A NOTE ON PURE VARIATIONS OF AXIOMS OF BLACKWELL DETERMINACY

Benedikt Löwe

We combine Vervoort's *Pure Variations* and *Axiomatic Variations* to get results on the strength of axioms of pure Blackwell determinacy.

1. Introduction

In this note, we look at weaker versions of the Axiom of Blackwell Determinacy introduced in [Lö02b] and [Lö03]. We use these results to get a new lower bound for the consistency strength of the Axiom of pure Blackwell Determinacy pBI-AD.

We shall investigate Blackwell games against opponents with arbitrary mixed strategies $\mathsf{Bl-Det}(\Gamma)$, against opponents with usual pure strategies $\mathsf{pBl-Det}(\Gamma)$, and (for reasons of expositional completeness) against blindfolded opponents $\mathsf{blBl-Det}(\Gamma)$. We shall show that under the assumption of $\mathsf{ZF} + \mathsf{DC} + \mathsf{LM}(\Gamma)$, the axioms $\mathsf{Bl-Det}(\Gamma)$ and $\mathsf{pBl-Det}(\Gamma)$ are equivalent.

We define our axioms of Blackwell determinacy in Section 2. In Section 3, we prove the Purification Theorem 3.3 as an easy application of ideas from Vervoort's *doctoraal* (M.Sc.) thesis [Ve95].

This paper will assume knowledge about descriptive set theory as can be found in [Ke95] or [Ka94]. Since the full axiom of Blackwell determinacy contradicts the full Axiom of Choice AC, we shall work throughout this paper in the theory ZF + DC.

We will be working on Baire space $\mathbb{N}^{\mathbb{N}}$ and Cantor space $2^{\mathbb{N}}$, endowed with the product topology of the discrete topologies on \mathbb{N} and $2 = \{0, 1\}, \mathbb{N}^{<\mathbb{N}}$ is the set of finite sequences of natural numbers and $2^{<\mathbb{N}}$ is the set of finite binary sequences. Let us write \mathbb{N}^{even} and \mathbb{N}^{odd} for finite sequences of even and odd length, respectively, and $\text{Prob}(\mathbb{N})$ for the set of probability measures on \mathbb{N} . Lebesgue measure on $\mathbb{N}^{\mathbb{N}}$ will be

Mathematics Subject Classification. **03E60 03E15** 91A15 91A05 91A10 28A05 60A99.

BENEDIKT LÖWE

denoted by λ , and if Γ is a pointclass, we write $\mathsf{LM}(\Gamma)$ for "all sets in Γ are Lebesgue measurable". A pointclass is called **boldface** if it is closed under continuous preimages (or, equivalently, downward closed under Wadge reducibility \leq_{W}).

We shall be using the standard notation for infinite games: If $x \in \mathbb{N}^{\mathbb{N}}$ is the sequences of moves for player I and $y \in \mathbb{N}^{\mathbb{N}}$ is the sequence of moves for player II, we let x * y be the sequence constructed by playing x against y, *i.e.*,

$$(x * y)(n) := \begin{cases} x(k) & \text{if } n = 2k, \\ y(k) & \text{if } n = 2k+1. \end{cases}$$

Conversely, if $x \in \mathbb{N}^{\mathbb{N}}$ is a run of a game, then we let x_{I} be the part played by player I and x_{II} be the part played by player II, *i.e.*, $x_{\mathrm{I}}(n) = x(2n)$ and $x_{\mathrm{II}}(n) = x(2n+1)$.

2. Definitions

Blackwell determinacy goes back to imperfect information games of finite length due to von Neumann and was introduced for infinite games by Blackwell [**Bl69**].

We call a function $\sigma : \mathbb{N}^{\text{Even}} \to \text{Prob}(\mathbb{N})$ a **mixed strategy for** player I and a function $\sigma : \mathbb{N}^{\text{Odd}} \to \text{Prob}(\mathbb{N})$ a **mixed strategy for** player II. A mixed strategy σ is called **pure** if for all $s \in \text{dom}(\sigma)$ the measure $\sigma(s)$ is a Dirac measure, *i.e.*, there is a natural number n such that $\sigma(s)(\{n\}) = 1$. This is of course equivalent to being a strategy in the usual (perfect information) sense. A pure strategy σ is called **blindfolded** if for s and t with $\ln(s) = \ln(t)$, we have $\sigma(s) = \sigma(t)$. Playing according to a blindfolded strategy is tantamount to fixing your moves in advance and playing them regardless of what your opponent does. If $x \in \mathbb{N}^{\mathbb{N}}$, we denote the blindfolded strategy that follows x by \mathbf{bf}_x :

$$\mathbf{bf}_x(s) = x\left(\left\lfloor \frac{\mathrm{lh}(s)}{2} \right\rfloor\right).$$

We denote the classes of mixed, pure and blindfolded strategies with S_{mixed} , S_{pure} , and $S_{\text{blindfolded}}$, respectively.

Let

$$\nu(\sigma,\tau)(s) := \begin{cases} \sigma(s) & \text{if } \ln(s) \text{ is even, and} \\ \tau(s) & \text{if } \ln(s) \text{ is odd.} \end{cases}$$

Then for any $s \in \mathbb{N}^{<\mathbb{N}}$, we can define

$$\mu_{\sigma,\tau}([s]) := \prod_{i=0}^{\ln(s)-1} \nu(\sigma,\tau)(s \upharpoonright i)(\{s_i\}).$$

This generates a Borel probability measure on $\mathbb{N}^{\mathbb{N}}$. If B is a Borel set, $\mu_{\sigma,\tau}(B)$ is interpreted as the probability that the result of the game ends up in the set B when player I randomizes according to σ and player II according to τ . If σ and τ are both pure, then $\mu_{\sigma,\tau}$ is a Dirac measure concentrated on the unique real that is the outcome of this game, denoted by $\sigma * \tau$. As usual, we call a pure strategy σ for player I (τ for player II) a **winning strategy** if for all pure counterstrategies τ (σ), we have that $\sigma * \tau \in A$ ($\sigma * \tau \notin A$).

Let \mathcal{S} be a class of strategies, σ a mixed strategy for player I, and τ a mixed strategy for player II. We say that σ is \mathcal{S} -optimal for the payoff set $A \subseteq \mathbb{N}^{\mathbb{N}}$ if for all $\tau_* \in \mathcal{S}$ for player II, $\mu_{\sigma,\tau_*}^-(A) = 1$, and similarly, we say that τ is \mathcal{S} -optimal for the payoff set $A \subseteq \mathbb{N}^{\mathbb{N}}$ if for all $\sigma_* \in \mathcal{S}$ for player I, $\mu_{\sigma_*,\tau}^+(A) = 0.^1$

We call a set $A \subseteq \mathbb{N}^{\mathbb{N}}$ Blackwell determined, purely Blackwell determined, or blindfoldedly Blackwell determined if either player I or player II has an S_{mixed} , S_{pure} , or $S_{\text{blindfolded}}$ -optimal strategy, respectively, and we call a pointclass Γ Blackwell determined (purely Blackwell determined, blindfoldedly Blackwell determined) if all sets $A \in \Gamma$ are Blackwell determined (purely Blackwell determined, blindfoldedly Blackwell determined). We write Bl-Det(Γ), pBl-Det(Γ), and blBl-Det(Γ) for these statements. Furthermore, we write Bl-AD, pBl-AD, and blBl-AD for the full axioms claiming (pure, blindfolded) Blackwell determinacy for all sets.²

There is a peculiar difference between pure and mixed strategies: If a pure strategy is $S_{\text{blindfolded}}$ -optimal, it is already winning. On the other hand, for a mixed strategy, being $S_{\text{blindfolded}}$ -optimal is rather weak.

Proposition 2.1. If σ is a pure strategy and A is an arbitrary payoff, then the following are equivalent for the game on A:

¹Here, μ^+ denotes outer measure and μ^- denotes inner measure with respect to μ in the usual sense of measure theory. If A is Borel, then $\mu^+(A) = \mu^-(A) = \mu(A)$ for Borel measures μ .

²Note that the original definition of Blackwell determinacy was stronger than ours, using imperfect information strategies. By a result of Tony Martin's, the original definition is equivalent to our definition on boldface pointclasses; *cf.* [Ma98, p. 1579] and [MaNeVe03, p. 618*sq*].

(i) σ is $S_{\text{blindfolded}}$ -optimal, and

(ii) σ is a winning strategy.

Proof. We only have to show $(\mathbf{i}) \Rightarrow (\mathbf{i}\mathbf{i})$. Without loss of generality, assume that σ is a strategy for player I. Let τ be a pure counterstrategy such that $\sigma * \tau \notin A$. Then the blindfolded strategy $\tau^* := \mathbf{bf}_{(\sigma * \tau)_{\text{II}}}$ witnesses that σ is not $\mathcal{S}_{\text{blindfolded}}$ -optimal, since $\sigma * \tau^* = \sigma * \tau \notin A$. \Box

Proposition 2.2. Let $A := \{x \in 2^{\mathbb{N}}; \forall n(x(2n) \neq x(2n+1))\}$. In the game with payoff A, player II has a winning strategy, and player I has an $S_{\text{blindfolded}}$ -optimal strategy. In particular, the strategy of player I is a $S_{\text{blindfolded}}$ -optimal strategy which cannot be S_{pure} -optimal.

Proof. Obviously "copy the last move of player I" is a winning strategy for player II. But the "randomize" strategy $\sigma(s)(\{0\}) = \sigma(s)(\{1\}) = \frac{1}{2}$ is also $\mathcal{S}_{\text{blindfolded}}$ -optimal: Let τ be a blindfolded strategy for player II, then it corresponds to playing a fixed real x digit by digit. The derived measure $\mu_{\sigma,\tau}$ has the following properties: For each set $X \subseteq 2^{\mathbb{N}}$, we have (a) $\lambda(X) = \mu_{\sigma,\tau}(\{x ; x_{\mathrm{I}} \in X\})$, and (b) $\delta_x(X) = \mu_{\sigma,\tau}(\{x ; x_{\mathrm{II}} \in X\})$ where δ_x is the Dirac measure concentrating on x. Thus $\mu_{\sigma,\tau}(2^{\mathbb{N}} \setminus A) =$ $\mu_{\sigma,\tau}(\{y ; \forall n(y(2n) = y(2n+1) = x(n))\} = \lambda(\{x\}) = 0.$

The proof of Proposition 2.2 not only displays that for mixed strategies the different notions of optimality are not equivalent, but since player I's winning strategy is also $S_{\text{blindfolded}}$ -optimal, we get an example of a game in which both players have a $S_{\text{blindfolded}}$ -optimal strategy which seems to mess with the usual dichotomy arguments of settheoretic game theory.

However, while the statement "player I has a $S_{\text{blindfolded}}$ -optimal strategy in the game A" seems to tell us terribly little about the structure of A, the axioms of blindfolded Blackwell determinacy give us logical strength:

Theorem 2.3 (Martin). The statements $\mathsf{blBl-Det}(\Pi_1^1)$, $\mathsf{pBl-Det}(\Pi_1^1)$, and $\mathsf{Det}(\Pi_1^1)$ are equivalent.

Proof. Cf. [Lö03, Corollary 3.9]

Theorem 2.4. The axioms blBl-AD and pBl-AD imply the existence of an inner model with a strong cardinal.

Proof. Cf. **[Lö03**, Corollary 4.9].

4

PURE VARIATIONS

3. Purifying mixed opponents

We say that a set $A \subseteq \mathbb{N}^{\mathbb{N}}$ is **universally measurable** if for each Borel probability measure μ on $\mathbb{N}^{\mathbb{N}}$, inner and outer μ -measure of A coincide, and write $\mathsf{UM}(\Gamma)$ for "all sets in Γ are universally measurable".

Theorem 3.1. If Γ is a boldface pointclass, then $\mathsf{LM}(\Gamma)$ implies $\mathsf{UM}(\Gamma)$.

Proof. It is enough to show this theorem for subsets of [0, 1], so let us assume that our measures live on [0, 1].

Let us first assume that μ has a (necessarily countable) nonempty set of atoms A (*i.e.*, $\mu(\{x\}) = 0$ for all $x \in A$). If $\mu(A) = 1$, then every subset of $\mathbb{N}^{\mathbb{N}}$ is μ -measurable. If $\mu(\mathbb{N}^{\mathbb{N}} \setminus A) =: \Phi > 0$, define an atomless measure μ^* by

$$\mu^*(X) := \Phi^{-1} \cdot \mu(X \setminus A).$$

Then μ -measurability and μ^* -measurability coincide. Thus, it is enough to prove the theorem for atomless measures μ .

If μ is atomless, $D_{\mu}(x) := \mu(\{y; y \leq x\})$ is a continuous function, and for each set $X \subseteq [0, 1]$, μ -measurability of X is equivalent to λ measurability of $D_{\mu}^{-1}[X]$.

The main result of this section is the Purification Theorem 3.3. It is a consequence of a purification theorem for infinite Blackwell games due to Vervoort. The main idea is to understand a mixed strategy as a probability distribution over the set of pure strategies. In this general form, the idea goes back to Harsanyi's famous purification theorem in **[Ha73**].

A pure strategy can be understood as a function $\sigma : \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}$, so we can see the set of pure strategies as a product indexed by $\mathbb{N}^{<\mathbb{N}}$.

Let τ be a mixed strategy. We shall define a probability measure V_{τ} on $\mathbb{N}^{(\mathbb{N}^{<\mathbb{N}})}$ which we shall call the **Vervoort code of** τ . If $p_0, ..., p_n$ are elements of $\mathbb{N}^{<\mathbb{N}}$ and $N_0, ..., N_n$ are natural numbers, define

$$V_{\tau}(\{\tau^*; \tau^*(p_0) = N_0 \& \dots \& \tau^*(p_n) := N_n\}) = \prod_{i=0}^n \tau(p_i)(\{N_i\}),$$

and let V_{τ} be the unique extension of this function using countable additivity. The measure V_{τ} is a Borel probability measure on $\mathbb{N}^{(\mathbb{N}^{<\mathbb{N}})}$.

Theorem 3.2 (Vervoort). If σ and τ are mixed strategy and B is a Borel subset of $\mathbb{N}^{\mathbb{N}}$, then

$$\mu_{\sigma,\tau}(B) = \int \mu_{\sigma,x}(B) \, dV_{\tau}(x)$$
$$= \int \mu_{x,\tau}(B) \, dV_{\sigma}(x)$$

Proof. This is essentially [Ve95, Theorem 6.6].

Purification Theorem 3.3. Let Γ be a boldface pointclass and assume that $\mathsf{LM}(\Gamma)$ holds. Let $A \in \Gamma$ and assume that A is purely Blackwell determined. Then A is Blackwell determined. Moreover, every \mathcal{S}_{pure} -optimal strategy is actually \mathcal{S}_{mixed} -optimal.

Proof. First of all, notice that by Theorem 3.1, we have $\mathsf{UM}(\Gamma)$, so A is universally measurable. Since A is purely Blackwell determined, let σ be (without loss of generality) an S_{pure} -optimal strategy for player I. Let τ be an arbitrary mixed strategy for player II. We shall show that for every Borel superset $B \supseteq A$, we have $\mu_{\sigma,\tau}(B) = 1$. Because A is universally measurable, this proves the claim.

By our assumption, we know that for every pure strategy τ^* and every Borel $B \supseteq A$, we have $\mu_{\sigma,\tau^*}(B) = 1$. But this means that the function

$$\mathbf{v}:\mathbb{N}^{(\mathbb{N}^{<\mathbb{N}})}\to\mathbb{R}:x\mapsto\mu_{\sigma,x}(B)$$

is the constant function with value 1.

Using Theorem 3.2, we get

$$\mu_{\sigma,\tau}(B) = \int \mu_{\sigma,x}(B) \, dV_{\tau}(x) = \int \mathbf{v}(x) \, dV_{\tau}(x) = 1.$$

Corollary 3.4. Let Γ be a boldface pointclass such that $\mathsf{LM}(\Gamma)$. Then $\mathsf{pBI-Det}(\Gamma)$ implies $\mathsf{BI-Det}(\Gamma)$.

4. Conclusion

In the following, we shall be using the equivalence theorem of Martin, Neeman and Vervoort:

Theorem 4.1 (Martin, Neeman, Vervoort). Let **Γ** be either Δ_{2n}^1 , Σ_{2n}^1 , Δ_{2n+1}^1 , $\mathfrak{I}^n(<\omega^2-\mathbf{\Pi}_1^1)$, or $\wp(\mathbb{N}^{\mathbb{N}})\cap \mathbf{L}(\mathbb{R})$. Then $\mathsf{Bl-Det}(\mathbf{\Gamma})$ implies $\mathsf{Det}(\mathbf{\Gamma})$.

Proof. This is Theorem 5.1, Corollary 5.3, Theorem 5.4, Theorem 5.6, and Theorem 5.7 in [MaNeVe03]. \Box

PURE VARIATIONS

Corollary 4.2. Let Γ be either Δ_{2n}^1 , Σ_{2n}^1 , Δ_{2n+1}^1 , $\mathfrak{I}^n(<\omega^2-\Pi_1^1)$, or $\wp(\mathbb{N}^{\mathbb{N}}) \cap \mathbf{L}(\mathbb{R})$, and assume $\mathsf{LM}(\Gamma)$. Then $\mathsf{pBI-Det}(\Gamma)$ implies $\mathsf{Det}(\Gamma)$. In particular, $\mathsf{pBI-PD}$ and "all projective sets are Lebesgue measurable" implies PD.

Proof. Clear from Corollary 3.4 and Theorem 4.1.

Corollary 4.3. The statement $pBl-Det(\Delta_2^1)$ implies the existence of an inner model with a Woodin cardinal.

Proof. Note that by Theorem 2.3, $\mathsf{pBl-Det}(\Delta_2^1)$ implies analytic determinacy, and thus –by the usual (Solovay) unfolding argument– the Lebesgue measurability of all Σ_2^1 sets. But this is enough to apply Corollary 4.2 and get $\mathsf{Det}(\Delta_2^1)$ which yields by a famous theorem of Woodin's the existence of an inner model with a Woodin cardinal. \Box

Building on the results from [Lö03], Greg Hjorth (2002, personal communication) found a proof of "blBl-AD implies the existence of an inner model with a Woodin cardinal" using Cabal-style descriptive set theory and inner model theory.

References

[Bl69]	David Blackwell, Infinite G_{δ} games with imperfect information, Polska Akademia Nauk – Instytut Matematyczny – Zas- tosowania Matematyki 10 (1969), p. 99–101
[Ha73]	John C. Harsanyi , Games with randomly disturbed payoffs: a new rationale for mixed-strategy equilibrium points, International Journal of Game Theory 2 (1973), p. 1–23
[Ka94]	Akihiro Kanamori , The Higher Infinite, Large Cardinals in Set The- ory from Their Beginnings, Berlin 1994 [Perspectives in Mathemati- cal Logic]
[Ke95]	Alexander S. Kechris , Classical Descriptive Set Theory, Berlin 1995 [Graduate Texts in Mathematics 156]
[Lö02a]	Benedikt Löwe, Playing with mixed strategies on infinite sets, In- ternational Journal of Game Theory 31 (2002), p. 137-150
[Lö02b]	Benedikt Löwe, Consequences of Blackwell Determinacy, Bulletin of the Irish Mathematical Society 49 (2002), p. 43-69
[Lö03]	 Benedikt Löwe, The Simulation Technique and its Applications to Infinitary Combinatorics under the Axiom of Blackwell Determinacy, to appear in Pacific Journal of Mathematics (ILLC Publica- tions PP-2003-18)
[Ma98]	Donald A. Martin, The Determinacy of Blackwell Games, Journal of Symbolic Logic 63 (1998), p. 1565–1581

BENEDIKT LÖWE

- [MaNeVe03] Donald A. Martin, Itay Neeman, Marco Vervoort, The Strength of Blackwell Determinacy, Journal of Symbolic Logic 68 (2003), p. 615–636
- [Ve95] Marco R. Vervoort, Blackwell games, Doctoraalscriptie, Universiteit van Amsterdam, November 1995

Institute for Logic, Language and Computation, Universiteit van Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands

E-mail address: bloewe@science.uva.nl

The author was partially supported by DFG Grant KON 88/2002 LO 8 34/3-1. He wishes to thank the Department of Logic and Philosophy of Science at UC Irvine for their Hospitality during his stay in March and April 2002.