between reasoning with inner probabilities and reasoning with belief functions
becomes clear when cognitive changes are considered, solutions being different.

Two forms of cognitive change can be described : belief change and world change (cf.
Lea Sombe (1994)). In belief change, a rational agent held a belief about which world is the
actual world wg and the new information puts some further constraint on which worlds can
still be the actual world. The most classical information is that some worlds considered as
possible candidates for wy must be eliminated as candidate.

In world change, evolving worlds are considered. Worlds are transformed into 'new’
worlds as information is piling up and new information describes constraint on possible
changes.

A typical example of the difference between belief and world changes is given by the
banana/apple example (Lea Sombe 1994). The agent knows that a basket contains “a
banana or an apple”. For belief change, let the information be that a witness looked at the
basket and said there is no banana in the basket. So the agent concludes there is an apple
in the basket. For world change, let the information be that a banana-eater passed next to
the basket and the agent knows that the banana-eater will eat any banana he sees. So the
agent updates his knowledge about the content of the basket and he knows now that the
basket is either empty or contains an apple.

Within quantified representation of belief, belief change corresponds to the conditioning
process and world change to the imaging process (Lewis 1976).

In the context of transferable belief model (TBM) which is an interpretation of the
Dempster-Shafer theory (cf. Smets and Kennes (1994)), conditioning is obtained by the
application of Dempster’s rule of conditioning. Let m/bel be the basic belief mass/belief
function that represents the agent initial belief on W. Let the conditioning information be
that the actual world does not belong to the complement of A relative to W. Then m/bel
are changed into m( |A)/bel( |A), the conditional basic belief mass/belief function over W
given A, with

m(X|A) = Epcam(X UB))

9



bel(X|A) = bel(X U A) — bel(A)

Note that a non-zero mass can be assigned to the contradiction in case a subset of A
was assigned a non-zero mass before conditioning. That is why we kept the possibility of
mass functions with a positive mass on the empty set open. The justification of such rule
can be found in Klawonn and Smets (1992), Smets (1993).

For the imaging process, the impact of the updating information A C W is such that
each w € W is mapped onto a new world in A. Let 'y : W — W be such mapping where
['4(w) € A and let I'4(B) = U{l"4(w) : w € B}. If an agent has a belief about which world
in W is the actual world, represented by the basic belief mass m / belief function bel, after
learning that the worlds have been changed so that they must belong to A C W, m/bel are
changed into the updated basic belief mass/belief function m( ||A)/bel( ||A) with:

m(X||A) = By.yewrav)=xm(Y) forall X C 4,
and m(X||A) = 0 otherwise,
bel(X||A) = bel({Y : Y C W,T4(Y) C X,Ta(Y) #0}) for all X C A.

(Assuming T'4 # 0 for all w € W seems reasonable but is unnecessary in the presentation
as belief functions can be unnormalized).

Belief and world changes can both be described within the framework introduced above.
Let the language contain n propositional letters, and p; and S(p) be as before. Introduce a
new binary modal operator m( | ), with m>=(¢|¢) meaning “"the mass assigned to 1 after
learning ¢ equals 7”. This operator is not definable via the unary one in a finite language.
In the infinite language, the definition would have been

m, (Y]p) =df \/ (mflpl A A mfmpm),

TlyeeesTm BT =T

where p1, ..., pm are all nonequivalent propositional formulas such that - p; A ¢ = 9. This
set of formulas can be denoted as []=,. One can however easily write the definition of
conditional operators in the languages of Fagin et al. (1988) and Voorbraak (1993).

The joint axiomatization of m; and m>( | ) also seem to require infinitary means (as
always when nontrivial addition comes into play!).

Conditional operators m=( |¢) and mZ( |¢) alone (without the unconditional ones)
can be axiomatized in a finitary language with arbitrary many propositional letters by
the axioms A0 — A6 and the rules R1 — R3, replacing the expression "nonequivalent” by
"nonequivalent given that ¢ is true”.

The story is essentially the same for the update operators m=( || ) and mZ( || ). In a
language with finitely many propositional letters, define on the set of formulas a function
which corresponds to I'. Then it is easy to find a set [¢]r, of all formulas p; such that
Ty (pi) = . (In the case of conditioning, T',(p;) = p; A p.) Again, the definition of m7( || )
in our language requires an infinite disjunction; in the richer languages, "updated mass”

can be defined.

5 Conclusion

We show that reasoning about quantified beliefs in the sense of transferable belief model
can be represented in a simple modal logic.

10



The logic to reason about mass functions has a sound and complete axiomatization. In
other cases the systems are sound, but in order to achieve completeness one has either to
allow infinite formulas or to restrict the range of belief function to a finite set of values,
which we find quite counterintuitive. Extending the language by including reasoning about
numbers (cf. Fagin et al (1988), Voorbraak (1993)) can also help to obtain a complete
system.

Acknowledgments. We thank Michiel van Lambalgen, Alessandro Saffiotti and Frans
Voorbraak for their comments on the paper.
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