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Abstract

Making use of epistemic logic it is provable that whenever the smallest
uncertainty of message delivery is present, common knowledge via com-
munication is impossible. This implies that a coordinated attack, which
demands common knowledge, really can never take place. But there might
be possibilities for a coordinated attack when you drop the demand of
common knowledge and have a look at the probabilities of proper mes-
sage delivery. A tentative start is made to develop a theory to explore
this.
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1 Introduction

On two mountain tops at both sides of a valley two generals have settled with
an army. In the valley lives their common enemy. When the two generals attack
from both sides at the same moment, they definitely will win the battle, but
when either attacks on his own, he will lose. If one decides to start the battle
at a certain moment in the future, he can send a messenger to alert the other
general. But the messenger could on his way be captured by the enemy, so the
other general in his turn has to send another messenger back to inform the first
general that the message has been delivered. Only then the first general knows
that the other general knows at what time he has to attack from the opposite
side. But a new problem arises: now the second general needs to know whether
his message has been delivered, to make sure that he is not the only general that
will attack, the first general still waiting for his message to be delivered. But
then again the first general needs a new message of receiving and so on...This
endless sending of messages will never bring enough knowledge to both generals
and so a coordinated attack cannot take place. This is called the coordinated
attack problem.

For understanding the coordinated attack problem and the proof of its im-
possibility when you demand common knowledge, an introduction in epistemic
logic is needed. Making use of the language of epistemic logic we can reason
about knowledge. A short introduction can be found in chapter one. In chapter
two and three we extend this logic for describing a multi-agent system.

Then in chapter four we apply this language to prove that common knowl-
edge via communication with uncertain message delivery is impossible, what-
ever the probability of right message delivery might be. So a coordinated attack
which demands common knowledge can never take place.

In these first four chapters I tried to follow as much as possible the notations
of ’Reasoning about Knowledge’ [1].

Although common knowledge via communication is impossible, I evolved
some theory to estimate probabilities of sufficient shared knowledge for a suc-
cesfull coordinated attack. Depending on the chosen strategy it seems sometimes
important to ask for a message of receipt and sometimes this isn’t important at
all.

2 Method

The first thing to do, for me and my teacher D. de Jongh, was to get into
epistemic logic. Therefore we read the first two chapters of ’Epistemic Logic
for AI and computerscience’ [2], guided by the course notes of R. Verbrugge[3].
After this we stepped over to the book ’Reasoning about Knowledge’ [1] and read
chapter 4 and 5 for understanding chapter 6.1, which treats the coordinated
attack problem. I obtained a clear picture of the proof of the impossibility of a
coordinated attack based on common knowledge. I here give a presentation of
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the theory on which it is based and of the proof itself. I added some pictures
and a little extra explanation where I thought this might be helpful. After this I
brought some stochastics into the subject and made a tentative start to develop
a theory to explore the possibilities for a succesfull attack, when you drop the
demand for common knowledge.
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3 The Language of epistemic logic

Definition 3.1 When P is a set of primitive propositions, P = {pm,m ∈ N}
or P = {p0, ..., pm}, and G is a set of m agents G = {1, ..., n}, then the set of
epistemic formulas LnK(P ), is the smallest set closed under:

• p ∈ P ⇒ p ∈ LnK(P ),

• ϕ,ψ ∈ LnK(P ) ⇒ (ϕ ∧ ψ), ¬ϕ ∈ LnK(P ),

• ϕ ∈ LnK(P ) ⇒ ∀i ∈ G : Kiϕ ∈ LnK(P ).

The other connectives {∨,→,↔} are defined with {¬,∧} in the usual manner.
You can read for Kiϕ, ’agent i knows that ϕ’.

Definition 3.2 With the language LnK(P ) we can construct an axiomatic sys-
tem K(n), by:

• Axioms

A1 All propositional tautologies

A2 (Kiϕ ∧Ki(ϕ→ ψ)) → Kiψ i = 1, ..., n

• Derivation Rules

R1 ϕ,ϕ→ψ
ψ

R2 ϕ
Kiϕ

i = 1, ...n

This axiomatic system corresponds with a class of models K(n), in the sense
that if you can derive a formula in K(n), it is true in each model in this class,
and when a formula is true in all models in K(n), there exists a derivation of it
in K(n). In other words, K(n) is sound and complete with respect to K(n) (Full
proofs can be found in [2], Chapter 1). Let us have a look for which class of
models this is the case.

Definition 3.3 The class of Kripke Models K(n) is the set of all models
M =< S, π,R1, ..., Rn > with:

• S is a non-empty set of states

• π: S × P −→ {true, false}

• Ri⊆ S × S for i = 1, ..., n

Now (M, s) |= Kiϕ, means that ∀r((s, r) ∈ Ri) : (M, r) |= ϕ. When (s, r) ∈
Ri, in (M, s) agent i considers (M, r) as a possible state. You can read for
(M, s) |= Kiϕ, ’when agent i is in state s, he knows that ϕ’.
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Example 1

fig.1

s
1

//2 :: r, p

In fig.1 :

1. (M, s) � K1p

2. (M, s) 2 K2p

3. (M, r) 2 K1p

Sometimes we want to look at the reduced class of all Kripke models, with
Ri an equivalence relation for i = 1, ..., n. This class is denoted by S5(n). We
get a sound and complete axiomatization S5(n) of this, when we add three other
axioms to K(n):

Definition 3.4 The axiomatic system S5(n) is K(n), expanded with

A3 Kiϕ→ ϕ i = 1, ..., n
(Known facts are true)

A4 Kiϕ→ KiKiϕ i = 1, ..., n
(Positive introspection: an agent knows that he knows something)

A5 ¬Kiϕ→ Ki¬Kiϕ
(Negative introspection: an agent knows that he doesn’t know something)

(again proofs can be found in [2], chapter 1).

Example 2

If we want fig.1 to be a model in S5(n), then since R1 has to be an equivalence
relation, also (s, s) ∈ R1 (reflexivity), so the picture has to be extended to this:

fig.2

s
1

//

2

��

1

DD r, p

1

��

2

YY
2oo

Now we have (M, s) 2 K1p, although in fig.1 we had the opposite. This is
sound with respect to the axiomatization, since if we had (M, s) � K1p, then
with axiom A3 in S5(n) we also would have (M, s) � p, but this is not the case.
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We can also extend the language with two operators other than Ki: C and
E. We call this expanded language LmKEC(P ). To define the meaning of these
operators in a model, we first need to introduce some notation:

Notation 1

• s→ t⇐⇒ (s, t) ∈ R1 ∪ ... ∪Rn,

• s→i t⇐⇒ (s, t) ∈ Ri

• ∀k ≥ 0 : s→k t⇐⇒ ∃ a sequence s = s0 → s1 → ...→ sk = t,

• ∀k ≥ 0 : s →k
G t⇐⇒ ∃ a sequence s = s0 →i1 s1 →i2 ... →ik sk = t with

i1, i2, ..., ik ∈ G,

• s � t⇐⇒ ∃k ≥ 0 : s→k t,

• s �G t⇐⇒ ∃k ≥ 0 : s→k
G t.

You can see that � is the reflexive, transitive closure of →. Furthermore if
s � t, we say t is reachable from s.

Example 3

fig.3

s
1

//
2

''
t 2dd

In fig.3 :

1. ¬(s→ s)

2. t→ t

3. ∀k ∈ N>0 : s→k t

4. s � s

Definition 3.5 : KEC(m) is the class of models M =< S, π,R1, ..., Rm, E, C >,
with E = R1 ∪ ...∪Rm and C = E∗, i.e. C is the reflexive, transitive closure of
E. We have:

• (M, s) |= Eϕ⇔ ∀t(s→ t) : (M, t) |= ϕ

• (M, s) |= Cϕ⇔ ∀t(s � t) : (M, t) |= ϕ

When we have a subset G of two of more agents among all the agents in the
system, then we can also look at EG and CG, being defined as if the agents in
G are the only agents in the system:
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• (M, s) |= EGϕ⇔ ∀t(∃i ∈ G(s→i t)) : (M, t) |= ϕ

• (M, s) |= CGϕ⇔ ∀t(s �G t) : (M, t) |= ϕ

Example 4

fig.4

s
1

// t, p

2

��

In fig.4:

1. (M, s) � Ep

2. (M, s) 2 Cp

3. (M, t) � Cp

Lemma 1 Given a symmetric model in KEC(m), if t reachable from s, then
(M, s) � Cϕ⇔ (M, t) � Cϕ.

Proof:

⇒): Given is s � t, so ∃l ∈ N with s →l t. If (M, s) � Cϕ, then by
definition of Cϕ, (M, s) � Ekϕ for k = 0, 1, 2, ... . So we know (M, t) � Ekϕ for
k = 0, 1, 2, ..., since (M, s) � Ekϕ for k = l, l + 1, l + 2, ... . By definition of Cϕ
it now follows that (M, t) � Cϕ.

⇐): When (M, t) � Cϕ, by definition of Cϕ, (M, t) � Ekϕ for k = 0, 1, 2, ...
Furthermore s � t ⇔ t � s, since we are in a symmetric model, so Ri is
symmetric for i=1, ..., n. This means that ∃l ∈ N with t →l s. Now we know
that (M, s) � Ekϕ for k = 0, 1, 2, ..., since (M, t) � Ekϕ for k = l, l + 1, l + 2, ...
So by definition (M, s) � Cϕ.

4 A model of a multi-agent system

Definition 4.1 We call any collection of interacting agents a multi-agent
system.

You can think for example of players in a game or processes in a computer
network.

Definition 4.2 In a multi-agent system with agents i = 1, ..., n, at a certain
time, every agent i is in a certain individual state, the local state, denoted by
si.
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The local state contains all the information which the agent at that particular
moment has access to. This can be (too) much information, so most of the times
we try to look only at the information that is relevant for our goal.

It is not only important what the local states of the agents are. When we
consider communicating agents, we also need to know which messages are on
the way and if the communication line is working. We therefore define also a
’state of the environment’.

Definition 4.3 The environment’s state, se, contains all the information
that, besides the local states of the agents, is relevant for our analysis.

Definition 4.4 Looking at a system with agents i = 1, ..., n the global state of
the system, is the (n+1)-tuple (se, s1, ..., sn). It describes the system at a given
time.

Notation 2

• Le: the set of possible states of the environment,

• Li: the set of possible local states si of agent i,

• G:= Le × L1 × ...× Ln: the set of all possible global states.

Definition 4.5 A run over G is a function r : N −→ G, a sequence of global
states in G. For (r,m), with r a run and m ∈ N, r(m) := (se, s1, ..., sn), with
re(m) = se, ri(m) = si. Round m takes place between time m − 1 and m.
Agents perform actions during a round.

In the above definition, we think of N as a set of discrete times. When we
look at interacting computers, it is definitely allowed to consider discrete time
steps. But also when we look at interacting people, the relevant actions are
often taken at discrete times. You can think of rounds in a game. The reason
we look at an infinite time domain is that we often do not know in advance
how much time is needed to achieve a certain end position. When you have
estimated how much time is needed and it is only a finite set of k time steps,
then you can simply say that the global state remains the same each step after
the kth.

The agents do not have to know what time it is. We have an external clock.
An agent has access to the time only in so far as information about it is con-
tained in its local state.

Although we already used the word, we couldn’t define a system before we
knew about runs:

Definition 4.6 A system R over G is a non-empty set of runs over G. We
say (r,m) is a point in a system R, if r ∈ R, m ∈ N.

What do we know about the individual knowledge of the agents? The knowl-
edge of agent i is determined by si, the local state. This means that agent i
cannot distinguish between two points (r,m), (r′,m′) for which ri(m) = r′i(m

′).
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Definition 4.7 In an interpreted system I = (R, π), R is a system over G
and π is an interpretation of it: π is a function π : G × P −→ {true, false},
i.e. ∀p ∈ P , ∀s ∈ G, π(s)(p) ∈ {true, false}. Again point (r,m) ∈ I, if r ∈ R.

Definition 4.8 A further expansion of the system, gives us a model MI =
(S, π,R1, ..., Rn), with S the set of points in I, and Ri for i = 1, ..., n bi-
nary relations on S, with (r,m)Ri(r′,m′), also denoted by (r,m) ∼i (r′,m′),
iff ri(m) = r′i(m

′).

Of course in the above definition, the relations Ri need to be reflexive, sym-
metric and transitive and so we are in an S5(m)-model, which was defined in
chapter 1.
Re is not included, since we are not interested in what the environment knows,
but only in what the agents know.

Notation 3 For p ∈ Φ:

• (I, r,m) � p⇐⇒ π(r(m))(p) = true,

• (I, r,m) � Kiϕ⇐⇒ ∀(r′,m′)((r,m) ∼i (r′,m′)) : (I, r′,m′) � ϕ.

So, agent i in state ri(m) does not know ϕ, iff ∃(r′,m′) with ri(m) = r′i(m
′)

and r′i(m
′) � ¬ϕ.

The truth of some propositions, like ψ =’eventually ϕ’, depends on more
than the global state and therefore π can’t give the proposition a truth value. It
could be that r(m) = r′(m′), so for any p ∈ P (π(r(m))(p) = π(r′(m′))(p)), but
(I, r,m) � ψ and (I, r′,m′) 2 ψ. But this does not contradict the validity of our
definitions, since in our frame with language LmKEC(P ) temporal propositions
cannot be formulated.

5 Actions within a multi-agent system

Definition 5.1 A protocol Pi for agent i is a function
Pi : Li −→ (P(ACTi) − {∅}), in which Li is the set of possible local states
for agent i and ACTi the set of actions that can be performed by agent i. A
deterministic protocol for agent i is a function Pi : Li −→ ACTi.

If the protocol maps all local states to singletons, it means that the agent
has no choice, the protocol is deterministic. In case of a deterministic protocol
it is more natural to think of the protocol as a function from states to actions
in stead of a function to sets of actions.

When you look at a situation in which messages are sent, it could be that
the message will get lost. You can use the environment protocol Pe to capture
this possibility. When the agents’ protocols are deterministic, the possibility of
different runs is caused by the environment’s protocol only.
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If you want to know how the global state of the system changes when an
agent is acting, you need to know also what the other agents are doing. When
one agent is opening a door and an another agent pulls at the opposite side, the
outcome is not simply a function of the outcome of individual actions.

Definition 5.2 A joint protocol P is a tuple (P1, ..., Pn) consisting of proto-
cols Pi for each of the agents i = 1, ..., n. A deterministic protocol is a joint
protocol in which each of the agents’ protocols is deterministic.

You may be surprised that Pe isn’t in the tuple. This is because of Pe’s
special role. You often study cases in which the protocols of the agents are
deterministic and in each state the environment can take different actions, like
causing a message to get lost.

Definition 5.3 A joint action is a tuple (ae, a1, ..., an), where ae is an action
of the environment and ai is an action of agent i.

Definition 5.4 A global state transformer T is a function T : G −→ G. A
joint action changes a global state s via the associated global state transformer
to T (s).

How do you know which global state transformer belongs to which action?
To answer this question we also need to define a transition function.

Definition 5.5 A transition function is a function τ : (ae, a1, ..., an) 7→
τ(ae, a1, ..., an), with τ(ae, a1, ..., an) a global state transformer.

With these definitions we know that the global state (se, s1, ..., sn) is changed
to (τ(ae, a1, ..., an))(se, s1, ..., sn) when the joint action (ae, a1, ..., an) is per-
formed.

To describe the behavior of the whole system the protocols together don’t
suffice yet. We need to define some context, in which the protocols exist.

Definition 5.6 A context γ is a tuple (Pe,G0, τ,Ψ), where Pe is the protocol
of the environment, G0 is a nonempty subset of G, τ is a transition function,
and Ψ is a condition on runs. Given a context γ and a joint protocol P we can
derive a system representing P in context γ, denoted by Rrep(P, γ). This
system consists of all runs consistent with P in context γ, i.e. all runs r
with:

• r(0) ∈ G0,

• ∀m ≥ 0 : (r(m) = (se, s1, ..., sn) ⇒ ∃(ae, a1, ..., an) ∈ Pe(se)× P1(s1)×
...× Pn(sn) such that r(m+ 1) = τ(ae, a1, ..., an)(r(m)),
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• r ∈ Ψ.

We call a system R consistent with P in context γ iff R ⊆ Rrep(P, γ)

We think of G0 as the set of possible initial states.
With τ in the tuple γ, implicitly also Le, L1, ..., Ln andACTe, ACT1, ..., ACTn

are included in the context, since
τ(ACTe ×ACT1 × ...×ACTn) : Le × L1 × ...× Ln → Le × L1 × ...× Ln.

Ψ is a set of runs such that r ∈ Ψ if r satisfies the condition Ψ. If Ψ is True,
Rel or Fair, this means that we respectively have the condition consisting of
all runs, {r|all messages sent in r are eventually delivered} and
{r|all messages that are repeatedly sent in r are eventually delivered}.

As with systems you can also speak of an interpreted context (γ, π), with
π an interpretation as defined before.

fig.5

context γ

specification

��
system representing P in context Rrep(P, γ)

subset

��
system consistent with P in context

element

��
run r consistent with P in context

Definition 5.7 Let
∑
i be a set of possible initial states for process i, INTi a set

of internal actions for i and MSG a set of messages. G0 = Le ×
∑

1×...×
∑
n

and ACTi = INTi ∪ {send(µ, j, i), receive(µ, j, i) | µ ∈ MSG, j ∈ G}. A
history for process i is then a sequence whose first element is in

∑
i and whose

later elements are nonempty sets with elements of the form ACTi.

The history of an agent describes the run through his or her eyes until a
given moment. You can think of the histories as the local states of the agents.

Definition 5.8 A message-passing system is a system so that for each
(r,m) and i = 1, ..., n:

• ri(m) is a history over
∑
i, INTi, and MSG,

• for every event receive(µ, i, j) in ri(m) there exists a corresponding event
send(µ, j, i) in rj(m),
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• ri(0) is a sequence of length one (consisting of the initial state of i) and
ri(m + 1) is equal to ri(m) or the result of attaching to ri(m) a set of
actions performed by i in round m+ 1.

Definition 5.9 A synchronous system is a system in which every processor
knows exactly what time is is. A prefix-closed set V of histories, is a set for
which h ∈ V implies that also every initial sequence of h (prefix) that is not the
empty sequence is also in V . An asynchronous message-passing system
(a.m.p) is a message passing system that is not synchronous, consisting of all
runs such that all local states si of runs in the system are in a prefix-closed set
Vi of histories. This system is reliable (a.r.m.p) if it satisfies

• for all processes i, j, and all points (r,m) if send(µ, i, j) ∈ rj(m), then
there exists an n ≥ m such that receive(µ, j, i) ∈ ri(n)

fig.6

context γ

�� ++WWWWWWWWWWWWWWWWWWWWWW

system R

sshhhhhhhhhhhhhhhhhhh

�� ++WWWWWWWWWWWWWWWWWWWWWW interpreted context (γ, π)

��
asynchronous system

++VVVVVVVVVVVVVVVVVVV message passing system

��

interpreted system I = (R, π)

a.m.p. system

��
a.r.m.p. system

6 The Coordinated Attack Problem

The coordinated attack problem has already been described in the introduc-
tion. We saw that the endless sending of messages will never bring the common
knowledge we defined in chapter one, so there never can be a coordinated attack
in this situation.

We will describe this situation purely mathematically, to give a full proof
of the impossibility of a coordinated attack. Afterwards we will describe an
attempt to create a somewhat different situation in which a coordinated attack
may judged to be possible.

13



Definition 6.1 A message delivery context is an interpreted context (γ, π),
for which:

• The environment and the agents have actions resulting in messages being
delivered to agents,

• The context γ is a recording context, i.e. the environment’s state in-
cludes the sequence of joint actions that have been performed,

• The language contains the proposition ’delivered’ (in a model we say this
proposition is true, if at least one message has been delivered).

A message delivery system is a set of runs (Rrep(P, γ), π), with (γ, π) a
message delivery context.

With the coordinated attack problem, we are in a system that displays un-
bounded message delivery (umd). This means that when agent i receives a
message at (r, l) in R and no other agent receives a message from i in run r
between l and m, then at time m all the other agents think it is possible that i
has not (yet) received the message.

Notation 4
d(r,m) = k ⇔ exactly k messages are delivered in the first m rounds

Definition 6.2 If (R, π) is a message delivery system, then R displays umd
if ∀(r,m) ∈ R with d(r,m) > 0 (so m 6= 0), ∃i, ∃r′ such that

• ∀j 6= i,∀m′ ≤ m : r′j(m
′) = rj(m′),

• d(r′,m) < d(r,m).

An example of a message delivery system is an a.m.p. system as defined
in chapter 3, since such a system contains every run r in which for all m ∈ N
and for all i = 1, ..., n (ri(m)) = si, with si contained in a set Vi. So when we
have a run r = (r(0), r(1), ..., r(m), r(m + 1), ...) in an a.m.p. system R with
r(m) = (se, s1, ..., sn) and r(m+1) = (te, t1, ..., tn), this means that si, ti ∈ Vi, so
R also contains a run r′ = (r′(0), r′(1), ..., r′(m), r′(m+1), ...) with r′(j) = r(j)
for 0 ≤ j ≤ m, r′(m + 1) = (te, t1, ..., tk−1, sk, tk + 1, ..., tn) and for j > m + 1,
r′(j) a tuple of arbitrary extensions of the sequences in the tuple r′(j − 1) in
Le × V1 × ... × Vn. An a.r.m.p system is an example of a system displaying
umd as well, since a message eventually has to be delivered in such a system,
but nothing is demanded about when. So you can complete the sequence to a
run r′, starting with r′(0), r′(1), ..., r′(m + 1) as above, with r′(j) again tuples
in Le × V1 × ... × Vn for j > m + 1, almost arbitrarily as long as the tuple
r’(j) contains extensions of the sequences in the tuple r’(j-1) and there is one
m′ > m + 1 with r′k(m

′) a state in which the message (which was delivered to
k in r(m+ 1)) is delivered.
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Definition 6.3 A context γ displays umd iff all systems Rrep(P, γ) display
umd for every protocol P that can be run in the given context.

If we look at the coordinated attack problem, we need a system that dis-
plays umd, since it can always be the case that one message has not (yet) been
delivered, no matter how the protocols of the generals may be. So we look at a
context displaying umd, to find within it a system with a protocol such that it
displays umd.

Theorem 1 If I = (R, π) is a message delivery system that displays umd,
then I � ¬C(delivered).

Proof: by induction on d(r,m).

Base: Look at an arbitrary (r,m) in R. If d(r,m) = 0, then (I, r(m)) �
¬C(delivered), since there are no delivered messages at all.

Induction-step: Suppose ∀(r′,m′) ∈ R : d(r′,m′) ≤ k ⇒ (I, r′(m′)) �
¬C(delivered) (IH). Now look at an arbitrary r ∈ R, m ∈ N with d(r,m) = k+1.
Since the system displays umd, ∃r′, i′ with ∀l ≤ m, j 6= i : r′j(l) = rj(l) and
d(r′,m) < d(r,m), so by (IH) (I, r′(m)) � ¬C(delivered). Since r′j(m) = rj(m),
(r′,m) is reachable from (r,m), so by Lemma 1, also (I, r(m)) � ¬C(delivered).

Conclusion: ∀(r,m) ∈ R : (I, r(m)) � ¬CG(delivered), what means I �
¬CG(delivered)

This theorem tells us that the generals cannot obtain common knowledge by
communication only.

Definition 6.4 An interpreted context (γ, π) is a ca-compatible context if:

• (γ, π) is a message delivery context,

• there are at least two agents, named general A and general B,

• ∀i ∈ {A,B}: attacki ∈ ACTi,

• ∀i ∈ {A,B} the language contains the proposition attackedi, with
[(I, (r(m)) � attackedi] ⇐⇒ [attacki ∈ h], in which h is the sequence of
joint actions (since a message delivery by definition is a recording context,
Le =< ..., h, ... >).

For reasoning about the possibility of a coordinated attack, we need some
notation for describing which actions are going to be taken in the following
round:

Notation 5

• (I, (r(m)) � ©ϕ⇐⇒ (I, r(m+ 1)) � ϕ,
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• (I, r(m)) � attackingi ⇐⇒ (I, r(m)) � ¬attackedi ∧©attackedi,

• (I, r(m)) � attack ⇐⇒ (I, r(m)) � attackingA ∧ attackingB .

Definition 6.5 By σca we denote the set of all ca-compatible interpreted sys-
tems I = (R, π) for which:

• I � attackingA ⇔ attackingB,

• I � ¬delivered⇒ ¬attack,

• ∃(r,m) ∈ R : (I, r,m) � attack.

fig.7
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When we look at the coordinated attack problem, we see that we are in a
ca-compatible context, and the situation in which a succesfull attack can take
place, is precisely described by the requirements in σca. This is why we use this
definition:

Definition 6.6 P is a protocol for coordinated attack in a ca-compatible
context (γ, π) ⇔ P satisfies σca in (γ, π).

Lemma 2 Let (γ, π) be a ca-compatible context and I = (Rrep(P, γ), π). If
I � attack ⇒ E{A,B}(attack), then I � attack ⇒ C{A,B}(attack).

Proof:
Let (r,m) be an arbitrary point in I. Suppose that (I, r(m)) � attack ⇒
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E{A,B}(attack). We will show that ∀k ∈ N : (I, r(m)) � attack ⇒ Ek{A,B}(attack),
with induction on k.

Base: for k = 1, this is just our assumption.

Induction Step: Let the (IH) be that ∀l ≤ k : (I, r(m)) � attack ⇒
El{A,B}(attack). The (IH) gives us that if (I, r(m)) � attack, ∀r′(m′) ∈ I
which are k-reachable from r(m) via RA, RB : (I, r′(m′)) � attack. Fur-
thermore since I � attack ⇒ E{A,B}(attack) (our assumption), (I, r′(m′)) �
attack ⇒ (I, r′(m′)) � E{A,B}(attack). So when (I, r(m)) � attack, ∀(r”,m”) ∈
I which are k+1-reachable from (r,m) with RA and RB , (I, r”(m”)) � attack.
This gives us what we wanted: (I, r(m)) � attack ⇒ Ek+1

{A,B}(attack).

Conclusion: Given (I, r(m)) � attack ⇒ E{A,B}(attack),
∀k ∈ N : (I, r(m)) � attack ⇒ Ek{A,B}(attack) ⇐⇒def I � attack ⇒
C{A,B}(attack).

Theorem 2 When (γ, π) is a ca-compatible context, P is a deterministic pro-
tocol and I = (Rrep(P, γ), π) satisfies σca, then I � attack ⇒ C{A,B}(attack).

Proof:
Let (r,m) be an arbitrary point in I. Suppose (I, r(m)) � attack. By definition
of attack, this is equivalent to (I, r(m)) � attackingA∧attackingB . This means
PA(rA(m)) = attackA and PB(rB(m)) = attackB : A and B both attack in
round m+1. Since PA and PB are both protocols within the deterministic joint
protocol P :

• If (r′,m′) ∈ I with rA(m) = r′A(m′), then PA(rA(m)) = PA(r′A(m′)).
So (I, r′(m′)) � attackingA and since I satisfies σca, also (I, r′(m′)) �
attackingB . Now we have (I, r′(m′)) � attackingA ∧ attackingB which
means that (I, r′(m′)) � attack. So for all points (r′,m′) which A con-
siders possible in (r,m) counts (I, r′(m′)) � attack and so (I, r(m)) �
KA(attack).

• If (r”,m”) ∈ I with rB(m) = r”B(m”), then PB(rB(m)) = PB(r”B(m”).
So (I, r”(m”)) � attackingB and since I satisfies σca, also (I, r”(m”)) �
attackingA. Now we have (I, r”(m”)) � attackingA ∧ attackingB what
means that (I, r”(m”)) � attack. So for all points (r”,m”) which B
considers possible in (r,m) counts (I, r”(m”)) � attack and so (I, r(m)) �
KB(attack).

Now we have (I, r(m)) � KA(attack)∧KB(attack) ⇔ (I, r(m)) � E{A,B}(attack),
and since (r,m) was arbitrary in I with (I, r(m)) � attack, even I � attack ⇒
E{A,B}(attack). So, making use of lemma 2 we can say I � attack ⇒ C{A,B}(attack).

Theorem 3 If (γ, π) is a ca-compatible context, P is a deterministic protocol
and I = (Rrep(P, γ), π) satisfies σca, then I � attack ⇒ C{A,B}(delivered).
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Proof: Suppose for an arbitrary (r′,m′) that (I, r′(m′)) � E{A,B}(attack).
Then for all (r,m) with (r,m)Ri(r′,m′), i ∈ {A,B}, (I, r(m)) � attack. By
definition of σca, I � ¬delivered ⇒ ¬attack. So ∀(r,m) ∈ I : (I, r(m)) �
¬delivered ⇒ ¬attack. In particular ∀(r,m) ∈ I with (r,m)Ri(r′,m′), i ∈
{A,B}, (I, r(m)) � ¬delivered⇒ ¬attack. So ∀(r,m) ∈ I with (r,m)Ri(r′,m′) :
(I, r(m)) � delivered. This gives us (I, r′(m′)) � E{A,B}(delivered). So
(I, r′(m′)) � E{A,B}(attack) ⇒ E{A,B}(delivered). Since (r′,m′) was arbitrary
in I, I � E{A,B}(attack) ⇒ E{A,B}(delivered). Using induction on k we can
show similarly that for all k ∈ N, I � Ek{A,B}(attack) ⇒ Ek{A,B}(delivered).
By definition of C{A,B}, we have then that I � C{A,B}(attack) ⇒ C{A,B}(delivered).
Combining this result with theorem 2 gives us I � attack ⇒ C{A,B}(delivered).

Theorem 4 If (γ, π) is a ca-compatible context and γ displays umd, then there
doesn’t exist a deterministic protocol P that satisfies σca in (γ, π).

Proof:
Theorem 1 tells us I � ¬C{A,B}(delivered). Theorem 3 says I � attack ⇒
C{A,B}(delivered). Combining these results shows that I � ¬attack.

Even if the generals are in a situation that every message is properly delivered
in the same round that it has been sent, there cannot be common knowledge
because of the uncertainty of the delivery. Hard as it is to accept, there never
can be any coordinated attack.

7 Probabilities for message delivery

In the previous chapter we wanted to be one hundred percent sure that both
generals knew about each other that they were to attack. But perhaps some-
times it is possible to estimate the probability that both generals know about
the attack and when it’s only 98 percent sure that general B is also to attack
at the same moment, isn’t that enough for general A to risk a battle?

We still have to look at ca-compatible contexts, since these describe the
possible actions and select the language to formulate propositions about the
results of these actions. Furthermore the context still displays umd: it still may
take an arbitrarily long time for the message to be delivered. But the difference
in the situation lies in the requirements of the system. We can delete this item
from the specification σca:

I � ¬delivered⇒ ¬attack

and replace it by:

I � P (¬delivered) > q ⇒ ¬attack

Suppose that the probability of a message sent in a round being delivered to
the right person in the same round is p1, by the second round after sending p2, by
the third round after sending p3, etcetera. It is obvious then that p1 ≤ p2 ≤ p3...
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Now we will look for reasonable values of pi for i = 1, ..., k. Let us assume for
a moment that the messenger cannot be kept by the enemy or die on his way. So
eventually he will deliver the message to the receiver, but it can take arbitrarily
long, he may be delayed (unbounded message delivery). Let the probability of
the messenger delivering the message (if it’s not already received earlier) from
general A to general B in each round be r

s , r, s ∈ Z+. Then the probability
pk of the message having been delivered from general A to general B within k
rounds is:

pk =

= P (message delivered within k rounds) =

=
∑k
i=1 P (message delivered in ith round) =

=
∑k
i=1

r
s (1−

r
s )
i−1 =

=

r

s
− r

s
(1− r

s
)k

1− (1− r

s
)

=

=

r

s
− r

s
(1− r

s
)k

r

s

=

= 1− (1− r
s )
k.

This seems reasonable, since this gives us limk→∞pk = 1 and we assumed
that the message eventually will be delivered.

But we have to add the possibility that the enemy captures the messenger
or the messenger dies during the trip. When this happens, the message won’t
be delivered at all. On the one side you could think that the probability of
the messenger on his way being captured by the enemy or dying of a disease
grows when the messenger is getting more delayed: the duration of the trip is
longer. But a delay could also mean a decrease of the probability since it could
be caused by higher caution of the messenger. I therefore just assume that the
probability of the message never being delivered to general B is independent of
the time the trip takes, let’s say it is 1− c, with c ∈ (0, 1). Then we have:

pk =

= P (message delivered within k rounds) =

=
∑k
i=1 P (message delivered in kth round) =

=
∑k
i=1 c

r
s (1−

r
s )
i−1 =

= c

r

s
− r

s
(1− r

s
)k

1− (1− r

s
)

=
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= c

r

s
− r

s
(1− r

s
)k

r

s

=

= c− c(1− r
s )
k.

Now pk converges to c for k to infinity, the probability of a message being
eventually delivered.

It could be that A wants a confirmation of his or her message being delivered
to B first, before he or she really attacks in the planned kth round. The message
that general A sends to B not only contains information about the planned
attack then, but also asks for sending a confirmation of receipt. It might be
that the probability of a message sent by B to A within a given number of
rounds is higher than in the opposite direction, since it could be for example
that the top of the hill where general B is settled is much higher than the one
where general A is, so the messenger has to climb a lot more for delivering the
message from A to B. Let us suppose the probability for a message being sent
from B to A in each round until it really is delivered is t

u , t, u ∈ Z+. We
then can calculate the probability qk of a message being sent from A to B and
also a confirmation being delivered in return within the k rounds before the
attack is planned. We again first ignore the probability of the message being
not delivered at all and assume the messenger can only be delayed.
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qk =

= P (messages delivered there and back within k rounds) =

=
∑k−1
i=1 P (message delivered to B in ith round, confirmation to A within k − i rounds) =

=
∑k−1
i=1 [ rs (1−

r
s )
i−1
∑k−i
j=1

t
u (1− t

u )j−1] =

=
∑k−1
i=1

r
s (1−

r
s )
i−1

t

u
− t

u
(1− t

u
)k−i

1− (1− t

u
)

=

=
∑k−1
i=1

r
s (1−

r
s )
i−1(1− (1− t

u )k−i) =

=
∑k−1
i=1

r
s (1−

r
s )
i−1 −

∑k−1
i=1

r
s (1−

r
s )
i−1(1− t

u )k−i =

= 1− (1− r
s )
k−1 −

r

s
(1− t

u
)k

1− r

s

∑k−1
i=1

(
1− r

s

1− t

u

)i

= 1− (1− r
s )
k−1 −

r

s
(1− t

u
)k

1− r

s

( 1− r
s

1− t
u

−

(
1− r

s

1− t
u

)k
1−

1− r
s

1− t
u

)
=

= 1− (1− r
s )
k−1 − r

s (1−
t
u )k−1

1−

(
1− r

s

1− t
u

)k−1

1−
1− r

s

1− t
u
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We know limk→∞1− (1− r
s )
k = limk→∞pk = 1 and furthermore

limk→∞
r
s (1−

t
u )k−1

1−

(
1− r

s

1− t
u

)k−1

1−
1− r

s

1− t
u

= 0, so again

limk→∞qk = limk→∞pk = 1. This means that the probability of the delivery
there and back within the k rounds goes to one if the time of the battle goes to
infinity far in the future.

When we add the possibility of the messenger for a particular reason not
delivering the message at all, again assuming that this probability is independent
of how long the trip will take, we get two constants c1, c2 ∈ (0, 1) giving the
probability c1 of the message being eventually delivered from A to B and the
probability c2 of the message of confirmation eventually being delivered, given
that the first one is delivered. We get:
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qk =

= P (messages delivered there and back within k rounds) =

=
∑k−1
i=1 P (message delivered to B in ith round, confirmation to A within k − i rounds) =

= c1
∑k−1
i=1 [ rs (1−

r
s )
i−1c2
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j=1

t
u (1− t

u )j−1] =
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r
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8 Strategies for coordinated attack

Now that we have come this far, we look at three possible strategies for general
A:

1. general A chooses for the largest probability for a succesfull attack to take
place.

2. general A chooses for the smallest probability of a failing attack (an attack
by only one of the generals) taking place.

3. general A chooses for the largest probability that a succesfull attack takes
place, given the fact that there will be an attack.

Whether general A had better ask for a confirmation of message delivery
before attacking, depends on which strategy he or she follows.

22



8.1 Strategy 1

If general A doesn’t ask for a confirmation before attacking in the kth round, a
succesfull attack depends solely on the delivery of the message from general A
to general B. Then:

P (succesfull attack) =

= P (B receives message within k rounds) =

= pk =

= c1
∑k
i=1

r
s (1−

r
s )
i−1.

When general A does ask for a message of confirmation before attacking in
the planned round, we get:

P (succesfull attack) =

= P (message there and back delivered within k rounds) =

= qk =

= c1
∑k−1
i=1 [ rs (1−

r
s )
i−1c2

∑k−i
j=1

t
u (1− t

u )j−1].

This shows that when general A follows strategy 1, he will not ask for a
confirmation, since in any case pk > qk (even pk−1 > qk−1). Namely if qk is
larger or equal then pk (this implies also qk > pk−1), then at least for one i with
1 ≤ i ≤ k− 1 we must have that c2

∑k−i
j=1

t
u (1− t

u )j−1 ≥ 1. But ∀1 ≤ i ≤ k− 1:

c2
∑k−i
j=1

t
u (1− t

u )j−1 =

= c2
t
u−

t
u (1− t

u )k−i

t
u

=

= c2(1− (1− t
u )k−i) < 1.

8.2 Strategy 2

If A doesn’t ask for a confirmation from general B, the probability for a failing
attack is the probability for B not to receive the message within k rounds:

P (failing attack) =

= P (B doesn’t receive the message within k rounds) =

= 1− pk.

If A does ask for a confirmation from B of receiving the message and doesn’t
attack until this confirmation is delivered, we get:

P (failing attack) =

= P (B receives message within k − 1 rounds)−P (A gets a confirmation of delivery within k rounds) =

= pk−1 − qk.
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Following this strategy, it depends on the parameters if it is better for A to
ask for a confirmation from B or not. If c1 = 3

4 ,
r
s = 1

4 , k = 3 we get without for
a confirmation that

P (failing attack) =

= 1− pk =

= 1− (c1 − c1(1− r
s )
k)

= 1− 3
4 + ( 3

4 )4 ≈

≈ 0, 57.

We’ve seen earlier that 0 < qk < pk−1, so with asking for a confirmation we
get

P (failing attack) =

= pk−1 − qk < pk−1 ≤ pk ≈

≈ 1− 0.57 = 0, 43.

In this example following strategy 1, A will ask for a confirmation.
But we could also have that c1 = 3

4 , r
s = 3

4 , t
u = 11

16 and c2 = 1
10 . Then we

had without asking for a confirmation

P (failing attack) =

= 1− 3
4 + 3

4 ( 1
4 )3 ≈

≈ 0, 26.
and with asking for a confirmation

P (failing attack) =

= pk−1 − qk =

= c1−c1(1− r
s )
k−1−c1c2

(
1−(1− r

s )
k−1− r

s (1−
t
u )k−1

1−

(
1− r

s

1− t
u

)k−1

1−
1− r

s

1− t
u

)
≈

≈ 0, 637.
So with these parameters A will not ask for a confirmation.

8.3 Strategy 3

Without asking for a confirmation message we get

P (succesfull attack | attack takes place) =

= P (B receives message within k rounds)
P (A attacks) =

= pk

1 = pk.
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With asking for the confirmation we get

P (succesfull attack | attack takes place) =

= P (A receives confirmation within k rounds)
P (B reveives message within k − 1 rounds) =

= qk

pk−1
.

In this case asking for a confirmation from A also depends on the values
of the parameters. Let the parameters c1, r

s and k be the same as in the first
example for strategy 2 and let c2 = c1 = 3

4 , t
u = 1

4 . Then we get without asking
for a confirmation:

P (succesfull attack | attack takes place) =

= pk =

= c1 − c1(1− r
s )
k

= 3
4 −

3
4 (1− 1

4 )3 ≈

≈ 0, 43.

Furthermore with asking for a confirmation, we get:

P (succesfull attack | attack takes place) =

= qk

pk−1
=

=

c1c2

(
1− (1− r

s
)k−1 − r

s
(1− t

u
)k−1

1−

(
1− r

s

1− t
u

)k−1

1−
1− r

s

1− t
u

)

c1 − c1(1−
r

s
)k−1

=

=

(
3
4

)2(
1−

(
3
4

)2

−

(
1
4

)3
1− 32

1− 3

)
3
4−( 3

4 )3
≈

≈ 0, 64.

In this case following strategy 3 general A would choose for a confirmation
of the delivery.

With the parameters of the second example for strategy 2, we get without
asking for a confirmation

P (succesfull attack | attack takes place) ≈ 0, 74

and with asking for it

P (succesfull attack | attack takes place) ≈ 0, 09

so general A will definitely not ask for a confirmation here.
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9 Different opinions of the generals

In all these examples we have only been looking for a decision by general A,
but it is likely that when general A asks for a confirmation also general B on
his turn has to decide whether or not he will attack before he has received a
confirmation of his confirmation of receipt having been properly delivered to A.
So A has to reason about the decision that B will make as well. It all can be
made as complicated as you wish.

Of course the generals don’t really know what the values of c1, c2, rs and
t
u are, they have to estimate them. It therefore could be that when the two
generals have different knowledge about for example the landscape or the rate
of preparedness of the enemy, they have very different opinions about the values
of these parameters. Furthermore it is possible that the generals have wrong
expectations about how the other general estimates the values of the parameters.
When this is the case, it is possible that although they have in mind the same
strategy, they come to different conclusions about asking for a confirmation or
not. You only have to look at the examples for strategy 2 and 3 to see this. On
the contrary strategy 1 cannot lead to misunderstandings about choosing for a
confirmation or not, since independently of the parameters this never is a smart
decision.

10 Starting the attack at different times

We said in the previous chapter that the generals could win only if they attacked
exactly at the same moment, but it could be the case that they are victorious if
the generals start the battle at different times, but within a not too large time
interval. Let us say that they can win the battle if they start their attack within
n rounds after each other. Then we can delete another item from σca:

I � attackingA ⇔ attackingB

For calculating the probabilities this hardly make a difference. The only
thing you have to change is that you need to know the probability that the
message is delivered within k+n rounds, in stead of k rounds, so the probability
of a succesfully attack becomes higher.

11 Conclusion and discussion

Using epistemic logic it is provable that a coordinated attack is never possible
when you want to be hundred percent sure that there exists common knowledge,
since common knowledge cannot be reached via communication.

The given proof of this seems very plausible to me and correct in the math-
ematical world and certainly points out a very serious problem in coordination.
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But in a real situation the generals have to do something, even though common
knowledge theoretically cannot be obtained.

When you look at probabilities of messages being properly delivered, there
are some possibilities of a coordinated attack, although it can lead to much mis-
understandings and it is hard to decide by what standards the other general is
deciding and on which information he or she bases his or her conclusions.

I have only been looking at a small part of this infinitely complicated system.
I am curious if other people can construct better probability models for this,
which are more extended and defended. I am aware of the shortcomings of my
model and I do not claim that this is the model for this. It is my own creation
and I only would be glad if others can improve it.
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