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Abstract

Modelling the epistemic dynamics of multiagent systems currently gets

much attention from the research community, see e. g. [Ger99], [FHMV95],

[BMS98], [Koo99], [Ren99]. Contrary to most approaches, we restrict our-

selves to S5 models, see [vD99]. We propose a language KT of knowledge

action types and a derived language KA of knowledge actions. Basic to

our approach is the concept of local interpretation, where `local' means:

only for the agents involved in that action. The language can be fruitfully

applied to describe actions in knowledge games.

1 Introduction

In [vD00d], we described what knowledge games are. In [vD00a], we argue that

knowledge game states can be seen as pointed multiagent S5 models, i.e. as

multiagent S5 states. We now proceed by de�ning a programming language for

game actions in knowledge games, such as showing a card to another player. An

action tranforms one game state into another one. A program corresponding to

such an action should therefore be interpreted as a functional binary relation

between pointed multiagent S5 models, corresponding to game states. Our

de�nitions will be more general in two respects: �rst, we forget about knowledge

games, and just consider operations transforming multiagent S5 states. These

will be called knowledge actions. Second, more basic than an action is a type of

action. A knowledge action type is an operation transforming a multiagent S5

model, i.e. without designated point, into another (or several other) model(s).

Just as a model can be seen as a set of states, a knowledge action type can be

seen as a set of knowledge actions. Because examples of knowledge actions are

actions in games, we start by a review of some actions in a standard knowledge

game situation.

Three players 1, 2 and 3 each hold one of three cards red, white and blue.

Players can only see their own card. This is all common knowledge. The actual
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dealing of cards is: 1 holds red, 2 holds white, and 3 holds blue. Some actions

in this game state are:

� example 1: player 1 puts the red card (face up) on the table

� example 2: player 1 shows (only) player 2 the red card (so that player 3

can't see the shown card)

� example 3: player 2 asks player 1 for the white card; player 1 says that he

doesn't have it; player 2 ends his move, i.e. makes public that he doesn't

know the dealing of cards

� example 4: player 2 asks player 1 to tell him a card that he (1) doesn't

have; player 1 whispers in 2's ear that he doesn't have the white card (so

that player 3 can't hear what is being said)

All these actions can be described in our proposed action language KA, and

their interpretation can be computed on the initial game state. Other, seemingly

more complicated actions can be described and interpreted as well, such as (it

is commonly known that) `1 suspects 2 to have peeked into his card'. We do not

aim to describe actions that disturb the S5 character of game states, such as

private communications, non-public suspicions, etc. Still, other sorts of action

that also result in S5 models will appear to be outside the reach of our language.

Example:

Same as the previous example, only we add one more card, and we rename

the cards to: north, east, south and west. Player 3 holds two cards. The actual

dealing of cards is: 1 holds north, 2 holds east, and 3 holds south and west.

Some actions in this game state are:

� example 5: player 3 shows his south card (only) to player 1, with his left

hand, and (simultaneously) his west card (only) to player 2, with his right

hand

� example 6: player 3 shows his south card (only) to player 1; next, player

2 asks player 3 to show him his other card; player 3 shows his west card

(only) to player 2

Now that we have an idea of the actions we want to model, we discuss

the program constructing operators that we need in our action language. We

let ourselves be guided by the game actions that we want to model, by the

operators available in a dynamic logic as in [Har84] and [Gol92], and by the

update operation in [Ger99]. We propose the following six program construct-

ing operators: test, sequential execution, nondeterministic choice, simultaneous

(parallel) execution, learning, and `local choice'. We motivate these operators

by the examples given above.
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We want to test propositions describing whether a person holds a card, or

whether a player, or a group of players, know(s) or does (do) not know some-

thing. As a game can consist of a chain of actions, as in example 3, we need

sequential execution. In order to describe all the actions that are available to a

player given a certain game state, we need nondeterministic choice. In example

4, above, where player 1 holds the red card, he can choose between telling 2

that he doesn't have white, or telling him that he doesn't have blue.

If a player shows a card to another player, they both have `learnt', so to

speak, that the �rst player holds that card. In example 1, all three players have

learnt that player 1 holds the red card. In example 2, players 1 and 2 have learnt

that player 1 holds the red card. Learning, as we de�ne it, is much related to

`updating', as in [Ger99]. There is an important di�erence: one can only learn

things that are true (or, more properly and generally put: programs that are

executable), whereas one can update with a proposition regardless of its truth

or falsity.

The operation of local choice is needed to describe actions where di�erent

subgroups learn di�erent things. Typical is the action where a player is showing

a card to (only) another player, as in example 2. In that example, the subgroup

consisting of 1 and 2 learns that 1 holds the red card, whereas the group consist-

ing of 1, 2 and 3 learns that 1 and 2 learn which card 1 holds, or, in other words:

that either 1 and 2 learn that 1 holds the red card, or that 1 and 2 learn that

1 holds the white card, or that 1 and 2 learn that 1 holds the blue card. One

might say that the choice made by subgroup f1; 2g from the three alternatives

is local, i.e. known to them only, because it is hidden from player 3.1

Simultaneous execution is needed to describe example 5, the move of a player

simultaneously showing cards to di�erent players. Because we do not have an

interpretation for it, we will not describe simultaneous execution in the language.

Instead, we discuss it in a separate section, 5, at the end.

We also will not be able to describe the action taking place in example 6, but

this is for a more general reason: we choose to model actions by their epistemic

e�ects, therefore we cannot express when they have been taking place. From the

viewpoint of epistemic e�ects, the action in example 6 would be indistinguishable

from: `player 3 shows his blue card (only) to player 1; three moves later, player

2 asks player 3 to show him his other card; player 3 does so'. This will also be

discussed in section 5.

The operations we have described cannot be de�ned from each other. The

role of `local choice' is rather di�erent from the role of the other operations.

The class of programs that we can construct from tests, sequence, choice and

learning are the knowledge action types KT. Given a knowledge action type, we

can then construct a knowledge action by the operation of local choice. Thus is

1The meaning of the word `choice' is somewhat vague. In `nondeterministic choice' choice
means `making a choice possible', in local choice it means `actually choosing'. Of course,
`actually choosing' after `having made a choice possible' doesn't create a new program but
returns an old one. However, `locally choosing' after having made a choice possible does create
a new program.
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formed the class of knowledge actions KA. Although these classes may be said

to overlap (in the deterministic action types), some actions are not types and

some types are not actions. We explain this with example 2: `1 shows 2 a card'

is a knowledge action type, whereas `1 shows 2 his red card' is a knowledge action
of that type. Action types can be nondeterministic, as here, whereas actions

are always deterministic.

The interpretation of a knowledge action type is simultaneously a relation

between S5 models and between their worlds. Fundamental to this interpreta-

tion is the concept of local interpretation, that we need in order to interpret

the learning operator. As in `local choice', local means: `for a certain subgroup

only'. Given the interpretation of a knowledge action type, the interpretation

of a knowledge action is determined by choosing one world in the origin of that

interpretation, and one world in one of its images.

The class of S5 models is closed under application of action types, and the

class of S5 states is closed under application of actions. This will become obvious

from the de�nitions. In order to guarantee that, we have to rule out programs

where only a subgroup of agents learns something, because after its execution

agents not included in that subgroup erroneously believe that nothing happened

at all: that means that the model is no longer reexive, and therefore no longer

S5. There are also other constraints on action types.

We now proceed by introducing the language and its intepretation. In section

2 we de�ne the logical languageDKL. In section 3 we de�ne the knowledge action

types KT and their interpretation. In section 4 we de�ne the knowledge actions

KA and their interpretation. In section 5 we discuss possible extensions of the

programming language.

In [vD00c] we give an overview of the application of our de�nitions to knowl-

edge games. In [vD00b] we compare our approach to that of other researchers,

in particular [Ger99] and [Bal99].

2 Dynamic knowledge logic

2.1 Logical preliminaries

Knowledge models and knowledge states

We restate some relevant terminology. For a standard introduction, see [MvdH95].

A knowledge model is a multiagent S5 (S5n) model M . A knowledge state is

a pointed multiagent S5 model (M;w). We also name states with { possibly

indexed { lower case letters s; t. If s = (M;w) then s is called a state for model

M ; M is called the model underlying state s.

In S5 we may write �a for the accessibility relation for agent a, as it is an

equivalence relation (a partition of the domain). We write �A= (
S
a2A �a)

�.

Given a (parameter) set of agents A, we will often relate to models with

only a partition for agents a 2 A � A. In that case we say that access is de�ned
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for agents a 2 A and unde�ned for agents a 2 A n A. A consequence of this

distinction is that, nonstandardly, modal formulas Ka' are unde�ned, instead

of vacuously true, on models with empty access for a, see subsection 2.3.

Group

Let M be a knowledge model, let s be a knowledge state. The group of

M = hW; (�a)a2A; V i is the set A of agents for which access is de�ned. When

gr(M) = A we say that M is an A model, or that M is a model for group A.
When gr(s) = A we say that s is an A knowledge state, or that s is a knowledge
state for group A. The notion of group plays an important part. We will also

de�ne the group of an action type and of an action. We then require that an

action type can only be interpreted in a model if their groups are the same, and

that an action can only be interpreted in a state if their groups are the same.

2.2 Language of dynamic knowledge logic { DKL

De�nition 1 (DKL { Language of Dynamic Knowledge Logic)

Given are a set of atomic propositions P and a set of agents A. DKL is the

smallest set closed under:

p 2 DKL if p 2 P

:' 2 DKL if ' 2 DKL

' ^  2 DKL if ';  2 DKL

Ka' 2 DKL if a 2 A and ' 2 DKL

CB' 2 DKL if B � A and ' 2 DKL

[�]' 2 DKL if � 2 KT [ KA and ' 2 DKL

KT is the class of knowledge action types, to be de�ned in the section 3.

KA is the class of knowledge actions, to be de�ned in section 4. `Program' is

the generic term that we use for both types and actions. The parameter set of

agents A is called the public. We introduce the usual abbreviations (let p 2 P):

' _  := :(:' ^ : )

'!  := :' _  

'$  := ('!  ) ^ ( ! ')

> := p _ :p

? := p ^ :p

The `modal agents of a formula '', notation ag('), is the set of agents

occurring in modal operators Ka , CB and [�] in that formula. The operation

ag is needed for the interpretation of action types, at the stage where local

interpretation comes into play: A test ?' can only be interpreted in a model

M , if ag(') � gr(M): if all the modal operators that occur in ' can indeed be

evaluated in any world from M . This is a real constraint. Given the public A,

and a group B � A, M may be a B model, whereas ' may contain operators

Ka for agents a 2 A nB.
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Because formulas can contain dynamic modal operators too, we need to

extend ag to action types and actions: the interpretation of a formula with a

dynamic modal operator [�] depends on the modal agents of the tests occurring

in � (and on the agents that learn something in that program). For an inductive

de�nition, see de�nition 15 in the appendix.

2.3 Semantics of dynamic knowledge logic

De�nition 2 (Semantics of dynamic knowledge logic)

Let M = hW; (�a)a2A; V i be a knowledge model, where A � A. Let w be a

world in M . Let p 2 P, a 2 A, B � A, � 2 KT [ KA. Assume that the agents

of the formula to be interpreted are contained in or equal to A.

M;w j= c i� Vw(c) = 1

M;w j= :' i� M;w 6j= '

M;w j= ' ^  if M;w j= ' and M;w j=  

M;w j= Ka' i� 8w0 : w0 �a w )M;w0 j= '

M;w j= CB' i� 8w0 : w0 �B w )M;w0 j= '

M;w j= [�]' i� 8M 0 : 8w0 : (M;w)[[�]](M 0; w0))M 0; w0 j= '

A program � can be either an action type � 2 KT or an action � 2 KA.

The interpretation [[� ]] of an action type is de�ned in section 3. It is basically a

relation between models, from which a relation between states is derived. The

interpretation [[�]] of an action is de�ned in section 4. It is a relation between

states.

Let s = (M;w) be a knowledge state. Then s j= ',M;w j= '.

Warning: in this semantics it is not the case that a model without access for

a certain agent a satis�es formulas of type Ka' `ex falso', because there aren't

any a-accessible worlds. According to the de�nition above, the interpretation of

such a formula is unde�ned on that model. For a similar reason, we have that

[?K1p]K1p is always unde�ned, even on models that satisfy K1p. This will soon

become clear.

3 Knowledge action types

3.1 Language of knowledge action types { KT

We have to choose between either de�ning a wide class of programs, and give a

semantics for only a subclass, or de�ning this subclass directly, so that we can

interpret all programs. We do the last. The inductive de�nition of the action

types KT assumes the simultaneous de�nition of the group gr(�) and of the

modal agents ag(�) of an action type � . The �rst is the set of agents occurring

in learning operators LB in � , the second is the set of agents occurring in modal

operators in test formulas in � . See the appendix for their precise de�nitions.
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As tests can again contain programs, we also assume KT and DKL (and KA) to

be simultaneously de�ned.

De�nition 3 (KT { Knowledge action types)

Given a set of agents A and a set of atoms P, KT is the smallest set closed

under:

3:a ?' 2 KT if ' 2 DKL

3:b LB� 2 KT if � 2 KT; and gr(�) � B

3:c � ; � 0 2 KT if �; � 0 2 KT; gr(�) = gr(� 0); and ag(� 0) � gr(�)

3:d � [ � 0 2 KT if �; � 0 2 KT; and gr(�) = gr(� 0)

The various constraints on groups and modal agents play a role in the inter-

pretation of action types, and will become clear in section 3.3. Also, they will

be extensively discussed in section 3.7.

LB is the `learn' operator. LB� stands for `group B learn that � '. Instead

of Lf1;2;:::;ng we write L12:::n. If gr(�) = B then � is called an action type for
group B or a B action type. The operation `local choice', that we mentioned in

the introduction, is not an action type constructor but an action constructor.

We therefore do not see it here. Observe that from the de�nitions it follows

that M;w j= [� ]' is unde�ned if gr(M) � gr(�).

De�nition 4 (FuncKT { Model functional action types )

?' 2 FuncKT i� ' 2 DKL

LB� 2 FuncKT i� � 2 KT

� ; � 0 2 FuncKT i� �; � 0 2 FuncKT

De�nition 5 (DetKT { Deterministic action types )

?' 2 DetKT i� ' 2 DKL

LB� 2 DetKT i� � 2 DetKT

� ; � 0 2 DetKT i� �; � 0 2 DetKT

Observe that DetKT � FuncKT � KT. Instead of � 2 FuncKT we also say:

� is model functional, or just functional. Instead of � 2 DetKT we also say:

� is deterministic. This terminology will become clear in the subsection on

interpretation.

3.2 Examples

We give some examples of action types that can be interpreted in the model

underlying the game state we described in the introduction: three players 1,

2 and 3 holding three cards red, white and blue, in that order. The public is

f1; 2; 3g and the set of atoms is fr1; w1; b1; r2; w2; b2; r3; w3; b3g, for `player 1

holds the red card', `player 1 holds the white card', etc. The multiagent S5

model underlying this game state is hexa, see �gure 1. String rwb names the
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Figure 1: The model hexa, for three players each holding a card.

world where 1 holds red, 2 holds white and 3 holds blue, etc. As he holds red in

both worlds, player 1 cannot distinguish world rwb from world rbw; hence the

1-link in the �gure. We implicitly assume reexivity and transitivity in �gures

of S5 models, such as hexa. Formula Æijk is the atomic description of world

(dealing) ijk, e.g. Ærwb := r1 ^ :w1 ^ :b1 ^ :r2 ^ w2 ^ :b2 ^ :r3 ^ :w3 ^ b3.

First, we give the example action types and their description in KT, then,

we give some explanations on how they were constructed. The informal reading

of the �rst two examples is ambiguous for player 3, as the group of those action

types is smaller than the public f1; 2; 3g, the group of hexa.

1. player 1 holds the red card:

?r1

2. player 1 shows player 2 the red card:

L12?r1

3. example 1: player 1 puts the red card on the table:

L123?r1

4. example 2: player 1 shows (only) player 2 his card:

L123(L12?r1 [ L12?w1 [ L12?b1)

5. example 3: player 2 asks player 1 for the white card, 1 says he doesn't

have it; 2 ends his move:

L123?:w1;L123?:win2

6. example 4: player 1 whispers in 2's ear a card that he (1) doesn't have:

L123(L12?:r1 [ L12?:w1 [ L12?:b1)

Ad 1: This test succeeds if atom r1 holds. It is not speci�ed what the

players learn.

Ad 2: By showing his card to player 2, player 1 `reveals' that atom r1 holds,

in a way that both players have common knowledge of that fact: 2 observes 1

showing his card, 1 observes that 2 is observing it, etc. Thus the operator L12.

Still, one might consider two (equivalent) readings here: L12?K1r1 and L12?r1.

We think that the second reading is more properly expressing what is happening

here, and that the �rst reading is more appropriate for describing `player 1 tells
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player 2 that he holds the red card'. The role of player 3 in this type of action

is unclear.

Ad 3: Same as item 2, only now for group f1; 2; 3g, the public. Now, for

every agent it is speci�ed what he learns in this type of action, i.e. how his

knowledge changes. This is the type of the action in example 1.

Ad 4: We paraphrase what happens here in greater precision: `player 1

shows (only) player 2 his card' is the same as `players 1, 2 and 3 learn that

player 1 shows player 2 his card', which is the same as `players 1, 2 and 3 learn

that 1 shows the red card to 2, or the white card, or the blue card' which is the

same as `players 1, 2 and 3 learn that 1 and 2 learn that 1 holds red, or that 1

and 2 learn that 1 holds white, or that 1 and 2 learn that 1 holds blue'. This

is expressed by the proposed KT type. Observe that this still doesn't describe
the action of example 2, because in that case the red card was shown. That

is an action, this is the action's type. Incidentally, in our analysis we have

implicitly combined a question with an answer to it into an action type. We

haven't modelled those separately, for that, see [vD99] or [vD00d].

Ad 5: The combination of the question and the answer is described by

L123?:w1. As explained in example 3, ending one's move means making public

that one doesn't know the dealing of cards. In hexa, there are six possible

dealings of cards. Therefore, knowing one of them is described by K2Ærwb _

K2Ærbw _K2Æbwr _K2Æbrw _K2Æwrb _K2Æwbr. We abbreviate this formula as

win2. Therefore, 2 saying that he can't win is described by: L123?:win2. Finally,

we have two consecutive actions.

Ad 6: The analysis of example 4 is similar to that of example 2, only the

three options are not having a card, instead of having a card. Again, this action

type is not the same as the action in example 4, that speci�es just one of the

three actions of that type.

3.3 Local interpretation of action types

The, as we call it, `public' interpretation of an A action type on an A model is

de�ned in terms of the local interpretation on that Amodel of its B subprograms.

The notion of local interpretation is the more basic one. The idea behind it is

the following: `public' means `for all agents', `local' means `only for a certain

group'.2 To interpret a B action type � in an A model `locally', you `forget'

about the agents in A n B. You may do that, because these other agents will

be properly interpreted `later', as action type � can be a subprogram of an A

action type, that can be publicly interpreted. In other words: we do not even

want to interpret � publicly: it just doesn't specify what the e�ects are for the

agents outside it.

Note that it is fundamental, contrary to [Ger99], that when locally inter-

preting a B action type � , knowledge changes for the agents not in B are not

2The term `local' in `local interpretation' might be somewhat prone to misunderstanding,
but we hope that the reader appreciates our e�orts to avoid calling it `partial interpretation',
as `partial' seems a much overloaded term.
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(yet) computed. The solution of [Ger99] is to enforce that agents not in B have

learnt nothing from � ; we just say that they don't care at this stage.

The local interpretation of an action type � on a knowledge modelM consists

of two relations:

� a relation [[� ]] between knowledge models, i.e. pairs (M;M 0) where M 0 is

a model resulting from � 's execution;

� a relation [[� ]] between their worlds, to be more precise: pairs (w;w0) that

link every world w0 2 M 0 to a world w 2 M , so that [[� ]]�1 is a function

from M 0 to M .

A relation between a world w in a model M and a world w0 in a model M 0

should be seen as a relation between the knowledge states (M;w) and (M 0; w0).

We have chosen to `overload' the notation [[�]] by using it both between models

and between their worlds (between states).

As type of operation, local interpretation is not unlike bisimilarity. Bisimi-

larity is also both a relation $ between models and a relation R between their

worlds, although in the case of bisimilarity di�erent symbols are used for the

two di�erent levels.

We now present the de�nition of local interpretation. Examples follow the

de�nitions. We include an example, in section 3.5, that illustrates the di�er-

ences with the approach of [Ger99]. We haven't encountered the notion of local

interpretation of programs in the literature and regard it as our contribution to

epistemic semantics.

Notations in the de�nition We use the following notations for in�x

binary relations R such as [[�]] and !� : [aR] := fb j aRbg, as in clause 6:a:2,

and aRbRc := (aRb and bRc), as in clause 6:c:3. In the clauses under (e), write

M 00 = hW 00; (�00
a)a2gr(�); V

00i for an arbitrary M 00 2 [M [[� ]]]; in 6:e:2 and 6:e:4

we thus refer to access and valuation in M 00. In 6:e:3 we use the following

shorthand, given a context of two models: [[� ]]�1(w) := �v:(M; v)[[� ]](M 00 ; w).

I.e. [[� ]]�1(w) is the unique world in M that is the origin of world w in M 00.

(See proposition 1, on page 22.)

De�nition 6 (Local interpretation of an action type)

The local interpretation [[�]] of a KT action type is a relation between knowledge

models and between their worlds, de�ned by simultaneous induction. Let M =

hW; (�a)a2A; V i be a knowledge model, where A 2 A. Assume that both the

agents and the group of the action type to be interpreted are a subset of or

equal to A. Then:
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6:a:1 M [[?']]M 0 i� M 0 = hW 0; ;; V �W 0i

where W 0 = fw 2 W j M;w j= 'g

6:a:2 M [[LB� ]]M
0 i� M 0 =

L
B [M [[� ]]] as de�ned below

6:a:3 M [[� ; � 0]]M 0 i� 9M 00 :M [[� ]]M 00[[� 0]]M 0

6:a:4 M [[� [ � 0]]M 0 i� M [[� ]]M 0 or M [[� 0]]M 0

6:b:1 (M;w)[[� ]](M 0 ; w0) i� M [[� ]]M 0 and w !� w
0

6:c 8M;M 0 :M [[� ]]M 0;8w 2M;8w0 2M 0 :

6:c:1 w !?' w
0 i� w = w0

6:c:2 w !LB� w
0 i� 9M 00 2 [M [[� ]]] : 9w00 2M 00 :

w0 = (M 00; w00) and w !� w
00

6:c:3 w !� ;� 0 w0 i� 9M 00 :M [[� ]]M 00[[� 0]]M 0; 9w00 2M 00 :

w !� w
00 !� 0 w0

6:c:4 w !�[� 0 w0 i� w !� w
0 or w !� 0 w0

6:d:1
L

B [M [[� ]]] = hW 0; (�0
a)a2B ; V

0i; where:

6:e:1 W 0 = f(M 00; w) j w 2M 00 2 [M [[� ]]]g

6:e:2 8a 2 gr(�) : 8(M 00; w); (M 00; w0) 2W 0 :

(M 00; w) �0
a (M

00; w0) i� w �00
a w

0

6:e:3 8a 2 B n gr(�) : 8(M 00; w); (M�; w0) 2W 0 :

(M 00; w) �0
a (M

�; w0) i�

[[� ]]�1(w) �a [[� ]]
�1(w0)

6:e:4 8(M 00; w) 2W 0 : V 0
(M 00;w) = V 00

w

Ad (a) In part (a) of de�nition 6, the interpretation of action types on

models is de�ned.

Ad (b) and (c) In parts (b) and (c) of de�nition 6, the interpretation

of action types on states is de�ned. Clause 6:b:1 states that to interpret an

action type � in a state (M;w), one has to interpret � in the model M and one

has to determine the images of w under that interpretation. The operator !�

determines what these images are. Clause 6:c:2 states that world w0 is an image

of world w for type LB� , if w
0 is a state (M 00; w00) that results from interpreting

� on (M;w).

Ad (d) and (e) In parts (d) and (e) of de�nition 6, we de�ne the

model
L

B [M [[� ]]], the result of interpreting an action of type LB� . The modelL
B [M [[� ]]] is the direct sum

L
[M [[� ]]], plus access added for the agents b 2

B n gr(�), according to clause 6:e:3 of the de�nition. (So that, indeed, B is

just the parameter we need.) To construct the direct sum
L
M of a set M

of models, we cannot just take the union of their domains. We have to pair

a world w 2 Mi 2 M to some index i in order to determine the model Mi it

11



originates from. The pair (w; i) is then a world in the sum model. We have

chosen to take the model itself as index. Thus we get: (w;Mi). As we might as

well write (Mi; w), this amounts to taking states for models from M as worlds
in the direct sum

L
M.

Unless confusion results, in the examples we still simply take the union of

the domains of models in
L

B [M [[� ]]]. In the examples we name worlds by card

dealings, that correspond to the atomic descriptions of those worlds. Even when

di�erent worlds have the same name, we can distinguish them by the di�erent

access they have to other worlds. 3

It is essential that the local interpretation of an action type � in a model M

is only de�ned if both ag(�) � gr(M) and gr(�) � gr(M). Without the �rst, a

test formula with modal operators not in gr(�) cannot be evaluated in M (see

clause 6:a:1 of the de�nition). Without the second, there are agents in a group

B learning something in � , that do not occur in M , so that their access in the

resulting model cannot be computed (see clause 6:e:3 of the de�nition). See also

section 3.7.

De�nition 7 (Executable)

An action type � is executable in a knowledge modelM , if the local interpretation

of � onM is de�ned and is not the empty relation. A action type � is executable
in a knowledge state (M;w), if the local interpretation of � in (M;w) is de�ned

and is not the empty relation: i.e. if it is executable inM and if w has a � -image

under that interpretation.

De�nition 8 (Equivalence)

Two KT action types � and � 0 are equivalent, notation � = � 0, if they have the

same local interpretation on all models: i.e. if [[� ]] = [[� 0]].

De�nition 9 (Public interpretation)

If gr(�) = gr(M) then [[� ]] is the public interpretation of � in M .

These three de�nitions will later be extended to include actions.

Notation If the local interpretation of an action type � is a functional rela-

tion on the level of knowledge models, we write M [[� ]] for the unique M 0 such

that M [[� ]]M 0. The model functional action types FuncKT have such an inter-

pretation. (See subsection 3.8.)

3By indexing worlds with models, we would still run into naming trouble when pairing a
world with two models with the same name. For technical reasons, di�erent models will never
get the same name. This will only become clear in section 4. Still, when computing [M [[� ]]]
the same model might also be multiply `produced by � ', e.g. when � = �

0
[ �

0. We have taken
an easy way out of that problem: we are only interested in the set [M [[� ]]], so that multiple
occurrences of models have been deleted. There is also a `diÆcult' way out of that problem:
a model constructed from the set of renamed multiple occurences would be bisimilar to one
constructed from the set with multiple occurrences deleted, see section 3.8 for some results
concerning bisimilarity.

12



If, beyond that, the relation between worlds of knowledge models of the

interpretation of an action type � is functional, we write (M;w)[[� ]] for the

unique (M 0; w0) such that (M;w)[[� ]](M 0; w0). There is such a unique (M 0; w0)

if � is not only model functional, but also deterministic, i.e. if � 2 DetKT. (See

subsection 3.8.) If � is deterministic, instead of (M;w)[[� ]] we might as well

write (M [[� ]]; w[[� ]]). This notational convention will also be used for knowledge

actions, to be de�ned in the next section.

Instead of
L

BfM1;M2; :::;Mng we also write M1

L
BM2

L
B :::
L

BMn.

Instead of a `two-level' de�nition between both models and their worlds

(seen as states), we considered de�ning local interpretation as a relation between

knowledge states only, which would in this respect have been as in [BMS98],

[Bal99] and [Ger99]. However, the basic programming operations `test' and

`learning' can be much more elegantly de�ned between models. For the relation

between interpretation on models and on worlds, see also subsection 3.8 on

action type properties.

3.4 Examples

We now illustrate de�nition 6 by computing the interpretation of the example

action types from subsection 3.2 on hexa, the knowledge model of �gure 1, for

three players holding three cards red, white and blue. All examples can be

publicly interpreted.

Example 1

Player 1 puts the red card on the table: L123?r1.

We apply de�nition 6 stepwise:

hexa[[L123?r1]]M

, de�nition 6:a:2

M =
L

123[hexa[[?r1]]]

hexa[[?r1]]M
0

, de�nition 6:a:1

M 0 = hfrwb; rbwg; ;; V �frwb; rbwgi

AsM 0 is unique, we may writeM 0 = hexa[[?r1]] and we have that [hexa[[?r1]]] =

fhexa[[?r1]]g. We still have to compute the relations between worlds in hexa and

in hexa[[?r1]]. According to clause 6:c:1: rwb !?r1 rwb and rbw !?r1 rbw.

We can now compute M (= hexa[[L123?r1]]). Write M = hWM ; f�M
1 ;�

M
2 ;�

M
3

g; VM i. According to clause 6:e:1: WM = f(hexa[[?r1]]; rwb); (hexa[[?r1]]; rbw)g.

As gr(?r1) = ;, clause 6:e:2 doesn't apply. For the other agents, i.e. for all

agents 1,2 and 3, we continue as follows:

(hexa[[?r1]]; rwb) �
M
1 (hexa[[?r1]]; rbw)

, de�nition 6:e:3

13



hexa

brw

wrb

rwb rbw

bwr

wbr

1

1

1

2 2

23

3 3

hexa[[?r1]]

rwb rbw

hexa[[L123?r1]]

rwb rbw1

?r1 L123?r1

Figure 2: Computing hexa[[L123?r1]]

[[?r1]]
�1(rwb) �1 [[?r1]]

�1(rbw)

, de�nition 6:b:1 and 6:c:1

rwb �1 rbw

If we simplify the notation of domain WM of model hexa[[L123?r1]], as sug-

gested in the remarks ad clause 6:e:1, we even get:

rwb �M
1 rbw i� rwb �1 rbw

The six reexive links in the model hexa[[L123?r1]] (for 1, 2, and 3, for both

rwb and rbw) are similarly computed. Further, clause 6:e:4 states that the

valuation VM on the `new' worlds rwb and rbw is the same as on the `old' ones.

Figure 2 gives an overview of our computations.

Example 2

Player 1 shows his card to player 2: L123(L12?r1 [ L12?w1 [ L12?b1).

We elaborate on the necessary computations:

hexa[[L123(L12?r1 [ L12?w1 [ L12?b1)]]M
0

, de�nition 6:a:2

M 0 =
L

123[hexa[[L12?r1 [ L12?w1 [ L12?b1]]]

hexa[[L12?r1 [ L12?w1 [ L12?b1]]M
00

, de�nition 6:a:4

hexa[[L12?r1]]M
00 or hexa[[L12?w1]]M

00 or hexa[[L12?b1]]M
00

We assume that [ is associative, which is proven later, in proposition 2. We

get three di�erent models M 00 this way. We compute the �rst one.

hexa[[L12?r1]]M
00

, de�nition 6:a:2

M 00 =
L

12[hexa[[?r1]]]
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Similarly to the computation in the previous example, we getM 00 = hexa[[L12?r1]] =

hfrwb; rbwg; (�M 00

1 ;�M 00

2 ); V M 00

�frwb; rbwgi. More strictly, instead of frwb; rbwg,

the domain is f(hexa[[?r1]]; rwb); (hexa[[?r1]]; rbw)g. Apart from reexive access

for both 1 and 2 in both worlds, we only have rwb �1 rbw. Access for player

3 is not computed. Similarly we compute hexa[[L12?w1]] and hexa[[L12?b1]], see

�gure 3.

hexa

brw

wrb

rwb rbw

bwr

wbr

1

1

1

2 2

23

3 3

hexa[[?r1]]

rwb rbw

hexa[[?w1]]

wrb wbr

hexa[[?b1]]

brw bwr

hexa[[L12?r1]]

rwb rbw1

hexa[[L12?w1]]

wrb wbr1

hexa[[L12?b1]]

brw bwr1

hexa[[L123(L12?r1 [ L12?w1 [ L12?b1)]]

brw

wrb

rwb rbw

bwr

wbr

1

1

1

3

3 3

Figure 3: Computing hexa[[L123(L12?r1 [ L12?w1 [ L12?b1)]]

We �nish the computation by determining

M 0 = hexa[[L123(L12?r1 [ L12?w1 [ L12?b1)]]

= hexa[[L12?r1]]
L

123 hexa[[L12?w1]]
L

123 hexa[[L12?b1]]

Formally, the domain W 0 of M 0 is the set

W 0 = f(hexa[[L12?r1]]; (hexa[[?r1]]; rwb));

(hexa[[L12?r1]]; (hexa[[?r1]]; rbw));

(hexa[[L12?w1]]; (hexa[[?w1]]; wrb));

(hexa[[L12?w1]]; (hexa[[?w1]]; wbr));

(hexa[[L12?b1]]; (hexa[[?b1]]; bwr));

(hexa[[L12?b1]]; (hexa[[?b1]]; brw))

Again, for convenience we simplify it toW 0 = frwb; rbw;wrb; wbr; bwr; brwg.
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Access for 1 and 2 remains as it is, using de�nition 6:e:2. Similarly to the

computations for access in example 1, we have reexive access for player 3,

and apart from that we can compute in M 0 that rwb �3 wrb, rbw �3 brw,

and bwr �3 wbr. Figure 3 visualizes the resulting model, and how we have

constructed it.

In any world of the resulting model, player 2 knows the dealing of cards.

Player 1 doesn't know the cards of 2 and 3, although he knows that 2 knows it.

Example 3

Everybody learns that player 1 doesn't have the white card, and everybody

learns that player 2 can't win the game (doesn't know the dealing of cards)

after that: L123?:w1 ; L123?:win2.

We elaborate on the necessary computations. First we interpret L123?:w1

on hexa. The test ?:w1 succeeds on four of the six worlds of hexa. As before,

access for all three players is then reestablished between worlds that were already

linked. Apart from reexive links for all players between all worlds, we get that

rwb �2 bwr and that brw �3 rbw.

We continue by interpreting L123?:win2 on hexa[[L123?:w1]] (as we have that

M [[� ; � 0]]M 0 ,M [[� ]][[� 0]]M 0). The formula win2 describes that player 2 knows

which of the six possible dealings of cards is actually the case, in game terms:

that 2 can win. In semantical terms this condition is only satis�ed in singleton

equivalence classes of 2's access. As we test on 2 not being able to win, we

therefore remove all singletons in 2's access. Next we reassert previously (in

hexa[[L123?:w1]]) existing access for 1, 2 and 3 between the remaining worlds

rwb and bwr. This is general procedure for tests that are publicly learnt, i.e.

`public announcements' in terms of [BMS98]. Figure 4 pictures the resulting

model, and how we have constructed it.

In the �nal model hexa[[L123?:w1 ; L123?:win2]] on the right in �gure 4,

both 1 and 3 have full knowledge of the dealing of cards, whereas in any state

of hexa[[L123?:w1]] consistent with that, only 3 can win. So 1 can win because

2 says he (2) can't.

Example 4

Player 1 whispers in 2's ear a card that he (1) doesn't have: L123(L12?:r1 [

L12?:w1 [ L12?:b1).

Unlike the previous examples, this is a case of true nondeterminism: 1 can

choose what to whisper. Now the model resulting from the execution of an

action type can be more complex, in terms of the its number of worlds, than

the model upon which the type is executed. Indeed, this is here the case. We

do not perform the computations in detail.

Figure 5 pictures hexa[[L123(L12?:r1 [ L12?:w1 [ L12?:b1)]]. Note that we

assume the accessibility relations to be transitive. As in the previous examples,

for improved readability we haven't renamed the worlds according to clause
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Figure 4: Computing hexa[[L123?:w1 ; L123?:win2]]
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Figure 5: Picture of hexa[[L123(L12?:r1 [ L12?:w1 [ L12?:b1)]]

6:e:1, but have kept their original names. Otherwise, e.g. the world wrb `in

front' would be named (hexa[[L12?:r1]]; (hexa[[?:r1]]; wrb)), call it wrbfront, and

the world wrb `at the back', would be named (hexa[[L12?:b1]]; (hexa[[?:b1]]; wrb)),

call it wrbback. World wrb in hexa has both wrbfront and wrbback as images

under the interpretation of this type, corresponding to the choice he can make

between red and blue. This can be checked by computing both wrb!� wrbfront
and wrb !t auwrbback, for type � = L123(L12?:r1 [ L12?:w1 [ L12?:b1), by

stepwise application of clauses from de�nition 6:c.

Without renaming, we can still distinguish the world wrb in front from the

world wrb at the back, because player 2 is less informed in front. In other words:

because the worlds di�er in their access to other worlds.

17



For more examples of types of action in hexa, such as players suspecting

other players of cheating, and for examples of action types in related models for

card games, see [vD00c].

In section 2.3 we mentioned that formulas [?K1p]K1p are unde�ned on

any model. Why, will now be clear: note that hexa; rwb j= [?K1r1]K1r1 ,

hexa[[?K1r1]]; rwb j= K1r1. The model hexa[[?K1r1]] is the same as hexa[[?r1]], as

in �gure 2. As it is an ; model, obviously we cannot interpret the formulaK1r1.

We do not see this as a limitation of our approach. Instead, we see it as

an advantage that we that, e.g. show that hexa j= [?K1r1]r1. Put in other

words: some formulas can be locally interpreted without any assumptions on

other agents. This is di�erent from the approach in [Ger99], where one has to

assume that all other agents learn nothing. We continue with an example of

that.

3.5 Local interpretation versus updating

In example 2 we computed the (public) interpretation of L123(L12?r1[L12?w1[

L12?b1) in hexa. Instead of (locally) interpreting subprogram L12?r1, as in

�gure 3, we might have considered `totally' interpreting that subprogram, before

continuing to incorporate its interpretation in the interpretation of L123(L12?r1[

L12?w1[L12?b1). How to proceed? Because we do not know how the execution

of this type of action e�ects player 3, we might as well assume that he (his

knowledge) is not at all a�ected by it. This is the approach in [Ger99]. In

[Ger99], DEL programs are always totally interpreted in this manner. Also,

for technical reasons, they can only be interpreted in states, not in models.

The action type L12?r1 corresponds to the DEL program ?r1 ; U12?r1. This

expresses that: 1 and 2 have learnt that 1 holds the red card, and 3 hasn't learnt

anything. Figure 6 pictures the state resulting from interpreting ?r1 ; U12?r1
in state (hexa; rwb). Continuing in this manner, a DEL program corresponding

to L123(L12?r1 [ L12?w1 [ L12?b1) has the same interpretation as that action

type in every state of hexa.

For the purpose of computing relations between S5 models, we think the

approach of [Ger99] less attractive, for the following three reasons:

� Intermediate in the computation are models that are not S5, such as the

model in �gure 6.

� Intermediate in the computation are models that are more complex than

the initial and the �nal model. The model in �gure 6 contains 8 worlds,

corresponding to 8 non-bisimilar states. Both hexa and the resulting model

hexa[[L123(L12?r1 [ L12?w1 [ L12?b1)]] consist of 6 worlds.

� One has to assume an actual state (the point of the model), before one

can compute the e�ect of a program (an action). All six states of hexa
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Figure 6: Picture of (hexa; rwb)[[?r1 ; U12?r1]], using [Ger99]. The designated

world rwb is in roman style. This is not an example of local interpretation.

are compatible with (`survive') the execution of L123(L12?r1 [ L12?w1 [

L12?b1). That means six (although similar) computations.

But, of course, a more essential di�erence is that one can locally interpret

programs (actions or types) without any assumptions on the other agents, i.e.

without assuming that the other agents have learnt nothing. See also [vD00b].

3.6 Another example

There is only one atom p and there are only two agents 1 and 2. Letter is the

model hfw;w0g; (�1;�2); V i with both �1 and �2 the universal relation, and

with Vw(p) = 1; Vw0(p) = 0. We can think of w as the world where 1 gets `an

invitation for a night out in Amsterdam' and of w0 as the world where, instead,

1 is invited, or, if he wishes to see it that way, `obliged to give a lecture'. It

is commonly known that these are the only alternatives. We can also think of

this example as the knowledge game for two players and two cards, where the

players haven't yet looked into their cards. Three examples of action types in

this model are:

� An outsider tells the agents that agent 1 is invited for a night out in

Amsterdam4:

L12?p

� In a letter is written that agent 1 is invited for a night out in Amsterdam.

Agent 1 is given the letter, opens it, and reads its contents. Agent 2

observes player 1 opening his letter (and this is commonly known):

L12(L1?p [ L1?:p)

4Which results in the same model as: In a letter is written that agent 1 is invited for a
night out in Amsterdam. Agent 1 is given the letter, opens it, and reads its contents aloud.
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Figure 7: Nightclub or lecture

� Same as previous item, only now agent 2 doesn't know but only suspects

1 to have opened the letter (and this is commonly known):

L12(L1?p [ L1?:p [ L1?>)

Figure 7 presents the models produced by these action types. Instead of w

and w0, we named the worlds by their atomic descriptions p and :p.

3.7 Motivations for the constraints on KT

Given the interpretation of action types, and the examples, we can now explain

the constraints on action type construction in de�nition 3. Without these con-

straints, local interpretation can be incorrect, from the viewpoint of expected

postconditions, or unde�ned.

De�nition 3.a: tests

There are no constraints on tests. For those who oppose to the name `test': see

the end of this subsection.

De�nition 3.b: learning

In clause 3:b we required that gr(�) � B. We can relax this constraint to

gr(�) � B. Clause 6:c:2, on the interpretation of the learning operator, in

de�nition 6, will still construct a correct model. Relaxing the constraint doesn't

have any (modelling) value, however. If gr(�) = B, the interpretation of learning

is either identity or constructs a direct sum. Examples:

[[LB(LB�)]] is the identity on all models where it can be executed. There is

nothing to be gained from learning that you learn.
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Because
L

; is simply
L

, the model hexa[[L123(L123?r1 [ L123?w1)]] would

be the direct sum hexa[[L123?r1]]
L

hexa[[L123?w1]]. From the `viewpoint' of its

agents the di�erence doesn't matter. For all worlds in hexa[[L123?r1]], state

(hexa[[L123?r1]]; w) is modally equivalent to state (hexa[[L123(L123?r1 [ L123?w1)]]; w),

because the latter consists of two disconnected parts.

Similar to the case B = gr(�), also for B � gr(�) is the interpretation of

type LB� the same as that of � .

De�nition 3.c: sequential execution

Given an action type � ; � 0, we required both that gr(�) = gr(� 0) and that

ag(� 0) � gr(�). The result of interpreting � will be some model M with access

de�ned for the agents in gr(�).

If B = gr(�) � gr(� 0) = C, [[� 0]] would be unde�ned. Action type � 0 would

contain a subprogram of type LC�
� that cannot be interpreted, because access

for agents a 2 C n B can not be de�ned from a-access between worlds from

M , as access for a is unde�ned on M . An example: The interpretation of the

action type L2?r1 ; L123?r1 is unde�ned, because access for 1 and 3 cannot be

computed.

If, on the other hand, C = gr(� 0) � gr(�) = B, then the result of interpreting

� ; � 0 in a B [C model would incorrectly be called the public interpretation of

that action type in that model, even though gr(� ; � 0) = gr(M). Any model

resulting from executing � ; � 0 would only be a C model, so that we can't

compute the knowledge of agents not in C, as a result of its execution. An

example: the interpretation of the action type L123?r1 ; L2?r1 is de�ned but

incorrect. E.g. in the resulting model M 0, e.g. M 0 j= K3r1 is unde�ned, but

should actually hold. Note that, on the other hand, model M [[L123?r1]][[L2?r1]]

is de�ned. (Only if gr(�) = gr(� 0) it holds that [[� ]][[� 0 ]] = [[� ; � 0]].)

If � contains modal agents not in the group of � , i.e. if D = (ag(� 0)ngr(�)) 6=

;, then � 0 contains a test on a proposition with a modal operator for agents

that cannot be evaluated on M . This modal operator must be either a modal

operator Ka, with a 2 D, or a modal operator CB , with B \ D 6= ;, or a

modal operator [��] with modal agents in D. A gr(�) model M on which such

propositions are to be evalutated, lacks access for those agents. An example:

the interpretation of the action type L1?K2r1 ; L1?K2r1 is unde�ned, because

the test on K2r1 in the second occurrence of L1?K2r1 cannot be evaluated in

the 1-model that results from interpreting the �rst occurrence of that formula.

For those who feel uncomfortable under this restriction: the following ex-

planation may help to make it seem reasonable. In the example above the �rst

occurrence of L1?K2r1 is interpreted locally because we expect it to be a sub-

program of an action type for a larger group that contains 2, so that we can

compute what 2 has learnt from this subprogram. Until we have speci�ed that

action type, we want 2's access to be unde�ned, and therefore wouldn't by any

means want to refer to 2's knowledge, which is exactly what happens in the

second occurrence of L1?K2r1. So basically the constraint ag(� 0) � gr(�) rules

out `bad programming'.
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As a matter of fact, we considered deleting the `;' operation from our lan-

guage. When specifying players' communication in games, any sequential execu-

tion can be described on the level of the public: � ; � 0 is restricted to sequences

of A action types only. This would have simpli�ed our de�nitions considerably.

De�nition 3.d: nondeterministic choice

For �[� 0 to be an action type, we required that gr(�) = gr(� 0). If not, constructs

of type LB(� [ �
0) might be incorrectly interpreted for agents a 62 gr(�)\gr(� 0).

An example: L123(L2?r1 [ L3?w1) would be incorrectly interpreted in hexa.

As gr(L2?r1 [ L3?w1) = f2; 3g, when constructing hexa[[L123(L2?r1 [ L3?w1)]]

from hexa[[L2?r1 [ L3?w1]] only access for 1 is added. In particular, no 3-access

is added to hexa[[L2?r1]] and no 2-access is added to hexa[[L3?w1]]. E.g., if the

actual state was rwb, in the model resulting from the execution of this action

player 3 cannot imagine rwb to be the actual dealing of cards. The model is

therefore not even S5.

This model is obviously not the intended interpretation: 3 learns that either

2 learns r1 or that he himself learns w1. Therefore, if after execution of this

action he has not learnt w1, which can be checked by introspection, he knows

that 2 must have learnt r1 instead. As 3 also knows his own card, he now knows

all three cards: 3 cannot just imagine rwb, 3 even knows this dealing to be the

case.

Why is a test a test?

Why is a KT test called a test? Tests supposedly do not change the objects they

operate upon, but just let them survive, or not. A test ?' 2 KT is only a test in

this sense, if it can be publicly interpreted, not if it is only locally interpreted.

Tests can only be publicly interpreted on models without access. In that case

the test formulas must not contain modal operators. Even then, they only `do

not change the model' if that model consists of a singleton world. An example

of a test that `doesn't change the model': ?r1 can be publicly interpreted on the

model hfrwbg; ;; V �frwbgi, with V and rwb as in hexa. A counterexample, i.e. a

`test that changes the model': the test ?K1r1 can never be publicly interpreted,

because ; = gr(?K1r1) � ag(?K1r1) = f1g: it can only be publicly interpreted

on an ; model, but on such a model we cannot interpret modal operator K1.

It can be locally interpreted on hexa, in which case it does change the model

it operates upon. The resulting model hexa[[?K1r1]] is identical to hexa[[?r1]], as

computed in �gure 3.

One might remark that the word `test' is therefore inappropriate for this KT

construct. We agree. (But do not have a better name.)

3.8 Action type properties

In this section we prove some elementary and useful properties of action types.
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Proposition 1 (Local interpretation on models versus states)

Let M be a knowledge model. Let (M;w) be a knowledge state. Let � 2 KT.

Then:

(a) 8M 0 :M [[� ]]M 0 ) 8w0 2M 0 : 9!w� 2M : (M;w�)[[� ]](M 0; w0)

(b) 8M 0 : 8w0 : (M;w)[[� ]](M 0; w0))M [[� ]]M 0

Proof

(a) Induction on � . E.g. case LB� : SupposeM [[LB� ]]M
0. Let w0 2M 0. AsM 0 =L

B [M [[� ]]], it holds that w0 = (M 00; w00) for some M 00 2 [M [[� ]]] and w00 2 M 00.

By induction there must be exactly one w 2 M such that (M;w)[[� ]](M 00 ; w00).

From de�nition 6:b:1 follows (M;w) !� (M 00; w00). From that and from de�-

nition 6:c:2 follows (M;w) !LB� (M 0; w0), i.e. (M;w) !LB� (M 0; (M 00; w00)).

�

(b) Immediately from de�nition 6.b.1. �

Because of proposition 1, in clause e:3 of de�nition 6 we can write [[� ]]�1(w0)

for the unique origin of a world w0.

Proposition 2 (Associativity of action type construction operations )

(a) 8�; � 0; �� 2 KT : (� [ � 0) [ �� = � [ (� 0 [ ��)

(b) 8�; � 0; �� 2 KT : (� ; � 0) ; �� = � ; (� 0 ; ��)

Proof

(a) SupposeM [[(� [ � 0) [ ��]]M 0. Then, by de�nition 6:a:4, eitherM [[� [ � 0]]M 0

orM [[��]]M 0. IfM [[� [ � 0]]M 0, then, again by de�nition 6:a:4, eitherM [[� ]]M 0 or

M [[� 0]]M 0. FromM [[� 0]]M 0 andM [[��]]M 0 followsM [[� 0 [ ��]]M 0. FromM [[� ]]M 0

and M [[� 0 [ ��]]M 0 follows M [[� [ (� 0 [ ��)]]M 0. �

(b) Similar to (a), by decomposing and recomposing according to de�nition

6:a:3. �

The following will be obvious and need no proof, as it follows immediately

from the constructions of agent access in clauses 6:a:1, 6:e:2, and 6:e:3 of de�-

nition 6:

Fact 1 (S5 invariance)

The class of knowledge models is closed under execution of action types.

The model functional action types have a functional interpretation on the

level of models, and the deterministic action types have a functional interpre-

tation on the level of worlds:
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Proposition 3 (Functional interpretation)

Let M be a knowledge model, let w 2M .

(a) 8� 2 FuncKT : � is executable on M ) 9!M 0 :M [[� ]]M 0

(b) 8� 2 DetKT : � is executable on (M;w)) 9!(M 0; w0) : (M;w)[[� ]](M 0 ; w0)

Proof

(a) Immediate, by induction on � . The only interesting case is LB� , where

� 2 KT and therefore � may be not model functional. SuÆces to observe that

de�nition 6 constructs a single model
L

B [M [[� ]]], regardless of the number of

models [M [[� ]]] contains.

(b) Immediate, by induction on � .

Proposition 4 (Bisimilarity invariance)

Let M;M 0 be S5 models, and M $M 0 (M is bisimilar to M 0), let R be the

bisimulation between M and M 0, and let � 2 KT. Then:

8M� :M [[� ]]M� ) 9M� : (M 0[[� ]]M� and M�$M� and (i) )

(i): For the bisimulation R� between M� and M� it holds that:

8w� 2M�;8w� 2M� : w�R�w� ) [[� ]]�1(w�)R[[� ]]�1(w�)

Proof: By induction on the structure of action types. The most interesting

case is LB�. The proof is found in the appendix.

Directly from proposition 4 follows the next (corollary, but because of its

importance) proposition:

Proposition 5

If M;M 0 are S5 models, and M $M 0, and � 2 FuncKT, then M [[� ]]$M 0[[� ]].

4 Knowledge actions

We now continue by de�ning the class of knowledge actions. Remember example

2, the action `player 1 shows (only) player 2 the red card' and its corresponding

type `player 1 shows (only) player 2 his card'. Although we have now formally

described and interpreted this action's type, we still cannot describe the action

itself. In this section, we extend our language with the operation of `local choice',

to make that possible.

A knowledge action can be formed from an action type � by a mapping

operation !I� , where !I determines local choice in � . Index I determines a

subtree in the structural tree of action type � .
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The labeled structure operation ls maps each action type to the tree under-

lying its structural tree as follows: all nodes that are branching due to nonde-

termistic choice are labeled with di�erent variables; all other nodes and all arcs

are not labeled. A variable corresponds to a local choice for a subgroup, as we

are about to see.

De�nition 10 (Labeled structure of an action type)

Assume a (countably) in�nite supply of variables X .

ls(?') = ()

ls(LB�) = (ls(�))

ls(� [ � 0) = x(ls(�); ls(� 0)) for some fresh variable x

ls(� ; � 0) = (ls(�); ls(� 0))

Bundle

Given the structure ls(�) of an action type, a valuation val : X ! B (we

may as well, and will, write val 2 B
N) of the variables in its labeled struc-

ture de�nes a rooted subtree val(ls(�)) that we call a bundle.5;6 Value 0 se-

lects the `left' arc of the current subtree, whereas 1 selects the `right' arc. By

overloading the notation of val we can map a labeled structure to a bundle.

A crucial clause in that mapping is: val(ls(� [ � 0)) = val(x(ls(�); ls(� 0))) =

val(x)(val(ls(�)); val(ls(� 0))). If val(x) = 1, this is 1(val(ls(�)); val(ls(� 0))),

if val(x) = 0, this is 0(val(ls(�)); val(ls(� 0))). A bundle can be more than a

branch. For a sequential execution both arcs will be part of the bundle. Because

of that we call it a bundle: it's not (necessarily) a branch, it's not (necessarily)

the entire tree, it's something in between: just a couple of branches.

For convenience, we now de�ne bu(�) = fval(ls(�)) j val 2 B
Ng; bu(�) is the

set of (di�erent) bundles of � . Obviously, we do not require that two di�erent

valuations de�ne di�erent bundles. We do not even require that two di�erent

bundles de�ne di�erent actions, as will become clear from the examples, below.

Each bundle in the structural tree of an action type de�nes a knowledge

action: if � 2 KT and I 2 bu(�), then !I� de�nes a knowledge action. KA is the

class of all syntactic objects thus formed. Write � for an arbitrary knowledge

action.

De�nition 11 (Knowledge actions { KA)

Let A be a set of agents (the public), let P be a set of atoms.

KA = f!I� j � 2 KT and I 2 bu(�)g

The modal agents and the group of an action are those of its type, see de�-

nitions 15 and 14. The relation between knowledge action types and knowledge

actions is the following: to each type corresponds a set of actions (its `instances',

5In order to distinguish val from valuations Vw on models, we have chosen a di�erent
notation.

6We copy the similar use of the term `bundle' from modal sequent calculus.
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the `actions of that type'); each action `is of a certain type'. In a way, determin-

istic action types are knowledge actions, as � 2 DetKT) 8I 2 bu(�) : !I� = � ;

in that case, bu(�) consists of a single bundle (`no choice'). This will be made

precise in section 4.4.

The formal notation with bundles pre�xed to action types is a bit cumber-

some. The following de�nes a more convenient notation for knowledge actions.

De�nition 12 (Notational equivalent for knowledge actions )

!()(?') := !?'

!(I)(LB�) := !LB !I�

!0(I;J)(� [ �
0) := !I� [ �

0

!1(I;J)(� [ �
0) := � [ !J�

0

!(I;J)(� ; � 0) := !I� ; !J�
0

The only position where an exclamation mark `!' meaningfully remains, is

just before a learning operator, i.e. in a subprogram of the form !LB�. This

`means' (see below) that only the agents in B know that they have selected � for

execution, from the alternatives. The `!' in front of a test !?' has no meaning,

see the example in the next subsection.

Further simpli�cations: If there is nothing to choose from, we can delete the

exclamation mark. That means we only have to keep `!'-s in subprograms of the

form !� [ �0 or � [ !�0.

Warning: the local interpretation of actions, to be de�ned in the next sub-

section, is only compositional from the viewpoint of formal notation, not from

that of its notational equivalent.

We continue with some examples.

4.1 Examples

We are now ready to describe the examples from the introductory section 1.

From subsection 3.2 we already know their types.

Example 1

The �rst example, `player 1 puts the red card on the table', is not of much

interest. Its structural tree is a branch, which (therefore) also is its only bundle:

ls(L123?r1) = (()). The next example we explain in detail:

Example 2

This is the action `player 1 shows (only) player 2 the red card'. The type of this

action is: `player 1 shows his card to player 2', formally L123(L12?r1 [L12?w1 [

L12?b1).

To illustrate the construction of an action of this type, we have to be more

precise about its structure. We can { arbitrarily, as [ is associative { take the

action type to be:

L123((L12?r1 [ L12?w1) [ L12?b1):
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The labeled structure of this action type is:

(x(y((()); (())); (()))):

The labeled structure consists of three bundles:

� (0(0((()); (())); (())))

� (0(1((()); (())); (())))

� (1(0((()); (())); (())))

Note that (1(0((()); (())); (()))) de�nes the same bundle as (1(1((()); (())); (()))):

once we have chosen the right subtree, we don't care what choices are made fur-

ther down in the pruned left subtree.
Figure 8 illustrates how the middle one of the three bundles is created. On

the left in the �gure, the labeled structure ls(L123(L12?r1[L12?w1[L12?b1)). In

the middle, the bundle val(ls(L123(L12?r1[L12?w1[L12?b1))), for the valuation

val(x) = 0 and val(y) = 1. On the right in the �gure, the actual bundle that is

selected by this formally de�ned bundle.

�

x

y �

� � �

� �

�

0

1 �

� � �

� �

�

�

�

�

�

Figure 8: How to make a bundle from a tree

The three di�erent bundles result in the three di�erent actions:

� !L123((!L12!?r1 [ L12!?w1) [ L12!?b1)

� !L123((L12!?r1 [ !L12!?w1) [ L12!?b1)

� !L123((L12!?r1 [ L12!?w1) [ !L12!?b1)

With the simpli�cations mentioned before, and deleting some superuous

brackets, because nondeterministic choice is associative, we get:

� L123(!L12?r1 [ L12?w1 [ L12?b1)

� L123(L12?r1 [ !L12?w1 [ L12?b1)

� L123(L12?r1 [ L12?w1 [ !L12?b1)
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The �rst of these, L123(!L12?r1 [ L12?w1 [ L12?b1), expresses the action

`player 1 shows (only) player 2 the red card'. The exclamation mark `!' in front

of the subprogram L12?r1 means: from the three available alternatives, agents

1 and 2 choose L12?r1. This choice is local, i.e. known to 1 and 2 only. Player
3 doesn't know which of the three alternatives has been chosen, although he

knows what to choose from.

Example 3

`Player 2 asks player 1 for the white card; player 1 says that he doesn't have it;

player 2 ends his move.' The type of this action is L123?:w1;L123?:win2. The

labeled structure of this action type contains no variables. The only bundle in

its structural tree is the tree itself. Therefore the only action corresponding to

it is the action type itself. Note that the bundle, unlike those in the previous

examples, is not a branch.

Example 4

The action is `player 1 whispers in 2's ear that he doesn't have the white card'.

Its type is `player 1 whispers in 2's ear a card that he (1) doesn't have', formally:

L123(L12?:r1 [ L12?:w1 [ L12?:b1). It will now be clear that the KA action

describing example 4 is:

L123(L12?:r1 [ !L12?:w1 [ L12?:b1)

Choosing between tests

We end by explaining the remark after de�nition 12, on the meaningless of

choosing between tests. Consider the action type � = L123(?r1[?w1). Observe

that ls(�) = (x((); ())). The structural tree therefore contains two di�erent bun-

dles, I = (0((); ())), and J = (1((); ())). E.g. !I� is the action where everybody

in gr(�) n gr(?r1) cannot distinguish between the tests ?r1 and ?w1, whereas

everybody in gr(?r1) learns that ?r1 has really been executed. Computing the

groups: everybody learns that ?r1[?w1 whereas nobody learns that ?r1. There-

fore (as in the previous example, but for a di�erent reason): !I� = �. Of course,

similarly !J� = �. Indeed, although it contains a [ operator, the action type �

is deterministic, and the two di�erent bundles I and J de�ne the same action.

In simpli�ed notation, we can always delete `!' in front of tests, because

`local choice' between two tests corresponds to `nobody' learning which of those

tests is chosen.

4.2 Local interpretation of knowledge actions

The local interpretation of a knowledge action is a functional relation [[�]] be-

tween knowledge states. Again, we overload the [[�]] notation, to include the

interpretation of actions. To interpret a knowledge action � = !I� on a knowl-

edge state (M;w) we �rst determine the interpretation of � on M . From the

set [M [[� ]]] we then select one model M 0 and in that model M 0 one world w0.
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Both are truly selections, as [M [[� ]]] can contain more than one model, and M 0

can contain more than one � -image of w. What M 0 and w0 are, is determined

by the bundle I . The world w0 is the !I� image of w, to be de�ned below as a

relation 7!!I� , and M
0 is simply the model that contains w0. (M 0; w0) is then

the required knowledge state.

De�nition 13 (Local interpretation of knowledge actions)

Let (M;w) = (hW; (�a)a2A; V i; w) be a knowledge state. Let � be an A action

type. Let I be a bundle in ls(�).

13:a:1 (M;w)[[!I � ]](M
0; w0) i� M [[� ]]M 0 and w 7!!I� w

0

13:b 8M;M 0 :M [[� ]]M 0;8w 2M;8w0 2M 0 :

13:b:1 w 7!!()?' w
0 i� w = w0

13:b:2 w 7!!(I)LB� w
0 i� 9M 00 2 [M [[� ]]] : 9w00 2M 00 :

w0 = (M 00; w00) and w 7!!I� w
00

13:b:3 w 7!!(I;J)(� ; � 0) w
0 i� 9M 00 :M [[� ]]M 00[[� 0]]M 0; 9w00 2M 00 :

w 7!!I� w
00 7!!J� 0 w0

13:b:4 w 7!!0(I;J)(�[�
0) w

0 i� w 7!!I� w
0

13:b:5 w 7!!1(I;J)(�[�
0) w

0 i� w 7!!J� 0 w0

Because the local interpretation of an action is functional on every knowledge

state, instead of (M;w)[[!I� ]](M
0; w0) we write (M 0; w0) = (M;w)[[!I� ]]. We say

that (M;w)[[!I � ]] is the interpretation of !I� in (M;w). As before, we might
even write (M [[!I� ]]; w[[!I � ]]). However, only the type of an action determines

the structural changes in the model. Therefore, if � is model functional, instead

of (M [[!I� ]]; w[[!I � ]]) we will write (M [[� ]]; w[[!I � ]]). Of course, w[[!I� ]] is precisely

the 7!!I� -image of w.

We have chosen the 7! symbol for its functional connotation. Note that

w !� w
0, as in de�nition 6:c, relates w to one of its � -images, whereas w 7!!I� w

0

relates w to its unique !I� -image.

Warning: although the semantics of knowledge actions is compositional, it

appears to be not compositional when we use the notational equivalent from

de�nition 12. For an example, the interpretation of !L12?r1 in L123(!L12?r1 [

L12?b1) is not a function of the interpretation of `!', whatever that might mean,

and L12?r1. In the next subsection we give an example of how to apply de�nition

13.

The de�nitions of `executable', `equivalence', and `public interpretation' are

extended to include actions. See de�nitions 7, 8, and 9:

A knowledge action !I� is executable in a knowledge state (M;w), if the local

interpretation of !I� in (M;w) is not the empty relation.

Two KA actions !I� and !J�
0 are equivalent, notation !I� =!J�

0, if they have

the same interpretation: i.e. if [[!I� ]] = [[!J�
0]]. We even have: Two KT [ KA

programs � and �0 are equivalent, if [[�]] = [[�0]].

If gr(�) = gr(M) then [[�]] is the public interpretation of � in M .
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4.3 Examples

To illustrate the semantics of actions we compute the (public) interpretation of

knowledge action L123(!L12?r1 [ L12?w1 [ L12?b1) in (hexa; rwb).

(hexa; rwb)[[L123(!L12?r1 [ L12?w1 [ L12?b1)]](M
0; w0)

, de�nition 13:a:1

hexa[[L123(L12?r1 [ L12?w1 [ L12?b1)]]M
0 and

rwb 7!L123(!L12?r1[L12?w1[L12?b1) w
0

The model M 0 = hexa[[L123(L12?r1 [ L12?w1 [ L12?b1)]] is computed in ex-

ample 2 (see �gure 3). The image of rwb in that model is computed as follows

(better read the computation bottom-up):

rwb 7!L123(!L12?r1[L12?w1[L12?b1) (hexa[[L12?r1]]; (hexa[[?r1]]; rwb))

, de�nition 13:b:2

rwb 7!!L12?r1[L12?w1[L12?b1 (hexa[[?r1]]; rwb)

, de�nition 13:b:4; twice

rwb 7!L12?r1 (hexa[[?r1]]; rwb)

, de�nition 13:b:2

rwb 7!?r1 rwb

, de�nition 13:b:1

rwb = rwb

If we write unions instead of direct sums for domains, we simply get rwb,

instead of (hexa[[L12?r1]]; (hexa[[?r1]]; rwb)), as the required image of rwb in

hexa[[L123(!L12?r1 [ L12?w1 [ L12?b1)]]. See also �gure 9, to be compared with

�gure 3.

brw

wrb

rwb rbw

bwr

wbr

1

1

1

2 2

23

3 3

brw

wrb

rwb rbw

bwr

wbr

1

1

1

3

3 3

L123(!L12?r1 [ L12?w1 [ L12?b1)

Figure 9: Interpreting action L123(!L12?r1[L12?w1[L12?b1) in state (hexa; rwb)

4.4 Action properties

In this subsection we prove some elementary action properties.
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Proposition 6 (Relation between actions and action types )

(a) (M;w)[[!I � ]](M
0; w0))M [[� ]]M 0

(b) (M;w)[[!I� ]](M
0; w0)) (M;w)[[� ]](M 0; w0)

(c) (M;w)[[� ]](M 0 ; w0)) 9I 2 bu(�) : (M;w)[[!I � ]](M
0; w0)

Proof

(a) By de�nition. �

(b) SuÆces to observe that very world w0 2 M 0 2 [[[� ]]] has a unique origin

[[� ]]�1(w0) in M , so that w = [[� ]]�1(w0). �

(c) We construct a bundle for � using de�nition 13. Instead of (c) we prove:

(M;w)[[� ]](M 0; w0)) 9I 2 bu(�) : w 7!!I� w
0, by induction on � ; (c) then follows

immediately, from de�nition 13. A typical case: Let (M;w)[[� [ � 0]](M 0; w0).

Then either (M;w)[[� ]](M 0; w0) or (M;w)[[� 0 ]](M 0; w0). Suppose (M;w)[[� ]](M 0 ; w0).

By induction 9I 2 bu(�) such that w 7!!I� w0. For any J 2 bu(� 0), bundle

0(I; J) is the required bundle, as w 7!!0(I;J)�[�
0 w0 , w 7!!I� w

0. �

Using propositions 1:a and 6:c, we also have, that if a type can be executed on

a model, there is at least one executable action of that type: If � is executable on

M , there is a bundle I 2 bu(�), and a world w 2M , such that !I� is executable
in state (M;w).

Fact 2

Actions are deterministic programs

Obvious.

Fact 3 (Embedding of DetKT into KA)

If � 2 DetKT, and M;M 0 knowledge models, then: 8I 2 bu(�) : [[!I� ]] = [[� ]].

Using proposition 6:b and 6:c, this will be obvious. The structure of a deter-

ministic action type is an unlabeled tree, that also is its unique bundle. There

is therefore only one action instance of a deterministic action type. This is what

we mean by deterministic action types being the same as their corresponding

actions.

Not to every action corresponds a deterministic action type! A counterex-

ample is the action of example 2: L123(!L12?r1 [ L12?w1 [ L12?w1).

Warning: Observe that the class of actions KA is not closed under action

type constructing operations (assuming that we give them the obvious interpre-

tation). For an example:

L123(!L12?r1 [ L12?w1 [ L12?b1) [ L123(L12?r1 [ !L12?w1 [ L12?b1)

is neither an action, nor an action type. (In particular, observe that it is not

equivalent to the action type L123(L12?r1 [ L12?w1).)
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Another warning, relating to proposition 6: that an action type is exe-

cutable in a model, does not imply that every action of that type, is exe-

cutable in one of the states of that model. A simple counterexample: the action

L123(L12?r1 [ !L12??) is not executable in any of the states (hexa; w).

5 Extensions of KT and KA, and limitations

The program class KT of action types might be extended in two directions: by

adding the operation of simultaneous execution, or by relaxing the constraints

on groups in KT formation, as in de�nition 3. We would also like to interpret

`non-uniform' types, where programs of di�erent subgroups can be combined.

We discuss this by means of examples.

5.1 Simultaneous execution

Recall example 5 from the introduction:

Example 5

There are three players (1,2,3) and four cards north, east, south and west

(n; e; s; w). Player 1 holds north, player 2 east and player 3 south and west.

Player 3 shows his south card (only) to player 1, with his left hand, and (simul-

taneously) his west card (only) to player 2, with his right hand.

We add a new action type construction operator: simultaneous execution

\ (e.g. see [Gol92]); � \ � 0 is the action type where � and � 0 are executed

simultaneously.

The `knowledge action' in example 5 can be described more precise as: `The

public (1, 2, and 3) learn that 3 shows simultaneously a card to 1 and another

card to 2, and the alternative actually chosen is that 3 shows south to 1 and

west to 2'. This is expressed by:

L123(!(L13?s3 \ L23?w3) [
[

i6=j;(i;j)6=(s;w)

(L13?i3 \ L23?j3))

The `action type' corresponding to it, should be:

L123(
[

i6=j

(L13?i3 \ L23?j3))

It is clear, what knowledge state describes the initial dealing of cards, and

what unique knowledge state results from the execution of this action (by check-

ing expected postconditions in that state), see [vD00c].

We have two technical complications: `simultaneous execution' and the com-

bination of subprograms for di�erent groups: `nonuniform types' (in de�nition

3 we required that gr(�) = gr(� 0), in constructs �[� and � ; �). As we do not
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know how to interpret it, we have not incorporated simultaneous execution in

our framework.

But do we really need it? It is instructive to understand why example 5

cannot be modelled as a KA action. The direction in which we have to look,

is to remodel it as a sequence of actions or action types where a single card is

shown:

The following is a KT action type:

L123(L13?n3 [ L13?e3 [ L13?s3 [ L13?w3)

We abbreviate it as (`3 shows a card to 1'):

show
1;�
3;�

The following is a KA action:

L123(L13?n3 [ L13?e3 [ !L13?s3 [ L13?w3)

We abbreviate this action as (`3 shows the south card to 1'):

show
1;�
3;s

The following is still a KA action, as gr(show
1;�
3;s ) = gr(show

2;�
3;w) = f1; 2; 3g:

show
1;�
3;s ; show

2;�
3;w

However, its type (and therefore: what its model looks like) is:

show
1;�
3;�; show

2;�
3;�

Unfortunately, but not surprisingly, the model resulting from executing that

type is more complex than we want. This is because, obviously, once player 3

has shown a card, nothing prevents him showing the same card again to another

player: more possibilities, more worlds.

Showing di�erent cards to di�erent players seems to correspond to:
[

i6=j2fn;e;s;wg

(show
1;�
3;i ; show

2;�
3;j )

However, knowledge actions are not closed under program constructing opera-

tions, so this is not an action. (So what? But what would be its interpretation?

Note that a unique model is supposed to be produced, not a set of models.)

There seems another line of approach to model example 5, that is also in-

structive. Given that we cannot describe two di�erent cards being simultane-

ously shown, why not somehow include the e�ect of one card being shown in the

preconditions of the action where the other card is shown, or in a separate, third

action in between or after those two? This is the di�erence between examples

5 and 6, and brings us to the next subsection.
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5.2 Epistemic and other aspects of actions

Example 6

Player 3 shows his south card (only) to player 1; next, player 2 asks player 3 to

show him his other card; player 3 shows his west card (only) to player 2

A consequence of 3 showing 1 the south card, is that 1 knows that card. We

include that condition in the test of the second action, where 3 shows the other

card, the west card, to 2. Its type would then be:

L123(L23?(n3 ^ :K1n3) [L23?(e3 ^ :K1e3)[ L23?(s3 ^ :K1s3)[ L23?(w3 ^ :K1w3))

The action type describes that 3 shows player 2 a card that player 1 doesn't

know. Given an initial dealing of cards where 3 holds south and west, and

where the �rst action was of type L123(L13?n3 [ L13?e3 [ L13?s3 [ L13?w3),

the knowledge state resulting from executing this action is indeed the intended

knowledge state! This even holds for any initial dealing of cards. However,

its interpretation is not the same on all knowledge states: if player 1 already

knew all cards, the interpretation of the action above is empty, whereas player 3

can still show both cards to di�erent players: that action's interpretation is not

empty. It's just that player 1 doesn't gain any knowledge from that transaction.

It doesn't help to strengthen the test, and replace n3^:K1n3, and so on, by

the strongest postcondition n3 ^ :C13n3, or by n3 ^ [�]', for some suitable KA

action � and DKL formula '. This is because of an essential limitation of our

approach: we can only refer to the epistemic e�ects of actions and their types,

not to other action features, such as when they took place. In particular, there

is no way to refer to the previous action, which is what is expressed in example

6.

So we seem be beyond the expressive power of our language.

This also ends the discussion on simultaneous execution, an operation that

we hope to extend our language with. We have some separate remarks on

nonuniform types, again for an instructive example.

5.3 Nonuniform programs

Example 5 contained the simultaneous execution of programs for di�erent sub-

groups. We now look at some examples for choice between programs for di�erent

subgroups. We call them nonuniform programs. When at some level the public

learns about these alternatives, there often seems to be a KT action type or

KA action that is equivalent to that nonuniform program. Equivalent means:

having the same interpretation, where the nonuniform programs are interpreted

by considering their postconditions, formulated in terms of subgroup common

knowledge.
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L123(L12?r1 [ L23?r1) is equivalent to L123?r1
L123(L12?r1 [ L23?w1) is equivalent to L123?r1 [ L123?w1

L123(L2?r1 [ L3?r1) is equivalent to L123?r1
L123(L2?r1 [ L3?w1) is equivalent to L123(L23?r1 [ L23?w1)

Apparently we can relax some of the constraints on groups in the construc-

tion of action types in de�nition 3. In section 3.7 we already mentioned that

the constraint gr(�) � B for LB� can be relaxed.

We then can prove general program properties such as (let B;C � A):

LA(LB� [ LC�
0) = LA(LB[C� [ LB[C�

0)

LA(LA� [ LA�
0) = LA� [ LA�

0

This concludes our diversion into possible extensions of the class KT of action

types.

6 Conclusion

Our goal was to de�ne a language for epistemic dynamics in information systems

that model knowledge and reason about knowledge: multiagent S5 systems. We

full�lled that goal by proposing a logical language DKL, for dynamic knowledge

logic, that includes a language KT of action types and a derived language KA of

knowledge actions. Basic to our approach is the concept of local interpretation

of an action type in a model, the interpretation fo a subgroup of agents only. We

performed detailed computations on some example knowledge game actions, to

illustrate the language and its interpretation. We discussed possible extensions

with simultaneous execution and with combining programs for di�erent groups.

We have achieved a small goal in Gerbrandy's research program: de�ne a pro-

gram class under which application the class of S5 models is closed. Contrary

to Gerbrandy, an action can be locally interpreted without having to assume

that the other agents learn nothing. In [vD00b], in preparation, we compare

our approach in detail to that of [Ger99] and that of [Bal99].7

Appendix

De�nition 14 (Group)

Let M = hW; (�a)a2A; V i be an S5 model. Let � 2 KT. Let !I� = � 2 KA.

Then:

7That includes representing the set of actions of a given type as an S5 frame, such that
executing a type on a model can be seen as multiplying that frame with that model.
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gr(M) = A

gr((M; s)) = gr(M)

gr(?') = ;

gr(LB�) = B [ gr(�)

gr(� ; � 0) = gr(�) [ gr(� 0)

gr(� [ � 0) = gr(�) [ gr(� 0)

gr(!I�) = gr(�)

De�nition 15 (Modal agents)

With induction on the structure of formulas ' 2 DKL, and on the structure of

types � 2 KT, and for all bundles I 2 bu(�), we de�ne:

ag(p) = ;

ag(:') = ag(')

ag(' ^  ) = ag(') [ ag( )

ag(Ka') = ag(') [ fag

ag(CB') = ag(') [ B

ag([�]') = ag(') [ ag(�) [ gr(�)

ag(?') = ag(')

ag(LB�) = ag(�)

ag(� ; � 0) = ag(�) [ ag(� 0)

ag(� [ � 0) = ag(�) [ ag(� 0)

ag(!I�) = ag(�)

Proof of proposition 4

By induction on the structure of action types.

Case ?'. De�ne R?'(w; v) , R(w; v), for all worlds w 2 M [[?']] and v 2

M 0[[?']]. Note that [[?']]�1(w0) = w0 for any world w0 from any model resulting

from executing '.

Relation R?' is a bisimulation between M [[?']] and M 0[[?']], because both

M [[?']] and M 0[[?']] are ; models (models without access) and because De�ne

R
?'(w; v) , R(w; v), for all worlds w 2 M [[?']] and v 2 M 0[[?']], R?'(w; v)

implies that R(w; v), which implies that Vw = Vv .

(i): Obviously, we also have that for all worlds w 2M [[?']] and v 2M 0[[?']]:

wR'v , [[?']]�1(w)R'[[?']]�1(v), because the last is equivalent to: wRv.

Case � ; � 0. This can be shown directly. Suppose � ; � 0 is executable onM ,

then � is executable on M and � 0 is executable on M [[� ]]. Now:
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If M $ M 0 and M [[� ]]M�, then by the induction hypothesis there is an

M� such that M 0[[� ]]M� and M� $M�. If M�[[� 0]]M1, then by the induction

hypothesis there is anM2 such thatM�[[� 0]]M2 andM1$M2, i.e.: M [[� ]][[� 0]]M1

and M 0[[� ]][[� 0 ]]M2. As [[� ]][[�
0 ]] = [[� ; � 0]] we are ready.

(i): Obvious. Suppose R� is the bisimulation betweenM� andM� and R� ;� 0

is the bisimulation between M1 and M2, then for all w1 2M1, w2 2M2:

w1R
� ;� 0

w2

) induction hypothesis

[[� 0]]�1(w1)R
� [[� 0]]�1(w2)

) induction hypothesis

[[� ]]�1([[� 0]]�1(w1))R
� [[� ]]�1([[� 0]]�1(w2))

,

[[� ; � 0]]�1(w1)R
� [[� ; � 0]]�1(w2)

Case � [ � 0. For nondeterministic types, it is not generally the case that

bisimilarity is invariant under their execution, as di�erent choices may be made

in executing � on M and M 0. Still, any choice made on M can be matched by

a similar choice on M 0. This is expressed by the following argument:

IfM [[� [ � 0]]M� then by de�nition 6:a:4M [[� ]]M� orM [[� 0]]M�. IfM [[� ]]M�,

then by induction, there is an M� such that M 0[[� ]]M� and M� $M�. From

M 0[[� ]]M� follows, again by de�nition 6:a:4, that M 0[[� [ � 0]]M�. If M [[� 0]]M�,

then by induction, there is an M 00 such that M [[� 0]]M 00 and M 00 $M�. From

M 0[[� 0]]M 00 follows, again by de�nition 6:a:4, that M 0[[� [ � 0]]M 00.

(i): Obvious. Let R�[� 0

be that bisimulation. Then it's either a bisimulation

between M 0 and M� or one between M 0 and M 00. Use induction either for � or

for � 0.

Case LB� . We proceed as follows: execution of � onM results in a set [M [[� ]]]

of models. By using the induction hypothesis, we may assume that every model

from that set is bisimilar to a model in the set [M 0[[� ]]], and vice versa. Therefore,

obviously the direct sum
L

[M [[� ]]] is bisimilar to the direct sum
L

[M 0[[� ]]]. Let

R
� be that bisimulation. In order to compute M [[LB� ]] =

L
B [M [[� ]]] we still

have to add access to
L

[M [[� ]]] for the agents in B n gr(�). We show that the

relation RLB� := R� de�nes a bisimulation between M [[LB� ]] and M
0[[LB� ]]:

For the agents in gr(�) this is obvious. For agents b 2 B n gr(�):

Let RLB� (w; v) and w �b w
0. There is a v0 2M [[LB� ]] such that R�(w0; v0).

We show that v �b v
0. It holds that:

Suppose RLB� (w; v), i.e. R�(w; v). By induction, for all M� 2 M [[� ]] there

is a M� 2 M 0[[� ]] such that M� $M�. Let R� be that bisimulation. By that

same induction step, if R� (w; v) then R([[� ]]�1(w); [[� ]]�1(v)). Similarly, for w0

and v0. We now continue as follows:

w �b w
0

, by de�nition 6:e:3
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[[� ]]�1(w) �b [[� ]]
�1(w0)

, as R is a bisimulation between M and M 0

[[� ]]�1(v) �b [[� ]]
�1(v0)

, by de�nition 6:e:3

v �b v
0

This ends the proof of proposition 4. �
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