A NOTE ON PURE VARIATIONS OF AXIOMS OF
BLACKWELL DETERMINACY

BENEDIKT LOWE

‘We combine Vervoort’s Pure Variations and Axiomatic
Variations to get results on the strength of axioms of
pure Blackwell determinacy.

1. Introduction

In this note, we look at weaker versions of the Axiom of Blackwell
Determinacy introduced in [L602b] and [L603]. We use these results
to get a new lower bound for the consistency strength of the Axiom of
pure Blackwell Determinacy pBI-AD.

We shall investigate Blackwell games against opponents with arbi-
trary mixed strategies Bl-Det(T"), against opponents with usual pure
strategies pBl-Det(T"), and (for reasons of expositional completeness)
against blindfolded opponents bIBI-Det(I'). We shall show that un-
der the assumption of ZF + DC 4 LM(T"), the axioms Bl-Det(I') and
pBl-Det(T") are equivalent.

We define our axioms of Blackwell determinacy in Section 2. In
Section 3, we prove the Purification Theorem 3.3 as an easy application
of ideas from Vervoort’s doctoraal (M.Sc.) thesis [Ve95].

This paper will assume knowledge about descriptive set theory as
can be found in [Ke95] or [Ka94|. Since the full axiom of Blackwell
determinacy contradicts the full Axiom of Choice AC, we shall work
throughout this paper in the theory ZF + DC.

We will be working on Baire space NN and Cantor space 2", endowed
with the product topology of the discrete topologies on N and 2 =
{0,1}, N<N is the set of finite sequences of natural numbers and 2<N
is the set of finite binary sequences. Let us write NeV*" and N°dd for
finite sequences of even and odd length, respectively, and Prob(N) for
the set of probability measures on N. Lebesgue measure on NV will be
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denoted by A, and if ' is a pointclass, we write LM(T") for “all sets in
I' are Lebesgue measurable”. A pointclass is called boldface if it is
closed under continuous preimages (or, equivalently, downward closed
under Wadge reducibility <).

We shall be using the standard notation for infinite games: If x € NV
is the sequences of moves for player I and y € N¥ is the sequence of
moves for player II, we let x %y be the sequence constructed by playing
xr against y, i.e.,

x(k) if n =2k,
(z*y)(n) ;:{ y§k§ if n=2k+ 1.

Conversely, if + € NV is a run of a game, then we let z; be the part
played by player I and xy; be the part played by player 11, i.e., z1(n) =
z(2n) and zy(n) = z(2n + 1).

2. Definitions

Blackwell determinacy goes back to imperfect information games of
finite length due to von Neumann and was introduced for infinite games
by Blackwell [B169].

We call a function o : N¥ — Prob(N) a mixed strategy for
player I and a function o : N — Prob(N) a mixed strategy for
player II. A mixed strategy o is called pure if for all s € dom(o) the
measure o(s) is a Dirac measure, i.e., there is a natural number n such
that o(s)({n}) = 1. This is of course equivalent to being a strategy
in the usual (perfect information) sense. A pure strategy o is called
blindfolded if for s and ¢ with lh(s) = lh(¢), we have o(s) = o(t).
Playing according to a blindfolded strategy is tantamount to fixing your
moves in advance and playing them regardless of what your opponent
does. If z € N¥, we denote the blindfolded strategy that follows x by

bf,:
wio((2])

We denote the classes of mixed, pure and blindfolded strategies with

Smixeds Spure, aNd Splindfolded, respectively.
Let

o(s) if Ih(s) is even, and

v(o,7)(s) == { 7(s) if Ih(s) is odd.
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Then for any s € NN, we can define
lh(s)—1
oa(ls]) = ] wlo,7)(sli)({sid).
i=0

This generates a Borel probability measure on NN, If B is a Borel set,
lo-(B) is interpreted as the probability that the result of the game
ends up in the set B when player I randomizes according to ¢ and
player II according to 7. If o and 7 are both pure, then p, , is a Dirac
measure concentrated on the unique real that is the outcome of this
game, denoted by o % 7. As usual, we call a pure strategy o for player
I (7 for player II) a winning strategy if for all pure counterstrategies
7 (o), we have that cx 7 € A (o x7 ¢ A).

Let § be a class of strategies, 0 a mixed strategy for player I, and
7 a mixed strategy for player II. We say that ¢ is S-optimal for the
payoff set A C NV if for all 7, € S for player II, ty . (A) = 1, and
similarly, we say that 7 is S-optimal for the payoff set A C NV if for
all o, € S for player I, uf (A)=0.!

We call a set A C NN Blackwell determined, purely Black-
well determined, or blindfoldedly Blackwell determined if ei-
ther player I or player II has an Spixed-, Spure=; OT Sblindfolded-OPtimal
strategy, respectively, and we call a pointclass I' Blackwell determined
(purely Blackwell determined, blindfoldedly Blackwell determined) if
all sets A € T" are Blackwell determined (purely Blackwell determined,
blindfoldedly Blackwell determined). We write Bl-Det(I"), pBI-Det(I),
and bIBI-Det(I") for these statements. Furthermore, we write BI-AD,
pBI-AD, and bIBI-AD for the full axioms claiming (pure, blindfolded)
Blackwell determinacy for all sets.?

There is a peculiar difference between pure and mixed strategies: If a
pure strategy is Spindfoldea-Optimal, it is already winning. On the other
hand, for a mixed strategy, being Spiindfoldea-Optimal is rather weak.

Proposition 2.1. If ¢ is a pure strategy and A is an arbitrary payoff,
then the following are equivalent for the game on A:

Here, p+ denotes outer measure and 1~ denotes inner measure with respect to
w in the usual sense of measure theory. If A is Borel, then u*(A) = p=(A4) = u(A)
for Borel measures .

2Note that the original definition of Blackwell determinacy was stronger than
ours, using imperfect information strategies. By a result of Tony Martin’s, the orig-
inal definition is equivalent to our definition on boldface pointclasses; ¢f. [Ma98,
p. 1579] and [MaNeVe03, p. 618sq].
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(1) o is Spiindfoldea-optimal, and
(ii) o is a winning strategy.

Proof. We only have to show (i)=-(ii). Without loss of generality, as-
sume that o is a strategy for player 1. Let 7 be a pure counterstrategy
such that o * 7 ¢ A. Then the blindfolded strategy 7* := bf 5.r),
witnesses that o is not Spjindfolded-Optimal, since o x7* = ox7 ¢ A.

Proposition 2.2. Let A := {z € 2V; Vn(z(2n) # x(2n + 1)}. In the
game with payoff A, player II has a winning strategy, and player I has
an Splindfoldeda-Optimal strategy. In particular, the strategy of player I is
a Splindfolded-Optimal strategy which cannot be Spyre-optimal.

Proof. Obviously “copy the last move of player I” is a winning strategy
for player II. But the “randomize” strategy o(s)({0}) = o(s)({1}) = 3
is also Splindafolqea-optimal: Let 7 be a blindfolded strategy for player II,
then it corresponds to playing a fixed real x digit by digit. The derived
measure /i, , has the following properties: For each set X C 2N, we have
(@) AM(X) = po({z; 21 € X}), and (b) 0.(X) = po-({2; zu € X})
where d,, is the Dirac measure concentrating on z. Thus p,,(2V\A) =
o ({y; ¥n(y(@n) = y(2n + 1) = 2(n))} = A({z}) = 0. O

The proof of Proposition 2.2 not only displays that for mixed strate-
gies the different notions of optimality are not equivalent, but since
player I’s winning strategy is also Spindfoldeq-Optimal, we get an exam-
ple of a game in which both players have a Spjngfolqeq-Optimal strat-
egy which seems to mess with the usual dichotomy arguments of set-
theoretic game theory.

However, while the statement “player I has a Spindfoldea-Optimal
strategy in the game A” seems to tell us terribly little about the struc-
ture of A, the axioms of blindfolded Blackwell determinacy give us
logical strength:

Theorem 2.3 (Martin). The statements blBI-Det(T1}), pBIl-Det(IT}),
and Det(IT}) are equivalent.
Proof. Cf. [L603, Corollary 3.9] O

Theorem 2.4. The axioms bIBI-AD and pBI-AD imply the existence
of an inner model with a strong cardinal.

Proof. Cf. [L603, Corollary 4.9]. O
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3. Purifying mixed opponents

We say that a set A C NV is universally measurable if for each Borel
probability measure p on NV, inner and outer pu-measure of A coincide,
and write UM(T") for “all sets in I" are universally measurable”.

Theorem 3.1. If I is a boldface pointclass, then LM(T') implies UM(T").

Proof. 1t is enough to show this theorem for subsets of [0, 1], so let us
assume that our measures live on [0, 1].

Let us first assume that p has a (necessarily countable) nonempty
set of atoms A (i.e., u({x}) =0for all x € A). If u(A) = 1, then every
subset of N is y-measurable. If u(NY\ A) =: ® > 0, define an atomless
measure i* by

pH(X) = 01 p(X\A).

Then p-measurability and p*-measurability coincide. Thus, it is enough
to prove the theorem for atomless measures pu.

If p is atomless, D,(z) := p({y; y < z}) is a continuous function,
and for each set X C [0, 1], p-measurability of X is equivalent to A-
measurability of D, *[X]. O

The main result of this section is the Purification Theorem 3.3. It
is a consequence of a purification theorem for infinite Blackwell games
due to Vervoort. The main idea is to understand a mixed strategy as a
probability distribution over the set of pure strategies. In this general
form, the idea goes back to Harsanyi’s famous purification theorem in
[HaT73].

A pure strategy can be understood as a function o : NN — N so
we can see the set of pure strategies as a product indexed by N<N,

Let 7 be a mixed strategy. We shall define a probability measure V.
on NO) which we shall call the Vervoort code of 7. If Do, -y Pn
are elements of NN and Ny, ..., N, are natural numbers, define

n

V({7 (mo) = No& . &7 (pn) := Nu}) = [ [ (o) ({N}),

=0

and let V, be the unique extension of this function using countable
additivity. The measure V, is a Borel probability measure on NO<H,
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Theorem 3.2 (Vervoort). If o and 7 are mixed strategy and B is a
Borel subset of N¥, then

fon(B) = / o (B) Vi (1)

— [ i B v

Proof. This is essentially [Ve95, Theorem 6.6]. U

Purification Theorem 3.3. Let T be a boldface pointclass and as-
sume that LM(T") holds. Let A € T and assume that A is purely
Blackwell determined. Then A is Blackwell determined. Moreover,
every Spure-Optimal strategy is actually Spixeq-optimal.

Proof. First of all, notice that by Theorem 3.1, we have UM(T"), so A
is universally measurable. Since A is purely Blackwell determined, let
o be (without loss of generality) an Spye-optimal strategy for player 1.
Let 7 be an arbitrary mixed strategy for player II. We shall show that
for every Borel superset B O A, we have p,,(B) = 1. Because A is
universally measurable, this proves the claim.

By our assumption, we know that for every pure strategy 7* and
every Borel B D A, we have p,,-(B) = 1. But this means that the
function

v: N SRz Hoz(DB)
is the constant function with value 1.
Using Theorem 3.2, we get

por(B) = [ o BY V() = [ vla) Vi) =1,
O
Corollary 3.4. Let I' be a boldface pointclass such that LM(I"). Then
pBI-Det(I") implies Bl-Det(T").

4. Conclusion

In the following, we shall be using the equivalence theorem of Martin,
Neeman and Vervoort:

Theorem 4.1 (Martin, Neeman, Vervoort). Let T be either Aj , 33

2n» 2n»

A}, 9" (< W), or p(NY)NL(R). Then Bl-Det(T') implies Det(T).

Proof. This is Theorem 5.1, Corollary 5.3, Theorem 5.4, Theorem 5.6,
and Theorem 5.7 in [MaNeVe03]. O
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Corollary 4.2. Let T' be either A}, 5., Ay, 9"(< w?II3), or
o(NY) N L(R), and assume LM(T'). Then pBIl-Det(T") implies Det(T').
In particular, pBI-PD and “all projective sets are Lebesgue measurable”

implies PD.
Proof. Clear from Corollary 3.4 and Theorem 4.1. O

Corollary 4.3. The statement pBl-Det(A}) implies the existence of
an inner model with a Woodin cardinal.

Proof. Note that by Theorem 2.3, pBl-Det(Aj) implies analytic de-
terminacy, and thus —by the usual (Solovay) unfolding argument— the
Lebesgue measurability of all 32 sets. But this is enough to apply
Corollary 4.2 and get Det(Aj) which yields by a famous theorem of
Woodin’s the existence of an inner model with a Woodin cardinal. [J

Building on the results from [L603], Greg Hjorth (2002, personal
communication) found a proof of “bIBI-AD implies the existence of an
inner model with a Woodin cardinal” using Cabal-style descriptive set
theory and inner model theory.
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