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PREFACE
- The title of the present dissertation is
"APPLIED MODAL LOGIC:MODAL LOGICS IN INFORMATION SCIENCE"

Applied Modal Logic is an intensively developed branch of Mathematical
Logic, arising from the applications of logic to some theoretical problems in
Information Science, Theoretical Linguistics and Philosophy.

Applied Modal Logic in Bulgaria started at around 1980 by the
investigations of Passy, Tinchev, Gargov and Vakarelov in the field of Dynamic
Logic ([Pa 84], [P&T 85,911, [Tin 861, [Vak 92c,92d]). Dynamic Logic is one of
the first examples of Applied Modal Logic in Information Science, aiming to
present some formal theories for reasoning about the behavior of programs.

Another example of Applied Modal Logic, which attracted our attention was
an application of modal logic to information systems, found by Orlowska and
Pawlak [O&P 84, 84a] at around 1984. The arising new modal logics have to be
considered as a formal tool for reasoning about data in information systems.
Soon after this new field grew into a more wide area of Rough Sets Theory with
many theoretical and practical applications in Information and Decision
Science ([Paw 82,84,86,91], [Slo, 911]).

The year 1990 was starting point of a new branch of Applied Modal Logic,
called Arrow Logic, developed in different ways in Sofia, Amsterdam and
Budapest ([Vak,90,91c,92a,92b,93], [Ar,94], [Ben 921, [Ma 92,92a,95], [MNSM
921, [Ven 91,92], [Mi 92], [Ne 92]). It aims to present formal systems for
reasoning about information represented by arrows and their interconnections.

These new fields in Applied Modal Logic have opened many new problems,
which needed radically new methods in order to be solved.

The present dissertation is a result of the author’s attempt to find such
new methods and their applications. Among the new methods are the so called
"copying method” and the method of "abstract characterization theorems".

The "copying method" is a technical tool making possible to axiomatize some
applied modal logics, whose standard semantics is not modally definable in the
corresponding modal language. For the applications of this method see
[Vak, 87a, 88, 89, 91b, 92a, 92b, 92¢c, 92d, 93], [GPT, 881, [G&P, 90], [Gor 90],
[Pe,88], [Sk&St, 91].

The method of “"abstract characterization theorems" consists of
characterizing semantical structures based on concretely defined relations,. by
means of abstract first-order sentences. In some cases this method may be seen
as a generalization of the Stone representation theory for distributive
lattices and Boolean algebras [Sto 37] to relational structures far away from
lattices and Boolean algebras. Applications of this method can be seen in [Vak
87,89,91,91a,91c, 92b,93,94,95,95a]. Let us mention that in many cases the
"copying method" and the "method of abstract characterization theorems" have
to be applied in a combinations with each other and possibly with some other
methods.

The dissertation contains a systematic and uniform study of certain modal
logics connected with Information Science by application of the above
mentioned new methods and improving some old ones. It includes results in
Dynamic Logic, Modal Logics for Information Systems, Approximation Logics
based on Rough Sets Theory and Arrow Logics and covers some of the results
obtained by the author during the last ten years.
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INTRODUCTION

The aim of this introduction is to give the reader some preliminary
information about the present dissertation. It is organized as follows.

We started in sec. 1 with a short survey of Modal Logic, containing the
main notions and constructions used in some forms in this dissertation. The
aim is to help the reader, who is not a specialist in this field, for better
understanding of what follows. '

Section 2 is devoted to Applied Modal Logic. In order to illustrate the
field we give a brief description of four branches of Applied Modal Logic
connected with Information Science: Dynamic Logic, Modal Logics for
Information Systems, Approximation Logic Based on Rough Sets Theory, Arrow
Logic. These branches correspond to the four parts of this dissertation.

Section 3 is about the methods and the results of the dissertation.



1. Modal Logic: a short survey

Modal Logic is a branch of Non-Classical Logic. It arises from the analysis
of the modalities of necessity and possibility considered as propositional
operators: bA - "necessarily A" and QA - "possibly A". The Golden Age for
Modal Logic starts around sixties, when Saul Kripke invented possible world
semantics. This semantics makes possible to analyse different fragments of
modal thinking, arising from various applied areas in Information Science,
Linguistics and Philosophy.

In the next pages we describe shortly the simplest modal Kripke-style
theory with a language £(o,{) containing only the modalities oA and (QA. In
honor of Kripke the smallest logic in this language is denoted by K. We shall
use this theory as a representative example in order to illustrate some
notions, problems and methods in Modal Logic related to this dissertation.
Standard reference books for Modal Logic are the following: Segerberg [Seg
71], Hughes and Cresswell [H&C 84].

1.1. Syntax, semantics and some related notions in Modal Logic

The language £(o,{) extends the language of the classical propositional
logic by two additional one-place connectives: o and ¢. The Kripke semantics
of #(o,{) consists in the following. The language £(o,{) is interpreted in
relational structures called frames, which are of the form W=(W,R), where W#o
is a set, whose elements are called possible worlds and R is a binary relation
between worlds, called accessibility relation. The class of all Kripke frames
will be denoted by KRIPKE.

While in the semantics of classical logic each propositional variable takes
one of the two truth values - truth and false, now the resulting truth value
is a function of the worlds from W. In this way Kripke semantics models the
situation that the truth value of a sentence may vary from world to world. One
of the formal ways to do this is the following. A valuation of the language
£(o,¢) into a Kripke frame W=(W,R) is a function v which assigns to each
propositional variable p a subset v(p)<W. The triple M=(W,R,v) is called a
model. In any model M=(W,R,v) we define a relation, called satisfiability
relation denoted by xH—V—A and having the following informal reading: "“the

formula A is true in the world x at the valuation v". It has the following
inductive definition:

xﬂ—v— p iff xev(p), where p is a propositional variable,
xll— =A iff xll—£ A /not xll— A/,
v v v
Xll— AAB iff xll— A and xll— B,
v v v
Xll— AVB iff xll— A or xll— B,
v v v
xll— A=B iff xll—£ A or xll— B,
v v v
xH—;— 0A iff (3yeA) (xRy and yH—;—A).

According to this definition v(p) contains those and only those worlds from
W in which p is true; oA is true in x iff A is true in all worlds accessible
by R to x; QA is true in x if it is true in at least one world accessible to
X. On the base of this semantics the formulas (A and -o-A have one and the
same truth conditions, which make possible to consider as a primitive only the
operation o and to introduce ¢ by definition -mo-. So, from now on our modal
language will be £(o).



Possible worlds and the accessibility relation between them is not the only
intuition connected with Kripke frames. There are many possible intuitive
interpretations of the elements and the relation R in a frame (W,R). For
instance the elements of W may be considered as moments of time and R is the
temporal ordering: xRy - "x is before y". In this way we obtain temporal logic
and the modalities DA and (A have the meaning "always in the future A" and
“sometimes in the fufure A". In tempqsﬁl logic we have anpther pair of
modalities o and ¢ interpreted by R with the meaning o "A: "Always in
the past A" and { "A: "sometimes in the past A". Assuming different properties
of R we obtain different temporal logics. In section 2 we shall give more
examples of concrete intuitive interpretations of Kripke semantics.

As we have seen by the example of temporal logic, Kripke semantics can be
extended also for modal languages having more than one operation of necessity
o, denoted sometimes by [a], [B] and so on, and the corresponding possibility
operations - by <«>, <B> and so on. In frames, the corresponding relation of
the box [«] is sometimes denoted by R(«) or, simply by «. Such modal languages
and the logics based on them are called polymodal. Generalizations to modal
operations with n-arguments, called poliadic modalities are also possible
/[J&T 51]/. Then for the interpretation of such poliadic modalities we use
n+l-place relations:

xH—;—n(Al,...,An) iff (Vyl...yneW)(nyl...yn — yl"_V_Al or ... or yn“_V_An)’

X”_G_O(Al"”’An) iff (Jy...yeW) (xRy...y and y1II~—;—A1 and ... and ynH—;—An),

We continue with some definitions, considering the simplest modal language
£(n), leaving the obvious extensions for arbitrary polymodal languages to the
reader.

We say that a formula A is true in a model (W,R,v) if for any xeW we have
xH—;- A; A ’'is true in a frame (W,R) if it is true in any model (W,R,v) over

(W,R); A is true in a class of frames X if it is true in any frame from ZX.
Having in mind the above definitions Kripke semantics can be considered as

a translation of modal formulas into second-order logic. Let M=(W,R,v) be a

Kripke model. If we write xH—;—p as p(x) for any propositional variable p, and

rewrite xH—V—A according to this notation, we obtain a first-order formula

T(A) (x) of one variable x with the property that
X"—;—A iff T(A)(x) is true in the model M.

If Pys---Py are the propositional variables of A then the second-order
translation ST(A) of A is (Vx)(Vpl)...(Vpn)T(A)(X). Then the validity of A in

a frame (W,R) is equivalent of the validity of ST(A) in (W,R). Example:
T(op=p)=(Vy) (xRy=p(y))=p(x) and ST (op=p)=(Vx) (Vp) ((Vy) (xRy=p(y))=p(x)).

So the Kripke semantics makes possible to consider given modal logics as
fragments of second-order logic. Sometimes this a good advantage because the
full second-order logic possesses some bad properties, while some of its
fragments may have nice properties. This is one of the reasons to use modal
logics instead of using the full second-order logic.

Given a class of frames X we may consider the set L(Z) of all formulas of
£(o) which are true in Z. In some sense L(Z) may be taken as "the modal logic
of ¥" and the formulas of L(Z) are the "logical laws of X". Obviously, the
larger is £, the smaller is the corresponding logic L(Z), i.e. if ZE¥’ then
L(Z’)<L(Z).

This is a semantical definition of a modal logic. According to this
definition the logic K is defined as the logic of all Kripke frames, i.e.
K=L(KRIPKE). Since any class of Kripke frames 1is included in KRIPKE,
K=L(KRIPKE) is the smallest modal logic of the language £(o).

3



Another way to define a modal logic is the axiomatic one: a formal system F
consists of a set of formulas, considered as axioms and a set of rules of
inference. Then the modal logic of F is identified with the set L(F) of all
theorems of F. This is a syntactic definition of a modal logic.

The following formal system is called a normal axiomatization of the logic
K.

Axioms for K:

(Bool) All Boolean tautologies /or any appropriate set of axioms for the
classical propositional logic/

(Ko) o(A=B)=(oA=oB),

Rules of inference:

(MP) - modus ponens —élﬁéig—
(N) - necessitation D:

. . . A
(Sub) uniform substitution ———KT§7ET——

By a normal formal system in £(m) we will mean formal systems which extend
the set of axioms of K by arbitrary additional axioms. If ¢ is a new axiom
then the extension of K with ¢ will be denoted by K¢ or K+gp.

Let F be a formal system in £(o). A formula A is called a theorem of F if
there exists a finite sequence of formulas A1,...,An=A such that each A_1 is

either an axiom of F or is obtained from some Aj and Ak for j,k<i by (MP), or
is obtained from some Aj for j<i by (N) or (Sub).

The following definitions correlate the semantic and syntactic notions of a
modal logic. Let F be a formal modal system and £ be a class of Kripke frames.
We say that F is correct /or sound/ with respect to £ /or that ¥ is a correct
semantics for F/ if L(F)SL(Z), i.e. each theorem of F is true in I; we say
that F is complete in £ /or that ¥ is a complete semantics for F, or that F is
a complete axiomatization of L(Z)/ if F is sound in ¥ and L(Z)<SL(F), i.e. if
L(F)=L(Z). The inclusion L(Z)<SL(F) means that each formula, which is true in =
is a theorem of F. F 1is called complete system if there exist X such that
L(F)=L(Z). Sometimes the later equality is called "completeness theorem of F
with respect to Z". If a logic L is complete in a class of finite frames we
say that L is finitely complete. It is possible for a given formal system F to
have several complete semantics. There are systems which are not complete,
there are complete systems, which are not finitely complete (see [H&C 84]).

The next important notion in Modal Logic is the notion of ~modal
definability. A class of frames X is modally definable by a modal formula A
from £(no) if the following condition is satisfied:

For any frame W: WeX iff the formula A is true in W.

If ¥ is characterized by a first-order condition & for R then instead of
modal definability of £ by A we say that & is modally definable by A, or that
A is first-order definable by ¢. In this case ® is called a first-order
correspondent of A and A is called a modal correspondent of &. In the next
table we list some typical examples of such correspondence:

(Vx) (xRx) op=p, reflexivity,
(Vxyz) (xRy and yRz — xRz) op=oop, transitivity,
(Vxy) (xRy — yRx) p=o00p, symmetry.

Let us note that not all first order conditions are modally definable and
that not all modal formulas define a first-order condition. Standard
references for Correspondence Theory are [Ben 86] and [Ben 84].



1.2. Some general problems in Modal Logic

The above introduced list of definitions is a formal base of several main
problems in modal logic:

° given a modal formal system F find complete semantics for F, ‘

° given a class of frames X find a complete axiomatization of L(Z),

° given a logic L prove /or disprove/ its finite completeness,

° Given a class Z of frames prove /or disprove/ its modal definability.

We shall describe several methods for treating the above problems, used
with some modifications in this dissertation: canonical models, filtration,
p—morphisms and copying, abstract characterization theorems for frames.

1.3. Canonical models

The main method for proving completeness theorems is the so called method
of canonical models, which is consisting in the following /[Seg 71/.

Let L be a given logic with normal axiomatization F. A set of formulas x is
called L-inconsistent if for some Al,...,Anex the formula ﬂ(AlA...AAn) is a

theorem of L; x is called maximal consistent set if it is consistent and has
no any consistent proper extension. Then we define the canonical frame

HL=(WL,RL) and the canonical model ML=(WL,RL,VL) for L as follows: WL is the

set of all maximal L-consistent sets of L, for x,yeWL XRLy iff {A/oAex}<y and

for any propositional variable p VL(p)={erL/pex}.

The importance of canonical models is in the following

Canonical Model Lemma
For any formula A: A is a theorem of L iff A is true in ML'
This lemma can be used for proving completeness theorems of L. Suppose that

L is sound with respect to a class ¥ of frames. Then if the canonical frame HL

of L is one of the frames of X then L is complete in X. For, suppose that A is
true in %, i.e. that A is true in all models over frames from X. Since the
canonical frame is in ¥ then A is true in the canonical model ML of L and by

the Canonical Model Lemma A is a theorem of L, which proves the completeness
of L with respect to 2. In this case Z can be restricted to the set consisting
only of the canonical frame and then L is complete in its canonical frame. Let
us call such logics canonical. - Note that the method of canonical models for
proving completeness is not universal: there are logics which are not
canonical (see [H&C 84]).

1.4. Filtration

The method of filtration is mainly used to prove completeness with respect
to classes of finite frames. The method is based on the following construction
/see [Seg 71]/. Suppose we have a model M=(W, R, v) and a finite set of
formulas ¥ closed under subformulas. Then the method of filtration gives a way
of reconstruction of M into a finite model M’=(W’, R’, v’) depending on ¥, as
follows. For x,yeW define

x=y iff (VAEW)(X"—;—A «—> yH—;—A), |x|={yeW/way}, W ={|x|/xeW}, and for any

propositional variable p set v’ (p)={[x|/xev(p)}. For the relation R’ of the
model M’=(W’,R’,v’) we do not give a special construction but postulate the



following two properties:
(fR1) If xRy then |[x|R’]|yl,
(fR2) If [x|R’ |yl then (VuAeW)(xH—;—uA — xH—;—A).

If we can find R’ satisfying (fR1) and (fR2) then the obtained model
M’=(W ,R’,v’) is called a filtration of M through ¥. The importance of this
definition is in the following

Filtration lemma
(i) M’ is a finite model,
(ii) for any xeW and AeV: xH———A iff IxIH———A

Note that (fR1) and (fR2) are in some sense the most natural conditions
which guarantee (ii).

Filtrations can be used to prove that for some classes of frames Z we have
L(Z)=L(Zfin) where Zfin is the class of finite frames of %. This can be done

as follows. Obviously we have L(Z)SL(Zfin) and suppose for the sake of
contradiction that L(Zfin)ZL(Z). So there exists AeL(Zfin) but A¢L(Z). Then
for some model M=(W,R,v) over a frame (W,R)eZ and xeW we have xH—V%A. Let ¥ be

the set of subformulas of A and define the W’ and v’ as in the definition of
filtration. Then if we succeed to define a relation R’ in such a way as to
satisfy the conditions (R1), (R2) and (W’ ,R’)eX then by the filtration lemma
we Will obtain that IXIH—;%A, so A is not true in the finite frame (W ,R’) and

hence AéL(Zfin), which is a contradiction.

The filtration can be used for proving completeness theorems with respect
to a finite frames as follows. Suppose that L(F) is a logic, complete with
respect to a class of frames %, i.e. we have that L(F)=L(Z). If by filtration
we can prove that L(Z)—L(Z ) then obviously we get L(F)—L(Z ), which state
that L(F) is complete in Zf. . If F has finite set of axioms then this fact
implies also the decidability of L(F).

Sometimes the method of filtration can be used for a completeness proofs
for logics, which are not canonical, applying filtration to the canonical
model for the logic in question.

In this dissertation the reader can find many applications of filtration
for proving decidability and completeness results for some polymodal logics.

1.5. P-morphisms and copying

The notion of p-morphism /pseudo-epimorphism/ have been introduced by
Segerberg [Seg 71]. It is a kind of homomorphism between frames, defined as
follows. Let W=(W,R) and W =(W’,R’) be two frames. A mapping f:W—W’ from W
onto W’ is called a p- morphism if it satisfies the following two conditions
for any x,yeW and y’ eW’:

(PR1) If xRy then f(x)R’f(y),

(PR2) If f(x)R’y’ then (3yeW)(f(y)=y’ and xRy).

If f is a p-morphism from W onto W then W will be denoted by f(W) and called
a p-morphic image of W and W is called a p-morphic pre- image of W’ . The
importance of p-morphisms is in the following

P-morphism lemma

Let f be a p-morphism from W=(W,R) onto W =(W’,R’), v’ be a valuation in W’
and v be the valuation in W defined as follows: for any propositional variable
p v(p)={xeW/f (x)ev’ (p)}. Then:

(i) for any formula A and xeW: xH—V—A iff f(x)H—VTA.



(ii) For any formula A: if A is true in W then A is true in f(W), i.e.
L{WHLH{EfW)}).

The p-morphism lemma implies the following

Lemma

If a class of frames X is modally definable then it is closed under p-
morphisms /hence, if £ is not closed under p-morfisms then ¥ is not modally
definable/.

P-morfisms can be used also for completeness proofs as follows. Suppose L
is a logic which is complete in a class X of frames but the intended semantics
is a subclass £’ of Z. If for any frame WeX we can find a frame W’ e€X’, which
is a a p-morphic pre-image of W, then L(Z)=L(Z’) and hence L is complete in

2’. So, the importance of this construction is in building p-morphic pre-
images. There are several methods for constructing p-morphic pre-images:
Segerberg’s "Bulldozer construction" [Seg 71], Sahlqvist’s ‘“unraveling

construction" [Sah 75], "Copying construction" (see [Vak 87a, 88, 89, 91b,
92b, 92c, 92d, 93], [Pe 88], I[GPT,88], [G&P 90], [Gor 90]. We shall give only
the definition of copying for the language £(o).

Let W=(W,R) and W =(W ,R’) be two frames. A nonempty class of mappings I
from W in W is called a copying from W in W if the following conditions are
satisfied:

(CI1) (Vx’eW’ ) (3xeW) (Ifel) (f(x)=x"),

(CI2) (Vx,yeW) (Vf,gel) (f(x)=g(ly) — x=y),

(CR1) (Vx,yeW) (Vfel)(3gel) (xRy — f(x)R’ g(y)),

(CR2) (Vx,yeW) (Vf,gel) (f(x)R’f(y) — xRy).

Condition (CI1) says that W= UfeIf(W)’ where f(W)={f(x)/xeW}, called f-th

copy of W. From (CI1) and (CI2) it follows that for each x’e€W’ there exists
unique x=h(x’)eW such that for some fel f(x)=x’. The mapping h:W —W is a p-
morphism from W’ onto W, so W’ is a p-morphic pre-image of W. So the copying
is another method of constructing p-morphic pre-images. In this dissertation
there are many applications of the copying method for proving completeness
theorems.

1.6. Abstract characterization theorems

Sometimes the intended semantics (called sometimes "standard semantics")
for a given logic L consists of a class X of concretely defined frames in
which L is sound. In order to prove completeness of L with respect to X we may
proceed as follows. Find another class of frames X’ in which L is complete and
prove that each frame from X’ is isomorphic, or can be isomorphically embedded
in a frame from £. Then L is complete in Z.

The above described methods for proving completeness theorems may be used
in a combination. Sometimes to approach an intended class of "standard" frames
for a given logic L, we have to prove that L is complete in some non-intended
classes of "non-standard" frames for L and then, using the above described
methods, to prove that "standard" and "non-standard" semantics for L are
equivalent.

2. Applied Modal Logic

The term "applied modal logic" has been introduced by Segerberg [Seg 80a]
for a particular modal system, arising from computer science. Since then the
term stands for a name of a field of Modal Logic, studying modal logics
arising from some applied area: Information Science (Computer Science,
Artificial Intelligence), Cognitive Science, Linguistics, Philosophy, etc.
Applied Modal Logic is now a part of a more wide area of Applied Logic. There



are several Journals devoted to Applied Logic: The "Journal of Applied Non-

Classical Logic", "Logic and Computation", "Logic, Language and Information",
"Pure and Applied Logic". Many papers in this area are published in the
journals "Artificial Intelligence", "Theoretical Computer Science",
"Fundamenta Informaticae", "Information and Computation" etc. There are

several regular conferences devoted to Applications of 1logic in Computer
Science, Artificial Intelligence, and Linguistics. Several books on different
areas of applied modal 1logic have been written: Gabbay [Gab 76]
"Investigations of Modal and Tense Logic with Applications to Problems of
Philosophy and Linguistics", Goldblatt [Go 82] "Axiomatizing the logic of
computer programming", Goldblatt [Go 87] "Logics of Time and Computation",
Mirkowska and Salwicki [Mi&Sal 87] "Algorithmic Logic".

Normally applied modal logics arise from some classes of Kripke frames,
which formalize certain concrete relations between objects in some applied
area. The main question here is why we choose modal languages for studying
these classes of frames instead of taking some first or higher order classical
logical languages. The reasons are several. First, modalities sometimes are
more natural for reasoning about the objects and relations in question instead
of taking their first-order or second order translﬁfions. For instance "Always
A" which in temporal logic is formalized by "mAAao A" is much more convenient
than the equivalent translation: "(Vy)(xRy—A(y))A(Vy)(yRx—A(y))". Second,
using modal correspondence theory we may express some properties of frames by
means of modal formulas, so modal languages allow to talk about frames in an
indirect way. And third, as we have mentioned in the previous section, it is
more convenient to use modal languages, chosen for some specific purposes and
describing some fragments of second-order logic instead of the full second-
order logic.

In order to give the reader a preliminary impression of what Applied Modal
Logic is like, in the next pages we will give an informal description of the
following branches, connected with Information Science: Dynamic Logic, Modal
Logics for Information Systems, Approximation Logic based on Rough Sets theory
and Arrow Logic. These four branches correspond also to the four parts of the
present dissertation.

2.1. Dynamic Logic

Propositional Dynamic Logic PDL is one of the first applied modal logics

arising from Information Science, aiming to present some formal theories for
reasoning about the behavior of programs.
As a predecessor of PDL we can mention Salwicki’s Algorithmic Logic [Mi&Sal
87]. /For the history of PDL see Harel [Ha 84] and also Passy & Tinchev [Pa&Ti
91]1/. The main idea in PDL comes from the following intuitive "dynamic"
interpretation of Kripke frames. The set W of a frame (W,R(«x)) is interpreted
as a collection of data and the relation R(«x) as an input-output relation
determined by a program «, acting over the elements of W. Then the relation
xR(a)y means that the input x is performed by o in the output y. Now DA and
0A, denoted by [a]A and <a>A, have the following intuitive readings:

[a]A - "always after o A",

<a>A - "sometimes after a A".

In this "dynamic" interpretation formulas correspond to properties of data
and the modal operations [a] and <o> as property transformers in the following
sense: for a given formula A, considered as a property, [«alA is a new
property, which is possessed by the input x of « iff A is possessed by every
output y, which is a result of the execution of X by a, and likewise for <a>A.
In this way modal logic can be used for talking about data and programs. For
instance the formula A=[«]B express partial correctness of o with respect to a
precondition A /condition for the input of «/ and a postcondition B /condition
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of the output of «/. In the language of the full PDL we may compose more
complex programs using some program constructs and for each program o we have
two modalities [a] and <o>.

The main iterative procedure in PDL is the non-deterministic iteration a* -
"choose nondeterministically a natural number n and repeat o n-times". The
ipput-output relation R(a*) of o«* is the reflexive and transitive closure
R (a«) of the relation R(a). In the axiomatization of PDL given by Segerberg
[Seg 82] a* is axiomatized by the following two axioms, which I denote by Seg

and SegO:

Seg  Anfo 1(AslalA)sla 1A,
Seg, [ TAsAALa] [ ]A.

Seg and SegO are called respectively "induction axiom" and "small induction

axiom" in PDL. SegO corresponds to the following first- order condition

connected the relations R(a) and R(a PR
(Vx)xR(a )x & (Vxyz) (xR(a)y & yR(a )z — xR(a )z).
The conjunction of Seg and Seg0 modally define the equality R(a )—R (o).

However the semantic condition corresponding to Seg alone has been an open
problem.

Part I of this dissertation - Induction Axioms in Dynamic Logic - is
devoted to a study of the induction axiom Seg and some of 1its natural
generalizations in some modal logics, regarding as subsystems of PDL ([Vak
92c]). The developed theory is. applied to a modal characterization of cyclic
repeating of programs ([Vak 92c]).

2.2. Modal Logics for Information Systems

There are several ways to apply Modal Logic to the theory of information.
One approach, based on Dynamic Logic, is given by van Benthem in [Ben 89] /see
also De Rijke [Rij 92,93]/. We shall describe here the approach by Orlowska
and Pawlak [0&P, 84, 84al], Orlowska [Or 84,85,85a,90] and the author [Vak
87,87a,89,91, 91a,94,95,95a]. It is based mainly on a notion of information
system introduced by Pawlak [Paw 81,83,91] and called sometimes knowledge
representation system.

By an information system in the sense of Pawlak, we mean any system of the
form S=(0b_., At_, {Val_(a)/aeAt}, f_.), where:

S S S S

) Obs¢z is a set, whose elements are called objects of S,

° AtS is a set, whose elements are called attributes of S,

e for each aeAtS, Vals(a) is a set, whose elements are called values of
the attribute a,

) fS is a two-argument total function, called information function, which

assigns to each object erbS_and attribute aeAtS a subset fs(x,a)SVals(a),

called the information of x according to a.

In [Vak 94,95,95a] Pawlak’s information systems are called "Attribute
systems" or "A-systems" for short.

An example of an attribute is a="official language", the values of a,
Val(a)={E(nglish), G(erman), F(rench), R(ussian)}. If a person x knows Enlish
and Russian but not French and German, then f(x)={E,R}. If we have f(x)=@ then
this means that x knows neither of the languages E, G, F and R. Another
example of attribute is a="color" and Val(a)={green, red, blue, etc }.

Pawlak’s information systems are generalizations of the following more
simple information systems, which we call "Property Systems" or P-systems for



short /see [Vak 91a,92,94]1/. Namely S=(Obs, PrS, fS) is a P-system if
° Obs¢@ is a set of elements called objects,
® PrS is a set of elements, called properties, and
o f vis a function, which assigns to each object x a subset fS(x)SPrS of

S

properties of x.

Let S be a P-system. A relation RS in the set OBS is called an

informational relation in S if, roughly speaking, RS can be defined only by

using the information contained in S. The following informational relations
are some typical examples.
® Positive similarity

XZSy iff fS(X)nfS(y)iz, i.e. x and y have common property,

® Negative similarity _
xNSy iff fs(x)nfs(y)¢z, where fS(x)=PrS—fS(x), i.e. there is a property
in Prs which is possessed neither by x nor by y, for instance x and y are not
smokers.
® Informational inclusion
xSSy iff fS(X)SfS(y), i.e. each property of x is possessed by y.

@ Indiscernibility

X=gy iff fS(x)=fS(y).

In Pawlak’s information systems informational relations have strong and
weak versions:
® Strong positive similarity
X0y iff (VaeAtS)fS(x,a)nfS(y,a)¢z,

e Strong negative similarity
Xvgy iff (VaeAtS)fS(x,a)nfS(y,a)¢z,

® Strong informational inclusion
xsgy iff (VaeAtS)fS(x,a)ng(y,a),

® Strong indiscernibility
X=gy iff (VaeAtS)fs(x,a)=fS(y,a),

® Weak positive similarity
xZSy iff (EaeAtS)fS(x,a)nfS(y,a)¢z,

® Weak negative similarity
xNSy iff (3aeAtS)fS(x,a)nfs(y,a)¢z,

® Weak informational inclusion
x<gy iff (3aeAtS)fs(x,a)SfS(y,a),

® Weak indiscernibility
XEoy iff (HaeAtS)fS(x,a)=fS(y,a),

® The set of deterministic elements of S
DS={erbS/(VaeAts)Carde(x,a)sl}.

Information systems in which DS=ObS are called in [Vak 89] deterministic

information systems /in [Vak 94] these systems are called single-valued
information systems/.

Since the notions of an object, property and attribute are of ontological
nature, property systems and attribute systems are information systems of
ontological type. Another type of information systems are those of logical
type in which the information is represented by a collection of sentences
equipped with certain inference mechanism. The first kind of such systems has
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been introduced by Scott [Sco 82], other kinds can be found in [Vak 92,94],
where the connections between logical and ontological systems are studied. The
simplest notion of an information system of logical kind is the notion of
consequence information system [Vak 94], C-system for short, with the
following definition: S=(Sen, +— ) is a C-system if

® Sen is a non-empty set of elements, whose elements are called sentences,

@ +— is a binary relation between finite subsets of Sen, called Scott
consequence relation, satisfying the following axioms, coming from Gentzen
sequent calculus:

e (Refl) If AnB#@ then AB,

® (Mono) If AcA’, BSB’ and A+—B then A’ —B’,

e (Cut) If A+—Bu{x} and {x}UArB then A—B, A,B are finite subsets of
Sen.

There is a natural representation theorem of C-systems in P- systems / see
[Vak 92,94]/, which implies very unexpected correlation between information
relations in P-systems and C- systems. For instance: /x,yeSen/

o x=sy iff {x}+—{y},

e xZy iff {x,y}++# @,

e xNy iff @£ {x,y}.

In [Vak 94] we study a more complex logical information system, called bi-
consequence system /B-system/ having two consequence relations: strong +— and
weak >—. The relation +— satisfies the Scott’s axioms given above and >—
satisfies some similar conditions:

(Refl ») If AnB#@ then A>B,

(Mono »>) If A>B, ASA’ and BEB’ then A’>-B’,

(Cut »1) If A—{x}UB and Au{x}>-B then A>-B,

(Cut »2) If Au{x}—B and A>—{x}UB then A>B,

(Incl) If A—B then AB.

There is a natural representation theorem of B-systems in A- systems, which
gives logical meaning of some information relations in A-systems. For
instance: /x, yeSen/

e xXy iff {x,y}—+# @,
xNy iff @£ {x,y},
x<y iff {xr—{y},
xoy iff {x,yh—+ @,
xvy iff @ >4 {x,y},

o x=y iff {x}+—{y}.

Let £ be a class of informational systems of a given sort. A relational
system W=(W, p) is called a standard informational frame of £ of type p if

w=0bS of some informational system Se€X¥ and p is a set of some informational

relations in S. Now in an obvious way we can associate a modal language £(p)
to be interpreted in standard informational frames of type p and a modal logic
of type p, corresponding to the language £(p). Such 1logics are called
information modal logics.

The language £(p) has the following "informational" meaning.

Let S be an informational system of a given sort /P- or A- system/, E=(ObS

p) be the standard informational frame of type p over S and M=(W, v) be a
model over W. For any formula A we put V(A)={X€W/X"—V—A}. The set v(A) may

have different meanings. One is that it is the set of all objects from w=0bS

for which A is true (at v). Another meaning is that v(A) may be considered
also as a query to S: "give the set of all objects erbS, for which A is

true". This meaning leads to consider interpreted propositional variables in a
given model as a simple queries and formulas as compound queries. Them modal
formulas will be "modal queries”.

Let us consider the following example. Suppose in the above model M that A
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is a propositional variable such that V(A)={XO}. Then for
v(<Z>A)={xe0bS
v(<2>A)={erbS/(3yeObS)(xZSy and ye{xo})={xe0b

/xH—;—<Z>A} we can compute:
S/XZXO}.
This is the following query to S: "give all objects of S which are positively

similar to XO".

Boolean connectives correspond to Boolean combinations of queries:
v(AAB)=v(A)nv(B), v(AvB)=v(A)uv(B), V(ﬂA)=ObS-V(A).

Part II of the dissertation - Modal Logics for Information Systems - is
devoted to a study of modal logics, arising from Pawlak’s information systems
and property systems.

2.3. Approximation Logics based on Rough Sets Theory

Approximation Logic is a direction of Applied non-Classical Logic, which
studies various kinds of logical systems for reasoning with approximate or
incomplete information. First-order systems, based on the Pawlak’s Rough Sets
approach [Paw82,86,91] have been given by Rasiowa [Ras 86] and Rasiowa and
Skowron [R&S 88]. In [Vak 91b] we presents some modal logics based on the
Pawlak’s idea of rough approximation. This idea consists of the following.

Having an approximating view on an universe W, instead of points we can see
classes of points, each class considered as approximation of its elements.
Such "big" points should be non-empty, disjoint and covering the universe. In
other words, such an approximation defines an equivalence relation R, whose
equivalence classes are the approximations of the elements of the universe.
This leads to the notion of approximation space - a system S=(W, R), where W#o
is a set of objects and R is an equivalence relation in W. Natural examples of
approximation spaces are the sets of objects of a given information system
with R being an indiscernibility relation in W. Each equivalence class |x|R in

W can be considered as an approximation of x. Then instead of subsets of W we
can see unions of eqiuvalence classes, which will be called R-definable sets.
Having in mind this for a set X<€U we can define two kinds of approximations:

® lower approximation - RX - the biggest R-definable set contained in X,
and

e the upper approximation - RX - the smallest R-definable set containing X.

In a similar way one can define lower and upper approximation of a relation
/see [Paw 86]/.

The title of part three of the dissertation is Approximation Logics Based
on Rough Sets Theory. The main aim is to introduce and investigate modal
logics, based on the above notion of approximation of a set and relation. As
an application a "Rough Boolean Logic - RBL" is constructed, containing rough
approximations of the operations of disjunction and conjunction.

2.4. Arrow logic

The year 1990 was starting point of a new branch of Applied Modal Logic,
called Arrow Logic, developed in different ways in Sofia, Amsterdam and
Budapest ([Vak,90,91c, 92a,92b, 931, [Ar,94], [Ben 92], [Ma 92,92a,95], [MNSM
92], [Ven 91,92], [Mi 92], [Ne 92]1). It aims to present formal systems for
reasoning about information represented by arrows and their interconnections.
I would like to say that the idea to investigate arrow structures and modal
logics based on them, was suggested to me by Johan van Benthem /[Ben 90]/,
during the Kleene Conference, held in June 1990 in Varna. The Johan’s advise
was that it would be nice to have a simple modal logic, with semantics in two
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sorted structures, to be called later "arrow structures", having points
/"states"/ and arrows /"transitions"/. Such "arrow structures" would have had
different models: ordered pairs, directed graphs, categories, vectors, states
and transitions, and so on. So, two main problems have arisen: first, the
choice of a good enough mathematical structure of arrows, and second, the
corresponding choice of appropriate modal language.

I decided to take the following definition of arrow structure, which in
Graph theory 1is called directed multi graph. Namely, arrow structures are
systems of the form S=(Ar, Po, 1, 2), where:

® Ar is a nonempty set, whose elements are called arrows,

) Po is a nonempty set, whose elements are called points,

° 1 and 2 are total functions from Ar to Po, called projections. If xeAr
then 1(x) is called the first end and 2(x) is called the second end of X.

: X

Graphically: 1(x)o———02(x) _

The next problem was how to associate to arrow structures appropriate modal
language and how to interpret this language in such structures. As we know,
the standard Kripke semantics requires binary relations 1in one sorted
structure. So one solution of this difficulty is to define in the set of
arrows appropriate set of binary relations in such a way, as the new
relational system on arrows to contain the information of the whole arrow
structure. The following four relations in the set Ar proved to have such
property: for x,yeAr, i, j=1,2

XRijy iff i(x)=j(y).

The relations Ri' , called incidence relations, express the four possible
vways for two arrows to have a common end.
Graphically: % y < y
lely: —e szzy: ®
. X Yy . X y
leZy. ® xR21y. ®

The relations Rij satisfy the following simple first-order conditions: for

X,y,z€Ar and i, j, k=1, 2:
(pii) XRiix’
(¢ij) XRijy — ijiX’

(tijk) XRijy & ijk

These conditions are characteristic in the following sense: if in a set W
we have four relations Ri‘ satisfying the above conditions, then there exists

an arrow structure S=(Ars, PoS, 1, 2) such that ArS=W and S determines the

same relations Rij' So instead of arrow systems, which are two-sorted systems,

zZ — XRikz'

not convenient for Kripke interpretations, we can use relational systems of
the form H;(W,Rll,Rlz,R21,R22), satisfying the conditions (pii), (cij) and

(tijk). I have called such systems "arrow frames". Arrow frames in this new
sense, have two good advantages: first, they are in some sense equivalent to
arrow structures, so their abstract elements are real arrows, and second, they
have a simple first-order relational definition, suitable for modal purposes.

Now the corresponding modal language for the minimal, or Basic Arrow Logic-
BAL - is easy to define. It extends the language of the propositional logic
with four unary modalities [ij] i, j=1,2 with standard Kripke interpretation in
arrow frames.

The above defined arrow structures can be generalized to the notion of n-
dimensional arrow structure S=(Ar, Po, 1,2,...,n) with n projection operations
1,2,...,n. The standard picture of an n-dimensionalarrow is
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1(x) 2(x) 3(x)... n(x)
‘® ° o—. .. ® X

N-dimensional arrow structures are natural generalizations of the notion of
a directed multi graph and a graph-theoretic analog of n-ary relations.

The corresponding minimal nmodal logic is called Basic Arrow Logic of
dimension n and denoted by BAL .

Another generalization of the notion of arrow structure can be obtained if
we consider i(x) not as a single point but as a set of points. In this way we
obtain the notion of hyper arrow structure of dimension n.

There is a closed connection between hyper arrow structures of dimension n
and attribute systems, studied in part two. Namely, let S be a hyper n-arrow
structure. Define an attribute system S’ as follows. Put ObS,=ArS, ATé,=(n),

for ie(n) define VALi={AePo

/ (3xeArS) Aei.x} and for xeAr_. and ie(n) define

S S
fs,(x,i)=i.x. Obviously S’ is an attribute system. Conversely, let S’ be an
attribute system with finite number of attributes: ATS,={a1,...,an}. then S’
determines a hyper n-arrow structure S as follows. Put ArS=ObS,,

PoS=U{VALa/aeATS,}, for ie(n) and xeOb_, define i.x=f(x,ai). Obviously S is a

S’
hyper n-arrow structure. This connection between Attribute systems and hyper
n-arrow structures suggests many analogies between the theory of attribute
systems and the theory of arrow systems.Note that for n=1 the resulting notion
is a sort of Property system.

Another example of hyper n-arrow structure is the following. het W#2 be a
set v?qg. p be a nonempty n-place relation in the power set 2 of W i.e.
pS(27)". Put Po=W, Ar=p and for x=(a1,...,an)ep and ie(n) define i.x=ai. Then

obviously (Po, Ar, (n), .) is a hyper n-arrow structure. This example shows
that the theory of hyper n-arrow structures may have some implications to the
theory of set-relations /relations in power set/.
In hyper arrqg stguctuges of dimension n we can define the following
. S . .
relations: R, ., .., N.., =7. ,x,yeAr_ i, je(n)
i ij ij ij S
S . ; .
xR.jy iff i.x=j.y,
xZ.jy iff (i.x)n(j.y)=e,
xN.jy iff (i.x)n(j.x)#@, where (i.x)=Po-(i.x)

xsijy iff i.x<j.y.
In some sense these relations describe the picture of the of a given hyper

arrow structure and also are suitable for a semantics of modal logics, called
hyper arrow logics.

"Arrow Logic" is the name of the last part - part VI of the dissertation.
It is devoted to a study of different kinds of arrow structures and the
corresponding arrow logics. Applications to Algebraic Logic have been done: a
natural extension of the logic BAL" is introduced, which have to be consider
as a modal analog of a decidable version of first-order predicate logic. As a
consequence of the theory of arrow structures of dimension n we obtain that
any first-order theory of one n-place relation can be reduced to a first-order
theory of some special binary relations. Another consequence is a reduction of
any modal logic based on n-ary modalities to some arrow logic having only
unary modalities.

3. On the methods and results of the dissertation

3.1. On the general form of the problems we deal with
in the dissertation
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The dissertation contains a systematic and uniform study of certain modal
logics, naturally arising in some branches of Information Science. It includes
results in Dynamic Logic, Modal Logics for Information Systems, Approximation
Logics based on Rough Sets Theory and Arrow Logics and covers some of the
results obtained by the author during the last ten years.

A typical problem in the field of Applied Modal Logic, and hence in this
dissertation, has the following parts:

(1) After an appropriate mathematical analysis of certain domain, connected
with a given applied area, to obtain a natural semantical definition of a
modal logic L, having its standard semantics in the frames, arising from the
analyzing domain.

(2) A mathematical study of the introduced modal 1logic L. In the
dissertation we concentrate ourselves to the following two main mathematical
problems concerning L: .

(A) Axiomatization of L. This means to find a formal system, which is
complete with respect to the intended standard semantics of L and to prove the
completeness theorem.

(B) Decidability of L. This means to prove (or disprove) the existence
of decision procedure, which recognizes theorems of L.

We will illustrate this by an example from chapter 2.5 of the dissertation.

Let S=(0b, At, {val(a)/aeAt}, f) be an Attribute system and let (Ob, =, =, o,
D) be the relational system over S where =, =, ¢ and D are the following
relations in the set Ob

x=y iff (VaeAt)(f(x,a)=f(y,a)) - indiscernibility relation, x<y Iff

(VaeAT)(f(x,a)sf(y,a)) - informational inclusion,
xoy iff (VaeAt)(f(x,a)nf(y,a)#s) - similarity relation,
D={xe0OB/(VaecAt)(Cardf(x,a)<1)} - the set of single-valued objects in S.
Such relational systems naturally define a corresponding modal logic, say L.
This is part (1) of the problem - the semantical definition of the logic L.
How to solve the problem (A) - the axiomatization of L? First we observe
that the class of standard frames for L have concrete definitions in the class
of all Attribute systems. However, in Modal Logic there are methods of
axiomatization of some classes of frames, satisfying some abstract, for
instance, first-order conditions. So, one way to axiomatize L is to obtain an
abstract characterization of the frames of L if it is possible. We see that
for certain subclass of the frames of L this is possible. These are the frames
over the so called separable Attribute systems, satisfying the following
condition
(VA,BeVALa)((VYx€OB)(Aef(x,a) iff Bef(x,a))—> A=B)
We observe that the frames (Ob, =, =, ¢, D) satisfy the following first-
order conditions

. Lemma
(i) Let S be an Attribute system. Then the following conditions hold:

S1. X=<x,

S2. x=y and y=<z — x=z,

S3. X0y — yOX,

S4. X0y — XOX,

S5. xoy and x<z —> Zz0Yy,

S6. yeD and x=sy — xe€D,

ST. xeD and xo0y — X<y,

S8. X=X,

S9. XSy—y=x,

S10. x=y and y=z — Xx=z,
S11. x=y — x=y,

S12. xeD, yeD, xoy — x=y,
Sa. x=<y and y=<x — X=y.
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(ii) If S is a separable Attribute system then
Sh. x¢D — (3JyeOB)(x#y).
Let U=(U, =, =, o, D) be an abstract relational system with
U#@, =, =, ¢ - binary relations in U, and D<U. We say that U is a D-structure
if it satisfies the conditions S1 - S12, Sa and Sb from lemma 1.2.; U is a
generalized D-structure if it satisfies the conditions S1-S12. Let S=(0b, At,
{Val/aeAT}, f) be an Attribute system. Then the relational system (Ob, =g » =g

R GS . DS) is called a standard D-structure over S. Standard D-structures

constitute the natural semantics of the logic L. Note that they satisfy S1-S12
and Sa and for separable Attribute systems - Sb.
The second step in the axiomatization of the L is the following

Theorem (Abstract Characterization Theorem for D-structures) For any D-
structure U=(U, =,=, o, D) there exists a separable Attribute system S=(Ob,

> T

At, {Vala/aeAt}, f) such that Ob=U and for any x,yeW we have
x=y iff (VaeAt)(f(x)=f(y)) iff X=gY,

x=y iff (VaeAt)(f(x)sf(y)) iff X=gy,
xoy iff (VaeAt) (f(x)nf(y)=#e) iff X0y,

xeD iff (VaeAt) (Cardf (x)=1) iff xeDS.

Let us note that this is not an abstract characterization of the standard
frames of the logic L - this is a characterization of the standard frames over

separable Attribute systems.

Now we introduce following classes of frames for L: 20 - generalized D-
structures, 21 - standard D-structures over arbitrary Attribute systems, 22 -
standard D-structures over separable Attribute systems, 23 - D-structures.
Models based on structures from 21 and 22 will be called standard and models
over structures from X  will be called non-standard models for L. From the

Abstract Characterizat;in Theorem for D-structures we obtain that 22=Z3 and
hence that for the corresponding logics we have L(22)=L(Z3). Natural logics
are L(Zl) and L(ZZ) and we intend to define the logic L to be L(Zl). Our aim
is the axiomatization of L(Zl). We will do this in the following order: first
we will axiomatize L(ZO) and then we will show that L(ZO)=L(21)= =L(ZZ)=L(Z3).

The axiomatization of L(Zo) is easy because all the conditions S1-S12 are

canonical and the axiomatization can be done by the canonical method.
The next observation is that we have the following inclusions
%,.¢c3, <% and hence for the corresponding logics - L(ZO)SL(Zl)QL(Z3). If we

can groie ghat L(Z3)§L(ZO) we will obtain

the desired equalities L(Zo)=L(Zl)=L(22)=L(Z3). Since we have an
axiomatization of L(ZO) we will obtain that this axiomatization will be also
an axiomatization for L(Zl) - our logic L. The proof of the inclusion
L(Z3)£L(ZO) can be done by applying the "copying method", which completes the

full solution of the problem A for the logic L (Proposition 5.2). As an
additional result we obtain that the 1logics over separable systems and
arbitrary systems coincide.

The solution of the problem (B) for L goes as follows. Let ZOfin be the
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class of all finite structures of the class ZO. Using the filtration method

known from monomodal logic ([Seg 71]1) we prove that L possesses finite model
property with respect to the class ZO which implies that L(ZO)=L(ZOfin). Since

L=L(ZO) this implies that L=L(ZO), which implies the decidability of L

(Theorem 7.1.). An additional question connected with L is whether L possesses
finite model property with respect to its standard semantics - the class 21.

It can be proved that this is not true, because it can be shown that
L¢L(21fin).

This example 1illustrates how we can proceed with a given semantically
defined logic L. It shows also that to solve the standard problems A for L we
have to develop a non-trivial mathematical study of the corresponding
semantical domain as to obtain the Abstract Characterization Theorem and then
the deep combination of this theorem with the copying construction and the
canonical construction. To solve the problem B we have to apply a nontrivial
version of the filtration technique.

Another kind of typical problem in the dissertation is when the logic L is
already defined axiomatically. Then one of the main problems for L is to find
an adequate semantics for it, to study its decidability and so on. Examples of
such kind of problems are contained in chapter 1.1.

3.2. On the new methods used in the dissertation

The problems which attracted our attention needed new methods for their
solution. In some sense this dissertation is a result of finding such new
methods and improving some existing ones in order to attack the new problems.
Among the new methods I can mention the method of "abstract characterization
theorems" and the "copying method".

The method of "abstract characterization theorems" consists of
characterizing semantical structures based on concretely defined relations, by
means of abstract first-order sentences. The need of this method I saw in
1984, when I have tried to prove some completeness theorems for modal logics
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