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Marion

Fuzzy Interval-valued Processes Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Yixiang Chen, Jie Zhou

Computable Analysis in Systems and Control . . . . . . . . . . . . . . . . . . . . . . . . 58
Pieter Collins

Polynomial complexity for analog computation . . . . . . . . . . . . . . . . . . . . . . . 59
Jose Felix Costa, Jerzy Mycka

Constructive set theory with operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Laura Crosilla, Andrea Cantini

On Learning Conjunctions of Horn⊃ Clauses . . . . . . . . . . . . . . . . . . . . . . . . . 61
Joxe Gaintzarain, Montserrat Hermo, Marisa Navarro

Defying Dimensions Modulo 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Vince Grolmusz

Solving SAT with membrane creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
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Preface

CiE 2005: New Computational Paradigms
http://www.illc.uva.nl/CiE/

The cooperation Computability in Europe (CiE) is an informal European
network covering computability in theoretical computer science and mathemat-
ical logic, ranging from application of novel approaches to computation to set-
theoretic analyses of infinitary computing models. The cooperation consists of
fourteen main nodes and includes over 400 researchers; it is coordinated from
Leeds (UK). More information about CiE can be found in Barry Cooper’s intro-
ductory paper to the LNCS proceedings volume and at

http://www.amsta.leeds.ac.uk/pure/staff/cooper/cie.html.

CiE 2005 is a conference on the special topic “New Computational Paradigms”
held in Amsterdam in June 2005. It was initiated by and will serve as a fo-
cus point for the informal cooperation CiE. The topic of “New Computational
Paradigms” covers connections between computation and physical systems (e.g.,
quantum computation, neural nets, molecular computation) but also higher
mathematical models of computation (e.g., infinitary computation or real com-
putation).

We understand CiE 2005 as an interdisciplinary venue for researchers from
computer science and mathematics to exchange ideas, approaches and techniques
in their respective work, thereby generating a wider community for work on
new computational paradigms that allows uniform approaches to diverse ar-
eas, the transformation of theoretical ideas into applicable projects, and general
cross-fertilization transcending disciplinary borders. The goal to reach out to
both computer scientists and mathematicians resulted in many surprises to both
communities: after many years and decades of experience in academia, we were
astoundingly surprised about the differences in general practice between two re-
search communities that seem to be so close in content. For mathematicians, the
proceedings distributed at a conference are just an abstract collection – having
an abstract printed there doesn’t count as a publication; for computer scientists,
acceptance of papers at conferences to be printed in the proceedings is a key
indicator of research success.

These two very different approaches to the submission, acceptance and pre-
publication of abstracts in the two communities makes it very hard to organize
a conference that appeals to both mathematicians and computer scientists. This
phenomenon is known to many conference organizers in logic, but there are few
known solutions. Some mathematics conferences have been inviting computer
scientists as plenary speakers or special session speaker, but have been unsuc-
cessful in attracting larger numbers of submissions from the CS community,
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other conferences have adopted the computer science organization and depend
on the mathematicians playing according to computer science rules.

We believe that in an area like computability theory which genuinely belongs
to both communities, these asymmetric solutions don’t work. We need confer-
ences that accommodate the style of work of both mathematicians and computer
scientists and consequently, we have been catering for both of them: we have a
formal proceedings volume in the LNCS series and an informal abstract booklet
in the ILLC Publication series that covers extended abstracts, but also informal
abstracts in the style of a mathematics conference.

We believe that we successfully managed to walk on the ridge between math-
ematics and computer science.

In the style of mathematics conferences, there will be a postproceedings vol-
ume that will be reviewed according to journal standards. In addition to this,
there will be special issues of the journals Theoretical Computer Science, Math-
ematical Structures in Computer Science and Theory of Computing Systems
covering special aspects of the conference. All speakers will be eligible for being
invited to submit a paper to one of those postconference publications.

The Programme Committee for CiE 2005 that ensured the scientific quality
of our conference consisted of K. Ambos-Spies (Heidelberg), A. Atserias (Bar-
celona), J. van Benthem (Amsterdam), B. Cooper (Leeds, Chair), P. van Emde
Boas (Amsterdam), S. Goncharov (Novosibirsk), B. Löwe (Amsterdam, Chair),
D. Normann (Oslo), H. Schwichtenberg (München), A. Sorbi (Siena), I. Soskov
(Sofia), L. Torenvliet (Amsterdam), J. Tucker (Swansea), and J. Wiedermann
(Prague). The conference is sponsored by the Koninklijke Nederlandse Akademie
van Wetenschappen (KNAW), Nederlandse Organisatie voor Wetenschappelijk
Onderzoek (NWO), the Institute for Logic, Language and Computation (ILLC),
the European Association for Theoretical Computer Science (EATCS) and the
Association for Symbolic Logic (ASL).

Last, but definitely not least, we would like to take the opportunity to thank
the numerous helpers for their support with the conference. Marjan Veldhuisen
was responsible for catering, room reservations, the social event, registration and
accommodation. Her support was absolutely necessary for our conference and
it could not have taken place without her. Stefan Bold was the contact person
for technical support and the book exhibit, Samson de Jager was our layouter
not only for this booklet but also for the LNCS volume. Marco Vervoort created
the content management system that we used for the webpage and the scien-
tific evaluation procedure in the Programme Committee. We received a lot of
support from the ILLC infrastructure (the director Frank Veltman and the in-
terim manager Wil van Zijl-Barbe) and the building management of the Euclides
gebouw. For practical matters during the conference, our student volunteers from
the MSc in Logic and the PhD programme of the GPiL (Graduate Programme
in Logic) were instrumental for the success of the conference: Edgar Andrade,
Ioanna Dimitriou, Caroline Foster, Höskuldur Hlynsson, Vincent Kieftenbeld,
Henrik Nordmark, Brian Semmes, Yanjing Wang, and Joost Winter. We would
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like to thank all of them with our deepest gratitude, and let the diverse list of
nationalities in the list of organizers and helpers (China, Colombia, Germany,
Great Britain, Greece, Iceland, Mexico, the Netherlands, Sweden, and United
States of America) stand as a symbol for the European and global integration
that we want to achieve with the CiE project.

For the most current information about the conference, we refer the reader
to our webpage

http://www.illc.uva.nl/CiE/

Amsterdam & Leeds, June 2005 B. C. B. L. L. T.
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Abstract. We discuss a number of (mostly open) questions related to
the learnability of Horn clauses from queries. We consider that the cur-
rently existing solution is satisfactory only to a certain extent, and that
progress on the related questions stated here could contribute positively
to advancing the state of the art in several related fields. Our contribu-
tions here are a new analysis of the existing algorithm, a new algorithm
based on novel ideas, and the complete proof of a related structural re-
sult.

1 Introduction

Horn formulas are a crucial knowledge representation mechanism. Even within
the propositional realm, they come very close to an optimal balance between
efficient algorithmics and flexibility as representation mechanisms, both in the
sense of the quantity of naturally arising concepts that allow such a represen-
tation, and in the sense of the easiness of explaining which concepts are these.
There are some extensions that still maintain efficient algorithmics, but their
corresponding semantics are not so crisp; beyond these, one very easily falls into
a powerful propositional representation system whose major algorithmic ques-
tions are at least NP-hard. Conversely, simpler mechanisms are much too limited
for many applications. The essential intuitions of Horn propositional logic are
the driving force for a number of successful restrictions of first-order logic.

We consider here the problem solved in [2]: the learnability of Horn formulas
via queries. It is proved there that these formulas (conjunctions of Horn clauses)
are learnable from membership and equivalence queries in polynomial time. We
propose here to study the following extensions or refinements of this known fact,
which we subsequently discuss:
Question 1. Is it possible to learn Horn formulas via queries in less demanding
query learning models?

? This work started with the visit of the author to University of Illinois at Urbana-
Champaign, with a grant of the NATO Scientific Program, and has been supported in
part by the Spanish Government project TIC2004–07925–C03–02 (TRANGRAM),
the EU research network PASCAL, and matching funds from CIRIT 2001SGR-
00252.
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Question 2. Is it possible to learn multivalued dependency formulas via queries?
Same question for such less demanding models.

Question 3. Is the HORN1 algorithm from [2] optimal with respect to the total
number of queries or is it possible to improve on it? If there is an improved algo-
rithm, with respect to the total number of queries, is there one such algorithm
that still works in polynomial time?

Question 4. Does there exist a different algorithm for learning Horn formulas in
the standard model and in polynomial time?

Question 5. Is there an alternative way of proving the correctness of the algo-
rithms in [2]?

It is easy to see that a natural order to tackle these questions is in reverse
order; on the other hand, we found more natural to state them in the given
order. In fact, here we provide solutions to questions 5 and 4, except for the
fact that we work here only with definite Horn clauses to simplify the analysis;
and contribute hints of progress towards the solution of question 3 and, to some
extent, 2 (it must be pointed out that the main result regarding question 2 was
announced already in [6]; the complete proof is given here for the first time).

2 Preliminaries and Notation

We are in a propositional logic setting, with n boolean variables out of which
we construct models, that is, binary words of length n. Models are denoted as
xi and similar syntactical objets. Thus the set of all models is the n-dimensional
boolean cube, endowed with its usual bitwise partial order, denoted x ≤ y,
or x < y for the proper order. Literals, terms, and propositional formulas are
defined in the usual way, and are satisfied by a model x if they evaluate to true
on it; we use the standard notation x |= F . Sometimes we say that a model
violates a formula to mean that it evaluates to false on the model. We denote >
the model consisting of all trues. Operations ∧ and ∨ on models apply bitwise,
and can be extended by associativity and commutativity to theories, that is, sets
of models; we also adhere to the standard convention that the union of an empty
theory is the all-false model ⊥, whereas the intersection of an empty theory is
the top model >. We frequently overload the numeral notation by denoting true
as 1 and false as 0, as well as denoting 1(x) the set of variables with value true in
x, and 0(x) those with value false. When convenient, these sets of variables will
be seen as positive terms; more generally we use greek letters to denote positive
terms. The Hamming weight of a model is the number of variables it assigns to
true; the Hamming weight of a set of models is the sum of the Hamming weights
of its elements.

Horn clauses are disjunctions containing exactly one positive literal (definite
Horn clauses) or none (nondefinite Horn clauses). Horn formulas are conjunctions
of Horn clauses. We propose to approach our study of Horn learnability here
avoiding as much as possible these syntactic peculiarities, and to resort instead
to a semantic approach based on the following structural property, which is
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known since the earliest works on Horn logic and, mutatis mutandis, holds also
beyond propositional domains:

Theorem 1. 1. A propositional theory is a Horn theory, that is, can be ax-
iomatized by a conjunction of Horn clauses, if and only if it is closed under
intersection.

2. The smallest Horn theory that contains a given theory is its closure under
intersection.

For this propositional case, the proof is not difficult and can be found in a
number of references (for instance in [16]). For the sake of comparison with our
later contributions, we state the following easy but crucial step in the proof:

Lemma 1. Consider a Horn clause, and two models x and y that satisfy it.
Then x ∧ y also satisfies it.

From this lemma it immediatelly follows that each Horn clause satisfied by
a theory T is also satisfied by the closure of T under intersection.

In our learning model, a learning algorithm poses queries to a teacher, and
gets answers corresponding to a particular target; the target itself is just a set of
models. Then, learning Horn formulas means that there is a learning algorithm
that identifies a Horn axiomatization of the target, provided one exists. The
interaction takes place through the most common query learning model (some-
times called minimally adequate teachers) where two sorts of queries can be
posed: membership queries where the learner asks about whether a model of its
choice belongs to the theory, and equivalence queries where the learner guesses
a Horn axiomatization of the target and gets a counterexample, or is told that
the guess is correct and the process finishes. Note that the inductive bias (Horn
formulas) coincides here with the language to express equivalence queries: this
setting is sometimes called proper learning. We will denote H∗ the target, and
we will assume it to be axiomatized by a conjunction of definite Horn clauses.
We will point out explicitly the point where this definiteness assumption is used.

3 On Question 5: An Alternative Validation of a Known
Algorithm

This section provides one answer to question 5. Indeed, we describe a new in-
variant that explains in a different way the inner workings of the algorithms of
Angluin, Frazier, and Pitt [2], and we also take the opportunity to review the
algorithm itself.

Our version is a bit of a hybrid between both algorithms HORN and HORN1
in [2]; it is the version for which our argumentations seem to be most clear, and
all the essential ideas and intuitions of [2] are the same.
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3.1 The Algorithm

Like in usual learning algorithms in the presence of equivalence queries, we as-
sume that the algorithm only stops upon receiving a positive answer to an equiv-
alence query, so that termination implies correctness. To prove termination, we
bound the number of queries in terms of the number of variables and the number
of clauses in an arbitrary Horn axiomatization of the target H∗; the computing
time between queries is easily seen to be polynomial.

At each point of the algorithm, it maintains a set P of all the positive exam-
ples seen so far. The algorithm maintains also a sequence x1, . . . , xt of negative
examples; the indices i, j, k run from 1 to t unless otherwise specified. For the
sake of the argument, we also assume that it maintains some other additional
models: for each i < j, we have models xi,j , yi,j , and zi,j , whose properties will
be described below; these are not part of the original algorithm. We will abbre-
viate the fact that a model z is a positive example, that is, belongs to the target,
or z |= H∗, by the simple expression z⊕; likewise, the fact that y is a negative
example will be abbreviated yª.

The query is formed with all clauses that can be constructed from the xi and
do not contradict previous positive examples: H =

∧{1(xi)→ v} where v runs
over all variables in 0(xi) such that ∀z ∈ P (xi ≤ z → z |= v). Observe that, if
this condition is not fulfilled for some z ∈ P , then z 6|= 1(xi)→ v, which cannot
be a logical consequence of H∗ since z is a positive example.

A positive counterexample is treated just by adding it to P ; this is tanta-
mount to erasing from H the clauses contradicting it: being a positive coun-
terexample, it surely violated some clause in H, which no longer will be there.
(In the terminology of [2], this step is called reducing the hypothesis.)

A negative counterexample y satisfies the query H. We use y to either refine
some xi into a smaller counterexample, or to add xt+1 to the list. Specifically,
let

i := min({j
∣∣ (xj ∧ y)ª and xj ∧ y < xj} ∪ {t+ 1})

and then refine xi into x′i = xi ∧ y, in case i ≤ t, of else make xt+1 = y,
subsequently increasing t. The value of i is found through membership queries
on all the xj ∧ y. The handling of xi,j , yi,j , and zi,j will be explained as need
arises; they are needed only by our correctness proof.

3.2 The Proof

We will prove that each xi always violates different clauses in any arbitrary
Horn axiomatization of H∗; this implies that t ≤ m, the number of clauses in
the axiomatization chosen.

In the argumentation, we will act as if the algorithm indeed maintains xi,j ,
yi,j , and zi,j , for i < j, which have the following intuitive meaning. Clearly each
xj is the intersection of a number of negative examples. For i < j, we make sure
that each example that refined xj could not refine instead xi, as the algorithm
does; but we will distinguish, among those examples that lead to xj , which ones
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skipped xi because (xi ∧ y)⊕ from those that skipped xi because xi ∧ y = xi,
that is, xi ≤ y; it suffices to keep the intersection of the two distinct sorts. That
is, xj = xi,j ∧ yi,j , for each i < j. The reason is that, from the perspective of xi,
it is true that all y that refined xj did correctly so, but for two different causes.

As for the z’s, they will eventually allow us to prove that indeed each two
different x’s are chasing different clauses of the target. The reader familiar with
[1] will detect a striking similarity with our approach (see also [8] for further
discussion).

It becomes handy to introduce a bit more of notation with respect to the
consequences of an antecedent with respect to the target and the hypothesis,
and to use it to state separately the main property of a negative counterexample.
The notion of H(x) is a key concept in [14].

Definition 1. By H∗(x) we denote the set (sometimes, the conjunction, or even
the model having that set of true variables) of all the variables that are conse-
quences of 1(x) under the theory H∗; that is, H∗(x) = {v

∣∣ H∗ |= 1(x)→ v}.
For the query H, the set H(x) is defined similarly.

Lemma 2. Let xi be one of the negative examples used to construct the query
H, and let yª be a counterexample above xi, that is, xi ≤ y; then, xi ≤ H∗(xi) ≤
H(xi) ≤ y.

Proof. Seen as sets, H∗(xi) ⊆ H(xi), since a variable that is indeed logical
consequence of xi cannot be disproved by any positive example having it at zero
and still being above xi. Of course 1(xi) ⊆ H∗(xi). Finally, since y is a negative
counterexample, it must satisfy H, which includes a clause 1(xi)→ v for each of
the variables in H(xi). To satisfy them all, being xi ≤ y, requires H(xi) ⊆ 1(y).

3.3 Invariants

We will prove that the algorithm maintains the following invariants, besides the
facts that the xi’s are negative and the examples in P are positive: for all i < j,

(I0) xi ∧ xi,j ≤ zi,j ≤ xi,j
(I1) zi,j⊕
(I2) yi,j |= H∗(xi)
(I3) xj = xi,j ∧ yi,j
Coming back to the intuitive explanation we just saw before, for i < j, xj

is made up of the intersection of counterexamples that skipped xi (whatever
its value was at that time), and these may have skipped xi for two reasons:
either they were above xi, and then still are since xi only can have changed by
refinement, or their intersection with xi was positive. Those that skipped xi for
the first reason are intersected together into yi,j ; whereas the rest are intersected
together into xi,j , and of course xj is the intersection of them all. Moreover, those
that got added to yi,j were positive for the current hypothesis, so that not only
they were above xi but also above all the consequences H∗(xi), and this remains
true if xi is refined. On the other hand, those that gave a positive intersection
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with xi will always leave a positive example in the area indicated in (I0). We
make precise and argue formally now all these indications.

Lemma 3. Consider the four invariants for fixed i < j, and suppose they hold
before refining xi into x′i; then they still hold after the refinement.

Proof. Refining xi in (I0) and changing nothing else reduces or leaves untouched
the leftmost term, and does not affect the other two, so that (I0) is maintained.
Since x′i ≤ xi, we have H∗(x′i) ⊆ H∗(xi), so that refining xi and leaving yi,j
untouched maintains (I2); xi does not even appear in the other two invariants.
Note that, formally, we have not used at all the inequality i < j.

Theorem 2. The invariants initially hold, and processing each counterexample
maintains them.

Proof. Initially t = 0; in fact the invariants are trivially true for t ≤ 1. To study
the processing of a counterexample, pick two values i < j such that one of the
corresponding models is refined. In case xi is refined, the previous lemma gives us
the invariance. Thus, we analyze now what happens when we refine xj instead,
with respect to any i but again under i < j. We will need to adjust the remaining
variables so that the invariants are recovered, as follows. Let x′j = xj ∧ y be the
result of the refinement, and assume first that (xi∧y)⊕; then we recover (I3) by
setting x′i,j = xi,j ∧ y, and need a positive example that falls in the appropriate
range to complete (I0):

xi ∧ x′j = xi ∧ xj ∧ y =
= (xi ∧ y) ∧ (xi ∧ xj) ≤ (xi ∧ y) ∧ zi,j ≤ xj ∧ y = x′j

Having just assumed (xi ∧ y)⊕, and knowing that zi,j⊕, the closure of H∗

under bitwise intersection provides z′i,j = ((xi ∧ y) ∧ zi,j)⊕, thus reestablishing
(I0) and (I1). Of course (I2) does not change.

Assume now that xi ≤ y. Then we choose to recover (I3) by setting a new
y′i,j = yi,j∧y, and leave everything else untouched, so that we have only to argue
that (I2) is again true. Knowing yi,j |= H∗(xi), it remains to prove that y |=
H∗(xi). This will follow now from the fact that y is a negative counterexample,
so that it satisfies the query H; consider any variable v ∈ 0(xi) such that H∗ |=
1(xi)→ v: then, for positive examples such as those in P , xi ≤ z → z |= v, so
that H |= 1(xi)→ v as well. For y that satisfies the query H with xi ≤ y, we
obtain y |= v. Of course, for the variables in 1(xi) the fact that xi ≤ y suffices.

To complete the invariance analysis, consider now what happens when no xi
was refined and y was added as xt+1. We have the choose fresh values for xi,t+1,
yi,t+1, and zi,t+1, and for each i the way of doing it will depend on the reason
why xi was not refined.

If xi ≤ y = xt+1, we pick xi,t+1 = zi,t+1 = 1n; the assumption that H∗

consists of definite Horn clauses is used here to make sure that 1n⊕. This es-
tablishes (I0) and (I1) for this pair. To establish (I3) we are forced to pick
yi,t+1 = xt+1 = y, and indeed this is convenient since y was a negative coun-
terexample, xi ≤ y, and then, by lemma 2, we have y |= H∗(x).
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3.4 Termination

It remains to prove that the invariant guarantees that t is no more than the
number of clauses in an arbitrary Horn axiomatization of H∗ (for instance,
a smallest one). Since each xi is negative, each falsifies one of these clauses.
We prove that no two of them can falsify the same clause. (Actually we prove
something stronger as in [2]; this observation leads to the new algorithm in the
next section.)

Theorem 3. If two different negative models xi and xj both violate a clause
α→ v, then H∗ 6|= α→ v.

Proof. Consider a clause with H∗ |= α→ v, such that xi 6|= α→ v, where α is
a monotone term, and likewise xj 6|= α→ v for i 6= j. Then xi |= α and xi 6|= v,
and likewise for xj : xj |= α and xj 6|= v. From (I3) we know xj = xi,j ∧ yi,j .
However, xi |= α and H∗ |= α→ v imply that v ∈ H∗(xi), so that by (I2) we
obtain that yi,j |= v, so that the only way to have xj 6|= v is that xi,j 6|= v either.
By the second inequality in (I0), zi,j 6|= v as well.

On the other hand, xj |= α with xj ≤ xi,j , and with xi |= α, imply that
xi∧xi,j |= α; by the first equality in (I0), zi,j |= α as well; therefore zi,j 6|= α→ v,
contradicting the fact that it is a positive example of H∗ with H∗ |= α→ v.

Therefore, if H∗ has an axiomatization with m clauses, then the number of
models xi will not exceed m; the rest of the argument to evaluate the number of
queries is as in the original reference: each negative counterexample must either
create a new xi, which may happen at most m times, or refine an existing one,
which may happen at most n times per model, for a total bound of no more
than m(n + 1) negative counterexamples; each positive counterexample being
added to P reduces the possibilities for the right hand side of one clause of
the hypothesis, and that literal will never be recovered back as a right hand
side for the same xi due to the presence in P of the same positive example, so
that at most mn positive counterexamples can be seen. Jointly, this allows for
no more than O(mn) equivalence queries. Membership queries are made only to
process negative counterexamples, and at most m such queries are made for each
negative counterexample, for a total of at most m2(n+ 1) membership queries.
The whole algorithm is easily seen to be programmable in polynomial time.

4 On Question 4: An Alternative Algorithm

We use the intuition provided by the previous section to propose a new algorithm
that refines several refinable examples with every negative counterexample. Un-
fortunately, we are unable to evaluate the supposedly faster parallel progress
made in this way, and hence we cannot prove a better running time than in [2].
However, the ideas might be useful to progress along this line (see question 3).

The idea of this variant is as follows. The termination argument only requires
from us to argue that each xi pursues a different clause. If we consider separately
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a given pair i, j, it is actually irrelevant whether i < j or i > j for the termination
argument. Therefore, for each i and j, we define the parameterized statement

(Ii,j) ≡ ∃xi,j , yi,j , zi,j
(xi ∧ xi,j ≤ zi,j ≤ xi,j ∧ zi,j ⊕ ∧yi,j |= H∗(xi) ∧ xj = xi,j ∧ yi,j)

and we aim at maintaining the following invariant:

(I∗) ∀ i, j (i 6= j)⇒ (Ii,j ∨ Ij,i)
which is sufficient to guarantee the bound m on the number of examples xi and,
thus, the termination argument. In order to choose which (refinable) models
to refine, we classify (pairs of) those refinable ones into three sorts of pairs,
according to whether Ii,j , Ij,i, or both hold.

– if (Ii,j ∧ Ij,i): then we can refine either, and (Ii,j ∨ Ij,i) will be maintained;

– if (Ii,j ∨ Ij,i), but not both: then we must choose which one to refine, in such
a way that we do not lose the invariant.

The first of these statements follows from lemma 3 since refining xi will main-
tain Ii,j as seen there. The difficulty now is to drive the refinements described
in the second statement.

Now, to guide our choices, we maintain a directed graph G without self-loops,
which we will prove acyclic later on, and whose vertices are the negative examples
xi; and we set an edge from xi to xj whenever we have lost the guarantee that
Ij,i holds. Therefore, in such case, we are only able to maintain Ii,j , so that we
cannot refine both xi and xj : if both can be refined, we will refine only xi, which
maintains Ii,j , just resorting again to 3.

Thus, given a negative counterexample y for the hypothesis H, we consider
the restriction G′ of G to the set R of refinable models: R = {i|(xi ∧ y)ª < xi};
assuming it for now to be nonempty, we will choose a subset L ⊆ R of vertices
which we will refine. This set L consists some of the vertices that we call covered,
plus one additional vertex i0. A vertex labeled with model xi is covered if there
is another vertex labeled with model xk if (xi ∧ y) ≤ xk ≤ y. Here is why we
consider these covered vertices.

Lemma 4. Assume the following: xi and xj are both refinable, Ii,j holds, and
xi is covered, say by xk. Then, we can refine both xi and xj, and still maintain
Ii,j.

Proof. Simply take y′i,j = yi,j ∧ y and leave xi,j unchanged, so that xi,j ∧ y′i,j =
xi,j∧yi,j∧y = xi∧y, the result of the refinement that we will denote x′i = xi∧y ≤
xk ≤ y, the last two inequalities coming from the covering. Here, lemma 2 gives
y |= H∗(xk) and thus y |= H∗(x′i) because the latter is smaller. On the other
hand, from the invariant we know that yi,j |= H∗(xi) and thus yi,j |= H∗(x′i)
again because the latter is smaller. Thus the conjunction yi,j ∧ y = y′i,j |=
H∗(x′i). With respect to the invariants relating zi,j , which is unchanged, they
are maintained upon reducing xi as in lemma 3.
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Now, this argument would help us to choose refinable covered vertices but
this does not guarantee that there is any. Instead of arguing that indeed there
are some, we prove that we can refine one more additional example, that will
be found indeed by a process analogous to the one in the HORN algorithms of
[2]. Within G′, the restriction of G to the refinable vertices R, we employ any
appropriate algorithm to find L ⊆ R such that the following conditions hold.

First, as indicated, L consists of some (not necessarily all) covered vertices
C plus one more vertex i0: L = C ∪ {i0}; second, there is no path in G leading
from a vertex in L into a vertex in R−C = (R− L) ∪ {i0} (we do not consider
paths of length zero here). In particular, there is no edge from xk, k ∈ L, to x`,
` ∈ R−L, that is, for these pairs Ik,` holds, including Ii0,`. Likewise, there is no
edge from C into i0, that is, Ik,i0 holds for k ∈ C.

Such a nonempty L always exists, as soon as we argue that G is acyclic: it
would suffice to take C = ∅ and pick for i0 a sink of G′. However, possibly we
can take larger sets L in specific cases. Now: all the edges from x` ∈ R − C to
xk ∈ L are added to G′ (except the self-loop on i0), which maintains acyclicity
since we have ensured that there is no path to close a circuit with such an edge;
and, subsequently, the models at the vertices of L are refined.

It remains to argue that Ii,j is maintained for all pairs except those cor-
responding to edges added to G. Only the cases where either of them is in L
require attention, since the other models are not refined. For all the pairs where
one (say k) or both of the two vertices is in C, thus covered, we just apply
lemma 4, knowing that Ik,` holds for k ∈ L and ` ∈ R − L, and Ik,i0 as well.
The invariants in the opposite direction may be lost (or might have been lost
before), thus we add to G the corresponding edges. Finally, the only remaining
case is Ii0,` for ` ∈ R−L, that is, where xi0 is refined and x` is not, and we have
already argued that Ii0,` holds before refining, so it is maintained by lemma 3.

Taken together, we have argued that:

Lemma 5. Assume that counterexample y leads to a nonempty set R of refinable
models among xi. If G is maintained as indicated and L is chosen as indicated,
then G is always acyclic and the invariant (I∗) is maintained.

We still must explain how the sequence of negative examples grows, which of
course happens when R = ∅. Then the following holds: for all i, either (xi ∧ y)⊕
(it can be added to P) or xi ∧ y is not smaller than xi, that is, xi ≤ y. We add y
as new vertex xt+1, and add to G edges from xt+1 to all xi for which xi ≤ y. For
the other xi, no edge to or from xt+1 is added. Clearly, this operation does not
introduce cycles in G. It remains to argue that Ii,j is true for all newly created
pairs except those where we have added an edge to G. That is:

Lemma 6. Assume that counterexample y does not allow any refinement, that
is, R = ∅. Then xt+1 = y can be completed with values for the other variables
in such a way that Ii,t+1 is true for all i, and It+1,i is true for all i such that
(xi ∧ y)⊕.

Proof. Consider first some xi ≤ y = xt+1, for which we only have to establish
Ii,t+1. We set xi,t+1 = zi,t+1 = 1n⊕, being positive thanks to our assumption
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that only definite Horn clauses are used. We also set yi,t+1 = y, so that xi,t+1 ∧
yi,t+1 = 1n ∧ y = y = xt+1. From xi ≤ y and lemma 2 once more, we obtain
yi,t+1 = y |= H∗(xi), and the remaining inequalities are immediate.

Now we consider the case where (xi ∧ y)⊕, and must argue both Ii,t+1 and
It+1,i. Of course we take zi,t+1 = zt+1,i = (xi ∧ y)⊕, and yi,t+1 = yt+1,i = 1n,
which makes sure trivially that yi,t+1 |= H∗(xi) and yt+1,i |= H∗(xt+1). This
leaves as only choices xi,t+1 = y and xt+1,i = xi, which satisfactorily relate to
zi,t+1 and zt+1,i according to the inequalities of the invariant.

Thus, we have completed the proof that the invariants are maintained accord-
ing to an algorithm that refines, on the basis of each negative counterexample
y, the models xi corresponding to a set L constructed as indicated, or adds y as
a new element xt+1. From the invariant, the same proof as in theorem 3 ensures
that the algorithm must stop within, at most, the same number of queries as the
previously known algorithms.

5 On Question 3: Towards a Query-Optimal Algorithm

This section is much shorter, and its only aim is to survey the current knowledge
regarding the limitations that we must expect on our algorithms.

In fact, from [10], we know that any algorithm learning Horn formulas from
a polynomial number of membership queries and additional equivalence queries
must make at least Ω( mn

log n+logm ) equivalence queries; moreover, a generaliza-
tion of the halving algorithm given in the same reference achieves this bound,
not only for Horn formulas but for any conjunctions of arbitrary clauses, with
polynomially many memberships but at the price of the need of unbounded
computational power.

Considering all the queries jointly, the lower bound of Arias, Khardon, and
Servedio [4] is O(m(m+n)). That is, any algorithm learning Horn formulas from
membership and equivalence queries must make at least that many queries. Note
that the AFP algorithm pays an extra factor m (or n in case m < n). There
is some room for improvement, and as of today we bet on the nonoptimality
of AFP rather than on the coarseness of the lower bound. We believe that the
lower bound known is actually the true upper bound (up to a constant factor);
however, we also believe that the algorithms attaining this bound on the number
of queries might be forced to do so at the price of not being polynomial time.

More particularly, we feel possible that an algorithm exists that is able to
refine optimally each counterexample so that every antecedent maintained is ac-
tually the antecedent of a clause in a saturated axiomatization of the target; and
in such a way that each equivalence query provides one more clause through a
linear number of membership queries. Note that this idea goes back to a scheme
discarded in AFP: using membership queries to walk the counterexample down.
The problem of choosing what variables to refine for each membership query,
though, could be harder than polynomial time, and we tend to expect that there
is a transformation so that the use of an oracle for the hypergraph transver-
sal problem (to help us choose sets of variables that get set simultaneously to
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zero) would provide a query-optimal, possibly nonpolynomial time, algorithm.
Whether, assuming this bold conjecture true, a polynomial-time particular case
of hypergraph transversal ([12] or [13]) would allow for this process, or for the
learnability of wide interesting subclasses of Horn logic, is much too early to
answer.

6 On Question 2: Multivalued Dependency Formulas

We discuss here a syntactic variant of Horn clauses whose study might allow us
to gain additional intuitions. It is a class of propositional formulas introduced in
[17] on the basis of their parallel to multivalued dependencies in databases. Nor-
mal forms for databases (notably the Boyce-Codd normal form and its widely
used relaxation 3NF, or third normal form) try to avoid certain functional de-
pendencies, where the value of some attribute is fully determined by the values
of other attributes. A standard approach is to normalize the relation, that is,
decompose it into several relations; and the possibility of correctly decomposing
a relation is not characterized exactly by functional dependencies but by the
somewhat more complicated multivalued dependencies.

Now, functional dependencies admit a syntactic parallel with Horn clauses
that goes, actually, much beyond a syntactic parallel, and indeed their deduc-
tion calculi are isomorphic. Applying a similar transformation to multivalued
dependencies, one can obtain Sagiv’s multivalued dependency formulas, that are
conjunctions of multivalued dependency clauses. These are defined precisely as
follows: they must have the form α→ β ∨ γ, for disjoint terms α, β, and γ that
satisfy the additional condition that their union is the set of all the variables.
These implications are naturally called multivalued dependency clauses. See [18]
for details on all these issues.

Hermo and Lavin [15] have studied these formulas from the point of view of
query learning and approximate fingerprints, proving that they are not learnable
with only membership queries or with only equivalence queries. They suggested
that multivalued dependency formulas could be learnable from membership and
equivalence queries in a similar way to the Horn clause learning algorithm, but,
as far as we know, the issue is open as of today. On the basis of the previous
sections, we consider that a potential advance could stem from a clarification
of the semantic properties that these formulas may enjoy, along the line of the
property of closure under intersection characterizing Horn clauses. We provide
here one such characterization, hoping for either its usefulness towards a learning
algorithm or, possibly, for its intrinsic interest. The statement was announced
in [6] but there was just a hint of a proof, which appears here complete for the
first time. Our main technical ingredient is as follows.

Definition 2. Consider a set of binary tuples T . We say that x ∈ T is a focus
of T if, for every y ∈ T , x ∨ y is not the top model >.

Note that, for y = x, this implies that the focus x itself is not >. Note also
that there may be multiple foci of a given T . In the particular case of a set of
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two models, either both or neither are foci. Additionally, a theory containing >
has no foci at all.

Definition 3. Consider a propositional theory T . A focused intersection of T is
a model that can be obtained as the intersection of all the members of a subtheory
T ′ ⊆ T that has at least one focus (of T ′).

We are ready for the main result of this section: a semantic characterization
of the theories defined by Horn or multivalued dependency clauses.

Theorem 4. A propositional theory can be axiomatized by a conjunction of
Horn or multivalued dependency clauses if and only if it is closed under (the
operation of taking a) focused intersection.

We prove this statement through a series of lemmas. The first one is the
analogue of lemma 1.

Lemma 7. Consider a multivalued dependency clause, and a propositional the-
ory T that satisfies it. Assume that T has a focus. Then the intersection of all
the members of T satisfies the clause.

Proof. Let the clause be α→ β ∨ γ. If there is a model y ∈ T with y 6|= α then the
intersection also has the same property, and therefore satisfies the clause. Thus,
we assume that all elements of T , including some fixed focus x of T , satisfy α,
and by (the soundness of) modus ponens they satisfy either β or γ; we classify
them into Tβ and Tγ accordingly, and remove the focus x from whichever side
it fell into. Note that the only model satisfying α and both β and γ is >, which
cannot belong to T since otherwise T would have no foci. Thus Tβ and Tγ are
disjoint.

It is easy to see that the intersection yβ of all the models in Tβ (even if this
set is empty) satisfies β. A bit less obviously, for all z ∈ Tγ , the zeros of z are
in β, because the three terms α, β and γ jointly cover all the variables and z
satisfies both α and γ; so that the intersection yγ of Tγ also has all the zeros in
γ. Observe that the intersection of all of T , by associativity and commutativity,
is exactly x′ = x ∧ yβ ∧ yγ .

Recall that x satisfies α and, by the implication, also either β or γ. Assume
first it satisfies γ: since yβ |= β, and the three terms include all the variables,
x ∨ yβ = >, and x ∨ y = > as well for every y ∈ Tβ because yβ ≤ y: then x
would not be a focus. The only way is that Tβ = ∅ so that no such y exists. Then
yβ = >, and x′ satisfies γ since it is the intersection of three models that do.

The other case, dually, is when x |= β. As we just saw, yγ has all the zeros
in β, so x ∨ yγ = >, and we argue exactly as in the previous case.

In general, we will apply this lemma to subtheories, as in definition 4. Let us
point out here that the condition that β and γ be disjoint has not been used in
the proof; we come back to this observation later on. Now we can concentrate
on the forward direction of our main characterization.
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Lemma 8. Assume that T is axiomatized by a conjunction of Horn or multi-
valued dependency clauses. Then T is closed under focused intersection.

Proof. Let T ′ ⊆ T have a focus x. Consider each of the clauses that participate in
the axiomatization: whether they are Horn, or multivalued dependency clauses,
by the previous lemmas we know that they are satisfied by the intersection x′ of
all the models in T ′; therefore, x′ satisfies all the axioms of T , whence it must
belong to T .

Let us prove the converse now. Assuming that T is closed under focused
intersection, we must show how to axiomatize it by a conjunction of Horn or
multivalued dependency clauses: we simply consider all the clauses of these sorts
that are true for all of T . We must prove that their conjunction axiomatizes T ,
that is, a model x satisfies them all if and only if x ∈ T . The “if” part is obvious
since these clauses are all true for all of T . Thus it remains to see that a model x
that is not in T violates some such clause that is true of T . Our notation will rely
strongly on the following definition: for a theory T and a model x, the subset
Tx ⊆ T is

Tx = {y ∈ T
∣∣ x ≤ y}

The following is argued essentially as in the characterization of Horn theories,
but we sketch the proof for the sake of completeness. It covers the case where
the intersection of the models in T above x remains above x.

Lemma 9. Let x /∈ T . Consider the intersection z of all the models in Tx. If
x 6= z, then x violates a Horn clause that is true of T .

Proof. Clearly x ≤ z, so that if they differ then x < z. We consider a clause of
the form 1(x)→ v where v ∈ V is a variable that is true in z and false in x;
clearly x 6|= 1(x)→ v. However, T |= 1(x)→ v: indeed, for each y ∈ T , either
y /∈ Tx, and then it falsifies 1(x), or y ∈ Tx, in which case z ≤ y forces v to be
true in y so that y |= 1(x)→ v as well.

The final case corresponds to x being indeed the intersection of all of Tx,
which no longer means that it must be in T since the theory may not be closed
under arbitrary intersections: we are actually assuming that x /∈ T . Let us discard
beforehand a special case, namely, x = >, or Tx = ∅. This is easily handled by the
nondefinite Horn clause

∧
v∈V v → tu (where V is the set of all the propositional

variables): it excludes > and no other model, so that it is indeed satisfied by T
(since x = > /∈ T ) and falsified by x.

Thus from now on we assume that x < >. We prove that this case is covered
by the multivalued dependency clauses.

Lemma 10. Let T be a theory closed under focused intersection, and let x /∈ T ,
with x < >. Assume that the intersection of all the models in Tx is precisely x.
Then x violates a multivalued dependency clause that is true of T .

Proof. Consider a subset T ′ ⊆ Tx ⊆ T such that x is still the intersection of all
the models in T ′, but T ′ has, under this condition, minimal Hamming weight.
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Note that, in particular, this implies that each pair y, z in T ′ reaches y∨ z = >;
otherwise, y ∧ z would belong to T by closure under focused intersection, thus
to Tx as well, and replacing both in T ′ by this intersection would reduce the
Hamming weight.

As a consequence, fixed any y ∈ T ′, all the other elements of T ′, and their
intersection as well, have value true for all those variables that y sets to false.
Note also that x is not all true and thus T ′ is nonempty.

Pick any arbitrary y ∈ T ′; since x /∈ T but y ∈ Tx, they differ, and x < y.
Let zy be the intersection of T ′ − {y}, so that x = y ∧ zy. As just argued in the
previous paragraph, y ∨ zy = >. Also, T ′ − {y} 6= ∅ since otherwise x = y (but
note that zy may not be in T ).

Let X be the variables satisfied by x, and likewise Y and Z for y and zy
respectively. Consider the clause φ = (1(x)→ 1(y) ∨ 1(z)), which is then a mul-
tivalued dependency clause (technically, the ones of x should be removed from
both disjuncts of the right hand side but this is in fact irrelevant). The mini-
mality of T ′ (and the fact that x < y, so y is not all zeros) implies that x < zy
since otherwise we could cross y off from T ′ and reduce Hamming weight.

Therefore, x < y and x < zy, which jointly imply that x falsifies φ. We
prove now that in fact T satisfies it, so that it belongs to the axiomatization we
constructed in the first place, and this completes the proof that each model not
in T falsifies at least one of the axioms, which is our current claim.

Assume, therefore, that some model w ∈ T falsifies this clause; that is, it
satisfies its left hand side but falsifies both disjuncts of the right hand side.
Satisfying the left hand sice means x ≤ w, so that w ∈ Tx. Falsifying 1(y)
implies that w ∧ y < y. If we can prove that w ∧ y ∈ T then we are done, since
both are above x, thus both are in Tx, and w∧y ∈ Tx as well: it could have been
used instead of y in T ′, contradicting again the minimality of T ′.

Here is where closure under focused intersection plays its role: we simply
prove that w∨y < >, and since both w and y are in T , their focused intersection
must be as well. Thus it only remains to prove that w and y have a common zero,
and for this we use the single remaining property of w, that of not satisfying
the second disjunct of the right hand side of φ. Namely, w 6|= 1(zy) means
that 1(zy) ∩ 0(w) 6= ∅. Now, recalling x ≤ w, it follows 0(w) ⊆ 0(x), hence
0(w) = 0(w) ∩ 0(x); and from x = y ∧ zy so that 0(x) = 0(y) ∪ 0(zy). Thus,

1(zy) ∩ 0(w) = 1(zy) ∩ 0(w) ∩ 0(x) = 1(zy) ∩ 0(w) ∩ (0(y) ∪ 0(zy))

Applying distributivity,

1(zy) ∩ 0(w) = (1(zy) ∩ 0(w) ∩ 0(y)) ∪ (1(zy) ∩ 0(w) ∩ 0(zy))

where the second argument of the union is obviously empty; therefore, given
that 1(zy) ∩ 0(w) 6= ∅ the set 1(zy) ∩ 0(w) ∩ 0(y) is equally nonempty and the
larger set 0(w) ∩ 0(y) is nonempty too, as was to be shown.
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Taken together, the lemmas prove the main theorem in this section. We
can use the same techniques to characterize the case of using only multivalued
dependency clauses, without the company of Horn clauses; the property is some-
what less elegant. We first note that a model with less than two variables set to
false satisfies every multivalued dependency clause, since it has to falsify both
disjuncts of the right hand side in order to falsify the clause.

Theorem 5. A propositional theory T can be axiomatized by a conjunction of
multivalued dependency clauses if and only if it is closed under focused intersec-
tion, contains > and, for each model x /∈ T , x =

∧
Tx.

We only sketch the proof since it uses the same techniques: the “if” part
follows from lemma 10, by considering all the multivalued dependency clauses
satisfied by T , and picking x /∈ T (so x 6= >); then the properties about x and
the closure of T are exactly what we need to apply lemma 10 and prove that x
falsifies some of these clauses; thus the conjunction of these classes axiomatizes
T . For the “only if” part, the observation just before this theorem says that
T contains >, and lemma 8 proves that it is closed under focused intersection;
pick x /∈ T , and consider Tx. To prove x =

∧
Tx it suffices to see that, for each

v ∈ 0(x), there is y ∈ Tx for which v ∈ 0(y): indeed, such y is the model that sets
only v to zero. Then, since in this case x ≤ y and y ∈ T , we have that y ∈ Tx.

7 On Question 1: the Incomplete Membership Teacher

This was the original technical motivation to start research along the line de-
scribed here. In fact, there were two additional, less technical reasons. First, this
author’s experience in teaching the algorithms from [2], where, in nearly all op-
portunities, some person in the audience would raise a hand and ask about the
possibility of refining several examples at once, a very natural alternative that
is easy to think of; and having no answer beyond “we do not know whether that
idea can be turned into a better algorithm”, given once and again, felt (and still
feels) annoying. Second, a number of interesting results obtained recently in the
author’s research group ([11], [7], [5]) connect with closure operators, and in fact
the simplest such case, still general enough to provide intuitions on all of them,
is the operator mapping x into H∗(x) (with our notation), which is isomorphic
to those used in Formal Concept Analysis and has close connections to Database
Theory.

As for the Learning Theory motivation proper, it is not difficult to argue that
it would be preferable to be able to let the teacher skip some membership queries,
that would be answered “I don’t know”. This model of incomplete memberships
has been studied in the past, and there are several studies of algorithms for
learning monotone DNF in this model ([3], [9], [19]). We found extremely inter-
esting the fact that one important advance [9] came from considering a method
of learning monotone DNF on the basis of computing intersections (refinements)
of positive examples, which is essentially the same thing as refining negative
examples in the Horn case, close to antimonotone. Thence the natural question
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of whether it is possible to extend the learning algorithm for Horn clauses up to
this weaker model. Important efforts together with valuable co-workers notwith-
standing, this problem remains, to our knowledge, open today, as is, of course,
the same problem for multivalued dependency formulas.
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Abstract. We introduce logical judgements for the internal logic of
a quantum computer with two qubits, in the two particular cases of
non-entanglement (separable states) and maximal entanglement (Bell’s
states). To this aim, we consider an internal (reversible) measurement
which preserves the probabilities by mirroring the states. We then obtain
logical rules obeying the reflection principle which illustrate the different
computational behaviour of separable and Bell’s states.

1 Introduction

The main aim of our work is to look for the internal logic of quantum com-
putation [9], illustrating the point of view of a hypotetical “internal observer”
who lives inside the black box. Such an observer, introduced in [15], can perform
“internal” (reversible) measurements in the quantum system. The idea is that in-
ternal measurements give rise to logical assertions [1], [2], which are then treated
following the reflection principle as in basic logic [12]. By the reflection principle,
logical connectives are the result of importing some pre-existing metalinguistic
links between assertions into the formal language. We then obtain adequate con-
nectives, corresponding to the physical links which are present inside the black
box.

In [2] whe have considered a toy-model quantum computer with one qubit and
we have obtained an interpretation of the superposition of the two basis states in
terms of the additive conjunction “&” (and, dually, with the additive disjunction
“⊕”). The resulting logic is paraconsistent [7], [6], [10], and symmetric, like basic
logic. We recall that in a paraconsistent logic, both the non-contradiction and
the excluded middle principle do not hold. Here, we introduce a model of two
qubits. This makes it possible to deal with two different physical links occurring
between two qubits of the register: maximal entanglement (the two qubits are a
Bell pair) and non entanglement (the two qubits state is separable).

2 Measurements and Mirrors

To obtain the judgements for the two qubits model, we extend the definition
of the internal measurement to the case of two qubits. We remind that, in a

? Work supported by the research project “Logical Tools for Quantum Information
Theory”, Department of Pure and Applied Mathematics, University of Padova.
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Hilbert space C2, the internal measurement of one qubit is given by a unitary
2 × 2 complex matrix [15]. In such a model, the judgements are obtained by
means of a particular internal measurement, called “mirror measurement” [2],
given by the matrices:

M = eiφ
(
α 0
0 α∗

)
(1)

where αα∗ = |α|2 = 1. We have:

M(a|0〉+ b|1〉) = eiφ(αa|0〉+ α∗b|1〉) (2)

So, our mirrors are “quasi-identities”; actually, they modify the longitude of the
qubit in the Bloch sphere, that is, the probability amplitudes:

a→ a′ = eiφαa

b→ b′ = eiφα∗b

and preserve the “internal truth” given by the probabilities, since |a′|2 = |a|2
and |b′|2 = |b|2. For this reason, we have chosen mirror-matrices to witness the
internal truth and the consequent logical judgements, as we shall see in the next
section.

We now extend the mirror-matrices to C4. If M1 = eiφ1

(
α 0
0 α∗

)
and M2 =

eiφ2

(
β 0
0 β∗

)
, the tensor product M = M1 ⊗M2 given by:

M = ei(φ1+φ2)




αβ 0 0 0
0 αβ∗ 0 0
0 0 α∗β 0
0 0 0 α∗β∗


 = eiφ




γ 0 0 0
0 δ 0 0
0 0 δ∗ 0
0 0 0 γ∗


 (3)

is also a mirror matrix. In fact, the most general state of C4 in the computational
basis is:

|ψ〉 = a|00〉+ b|01〉+ c|10〉+ d|11〉 (4)

and one has:

M |ψ〉 = eiφ(γa|00〉+ δb|01〉+ δ∗c|10〉+ γ∗d|11〉) (5)

and again we have: a→ a′ = eiφγa... and so on, then probabilities are preserved:
|a′|2 = |a|2... and so on.

Note that, if |ψ〉 is one of the Bell states |ψ±〉 = 1/
√

2(|00〉 ± |11〉), its
mirroring is: M |ψ±〉 = 1/

√
2eiφ(γ|00〉 ± γ∗|11〉). Similarly, for the Bell’s state

|φ±〉 = 1/
√

2(|01〉 ± |10〉), we have M |φ±〉 = 1/
√

2eiφ(δ|01〉 ± δ∗|10〉). Then Bell
states behave as a single particle in the mirroring, since the result has the same
form as (2). This fact will be shown in Sect.4 in logical terms.
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3 From Mirrors to Judgements in the Black Box

We recall the line of thought followed for the case of the one qubit model (see [2]).
Inside the Black Box, a hypothetical internal observer P is equipped with mirror-
matrices and then can perform reversible measurements. Outside the Black Box,
instead, an external observer G can perform standard quantum measurements,
represented by projectors. G has a standard quantum logic [3].

It is well known that performing a standard quantum measurement in the
given basis, e.g. |0〉, |1〉, on a qubit |q〉 = a|0〉 + b|1〉, means to apply one of the
two projectors P0 or P1, breaking the superposition and obtaining one of the two
basis states. So the observer G can “read” the value of the qubit as |0〉, asserting:
“|0〉 is true” or |1〉, asserting: “|1〉 is true”. So, let us suppose that a standard
quantum measurement is applied and a result A ∈ {|0, |1〉〉} is obtained. Then
G asserts “A is true”, written as:

` A

Conversely, denoting by A⊥ the opposite result, G asserts “A⊥ is true”, written
as:

` A⊥

By the no cloning theorem [14], after the measurement, G can assert only one
of the two. The same does not happen to the internal observer P, who applies a
mirror to |q〉. In fact, any mirror is the sum of the two projectors:

M = eiφ
(
α 0
0 α∗

)
= eiφαP0 + eiφα∗P1 (6)

so that M |q〉 = eiφαP0|q〉+ eiφα∗P1|q〉. Hence P obtains a superposition of the
two results obtainable by G. We write then both the above judgements together:

` A ` A⊥

What is a couple of possibilities for G is instead a unique fact for P! By the
reflection principle, a connective corresponds to a link between judgements. As
in [12], we make the connective “&” correspond to the above couple, putting

` A&A⊥ ≡ ` A ` A⊥ (7)

Then
` A&A⊥ (8)

“A&A⊥ is true” is the judgement put by P inside the Black Box, concerning the
value of the qubit |q〉.

Now, let us consider a two-qubit model, that is a Black Box equipped with a
register |ψ〉 of two qubits |q1〉, |q2〉. Fixed a basis of C4, e.g. the computational ba-
sis |00〉, |01〉, |10〉, |11〉, the external observer, who performs a standard quantum
measurement in that basis, applies one of the four projectors P00, P01, P10, P11.
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Let us suppose that she finds an answer A ∈ {|0〉, |1〉} for |q1〉 and an answer
B ∈ {|0〉, |1〉} for |q2〉. Then she has a register of two classical bits, and her
assertion is:

` A,B (9)

where the comma stands for the register link between the two classical bits. We
interpret the link by the multiplicative connective on the right of the sequent,
which is called “par”, written as “®”. “Par” has the same physical meaning of
the tensor product “times”, written ⊗, which, however, is used in linear logic
and basic logic to interpret the comma on the left of the sequent. Then, as in
[12] we put the equation:

` A®B ≡ ` A,B (10)

What are all the possible judgements? If the measurements of the two qubits
are independent, four combinations are possible:

` A,B ` A,B⊥ ` A⊥, B ` A⊥, B⊥

and so four judgements are obtainable:

` A®B ` A®B⊥ ` A⊥ ®B ` A⊥ ®B⊥ (11)

This is the case of a pair of unentangled qubits. On the contrary, let us consider
a Bell pair. In such a case the two measurements are related, thus not all combi-
nations are possible: if ` A,B is a result, then ` A⊥, B⊥ is the only other. Note
that G is in general unaware of the link existing between |q1〉 and |q2〉 inside the
Black Box, so that the same register link is used outside. Then, in the case of
entanglement, two judgements are possible outside:

` A®B ` A⊥ ®B⊥ (12)

As in the case of one qubit, the external observer can put only one of the possible
judgements. Again, the judgement of the internal observer is given by a mirror
measurement, and mirrors of C4 are obtainable as a linear combination of the
four projectors:

M = eiφ(γP00 + δP01 + δ∗P10 + γ∗P11) (13)

So P, who applies M to the register |ψ〉, obtains:

M |ψ〉 = eiφ(γP00|ψ〉+ δP01|ψ〉+ δ∗P10|ψ〉+ γ∗P11|ψ〉) (14)

that is the superposition of the possible values obtainable outside. If |ψ〉 is not
a maximally entangled state, every projector gives a result and the judgement
of the internal observer is obtained as a superposition of the four judgements in
(11), that is:

` (A®B)&(A®B⊥)&(A⊥ ®B)&(A⊥ ®B⊥) (15)



22 G. Battilotti, P. Zizzi

If |ψ〉 is a Bell state, for example |ψ±〉, one has M |ψ±〉 = eiφ(γP00|ψ±〉 +
γ∗P11|ψ±〉). The same holds for the other Bell states. The result of the measure-
ment of a maximally entangled state is the superposition of the two judgements
(12), that is:

` (A®B)&(A⊥ ®B⊥) (16)

Now, let us consider the internal measurement without any reference to the
external one. We know that P achieves a superposition A&A⊥ measuring |q1〉
and another B&B⊥ measuring |q2〉. The two results are linked by two different
register links present in the black box, that is non entanglement and maximal en-
tanglement. For non entanglement we write ³, while, for maximal entanglement
./. The mirror measurement gives the judgements:

` (A&A⊥) ³ (B&B⊥) (17)

and
` (A&A⊥) ./ (B&B⊥) (18)

respectively.
We put the two reflection principles, writing ®0 (no correlation) and ®1

(maximum correlation) for the two corresponding binary connectives:

` (A&A⊥)®0 (B&B⊥) ≡ ` (A&A⊥) ³ (B&B⊥) (19)

and
` (A&A⊥)®1 (B&B⊥) ≡ ` (A&A⊥) ./ (B&B⊥) (20)

So we have two kinds of internal judgements concerning our register of two
qubits:

` (A&A⊥)®0 (B&B⊥) (21)

and
` (A&A⊥)®1 (B&B⊥) (22)

As for the states that are neither separable nor maximally entangled, we argue
that connectives ®x, x ∈ (0, 1) (where x is a degree of correlation), should be
introduced, perhaps leading to a kind of fuzzy logic.

4 Towards a calculus of judgements

Of course, the internal judgements (21) and (22) must be equivalent to the
superposition of the external ones (15) and (16), that is we have to prove the
following equivalence:

` (A&A⊥)®0 (B&B⊥)⇐⇒ ` (A®B)&(A®B⊥)&(A⊥®B)&(A⊥®B⊥) (23)

in the non entangled case, and the equivalence:

` (A&A⊥)®1 (B&B⊥)⇐⇒ ` (A®B)&(A⊥ ®B⊥) (24)
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in the maximally entangled case.
This can be achieved disassembling the judgements and then assembling them

the other way around, as we show in the following pair of derivations:

` (A®B)&(A⊥ ®B⊥)

` A®B
` A,B ® ` A⊥ ®B⊥

` A⊥, B⊥
®

&

` (A&A⊥) ./ (B&B⊥)

` (A&A⊥)®1 (B&B⊥)
®1

&congr

(25)

for the maximally entangled case, and

` (A®B)&(A®B⊥)&(A⊥ ®B)&(A⊥ ®B⊥)

` A®B
` A,B ® ` A®B⊥

` A,B⊥
® ` A⊥ ®B

` A⊥, B
® ` A⊥ ®B⊥

` A⊥, B⊥
®

&

` (A&A⊥) ³ (B&B⊥)

` (A&A⊥)®0 (B&B⊥)
®0

&cont

(26)

for the non entangled case.
We now explain how one must read the above derivations, which are per-

formed by the internal observer. The key point, once again, is the superposition
link. We remind that, in basic logic, which is a quantum linear logic, the additive
connective & is obtained putting the following definitional equation:

Γ ` A&B ≡ Γ ` A Γ ` B (27)

which does not admit any context besides the active formulae A and B (visibility
of basic logic). On the contrary, the same equation in any non-quantum logic
can be written with a context C:

Γ ` A&B,C ≡ Γ ` A,C Γ ` B,C (28)

But, in this case, one would derive distributivity of the multiplicative connective
® with respect to the additive connective & (e.g. see [12]). Inside the black box,
we have (at least!) two kinds of distinct links for registers and hence we can deal
with two different versions of the equation for &:

Γ ` (A&A⊥) ./ (B&B⊥) ≡ Γ ` A,B Γ ` A⊥, B⊥ (29)

for maximal entanglement, and:

Γ ` (A&A⊥) ³ (B&B⊥) ≡ Γ ` A,B Γ ` A⊥, B Γ ` A,B⊥ Γ ` A⊥, B⊥

(30)
for non entanglement. Note that this last equation could be derived from the
classical one!

Then, of course, a classical logician would derive only the rules for the unen-
tangled case, that correspond to a classical use of the context. On the contrary,
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in the equation (29), we have an odd use of the context, corresponding to en-
tanglement. Notice moreover that, due to visibility, the basic logic equation (27)
represents a lower bound for both the equations valid in the black box, that is
(29) and (30). This means again that the external observer, unaware of the ac-
tual kind of correlations present in the black box, but aware of her unawareness,
must, as Scepticism suggests, suspend judgement. Hence, for her judgements, no
context at all.

Let’s us go back and explain the above derivations (25) and (26). As we
have seen in basic logic, the definitional equations give rise to formation and
implicit reflection rules, each one corresponding to a direction of the equiva-
lence. Such rules can be found in the above couple of derivations, which can be
read top-down and bottom-up, providing the required equivalences between the
judgements. The premise Γ , used in the definitional equations, is not present
in our judgements yet, because its justification inside the Black Box is under
study. In particular, in (25) we have the new rule “&congr”, which follows from
the definitional equation (29), where “congr” is for “congruence”, as equation
(29) resembles a congruence rule. It shows in logical terms that entanglement
is a particular form of superposition. In (26) the rule “&cont” (for “context”),
coming from the definitional equation (30), that is equivalent to the classical
equation (28), is a form of a classical &-rule of sequent calculus.

In our opinion, the derivations, despite their simplicity, are already quite
informative for a logical calculus which aims to grasp the efficiency of quantum
computation. In fact, they show how the “quantum parallelism”, in the entangled
case, can be obtained by only one half of the derivation branches! This is achieved
thanks to the rule “&congr”. As for the non entangled case, the rule “&cont”
relizes a classical parallelism (superposition without entanglement).

Note that derivation (25) has the same form of the following one, that shows
how the judgements ` A and ` A⊥ can be assembled and disassembled in the
one qubit case (cf. [2]):

` A&A⊥

` A ` A⊥

` A&A⊥ (31)

In this sense we think that a Bell’s state seen from inside the quantum com-
puter can be assimilated to a single particle. Notice that here “inside” means that
the quantum computer is embedded in a non-commutative geometry background
[15]. In other words a 2-qubits register is a fuzzy sphere with four elementary
cells each one encoding a two-qubits string |00〉, |01〉, |10〉, |11〉 (see fig. (1)). In
the maximally entangled case, the fuzzy sphere has two cells, each one with dou-
bled surface area, and encoding the two-bits string |00〉 and |11〉 (see fig. (2)).
The latter situation resembles the case of one qubit, where the fuzzy sphere has
two elementary cells, each one encoding the one bit string |0〉 and |1〉 (see fig.
(3)).

The fact that a Bell’s state (as seen from inside a quantum computer) “pre-
tends” to be a single particle, while we think it is not, is at the origin of all
paradoxes related to entanglement. For example, “non-locality” is just a prob-
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lem of the external observer, who lives in a local space-time. Instead, the Bell’s
state, as seen from inside a quantum computer, lives in a non-local space, which
is the fuzzy sphere. Moreover, as far as causality is concerned, let us consider
the cut rule:

A ` B B ` C
A ` C cut

which is a causal relation. But the cut rule as such is not admissible inside
the Black Box (as we have seen in [2]), since it corresponds to a projective
measurement performed in the external world. Thus we argue that the usual
meaning of causality is absent in the case of a quantum computer on a fuzzy
sphere (internal logic). This is the reason why an external observer, who lives in
a causal world, sees as a paradox the non-causal behaviour of a Bell’s state.

Notice that the model of a quantum computer in a non-commutative geom-
etry can be identified with a model of Computational Loop Quantum Gravity
(CLQG) [16]. For a review on Loop Quantum Gravity (LQG) see for exam-
ple [11]. This is equivalent to consider a quantum computer at the Planck scale.
Causality at the Planck scale is a very controversial issue, and some authors, like
Sorkin and collaborators [4] are inclined to believe in a sort of micro-causality
that they discuss in terms of causal sets. However, the fact is that the light cone
at the Plank scale might be “smeared” by the very strong quantum fluctuations
of the metric field (the “quantum foam” [13]) and this would indicate that (mi-
cro) causality is lost at that scale at least in its usual setting. At the light of our
logical result, i.e., that the cut rule as such is not admissible inside the Black
Box, we are now lead to argue that causality is absent at the fundamental scale.

To conclude, it is just the intrinsic non-locality of non-commutative geometry
which leads to a modification of micro-causality (see for example [5] in support
of this idea). Then, it is non-commutative geometry itself which “trivializes” at
once both the “paradoxes” of non-locality and non-causality of entanglement.
Recall that non-commutative geometry was exploited in [15] to describe the in-
ner quantum world, and here some logical consequences are analyzed, producing
an internal logic. We think that our internal approach can lead to a logical expla-
nation of the different computational behaviour (speed up!) of quantum systems
with respect to classical ones. In fact we describe the quantum computation
itself, without mixing it with the effects of the external measurements, which
would break quantum parallelism.
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Fig. 1

Two unentangled qubits.



28 G. Battilotti, P. Zizzi

Fig. 2

A Bell’s state
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Fig. 3

One qubit
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Abstract. We focus on the BSS model of computation over arbitrary
structures. We propose a modification of the logical characterizations
of PK and NPK given by Grädel and Gurevich in order to make them
applicable to any computational structure K.

1 Introduction

In the last decades complexity theory developed in many directions to offer a
broad perspective of the complexity of computations. Two directions relevant to
our work are the extension of complexity theory to domains other than finite al-
phabets and the characterizations of complexity classes in machine-independent
terms.

A seminal paper for the first direction above is the one by Blum, Schub
and Smale [1], where a theory of computation and complexity that allowed an
ordered ring or field as alphabet for the space of admissible inputs was developed.
The authors emphasized the case when the ring is the field of real numbers, R,
bringing the theory of computation into the domain of analysis, geometry and
topology. Later on extended to the more abstract level of computations over
arbitrary structures in [2, 3], this BSS model, among other things, makes use
of the extensively developed subject of the theory of discrete computations,
initiated by the work of Turing [4].

In the classical setting of computation over finite alphabets, a great amount
of work has been done, along the second direction to provide machine indepen-
dent characterization of the major complexity classes. Such characterizations
lend further credence to the importance of the complexity classes considered,
relate them to issues relevant to programming and verification, and, in general,

? Partially supported by City University of Hong Kong SRG grant 7001290.
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help understand the notion of computability in a whole perspective. Several ap-
proaches for designing such characterizations have been chosen, among which
one can find descriptive complexity (global methods of finite model theory).

Descriptive complexity began with the work of Fagin [5], who proved, in the
classical setting, that the class NP can be characterized as the class of sets de-
scribable within existential second-order logic. Subsequently, Vardi and Immer-
man [6–8] used this approach to characterize P. Several other characterizations
exist, for classes like LOGSACE [9] or PSPACE [10–18]. An overview of the sub-
ject can be found in [19, 20]. These characterizations, however, applied originally
only to the classical setting of computation over finite alphabets since only finite
models were considered.

In [21], the notion of R-structure has been introduced, and characterization
of deterministic polynomial time PR and non-deterministic polynomial time NPR

in terms of logics over these R-structures were provided. These results have been
later on extended in [22], in order to capture other complexity classes, and in [23]
over structures other than R.

In this paper, we extend the notions of R-structures to K-structures over
an arbitrary computational structure K, extend the notion of first order logic
and second order logic over R-structures of [21] to first and second-order logic
over K-structures. We also define a proper notion of fixed-point rule, different
from [21], allowing to capture PK, and propose a characterization of NPK. Our
characterizations, while only slightly different from the ones of [23], apply to
any computational structure. In particular, when K is Z2, they coincide with
the classical ones.

Indeed, in the characterizations of [21, 22], some logic is hidden in basic com-
putations over the real numbers. In particular, these characterizations assume
that the set of real numbers is equipped with a sign function and a multiplica-
tion: therefore they cannot be trivially extended, say, to the additive setting or
to the field of complex numbers. Similar restrictions apply to the more general
characterizations of [23], where it is required that the underlying computational
structure contains an expansion of (N, 0, 1+,−, <,max,min, Σ,Π). Here again,
this does not apply to the field of complex number, or to finite structures. Our
characterizations overcome these drawbacks.

2 Computing over Arbitrary Structures

This section is devoted to a brief exposition of the BSS model of computation,
based on [24] and [3].

2.1 Arbitrary Structures

The following notion of structure describes the domain of elements over which a
machine computes, as well as the operations and relations that can be performed
over these elements.
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Definition 1. (Structure): A structure

K = (K, {opi}i∈I , rel1 . . . , rell,0,1)

is given by some underlying set K, some operators {opi}i∈I , and a finite number
of relations rel1, . . . , rell.

Constants correspond to operators of arity 0. While the index set I may be
infinite, the number of operators with arity greater than 1 is assumed to be
finite, that is, only symbols for constants may be infinitely many. We will not
distinguish between operator and relation symbols and their corresponding in-
terpretations as functions and relations of the same arity, respectively over the
underlying set K. We assume that the equality relation = is a relation of the
structure, and that there are at least two constant symbols, with different inter-
pretations (denoted by 0 and 1 in our work) in the structure.

The main examples of structures are Z2 = ({0, 1},=,0,1), R =
(R,+,−, ∗, /,<, {c ∈ R}) and Rovs = (R,+,−, <, {c ∈ R}). When considered
over Z2, the notions of BSS computability and complexity coincide with the one
of the classical Turing model.

2.2 BSS Machines

Denote by K a structure as above. We now define machines over K following the
lines of [24]. A machine over K is roughly a Turing machine with a bi-infinite
tape, where the tape cells holds elements of K. A machine can perform operations
and relations of K over its tape elements at unit cost. More formally,

Definition 2. (Machine): A machine over K consists of an input space I =
K∗ =

⋃
n∈N
Kn, an output space O = K∗, and a register space3 S = K∗ =

{(xi, . . . , xj), i ∈ Z, j ∈ Z, xi≤k≤j ∈ K}, together with a connected directed graph
whose nodes labelled 0, . . . , N correspond to the set of different instructions of
the machine. These nodes are of one of the six following types: input, output,
computation, copy, branching and shift nodes.

1. Input nodes. There is only one input node and it is labelled with 0. Associated
with this node there is a next node β(0), and the input map gI : I → S.

2. Output nodes. There is only one output node which is labelled with 1. It
has no next nodes, once it is reached the computation halts, and the output
map gO : S → O places the result of the computation in the output space.

3. Computation nodes. Associated with a node m of this type there are a next
node β(m) and a map gm : S → S. The function gm replaces the component
indexed by 0 of S by the value op(w0, . . . , wn−1) where w0, w2, . . . , wn−1 are
components 0 to n − 1 of S and op is some operation of the structure K of
arity n. The other components of S are left unchanged. When the arity n is
zero, m is a constant node.

3 In the original paper by Blum, Shub and Smale, this is called the state space. We
rename it register space to avoid confusions with the notion of ‘state’ in a Turing
machine.
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4. Copy nodes. Associated with a node m of this type there are a next node
β(m) and a map gm : S → S. The function gm performs one of the following
actions:
– Replace the component indexed by 0 by a copy of the component indexed

by 1. This is denoted as a copy left.
– Replace the component indexed by 0 by a copy of the component indexed

by −1. This is denoted as a copy right.
– Exchange the component indexed by 0 and the component indexed by 1

. This is denoted as a switch.
5. Branch nodes. There are two nodes associated with a node m of this type:
β+(m) and β−(m). The next node is β+(m) if rel(w0, . . . , wn−1) is true and
β−(m) otherwise, where w0, w2, . . . , wn−1 are components 0 to n − 1 of S
and rel is some relation of the structure K of arity n.

6. Shift nodes. Associated with a node m of this type there is a next node β(m)
and a map σ : S → S. The σ is either a left or a right shift.

As in the classical Turing model of computation, complexity classes over an
arbitrary structure K can be defined such as PK and NPK, as well as the notions
of reduction and completeness. Over the three major structures, natural complete
problems exist for NPK, and the question PK = NPK remains open.

3 First-Order Logic on K-structures

In the rest of the paper, denote by K a structure as above. We will consider
machines over K, as well as the complexity classes PK and NPK.

3.1 Definitions

We assume that the reader is familiar with first-order mathematical logic. In
order to capture computation over arbitrary structure, we extend the notion of
R-Structures from [21, 24] to the notion of K-Structures. Our K-Structures are
particular instances of the meta-finite structures of Grädel and Gurevich [23].

Definition 3. (K-Structures): Let Ls, Lf be finite vocabularies, where Ls
may contain relation and function symbols with their arities, and Lf con-
tains function symbols only, with their arities. An K-structure of signature
σ = (Ls, Lf ) is a pair D = (U ,F) consisting of

(i) a finite logical structure U of vocabulary Ls, called the skeleton of D, whose
(finite) universe A is also called the universe of D, and

(ii) a finite set F of functions fD
i : Aki → K interpreting the function symbols

fi in Lf , with the corresponding arities ki.

K-Structures as above are a generalization of the concept of logical structure,
over a fixed computational structure K, in order to denote inputs to algorithms
performed by BSS machines over K. The skeleton of a K-structure is used for
describing the finite, discrete part of a structure, while the set F is used for
describing its computational part.
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Example 1. Consider for instance the real case R, and the NPR-complete prob-
lem 4FEAS: decide whether a given polynomial of degree 4 has a real zero.
Inputs to this decision problem are polynomials of degree 4, which can be en-
coded by R-structures of signature (Ls, Lf ) = (∅, {f0, f1, f2, f3, f4}) as follows:
The universe A contains one variable for each variable of the polynomial. The
interpretation of the function f4 : A4 → R of Lf gives the (real) coefficient for
each monomial of degree 4, and similarly for the other coefficients with f3, . . . f0.

We present now the notion of first-order logic over K-structures. A key feature
of this logic is that the quantified variable range only over the skeleton of the
structures, and not over K. Assume that V is a fixed, countable set of variables.

Definition 4. (First-Order Logic for K-Structures): The language of
first-order logic for K-structures, FOK, contains for each signature σ = (Ls, Lf )
a set of terms and formulas. We first define terms, of which there are two kinds.
When interpreted in a K-structure D = (U ,F) with universe A, each term t
takes values either in A, in which case we call it an index term, or in K, in
which case we call it a number term. Terms are defined inductively as follows.

(i) The set of index terms is the closure of the set V of variables under the
application of functions symbols of Ls.

(ii) If h1, . . . , hk are index terms, and X is a k-ary function symbol of Lf , then
X(h1, . . . , hk) is a number term.

(iii) If t1, . . . , tki
are number terms, and opi is an operation of the compu-

tational structure K of arity ki, opi(t1, . . . , tki
) is also a number term. In

particular, operations of arity 0 of K yield constant number terms.

Atomic formulas are defined as follows.

(i) equalities h1 = h2 of index terms are atomic formulas.
(ii) If t1, . . . , tki

are number terms, and reli is a relation of the computational
structure K of arity ki, reli(t1, . . . , tki

) is an atomic formula. In particular
we may consider equalities t1 = t2 of number terms.

(iii) If h1, . . . , hk are index terms, and P is a k-ary relation symbol in Ls,
P (h1, . . . , hk) is also an atomic formula.

The set of formulas of FOK is the smallest set containing all atomic formulas
and which is closed under Boolean connectives, ∨,∧,¬, and quantification (∃v)ψ
and (∀v)ψ.

Definition 5. (Interpretation of First-Order Logic for K-Structures):
We adopt the usual interpretation. The main point is that the quantifiers range
over the universe of the K-Structure: a formula (∃x)ψ where ψ contains variables
x, y1, . . . , yn, n ≥ 0 is true at b ∈ An if there exists a ∈ A such that ψD is true,
where x is interpreted as a and yi is interpreted as bi, for i = 1, . . . , n. Similarly
for a formula (∀x)ψ being interpreted as ¬(∃x)¬ψ. For details, see the Appendix.

Definition 6. (Order): Let σ = (Ls, Lf ) be a signature. A K-structure D =
(U ,F) of signature σ with universe A is ordered if there is a binary relation
symbol ≤ in Ls whose interpretation ≤D∈ U is a total order on A.
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Remark 1. Our order relation replaces the ranking function of [21, 22, 24, 23].
In these papers, the ranking function is a function in Lf , defining a bijection
between A and {0, . . . , |A| − 1}. This uses the property that R is ordered and
contains at least the natural numbers. It is not applicable in our setting of
arbitrary structure, where no such requirement can be made on K.

Remark 2. It is checkable in first-order logic over K-structures that a structure
is ordered. Based on this order relation, one can also define in first-order logic
a lexicographic order over Ak for any k ∈ N. Therefore, we will freely use the
symbol ≤k for a total order over Ak. In what follows, we will only consider
ordered K-structures. Note also that the minimal element of Ak and the maximal
one with respect to this lexicographic order are definable in first-order logic. We
will denote them 0 and nk − 1 respectively.

Definition 7. (Fixed Point Rule): Fix an signature σ = (Ls, Lf ), D a re-
lation symbol of arity r ≥ 0 and Z a function symbol of arity r, both not contained
in this signature. Let H(D, t1, . . . , tr), I1(D, t1, . . . , tr), . . . , Ik−1(D, t1, . . . , tr),
k ≥ 0 be first-order formulas over the signature (Ls ∪ {D}, Lf ∪ {Z}) with free
variables t1, . . . , tr. Let F1(Z, t1, . . . , tr), . . . , Fk(Z, t1, . . . , tr) be number terms
over the signature (Ls ∪ {D}, Lf ∪ {Z}) with free variables t1, . . . , tr. We al-
low D to appear several times in H and the Ii’s, but we do not require that its
arguments are (t1, . . . , tr). The only restriction is that the number of free vari-
ables in H and the Ii’s coincide with the arity of D. A similar remark holds
for the Fi’s and Z. For any K-structure D of signature σ and any interpre-
tation ζ : Ar → K of Z and ∆ ⊆ Ar of D, respectively, the number terms
F1(Z, t1, . . . , tr), . . . , Fk(Z, t1, . . . , tr) define functions

FD
1,ζ , . . . , F

D
k,ζ : Ar → K

u1, . . . , ur →





[F1(Z ← ζ, t1, . . . , tr ← u1, . . . ur)]
D

...
[Fk(Z ← ζ, t1, . . . , tr ← u1, . . . ur)]

D,

where [Fi(Z ← ζ, t1, . . . , tr ← u1, . . . ur)]
D is obtained from Fk(Z, t1, . . . , tr)

by replacing any occurrence of Z by ζ, any occurrence of tj by uj, and inter-
preting the whole number term in D. Also, the formulas H(D, t1, . . . , tr) and
Ii(D, t1, . . . , tr), 1 ≤ i ≤ k − 1 define relations

HD
∆ , I

D
i,∆ ⊆ Ar

u1, . . . , ur →





[H(D ← ∆, t1, . . . , tr ← u1, . . . ur)]
D

[I1(D ← ∆, t1, . . . , tr ← u1, . . . ur)]
D

...
[Ik−1(D ← ∆, t1, . . . , tr ← u1, . . . ur)]

D.
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Let us now consider the sequence of pairs {∆i, ζi}i≥0 with ∆i ⊆ Ar and ζi :
Ar → K inductively defined by

∆0(x) = false for all x ∈ Ar
ζ0(x) = 0 for all x ∈ Ar

∆i+1(x) =

{
HD
∆i(x) if ∆i(x) = false

true otherwise

ζi+1(x) =





FD
1,ζi(x) if ¬∆i(x) ∧ ID1,∆i(x), else

...
FD
k−1,ζi(x) if ¬∆i(x) ∧ IDk−1,∆i(x), else

FD
k,ζi(x) if ¬∆i(x), else

ζi(x).

Since ∆i+1(x) only differs from ∆i(x) in case the latter is false, one has that
∆j = ∆j+1 for some j < |A|r. In this case, we also have that ζj = ζj+1. We
denote these fixed points by D∞ and Z∞ respectively and call them the fixed
points of H(D, t1, . . . , tr), the Fi(Z, t1, . . . , tr), and the Ii(D, t1, . . . , tr) on D.
The fixed point rule is now stated as follows. If Fi(Z, t1, . . . , tr), 1 ≤ i ≤ k are
number terms as previously, and H(D, t1, . . . , tr), Ii(D, t1, . . . , tr), 1 ≤ i ≤ k are
first-order formulas as previously, then

fp[D(t1, . . . , tr)← H(D, t1, . . . , tr)](u1, . . . , ur)

is a first-order formula of signature (Ls, Lf ), and

fp[Z(t1, . . . , tr)← Fi(Z, t1, . . . , tr), Ii(D, t1, . . . , tr), H(D, t1, . . . , tr)](u1, . . . , ur)

is a number term of signature (Ls, Lf ). Their interpretations on a given K-
structure D are D∞ and Z∞, respectively.

Remark 3. In [21, 22, 24], the fixed point rule allows to define only number terms.
Thus, the authors need to introduce another rule, the maximization rule, which
allows them to compute characteristic functions of relations of Ls as number
terms, and perform logical operations such as AND, NOT, OR, by the appropri-
ate use of multiplication, addition and a sign function. This approach, however, is
not appropriate to our setting of an arbitrary structure, where no specific require-
ment is made on the functions and operations of the computational structure.
We introduce therefore the possibility to define relations as fixed point, such
as D∞ in the definition above, which enables us to perform legally all kinds of
logical operations in first-order logic. While our definition of the fixed point rule
is more complicated, it makes the need for a maximization rule obsolete and en-
ables us to prove our results over arbitrary structures, which can be specialized
to be the real numbers with addition and order Rovs, or the complex numbers.
Moreover, it allows us to capture also classes decided by machines having no
constant node, by an appropriate specialization of the computational structure.
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The fixed point rule allows us to defined an extension of the first-order logic,
as follows.

Definition 8. (Fixed Point First-Order Logic for K-Structures):
Fixed point first-order logic for K-structures, denoted by FPK, is obtained by
augmenting first-order logic FOK with the fixed point rule.

3.2 Characterizing PK

It is clear that, for any signature σ = (Ls, Lf ), one can encode in polynomial
time finite ordered K-structures of signature σ as elements of K∗ of polynomial
size. For D an ordered K-structure of signature σ, we will denote by e(D) its
encoding. Details can be found in the Appendix.

Definition 9. (Decision Problem of Ordered K-structures): Let σ =
(Ls, Lf ) be a signature containing a binary relation symbol ≤. We denote by
Struct(σ) the set of ordered K-structures of signature σ. A decision problem of
ordered K-structures of signature σ is a subset of Struct(σ). Modulo a polynomial
encoding of ordered K-structures, any decision problem of ordered K-structures
can be seen as a decision problem over K in the BSS model, and vice versa.

This yields the following characterization of PK.

Theorem 1. Let S be a decision problem of ordered K-structures. Then the
following statements are equivalent.

(i) S ∈ PK.
(ii) There exists a sentence ψ in fixed point first-order logic such that S =
{D|D |= ψ}.

Example 2. Recall the signature (Ls, Lf ) = (∅, {f0, f1, f2, f3, f4}) given in Ex-
ample 1 for encoding inputs to the 4FEAS problem. Consider X : A → K
whose interpretation in a K-structure D of signature (Ls, Lf ∪ X) instantiates
the variables of the polynomial. The problem 4EVAL of checking that a given
polynomial of degree 4 evaluates to 0 at a given point is in PK. It can be for-
mulated as follows: There exists a sentence φ in fixed point first-order logic over
the signature (Ls, Lf ∪X) such that

4EVAL = {D|D |= φ}.

4 Second-Order Logic on K-structures

4.1 Definitions

Recall that K-structures can be naturally seen as points in K∗. A decision prob-
lem of rankedK-structures is then a decision problem, where the (positive) inputs
are encoded as K-structures, and satisfy the natural property of being ranked.
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Definition 10. (Existential Second-Order Logic For K-Structures):
We say that ψ is an existential second-order sentence (of signature σ = (Ls, Lf ))
if ψ = ∃Y1, . . . ,∃Yrφ, where φ is a first-order sentence in FOK of signature
(Ls, Lf ∪{Y1, . . . , Yr}). The function symbols Y1, . . . , Yr are called function vari-
ables. Existential second-order sentences are interpreted in K-structures D of
signature σ in the following way: a sentence D |= (ψ = ∃Y1, . . . ,∃Yrφ) if there
exist functions X1, . . . , Xr : Ari → K with ri the arity of Yi, such that the inter-
pretation of ψ taking Y D

i to be Xi yields true. The set of second-order sentences
together with this interpretation constitutes existential second-order logic and is
denoted by ∃SOK.

Existential second-order logic has at least the expressive power of fixed point
first-order logic. Indeed:

Proposition 1. For every sentence ψ of signature σ in FPK there exists a sen-
tence ψ̃ of signature σ in ∃SOK such that, for every K-structure D,

D |= ψ if and only if D |= ψ̃.

4.2 Characterizing NPK

Theorem 2. Let S be a decision problem of ordered K-structures. Then the
following statements are equivalent.

(i) S ∈ NPK.
(ii) There exists an existential second-order sentence ψ such that S = {D|D |=
ψ}.

Example 3. Recall the signature (Ls, Lf ) = (∅, {f0, f1, f2, f3, f4}) given in Ex-
ample 1 for encoding inputs to the 4FEAS problem. Consider X : A → K
whose interpretation in a K-structure D instantiates the variables of the poly-
nomial. Consider a formula φ in fixed point first-order logic over the signature
(Ls, Lf ∪X), whose interpretation for a K-structure D checks whether the eval-
uation of the polynomial at the point XD ∈ K|A| is 0. A instance of the result
above is

4FEAS = {D|D |= ∃Xφ}.
Note that by Proposition 1 φ can be expressed in existential second-order logic.
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Appendix

Interpretation of First-Order Logic for K-Structures

Let σ = (Ls, Lf ) be a signature, and D be a K-structure of signature σ. For any
index term h(x1, . . . , xn) containing n ≥ 0 variables, and any point a ∈ An, the
interpretation of the function symbols of h inD extend to a natural interpretation
hD(a) ∈ A of h in D at the point a, where xi is interpreted as ai for i = 1, . . . , n.
The same holds with number terms t(x1, . . . , xn), the interpretation tD(a) at
a lying in K. The interpretation of the relation symbols of Ls in D and the
relations of K enable us to associate truth values with atomic formulas evaluated
at point in An. Thus, if h1, . . . , hk are index terms and t1, . . . , tl are number terms
containing the variables x1, . . . , xn, and a ∈ An, we say that r(h1, . . . , hk) is true
in D if (hD1 , . . . , h

D
k ) ∈ rD and false otherwise, and, for a l-ary relation rel of

K, rel(t1, . . . , tl) is true if (tD1 , . . . , t
D
k ) ∈ rel in K, and false otherwise. The

interpretation of the logical connectives ∨, ∧ and ¬ is the usual. A formula (∃x)ψ
where ψ contains variables x, y1, . . . , yn, n ≥ 0 is true at b ∈ An if there exists
a ∈ A such that ψD is true, where x is interpreted as a and yi is interpreted as
bi, for i = 1, . . . , n. Similarly for a formula (∀x)ψ being interpreted as ¬(∃x)¬ψ.
Proceeding recursively, we can associate with any formula φ with free variables
x1, . . . , xn over σ and any a ∈ An a truth value. If this value is true we say that
D satisfies φ(a), and we denote this by D |= φ(a). A formula with no variable is
called a sentence. If T is a set of sentences over σ, D satisfies T if and only if
D satisfies all the sentences of T . This is denoted as D |= T . The K-structures
D such that D |= T are called the models of T . The sentences of T are called
axioms and T is a theory.

Encoding of Ordered K-structures

Let σ = (Ls, Lf ) be a signature containing a binary relation symbol ≤, and
let D be an ordered K-structure of signature σ. Next, replace all relations in
the skeleton by the appropriate characteristic functions χ : Ak → {0,1} ⊆ K.
Thus, we get a structure with skeleton a set A and functions X1, . . . , Xt of the
form Xi : Aki → K. Each of these functions Xi can be represented by a tuple
ξ = (x0, . . . , xmi−1) ∈ Kmi with mi = |A|ki and xj = Xi(a(j)) where a(j) is the
jth tuple in Aki with respect to the lexicographic order on Aki induced by ≤.
The concatenation

e(D) = ξ1.ξ2. . . . ξt

of these tuples gives the encoding e(D) ∈ Km1+...+mt .
Clearly, for a fixed finite signature and for any finite K-structure D of size

n, the size of e(D) is bounded by some polynomial nl where l depends only
on the signature. Thus, appending zeros to e(D) if necessary, we can also view
e(D) = (x0, . . . , xl−1) as a single function XD : Al → K. This means that one
can encode an ordered K-structure by a single function from the ordered set
{0, . . . , nl − 1} into K. Moreover, this encoding can be performed in polynomial
time.
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Proof of Theorem 1

Let us first prove the (i) ⇒ (ii) direction. Assume that the signature is σ =
(Ls, Lf ), and that it contains a binary relation symbol ≤. Let S ∈ PK, and
let M be a polynomial time BSS machine over K deciding S. Assume that, for
any ordered K-structure D of size n, encoded in K∗ by e(D), the computation
time of M on e(D) is bounded by nm, for some m ∈ N. Assume also that
the size of e(D) is nm. This is without loss of generality since it suffices to
add some padding 0’s to the encoding e(D) of D. Assume also without loss of
generality that the state space of M is bounded by nm. A point in this space has
coordinates (x0, x1, . . . , xnm−1). In the following, we will use the formalism of a
Turing machine, with a scanning head moving in Km instead of a state space
K∗.

Consider the lexicographic order ≤m on Am induced by the order ≤ on A.
By Remark 2, ≤m is defined in first-order logic, and induces a bijection between
Am and the set {0, . . . , nm − 1}. Therefore, for any t ∈ Am we will define:

t− 1 = max
s∈Am

{s <m t}

t+ 1 = min
s∈Am

{t <m s}.

It is clear that these elements are definable in first-order logic over ordered K-
structures, thus we will freely use these notations hereafter. Note however that,
when t is minimal in Am, we have t−1 = t. A similar remark holds for t maximal
with t+1 = t. Following this notation, we will identify Am with {0, . . . , nm−1}.

Next, we assume that the number of nodes of M is bounded by 2k, k ∈ N.
Note that k is fixed, independent of D or n. Thus, the nodes of M will be
denoted as elements in Ak, with the proviso that |A| ≥ 2. We also assume that
they correspond to the first elements of Am with respect to the lexicographic
order ≤m. Since their number is constant, they are all definable in first-order
logic. We will therefore denote them with constants vtype ∈ Am, where type
denotes the type of the node as in Definition 2. Recall also the constant 0 ∈ Am,
corresponding the the minimal element of Am as in Remark 2.

Consider now the following relation symbol, not contained in Ls, of arity 4m:

Node(v, t, pos, c) = true iff

the current node of M at step t is v and{
pos = 0 and the head of M is on cell c
pos = 1 and the head of M is not on cell c.

Consider also the following function symbol, not contained in Lf , of arity 2m:

Cell(t, c) = content of cell c at step t.

If Cell can be defined in FPK by a number term Z, then the implication (i)⇒
(ii) holds. The K-structure D is accepted by M if and only if after nm steps, the
content of the first cell is 1. That is, Cell(nm − 1, 0) = 1, were nm − 1 is the
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maximal element in Am, as defined in Remark 2. Node and Cell can be defined
inductively as follows:

Node(input, 0, pos, c)← [(pos = 0) ∨ (c = 0)] ∧ [(pos = 1) ∨ (c 6= 0)]

Node(v, 0, pos, c)← false if v 6= input

Node(v, t+ 1, pos, c)← Node(vopi
, t, pos, c) for vopi

s.t. v = β(vopi
)

∨ Node(vshiftl , t, pos, c+ 1) for vshl
s.t. v = β(vshiftl)

∨ Node(vshiftr , t, pos, c− 1) for vshr
s.t. v = β(vshiftr )

∨ Node(vcopyl
, t, pos, c) for vcopyl

s.t. v = β(vcopyl
)

∨ Node(vcopyr
, t, pos, c) for vcopyr

s.t. v = β(vcopyr
)

∨ Node(vswitch, t, pos, c) for vswitch s.t. v = β(vswitch)

∨ Node(voutput, t, pos, c) for voutput s.t. v = β(voutput)

∨ Node(vreli , t, 0, c) ∧ reli(Cell(t, c), . . . , Cell(t, c+ ki))

∧pos = 0 for vreli s.t. v = β+(vreli)

∨ Node(vreli , t, 0, c) ∧ ¬reli(Cell(t, c), . . . , Cell(t, c+ ki))

∧pos = 0 for vreli s.t. v = β−(vreli)

and:

Cell(0, c)← XD(c)

Cell(t+ 1, c)←





opi(Cell(t, c), . . . , Cell(t, c+ ki)) if Node(vopi
, t, 0, c)

Cell(t, c+ 1) if Node(vcopyl
, t, 0, c)

Cell(t, c− 1) if Node(vcopyr
, t, 0, c)

Cell(t, c+ 1) if Node(vswitch, t, 0, c)
Cell(t, c− 1) if Node(vswitch, t, 0, c− 1)
Cell(t, c) otherwise

This proves that Cell can be defined in FPK as the fixed point of the inductive
definition above, from which (i)⇒ (ii) follows.

To prove (ii)⇒ (i), we only need to prove that formulas and number terms
defined with the fixed point rule can be evaluated in polynomial time. Since
the number of updates is polynomially bounded, one only needs to apply the
inductive definition a polynomial number of times, which ends the proof. ut

Proof of Proposition 1

It suffices to prove that the fixed point rule of Definition 7 can be ex-
pressed within existential second-order logic over K-structures. Assume Fi, Ii, H,
1 ≤ i ≤ k, Z and D are as in Definition 7. Every occurrence of
fp[Z(t1, . . . , tr) ← Fi(Z, t1, . . . , tr), Ii(D, t1, . . . , tr), H(D, t1, . . . , tr)](u1, . . . , ur)
and of fp[D(t1, . . . , tr) ← H(D, t1, . . . , tr)](u1, . . . , ur) in ψ will be replaced by
Z(u1, . . . , ur) and D(u1, . . . , ur), respectively. Denote by φ the resulting formula.
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For any r-ary function F : Ar → K, denote by F̃ the r − ary formula with vari-
ables (u1, . . . , ur) defined by F̃ (u1, . . . , ur) = (F (u1, . . . , ur) = 1).

Then, ψ̃ is

∃Z∃D∀(u1, . . . , ur)

D̃(u1, . . . , ur)⇔ H(D̃, u1, . . . , ur)

∧ F1(Z, (u1, . . . , ur)) = Z(u1, . . . , ur)⇔ I1(D̃, u1, . . . , ur)

∨F2(Z, (u1, . . . , ur)) = Z(u1, . . . , ur)⇔
{
¬(I1(D̃, u1, . . . , ur))

∧ I2(D̃, u1, . . . , ur)

...

∨Fk−1(Z, (u1, . . . , ur)) = Z(u1, . . . , ur)⇔





¬(I1(D̃, u1, . . . , ur))
...

∧ ¬(Ik−2(D̃, u1, . . . , ur))

∧ Ik−1(D̃, u1, . . . , ur)

∨Fk(Z, (u1, . . . , ur)) = Z(u1, . . . , ur)⇔





¬(I1(D̃, u1, . . . , ur))
...

∧ ¬(Ik−2(D̃, u1, . . . , ur))

∧ ¬(Ik−1(D̃, u1, . . . , ur))

∧ φ.
ut

Proof of Theorem 2

Let S ∈ NPK be a problem of ordered K-structures of signature σ = (Ls, Lf ).
By definition of NPK, there exists r ∈ N, a function symbol Y of arity r not in
Lf , and a decision problem H of ordered K-structures of signature (Ls, Lf ∪Y ),
such that H belongs to PK and

S = {D ∈ Struct(σ)|∃Y (D, Y ) ∈ H}.
By Theorem 1, there exists a fixed point first-order formula φ that describes H,
and thus,

D ∈ S if and only if D |= ∃Y φ.
By Proposition 1, φ can be replaced by an equivalent second-order formula ∃Zϕ
with ϕ a first-order formula. Then,

D ∈ S if and only if D |= ∃Y ∃Zϕ,
which shows (i) ⇒ (ii). For the other direction, it suffices to guess an interpre-
tation for the second-order quantified functions, and to check in PK that the
first-order formula induced is satisfied. ut
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Abstract. In this paper, the authors propose a new model called as
fuzzy interval-valued CCS (FICCS for short) to solve the problem of
nondeterministic choices arises in concurrency and communication sys-
tems. This model is designed in such a way that an interval value is
assigned to the action of a prefix and an interval value distribution to
components of a parallel composition and a summation based on the
meta logic of fuzzy interval logic. Following the study of standard CCS,
the authors give the syntax of FICCS and its two versions of operational
semantics due to existence of two kinds of order-relations between in-
terval truth values in fuzzy interval logic. We also introduce four fuzzy
interval-valued CCS (FI4CCS, for short). Then, we consider the notion
of quantization of processes from FICCS into FI4CCS. A congruence
theorem has been given indicating that this quantization transfers the
operational semantics from FICCS into FI4CCS.

1 Introduction

As what Hoare stated in the preface of Milner’s book named with “ Commu-
nication and Concurrency” [MIL89]. Milner’s CCS (Calculus of Communicating
Systems)[MIL89] is the model of representing not only interactive concurrent
systems, such as communications protocols, but also much of what is familiar
in traditional computation e.g. data structures and storage regimes. A similar
model, CSP (Communicating Sequential Processes) was independently received
by Hoare[HOA85]. Both models have inspired a school of researchers throughout
the world, who have contributed to its refinement, development and application.

Among them, probabilistic CCS is one of important developments. One of its
feature is that each command of a process summation expression is guarded by
a probability and the sum of these probabilities is 1, i.e., it obeys the stochastic
condition [GSST]. For example, summation process p1P1+p2P2, where P1 and P2

are sub-processes, however, p1 and p2 are non-negative real numbers satisfying
the stochastic condition p1 + p2 = 1 and being designed to sub-processes P1 and
P2 as the probability of execution respectively. This model is called as stochastic

? This work was partly supported by National Key Research and Development Pro-
gram (Grant NO. 2002CB312004), National Foundation of Natural Sciences of China
(Grant No: 60273052), and the key Project of Educational Commission of Shanghai
(Grant No: 02DZ46).
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probabilistic CCS. Recently, Ying introduced a new model of probabilistic pro-
cesses, called additive probabilistic process algebra (APPA, for short) [YING02].
In APPA, the probability satisfies the sub-stochastic condition, i.e., the sum of
probabilities is less than or equal to 1. APPA is called as sub-stochastic prob-
abilistic CCS. In whether stochastic or sub-stochastic probabilistic CCS, the
probabilities have the same feature, which is that if subprocess P is executed
with the probability p then it is not executed with the probability 1−p. In other
words, for each subprocess in a summation process, the sum of its probabilities
of execution and non-execution is just 1.

One can consider about other tow cases. One is that the sum is less than 1,
and the other that the sum is larger than 1. The first case depicts that there are
some things that are unknown, since the sum of probabilities of execution and
non-execution for a process is less than 1. The second one says that there are
some things that are contradictive due to the sum of probabilities being larger
than 1. Both cases can appear in a distributed systems.

In this paper, we employ the interval value [a, b] in fuzzy interval logic to
represent them in such a way that a is the degree (instead of the probability) of
subprocess’s execution, and 1− b the degree of its non-execution. A little more
general, one proposed the notion of interval truth value, which is

[a, b] (a, b ∈ [0, 1]),

where a can be interpreted as a degree of affirmative assertion for a given state-
ment, 1− b as a degree of negative assertion for the same statement.

The purpose of this paper is to propose a new model to deal with nondeter-
ministic choice, based on the interval truth value and the fuzzy interval logic,
that we refer to as fuzzy interval-valued process algebra (FICCS, for short).
FICCS is an interval extension of CCS with interval values instead of probabil-
ities. It borrows some ideas of probabilistic CCS’s. Its underlying (meta) logic
is the fuzzy interval logic proposed by Mukaidono and Kikuchi [MUKK90]. So,
our FICCS model is completely distinct from the probabilistic model.

As well-known, stochastic and vagueness are at least two forms of nondeter-
minism and imprecision’s appearance in the real world. The toss of a fair coin
is a classic stochastic example, and “young” and “old” are well-known concepts
of vagueness. The situation in the computer world is similar, e.g., stochastic
processes, and imprecise inputs. As what we have pointed above, in order to
deal with stochastic phenomena, one uses methods from probability theory and
statistics. Probabilistic processing is one of resolving stochastic phenomena in
the computer world [Jones [JON90], Larsen and Skou [LS94], McIver and Mor-
gan [MM01], Seidel [SEI95], van Glabbeek et al. [GSS95], Ying [YING02]]. For
the denotational semantics of probabilistic processing, one proposed probabilistic
powerdomain [Alvarez-Manilla et al. [AMJK03], Jones and Plotkin [JP89],Jung
and Tix [JT98],Moshier and Jung [MJ02]], which comes from the classic pow-
erdomain. Probabilistic predicate transformers is the third method to deal with
stochastic phenomena [He et al. [HSM97], Kozen [KOZ81], McIver and Morgan
[MM01], Morgan et al.[MMS96], Ying [YING03]].
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These fuzzy analogues, however, have not been well considered, although
as earlier as in 1968, Zadeh pioneers the notion of fuzzy algorithm. In 2003,
Chen and Zhou in [CZ03] proposed a kind of fuzzy processing system, called
interval CCS. The interval CCS is of the additive model, which is followed from
Ying’s work. The most recently, Chen and Jung explored the notion of fuzzy
predicate transformers [CJ04]. Chen and Plotkin proposed the notion of fuzzy
healthy condition for fuzzy predicate transformers [CP04]. This paper aims at
the proposal on fuzzy interval-valued process algebra, a non-additive model of
CCS, based on the interval truth value in fuzzy interval logic. Its syntax and
semantics are given.

The paper is organized as follows. Section 2 recalls some basic notions in
fuzzy interval logic. Four particular interval truth values, T = [1, 1] for true,
F = [0, 0] for false, U = [0, 1] for unknown and C = [1, 0] for contradiction, are
considered. The notation I4 will denote the set of these four interval truth values.
Two kinds of ordering relation between interval truth values, called truth order
and vague order respectively, are introduced. In section 3, the authors define
the syntax of FICCS based on the I and one of FI4CCS based on the I4. With
corresponding these two syntaxes, two kinds of operational semantics of FICCS
and FI4CCS are introduced. In Section 4, the authors consider about the notion
of quantizers of interval truth values, which is indeed a function from I into I4
preserving the finite meets. Based on the quantizer, the authors introduce the
notion of omega quantization of processes, which is a mapping from the set P of
interval-valued processes of FICCS into the set P4 of four interval-valued process
of FI4CCS. A congruence theorem indicating that omega quantization preserves
the operational semantics is given.

2 Fuzzy Interval Logic

Fuzzy interval logic was proposed by Mukaidono and Kikuchi[MUKK90]. In this
fuzzy interval logic, propositions can take interval truth values, which can be
viewed as special cases of linguistic truth values [ZAD75] or the general cases of
numerical truth values.

2.1 Interval Truth Value

An interval truth value is expressed as

[a, b] (a, b ∈ [0, 1]),

where a is interpreted as a degree of affirmative assertion for a given statement,
1− b as a degree of negative assertion for the same statement.

The set consisting of all interval truth values is expressed as

I = {[a, b] | a, b ∈ [0, 1]}.

Four interval truth values [0, 0], [1, 1], [1, 0] and [0, 1] are very special. For
[0, 0], the affirmative degree is 0, but the negative degree is the largest 1. So, it
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stands for false, which is denoted by F. For [1, 1], the affirmative degree is 1,
its negative degree, however, is 0. So, it is used to stand for truth, denoted by
T. In the case of [1, 0], both affirmative degree and negative degree are 1. So,
it presents the greatest contradictive. We us it to stand for the contradiction,
denoted by C. Finally, it is clear that both affirmative and negative degrees of
[0, 1] are 0. So, it says nothing. We us it to represent the unknown, denoted by
U. The set of these four interval truth values is denoted by I4. That is,

I4 = {F,T,C,U}.

Notice that a and b are not asked to satisfy the condition of a less than b.
In other word, b is possibly less than a. So, there are three cases of relations
between a and b: a = b, a < b and a > b.

If a = b then a + (1 − b) = 1. That means that the sum of the affirmative
degree and the negative degree is 1. It is what the probabilistic case considers
about. These interval truth values will be called as centers. Iζ will denote the
set of all centers, and ζ, ζ ′, . . . will rang over centers.

If a < b then a + (1 − b) = 1 − (b − a) < 1. That means that the sum of
affirmative degree and negative degree is less than 1. So, there is some event
not known. For example, if we take a = 1/3, b = 2/3, then both affirmative and
negative degrees are 1/3. Their sum is 2/3. So, the remain 1/3 is of the unknown.

If a > b then a + (1 − b) = 1 + (a − b) > 1. So, the sum of affirmative and
negative degrees is larger than 1. For example, we take a = 2/3 and b = 1/4,
then a+(1− b) = 2/3+3/4 = 17/12. Thus, 1− (a+(1− b)) = b−a = 5/12. The
5/12 is of contradiction, for it can be of the affirmation and also of the negation.
So, in this case, contradiction occurs.

Another interesting case is that a+ b = 1. Thus, 1− b = a. So, both degrees
of affirmation and negation are a. These interval truth values will be called as
numerics. The notation Iν will denote the set of all numerics, and ν, ν ′, . . . will
rang over numerics.

We have seen that degrees of true (affirmation) and false (negation) for a
statement are given independently, which is just of the feature of fuzzy logic,
and completely different from the probability logic [NIL86]. But, the latter can
be thought of as a special case of fuzzy interval truth value.

2.2 Truth Order and Vagueness Order

Two kinds of partial order relations ≺ and ⊂ are defined in the set I as follows:

Definition 1. [MUK94] Let x = [xa, xb] and y = [ya, yb] be elements of I. Define
the truth order relation ≺ as

y ≺ x if and only if ya ≤ xa and yb ≤ xb.

From the definition, one can find out that if x is larger than y in the truth
order, then the affirmative degree of x′s is larger than one of y′s, the negative
degree is, however, exactly oppositive. That is, the negative degree of x′s is
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smaller than one y′s. This is the reason that we call such relation as the truth
order relation. Under the truth order, the smallest element is F, and the greatest
one is T.

Definition 2. [MUK94] Let x = [xa, xb] and y = [ya, yb] be elements of I.
Define the vague order relation ⊂ as

y ⊂ x if and only if xa ≤ ya and yb ≤ xb.

Notice that if the y is a subset of the x then y is the less than x under the
vague relation. But, the inverse is not true in general. In fact, the contradiction
truth value C=[1, 0] is the least element under the vague order relation. Surely
it is not a subset of any interval value truth except itself. The unknown truth
value U=[0, 1] is, however, the greatest one.

Both induced orders on I4 are shown in the following graphs.
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2.3 Lattice Operators

Both truth order and vague order make I and I4 be lattices. From the viewpoint
of logic, however, we have logical operations such as truth OR(∨), truth AND(∧),
vague OR(∪), and vague AND(∩), which are defined as follows.

For elements x = [xa, xb] and y = [ya, yb] of I, we define

– x ∨ y = [max(xa, ya),max(xb, yb)]
– x ∧ y = [min(xa, ya),min(xb, yb)]
– x ∪ y = [min(xa, ya),max(xb, yb)]
– x ∩ y = [max(xa, ya),min(xb, yb)].

Both (I4,∨,∧) and (I4,∪,∩) are sublattices of I.

•
x ∧ y

x • • x ∨ y

•
y

(I,≺,∨,∧)

•
x

x ∪ y• • y

•
x ∩ y

(I,⊂,∪,∩)
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We will use < and t, u to represent any one of the two partial order relations
and its induced lattice operators as a general notation.

3 Syntax and operational semantics of FICCS

This section will introduce the model of fuzzy interval-valued CCS (FICCS, for
short) to deal with nondeterministic choice, based on the interval truth value
of I. FICCS is an extension of CCS with interval values, similar to, but not
probabilistic CCS. The authors acknowledge, however, that probabilistic CCS
leads us to the goal.

3.1 Syntax of FICCS

Our FICCS model originally comes from Milner’s CCS by adding interval truth
value to the combinators of prefix, composition, summation, restriction, rela-
belling and of constants. So, some basic notions of CCS such as actions etc. are
needed. Now we present the syntax of FICCS specifically.

Let ∆ be a set, whose elements are called names of actions, ∆={a : a ∈ ∆}
the set of co-names of actions, and Γ = ∆ ∪ ∆, whose elements are called as
labels. For any a ∈ ∆, we take a = a. In addition, let τ stand for the silent
action. Then, ACT = Γ ∪ {τ} will be the set of actions. A relabelling function
f is a function from ACT to ACT satisfying f(l) = f(l) and f(τ) = τ.

We use X to denote the set of interval-valued process variables, and K to
denote the set of interval-valued process constants; we let X,Y, . . . rang over X ,
and A,B, . . . over K.

The syntax of FICCS is given by

E ::= X | A | αx.E |
∑

i∈I

xiEi | x(E1 | . . . | En) | E\L | E[f ].

In the syntax of FICCS, X ∈ X , A ∈ K, α ∈ ACT . L ⊆ Γ , and f : Γ → Γ
is a relabelling function. I is a finite indexing set. x, xi are interval truth values,
and x is a vector of interval truth values.

Clearly, if one removed the x, xi and x from the interval-valued processes,
then it would be the syntax of standard CCS.

The set of all interval-valued process expressions E is denoted by Ψ , and the
set of all interval-valued processes, i.e., interval-valued process expressions that
contain no variables at all, is denoted by P. Milner also called these processes
agents in [MIL89].

In this paper, we assume that the interval-valued process constants are only

defined by using the equation A
def
= P , where P is an interval-valued process.

In other words, the interval-valued process constant is declared by an interval-
valued process.

The prefix αx.E performs the action α with interval value x.
In the interval-valued parallel composition x(E1| . . . |En),
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x = (x1, . . . , xn, x12, . . . , x1n, x23, . . . , x2n, . . . , xn−1,n)

xi stands for the interval-value with which Ei behaves independently leaving
other components undisturbed for each i = 1, . . . , n, and xij expresses the
interval-value with which Ei communicates with Ej for any i, j ≤ n with i < j.

In the interval-valued summation
∑
i∈I xiEi, xi ∈ I is the interval-value with

which the summation process chooses Ei among {Ej : j ∈ I} for each i ∈ I. Ei
is a sub-process expression of the summation E. For instance,

P = [0.1, 0.8]αT.P1 + UP2 + TβU.P3,

where αT.P1, P2 and βU.P3 are sub-processes of the summation process P, and
[0.1, 0.8],U and T are interval values of these sub-processes respectively.

In the sequel, all interval-valued summations are supposed to be finite. We
define

0
def
=
∑
i∈∅ xiEi

It will follow from the operational semantics given below that 0 is the inactive
process having no transitions. For each K ∈ K, we assume that there is a defining

equation K
def
= P of K, where P ∈ P. The operational semantics (or more

general, behaviors) of an interval-valued constant is completely determined by
its defining equation.

We have defined the syntax of FICCS, and if we substitute all the appear-
ance of interval values by those elements of I4 in the definition above, we get a
new system, namely FI4CCS, which apparently satisfies FI4CCS ⊆ FICCS. We
denote the set of four interval-valued process expressions with Ψ4 and the set of
four interval-valued processes with P4.

3.2 Operational Semantics of FICCS

The operational semantics of FICCS is given by an interval-valued transition
system below.

Definition 3. An I-transition system (over ACT ) is an ordered pair (S, T ) in
which
(1) S is a set of states, and
(2) T ⊆ S ×ACT × I× S is a set of transitions such that

(3) for any s, s′ ∈ S, α ∈ ACT , and x1, x2 ∈ I, s
αx1−→ s′ and s

αx2−→ s′ imply

x1 = x2, where we write s
αx−→ s′ for (s, α, x, s′) ∈ T .

Intuitively, I-transition system s
αx−→ s′ means that s performs action α with

interval value x and then behaves like s′. Similarly, we can define I4-transition
systems.

With the auxiliary definition above, we may render the operational semantics
of FICCS now. The semantics is firstly given by the I-transition system (Ψ,−→),
where −→ is defined by the following inference rules, in which the names Act,
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Sum, Com, Res, Rel and Con indicate that the rules are associated respec-
tively with Prefix, Summation, Composition, Restriction, Relabelling and with
Constants.

The Operational Semantics of FICCS

Act
αx.E

αx−→ E

Sum
Ej

αy−→ E′

∑

i∈I

xiEi
αyuxj−→ E′

Comi
Ei

αy−→ E′
i

x(E1| . . . |En)
αyuxi−→ x(E1| . . . |Ei−1|E′

i|Ei+1| . . . |En)

Comij
Ei

αx−→ E′
i, Ej

αy−→ P ′
j

x(E1| . . . |En)
τxuyuxij−→

x(E1 | . . . | Ei−1 | E′
i | Ei+1 | . . . | Ej−1 | E′

j | Ej+1 | . . . | En)
where 1 ≤ i < j ≤ n.

Res E
αx−→ E′

E\L αx−→ E′\L
(α, α 6∈ L)

Rel E
αx−→ E′

E[f ]
f(α)x−→ E′[f ]

Con P
αx−→ P ′

A
αx−→ P ′

where A
def
= P is the defining equation of A.

Actually, we may render two versions of operational semantics with respect
to the known two kinds of operators, one depends on the truth order relation ≺,
in which these operator are ∨ and ∧, and the other on the vague order relation
⊂, whose operators are ∪ and ∩.

That means, if one uses the first kind of operators ∨ and ∧ to replace nota-
tions t and u in the syntax of FICCS respectively, then one gets the first version
of FICCS, called T OS. On the other hand, if the second kind of operators ∪
and ∩ replace these notations t and u respectively, then the second version of
FICCS is obtained. This version is called VOS. These two versions are distinct
semantically.

Example 1. The process

E′ = [0.2, 0.5]α[0.4,0.6].E + [0.7, 0.4]α[0.2,0.8].E + [0.7, 0.7]β[0.1,0.2].γT.E

has the following transition:
E′ αx−→ E.
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Due to the immediate derivation of α[0.4,0.6].E
α[0.4,0.6]−→ E or α[0.2,0.8].E

α[0.2,0.8]−→ E
respectively in the system of T OS, we get that x = [0.2, 0.5] ∧ [0.4, 0.6] =
[0.2, 0.5], or, x = [0.7, 0.4]∧ [0.2, 0.8] = [0.2, 0.4]. In the system of VOS, however,
we have that x = [0.2, 0.5] ∩ [0.4, 0.6] = [0.4, 0.5], or, x = [0.7, 0.4] ∩ [0.2, 0.8] =
[0.7, 0.4].

E′ also has the following transitions.

E′ βy−→ γT.E
γT−→ E

where y = [0.7, 0.7]∧ [0.1, 0.2] = [0.1, 0.2] in T OS and y = [0.7, 0.7]∩ [0.1, 0.2] =
[0.7, 0.2] in VOS.

Note that, if one restricts the interval truth values in the I4, then one can
get the operational semantics of FI4CCS and the four interval-valued transition
system (Ψ4, −→4). Naturally, we have (Ψ4,−→4) ⊆ (Ψ,−→).

4 Quantization

In this section, we consider about the transition from I into I4. We then consider
about the transition of processes induced by this transition of interval truth
values. Both generate together the congruence theorem.

We have noticed that interval truth value sets considered have two versions:
I and its subset I4. The latter is a sublattice of the previous one. So, one can
consider one kind of homomorphisms from I into I4. Based on the operational se-
mantics, we pay attention to the meet-homomorphisms, i.e., functions preserving
finite meets of I.

4.1 Quantizers of Interval Truth Values

Definition 4. A truth-quantizer from I into I4 is a function preserving finite
meets with respect to the truth order relation ≺. Similarly, a vague-quantizer
from I into I4 is a function preserving finite meets with respect to the vague
order relation ⊂. A quantizer will mean a truth-quantizer or a vague-quantizer
if no confusion occurs. ω, ω′ will rang over the set of all quantizers.

Let x = (x1, . . . , xn) be a vector of interval truth values. We define ω(x) =
(ω(x1), . . . , ω(xn)).

In the next, we will show that each center ζ induces a vague-quantizer and
a numeric ν does a truth-quantizer. Thus, we have a family of such quantizers.

Now, let us take any center ζ = (a, b) ∈ Iζ . Then it divides the set I into four
parts: ζU, ζC, ζF and ζT, where

– ζU = {x = (xa, xb) ∈ I | xa ≤ a, b ≤ xb}
– ζC = {x = (xa, xb) ∈ I | a ≤ xa, xb ≤ b but x 6= (a, b)}
– ζF = {x = (xa, xb) ∈ I | xa < a, xb < b} and
– ζT = {x = (xa, xb) ∈ I | a < xa, b < xb}.
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Hence, I = ζU ∪ ζC ∪ ζT ∪ ζF.
Similarly, for a numeric ν ∈ Iν , one can define νT, νF, νU and νC.

They are sets below, respectively.

– νT = {x = (xa, xb) ∈ I | a ≤ xa, b ≤ xb}
– νF = {x = (xa, xb) ∈ I | xa ≤ a, xb ≤ b but x 6= (a, b)}
– νU = {x = (xa, xb) ∈ I | xa < a, b < xb} and
– νC = {x = (xa, xb) ∈ I | a < xa, xb < b}.

We also have that I = νT ∪ νF ∪ νU ∪ νC.

F

U

a

b
ζ

ζC

ζT

ζF

ζU

C

T

ζ = [a, b], (a+ b = 1)

F

U

a

b
ν

νF νC

νU νT

C

T

ν = [a, b], (a = b)

Based on the division of I by a center ζ and a numeric ν, we define two kinds
of quantizers from I into I4. The specific definitions are below.

Definition 5. For a given center ζ and numeric ν, we define functions, denoted
still by ζ and ν from I into I4 respectively by

ζ(x) =





U, if x ∈ ζU
C, if x ∈ ζC
T, if x ∈ ζT
F, if x ∈ ζF

ν(x) =





T, if x ∈ νT
F, if x ∈ νF
U, if x ∈ νU
C, if x ∈ νC.

Proposition 1. For a given center ζ, the transition function ζ is a vague-
quantizer. Simultaneously, for a given numeric ν, the transition function ν is
a truth-quantizer.

4.2 Omega Quantization of Processes

In this paragraph, we pay attention to setting up an omega quantization, denoted
as qω, of processes from P into P4 induced by a quantizer ω from I into I4. A
congruence theorem will be given, which shows a reasoning rule as follows.

P
αx−→ P ′

qω(P )
αω(x)−→ qω(P ′).

Definition 6. For a given quantizer ω and any interval-valued process P ∈ P,
the ω-quantization of P is inductively defined as follows:
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1. If P = 0, then qω(P ) = 0.

2. If P is an interval-valued constant A, then P = A is defined by the equation

of A
def
= Q, where Q is an interval-valued process, and then qω(P ) = qω(A)

def
=

qω(Q).

3. If P = αx.Q, then qω(P ) = αω(x).qω(Q).

4. If P =
∑
i∈I xiPi, then qω(P ) =

∑
i∈I ω(xi)qω(Pi).

5. If P = x(P1| . . . |Pn), then qω(P ) = ω(x)(qω(P1)| · · · |qω(Pn)).

6. If P = Q\L, then qω(P ) = qω(Q)\L, and

7. If P = Q[f ], then qω(P ) = qω(Q)[f ].

The operation of omega quantization, indeed, induces a map from P, the set
of all interval-valued processes, into P4, the set of all four value processes for a
given quantizer ω from I into T4. This ω quantization of processes is denoted as
qω. The following theorem shows that both quantizer ω and its induced omega
quantization generate the congruence theorem.

Theorem 1. For any pair of interval-valued processes P and P ′ and a given

quantizer ω, P
αx−→ P ′ implies qω(P )

αω(x)−→4 qω(P ′).

Proof. This proof is done by using structural induction on the process P and
the transition rules from Act through Con.

Theorem 2. Suppose that P is an interval-valued process in P, Q is a four
interval-valued process in P4, Y ∈ I4, and ω is a quantizer function from I into
I4. Then, qω(P )

αY−→4 Q implies that there exist P ′ ∈ Ψ and y ∈ I such that

P
αy−→ P ′, qω(P ′) = Q, and Y = ω(y).

Proof. We also can render the proof by induction on the construction of P.

P -αx P ′

qω(P ) - qω(P ′)
4

αω(x)

? ?

qω
ω

qω

?

Assumption

@@R

qω(P ) - Q = qω(P ′)
4

αY

P

?

-
αy

P ′

?

qω
ω

qω

?

Assumption
@@I

Pictures of Theorem 1 and 2
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5 Conclusion and Future Work

This paper has introduced the new model of process calculus called fuzzy interval-
valued process algebra (FICCS, shortly) to resolve nondeterminism that arises in
concurrent and communication systems based on the fuzzy interval value logic.
This model is an extension of standard CCS of Milner’s. In FICCS, an interval
truth value is assigned to either process or action and the interval truth valued
vector to a summation process or a composition process, which are similar to the
way Ying tackles with the additive probabilistic process algebra model [YING02].
When interval truth values become numerics, these interval-valued processes are
those which probabilistic CCS considers about. But, they are complete distinct
due to the distinct logic used. In our model, the logic is fuzzy interval logic.
In probabilistic model, however, the logic is the probabilistic logic. As a result,
the operators involved are very distinct too. In FICCS, the operators are lattice
operators such as the meet and union. In probabilistic model, however, they are
numeric operators such as the multiplication and plus.

This paper has established the syntax of FICCS and its two versions of opera-
tional semantics due to existence of two kinds of order-relations between interval
truth values in fuzzy interval logic. For special four interval truth values F, T,
C and U representing for false, true, contradiction and unknown respectively,
a corresponding four fuzzy interval-valued CCS (FI4CCS, for short) has been
established. Then, this paper mainly pays attention to quantization of processes
from FICCS into FI4CCS. A congruence theorem has been given indicating that
this quantization transfers the operational semantics from FICCS into FI4CCS.

This paper is just at the beginning of study of the fuzzy process algebra. The
future work will be to fulfil the theory of fuzzy process algebra and its application
in the practice of computer technology.
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A formal theory of computation of real-valued and set-valued functions is
important for the analysis and verification of nonlinear systems. In this talk, I
will discuss computable analysis and topology for (semi)continuous multivalued
maps, and show how this can be used to study the computability of reachable,
viable and invariant sets.
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The theory of analog computation, where the internal states of a computer
are continuous rather than discrete, has enjoyed a recent resurgence of interest.
We have been working towards recursive definitions of computational classes of
functions over reals. Let us recall the concept of a real recursive function, and
the corresponding class REC(R). The class REC(R) of real recursive vectors
is generated from the real recursive scalars 0, 1, −1, and the real recursive
projections by the following operators: composition, differential recursion (i.e a
solution of the Cauchy problem whenever it is of the class C1 on the largest
interval containing 0 in which a unique solution exists), infinite limits.

We will describe a function as subexponential if its Laplace transform is
defined along the whole positive real axis. Now we can propose the definition
of the class AnalogP, which can be interpreted as the class of real recursive
functions computed with polynomial restrictions on their values and times of
computation. The class of real recursive functions computable in deterministic
polynomial time, designated by AnalogP, is defined as the collection of all real re-
cursive functions such that, in any step of the construction, their components are
subexponential. There are many quite interesting properties of this class. Here
let us point out the most important results. Any recursive function in the domain
of natural numbers computable in deterministic polynomial time has a real ex-
tension in AnalogP. A function f : N→ N is said to be an admissible restriction
of F if there exists a sequence (αi) such that F (αi) ∈ N and f(i) = F (αi) for all
natural numbers i. Let H : R→ R be a real recursive function in AnalogP such

that, in each step of the construction, it grows slower than λx. elog(x)k

, for some
k, up to a multiplicative constant. If an admissible restriction h of H exists, then
h is computable in deterministic polynomial time.

The use of Laplace transform makes AnalogP meaningful, since physical mea-
sures in physical theories do have a Laplace transform, having then a controlled
growth. In this sense our complexity classes have a physical meaning. This at-
tempt allow us to consider problems of structural complexity as problems in
Analysis and, in our opinion, it opens to consideration new perspectives over
classical computational complexity, for example in the context of the conjecture
P 6= NP.
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We present an extension of constructive Zermelo–Fraenkel set theory (Aczel
’78) which is enriched with urelements as well as operations. The urelements
represent elements of a combinatory algebra extended with natural numbers.
The notion of operation is quite general and it is shown to be essentially non-
extensional. By combining these features, the theory allows for a form of ap-
plication of sets to sets and for the basic axioms to be expressed in a uniform
way.

From the proof theoretic point of view, we single out a theory of constructive
sets with operations which has the same strength as Peano arithmetic. Inter-
estingly, this weak system still has the expressive power to represent a general
theory of inductive definitions.
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Abstract. Horn⊃ is a logic programming language which extends usual
Horn clauses with intuitionistic implication. In this paper we study
the learnability of the concepts that are represented by conjunctions
of propositional Horn⊃ clauses.

1 Introduction

The problem of learning efficiently an unknown boolean formula under some de-
termined protocols has been widely studied. It is well known that, even restricted
to propositional formulas, the problem is hard [3, 10] in the usual learning mod-
els. Among these, we find the PAC model introduced by Valiant [19] and the
prediction model introduced by Pitt and Warmuth [18]. Both are passive models
in the sense that the learning algorithm has no control over the labeled exam-
ples, however they can be transformed into active ones by adding the ability to
make membership queries. Another usual model is the exact query model intro-
duced by Angluin [1], where the learning algorithm can make equivalence and/or
membership queries.

In the line of learning subclasses of boolean formulas, D. Angluin, M. Frazier
and L. Pitt [2] presented a positive result: a polynomial-time algorithm that
used equivalence and membership queries for exactly learning conjunctions of
propositional Horn clauses. In this field we can also find negative results showing
that there are not efficient learning algorithms for a given class. Even there exist
relative results which, without solving the problem, give evidence to the effect
that some class is not learnable. This kind of relative result is based on the
concept of prediction-preserving reduction [18, 3].

From the point of view of logic programming, different approaches for ex-
tending Horn clauses have been studied. Some of them consider to incorporate
into the language a new implication symbol, ⊃, with the aim of structuring logic
programs in some blocks with local clauses [4, 7–9, 13–17]. These extensions can
also be seen as a sort of inner modularity in logic programming [5].

We consider here a particular extension named Horn⊃. This programming
language has been formally studied in [9, 8, 4, 11, 17]. In [4] a natural extension of
classical first order logic FO with the intuitionistic implication (⊃), named FO⊃,
was presented as the underlying logic of the programming language Horn⊃.

? This work has been partially supported by CICYT-project TIC2001-2476-C03-03
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It was also proved that the “good properties” that verify Horn clauses (as a
programming language) with respect to its underlying logic FO are conserved
by Horn⊃ with respect to FO⊃. In concrete, general models can be restricted to
Herbrand-like models, each program has a canonical model and the operational
semantics is an effective subcalculus of a complete calculus for FO⊃ (see also
[12, 11]).

Our aim is to study the learnability of propositional Horn⊃ clauses since
this class of formulas, extending propositional Horn clauses, seems to be a good
candidate for improving the learnability results obtained by D. Angluin, M.
Frazier and L. Pitt [2].

This paper presents our first results on such study and it is organized as
follows: In Section 2 the preliminary notions in the area of learning are given.
In Section 3 the programming language Horn⊃ (restricted to the propositional
case) is presented. In Section 4 we show that any model-based translation from
Horn⊃ clauses to equivalent Horn clauses obtains, in general, an exponential
number of clauses. This result suggests us that finding a polynomial-time algo-
rithm for learning Horn⊃ language may be difficult. In section 5 we show that
boolean formulas are prediction preserving reducible to Horn⊃ clauses using
membership queries. As a consequence, we obtain the main result of this pa-
per: conjunctions of propositional Horn⊃ clauses are not predictable even with
membership queries under cryptographic assumptions. We conclude, in Section
6, by summarizing our results.

2 Learning preliminaries

Most of the terminology used in this section is borrowed from [3, 6]. Let S be a
fixed domain and let S∗ be the set of strings over S. |w| denotes the length of
the string w. Strings in S∗ will represent both examples and concept names.

A representation of concepts (or representation class) C is any subset of S∗×
S∗. We interpret an element 〈u, x〉 of S∗ × S∗ as consisting of a concept name
u and an example x. For instance, the representation of concepts CBF contains
pairs 〈u, x〉 where u is a boolean formula and x is any interpretation satisfying
such formula. Define the concept represented by u as KC(u) = {x | 〈u, x〉 ∈ C}.
The set of concepts represented by C is {KC(u) | u ∈ S∗}.

We use two models of learning, both of them fairly standard: Angluin’s model
of exact learning with queries [1] and the model of prediction with membership
queries as defined by Angluin and Kharitonov [3].

2.1 The exact query learning model

Let C be a representation class. An exact learning algorithm with queries is an
algorithm A that takes as input a bound s on the size of the target concept
representation. It may make any number of queries or requests, the responses to
which are determined by the unknown target concept c. The algorithm A must
eventually halt with an output concept name v. The concept KC(v) is interpreted
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as a A’s guess of the target concept. The most common kinds of queries are
membership and equivalence queries. A membership query takes a string x in S∗

as input and returns 1 if x ∈ c and 0 otherwise. An equivalence query takes a
concept name h as input and returns 1 if KC(h) = c and a counterexample, in
the symmetric difference of c and KC(h), otherwise.

The algorithm A runs in polynomial time if its running time (counting one
step for each query) is bounded by a polynomial in s and the length of the largest
counterexample. We say that A exactly learns a representation of concepts C, if
and only if for all positive integer s, for all concept name u with |u| ≤ s, when
A runs with input s and a target concept c = KC(u), A outputs a concept name
v such that c = KC(v)

A representation of concepts C is polynomially learnable if there is a learning
algorithm A that runs in polynomial time and exactly learns C. In this paper,
we always suppose that A uses membership and equivalence queries.

2.2 The prediction model with membership queries

A prediction with membership algorithm, or pwm-algorithm is a possible ran-
domized algorithm A that takes as input a bound s as above, a bound n on the
length of examples, and an accuracy bound ε. It may make three different kinds
of queries or requests, the responses to which are determined by the unknown
target concept c and an unknown probability distribution D on Sn, as follows:
– A membership query takes a string x in S∗ as input and returns 1 if x ∈ c and
0 otherwise.
– A request for a random classified example takes no input and return a pair
〈x, b〉, where x is a string chosen independently according to D and b = 1 if
x ∈ c and b = 0 otherwise.
– A request for an element to predict takes no input and returns a string sol
chosen independently according to D.

The algorithm A may make any number of membership queries or requests
for random classified examples. However, A must eventually make one and only
one request for an element to predict and eventually halt with an output 1 or 0
without making any further query or request. The output is interpreted as A’s
guess of how the target concept classifies the element sol. We say that A runs in
polynomial time if its running time (counting one step for each query or request)
is bounded by a polynomial in s, n, and 1

ε .
We say that A predicts a representation of concepts C if and only if for all

positive integers s and n, for all positive rational ε, for all concept name u ∈ S∗

with |u| ≤ s, when A runs with inputs s, n, and ε, and a target concept c = KC(u)
and D, A asks queries or requests and the probability that the output of A is
not equal to the correct classification of sol by c is at most ε.

A representation of concepts C is polynomially predictable with membership
queries if and only if there is an algorithm A that runs in polynomial time and
predicts C.
Lemma 1. [3] If a representation of concepts is polynomially learnable, then it
is polynomially predictable with membership queries.
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2.3 Reducibility among prediction problems

To compare the difficulty of learning problems in the prediction model we use
pwm-reducibility as defined in [3]. It is denoted by ≤pwm.

Definition 1. Let C and C ′ be representations of concepts. Let > and ⊥ be two
different symbols not occurring in S. Then C is pwm-reducible to C ′, if and only
if there exist three mappings g, f and h with the following properties:

1. There is a nondecreasing polynomial q such that for all natural numbers
s and n and for every u ∈ S∗ with |u| ≤ s, g(s, n, u) is a string u′ of length at
most q(s, n, |u|).

2. For all natural numbers s and n, for every u ∈ S∗ with |u| ≤ s, and for
every x ∈ S∗ with |x| ≤ n, f(s, n, x) is a string x′ and x ∈ KC(u) if and only if
x′ ∈ KC′(g(s, n, u)).

3. For all natural numbers s and n, for every u ∈ S∗ with |u| ≤ s, and for
every x′ ∈ S∗, h(s, n, x′) is either >, ⊥ or a string x. If h(s, n, x′) = > then
x′ ∈ KC′(g(s, n, u)); if h(s, n, x′) = ⊥ then x′ 6∈ KC′(g(s, n, u)); and otherwise
x′ ∈ KC′(g(s, n, u)) if and only if x ∈ KC(u). Moreover, h is computable in time
bounded by a polynomial in s, n and |x′|.
In the property (2), and independently, in the property (3), the expression “x ∈
KC(u)” can be replaced with “x 6∈ KC(u)”, as discussed in [3]. We denote these
options by properties (2)’ and (3)’ respectively.

The only properties of this reducibility that are needed in this paper were
established in [3]:

Lemma 2. The pwm-reduction is transitive, i.e., let C, C ′, and C′′ be represen-
tations of concepts, if C ≤pwm C′ ≤pwm C′′ then C ≤pwm C′′.

Lemma 3. Let C and C′ be representations of concepts. If C ≤pwm C′ and C′
is polynomially predictable with membership queries, then C is also polynomially
predictable with membership queries.

3 The programming language Horn⊃

In this section we introduce the programming language Horn⊃ by showing its
syntax and its model semantics. Although the language is in general a first order
language (see [9, 4]), in this paper we shall restrict our presentation only to this
language in the propositional setting.

3.1 The syntax

The syntax is an extension of the (propositional)Horn clause language by adding
the intuitionistic implication ⊃ in goals and clause bodies. Let Σ be a set of
propositional variables (or signature). The Σ-clauses, named D, and the Σ-goals,
named G, are recursively defined as follows (where v stands for any propositional
variable in Σ):
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G ::= v | G1 ∧G2 | D ⊃ G D ::= v | G→ v | D1 ∧D2

A Horn⊃ Σ-program is a finite set (or conjunction) of Σ-clauses. The main
difference with respect to Horn clauses is the use of a “local” clause set D in
goals of the kind D ⊃ G (and therefore also in clause bodies).

Example 1. The following set with three clauses is a Horn⊃ program over sig-
nature Σ = {a, b, c, d}

{((b→ c) ⊃ c)→ a, b, ((a ∧ (b→ c)) ⊃ (((b→ c) ∧ (a→ d)) ⊃ a))→ d}

The second program clause is simply b. The first and the third program clauses
are of the form G→ v. In the first clause, the goal G is (b→ c) ⊃ c. That is, it
contains a local set with one program clause. In the third clause, the goal G is
of the form D1 ⊃ (D2 ⊃ G3), where D1 = a ∧ (b→ c), D2 = (b→ c) ∧ (a→ d),
and G3 = a. D1 and D2 are local sets with two clauses and they can also be
written D1 = {a, (b→ c)} and D2 = {(b→ c), (a→ d)} respectively.

3.2 The model semantics

Model semantics for the programming language Horn⊃ is based on some Kripke
structures which, in the propositional setting, can be defined as follows.

Definition 2. Given a signature Σ, the model semantics for the propositional
Horn⊃ is given by the set of Kripke Σ-structures Mod(Σ) = {KI | I ⊆ Σ}
where KI denotes the partially ordered set of worlds {J ⊆ Σ | I ⊆ J}.
Well-formed Σ-formulas are built, from propositional variables in Σ, using clas-
sical connectives (¬, ∧, ∨ and →) and the intuitionistic implication (⊃). The
satisfaction relation |=Σ between a Σ-structure KI and a Σ-formula ϕ requires
the formula ϕ to be forced in the minimal world I in KI . The forcing relation is
defined between (the associated interpretation to) a world and a formula.

Definition 3. Let KI ∈ Mod(Σ) and ϕ a Σ-formula. We say that

(a) KI |=Σ ϕ (KI satisfies ϕ) iff I °Σ ϕ (ϕ is forced in I)
(b) The binary forcing relation °Σ (or simply ° if there is no confusion about

the signature) is inductively defined as follows:
I 6° False
I ° v iff v ∈ I for v ∈ Σ
I ° ¬ϕ iff I 6° ϕ
I ° ϕ ∧ ψ iff I ° ϕ and I ° ψ
I ° ϕ ∨ ψ iff I ° ϕ or I ° ψ
I ° ϕ→ ψ iff if I ° ϕ then I ° ψ
I ° ϕ ⊃ ψ iff for all J ⊆ Σ such that I ⊆ J : if J ° ϕ then J ° ψ

Example 2. Let ϕ be the formula (in this case a goal) ((a ∧ c) → b) ⊃ (c ∧ b).
I ° ϕ for I = {a, b, c}, I = {a, c} and I = {b, c}. I 6° ϕ for I = {a, b}, I = {a},
I = {b}, I = {c} and I = ∅. Note, for instance, that {a, b} ° (a ∧ c) → b and
{a, b} 6° (c ∧ b).
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This forcing relation does not behave monotonically with respect to the world
ordering for general formulas. For instance, a → b is forced in the world I = ∅
but it is not forced in J = {a}. We say that a formula is persistent whenever the
forcing relation behaves monotonically for it.

Definition 4. A Σ-formula ϕ is persistent when for any Σ-interpretation I, if
I ° ϕ then J ° ϕ for any Σ-interpretation J such that I ⊆ J .

From the following proposition we obtain, in particular, that any Σ-goal G is a
persistent formula.

Proposition 1. [4] Any v ∈ Σ is persistent. Any formula ϕ ⊃ ψ is persistent.
If ϕ and ψ are persistent then ϕ ∨ ψ and ϕ ∧ ψ are persistent.

Definition 5. Two formulas ϕ and ψ are semantically equivalent if both have
the same meaning in each structure in Mod(Σ). In other words, if both are forced
in the same Σ-interpretations.

4 Trying to learn Horn⊃ programs with Horn programs

A way to learn a Horn⊃ program P might consist on using the well-known
algorithm of Angluin, Frazier and Pitt [2] for learning a conjunction of Horn
clauses equivalent to P . In this section, we show that this simple idea does not
work if we are looking for a learning algorithm that runs in polynomial time. We
prove that any translation from a Horn⊃ Σ-program P to an equivalent Horn
Σ-program P̂ yields a number of clauses that is exponential in the size of P .

Definition 6. For each Horn⊃ Σ-clause D, let Models(D) be the set {I ⊆
Σ | I ° D}. Let Min(D) be the set {I ⊆ Σ | I 6° D but J ° D, for all J ⊂ I}.
That is, Min(D) contains the “minimal” interpretations not forcing D.

In the sequel, we intentionally consider I as a set or as a conjunction, as conve-
nient.

Definition 7. For each Horn⊃ Σ-clause D, the Horn Σ-program D̂ is defined
as follows:

For D = v, D̂ = {v}

For D = G→ v, D̂ =

{
∅, if Models(D) = P(Σ)
⋃
I∈Min(D){I → v} in other case

In the following theorem we prove that D and D̂ are semantically equivalent,
that is, they have the same models.

Theorem 1. For each Σ-interpretation I and each Horn⊃ Σ-clause D it holds:
I ° D̂ ⇐⇒ I ° D

Proof. For D = v, the theorem is trivial. Let D be G→ v.



On Learning Conjunctions of Horn⊃ Clauses 67

(=⇒) Let us suppose that I 6° D. Then v 6∈ I. Since I 6° D, Min(D) is not
empty. Therefore there exists some J ∈Min(D) such that J ⊆ I and J → v

is a clause of the program D̂. Then I ° J and v 6∈ I imply I 6° D̂.
(⇐=) Let us suppose that I ° D. If v ∈ I then trivially I ° D̂. If v 6∈ I then

I 6° G. Let J → v be a clause in the program D̂ for some J ∈ Min(D)

(if D̂ were empty then trivially I ° D̂). If J were a (proper) subset of I,
by persistence of goals we obtain J 6° G. But this implies J ° D which
contradicts J ∈Min(D). That is, each J ∈Min(D) is not a subset of I and

then trivially I ° J → v. Therefore I ° D̂.

Corollary 1. Each Horn⊃ Σ-program P is equivalent to a Horn Σ-program P̂ .

Now we are going to consider a concrete Horn⊃ clause D whose D̂ needs to have
an exponential number of clauses with respect to the symbols in D.

Lemma 4. Let D be the following Σ-clause

([(a11 → b) ∧ (a12 → b) ∧ · · · ∧ (a1n → b)] ⊃ b ∧

. . .

[(an1 → b) ∧ (an2 → b) ∧ · · · ∧ (ann → b)] ⊃ b )→ a

where Σ = {aij | i, j ∈ {1, . . . , n}} ∪ {b, a}. Each Σ-interpretation of the form
{a1k1 , a2k2 , . . . , ankn

}, with kj ∈ {1, . . . , n} belongs to Min(D).

Proof. Let I be one of such Σ-interpretations. Without loss of generality, let
us suppose I to be {a11, . . . , an1}. The given clause D is (G1 ∧ · · · ∧ Gn) → a
whereeach Gi is the goal ((ai1 → b) ∧ · · · ∧ (ain → b)) ⊃ b. First let us prove
that for each proper subset J ⊂ I, it holds that J ° D. Since there exists some
ai1 6∈ J , then J ° (ai1 → b) ∧ · · · ∧ (ain → b) andJ 6° b. Then J 6° Gi and
therefore J ° (G1 ∧ · · · ∧Gn)→ a. Now let us see that I 6° D. Since a11 ∈ I, for
every Σ-interpretation K such that I ⊆ K and K ° (a11 → b) ∧ · · · ∧ (a1n → b)
it holds that K ° b and therefore I ° G1. Similarly, we can obtain I ° Gi for
each i ∈ {1, . . . , n} and then, since a 6∈ I, I 6° D.

The set of Horn clauses D̂ obtained by Definition 7 from the Horn⊃ program
D in Lemma 4 contains at least these nn clauses:

{I → a | I is {a1k1 , a2k2 , . . . , ankn
}, with kj ∈ {1, . . . , n}} (1)

The next result shows that this set of Horn clauses is non-redundant.

Lemma 5. Any set of Horn clauses equivalent to (1) has at least nn clauses.

Proof. Denote by Ir → a the r-th clause in (1), for 1 ≤ r ≤ nn. Ir is not a model
of the r-th clause in (1), but satisfies any other clause in (1). In addition, for
each pair Ii, Ij with 1 ≤ i 6= j ≤ nn, the intersection Ii ∩ Ij is a model of (1).
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Suppose that there exists a set H of Horn clauses equivalent to (1) whose
number of clauses is smaller than nn. There must be at least two different Σ-
interpretations Ii and Ij that falsify the same clause c in H. Since we are dealing
with Horn clauses, the interpretation Ii ∩ Ij falsifies c and therefore Ii ∩ Ij is
not a model of H which is a contradiction.

5 Boolean Formulas are pwm-reducible to Horn⊃

programs

In this section we present a relative solution about the non-learnability of the
class Horn⊃. We show that if Horn⊃ programs were learnable then boolean
formulas would be also learnable. Namely, we show that a set of especial Horn⊃

programs can simulate boolean formulas. The simulation is in the model of pre-
diction with membership queries, where the notion of simulation is characterized
by the concept of pwm-reduction.

The pwm-reduction from boolean formulas CBF to Horn⊃ is divided in two
stages. Let Σ be a fixed signature. Let GHorn⊃ (respectively DHorn⊃) be the
representation class whose elements are 〈u, x〉, where x is a Σ-interpretation
and u is a Σ-goal G (respectively a Σ-clause D). First we prove that GHorn⊃

is pwm-reducible to DHorn⊃ and then we present a pwm-reduction from CBF
to GHorn⊃.

Lemma 6. GHorn⊃ ≤pwm DHorn⊃

Proof. Let Σ be a fixed signature and b be a fixed variable that is not in Σ.
Consider the representation class GHorn⊃ over signature Σ and DHorn⊃ over
signature Σ ∪ {b}. For each Σ-goal G, G → b is a Σ ∪ {b}-clause. For any
Σ-interpretation I it holds that I °Σ G⇐⇒ I 6°Σ∪{b} (G→ b).

Formally we define functions g, h and f as follows. For all natural number s
and for every concept representation G such that |G| ≤ s, define g(s, |Σ|, G) =
G→ b. For every Σ-interpretation I, define f(s, |Σ|, I) = I and for every Σ∪{b}-
interpretation J define h(s, |Σ|, J) = > if b ∈ J or h(s, |Σ|, J) = J if b 6∈ J . These
functions preserve conditions (1), (2)’ and (3)’ in Definition 1.

The second step is based completely on the fact that monotone boolean circuits
are as hard to predict as general boolean circuits. This result was proved in [6].
An exhaustive analysis of its proof allows us to ensure that monotone boolean
formulas (denoted by CMBF ) are as hard to predict as general ones.

Theorem 2. [6] CBF ≤pwm CMBF

Next, we reduce the class of monotone boolean formulas to GHorn⊃.

Theorem 3. CMBF ≤pwm GHorn⊃

Proof. Let C be a monotone boolean formula over signature Σ. From C we can
construct, by induction, a goal C ′ over signature Σ ∪ {b}, where b 6∈ Σ.
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1. If C is a variable v, then C ′ is v
2. if C is of the form C1 ∧ . . . ∧ Ck, then C ′ is C ′

1 ∧ . . . ∧ C ′
k

3. if C is of the form C1 ∨ . . . ∨Ck, then C ′ is ((C ′
1 → b) ∧ . . . ∧ (C ′

k → b)) ⊃ b

The following proposition allows us to prove the theorem.

Proposition 2. Given a signature Σ, a variable b 6∈ Σ, and a monotone boolean
formula C over Σ: for all Σ-interpretation I, I °Σ C ⇐⇒ I °Σ∪{b} C

′

Proof. The proof is again by induction over the structure of C. The nontriv-
ial case is when C = C1 ∨ . . . ∨ Ck and we suppose the proposition holds
for C1, . . . , Ck. Let us see that I °Σ C1 ∨ . . . ∨ Ck ⇐⇒ I °Σ∪{b} ((C ′

1 →
b) ∧ . . . ∧ (C ′

k → b)) ⊃ b

(=⇒) Suppose I 6°Σ∪{b} ((C ′
1 → b) ∧ . . . ∧ (C ′

k → b)) ⊃ b. There must exist J
such that: I ⊆ J ; for all i ∈ {1, . . . , k}, J °Σ∪{b} C

′
i → b; and J 6°Σ∪{b} b.

Therefore, for all i ∈ {1, . . . , k}, J 6°Σ∪{b} C
′
i. By persistence of goals, for

all i ∈ {1, . . . , k}, I 6°Σ∪{b} C
′
i. Hence, by hypothesis of induction, for all

i ∈ {1, . . . , k}, I 6°Σ Ci. Thus, I 6°Σ C1 ∨ . . . ∨ Ck.
(⇐=) Suppose I 6°Σ C1 ∨ . . . ∨ Ck. That is, for all i ∈ {1, . . . , k}, I 6°Σ Ci. By

hypothesis of induction, for all i ∈ {1, . . . , k}, I 6°Σ∪{b} C
′
i. Hence, for all

i ∈ {1, . . . , k}, I °Σ∪{b} C
′
i → b. Since b 6∈ I, I 6°Σ∪{b} ((C ′

1 → b) ∧ . . . ∧
(C ′

k → b)) ⊃ b.

Now we define functions g, h, and f . For all natural number s and for every
monotone boolean formula C over Σ, such that |C| ≤ s, let C ′ be the Σ∪{b}-goal
obtained from C as described above, where b 6∈ Σ. We define g(s, |Σ|, C) = C ′.
For every Σ-interpretation I, f(s, |Σ|, I) = I and for every Σ∪{b}-interpretation
J , h(s, |Σ|, J) = > if b ∈ J or h(s, |Σ|, J) = J if b 6∈ J . These functions preserve
conditions (1), (2) and (3) in Definition 1.

Therefore, by Lemmas 2 and 3, if DHorn⊃ is polynomially predictable with
membership queries, then CBF is polynomially predictable with membership
queries. As a consequence, by Lemma 1, if DHorn⊃ is polynomially learnable,
then CBF is polynomially predictable with membership queries. However, the
well-known Angluin and Kharitonov’s result below (see [3]) ensures us that pre-
dicting CBF in polynomial time and using membership queries is a hard problem.

Theorem 4. [3] If we assume the intractability of any of the following three
problems: testing quadratic residues modulo a composite, inverting RSA encryp-
tion, or factoring Blum integers, then CBF is not polynomially predictable with
membership queries.

6 Conclusions

In this paper, we have presented a pwm-reduction from boolean formulas to
conjunctions of Horn⊃ clauses. Consequently, this class is not predictable even
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with membership queries under cryptographic assumptions. This result gives rise
to other questions: Could we give a negative result about the learnability of the
class? Could we improve the relative result presented in this paper by showing
that conjunctions of Horn⊃ clauses are pwm-equivalent to boolean formulas?
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Abstract. We consider here a certain modular representation of multi-
linear polynomials. The modulo 6 representation of polynomial g is just
any polynomial g + 6e. The 1-a-strong representation of g modulo 6
is polynomial g + 3f + 4h, where no two of g, f and h has common
monomials.
Using this representation, we describe some surprising applications: we
show that the n homogeneous linear polynomials x1, x2, . . . , xn can be
linearly transformed to no(1) linear polynomials,1 and from these linear
polynomials we get back the 1-a-strong representations of the original
ones, also with linear transformations. We define Probabilistic Memory
Cells (PMC’s), and show how to encode n bits into n PMC’s, transform
n PMC’s to no(1) PMC’s (we call this form Hyperdense Coding), and we
show how one can transform back these no(1) PMC’s to n PMC’s, and
from these we can get back the original bits, while from the hyperdense
form we could have got back only no(1) bits. We also show that n × n
matrices can be converted to no(1) × no(1) matrices and from these tiny
matrices we can retrieve 1-a-strong representations of the original ones,
also with linear transformations. Applying PMC’s to this case will return
the original matrix, and not only the representation.
We also show that a 1-a-strong representation of the matrix-product can
be computed with only no(1) multiplications, significantly improving our
earlier result.

1 Introduction

Let f be an n-variable, multi-linear polynomial (that is, every variable appears
on the power of 0 or 1) with integer coefficients, for example f(x1, x2, x3) =
34x1x2 + 23x1x2x3. For any positive integer m > 1, we say that multi-linear
polynomial g is a mod m representation of polynomial f , if the correspond-
ing coefficients of the two polynomials are congruent modulo m; for example,
g(x1, x2, x3) = 4x1x2 + 3x1x2x3 + 5x2 is a mod 5 representation of the f in
the previous example. If we choose a non-prime-power, composite modulus, say
m = 6, then the modulo 6 representation of polynomial f is also a modulo 3
and modulo 2 representation at the same time. This means, that if we examine

1 The quantity o(1) here denotes a positive number which goes to 0 as n goes to
infinity.
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the properties of the modulo 6 representations of multi-linear polynomials (or,
equivalently, multi-linear polynomials over ring Z6), it is not probable that we
get more interesting properties over Z6 than over fields F2 or F3.

Over composite, non-prime-power moduli (say 6), however, we can consider
different representations as well. We will define 1-a-strong representations of
polynomials formally in the next section, but now it is enough to say that the
1-a-strong representation of multi-linear polynomial f modulo 6 is a polynomial
f + 3g + 4h, where no two of g, f and h have common monomials. The last
restriction is necessary, since otherwise the constant polynomial 0 would be the
1-a-strong representation modulo 6 of an arbitrary polynomial f , simply because
0 = f + 3f − 4f .

A similar polynomial representation modulo non-prime-power composites
was considered in [6]. There we proved, that a representation (what we call
a 0-a-strong representation in the next section) of the elementary symmetric
polynomials can be computed dramatically faster than over prime moduli. This
result plays a main rôle in the proofs of the present work.

1.1 Our Results:

Let m be a non-prime power composite constant (that is, it is constant in n,
e.g., m = 6).

(a) From the n variables x1, x2, . . . , xn, (each seen as a 1-variable linear func-
tion,) we compute t = no(1) linear functions z1, z2, . . . , zt, and from these t
linear functions again n linear functions x′1, x

′
2, . . . , x

′
n, such that x′i is a 1-a-

strong representation of linear function (i.e., variable) xi, for i = 1, 2, . . . , n.
Both computations are linear transformations.

(b) We define Probabilistic Memory Cells (PMC’s). By an observation of a PMC
one can get a constant amount of information. We encode n bits into n
PMC’s: one bit into one PMC, and we use the first linear transformation
in (a) to transform the n PMC’s to t = no(1) PMC’s (observing these t
PMC’s would yield only O(no(1)) bits of information), and then we transform
these t PMC’s back to n PMC’s, also with a linear transformation, and the
observation of the resulting n PMC’s will yield the original n bits. We call
this phenomenon hyperdense coding modulo m.

(c) For any n× n matrix X with elements from set Zm, we compute an no(1) ×
no(1) matrix Z with elements from set Zm, such that from Z, one can retrieve
the 1-a-strong representation of the n × n matrix X; here both operations
(the computing and the retrieval) are simple linear transformations. Note,
that this means that with n = N 100, even an N100 ×N100 matrix X can be
converted to 100

√
N × 100

√
N matrix Z, and back to an N 100 × N100 matrix

X ′ with linear transformations, for large enough N .
(d) Using Probabilistic Memory Cells for storing each entry of the binary matrix

X in (c), matrix Z can be stored with no(1) PMC’s, from which we can
compute the original n× n matrix X, by using the second linear transform
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of (c) and observations of the resulting n2 PMC’s. We call this phenomenon
the dimension defying property of the 1-a-strong representation.

(e) For n × n matrices X and Y , with elements from set Zm, we compute the
1-a-strong representation of the product matrixXY , with only no(1) multipli-
cations, significantly improving our earlier result of computing the 1-a-strong
representation of the matrix-product with n2+o(1) multiplications [7].

2 Preliminaries

2.1 A-strong representations

In [6] we gave the definition of the a-strong (i.e., alternative-strong) representa-
tion of polynomials. Here we define the alternative, and the 0-a-strong and the
1-a-strong representations of polynomials. Note that the 0-a-strong representa-
tion, defined here, coincides with the a-strong representation of the paper [6].
Note also, that for prime or prime-power moduli, polynomials and their repre-
sentations (defined below), coincide. This fact also motivates the examination of
such representations.

Definition 1. Let m be a composite number with prime-factorization m =
pe11 p

e2
2 · · · pe`

` . Let Zm denote the ring of modulo m integers. Let

f be a multi-linear polynomial of n variables over Zm: f(x1, x2, . . . , xn) =∑
I⊂{1,2,...,n} aIxI , where aI ∈ Zm, xI =

∏
i∈I xi. Then we say that

g(x1, x2, . . . , xn) =
∑
I⊂{1,2,...,n} bIxI , is an

– alternative representation of f modulo m, if ∀I ⊂ {1, 2, . . . , n} ∃j ∈
{1, 2, . . . , `} : aI ≡ bI (mod p

ej

j );

– 0-a-strong representation of f modulo m, if it is an alternative represen-
tation, and, furthermore, if for some i, aI 6≡ bI (mod pei

i ), then bI ≡ 0
(mod pei

i );

– 1-a-strong representation of f modulo m, if it is an alternative represen-
tation, and, furthermore, if for some i, aI 6≡ bI (mod pei

i ), then aI ≡ 0
(mod m);

Example 1. Let m = 6, and let f(x1, x2, x3) = x1x2 + x2x3 + x1x3, then
g(x1, x2, , x3) = 3x1x2 +4x2x3 +x1x3 is a 0-a-strong representation of f modulo
6; g(x1, x2, , x3) = x1x2 +x2x3 +x1x3 + 3x2

1 + 4x2 is a 1-a-strong representation
of f modulo 6; g(x1, x2, , x3) = 3x1x2 +4x2x3 +x1x3 +3x2

1 +4x2 is an alternative
representation modulo 6.

Example 2. Let m = 6. Then 0 = xy−3xy+2xy is not a 1-a-strong representa-
tion of xy. Similarly, polynomial f+2g+3h is a mod 6 1-a-strong representation
of polynomial f if and only if g and h do not have common monomials with f ,
and g does not have common monomials with h.
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2.2 Previous results for a-strong representations

We considered elementary symmetric polynomials Skn =
∑

I⊂{1,2,...,n}
|I|=k

∏
i∈I xi in

[6], and proved that for constant k’s, 0-a-strong representations of elementary
symmetric polynomials Skn can be computed dramatically faster over non-prime-
power composites than over primes.

In [6], we proved the following theorem:

Theorem 1 ([6]). Let the prime factorization of positive integer m be m =
pe11 p

e2
2 · · · pe`

` , where ` > 1. Then a degree-2 0-a-strong representation of

S2
n(x, y) =

∑

i,j∈{1,2,...,n}
i6=j

xiyj , (1)

modulo m: ∑

i,j∈{1,2,...,n}
i6=j

aijxiyj (2)

can be computed as the following product:
∑t−1
j=1

(∑n
i=1 b

′
ijxi

) (∑n
i=1 c

′
ijyi
)

where

t = exp(O(
√̀

log n(log log n)`−1)) = no(1). Moreover, this representation satisfies
that ∀i 6= j : aij = aji.

ut
The following result is the basis of our theorems in the present paper.

Theorem 2 ([7]). Let m = pe11 p
e2
2 · · · pe`

` , where ` > 1, and p1, p2, . . . , p`
are primes. Then a degree-2, 1-a-strong representation of the dot-product
f(x1, x2, . . . , xn, y1, y2, . . . , yn) =

∑n
i=1 xiyi can be computed with t =

exp(O(
√̀

log n(log log n)`−1)) = no(1) multiplications of the form

t∑

j=1

(
n∑

i=1

bijxi

)(
n∑

i=1

cijyi

)
(3)

Proof. Let g(x, y) = g(x1, x2, . . . , xn, y1, y2, . . . , yn) be the degree-2 polynomial
from Theorem 1 which is a 0-a-strong representation of S2

n(x, y). Then consider
polynomial

h(x, y) = (x1 + x2 + . . .+ xn)(y1 + y2 + . . .+ yn)− g(x, y). (4)

In h(x, y), the coefficients of monomials xiyi are all 1’s modulo m, and the
coefficients of monomials xiyj , for i 6= j are 0 at least for one prime-power
divisor of m, and if it is not 0 for some prime divisor, then it is 1. Consequently,
by Definition 1, h(x, y) is a 1-a-strong representation of the dot-product f(x, y).
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3 Dimension-Defying: Linear Functions

For simplicity, let m = 6.
By Theorem 2, a 1-a-strong representation of the dot-product

∑n
i=1 xiyi can

be computed as

n∑

i=1

xiyi + 3g(x, y) + 4h(x, y) =

t∑

j=1

(
n∑

i=1

bijxi

)(
n∑

i=1

cijyi

)
(5)

where bij , cij ∈ {0, 1} and where both g and h has the following form:∑
i6=j aijxiyj , and no term xiyj appears in both f and g; and t =

exp(O(
√

log n log log n)) = no(1). Note that every monomial xiyj , i 6= j has
really a coefficient which is a multiple of 3 or 4, since 1-4=3 and 1-4=3 modulo
6.

Now, let us observe that for each j = 1, 2, . . . , t,

zj =
n∑

i=1

bijxi (6)

is a linear combination of variables xi.
Let these t = no(1) linear forms be the encoding of the n 0-1 variables x′is.

The decoding is done also from (5): the 1-a-strong representation of xi can be
computed by plugging in

yi = (0, 0, . . . ,

i︷︸︸︷
1 , 0, . . . , 0).

Obviously, on the LHS of (5) we get the 1-a-strong representation of xi, and on
the RHS we get a linear combination of the zj ’s of (6).

By matrix-notation, if x is a length-n vector, and B = {bij} is an n×t matrix
with bij ’s given in (5), and C = {cij} is an n× t matrix with cij ’s given in (5),
then we can write that

z = xB, and x′ = zCT = xBCT .

Consequently, x′ = xBCT is a length-n vector, such that for i = 1, 2, . . . , n,
x′i = xi + 3gi(x) + 4hi(x) where g(x) and h(x) are integer linear combinations
(that is, homogeneous linear functions) of the coordinates of x such that none of
which contains xi and they do not contain the same xj with non-zero coefficients.
The proof of this fact is obvious from (5). It is easy to see that we proved the
following Theorem (stating for general m this time):

Theorem 3. For any non-prime-power positive integer m, and positive integer
n, there exist effectively computable constant n× t matrices B and C over Zm,
with t = no(1), such that for any vector x = (x1, x2, . . . , xn) with variables as
coordinates, the coordinate i of the length-n vector xBC is a 1-a-strong repre-
sentation of polynomial xi modulo m, for i = 1, 2, . . . , n.
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ut
Note, that xB has t coordinates (linear functions), while xBCT has again

n coordinates (linear functions). Note that similar representation is impossible
with m prime and t < n.

For an application of this striking observation we need the definition of Prob-
abilistic Memory Cells.

4 Probabilistic Memory

The words ”probabilistic” and ”memory” are rarely mixed well: a probabilisti-
cally behaving memory element – typically – is not desirable in any computer.
Here we consider 1-0 step functions on the real interval [0, 1], describing some
physical object changing its state from 1 to 0 in a random point of the interval
[0, 1]. We assume that the distribution of this point is uniform in the the real
interval [0, 1]. We also assume that the distribution of these random points are
independent. The randomness will assure us that with high probability (more ex-
actly, with probability 1) no two different functions have the state-change at the
same moment. We intend to use integer linear combinations of these functions
for dense data storage. The formal definition is as follows:

Definition 2. An m-Probabilistic Memory Cell (m-PMC in short) is a step-
function ρ : [0, 1]→ Zm, such that ρ(i)−1, for i = 0, 1, . . . ,m−1, is a finite union
of subintervals of the interval [0, 1]. a ∈ [0, 1] is a step-point of ρ if lim+a ρ 6=
lim−a ρ. The step-value in step-point a is equal to lim+a ρ− lim−a ρ modulo m.
An m-PMC is simple, if there exists an a ∈ [0, 1] such that ρ−1(1) = [0, a], and
ρ−1(0) = (a, 1]. A collection of m-PMC’s ρ1, ρ2, . . . , ρn is called a proper-(n,m)-
PMC, if

– every ρi is a simple m-PMC, and
– for all i 6= j, the step-points of ρi and ρj differ.

The observation operator O(ρ) returns the (un-ordered) set of step-values, mod-
ulo m, in all the step-points of m-PMC ρ, that is, O(ρ) ⊂ {0, 1, . . . ,m− 1}, for
any m-PMC ρ.

Note, that the set of the m-PMC’s forms a module over the integer ring Zm.
Note also, that the set of step-points of an integer linear combination of several
m-PMC’s is a subset of the union of the step-points of the individual PMC’s.

Fact. If the step-points are distributed uniformly and independently in each
of the n simple m-PMC’s, then their collection will form a proper-(n,m)-PMC
with probability 1.

This is the reason that the word “Probabilistic” appears in Definition 2.

Example 1: On Figure 1, the linear combination of simple PMC’s ρ and ξ,
2ρ+ 3ξ is also a PMC, and O(2ρ+ 3ξ) = {−2,−3} = {4, 3}, with m = 6.

Example 2: The sum of the members of the proper-(n, 6)-PMC ρ1, ρ2, . . . , ρn
is also a 6-PMC ξ =

∑n
i=1 ρi, and clearly, O(ξ) = {5}.
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Fig. 1. Linear combination of PMC’s ρ and ξ.

5 Hyperdense Coding

Let h1, h2, . . . , hn be n bits. Let ρ1, ρ2, . . . , ρn be a proper (n, 6) PMC. Now
define xi = hiρi, for i = 1, 2, . . . , n, and let x = (x1, x2, . . . , xn). Clearly, the xi’s
are also PMC’s. Now, let us use matrices B and C from Theorem 3. Let z = xB
be a vector, and each of the t = no(1) coordinates of it is a PMC. Note, that
observing any coordinate of z yields only O(1) bits of information, O(no(1)) in
total. However, if we do not observe the coordinates of z, but instead of that
we apply the linear transform CT to it, then we would get back the 1-a-strong
representation of polynomials xi in each coordinate of zCT = xBCT in case of
variables as x′is, that is: x′i = xi + 3gi(x) + 4hi(x). But now we have PMC’s
instead of linear functions.

What happens if we observe x′i? Clearly, for m = 6, hi = 1 ⇐⇒ 5 ∈ O(x′i),
since in case of hi = 0 every step-value is a multiple of 2 or 3. That means that
by observing the n PMC’s in the coordinates of zCT = xBCT , we get back the
n bits of h1, h2, . . . , hn.

Note, that the t coordinates of z also contained the information on the n
input-bits, but with observations we were not able to recover it. We call z the
hyperdense coding of bits h1, h2, . . . , hn. Consequently, we have proved (again
stating for general m):

Theorem 4. For any non-prime-power positive integer m, and positive integer
n, there exist effectively computable constant n× t matrices B and C over Zm,
with t = no(1), such that for any bit-sequence h1, h2, . . . , hn can be encoded into n
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m-PMC’s x = (x1, x2, . . . , xn), and these m-PMC’s can be linearly transformed
into t m-PMC’s z = xB, and these PMC’s can be linearly transformed to n
PMC’s x′ = zCT = xBCT , such that the observation of the PMC’s in the
coordinates of x′ yields the original values of h1, h2, . . . , hn.

ut
Note, that in a completely different model, Bennet and Wiesner [4], using

Einstein-Podolski-Rosen entangled pairs, showed that n classic bits can be en-
coded by dn/2e quantum bits. They called their result superdense coding.

6 Our Result for Matrix Compression

Definition 3. Let X = {xij} be an n×n matrix with one-variable homogeneous
linear functions (that is, x′ijs) as entries. Then Y = {yij} is a 1-a-strong repre-

sentation of the matrix X modulo m if for 1 ≤ i, j ≤ n, the polynomial yij of n2

variables {xuv} is a 1-a-strong representation of polynomial xij modulo m.

If we plug in column-vectors instead of just variables in the homogeneous
linear forms of Theorem 3, then we will get linear combinations of the column-
vectors. Consequently, we proved the following implication of Theorem 2:

Theorem 5. For any non-prime-power positive integer m, and positive integer
n, there exist effectively computable constant n× t matrices B and C, such that
for any n×n matrix X = {xij}, XBCT is a 1-a-strong representation of matrix
X modulo m, where t = no(1).

The dimension-defying implication of Theorem 5 is that X is an n×n matrix,
XB is an n× no(1) matrix, and XBCT is again an n× n matrix.

An easy corollary of Theorem 5, that

Corollary 1. With the notations of Theorem 5, CBTX is a 1-a-strong repre-
sentation of matrix X modulo m, where t = no(1).

Our main result in this section is the following implication of Corollary 1 and
Theorem 5:

Theorem 6. For any non-prime-power m > 1, there exist effectively computable
constant n× t matrices B and C, such that for any matrix X = {xij}, BTXB
is a t × t matrix, where t = no(1), and matrix CBTXBCT is a 1-a-strong rep-
resentation of matrix X modulo m.

The dimension-defying implication of Theorem 6 is that from the n × n
matrix X with simple linear transformations we make the tiny no(1) × no(1)

matrix BTXB, and from this, again with simple linear transformations, n × n
matrix CBTXBCT , where it is a 1-a-strong representation of matrix X modulo
m.
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7 Dimension Defying

Similarly as in Section 5, where we changed our result from linear functions to
numbers with using PMC’s, now we repeat the same method.

Theorem 7. For any non-prime-power m > 1, and for any positive integer n,
there exist effectively computable constant n×t matrices B and C, such that any
H = {hij} a 0-1 n×n matrix can be encoded into an n×n matrix X = {xij} with
n2 PMC’s as entries, applying two linear transforms to this matrix we get an
t× t matrix BTXB which contains t2 m-PMC’s, and applying two further linear
transforms, we get the n × n matrix CBTXBCT , with n2 PMC’s as entries,
whose observation returns the original 0-1 values of the matrix H.

Proof. Let ρ11, ρ12, . . . , ρnn be a proper (n2,m)-PMC, and let us define the xij =
hijρij . Clearly, the entries of CBTXBCT are 1-a-strong representations of x′ijs,
so by observing its (i, j) entry, x′ij the following holds: hij = 1 ⇐⇒ m − 1 ∈
O(x′ij).

8 Our result for matrix multiplication

The matrix multiplication is a basic operation in mathematics in applications
in almost every branch of mathematics itself, and also in the science and engi-
neering in general. An important problem is finding algorithms for fast matrix
multiplication. The natural algorithm for computing the product of two n × n
matrices uses n3 multiplications. The first, surprising algorithm for fast matrix
multiplication was the recursive method of Strassen [10], with O(n2.81) multipli-
cations. After a long line of results, the best known algorithm today was given by
Coppersmith and Winograd [5], requiring only O(n2.376) multiplications. Some
of these methods can be applied successfully in practice for the multiplication
of large matrices [1].

The best lower bounds for the number of needed multiplications are between
2.5n2 and 3n2, depending on the underlying fields (see [2], [3], [9]). A result of
Raz [8] gives an Ω(n2 log n) lower bound for the number of multiplications, if
only bounded scalar multipliers can be used in the algorithm.

In [7] we gave an algorithm with n2+o(1) multiplications for computing the
1-a-strong representation of the matrix product modulo non-prime power com-
posite numbers (e.g., 6). The algorithm was an application of a method of com-
puting a representation of the dot-product of two length-n vectors with only
no(1) multiplications.

In the present work, we significantly improve the results of [7], we give an
algorithm for computing the 1-a-strong representation of the product of two n×n
matrices with only no(1) multiplications.

Definition 4. Let X = {xij} and Y = {yij} be two n × n matrices with 2n2-
variable homogeneous linear functions (that is, x′ijs and y′ijs as entries. We say
that matrix V = {vij} is a 1-a-strong representation of the product-matrix XY , if
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for 1 ≤ i, j ≤ n, vij, as a 2n2-variable polynomial, is a 1-a-strong representation
of polynomial

∑n
k=1 xikykj modulo m.

Note, that this definition is not implied by Definition 3. We need to define a
sort of generalization of the matrix-product:

Definition 5. f : R2n → R is a homogeneous bilinear function over ring R
if f(x1, x2, . . . , xn, y1, y2, . . . , yn) =

∑
1≤i,j≤n aijxiyj for some ai,j ∈ R. Let

U = {uij} be an u×n matrix over ring R, and let V = {vk`} be an n× v matrix
over R. Then U(f)V denotes the u × v matrix over R with entries wi`, where
wi` = f(ui1, ui2, . . . , uin, v1`, v2`, . . . , vn`).

Note, that if f is the dot-product, then U(f)V is just the simple matrix-
product. First we need a simple lemma, stating that the associativity of the
matrix multiplication is satisfied also for the “strange” matrix-multiplication
defined in Definition 5:

Lemma 1. Let f(x1, x2, . . . , xn, y1, y2, . . . , yn) =
∑

1≤i,j≤n aijxiyj and let
g(x1, x2, . . . , xv, y1, y2, . . . , yv) =

∑
1≤i,j≤v bijxiyj be homogeneous bilinear func-

tions over the ring R. Let U = {uij} be an u × n matrix, and let V = {vk`} be
an n × v matrix, and W = {wij} be a v × w matrix over R, where u, n,w are
positive integers. Then (U(f)V ) (g)W = U(f) (V (g)W ) , that is, the “strange”
matrix-multiplication, given in Definition 5, is associative.

Proof: The proof is obvious from the homogeneous bi-linearity of f and g.

Now we are in the position of stating and proving our main theorem for
matrix multiplications:

Theorem 8. Let X and Y two n× n matrices, and let m > 1 be a non-prime-
power integer. Then the 1-a-strong representation of the matrix-product XY can
be computed with t3 = no(1) non-scalar multiplications.

Proof. We use Theorem 5 and Corollary 1. Let us consider t×n matrix BTX and
t × n matrix Y B; these matrices can be computed without any multiplications
from X and Y (we do not count multiplications by constants). Let h(x, y) be
the homogeneous bi-linear function (4). Then BTX(h)Y B can be computed with
no(1) multiplications (Note, that because of Lemma 1, the associativity holds).
Now compute matrix CBTX(f)Y BCT = (CBTY )(f)(Y BCT ) without any fur-
ther (non-constant) multiplication. By Theorem 5 and Corollary 1, CBTX and
Y BCT is a 1-a-strong representations of X and Y respectively, and they are
the linear combinations of the rows of X and columns of Y , respectively. Con-
sequently, using Theorem 2, CBTX(f)Y BCT is a 1-a-strong representation of
XY .
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Abstract. Membrane Computing is a branch of Natural Computing
which starts from the assumption that the processes taking place in the
compartmental structure of a living cell can be interpreted as compu-
tations. In this paper we present a solution to the SAT problem using
Membrane Computing devices (P systems) where an exponential number
of membranes can be created from objects in polynomial time.

1 Introduction

Membrane Computing is an emergent branch of Natural Computing introduced
by Păun in [9]. Since then it has received important attention from the scientific
community. In fact, Membrane Computing has been selected by the Institute
for Scientific Information, USA, as a fast Emerging Research Front in Computer
Science, and [8] was mentioned in [12] as a highly cited paper in October 2003.

This new non-deterministic model of computation starts from the assumption
that the processes taking place in the compartmental structure of a living cell can
be interpreted as computations. The devices of this model are called P systems.

Roughly speaking, a P system consists of a cell-like membrane structure, in
the compartments of which one places multisets of objects which evolve according
to given rules in a synchronous non-deterministic maximally parallel manner1.
The representation of data as multisets is an abstraction from the way in which
chemical compounds are found in living cells.

Membrane Computing is a cross-disciplinary field with contributions by com-
puter scientists, biologists, formal linguists and complexity theoreticians, enrich-
ing each others with results, open problems and promising new research lines.

In this paper we present a contribution from the computational side. We
introduce a family of P systems with membrane creation, constructed in an

? This work is supported by Ministerio de Ciencia y Tecnoloǵıa of Spain, by Plan
Nacional de I+D+I (2000–2003) (TIC2002-04220-C03-01), cofinanced by FEDER
funds, and by a FPI fellowship (of the first author) from the University of Sevilla.

1 A layman-oriented introduction can be found in [10] and further bibliography at
[13].
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uniform way, that solves the problem of determining for a given formula in
conjunctive normal form whether it is satisfiable or not (the SAT problem).

The paper is organised as follows: first P systems with membrane creation are
introduced in the next section. In section 3 recognizer P systems (devices that
capture the intuitive idea underlying the concept of algorithm) are presented.
The solution in the framework of membrane creation to the SAT problem is given
in section 4. Finally, some formal details and conclusions are given.

2 P systems with membrane creation

Polynomial solutions to NP-complete problems in Membrane Computing is done
by trading time by space. This is inspired from the capability of cells to pro-
duce an exponential number of new membranes (new workspace) in polynomial
time. Basically there are two ways of producing new membranes in living cells:
mitosis (membrane division) and autopoiesis (membrane creation), see [3]. Both
ways of generating new membranes have given rise to different variants of P
systems: P systems with active membranes, where the new workspace is gener-
ated by membrane division and P systems with membrane creation, where the
new membranes are created from objects. Both models have been proved to be
universal, but up to now there is no theoretical result proving that these models
simulate each other in polynomial time. P systems with active membranes have
been successfully used to design solutions to NP-complete problems, as SAT [7],
Subset Sum [4], Knapsack [5], Bin Packing [6] and Partition [2], but as Gh. Păun
pointed in [11] “membrane division was much more carefully investigated than
membrane creation as a way to obtain tractable solutions to hard problems”.

In this paper we investigate the second variant mentioned above. Mem-
branes are created in living cells, for instance, in the process of vesicle me-
diated transport and in order to keep molecules close to each other to facili-
tate their reactions. Membranes can also be created in a laboratory - see [3].
Here we abstract the operation of creation of new membranes under the influ-
ence of existing chemical substances to define P systems with membrane cre-
ation. Recall that a P system with membrane creation is a construct of the form
Π = (O,H, µ,w1, . . . , wm, R) where:

1. m ≥ 1 is the initial degree of the system; O is the alphabet of objects and H
is a finite set of labels for membranes;

2. µ is a membrane structure consisting of m membranes labelled (not necessar-
ily in a one-to-one manner) with elements of H and w1, . . . , wm are strings
over O, describing the multisets of objects placed in the m regions of µ;

3. R is a finite set of rules, of the following forms:

(a) [a → v]h where h ∈ H, a ∈ O and v is a string over O describing
a multiset of objects. These are object evolution rules associated with
membranes and depending only on the label of the membrane.

(b) a[ ]h → [b]h where h ∈ H, a, b ∈ O. These are send-in communication
rules. An object is introduced in the membrane possibly modified.
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(c) [a]h → [ ]h b where h ∈ H, a, b ∈ O. These are send-out communication
rules. An object is sent out of the membrane possibly modified.

(d) [a]h → b where h ∈ H, a, b ∈ O. These are dissolution rules. In reaction
with an object, a membrane is dissolved, while the object specified in
the rule can be modified.

(e) [a→ [v]h2
]h1

where h1, h2 ∈ H, a ∈ O and v is a string over O describing
a multiset of objects. These are creation rules. In reaction with an object,
a new membrane is created. This new membrane is placed inside of the
membrane of the object which triggers the rule and has associated an
initial multiset and a label.

Rules are applied according to the following principles:

– Rules from (a) to (d) are used as usual in the framework of membrane
computing, that is, in a maximal parallel way. In one step, each object in a
membrane can only be used for one rule (non deterministically chosen when
there are several possibilities), but any object which can evolve by a rule of
any form must do it (with the restrictions below indicated).

– Rules of type (e) are used also in a maximal parallel way. Each object a in a
membrane labelled with h1 produces a new membrane with label h2 placing
in it the multiset of objects described by the string v.

– If a membrane is dissolved, its content (multiset and interior membranes)
becomes part of the immediately external one. The skin membrane is never
dissolved.

– All the elements which are not involved in any of the operations to be applied
remain unchanged.

– The rules associated with the label h are used for all membranes with this
label, irrespective of whether or not the membrane is an initial one or it was
obtained by creation.

– Several rules can be applied to different objects in the same membrane si-
multaneously. The exception are the rules of type (d) since a membrane can
be dissolved only once.

3 Recognizer P systems with membrane creation

Recognizer P systems were introduced in [5] and are the natural framework to
study and solve decision problems, since deciding whether an instance has an
affirmative or negative answer is equivalent to deciding if a string belongs or not
to the language associated with the problem.

In the literature, recognizer P systems are associated in a natural way with P
systems with input. The data related to an instance of the decision problem has
to be provided to the P system in order to compute the appropriate answer. This
is done by codifying each instance as a multiset placed in an input membrane.
The output of the computation (yes or no) is sent to the environment. In this way,
P systems with input and external output are devices which can be seen as black
boxes, in which the user provides the data before the computation starts and the
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P system sends to the environment the output in the last step of the computation.
Another important feature of P systems is the non-determinism. The design of
a family of recognizer P system has to consider it, because all possibilities in the
non-deterministic computations have to output the same answer. This can be
summarized in the following definitions (taken from [1] ).

Definition 1. A P system with input is a tuple (Π,Σ, iΠ), where: (a) Π is a
P system, with working alphabet Γ , with p membranes labelled by 1, . . . , p, and
initial multisets w1, . . . , wp associated with them; (b) Σ is an (input) alphabet
strictly contained in Γ ; the initial multisets are over Γ − Σ; and (c) iΠ is the
label of a distinguished (input) membrane.

Let m be a multiset over Σ. The initial configuration of (Π,Σ, iΠ) with input
m is (µ,w1, . . . , wiΠ ∪m, . . . wp).

Definition 2. A recognizer P system is a P system with input, (Π,Σ, iΠ), and
with external output such that:

1. The working alphabet contains two distinguished elements yes, no.
2. All its computations halt.
3. If C is a computation of Π, then either some object yes or some object no

(but not both) must have been released into the environment, and only in
the last step of the computation. We say that C is an accepting computa-
tion (respectively, rejecting computation) if the object yes (respectively, no)
appears in the external environment associated to the corresponding halting
configuration of C.

In the next section we present a solution to the SAT problem in linear time
in the sense of the following definition.

Definition 3. Let F be a class of recognizer P systems. We say that a decision
problem X = (IX , θX) is solvable in polynomial time by a family Π = (Π(n))n∈N,
of F , and we denote this by X ∈ PMCF , if the following is true:

• The family Π is polynomially uniform by Turing machines; that is, there
exists a deterministic Turing machine constructing Π(n) from n ∈ N in
polynomial time.

• There exists a pair (cod, s) of polynomial-time computable functions over IX
such that:
− for each instance u ∈ IX , s(u) is a natural number and cod(u) is an

input multiset of the system Π(s(u)).
− the family Π is polynomially bounded with regard to (X, cod, s); that is,

there exists a polynomial function p, such that for each u ∈ IX every
computation of Π(s(u)) with input cod(u) is halting and, moreover, it
performs at most, p(|u|) steps.

− the family Π is sound with regard to (X, cod, s); that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u),
then θX(u) = 1.
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− the family Π is complete with regard to (X, cod, s); that is, for each
u ∈ IX , if θX(u) = 1, then every computation of Π(s(u)) with input
cod(u) is an accepting one.

In the above definition we have imposed to every P system Π(n) to be confluent,
in the following sense: every computation of a system with the same input must
always give the same answer.

It can be proved that PMCF is closed under polynomial–time reduction and
complement, see [7]. In this paper we will deal with the class MC of recognizer
P systems with membrane creation.

4 Solving SAT in linear time with membrane creation

The SAT problem is the following: Given a boolean formula in conjunctive nor-
mal form, to determine whether or not it is satisfiable, that is, whether there
exists an assignment to its variables on which it evaluates true.

In this section we describe a family of P systems which solves it. We will
address the resolution via a brute force algorithm, in the framework of recognizer
P systems with membrane creation, which consists in the following phases:

– Generation and Evaluation Stage: Using membrane creation we will generate
all possible assignments associated with the formula and evaluate it on each
one.

– Checking Stage: In each membrane we check whether or not the formula
evaluates true on the assignment associated with it.

– Output Stage: The systems sends out to the environment the right answer
according to the previous stage.

Let us consider the pair function 〈 , 〉 defined by 〈n,m〉 = ((n+m)(n+m+
1)/2)+n. This function is polynomial-time computable (it is primitive recursive
and bijective from N2 onto N). For any given formula, ϕ = C1∧ · · ·∧Cm, with n
variables and m clauses we construct a P system Π(〈n,m〉) solving it. Therefore
the family presented here is

Π = {(Π(〈n,m〉), Σ(〈n,m〉), i(〈n,m〉)) : (n,m) ∈ N2}

For each element of the family, the input alphabet is

Σ(〈n,m〉) = {xi,j , xi,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n}

the input membrane is i(〈n,m〉) = t, and the P system

Π(〈n,m〉) = (Γ (〈n,m〉), {a, t, f, 1, . . . ,m}, µ, wa, wt, R(〈n,m〉))

is define as follows:
• Working alphabet:

Γ (〈n,m〉) = Σ(〈n,m〉) ∪ {xi,j,l, xi,j,l, zi, zi,l, rj , rj,l, dj : l = t, f, 1 ≤ i ≤ n, 1 ≤ j ≤ m}
∪ {yes, no, yesi, noj : 0 ≤ i ≤ 9, 0 ≤ j ≤ 2n+ 11}
∪ {q, k0, k1, k2, t0, t1, t2, t3}
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• Initial membrane structure: µ = [ [ ]a ]t
• Initial Multisets: wa = {no0} wt = {z0,t, z0,f}
• The set of evolution rules, R(〈n,m〉), consists of the following rules (recall that
λ denotes the empty string):

1. [zj,t → [zj+1 k0]t]l
[zj,f → [zj+1 k0]f ]l

}
for

l = t, f
j = 0, . . . , n− 2

The goal of these rules is to create one membrane for each assignment to
the variables of the formula. The new membrane with label t, where the object
zj+1 is placed, represents the assignment xj+1 = true; on the other hand the
new membrane with label f , where the object zj+1 is placed represents the
assignment xj+1 = false.

2. [xij → xi,j,txi,j,f ]l
[xi,j → xi,j,txi,j,f ]l

[ri → ri,tri,f ]l

[zk → zk,t zk,f ]l





for

l = t, f
k = 0, . . . , n− 1
i = 1, . . . ,m
j = 1, . . . n

These rules duplicate the objects representing the formula so it can be eval-
uated on the two possible assignments, xj = true (xi,j,t, xi,j,t) and xj = false
(xi,j,f , xi,j,f ). The objects ri are also duplicated (ri,t, ri,f ) in order to keep track
of the clauses that evaluate true on the previous assignments to the variables.
Finally the objects zk produce the objects zk,t and zk,f which will create the
new membranes representing the two possible assignments for the next variable.

3. xi,1,t[ ]t → [ri]t, xi,1,t[ ]t → [λ]t
xi,1,f [ ]f → [λ]f , xi,1,f [ ]f → [ri]f

}
for i = 1, . . . ,m

According to these rules the formula is evaluated in the two possible assign-
ments for the variable that is being analysed. The objects xi,1,t (resp. xi,1,f )
get into the membrane labelled with t (resp. f) being transformed into the ob-
jects ri representing that the clause number i evaluates true on the assignment
xj+1 = true (resp. xj+1 = false). On the other hand the objects xi,1,t (resp.
xi,1,t) get into the membrane labelled with f (resp. t) producing no objects.
This represents that these objects do not make the clause true in the assignment
xj+1 = true (resp. xj+1 = false).

4. xi,j,t[ ]t → [xi,j−1]t, xi,j,t[ ]t → [xi,j−1]t
xi,j,f [ ]f → [xi,j−1]f , xi,j,f [ ]f → [xi,j−1]f

ri,t[ ]t → [ri]t, ri,f [ ]f → [ri]f





for
i = 1, . . . ,m
j = 2, . . . , n

In order to analyse the next variable the second subscript of the objects xi,j,l
and xi,j,l are decreased when they are sent into the corresponding membrane
labelled with l. Moreover, following the last rule, the objects ri,l get into the
new membranes to keep track of the clauses that evaluate true on the previous
assignments.

5. [ks → ks+1]l
[k2]l → λ

}
for

l = t, f
s = 0, 1

The objects ki for i = 0, 1, 2 are counters that dissolve membranes when they
are not useful anymore during the rest of the computation.
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6. [zn−1,t → [zn]t]l, [zn−1,f → [zn]f ]l
[zn → d1 . . . dmq]l

}
for l = t, f

At the end of the generation stage the objects zn−1,l create two new mem-
branes where the formula will be evaluated on the two possible assignments for
the last variable xn. The object zn is placed in both membranes and will produce
the objects d1, . . . , dm and yes0, which will take part in the checking stage.
7. [di → [t0]i]l

ri,t[ ]i → [ri]i, [ri]i → λ

[ts → ts+1]i, [t2]i → t3





for
i = 1, . . . ,m
s = 0, 1

Following these rules each object di creates a new membrane with label i
where the object t0 is placed; this object will act as a counter. The object ri gets
into the membrane labelled with i and dissolves it preventing the counter, ti,
from reaching the object t2. The fact that the object t2 appears in a membrane
with label i means that there is no object ri, that is, the clause number i does
not evaluate true on the assignment associated with the membrane; therefore
neither does the formula evaluate true on the associated assignment.
8. [q → [yes0]a]l

t3[ ]a → [t3]a [t3]a → λ

[yesh → yesh+1]a, [yes5]a → yes6

[yes6]l → yes7[ ]l





for
l = t, f
h = 0, . . . , 4

The object q creates a membrane with label a where the object yes0 is placed.
The object yesh evolves to the object yesh+1; at the same time the objects t3
can get into the membrane labelled with a and dissolve it preventing the object
yes6 from being sent out from this membrane.
9. [nop → nop+1]a, [no2n+10]a → no2n+11

[no2n+11]t → no[ ]t

yes7[ ]a → [yes8]a, [yes8]a → yes9

[yes9]t → yes[ ]t





for p = 0, . . . , 2n+ 9

From the beginning of the computation the object nop evolves to the object
nop+1 inside the membrane labelled with a. If any object yes7 is produced during
the computation, which means that the formula evaluates true on some assign-
ment to its variables, it gets into this membrane and dissolved it producing the
object yes9 that will send out to the environment the object yes. On the other
hand if no object yes7 appears in the skin the object no2n+10 will dissolve the
membrane labelled with a producing the object no2n+11 that will send out to
the environment the object no.

4.1 An overview of the computation

First of all we define a polynomial encoding of the SAT problem in the family Π
constructed in the previous section. Given a formula in CNF, ϕ = C1 ∧ · · · ∧Cm
such that V ar(ϕ) = {x1, . . . , xn} we define s(ϕ) = 〈n,m〉 (recall the bijection
mentioned in the previous section) and the input multiset cod(ϕ) = {xi,j : xj ∈
Ci} ∪ {xi,j : ¬xi,j ∈ Ci}.



Solving SAT with membrane creation 89

Next we describe informally how the recognizer P system with membrane
creation Π(s(ϕ)) with input cod(ϕ) works.

In the initial configuration we have on the one hand the input multiset cod(ϕ)
and the objects z0,t and z0,f placed in the skin (membrane labelled with t); and
on the other hand we have in the membrane labelled with a the object no0. This
object evolves during the computation following the first rule in the set 9.

In the first step of the computation the object z0,t creates a new membrane
with label t which represents the assignment x1 = true and the object z0,f cre-
ates a new membrane with label f which represents the assignment x1 = false.
In these two new membranes the objects z1 and k0 are placed. At the same time
the input multiset representing the formula is duplicated following the two first
rules in 2. In the next step, according to the rules in 3, the formula is evaluated
on the two possible assignments for x1. In the same step the rules in 4 decrease
the second subscript of the objects representing the formula (xi,j,l, xi,j,l with
j ≥ 2) in order to analyse the next variable. Moreover, at the same time, the
object z1 produces the object z1,t and z1,f and the system is ready to analyse
the next variable. And so the generation and evaluation stages goes until all the
possible assignments to the variables are generated and the formula is evaluated
on each one of them. Observe that it takes two steps to generate the possible
assignments for a variable and evaluate the formula on them; therefore the gen-
eration and evaluation stages take 2n steps. Note that the object k0 in the rules
5 is a counter that dissolves the membrane when the object k2 appears; that is
it dissolves the membrane once the membrane is not useful anymore in the rest
of the computation.

The checking stage starts when the object zn produces the objects d1, . . . , dm
and the object q. In the first step of the checking stage each object di, for i =
1, . . . ,m creates a new membrane labelled with i where the object t0 is placed,
and the object q creates a new membrane with label a placing the object yes0 in
it. The objects ri, which represent that the clause number i evaluates true on the
assignment associated with the membrane, are sent into the membranes by the
last rule in 4 so the system keeps track of the clauses that are true. The objects
ri,t get into the membrane with label i and dissolves it in the following two
steps preventing the counter t2 from dissolving the membrane and producing the
object t3 according to the last rule in 7. If for some i there is no object ri, which
means that the clause i does not evaluate true on the associated assignment, the
object t2 will dissolve the membrane labelled with i producing the object t3 that
will get into the membrane with label a where the object yesh evolves following
the rules in 8. The object t3 dissolves the membrane preventing the production
of the object yes6. Therefore the checking stage takes 6 steps.

Finally the output stage takes place according to the rules in 9. On the one
hand if some object yes6 is present in any membrane (which represents that the
formula evaluates true on the assignment associated with this membrane) it is
sent out to the skin being transformed into the object yes7. In the next step
yes7 gets into the membrane labelled with a being transformed into yes8 then
it dissolves the membrane producing the object yes9. This dissolution prevents
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the object no2n+11 from being produced. And finally the object yes is sent out
to the environment. On the other hand if there is no object yes6 the membrane
with label a is not dissolved, and then the object no2n+11 is produced and the
object no is sent out to the environment. Observe that the output stage takes 5
steps if the answer is yes, and 6 steps if the answer is no.

5 Some formal details

In the previous section we have presented a family Π of recognizer P systems
which solves the SAT problem. For each boolean formula a P system Π(〈n,m〉) is
constructed, where n is the number of variables and m is the number of clauses.
First of all, observe that the evolution rules of Π(s(ϕ)) are defined in a recursive
manner from ϕ, in particular from n and m. Let us list the necessary resources
to construct Π(s(ϕ)):

– Size of the alphabet: 6nm+ 5n+ 4m+ 33 ∈ Θ(nm)
– Initial number of membranes: 2 ∈ Θ(1)
– Initial number of objects: 3 ∈ Θ(1)
– Sum of the lengths of the rules: 86nm+ 84n+ 144m+ 121 ∈ Θ(nm)

Therefore a Turing machine can build Π(s(ϕ)) in polynomial time with re-
spect to s(ϕ). It can also be proved that the family Π solves the SAT problem
in the sense of definition 3 in section 3.

Finally, we can prove, using a formal description of the computation, that
the P system always halts and sends to the environment the object yes or no in
the last step. The number of steps of the P system is 2n + 11 if the output is
yes and 2n+ 12 if the output is no, therefore there exists a linear bound for the
number of steps of the computation.

From the above discussion we deduce that SAT belongs to PMCMC , there-
fore this class is closed under polynomial-time reduction and complement we
have NP ∪ co-NP ⊆ PMCMC .

6 Conclusions and Future Work

Membrane Computing is a new cross-disciplinary field of Natural Computing
which has reached an important success in its short life. In these years many
results have been presented related to the computational power of membrane
devices, but up to now no implementation in vivo or in vitro has been carried
out. This paper deals with the study of algorithms to solve well-known prob-
lems and in this sense it is placed between the theoretical results, mainly related
to computational completeness and computational efficiency, and the real im-
plementation of the devices. Moreover this paper represents a new step in the
study of algorithms in the framework of P systems because it exploits membrane
creation (a variant poorly studied) to solve NP-complete problems. Recently, we
have proved that this variant is PSPACE powerful; this result will be published
in a forthcoming paper.
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Polynomial time enumeration (pe) reducibility was defined by Alan Selman
in 1978 as a polynomial time restricted analogue of enumeration reducibility.
Selman showed that, over the class of computable sets, pe-reducility properly
contains polynomial time non deterministic conjunctive (np-c) reducibility and
that it gives rise to a degree structure (REC-pe,≤) whose zero element is NP.
Unusually, there is no (known) effective listing of operators for this (i.e. pe)
reducibility and so the properties of its degree structure are not directly provable
using standard techniques for resource bounded reducibilities. Nevertheless a
number of fundamental properties — for example density and the existence of
certain lattice embeddings — can be established by a slight change of approach
applied in conjunction with two basic results proved in Selman’s original paper.
Interestingly pe-reducibility and np-c-reducibility are equivalent over the class
EXP. This suggest that the associated set of degrees EXP-pe (which is countably
infinite provided EXP is different from NP), has a special status within the
overall structure. On the other hand (REC-pe,≤) shares various characteristics
of the structure of the Cook degrees; in particular, a similar lack of homogeneity.
My present work seeks to determine the extent of this analogy between the two
structures. This includes the question of whether certain sets of degrees, such as
EXP-pe, are definable within (REC-pe,≤), and which fragments of the latter’s
theory are decidable.



On the Prediction of
Recursive Real-Valued Functions ?

Eiju Hirowatari1, Kouichi Hirata2, Tetsuhiro Miyahara3, and Setsuo Arikawa4

1 Department of Business Administration, The University of Kitakyushu
Kitakyushu 802-8577, Japan

eiju@kitakyu-u.ac.jp
2 Department of Artificial Intelligence, Kyushu Institute of Technology

Iizuka 820-8502, Japan
hirata@ai.kyutech.ac.jp

3 Faculty of Information Sciences, Hiroshima City University
Hiroshima 731-3194, Japan

miyahara@its.hiroshima-cu.ac.jp
4 Department of Informatics, Kyushu University, Fukuoka 812-8581, Japan

arikawa@i.kyushu-u.ac.jp

Abstract. In this paper, we investigate prediction of recursive real-
valued functions. First, we introduce a new criterion RealNV for pre-
diction of recursive real-valued functions, as an extension of the criterion
NV for prediction of recursive functions. Then, we show that the set of all
elementary functions with rational coefficients defined on a fixed rational
closed interval is in RealNV. Furthermore, by comparing RealNV with
other criteria RealEx, RealFin and RealNum! for inductive inference
of recursive real-valued functions, we show that RealNV # (RealFin∩
RealNum!) and RealNV # RealEx, in contrast to the well-known re-
lationship that Num! ( NV ( Ex and NV # Fin, where A # B denotes
that A and B are incomparable.

1 Introduction

The prediction or extrapolation of recursive functions [3, 4] is to predict the n-th
element of the sequence given the first n− 1 elements by a prediction machine.
We call the predicted element a next value. The prediction machine is realized
as simply an algorithmic device that accepts as input a finite (possibly empty)
sequence of values and may output some value and halt, or may diverge.

The criterion NV (abbreviates ‘next value’) for prediction of recursive func-
tions has been introduced by Bārzdiņš and Freivalds [3]. Then, by comparing
NV with other criteria for inductive inference of recursive functions, Ex [5]
corresponding to identification in the limit, Fin [5] to learning finitely, and
Num! [2, 3] to learning by enumeration, the following relationships [3, 4] are

? This work is partially supported by Grant-in-Aid for Scientific Research 14780304,
15700137 and 16016275 from the Ministry of Education, Culture, Sports, Science and
Technology, Japan, and 16500084 from Japan Society for the Promotion of Science.
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known: Num! ( NV ( Ex and NV # Fin, where A # B denotes that A and
B are incomparable. Also refer to Figure 1 (left).

On the other hand, a recursive real-valued function is one of the formula-
tions for a computable real function [10–12], and formulated as a function that
maps a sequence of intervals which converges to a real number to a sequence
of intervals which converges to another real number. Inductive inference of re-
cursive real-valued functions was first introduced by Hirowatari and Arikawa [6]
and developed by their co-authors [1, 7–9]. In their works, the criteria RealEx,
RealFin and RealNum! for inductive inference of recursive real-valued func-
tions were introduced as extensions of Ex, Fin and Num!, respectively, and their
interaction has been widely studied.

In this paper, we investigate prediction of recursive real-valued functions.
First, we introduce a new criterion RealNV for prediction of recursive real-
valued functions as an extension of NV. Since every recursive real-valued func-
tion is defined on a set of rational closed intervals, we assume the ordered interval
sequence to define a next value in RealNV. Then, we show that the criterion
RealNV is rich enough to predict the elementary functions with rational coef-
ficients defined on a fixed rational closed interval. Furthermore, by comparing
RealNV with other criteria RealEx, RealFin and RealNum!, we show the
interaction of their criteria as Figure 1.

,-/

/0.*

+2

/1
3-,0./2

3-,0241*

3-,0-6

3-,025

+

Fig. 1. The interaction of criteria for prediction and inductive inference of recursive
functions (left) and of recursive real-valued functions (right). We will show in this paper
the existence of the function in the place marked by •.

2 Recursive Real-Valued Functions

In this section, we prepare some notions for recursive real-valued functions, which
is one of the formulations for a computable real function [10–12]. Refer to papers
[7–9] in more detail.

Let N,Q and R be the sets of all natural numbers, rational numbers and real
numbers, respectively. By N+ and Q+ we denote the sets of all positive natural
numbers and positive rational numbers, respectively. By [a, b] (resp, (a, b)), we
denote a closed (resp., open) interval for each a, b ∈ R such that a < b.
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Throughout of this paper, h is a real-valued function from S to R, where
S ⊆ R. By dom(h) we denote the domain of h, that is, dom(h) = S.

Definition 1. Let f and g be functions from N to Q and Q+, respectively, and
x a real number. We say that a pair 〈f, g〉 is an approximate expression of x if f
and g satisfy the following conditions:

(1) limn→∞ g(n) = 0.
(2) |f(n)− x| ≤ g(n) for each n ∈ N .

Note here that f(n) and g(n) represent an approximate value of x and an error
bound of x at point n, respectively. A real number x is recursive if there exists
an approximate expression 〈f, g〉 of x such that f and g are recursive.

In order to formulate a recursive real-valued function, we introduce the con-
cepts of a rationalized domain and a rationalized function.

Definition 2. For S ⊆ R, a rationalized domain of S, denoted by RDS , is a
subset of Q×Q+ satisfying the following conditions:

(1) Every interval in RDS is contained in S. For each 〈p, α〉 ∈ RDS , it holds
that [p− α, p+ α] ⊆ S.

(2) RDS covers the whole S. For each x ∈ S, there exists an element 〈p, α〉 ∈
RDS such that x ∈ [p− α, p+ α]. In particular, if x ∈ S is an interior point
in S, then there exists an element 〈p, α〉 ∈ RDS such that x ∈ (p−α, p+α).

(3) RDS is closed under subintervals. For each 〈p, α〉 ∈ RDS and 〈q, β〉 ∈ Q×Q+

such that [q − β, q + β] ⊆ [p− α, p+ α], it holds that 〈q, β〉 ∈ RDS .

For a real-valued function h, we denote RDdom(h) by RDh simply.

Definition 3. Let h be a real-valued function. A rationalized function of h,
denoted by Ah, is a computable function from RDh to Q × Q+ satisfying the
following condition:

For each x ∈ dom(h), let 〈f, g〉 be an approximate expression of x. Then,
there exists an approximate expression 〈f0, g0〉 of h(x) and it holds that
Ah(〈f(n), g(n)〉) = 〈f0(n), g0(n)〉 for each n ∈ N such that 〈f(n), g(n)〉 ∈
RDh.

We also call a rationalized function Ah of h an algorithm which computes h.

Definition 4. A function h is a recursive real-valued function if there exists a
rationalized function Ah : RDh → Q × Q+ of h, where RDh is a rationalized
domain of dom(h). We demand thatAh(〈p, α〉) does not halt for all 〈p, α〉 6∈ RDh.
Furthermore, by RRVF we denote the set of all recursive real-valued functions.

Without loss of generality, we can assume that, for each real-valued function
h, RDh is fixed to {〈p, α〉 ∈ Q×Q+ | [p−α, p+α] ⊆ dom(h)}. Then, Ah(〈p, α〉)
always halts for each 〈p, α〉 ∈ Q×Q+ such that [p− α, p+ α] ⊆ dom(h).
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Definition 5. Let h and h0 be recursive real-valued functions such that dom(h)
= S and dom(h0) = S0. Then, we say that h0 is a restriction of h or h is an
extension of h0, denoted by h0 = h|S0

, if S0 ⊆ S and h0(x) = h(x) for each
x ∈ S0. Furthermore, for the set T of recursive real-valued functions, we call a
restriction of a function in T a restriction in T simply.

We say that a set T ⊆ RRVF is recursively enumerable if there is a recursive
function Ψ such that a set of extensions of functions in T is equal to the set of
all functions computed by algorithms Ψ(0), Ψ(1), · · · .

3 Prediction of Recursive Real-Valued Functions

In this section, we introduce the criterion RealNV for the prediction of re-
cursive real-valued functions, together with the criteria RealEx, RealFin and
RealNum! [7–9] for inductive inference of recursive real-valued functions.

As an approximation of a real number x, we deal with a pair 〈p, α〉 of rational
numbers such that p is an approximate value of x and α is its error bound, i.e.,
x ∈ [p− α, p+ α]. We call such a pair 〈p, α〉 a datum of x.

Definition 6. An example of a function h is a pair 〈〈p, α〉, 〈q, β〉〉 satisfying that
there exists a real number x ∈ dom(h) such that 〈p, α〉 and 〈q, β〉 are data of x
and h(x), respectively.

We can imagine an example of h as a rectangular box [p−α, p+α]× [q−β, q+β].
Then, a sequence w1, w2, . . . of such boxes is a presentation of h if each box
contains a point (x, h(x)) on the graph of h, and for each point on the graph,
there are arbitrarily small boxes wk having the point in their interior.

Definition 7. For S ⊆ R, an interval sequence I(S) = I1, I2, . . . of S is an
infinite sequence of rational closed intervals satisfying the following condition:
For each x ∈ S and ε ∈ Q+, there exists an n ∈ N+ such that x ∈ In and
In ⊆ [x− ε, x+ ε].

For each recursive real-valued function h, there always exists an interval
sequence I(dom(h)) = I1, I2, . . . of dom(h). Then, we denote I(dom(h)) by I(h)
simply.

Definition 8. A presentation of a function h : S → R (S ⊆ R) is an infinite
sequence σ = w1, w2, . . . of examples of h in which, for each real number x in the
domain of h and ζ > 0, there exists an example wk = 〈〈pk, αk〉, 〈qk, βk〉〉 such
that x ∈ [pk − αk, pk + αk], h(x) ∈ [qk − βk, qk + βk], αk ≤ ζ and βk ≤ ζ.

By σ[n], σ[0] and σ(n), we denote the initial segment of n examples in σ, an
empty sequence and the n-th element of σ, respectively.

For each recursive real-valued function h and interval sequence I(h) = I1,
I2, . . . of dom(h), let WI(h) = w1, w2, . . . be a presentation of h such that wi =
〈〈pi, αi〉, 〈qi, βi〉〉 and Ii = [pi−αi, pi+αi] (i ∈ N+). We call WI(h) a presentation
of h w.r.t. I(h).
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A prediction machine (PM , for short) is a procedure that requests a finite
sequence of examples of a recursive real-valued function and a datum of a real
number, and that may after some time delay output a datum of a real number.
For a PM N and a finite sequence W of examples of a recursive real-valued
function, by N (W ), we denote the output 〈〈p, α〉, 〈q, β〉〉 ∈ (Q×Q+)× (Q×Q+)
ofN after requestingW as inputs. In this paper, we assume thatN (W ) is defined
for each finite sequence W of examples of recursive real-valued function. Let π
denote a projection (Q×Q+)×(Q×Q+)→ Q×Q+ such that π(〈〈p, α〉, 〈q, β〉〉) =
〈p, α〉.
Definition 9. Let h be a recursive real-valued function, I(h) = I1, I2, . . . an
interval sequence of dom(h) and WI(h) a presentation of h w.r.t. I(h). For a PM
N , we say that N (WI(h)[n]) is a next value of h w.r.t. I(h) if N (WI(h)[n]) is an
example of h and In+1 = [p− α, p+ α], where 〈p, α〉 = π(N (WI(h)[n])).

Example 1. For a, b ∈ Q such that a < b, let T [a,b] be the set of all recursive
real-valued functions h such that a ≤ h(x) and h(x) ≤ b for each x ∈ dom(h).

For each h ∈ T [a,b] and x ∈ R, h(x) is either undefined or satisfies that
a ≤ h(x) and h(x) ≤ b. Let I(h) = I1, I2, . . . be an interval sequence of dom(h)
with In = [pn − αn, pn + αn] for each n ∈ N+, and WI(h) = I1, I2, . . . be
a presentation of h w.r.t. I(h). Consider a PM N such that N (WI(h)[n]) =

〈〈pn+1, αn+1〉, 〈a+b2 , b−a2 〉〉 for each n ∈ N+. Then, N always outputs a next
value of h w.r.t. I(h), that is, N (WI(h)[n]) is an example of h for each n ∈ N+.

Hence, in order to formulate prediction of recursive real-valued functions, it is
necessary to introduce not only a next value but also the condition for an error
bound, which is corresponding to the statement (2) in Definition 10.

Definition 10. Let h be a recursive real-valued function. A PM N RealNV

-predicts h, denoted by h ∈ RealNV(N ), if, for each interval sequence I(h) =
I1, I2, . . . of dom(h) with Ik = [pk−αk, pk+αk] (k ∈ N+) and presentation WI(h)

of h w.r.t. I(h), there exists an algorithm Ah which computes an extension of h,
satisfying the following condition: There exists a number n0 ∈ N such that the
following conditions (1) and (2) hold for each n ≥ n0.

(1) N (WI(h)[n]) is a next value of h w.r.t. I(h).
(2) If 〈pn+1, αn+1〉 is in a rationalized domain RDh of dom(h), then it holds

that N (WI(h)[n]) = 〈〈pn+1, αn+1〉,Ah(〈pn+1, αn+1〉)〉.
Also let T be a set of recursive real-valued functions. Then, a PM N RealNV-
predicts T if N RealNV-predicts every h ∈ T , and T is RealNV-predictable if
there exists a PM that RealNV-predicts T . By RealNV, we denote the class
of all RealNV-predictable sets of recursive real-valued functions.

Furthermore, we introduce the criteria for inductive inference of recursive
real-valued functions [7–9].

An inductive inference machine (IIM, for short) is a procedure that requests
inputs from time to time and produces algorithms, called conjectures, that com-
pute recursive real-valued functions from time to time. Let σ be a presentation
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of a function. For σ[n] = 〈w1, w2, . . . , wn〉 and an IIMM, byM(σ[n]) we denote
the last conjecture of M after requesting examples w1, w2, . . . , wn as inputs.

Definition 11. Let σ be a presentation of a function and {M(σ[n])}n≥1 an in-
finite sequence of conjectures produced by an IIMM. A sequence {M(σ[n])}n≥1

converges to an algorithm Ah if there exists a number n0 ∈ N such thatM(σ[m])
equals Ah for each m ≥ n0.

Definition 12. Let h be a recursive real-valued function and T a set of recursive
real-valued functions.

(1) An IIM M RealEx-infers h, denoted by h ∈ RealEx(M), if, for each
presentation σ of h, the sequence {M(σ[n])}n≥1 converges to an algorithm
that computes an extension of h.

(2) An IIMM RealFin-infers h, denoted by h ∈ RealFin(M), if for each pre-
sentation σ of h,M outputs a unique algorithm that computes an extension
of h after some finite time from presented σ’s data.

Furthermore, let T be a set of recursive real-valued functions andX ∈ {Ex,Fin}.
Then, an IIM M RealX-infers T if M RealX-infers every h ∈ T , and T is
RealX-inferable if there exists an IIM that RealX-infers T . By RealX, we
denote the class of all RealX-inferable sets of recursive real-valued functions.

Also by RealNum! [7], we denote the class of all recursively enumerable sets
of recursive real-valued functions.

Example 2. Let T be the set of all polynomial functions defined on R with
rational coefficients. Note that each function h ∈ T is defined by h(x) = a0x

n +
a1x

n−1 + . . .+ an−1x+ an, where n ∈ N , a0, a1, . . . , an ∈ Q.

Since T is recursively enumerable, T is RealEx-inferable [7]. Then, there
exists an IIMM that RealEx-infers T . Without loss of generality, M outputs
for each input, andM(σ[n]) is an algorithm which computes a function in T for
each presentation σ of a function and n ∈ N .

For each h ∈ T , let I(h) = I1, I2, . . . be an interval sequence of dom(h)
with Ik = [pk − αk, pk + αk] for each k ∈ N+, and WI(h) be a presentation
of h w.r.t. I(h). By using M, for each n ∈ N+, we can construct the PM N
such that N (WI(h)[n]) = 〈〈pn+1, αn+1〉,M(WI(h)[n])(〈pn+1, αn+1〉)〉. Then, N
RealNV-predicts T .

We call functions x, −x, 1
x , ex, log x, sinx, arctanx, x

1
2 , arcsinx and the

constant functions cr for each recursive real number r basic functions. Here, 1
x

for x = 0, log x for each x ≤ 0, x
1
2 for each x ≤ 0 and arcsinx for each x ∈ R

such that |x| ≥ 1 are undefined as usual.

Definition 13. For the set BF of all basic functions, EF is the smallest set
containing BF and satisfying the following condition: If h1, h2 ∈ EF , then h1 +
h2, h1 × h2, h1 ◦ h2 ∈ EF . We say that functions in EF elementary functions.
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All elementary functions are recursive real-valued functions. Let EF I be the
set of all elementary functions with rational coefficients defined on a fixed ratio-
nal closed interval I. Then, EF I is recursively enumerable.

Theorem 1. Let TI be a recursively enumerable set of recursive real-valued
functions defined on a fixed rational closed interval I. Then, TI is RealNV-
predictable.

Proof. Since T is recursively enumerable, T is RealEx-inferable [7]. Then, there
exists an IIM M such that h ∈ RealEx(M) for each h ∈ TI .

For each h ∈ TI , let I(h) = I1, I2, . . . be an interval sequence of dom(h) with
Ik = [pk −αk, pk +αk] for each k ∈ N+, and WI(h) be a presentation of h w.r.t.
I(h). By usingM, for each n ∈ N+, we can construct the following PM N that
RealNV-predicts TI .

N (WI(h)[n]) =





〈〈pn+1, αn+1〉,M(σ[n])(〈pn+1, αn+1〉)〉
if [pn+1 − αn+1, pn+1 + αn+1] ⊆ I,

〈〈pn+1, αn+1〉,M(σ[n])(〈r, γ〉)〉
otherwise,

where 〈r, γ〉 is an element in Q×Q+ such that I = [r− γ, r+ γ]. Hence, it holds
that TI ∈ RealNV, so the statement holds. ut

Corollary 1. EFI ∈ RealNV.

Hence, we can conclude that the criterion RealNV is rich enough to predict
every elementary function with rational coefficients defined on a fixed rational
closed interval.

4 Interaction of the Criteria

In this section, we investigate the interaction of the criteria RealNV, RealEx,
RealFin and RealNum!.

By ϕj we denote the partial recursive function from N to N computed by
a program j. By P we denote the set {ϕ0, ϕ1, ϕ2, . . .} of all partial recursive
functions from N to N and by R the set of all recursive functions.

For ϕ ∈ R, the following function h : [0,∞) → R is called the line function
of ϕ.

h(x) = (ϕ(i+ 1)− ϕ(i))x+ ϕ(i)(i+ 1)− ϕ(i+ 1)i.

For T ⊆ R, we call a line function of a function in T a line function in T simply.
For the domain Sj ⊆ N of ϕj ∈ P and S =

⋃
i∈Sj

(i− 1
2 , i+ 1

2 ), the following

function hj : S → R (S ⊆ R) is called the stair function of ϕj .

hj(x) = ϕj(i) (x ∈ (i− 1

2
, i+

1

2
), i ∈ S0).

For S ⊆ P, we call a stair function of a function in S a stair function in S simply.
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Theorem 2. (RealNV ∩RealNum!) \RealEx 6= ∅.

Proof. For each i ∈ N , we construct the following three recursive real-valued
functions hi, ĥi and ĥ.

hi(x) =

{
1 if x ≤ 0,
0 if x > 1

2i .
ĥi(x) =

{
1 if x < 0,
0 if x > 1

2i .
ĥ(x) =

{
1 if x < 0,
0 if x > 0.

Suppose that H = {ĥ, h0, h1, h2, . . .}. Now let σ̂i = ŵi1, ŵ
i
2, . . . be a presen-

tation of ĥi with ŵi2j−1 = 〈〈0, 1
2j 〉, 〈1, 1

2j 〉〉 such that j ∈ N+. Then, σ̂i is also a
presentation of hi for each i ∈ N . For each i ∈ N , we can construct the following
presentation σi = wi1, w

i
2, w

i
3, . . . of hi.

wij =





ŵ0
j if i = 0,

wi−1
j if i > 0 and 1 ≤ j ≤ ni−1,

wi−1
ni+m if i > 0 and j = ni−1 + 2m,

ŵim if i > 0 and j = ni−1 + 2m− 1.

Here, m ∈ N+, and ni is the least natural number such that M(σi[n]) =
M(σi[ni]) for each n ≥ ni. Let σ∗ = limi→∞ σi. Since σi is also a presenta-

tion of ĥi for each i ∈ N , σ∗ is a presentation of ĥ. By the definition of σ∗,
{M(σ∗[n])}n∈N does not converge. Then, H 6∈ RealEx. On the other hand, it
is obvious that H ∈ RealNum!.

For each h ∈ H, let I(h) = I1, I2, . . . be an interval sequence of dom(h) with
Ik = [pk −αk, pk +αk] for each k ∈ N+, and WI(h) be a presentation of h w.r.t.
I(h). We can construct the following PM N that RealNV-predicts H.

N (WI(h)[n]) =

{
〈〈pn+1, αn+1〉, 〈1, αn+1〉〉 if pn+1 − αn+1 ≤ 0,
〈〈pn+1, αn+1〉, 〈0, αn+1〉〉 otherwise,

where n ∈ N . Then, it holds that H ∈ RealNV, so the statement holds. ut

Theorem 3. (RealNV ∩RealFin) \RealNum! 6= ∅.

Proof. For a set M ( N that is not recursively enumerable, let CM be the set
of all constant functions cm : [0, 1]→M such that cm(x) = m for each m ∈M .
Then, it holds that CM ∈ RealFin \RealNum!.

For each h ∈ CM , let I(h) = I1, I2, . . . be an interval sequence of dom(h) with
Ik = [pk −αk, pk +αk] for each k ∈ N+, and WI(h) be a presentation of h w.r.t.
I(h). We can construct a PM N such that, for each n ∈ N ,

N (WII(h)[n]) = 〈〈pn+1, αn+1〉, 〈s, αn+1〉〉,

where s ∈ N is the least natural number such that qi − βi ≤ s for each i ∈ N
(1 ≤ i ≤ n). Then, N RealNV-predicts CM , so CM ∈ RealNV. ut

Theorem 4. (RealNV ∩RealNum! ∩RealEx) \RealFin 6= ∅.
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Proof. For a ϕ ∈ R, ϕ−1(0) denotes the set {n ∈ N | ϕ(n) = 0}. For a set
M ⊆ N , ‖M‖ denotes the cardinality of M . Then, let R{0,1}, Rm{0,1} and R∗

{0,1}

be the following sets.

R{0,1} = {ϕ : N → {0, 1} | ϕ ∈ R},
Rm{0,1} = {ϕ ∈ R{0,1} | ‖ϕ−1(0)‖ ≤ m},
R∗

{0,1} = ∪m∈NRm{0,1}.

Let T ∗
{0,1} be the set of all line functions in R∗

{0,1}. Then, it holds that T ∗
{0,1} ∈

(RealEx∩RealNum!)\RealFin [8], so there exists an IIMM that RealEx-
infers T ∗

{0,1}. Without loss of generality,M outputs for each input, andM(σ[n])
is an algorithm which computes a function in T ∗

{0,1} for each presentation σ of a
function and n ∈ N .

For each h ∈ T ∗
{0,1}, let I(h) = I1, I2, . . . be an interval sequence of dom(h)

with Ik = [pk − αk, pk + αk] for each k ∈ N+, and WI(h) be a presentation of h
w.r.t. I(h). We can construct the following PM N that RealNV-predicts T ∗

{0,1}.

N (WI(h)[n], 〈p, α〉) =





〈〈pn+1, αn+1〉,M(WI(h)[n])(〈pn+1, αn+1〉)〉
if pn+1 − αn+1 ≥ 0,

〈〈pn+1, αn+1〉,M(WI(h)[n])(〈αn+1

2 , αn+1

2 〉)〉
otherwise,

where n ∈ N . Hence, it holds that T ∗
{0,1} ∈ RealNV, so the statement holds. ut

Theorem 5. (RealNV ∩RealEx) \ (RealFin ∪RealNum!) 6= ∅.

Proof. For each subset F ⊆ N , let ϕF be the following function: If n ∈ F , then
ϕF (n) = 0, otherwise ϕF (n) = 1. Also let M ( N be a set that is not recursively
enumerable and T ∗

{0,1},M the set of all line functions of ϕF such that F is a finite

subset of M . Then, the set {j ∈ N | ϕj ∈ R} is an example of M . Furthermore,
it holds that T ∗

{0,1},M 6∈ RealFin∪RealNum!. For the set T ∗
{0,1} in the proof of

Theorem 4, since T ∗
{0,1},M ⊆ T ∗

{0,1}, it holds that T ∗
{0,1},M ∈ RealNV∩RealEx.

ut

Theorem 6. (RealFin ∩RealNum!) \RealNV 6= ∅.

Proof. Let t(x) be the following function.

t(x) =




| tanπ

(
n− 1

2m − 1
2

)
| if x ∈ [n− 1

2m , n+ 1
2m ] for n,m ∈ N+

such that ϕn(n) is defined and Φn(n) = m,
| tanπ(x− 1

2 )| otherwise.

Here, Φn(n) is a step counting function for computation of ϕn(n). Then, t(x) is
a recursive real-valued function.

Consider the set {t(x)}. It is sufficient to show that {t(x)} 6∈ RealNV.
Suppose that {t(x)} ∈ RealNV. Then, there exists a PMN which RealNV-

predicts {t(x)}. Let I(t) = I1, I2, . . . be an interval sequence of dom(t) such that
I2n3m = [n − 1

2m , n + 1
2m ] for each n,m ∈ N+. Thus, there exists an i ∈ N
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such that, for each k ∈ N (k ≥ i) with k = 2n3m, N (WI(t)[k]) outputs a next
value 〈〈pk+1, αk+1〉, 〈q, β〉〉 of t(x) and it holds that either Φn(n) is defined and
t([n− 1

2m , n+ 1
2m ]) ⊆ [q − β, q + β] or Φn(n) is not defined.

If there exists a number m ∈ N+ such that t(n − 1
2m − 1

2 ) ≤ q + β and
t(n − 1

2m − 1
2 ) = t(n − 1

2m+1 − 1
2 ) , then it holds that t([n − 1

2m , n + 1
2m ]) ⊆

[q − β, q + β], that is, Φn(n) = m, otherwise Φn(n) is not defined. Thus, we
can determine whether or not ϕn(n) is defined for each n ∈ N , which is a
contradiction. Hence, it holds that {t(x)} 6∈ RealNV. ut

Theorem 6 implies the following corollary.

Corollary 2. RRVF 6∈ RealNV.

Note that RRVF 6∈ RealEx [8].
Furthermore, by incorporating Theorem 6 with our previous works [7], we

can obtain the following corollary.

Corollary 3. The following statements hold.

(1) RealFin \ (RealNV ∪RealNum!) 6= ∅.
(2) (RealEx ∪RealNum!) \ (RealNV ∪RealFin) 6= ∅.
(3) RealNum! \ (RealNV ∪RealEx) 6= ∅.
(4) RealNV ∩RealFin ∩RealNum! 6= ∅.
(5) RealEx \ (RealNV ∪RealFin ∪RealNum!) 6= ∅.

Proof. We combine {t(x)} in the proof of Theorem 6 to other sets of functions.

(1) Let U be the set of all recursive functions f from N to N such that ϕf(0) = f
and TU the set of all stair functions in U . Since TU ∈ RealFin\RealNum! [7],
it holds that {t(x)} ∪ TU ∈ RealFin \ (RealNV ∪RealNum!).

(2) Let CQ be the set of all constant functions cr : R → Q such that cr(x) = r
for each r ∈ Q. Since CQ ∈ (RealEx ∪RealNum!) \RealFin [7], it holds
that {t(x)} ∪ CQ ∈ (RealEx ∪RealNum!) \ (RealNV ∪RealFin).

(3) Note that P is the set of all partial recursive real-valued functions from N
to N . Let TP be the set of all stair functions in P. Since TP ∈ RealNum! \
RealEx [7], it holds that {t(x)}∪TP ∈ RealNum!\(RealNV∪RealEx).

(4) It is obvious that {h(x) = 0} ∈ RealNV ∩RealFin ∩RealNum!.
(5) By the statements (1), (2) and (3), it holds that {t(x)}∪TU∪CQ ∈ RealEx\

(RealNV ∪RealFin ∪RealNum!).
ut

5 Conclusion

In this paper, by introducing the criterion RealNV for prediction of recursive
real-valued functions, we have shown that EF I ∈ RealNV, where EF I is the set
of all elementary functions with rational coefficients defined on a fixed rational
closed interval I. Then, we have obtained the interaction of RealNV and other
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criteria RealEx, RealFin and RealNum! as Figure 1. It is open whether or
not RealNV − (RealEx ∪RealNum!) = ∅ (marked by # in Figure 1).

In this paper, we have not paid our attention to the domains of the target
functions. It is a future work to discuss the prediction of recursive real-valued
functions defined on a fixed rational closed interval , as similar as RealExI ,
RealFinI and RealNum!I [7], where I is a closed interval.

In prediction of recursive functions, the criteria NV′ and NV′′ stronger than
NV have been introduced [3, 4]. In particular, NV′′ coincides with the criterion
BC for behaviorally correct learning [4]. It is a future work to formulate the cri-
teria corresponding to NV′, NV′′ and BC for prediction and inductive inference
of recursive real-valued functions, and investigate their interaction.
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Alan Turing (1912–1954), the founder of computability theory, is generally
considered as a purely mathematical logician. But his ideas constantly involved
the practical and physical implementation of logical structure. His scientific work
both began and ended in theoretical physics. This talk will illustrate the surpris-
ingly wide range of Alan Turing’s work, and point towards the general question
of the relationship between computation and the physical world.
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Skolemization, the replacement of strong quantifiers by functions, transfers
formulas into formulas that contain only weak quantifiers and that are equicon-
sistent with the original formula. This method does not work for intuitionistic
logic IQC in the sense that the skolemized formula may be provable while the
original formula is not. The reason for this is that in intuitionistic logic constants
cannot denote partial terms that may come into existence only at a later stage.
On the other hand, quantifiers range over domains that may increase in going
from one world to another in a Kripke model. We show that by allowing partial
terms this dichotomy between quantifiers and constants disappears. That is, we
show that for a conservative extension of IQC in which there is an existence
predicate that indicates whether a term is partial or not, one can define an al-
ternative Skolemization method called eSkolemization, which, for a large class
of formulas, possesses many of the nice properties that classical Skolemization
has. This class of formulas includes the formulas in which all strong quantifiers
are existential. Based on the eSkolemization method one can easily prove an in-
tuitionistic analog of the Herbrand theorem that holds for the class of formulas
for which the eSkolemization method applies.
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The paper is an extension of the contributed paper “Finite trees as ordinals”.
Finite trees are labeled with labels from a well ordered set. The ordering

is an extension of the ordering of finite trees with a gap condition using the
labels. The ordering is proved to be a well ordering by a minimal bad sequence
argument.

The ordering of finite trees gives the ordinals up to the Veblen ordinal. The
extension here gives a version of the ordinal diagrams of Takeuti.
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Abstract. Entanglement has been termed a critical resource for quan-
tum information processing and is thought to be the reason that certain
quantum algorithms, such as Shor’s factoring algorithm, can achieve ex-
ponentially better performance than their classical counterparts. The
nature of this resource is still not fully understood: here we use numer-
ical simulation to investigate how entanglement between register qubits
varies as Shor’s algorithm is run on a quantum computer. The shifting
patterns in the entanglement are found to relate to the choice of basis
for the quantum Fourier transform.

1 Introduction

Quantum computation has the potential to provide significantly more powerful
computers than classical computation – if we can build them. There are numer-
ous possible routes forward for quantum hardware [1], however, progress in the
development of algorithms has been slow, in part because we don’t yet fully un-
derstand how the quantum advantage works. There are two key characteristics
of the quantum resources used for computation. The first is that a general super-
position of 2n levels may be represented in n 2-level systems [3, 2], allowing the
the physical resource to grow only linearly with n (quantum parallelism). The
second aspect is best explained by considering the classical computational cost
of simulating a typical step in a quantum computation. If entanglement is ab-
sent then the algorithm can be simulated with an equivalent amount of classical
resources. In recent work, Jozsa and Linden [4] have proven that, if a quantum
algorithm that cannot be simulated classically using resources only polynomial
in the size of the input data, then it must have multipartite entanglement involv-
ing unboundedly many of its qubits – if it is run on a quantum computer using
pure quantum states. However, the presence of multipartite entanglement is not
a sufficient condition for a pure state quantum computer to be hard to simulate
classically. If the quantum computer is described using stabilizer formalism [5, 6],
there are many highly entangled states that have simple classical descriptions.
Moreover, a quantum computer using mixed states may still require exponen-
tial classical resources to simulate even if its qubits are not entangled, and it is
not known whether such states may be used to perform efficient computation. In
any case, being hard to simulate classically doesn’t imply the quantum process is
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doing any useful computation. If we want to understand quantum computation,
we will have to look more closely at specific examples.

Few quantum algorithms provide an exponential speed up over classical al-
gorithms, of those that do, Shor’s algorithm (order-finding) [7] is perhaps the
most important because it can be used to factor large numbers and hence has
implications for classical security methods. There is no proof that an equally
efficient classical algorithm cannot exist for Shor’s algorithm4, though for quan-
tum walks an algorithm with a proven exponential speed up (w.r.t. an oracle) is
known [8]. It is difficult to draw general conclusions about how such a speed up
comes about with so few examples to work from. Given that multipartite entan-
glement is necessary (though not sufficient) for pure state quantum computation
with an exponential speed up over classical computation, we next ask what the
entanglement is doing during the computational process. We try to answer this
question by investigating the level of entanglement within Shor’s algorithm as it
proceeds, gate by gate.

2 Shor’s Algorithm

We begin with a brief overview of how Shor’s algorithm works. We wish to
factor a number N = pq where p and q are prime numbers. Classical number
theory provides a way to determine these primes with high probability (not unity
generally) by finding the period r of the function fa(x) = ax(mod N) where a
is an integer chosen to be less than N and co-prime to it. It is efficient to check
whether a is co-prime to N using Euclid’s algorithm. If a happens not to be
co-prime then their common factor gives a factor of N and the job is done, but
this happens only rarely for large N . Once the period r is found, the numbers

m± = ar/2 ± 1 (1)

generally share either p or q with N as a common factor. Not all choices of a
give periods r which yields a factor p or q. For instance, sometimes the period
r will be odd, whence the numbers from Eq. (1) can be non-integer. When the
chosen a does not lead to a valid factor, the procedure can be repeated with a
different choice until a factor is found.

The hard part of the algorithm is determining the period r of the function
fa(x) = ax(mod N). Shor found a very elegant and efficient means of doing this
quantum mechanically, depicted schematically in Fig. 1. Consider that one has
two quantum registers (one of size 2n where n = dlog2Ne qubits and the second
of size n qubits. We will denote the basis states of a quantum register by |x〉,
with x ∈ {0 . . . 2n− 1}. The binary representation of x indicates which register
qubits are in state |0〉 and which are in state |1〉. A general state of a 2n qubit

4 A sub-exponential factoring algorithm is now known but there is still no classically
efficient order-finding algorithm, which is the core of Shor’s algorithm.
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Fig. 1. Schematic circuit diagram of Shor’s algorithm for factoring 15 implemented on
a 12 qubit quantum register. The initialisation I is done with single qubit Hadamard
(H) and bit-flip (Z) gates. Controlled-U(j) gates are used to produce ax(mod N). The
inverse quantum Fourier transform (IQFT) uses controlled rotations (Rm). The last
quantum step is the measurement (M), which is followed by classical post-processing
to obtain a factor of N .

register |Ψ(t)〉 at time t can thus be written as a superposition of basis states,

|Ψ(t)〉 =

2n∑

x=0

αx(t)|x〉, (2)

where αx(t) is a complex number, normalised such that
∑
αx(t)2 = 1. The algo-

rithm begins by preparing the larger quantum register in an equal superposition∑22n−1
x=0 |x〉 of all possible 2n basis states while the smaller register is prepared

in the definite state |1〉. The initial state of both registers is thus

|Ψ(ti)〉 =
1

2n

22n−1∑

x=0

|x〉|1〉 (3)

The next step is a unitary transformation which acts on both registers according
to U |x〉|b〉 = |x〉|bax(mod N)〉 giving the output state

|Ψ(ta)〉 =
1

2n

22n−1∑

x=0

|x〉|ax(mod N)〉 (4)

Then an inverse quantum Fourier transform (IQFT) defined by

Q−1|y〉 =
1

2n

22n−1∑

z=0

e−2πiyz/22n |z〉 (5)
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Fig. 2. Entanglement between the two registers (squares) and within the smaller reg-
ister (circles) in Shor’s 12 qubit algorithm as a function of gates sequence according
to Fig (1) with the co-prime chosen as a = 13. The entanglement within the larger
register is zero throughout.

is applied, which transform the state |Ψ(ta)〉 from Eq. (4) into

|Ψ(tq)〉 =
1

22n

22n−1∑

x=0

22n−1∑

z=0

e−2πixz/22n |x〉|ax(mod N)〉. (6)

By measuring the larger register in the computational basis we obtain an integer
number c. Now c/22n is closely approximated by the fraction j/r and so r can be
obtained classically using continued fractions. Choosing the larger register to be
2n qubits provides a high enough accuracy for c such that r can be determined
from a single measurement on all 2n qubits. It is possible to use fewer qubits
in this first register but the probability of determining r decreases, and the
algorithm may need to be repeated correspondingly many more times.

3 Factoring 15

We start our analysis of the entanglement by studying the circuit for factoring
15 (3× 5), though it is not necessarily typical of factoring larger numbers. Since
many gates make no change to the entanglement, rather than tracking the en-
tanglement as each basic gate is applied, we choose to look at certain key points
in the algorithm. We restrict our attention to controlled composite gates: the
U(j) gate which implements the operation aj(mod N) for j ∈ {1, 2 . . . 22n}, and
the rotations in the IQFT. Details of how to efficiently construct these compos-
ite gates from a universal set of one and two qubit gates may be found in, for
example, [5]. There are 8 of the U(j) gates (in general 2n, one for each larger
register qubit), which is manageable, but for the IQFT there are 27 (in general
(2n + 1)(n − 1) for a 2n qubit register) rotation gates: for out purposes in this
paper it is sufficient to treat the whole IQFT as one unit. Along with single qubit
gates as necessary, the circuit using these composite gates is depicted in Fig. 1.
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As we are only considering the evolution of pure states we can measure the
entanglement between the two registers using the entropy of the subsystems

Ec = −
∑

i

λi log λi, (7)

where the {λi} are the eigenvalues of the reduced density matrix of either of the
registers (both have the same eigenvalues). To quantify the entanglement within
each register is not so straightforward. To restrict our attention to the qubits
within a single register, we first trace out the other register leaving a mixed state,
ρL or ρS . Most entanglement measures for mixed states are computationally
intractable in practice for more than a few qubits; we also need to consider all
the possible divisions of the qubits into different subsets in order to locate all of
the entanglement. A reasonable approximation to quantifying the entanglement
within a register can be obtained by applying a partial transpose to each subset
of qubits and calculating the negativity [9, 10] given by η = Tr|ρT | − 1 i.e.,
the sum of the negative eigenvalues of the transposed matrix ρTL or ρTS . If the
negativity is zero for all possible subsets of qubits in the register, then we can say
that at most the register has bound entanglement [11], which is not generally
considered useful for quantum information tasks (though see [12]). Non-zero
negativity definitely implies the presence of entanglement. Finally, we use the
entanglement of formation [13] to quantify the pairwise entanglement between
two qubits. Quantum states can be highly entangled without containing any
pairwise entanglement [13].

In Fig. 2 we plot the entanglement in Shor’s algorithm using the entropy
of the subsystem where possible (full state is pure) and the negativity where
the single register state is mixed. The negativity turns out to be zero for both
registers throughout the algorithm (except the measurement leaves the smaller
register entangled, but this cannot be useful for the remaining classical steps of
the algorithm). The entanglement between the registers builds up to a maximum
during the first two U(j) gates, then stays constant until the measurement. We
also note (from calculating the entanglement of formation for appropriate pairs
of qubits) that there is no pairwise entanglement between any pair of qubits at
any of the sampled points in this instance of the algorithm.

Jozsa and Linden [4] showed that this and similar gate models for Shor’s
algorithm contain highly multipartite entangled states at this point in the algo-
rithm, thus fulfilling their necessary (but not sufficient) criterion for pure state
quantum computation with exponential speed up. Use of mixed states and dif-
ferent gate sequences may produce different entanglement patterns. Parker and
Plenio [14] have presented a version of Shor’s algorithm using only one pure
qubit, the rest may start in any mixed state. They found that entanglement
was present when the algorithm ran efficiently for factoring 15 and 21 (tested
numerically). It is also clear from the circuit diagram that entanglement will not
decrease during the IQFT, since each pair of qubits in the upper register has
an entangling (2-qubit) gate applied to it only once during the algorithm. Since
the IQFT is the crucial step for finding the period, we next examine how the
entanglement distribution changes during the operation of the IQFT .



112 V.M. Kendon, and W.J. Munro

i ta tq tm

Ec

xa (mod)N

Ec

t

0

I IQFT

0

M

qu
bi

ts
2n

qu
bi

ts
n

Fig. 3. Pattern of entanglement during Shor’s algorithm factoring N = 15 with co-
prime a = 13. After the U(j) gates the top two qubits in the larger register (filled) are
entangled with the four qubits in the smaller register. After the IQFT, the entanglement
is transfered to the lower two qubits in the larger register. Qubits represented by open
circles are not entangled. Time sequence corresponds to Fig. 1.

The entanglement between the registers, as measured by the entropy of the
subsystems, does not change during the IQFT, since no entangling gates are ap-
plied between the two registers, yet the distribution of the entanglement between
the individual qubits does change. If we return to our first example, factoring 15
with a = 13, and look at the entropy of subsets of qubits from the larger regis-
ter, we can deduce that only two of the eight qubits are entangled with the four
qubits in the smaller register. During the action of the IQFT, this entanglement
is transfered from the top two qubits to the bottom two in the larger register.
We represent this schematically in Fig. 3.

However, we should remember that 15 is actually extremely easy to factor.
It is straightforward to see that at least one of ar/2 ± 1 is divisible by 3 or 5 for
nearly all choices of a, r > 1, regardless of whether a is co-prime to N or even
whether r is the period of xa(mod N). We need to look at more examples.

4 Factoring 21

We next look at factoring 21 (3× 7). To do this on a quantum computer in the
same manner as the circuit for factoring 15 shown in Fig. 1 requires a total of
15 qubits, 10 in the larger register and 5 in the smaller. For co-prime a = 13,
we find a similar pattern of entanglement to that shown in Fig. 3 for 15 with
a = 13, except that for 21 there is only entanglement between one qubit in the
larger register and two qubits in the lower register. Similarly, the IQFT step
shifts the entanglement from the top qubit to the bottom qubit in the larger
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size of large register large register large register
subsystem small register after U after IQFT difference ∆E negativity

1 qubit 0.811 1.000 0.938 -0.062 0.172
2 qubits 1.538 1.600 1.599 -0.001 0.397
3 qubits 2.151 1.843 2.020 +0.177 0.591
4 qubits 2.585 1.972 2.283 +0.311 0.678
5 qubits 2.585 2.081 2.447 +0.366 0.749

6 qubits 2.184 2.547 +0.363
7 qubits 2.285 2.602 +0.318
8 qubits 2.385 2.589 +0.204
9 qubits 2.485 2.619 +0.134

Table 1. Average entropy of subsystems for factoring 21 with a = 2, and average
negativity (after the IQFT) for different sized cuts on the larger register.

register. Again, there is no pairwise entanglement, so these three qubits are in a
GHZ type of state [15].

The larger register is now at the limit of our computational resources for
calculating the full analysis of the negativity. By using random samples of cuts,
instead of calculating all possible cuts, we confirm that for co-prime a = 13 there
is no entanglement within either register, but for other choices of co-prime such as
a = 2 and a = 4, entanglement is generated within the larger register during the
IQFT. For these co-primes we also find a more complex pattern in the entropies
of the subsystems: the entanglement now involves all of the register qubits. There
is also a significant amount of pairwise entanglement of formation (average 0.261
per qubit before the IQFT) contributing to the total entanglement in the system.
The details are shown in Table 1: essentially the entanglement becomes more
multipartite: the average reduces slightly for one and two qubit cuts, while for
larger cuts it increases. The average pairwise entanglement of formation also
decreases slightly (from 0.261 to 0.242). We will provide an explanation for this
observation in the next section where we examine larger examples.

5 Factoring larger numbers

We also studied semi-primes 32 < N < 64 and 64 < N < 128, which require
18 and 21 qubits respectively for the quantum registers. In these cases, though
we cannot easily calculate a full entanglement analysis, we have calculated the
entropy between one qubit and the rest of the qubits in both registers, this corre-
sponds to the quantities in the top line of Table 1. The difference in the average
entropy ∆E1 before and after the IQFT (corresponding to the last column in
Table 1), is shown in Table 2 grouped by the period r.

There is a clear pattern for ∆E1: the closer the period r is to a power of 2,
the smaller the value of ∆E1. For r = 2m, the IQFT is exact giving ∆E1 = 0 in
all cases. This can be understood by looking at the measurement results on the
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N r (number of co-primes with this r)
p × q −〈∆E1〉

15 2 (3) 4 (4)
3 × 5 0.0 0.0

21 2 (3) 3 (2) 6 (6)
3 × 7 0.0 0.706 0.624

33 2 (3) 5 (4) 10 (12)
3 × 11 0.0 0.285 0.256

35 2 (3) 3 (2) 4 (4) 6 (6) 12 (8)
5 × 7 0.0 0.869 0.0 0.788 0.706

39 2 (3) 3 (2) 4 (4) 6 (6) 12 (8)
3 × 13 0.0 0.869 0.0 0.788 0.706

51 2 (3) 4 (4) 8 (8) 16 (16)
3 × 17 0.0 0.0 0.0 0.0

55 2 (3) 4 (4) 5 (4) 10 (12) 20 (16)
5 × 11 0.0 0.0 0.285 0.256 0.226

57 2 (3) 3 (2) 6 (6) 9 (6) 18 (18)
3 × 19 0.0 0.869 0.788 0.080 0.071

77 2 (3) 3 (2) 5 (4) 6 (6) 10 (12) 15 (8) 30 (24)
7 × 11 0.0 1.033 0.343 0.951 0.314 0.034 0.031

91 2 (3) 3 (8) 4 (4) 6 (24) 12 (32)
7 × 13 0.0 1.033 0.0 0.951 0.869

119 2 (3) 3 (2) 4 (4) 6 (6) 8 (8) 12 (8) 16 (16) 24 (16) 48 (32)
7 × 17 0.0 1.033 0.0 0.951 0.0 0.869 0.0 0.788 0.706

Table 2. Average decrease in entanglement −〈∆E1〉 between one qubit and the rest
during the IQFT.

larger register, from which the period r is calculated. Figure 4 shows the prob-
ability of measuring each possible number c in the larger register at the end of
running the algorithm for two examples: factoring 119 with co-prime 92 (period
r = 16), and with co-prime 93 (period r = 24). When the period is exactly a
power of two, the fraction c/22n gives the period r exactly, whereas when r is not
a power of two, the peak probability tries to fall between two possible numbers
and thus spreads the wavefunction over several adjacent numbers. This spread
increases the entanglement in the upper register.

6 Discussion

We have shown that, as expected, the quantum registers become highly entan-
gled during the order-finding part of Shor’s algorithm. In particular, during the
IQFT, it can become even more multipartite in nature if the period being found
is not an exact power of two. Thus, if we performed the IQFT to some other base
than two – for example, in base three, perhaps using a quantum register made
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Fig. 4. Distribution of measurement outcomes for factoring 119 with a = 92 (upper)
and a = 93 (lower) which have periods r = 16 and 24 respectively. Symbols show the
probability of measuring the number on the ordinate as the outcome of the algorithm;
drop lines are for clarity. The upper figure has just 16 peaks, while the lower figure
shows a significant probability for measuring neighbouring numbers to the minor peaks.

up of qutrits (three-state quantum systems) rather than qubits – the entangle-
ment pattern would change completely. The entanglement does not correlate
in a quantitative way with the success of the algorithm, which is determined
largely by classical factors such as whether r is even or odd. While entanglement
is certainly generated in significant quantities during pure state quantum com-
putation, this is best understood as a by-product of exploiting the full Hilbert
space for quantum parallelism [3, 4, 2]: most of Hilbert space consists of highly
entangled states [16, 17].

The fact that entanglement generated during the execution of the algorithm is
not used up in a quantitative way to fuel the computation process is in complete
contrast to quantum communications tasks where maximally entangled pairs
of qubits can perform a specific amount of communication, during which the
entanglement is consumed. Entanglement is also used quantitatively in many
practical proposals for implementations of a quantum computer, notably [18],
this use can be identified with carrying out communications tasks to move the
quantum data around in the physical qubits.

We thank Stephen Parker, Martin Plenio and Ben Travaglione for valuable
discussions. VK was funded by the UK Engineering and Physical Sciences Re-
search Council grant number GR/N2507701 (to Sept 2003) and now by a Royal
Society University Research Fellowship. A Royal Society Research Grant pro-
vided additional computing facilities. Partly funded by the European Union.
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It is proposed that computation employing the principles of quantum me-
chanics (QM) is more powerful than Turing computation (which is embodied
by present-day classical computers) in terms of computability: quantum com-
putation in its most general framework can compute some problems
which are not computable by Turing machines. Such a computation which
transcends the Turing computation is also known as hypercomputation. This is in
stark contrast to and more powerful than the well-known capability of the more
“standard” quantum computation with qubits and quantum gates [1], which is
capable of improving computational complexity of classical algorithms – that is,
capable of speeding up some computation which is also computable by Turing
machines.

We have recently proposed a quantum algorithm [2] exploiting the quantum
adiabatic computation [3] to solve Hilbert’s tenth problem and the mathemat-
ically equivalent Turing halting problem, both of which are known to be Tur-
ing non-computable and related to many other important mathematical prob-
lems [4]. We now would like to discuss and further extend this quantum adiabatic
algorithm, which has received much implicit as well as some explicit attention
in the literature, see [5] and [6].

We wish to cover in this presentation most, if not all, of the following points:

– We firstly establish a reformulation of Hilbert’s tenth problem, a problem
in integer arithmetics, into problems in solving two different classes of par-
tial differential equations (PDEs), one of which is nonlinear and the other
one is linear (namely, the Schrödinger equation) and related to the physical
quantum adiabatic processes.

– Immediate consequences of the reformulation are some new classes of (linear
and non-linear) PDEs that are Turing-noncomputable, due to the established
Turing non-computability of Hilbert’s tenth problem. These results are in the
same spirit as those of noncomputable wave equations discovered by Pour-El
and Richards [7], and others.

– But thanks to the relationship between the linear Schrödinger equations and
physical processes, assuming that the so-far-never-failed QM is valid always,
we then argue that Hilbert’s tenth problem is computable in the framework
of quantum adiabatic processes.

– We next briefly review the key points in QM, in particular the crucial quan-
tum adiabatic theorem. Although this theorem by itself does not give rise
to hypercomputability, we are, in combining the theorem with a new result,
able to present an algorithm for Hilbert’s tenth problem. The theorem asserts
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that a particular eigenstate of a final-time Hamiltonian, even in dimension-
ally infinite spaces, could be found mathematically and/or physically in a
finite time. This is a remarkable property, which is enabled by quantum
interference and quantum tunnelling with complex-valued probability am-
plitudes, and allows us to find a needle in an infinite haystack, in principle!
Such a property is clearly not available for recursive search in an unstruc-
tured infinite space, which, in general, cannot possibly be completed in a
finite time, in contrast to the quantum scenario.

– Our quantum algorithm seems to be an infinite search through the positive
integers in a finite time! This may sound strange unless one recognises that
even though in a finite time the wave function of a system starting from an
initial ground state can only cover essentially a finite domain of the under-
lying Hilbert space, the finite domain covered is indeed the relevant domain
which contains the point of interest. That is, the initial ground state of our
quantum adiabatic algorithm provides one end of the lead along which we
can trace to the final ground state at the other end. The information ex-
tracted from this final ground state then gives us the answer to our original
decision problem.

– Such an algorithm is also relevant to the inherent randomness of mathe-
matics through the hypercomputation of Chaitin’s Ω number, which is the
probability that a randomly chosen Turing program will halt upon being
fed with a randomly chosen input. (We have also been able to extend a
key result concerning Chaitin’s Ω – linking the halting of Turing programs,
a computer science problem, to the parity of the number of solutions of
Diophantine equations, a number theory problem. Our result, in turn, has
recently been extended further by Matiyasevich [8].)

– Some misconceptions and prejudices against the algorithm and against its
physical implementation are summarised and refuted [5].

– That still leaves some unanswered difficulties in the physical implementation
of the algorithm. We explicitly list and discuss these difficulties, which will
require further investigations in the future.

– Nevertheless, we point out that [9], contrary to the prejudice that the algo-
rithm is not physically implementable, a particular instance of the algorithm
has already been realised physically in the quantum phase transition [10] as-
sociated with the superfluid-Mott insulator transition! The first experiment
for this transition has only been carried out very recently with Bose-Einstein
condensates in optical lattices [11]. This and subsequent experiments can in
fact be interpreted as implementations of the quantum adiabatic algorithm
for the class of linear Diophantine equations!

– We stress the fact that the algorithm is probabilistic.
– We also emphasise that Turing machines equipped with true randomness

could be capable of hypercomputation [12], contrary to the widely spread
misconception that probabilistic computation has the same computability as
Turing computation – which is only the case if the probabilities are them-
selves restricted to computable numbers (a fact pointed out by Shannon et
al. in their seminal paper [13] but overlooked by many).
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– Basing on that conclusion, we argue that Hilbert’s tenth problem should also
be computable with Turing machines equipped with some suitable measures
of probability.

– We then generalise the quantum adiabatic algorithm for probabilistic searches
(optimisation) in spaces of infinite dimensions! We explicitly present the
principles involved for these Turing non-computable searches.

– Armed with this generalisation, we speculate about the computability of the
problems in arithmetics that are finitely refutable (a term defined in [14])
and are beyond the equivalent class of Hilbert’s tenth problem.
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A function is almost everywhere dominating (AED) if it dominates every
function computed by almost every oracle.

Dobrinen and Simpson introduced this notion in the context of reverse math-
ematics. It turns out that there are AED functions of degree < 0′ (Cholak,
Greenberg) but they must all be truth-table high (Binns, Kjos-Hanssen, Ler-
man, Solomon).

A real is K-trivial if the Kolmogorov complexity of its initial segments is as
low as possible (up to a constant).

I will describe work with Hirschfeldt on a connection between K-triviality
and AED functions.
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Abstract. In this paper we study the model of a finite state automaton
interacting with two-dimensional geometric environment. We consider
a kind of well-known 4-way finite state automaton introduced by Blum
and Hewitt and the geometric environments defined as a subspace of two
dimensional integer grid bounded by integer value functions. As a main
result of this paper we characterize a wide class of geometric environ-
ments where a finite automaton exhibits universal behaviour. We leave
the problem of reachability for automaton interacting with environments
bounded by other functions as an open question. Our conjecture is that
the problem is undecidable if the infinite environment in the half plane
is limited by any unbounded nondecreasing function. Though we show
that bounds on increase rate of the environment width does not have any
influence on universality, it is not clear what would be the cornerstones
of undecidability for some specific environments (e.g. when environment
is limited by a logarithmic function).

1 Introduction

Finite state automata arose as models of transducers of discrete information, i.e.
models interacting with their environments [10]. Automata on picture languages
[3, 19], automata in labyrinth [2, 11, 12], communicating automata [16], counters
automata [17, 9], a model of a computer in the form of interaction of a control
automaton [5] are examples of such an interaction.

The fundamental problem for systems where the automaton interacts with
infinite environment is the reachability problem: “Does a state S belong to the set
of states reachable from an initial configuration”. Reachability has connections
to many classical problems in automata theory such as diagnostic problems,
distinguishability problems, searching in labyrinths, etc. One of the standard

? Work partially supported by RDF grant RDF/4417
?? Work partially supported by The Nuffield Foundation grant NAL/00684/G.
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methods to show the undecidablity of the reachability problem for some model
is to prove that this computational model is universal.

In this paper we consider the computational power of reactive system, where
an input/output automaton interacts with two-dimensional geometric environ-
ments. In particular we consider the reactive system that includes a finite state
automaton (FSA) A and an infinite environment E where

– an automaton A is a kind of well known 4-way finite state automaton intro-
duced by Blum and Hewitt [1] that read the symbol from the environment
and reacts by changing its internal state and moving up, down, left or right
to a neighbouring cell of an environment E;

– an environment E is a two dimensional language over one-letter alphabet [14,
3] which is defined as a subspace of two dimensional integer grid bounded
by a number of integer value functions.

It was shown in [13, 14] that the problem of checking indistinguishable states
for two finite automata in two dimensional language E over one-letter alphabet
(geometric environments) is decidable if and only if the reachability problem for
a finite state automaton in E is decidable. A geometric environment is called
efficient if the reachability problem for this environment is decidable and non-

efficient otherwise. The set of rectangles of fixed height that can be represented
by a regular or context-free expression are efficient [6, 7, 14]. There are other
classes of efficient environments that can be constructed by substitution of any
cell in efficient environment by another environment [14].

It was proved in [2] that the set of input-output words generated by automa-
ton interacting with an infinite geometric environment is a context-sensitive
language, in general. Thus the reachability problem for finite automata interact-
ing with geometric environments is fundamentally difficult and algorithmically
unsolvable, in the general case. In spite of known undecidability results it is in-
teresting to identify new classes of non-effective environments, i.e. where a model
of finite automaton interacting with these environments is universal. Recently,
we initiated the research on non-efficient environments by investigating several
special cases: quadrant of the plane extended by power function, polynomial
function and linear function [15].

As a main result of this paper we characterize a wide class of geometric
environments where a finite automaton can exhibit universal behaviour. We leave
the problem of reachability for an automaton interacting with environments
bounded by other functions as an open question. Our conjecture is that the
problem is undecidable if the infinite environment in the half plane is defined by
any unbounded nondecreasing function.

The motivation for investigation of walking automaton dynamics is that the
different constraints on the environments can be seen as constraints on the values
of counters in counter automata or other computational models and vice versa.
The main results of this paper define so-called essentially two-dimensional envi-

ronments, i.e. environments where a walking automaton can exhibit universal be-
haviour and cannot be modelled by any one-dimensional systems, like push-down
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or one-counter automata. Thus, we consider the analysis of two-dimensional ge-
ometric environments as a new look on the classical topic about the border
between decidability and undecidability.

2 Automata interacting with two dimension environments

In what follows we use traditional denotations N,Z and Zn for the sets of naturals
{1, 2, 3, . . . }, set of integers {. . . ,−2,−1, 0, 1, 2, . . . } and set of bounded integers
{−n, . . . ,−2,−1, 0, 1, 2, . . . , n} respectively.

Definition 1. Let A = (SA, I, O, δA, λA, s0) be a finite deterministic everywhere
defined Mealy automaton, where SA, I and O are the sets of states, input symbols,
and output symbols, respectively, and δA : S × I → S and λA : S × I → O are
transition function and function of outputs. respectively and s0 ∈ S is an initial
state.

Definition 2. The geometric environment is defined by possibly infinite (count-
able) Moore automaton E = (D,O, I, δE , λE), where D ⊆ Z × Z. is a set of
states, O = Z1 × Z1 is a set of input symbols, I = 2Z1×Z1 is a set of output
symbols, δE : D ×O → D such that

δE((x, y), (d1, d2)) =

{
(x+ d1, y + d2), (x+ d1, y + d2) ∈ D
undefined, (x+ d1, y + d2) /∈ D

is the partial transition function and λE : D → I such that

λE(x, y) = {(d1, d2) ∈ Z1 × Z1|(x+ d1, y + d2) ∈ D}

is the function of outputs.

We call the set of states D - the nodes of the environment, the symbols of the
output alphabet I - the labels of nodes, the function of outputs λE - the function
of labels of nodes and the words in alphabet O - the movements of automaton
in the environment. From Definition 2 follows that two-dimensional geometric
environment is represented by an automaton E. According to the fact that the
set D uniquely defines the environment E, we identify D and E in the rest of
the paper.

Two nodes of the environment (x1, y1) and (x2, y2) are the neighbours iff
(x2 − x1, y2 − y1) ∈ Z1 × Z1. All neighbours of the node (x, y) is the Moore
neighbourhood of range 1.

We can also consider finite automaton in two-dimensional environment as a
kind of 4-way finite state automaton introduced by Blum and Hewitt [1] that
read the symbol (Moore neighbourhood of range 1) from the environment and
reacts by changing its internal state and moving up, down, left or right to a
neighbouring cell of an environment E.

Let an automaton A and an environment E interact with each other, then
an output signal of each of them coincides with an input signal of the other
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Fig. 1. Geometric environment represented by Moore automaton E.

at each instant of time. So in case of 4-way finite state automaton the set of
output symbols of an automaton A (which is also a set of input symbols of an
environment E) is {Left = (−1, 0), Right = (1, 0), Up = (0, 1), Down = (0,−1)}
and the input symbols of A (a set of output symbols of E) is a matrix O3×3 that
represents the Moore neighbourhood of range 1 for a position (x, y):




o−1,1 o0,1 o1,1
o−1,0 o0,0 o1,0
o−1,−1 o0,−1 o1,−1


 ,

where oi,j = 1 if (x+ i, y + j) ∈ D, otherwise oi,j = 0 and i, j ∈ Z1.
Let us describe the process of interaction between automaton and environ-

ment. An automaton A initiates the interaction with an environment E starting
from the state s0 and a node r ∈ D. Let A be in state s and node r, then au-
tomaton moves to the state δA(s, λE(r)) and the node δE(r, λ(s, λA(s, λE(r)))).

By pair (s, r), where s is state of an automaton, and r is a node of the
environment, we denote a configuration of the automaton in the environment.
We also say that configuration (s′, r′) is directly reachable from (s, r) if s′ =
δA(s, λE(r)) and r′ = δE(r, λA(s, λE(r))) and denote it by (s, r)→ (s′, r′).

3 Geometric representation of Minsky Machine

It is easy to see that the behaviour of 2-counter machine with a zero test (Minsky
machine) can be interpreted as a 4-way finite state automaton that interacts with
(or moves in) the quadrant of the plane DQ = {(x, y) ⊆ Z × Z|x ≥ 0, y ≥ 0},
where the border of the quadrant is the following set of nodes: GQ = {(x, y)|x ≥
0, y = 0, x ∈ N, y ∈ N } ∪ {(x, y)|x = 0, y ≥ 0, x ∈ N, y ∈ N }. The node (x, y)
of the environment EQ = (DQ, O, I, δE , λE) represent the values x and y of two
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counters and the empty counters of Minsky machine corresponds to the situation
when an automaton is on the borders of the geometric environment EQ.

Now we explain a well known trick to get an equivalent model of two counter
machine where one of the counters is used as a scratchpad. Another, counter
holds an integer whose prime factorization is 2a · 3b. The exponents a, b can
be thought of as two virtual counters that are being simulated. When the real
counter is set to one, it is equivalent to setting all the virtual counters to zero.
If the real counter is doubled, that is equivalent to incrementing a, and if it is
halved, that is equivalent to decrementing a. By a similar procedure, it can be
multiplied or divided by 3, which is equivalent to incrementing or decrementing
b. To check if a virtual counter such as a (b) is equal to zero, just divide the real
counter by 2 (3), see what the remainder is, then multiply by 2 (3) and add back
the remainder. That leaves the real counter unchanged. The remainder will have
been nonzero if and only if a (b) was zero.

In the rest of the paper we are going to use the universal model of 2-counter
machine Mscrt with one scratchpad counter to show several undecdiability results
for walking automaton in different geometric environments.

The simple extention of machine Mscrt shows that the environment limited
by two linear functions in the half plane is non-efficient. Since the integral line
defines the regular shifts of the borders, we only need to amortise this shifts by
adding a fixed number of right or left moves according to the chosen direction to
each transition of original automata. So we can directly simulate multiplication
and division that corresponds to original operation of machine Mscrt. In the
next section we show a wide class of environments where the reachability for
walking automaton is undecidable but the direct multiplication and division are
not implementable.

4 Non-efficient Environments

Let us consider a function f : N→ N such that f(n) ≥ n and function g : N→ N
such that g(1) = 1, g(n) = g(n − 1) + f(n − 1). We define now a geometric
environment E(g), that is defined by the set of vertices {(x, y) ⊆ N×N|x ≥ g(y)}.
The example of an environment is shown on Figure 2.

Theorem 1. Given a number p ∈ N. If for all n > p a function f satisfies the
condition f(n) ≡ p (mod n) then an environment E(g) is non-efficient.

Proof. The proof is done by reduction of the reachability problem for 2-counter
automaton (Minsky machine) to the reachability problem for walking finite state
automaton in the above environment. In particular we show how to perform
operation of multiplication and division in the environment E(g) that allow us
to perform the proposed reduction. We show the simulation of multiplication by
2 in the environment E(g) in details. It is easy to apply this method to simulate
the multiplication by 3 and division by 2 or 3 by walking automaton in E(g).
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Fig. 2. The example of an environment represented by function f(x) = x.

Let us assume that an automaton starts from a point (g(y), y) in the envi-
ronment E(g). The vertex of environment E(g) in this point has a label




0 0 0
0 1 1
1 1 1


 .

Now we show that a finite state automaton on environment E(g) can reach a
vertex (g(2y), 2y) from a vertex (g(y), y) and stop on it. Note that all movements
(computations) of a finite state automaton that interacts with an environment
E(g) is done using only labels of environments that are available to our walking
automaton and its finite number of states.

By Sn = (1, 0)n ∈ O∗, n ∈ N we denote the movement of automaton from a
vertex (x, y) to a vertex (x+ n, y), that is n movements to the right.

Another kind of movements that we are going to use for simulation are move-
ments of type C : C1 or C0.
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..

     1        2         3        4        5     ...

(g(1),1)

(g(2),2)

(g(3),3)

(g(4),4)

C 0

Fig. 3. The example of a movement C0.

If g(y) ≤ x < g(y + 1)− y by C0 = (1,−1)y−1(1, 0)(0, 1)y−1 ∈ O∗ we denote
the movement of an automaton from a vertex (x, y) to a vertex (x+ y, y) .
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     1        2         3        4        5     ...

(g(1),1)

(g(2),2)

(g(3),3)

(g(4),4)

C 1

Fig. 4. The example of a movement C1.

If g(y+ 1)−y ≤ x < g(y+ 1) by C1 = (1,−1)y−1(1, 0)(0, 1)y ∈ O∗ we denote
the movement of automaton from vertex (x, y) to a vertex (x + y, y + 1) . The
examples of movements C0 and C1 are shown on Figures 3, 4.

There are several useful properties of C-movements. Let us assume that a
walking automaton is in the bounded vertex (x, y) of an environment E(g), where
g(y) ≤ x < g(y+ 1), then it can make only a finite number of consecutive moves
of type C0. If f(y) = iy + p (note that p is a constant), then the number of
consecutive moves of type C0 is bounded by i. So finally after a finite number of
C0 movements a walking automaton does C1 movement. It can also determine
the fact of changing from C0 to C1 by checking evenness/oddness of second
component of the vertex coordinate using a finite number of its internal states.

Next type of movements that we use for simulation is T . Let a walking au-
tomaton is at the boundary vertex (x, y), g(y) ≤ x < g(y)+y of an environment
E(g), in which the following property f(y) = iy + p holds. By T we denote the
sequence of movements from a vertex (x, y) to (x+ p, y) by Sp and then a finite
number of C0 movements that end by C1 . Let us prove now that T will move
an automaton from a vertex (x, y) to a vertex (x′, y + 1), where

x− g(y) = x′ − g(y + 1) (1)

Since we have that f(y) = iy+ p, a walking automaton should make exactly
i − 1 movements of type C0 to reach vertex (x + (i − 1)y + p, y) from vertex
(x+ p, y). Then after movement C1 it reaches vertex (x+ (i− 1)y+ y+ p, y+ 1)
that is (x+iy+p, y+1). From it follows that x′−g(y+1) = x+iy+p−g(y+1) =
x+iy+p−g(y)−f(y) = x−g(y). In other words, we proved that after a movement
T the distance from a corner (g(y), y) of the environment to a vertex (x, y) is the
same as the distance from a vertex (x′, y+ 1) to a corner (g(y+ 1), y+ 1). So we
can keep some information of the computations during the walk of automaton
as a distance from its location to the nearest left corner of the environment.

Let us show how to move an automaton from a vertex (g(y), y) to a vertex
(g(2y), 2y) that corresponds to the multiplication of y by 2. The automaton
starts in a vertex (g(y), y) by making a movement (TS2)yT until the automaton
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reaches a vertex (g(2y + 1), 2y + 1), i.e. the first vertex with the label



0 0 0
0 1 1
1 1 1




and then by making a movement (0,−1)(−1, 0)f(2y) to the first vertex with the
label 


0 0 0
0 1 1
1 1 1


 .

This is exactly the vertex (g(2y), 2y).
Let us track the sequence of above movements. The first movement TS2 will

change the position of automaton from (g(y), y) to (g(y + 1) + 2, y + 1). The
position of automaton after next movements TS2 will be (g(y + 2) + 4, y + 2).
Thus, the position of automaton will be changed to (g(y + y) + 2y, y + y) =
(g(2y) + 2y, 2y) exactly after y of such movements. After the last movement T
of the movement (TS2)yT the position of automaton will be changed exactly to
(g(2y + 1), 2y + 1) because of the equation 1. The example of such movements
that correspond to the multiplication by 2 is shown on Figure 5.

(g(7),7)

(g(5),5)

(g(4),4)

(g(3),3)

Fig. 5. The example of a multiplication y × 2, where y = 3, in the environment repre-
sented by function f(x) = x.

By analogy with a case of multiplication by 2 we can show that a sequence
of movements

(TS3)2yT (0,−1)(−1, 0)f(3y)

corresponds to multiplication by 3 and changes the location of automaton from
(g(y), y) to (g(3y), 3y). The sequence of movements that guarantees the division
by 2 and 3 can be easy derived from the operation of multiplications. It follows
that the walking automaton interacting with environment E(g) can simulate
the computation of two counter machine where one of the counters is used as a
scratchpad. Thus the reachability problem of a walking automaton in environ-
ment E(g) is undecidable and the model is universal.
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Corollary 1. Let g : N → N be an integral polynomial function of degree n,
where n ≥ 2. The environment E(g) is non-efficient.

Proof. Let g(x) = anx
n + . . .+ a1x+ a0 and f(x)= g(x+1)-g(x). Since f is also

polynomial, i.e. f(x) = bnx
n + . . .+ b1x+ b0, then f(x) ≡ b0 (mod x). It follows

form Theorem 1 that the environment E(g) is non-efficient.

Moreover we can change the main theorem, but using the same ideas of
computations with respect to some modulo.

Corollary 2. Given a constant p ∈ N. Let function f fulfil condition f(n) ≡
n− p (mod n) for all n > p then an environment E(g) is non-efficient.

Corollary 3. Given a constant p ∈ N. Let function f fulfil condition f(n) ≡ b n2 c
(mod n) for all n ∈ N then an environment E(g) is non-efficient.

Corollary 4. Given a function f : N → N that can be represented as f1(x) ·
f2(x), where f1(n) ≡ 0 (mod n) and f2(n) is any nondecreasing function. An
environment E(g) is non-efficient.

We can also use Theorem 1 to show that for any environment limited by
unbounded nondecreasing function there exist a sub-environment where a finite
automaton exhibits universal behaviour:

Corollary 5. Let E(h) = {(x, y) ⊆ N × N|x ≥ h(y)} and h : N → N is an
unbounded integral nondecreasing function. Then there is a function g : N→ N,
such that E(g) ⊆ E(h) and E(g) is non-efficient.

Proof. Let g : N→ N is a function such that g(1) = 1, g(x) = g(x−1)+f(x−1)
and let f(x) = x · c(x), where c(x) : N → N is large enough to satisfy to the
following property:

f(x) > h(x+ 1)− h(x).

From the above construction follows that E(g) ⊆ E(h). On the other hand the
fact that f(x) ≡ 0 (mod x) gives us that the environment E(g) is non-efficient
by Theorem 1.

5 Conclusion

The decidability of reachability problem for automaton interacting with envi-
ronments defined by other functions is still an open question. Our conjecture is
that the reachability problem for E(g) is undecidable for any everywhere defined
function f : N→ N, (i.e., not only for those where f(n) ≡ constant (mod n)).

Though we show in Corollary 5 that bounds on increase rate of the envi-
ronment width does not have any influence on universality, it is not clear what
would be the cornerstones of undecidability for some specific environment, e.g.
when environment is limited by a logarithmic function:

Elog = {(x, y) ⊆ N× N|y ≤ log(x)}.
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We study a problem of an embedding of nondistributive lattice N5 as initial
segment of the Turing degrees. The main problem of such embedding is that
the lattice N5 has no a finite fine presentation. This involves an inclusion in the
construction a growing forest of k-splitting trees with a larger and larger k.

We show that a standard procedure of the embedding method by Lachlan
and Lerman is not completely adequate in the case of N5.
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Abstract. Implementations of real number computations have largely
been unusable in practice because of the very bad performance ratio
between them and machine precision floating point numbers. Since a
significant portion of the problem is the type-2 nature of the computable
analysis frameworks usually employed, this paper tries to address this by
creating a type-1 framework similar to the domain theoretic approach,
with extensions that permit us to reason about the complexity of real
numbers and functions.

1 Introduction

Using real numbers with a computer is a very difficult matter. Although the
theoretical background for exact real number computation has been around for
some time, it is very rarely if ever used in practice.

One of the most important reasons for this is the serious performance discrep-
ancy between programs working with machine precision floating point numbers
and ones working with computable reals. The ratio is huge, ranging from thou-
sands to no less than 100 times even in cases where higher precisions are not
actually needed, and even though attempts to implement packages for real num-
ber computations exist ([3, 12, 15]), they could never be used in practice because
of this frightening and unjustified slowdown.

In our attempts to implement a good real number system, we discovered that
a large portion, well over half, of the time in a low-precision computation is spent
because of the type-2 character of the theoretical framework. More specifically,
the need to maintain a history of a real number computation and perform the
actual evaluations at a point in time different from the user’s programming
imposes several significant performance problems:

– slow memory management is needed to build and destroy (or garbage collect)
expression dags

– when a term’s value is requested, recursive evaluation has to traverse the
graph, which requires extra storage proportional to the term’s depth
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– the information for the lifetime and locality of each variable, explicitly given
by a programmer or compiler in a program, is irrevocably lost in the term
representation

– the preferred ordering of the computations is lost

– compiler optimizations cannot be performed on the expression.

All of these items are uninteresting from a theoretical point of view, but in
practice they contribute to such a large portion of the execution time of a real
number program, that one could not expect to significantly improve the machine
precision/real numbers performance ratio without handling them.

To do so, one has to take a theoretical approach that describes real functions
as type-1 objects. In this paper we are describing such an approach which is useful
in practice and is similar to Grzegorczyk’s definition from [6] and the domain
theoretic framework for Computable Analysis by Edalat and Sünderhauf [4].

The main problem this paper addresses is the question of complexity in a
type-1 model. In such a model, complexity cannot be simply introduced as a
restriction on the class of functions used in the system, because the system
contains an implicit unbounded search which makes all complexity classes that
can define the minimization normal form, down to polynomials over the integers,
equivalent in terms of expressive power.

The framework described in this paper is used in an actual implementation1

of an exact real numbers package. Recently implemented features of the package
demonstrate the practical effect of using the theoretical framework: with this
system it is now possible to write programs with real numbers for which the ma-
chine precision/real numbers performance ratio ranges from eight-nine to one for
computations that do not require extra precision. In other words, the difference
is small enough to make real number computations useable.

2 Prerequisites

In this paper we will be referring to different levels of the finite type hierarchy.
Type 0 is the natural numbers and every other finite type is a function that takes
argument of a lower type. Type 1 is the type of the functions over the natural
numbers and Type 2 is the set of the functionals that take at least one type-1
function as argument.

Let V be an enumerable dense subset of the reals that contains the dyadic
numbers. We will be using the following generally accepted definition as the
established notion of computable real numbers and functions to which we will
compare our model:

Definition 1. A Cauchy function representation (CF-representation) of a real
number α is a function a : N→ V, such that ∀n ∈ N

(
|a(n)− α| < 2−lth(n)

)

1 RealLib, available at http://www.brics.dk/~barnie/RealLib/ See also [11] for a
description of an earlier version.
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(we use lth(n) = blog2 nc + 1 instead of simply n in the exponent as the latter
would not allow us to define the class of feasible real numbers as the ones having
a poly-time CF-representation)

Definition 2. A Cauchy function representation of a partial function φ : R→ R
is a partial functional Φ : (N→ V)× N→ V, such that

∀α ∈ dom φ,∀a− CF− representations of α

∀n ∈ N
(
(a, n) ∈ dom Φ ∧ |Φ(a, n)− φ(α)| < 2−lth(n)

)

Definition 3. A real number or a real function is computable in a class C of
computable functions, resp. functionals, iff there exists a representation in C for
it in the sense of Definitions 1 or 2 respectively.

To assess the complexity of real numbers we can use restrictions on the class
of functions used in Definition 1. The complexity notions for real functions are
somewhat more complicated, thus we have decided to compare our approach
to two different complexity measures: Ko’s notion of feasibility for Computable
Analysis and type-2 complexity by restriction of the class of functionals used in
Definition 2.

A well studied notion for feasibility of type-2 functionals is the class of the
Basic Feasible Functionals (BFF, defined in [1]). They can also be defined as the
type-2 restriction of the Basic Feasible Functionals of finite type (BFFω, [2]),
and the latter can be defined as the higher-type functions that can be written
as terms containing only

– constants 0 for every finite type
– variables for every finite type
– constants for every poly-time function
– the Σ and Π combinators for every combination of finite types
– bounded recursion on notation Rbn:

Rbn(x, y, g, h) =

{
y, if x = 0
min (g(x,Rbn(bx/2c, y, g, h), h(x)) , otherwise

Two essential properties that we will be using in the complexity part of our
paper are the facts that BFFωrestricted to Type 1 coincides with the poly-
time functions, and BFFωrestricted to Type 2 (i.e. BFF) coincides with the
functionals that are computable by an oracle Turing machine in time which is a
second order polynomial to the lengths of the inputs ([8]). We will also use the
fact that BFF can define the first normal form for type-2 functionals ([8]).

We will use this definition for feasibility of real functions in the usual sense
for Computable Analysis:

Definition 4 (Ko, [10]). A function φ is poly-time computable on [a, b] ⊆
dom φ in Ko’s sense iff there is an oracle Turing machine computing it in the

dyadic representation, which runs in time polynomial to the precision given in
unary notation.
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This definition of complexity is equivalent to the signed digit one defined in
[14] among others, and, using the next theorem, can be easily translated to the
setting of BFF.

Theorem 1. A partial real function is poly-time computable on [a, b] in the
sense of Ko iff it is BFF-computable on the same interval.

Proof. A functional is in BFF if and only if there exists an oracle Turing ma-
chine computing it, running in time which is a second-order polynomial in the
length of the inputs. In a compact interval, there exist representations of any
real number that satisfy lth(B(k)) ≤ p(lth(k)) for a polynomial p (using dyadic
representations cut after the lth(k)’th digit), and therefore a second order poly-
nomial in lth(k), lth(B) does not give more power than simply a polynomial in
lth(k). ut

Our investigation of the connections between complexity in our model and
type-2 and Computable Analysis complexity also require a very useful tool from
Proof Theory, the concept of majorizability:

Definition 5 (W.A. Howard [7]). We define x∗ majρ x for a finite type ρ by
induction on the type:

x∗ maj0 x := x∗ ≥ x,

x∗ majτ→ρ x := ∀y∗, y
(
y∗ majτ y → x∗(y∗) majρ x(y)

)
.

We will say that a class of function(al)s C is majorizable, if for every function(al)
f in C there exists f∗ ∈ C with f∗ maj f , where the majorization relation is of
the appropriate type.

The majorizability relation defines monotonicity in higher types, and for us
the most interesting instantiation of the definition is in the case ρ ≡ 0 used in
the form x∗ majτ→0 x∧ y∗ majτ y → x∗(y∗) ≥ x(y), giving us the possibility to
bound the result of the application of one higher-type functional to another as
a number.

It is not hard to see that the poly-time functions and BFFωare majorizable
classes (detailed proof can be found in [11]). Other majorizable classes are the
class of the primitive recursive functionals of finite type (in the sense of Kleene
S1-S8 ([9]) as well as in the sense of Gödel ([5]) and any specific level in Gödel’s
primitive recursive hierarchy), any level of the Grzegorczyk hierarchy and many
others, but not the class of all type-2 functionals (e.g. if the function

F (f) =

{
0, if ∀x(f(x) = 0)
µx[f(x) = 0], otherwise

were majorized by F ∗, then F ∗(λx.1) would bound F applied to all zero/one
functions which is not possible) or the class of the partial computable functionals
if the notion is extended in a suitable way to accommodate partiality.
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3 Model

The basic objects we are going to use contain approximation information and
estimation of the amount of error in this approximation. To be able to define a
class of real functions equivalent to the computable ones in the sense of Definition
2, a totally indeterminate value has to be allowed (otherwise e.g. division cannot
be defined, see [13]). We do this by allowing an infinitely large value for the
error.

Let E be a subset of the positive rational numbers which contains 2−n for
every natural n, to which the special value∞ is added, and which has a poly-time
encoding and a poly-time comparison operator that respects∞. It is possible to
define encodings of pairs V× E with the following properties:

– lth(〈a, b〉) is polynomial in max(lth(〈a〉
V

), lth(〈b〉
E
))

– 〈a, b〉 ≥ 〈a〉
V

and 〈a, b〉 ≥ 〈b〉
E

– 〈2−n〉
E
≥ 2n

– there exist poly-time functions that convert between the encodings of V and
E, rounding up if a number in V cannot be represented in E

– multiplication and division by 2 are poly-time (and thus also multiplication
by 2±lth(k)) in both V and E

– addition and the floor function b·c in V are poly-time
– there exists a function dya(n, d) that selects a code for the dyadic number
n2−d, such that whenever a, b, c, d are positive integers, a ≤ c ∧ b ≤ d →
dya(a, b) ≤ dya(c, d)

– the absolute value operator on the codes is such that 〈v〉
V
≤ 〈|v|〉

V
for any

v ∈ V

These properties can be satisfied e.g. for V = Q and E = Q+
∞ by the Cantor

pairing, the encoding of rational numbers q as Π(n, d), such that

q = (−1)n
b(n+ 1)/2c

d
,

and the encoding of ∞ as Π(0, 0).
Having the distinction between the sets V and E is prompted by the need

to include ∞, but also closely follows the choice one would often make when
an actual implementation is developed as one might prefer a simpler (and thus
more efficient) representation of the error information.

3.1 Partial approximation representations

Definition 6. A partial approximation to a real number α is a pair (v, e) of type
V×E, such that |v − α| < e. We will denote the class of partial approximations
to α with Aα, and the class of partial approximations to any real with AR =
∪α∈RAα. If a ∈ AR we will use av, ae to denote respectively the value and error
in a.
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Definition 7. A partial approximation representation, p.a.r., of a real number
α is a function A : N→ Aα, for which ∀k∃n((A(n))e ≤ 2−k).

If a real number is computable, then it certainly has a computable p.a.r.: if B
is a representation of α, then λn.(B(n), 2−lth(n)) is one of its p.a.r.’s. Conversely,
if a is a p.a.r. of α, then

λk.A(µn[A(n)e ≤ 2−lth(k)])v (1)

is a valid CF-representation for it.
This equivalence does not hold for restrictions of the notion of computability.

Because of the unbounded search in (1), it is possible to define all computable
reals using p.a.r.’s in subrecursive classes such as primitive recursive, elementary
or poly-time functions. For a proof of this, see [13].

For real functions, we want to have objects that operate on partial approx-
imations instead of the full representations. They will have to convert approx-
imations to an input to approximations to the result of the application of the
function, and also we need to require that the precision of the output approx-
imations gets arbitrarily good as the precision of the input increases. In other
words,

Definition 8. A partial approximation representation of a partial function φ :
R → R is a partial function F : AR → AR, such that for any choice of α ∈
dom φ and a partial approximation representation A of α, λn.F (A(n)) is a

partial approximation representation of φ(α).

Remark 1. This definition implies a ∈ Aα → F (a) ∈ Aφ(α) for α ∈ dom φ,
because for any p.a.r. A of α we can create

B(n) :=

{
a, if n = 0
A(n− 1), otherwise

,

which is another p.a.r. of α that has B(0) = a, hence F (a) has to be a partial
approximation to φ(α).

Remark 2. In contrast to the domain theoretic approach ([4]), where successive
applications of the representation function to the same interval are required to
give better and better approximation to the image interval, our requirement is
to only be able to provide a superset of the image interval and to only make it
smaller if the input interval gets smaller.

3.2 Computability

We have severely restricted the information to which the function object has
access; nevertheless, the following theorem proves we have not restricted the
class of real functions that are computable:

Theorem 2. A partial function φ : R→ R is computable iff it has a computable
p.a.r.
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Proof. (←) If we have a p.a.r. F of a function φ, and α ∈ dom φ, then the
functional

Φ(B,n) := F (B(m), 2−lth(m)) with m = µp
[
(F (B(p), 2−lth(p))e ≤ 2−lth(n)

]
(2)

is total in n for any CF-representation B of α since from Definitions 8 and 7 the
minimization will always stop, and Definition 6 together with Remark 1 ensures
|Φ(a, n)− φ(α)| < 2−lth(n). ut

Proof. (→) Fix a CF-representation Φ for φ.
For any a ∈ AR with ae < 1, we can effectively find the largest natural

number m with the property 2mae < 1. If ae ≥ 1, we take m = 0. Define the
function

b := λn.2−lth(n)b2lth(n)av + 1/2c. (3)

For 0 ≤ lth(n) < m we have that if α ∈ Aα

|b(n)− α| ≤ |av − α|+ 2−(lth(n)+1) ≤ 2−m + 2−(lth(n)+1) ≤ 2−lth(n)

Using the fact that exceptions are computable and that given the code of a
computable functional Φ, we can construct an equivalent one Φ† that honors a
new exception x, we can create a function

bdm := λn.

{
b(n), if n < m
raise x, otherwise

and then define

Φ‡(B,n,m) := try Φ†(Bdm,n) + 1 catch(x) 0. (4)

(i.e. Φ‡ will return Φ(b, n)+1 if b restricted to length m was sufficient to compute
it, and 0 otherwise)

We will now prove that the function

F (a) :=

{
(0,∞), if l = 0
(Φ‡(b, l − 1,m)− 1, 2−lth(l−1)), otherwise

for
l = µp ≤ m

[
Φ‡(b, p,m) = 0

]
(5)

is the required p.a.r. of φ. To do this, we need to prove that G = λn.F (A(n)) is
a p.a.r. of φ(α) for any p.a.r. A of α.

The first condition, F (a) ∈ Aφ(α) for any a ∈ Aα, follows from the require-
ment for Φ and the fact that there is a CF-representation for α that starts with
b(0), b(1), . . . , b(m− 1).

For the second condition, we need to prove the existence of 2−k-approximations
to φ(α) among G(n) for any k. The sequence defined by

c := λn.2−lth(n)b2lth(n)α+ 1/2c
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is a proper CF-name for α. If α is not a dyadic number, then for an arbitrary n,
|α − c(n)| < 2−lth(n)−1. There exists q depending on n, such that |α − c(n)| ≤
2−lth(n)(1/2 − 2−(q−lth(n))), and for all partial approximations a with ae < 2−q

we have 2lth(i)|av − c(i)| < 1/2 for all 0 ≤ i ≤ n. But this implies that the
sequence obtained by (3) coincides with c on the first n+ 1 elements.

Now, since Φ would look at finitely many elements of c to produce a value
with any precision 2−k, using that count in the procedure described above, we
can come up with a q supplying a long enough sequence. Combining this with
a requirement that the minimization (5) reaches the target precision, we have
(F (a))e ≤ 2−k for all a’s with ae ≤ 2−max(q,k), and since A has arbitrarily close
approximations, this can be satisfied for a = A(n) for some n.

If α is a dyadic number, i.e. ∃n(c(n) = α), then there are only finitely many
variations of b that can exists, because they have to coincide after the first n+ 1
positions. Then there exists a maximum m for the number of lookups Φ can make
to any of these b’s in order to get a 2−k-precise result. Hence ae ≤ 2−max(m,k)

suffices to get the required precision for F (a). ut

As in the case of real numbers, this equivalence does not hold for subclasses of
the type-2 computable functions. To define all computable functions, it suffices
to use severely restricted type-1 computability subclasses:

Theorem 3. A partial real function is computable iff it has a p.a.r. in any
subrecursive class C that contains the poly-time functions.

Proof. (→) It suffices to change the definition of Φ‡ to a version bounded in
execution time:

Φ‡(B,n,m) := try Φm(Bdm,n) + 1 catch(x) 0.

where by Φm we denote Φ† executed for m steps throwing an exception if Φ did
not halt, which can be done in a basic feasible functional (because BFF can
define the first normal form for type-2 functionals).

Since m is of the order of lth(a) for the encoding of a it is possible to do all
required steps in time polynomial to lth(a). The proof of the existence of good
approximations can be carried out here as well, the only difference being the
need to satisfy a condition in the form ae ≤ 2−max(q,k,s) for s being the number
of steps it takes for Φ to complete its evaluation on b of length q.

The p.a.r. is type-1 basic feasible, therefore it is poly-time. ut

Proof. (←) Follows from the previous theorem. ut

3.3 Complexity

Real numbers. In order to be able to speak about different complexity classes
of real numbers, we must make a definition which requests more from our func-
tions in order to avoid the minimization in (1). This gives rise to the following
definitions and equivalence property:
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Definition 9. A modulus for a p.a.r. A of a real number α is a function m :
N→ N, such that for all k, (A(m(k)))e ≤ 2−lth(k).

Definition 10. We will say that a real number is p.a.r.-computable in a given
class C of computable functions, if there exist both a p.a.r. and a modulus for it
in C.

Theorem 4. A real number is computable in a subrecursive class C that con-
tains the poly-time functions and is closed under composition if and only if it is
p.a.r.-computable in C.

Proof. Take A := λn.(B(n), 2−lth(n)) and m := λn.n, or for the other direction
B := λk.A(m(k))v. ut

On the level of feasible functions, poly-time p.a.r. computability coincides
with Ko’s notion of poly-time computable real numbers [10] (Ko speaks about
numbers given in unary notation, which is equivalent to the lth(n) parameter
used in our definitions).

Type-2 complexity for functions. Again taking the p.a.r. of a real function
we lose all complexity information about that function. To talk about complexity
classes, we define a function that can replace the minimization in (2):

Definition 11. A modulus for a p.a.r. F of a partial real function φ is a partial
functional M : (N → AR) × (N → N) × N −→ N, such that for all α ∈ dom φ,
p.a.r. A of α, moduli m for A,

∀k((F (A(M(A,m, k))))e ≤ 2−lth(k)). (6)

Note that even though the actual function object is a type-1 object, we now
introduce a type-2 operation to characterize it. However, some extra flexibility
comes from the separation of these two objects: to implement e.g. a feasible
real function you do not have to implement a feasible type-2 object, but only
need to prove that it exists. Moreover, if a CF-representation of a function needs
extra information to be in a certain class (e.g. division needs evidence that the
denominator is non-zero to be primitive recursive), it will in general only be
needed for the modulus.

Definition 12. We will say that a real function is p.a.r.-computable in a given
class C of computable type-2 functionals, if both a computable p.a.r. and its
modulus can be found in C.

Theorem 5. If a function is p.a.r.-computable in a given class C that contains
BFF and is closed under functional substitution, then it is computable in the
same class.
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Proof. For φ : R → R, α ∈ dom φ, F - p.a.r. of φ, M -modulus for F , and B -
CF-representation of α, take

Φ(B,n) := (F (A(M(A, λp.p, n))))v

where
A := λp.(B(p), 2−lth(p)).

A is a p.a.r. for α with a modulus λp.p, and hence from M being a modulus
to F , we have |Φ(B,n)−φ(α)| < 2−lth(n). Φ is a basic feasible functional relative
to F and M , therefore it is in C. ut

The other direction is more complicated. First we will verify that p.a.r.-
computability coincides with CF-computability:

Theorem 6. If a partial function φ : R → R is computable, then it is p.a.r.-
computable.

Proof. We’ve already proved in Theorem 2 that there exists a computable p.a.r.
to every computable real function. If it is F , then

M(A,m, n) := µp[F (A(p))e ≤ 2−lth(n)]

is a modulus for F . ut

This modulus does not even use the modulus for the real number. This is true,
because in the presence of minimization brute force search makes the moduli
redundant.

This is not the case for restricted complexity classes. To prove the equivalence
between p.a.r. and CF-computability on some of them, we need the higher-type
monotonicity we have in the majorizable classes and the following lemma:

Lemma 1. Let b be defined as

b(n) := dya(b2lth(n)av + 1/2c, lth(n)). (7)

Then for all α ≤ a0, a ∈ Aα, b, created by (7) for a with ae ≤ 1,

J(a0) maj1 b

where
J(a0) = λn.dya(1 + b2lth(n)a0 + 1/2c, lth(n)). (8)

Proof. Since ae ≤ 1, we have |av| < a0 + 1 and therefore by the properties
of the encoding J(a0)(n) ≥ b(n), and also, since when n is increased both the
numerator and denominator in (8) do not decrease, we have ∀k ≤ n(J(a0)(n) ≥
J(a0)(k) ≥ b(k)), which means J(a0) maj1 b. ut

Theorem 7. If a partial real function is computable in a majorizable class of
type-2 functionals that contains BFFand is closed under functional substitution,
then it is p.a.r.-computable in that class.
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Proof. We will use the proof of Theorem 2, substituting the definition (3) of b
with (7). All operations used in the generation of F can be done without leaving
the class of Φ. Hence F is in the class. We now need to find a modulus for it.

In the class of Φ there exists a functional Ψ that does exactly the same job as
Φ, but instead of returning the approximation it gives the largest k to which B
was applied. Since the class contains this functional and is majorizable, it also
contains a majorizer Ψ∗ for it. The modulus for A gives us means to bound the
absolute value of the real number described by it, therefore, with the previous
lemma, there is a poly-time function b∗ := J(|A(m(0))|+ 1) which majorizes all
functions b generated by partial approximations with error less than 1.

Hence Ψ∗(b∗, n) ≥ Ψ(b, n) for all good b’s, in particular for the one (call it
b0) generated by a0 = A(m(Ψ∗(b∗, n))), which means Φ†(b0, n) will not raise an
exception, and F (a0) will give a result with the required precision.

Hence M(A,m, n) = m(Ψ∗(J(|A(m(0))|+ 1), n)) is a modulus for F . ut

Real number complexity for functions. In the previous subsection we found
correspondence between complexities in this model and type-2 complexity. As
this is not the complexity measure normally used for real functions, we also
define notions which are more closely related to the latter by defining type-1
moduli on closed subsets of the domain:

Definition 13. A uniform modulus on [a, b] ⊆ dom φ of a p.a.r. F of a real
function φ is a function U : N→ N, such that

∀α ∈ [a, b]∀A− p.a.r. of α∀k∀n(A(n)e ≤ 2−lth(U(k)) → (F (A(n)))e ≤ 2−lth(k))

Theorem 8. A partial real function φ is computable in a majorizable class of
type-2 functionals on [a, b] ⊆ dom φ if and only if it has a p.a.r. and a uniform
modulus in the same class.

Proof. (→) Use a and b to find an upper bound for the absolute value of α,
then apply the same reasoning as in the previous proof. ut
Proof. (←) M(A,m, k) = m(U(k)) is a modulus for all A’s representing reals
in the interval, thus φ is p.a.r.-computable in the class. ut

With this definition we’re back at the type-1 level, and we also have a few
important equivalences:

Corollary 1. A partial real function φ is primitive recursive in the sense of
Kleene ([9]) on [a, b] ⊆ dom φ iff it has a primitive recursive p.a.r. and a
primitive recursive uniform modulus on [a, b].

Corollary 2. A partial real function φ is BFF-computable on [a, b] ⊆ dom φ
iff it has a poly-time p.a.r. and a poly-time uniform modulus on [a, b].

Combined with Theorem 1, the latter allows us to state the following equiv-
alence property:

Corollary 3. A partial real function φ is feasible in the sense of Ko on [a, b] ⊆
dom φ if and only if it has a poly-time p.a.r. and a poly-time uniform modulus

on [a, b].
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4 An example: reciprocal of a real number

The task in this section will be to define a suitable p.a.r. of the function 1/α :
R→ R and to inspect its properties.

Theorem 9. The poly-time function F defined as

F (a) =

{
( 1
av
, ae

|av|(|av|−ae) ), if ae < |av|
(0,∞), if ae ≥ |av|

(9)

is a p.a.r. of the reciprocal function on the reals.

Proof. Given a fixed α 6= 0, if a is a partial approximation to α with ae < av,
then

∣∣∣∣
1

α
− 1

a

∣∣∣∣ ≤
1

|av| − ae
− 1

|av|
≤ |av| − (|av| − ae)
|av|(|av| − ae)

=
ae

|av|(|av| − ae)
,

which means F converts partial approximations to α into partial approximations
to 1/α. If a0 is a positive rational number smaller than |α|, then to get (F (a))e ≤
ε, it is enough to supply a partial approximation with ae < a2

0ε/2 (assuming
w.l.o.g. a0, ε ≤ 1). ut

It is a well known fact that the reciprocal function on the reals is not even
primitive recursively computable. However, it is poly-time computable on every
closed interval that does not contain 0. How does this translate to our framework?

Having a closed interval that does not contain 0 is equivalent to having
witness information for the strict positivity of |α|. But this extra information is
enough to allow us to define

M(a0, A,m, k) = m(〈a0〉E # 〈a0〉E #k#2)

U(a0, k) = 〈a0〉E # 〈a0〉E #k#2

(with # being the smash function, x#y = 2lth(x)lth(y)) which are, respectively, a
modulus for F and an uniform modulus for F on every closed interval of the real
line parameterized by the witness a0. Therefore, F defined in (9) is uniformly
linear in the error of the approximation ae and the requested precision k, and
quadratic in the value of the approximation av and the witness a0 on the full
real line.

Note that we needed the witness only to define and prove a property of the
p.a.r. The representation itself is not changed by whether it can be found or not.
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Exact real number arithmetic has had the reputation of being excessively slow
in comparison to standard machine precision floating point. Even in cases where
high precisions are not neccessary, real number systems tend to take hundreds
of times longer to compute their results.

RealLib is a system that changes this. It uses an approach that treats func-
tions on real numbers as lower-type objects, which allows it to run very close
to the computer hardware. As a result, real number computations with RealLib
can run nearly as fast as floating point computations with double precision.

This talk is a demonstration of the features of the library and its performance.
For more information and the current version of RealLib, visit http://www.
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This talk presents an overview of ACET T (Average-Case Execution Time
Tool), a new programming language with the distinguishing feature that the
average-case running time of its programs can be determined in a (semi-)automated
fashion.

The language is built around a carefully-selected and integrated suite of data-
structuring operations, each of which has the key property of being “randomness-
preserving”. Essentially, this means that the relative distribution of all possible
inputs to an operation is preserved and reflected in the distribution of its outputs.
We have proved that programs constructed from such operations are guaranteed
to have average-case running times that are linearly-compositional, and so the
average time of an entire program can be readily deduced from those of its
constituent parts.

In this regard, ACET T is unique among languages, and appears to offer a
fundamental new contribution to the field of programming.
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Abstract. The paper deals with ‘analytic’, transitivity-free proof-systems
for combinatory logic CL and generalizations thereof, called “combina-
tory systems”, recently introduced by the Author ([10]). We shall review
some applications (to weak reduction and to decidability of certain sub-
systems of CL+ ext) of the main theorem about the eliminability of
transitivity in these systems, showing how the latter considerably sim-
plify the proof-theory of the corresponding equational theories. Finally,
we will present some new (partial) results concerning the application of
proof-theoretical methods to the equational theory of λ-calculus.

1 Introduction

An equational calculus E over an equational language LE is usually presented as
consisting of: (i) certain specific axioms, namely a set AX(E), closed under sub-
stitutions, of LE-equations; (ii) the common deductive apparatus of equational
logic: the axiom schema of reflexivity of equality, and the inference rules saying
that equality is a symmetrical and transitive relation and a f -congruence w.r.
to every functor f in LE — the substitution rule being superfluous in view of
the closure requirement on AX(E). Then, by Birkhoff’s Completeness theorem,
one has: `E t = s iff AX(E) |= t = s.

These standard presentations are for most purposes very convenient. Yet the
transitivity rule (which obviously cannot be dispensed with here, except that in
trivial cases) possesses an inherently synthetic character in combining derivations
(like modus ponens in Hilbert-style calculi for first-order logic), which frequently
renders naive proof-theoretic arguments impossible. For instance, imagine we are
interested in getting a syntactic consistency proof of a given E, for which we do
not have a natural model ready at hand. We cannot, arguing by induction on the
length of the derivations, conclude that 0E x = y (x, y two distinct variables)
because x = y neither is a specific axiom (assume it isn’t) neither (by I.H.) can
be obtained as a conclusion of one of the inference rules: this naive argument
trivially breaks down when the case of the transitivity rule is considered (and in
fact in this case only).

So, given that standard, ‘synthetic’ equational calculi do not lend themselves
directly to proof-theoretical analysis, one might ask the question whether there
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are significant cases in which it is both possible and useful to turn a ‘synthetic’
equational calculus into an equivalent ‘analytic’ calculus, where the transitivity
rule is actually redundant.

We will primarily consider one specific equational calculus, combinatory logic
CL (or the calculus of weak equality ; see e.g. [1], [2], [3], [4], [8]), which is perhaps
the simplest undecidable theory.

The language of CL comprises the individual constants K and S, and the
binary functor ap (application); as usual, ts is short for ap(t, s), tsr for (ts)r,
etc. AX(CL) consists of the instances of the two schemas:

Kts = t and Stsr = tr(sr) .

It is well known that so-called “mathematical” models of CL appeared only
by the end of the Sixties. Until then only term models were known: and these
were, as it is often said, proof-theoretically obtained by introducing a relation of
reduction between terms, whose analysis (hinging on the fundamental Church-
Rosser theorem and its corollary on the uniqueness of normal form) provides a
satisfactory interpretation of provable equality and consequently a consistency
proof for CL. Yet the reduction calculus is no more an equational calculus in
the strict sense; perhaps, instead of speaking of a proof-theory of CL, it would
be more appropriate to speak of an operational semantics for CL (see e.g. [5]).

In a recent paper of ours ([10]) new formal systems for combinatory logic CL
and for more general systems of combinators (called “combinatory systems”, see
Sect. 1) are introduced. The new formal system for CL is obtained from the
standard synthetic one as follows:

– the axioms on the primitive combinators K and S are replaced by the pair
of introduction rules (on the left and on the right):

tp1 . . . pn = s

Ktrp1 . . . pn = s
Kl

t = sp1 . . . pn
t = Ksrp1 . . . pn

Kr
(n ≥ 0) ,

tq(rq)p1 . . . pn = s

Strqp1 . . . pn = s
Sl

t = sq(rq)p1 . . . pn
t = Ssrqp1 . . . pn

Sr
(n ≥ 0) ,

which in a sense exploit the natural left/right asymmetry of the combinatory
axioms;

– reflexivity and transitivity are retained, while
– symmetry is dropped and ap-congruence is taken in its parallel formulation

t1 = s1 t2 = s2
t1t2 = s1s2

App .

The above system G[C] turns out to be both equivalent to CL and analytic,
since we can (constructively) prove that it admits the elimination of transitivity.
Now the consistency of G[C], and so also of CL, is an immediate consequence;
moreover, all these results hold in general for arbitrary combinatory systems X
and their associated synthetic and analytic calculi C[X ], resp. G[X ] — in certain
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cases even when an extensionality rule is added. Finally, owing to the analyticity
of our calculi, the proof-theory of the respective equational theories is drastically
simplified. By exploiting the natural analogy between cut-elimination in sequent-
style logical calculi, and transitivity elimination in our analytic combinatory
calculi, we are able to give new demonstrations, by a purely proof-theoretical
analysis, of well known results concerning CL and weak reduction (e.g. the
Church-Rosser theorem and the leftmost reduction theorem) and to generalize
these results to combinatory systems as well. Also, some new (as far as we know)
results concerning the decidability of certain fragments of CL+ extensionality
can be obtained in the same style.

In the present paper, we shall give a survey of the results so far discussed
(unless otherwise specified, detailed proofs are to be found in [10]), and we shall
hint as well at some new (still partial) results concerning the proof-theory of
λ-calculus.

2 Combinatory Systems and Analytic Combinatory
Calculi

Given a non-empty, possibly countably infinite set X = {F,G,H, . . .} of individual
constants (combinators), we denote by TX the set of all terms that are induc-
tively generated from variables in V = {v1, v2, v3, . . .} and combinators in X by
means of the binary function symbol ap for application. We let x, y, z, . . ., resp.
t, s, r, . . . (occasionally Φ, Ψ, . . .) vary over V , resp. TX. The standard conventions
for writing application terms are adopted throughout: ts is an abbreviation of
ap(t, s), and missing parentheses are to be restored by associating to the left.
Further notational conventions include:

– V (t) := the set of all variables occurring in t;
– T n

X
:= the set of all terms t such that V (t) ⊆ {v1, . . . , vn} (the set of all

closed terms, if n = 0);
– t[x1/s1, . . . xn/sn] := the term resulting from t by simultaneous substitution

of si for xi (1 ≤ i ≤ n);
– for Φ ∈ T n

X
, Φ[s1, . . . , sn] := Φ[v1/s1, . . . vn/sn].

The symbol ≡ denotes syntactic equality between terms, and ‖t‖ denotes the
length of t, i.e. the number of occurrences of individual variables and individual
constants in t.

A combinatory system X over X is defined as a CL-like system built over
the set X of primitive combinators. Formally, X is a map associating to each
combinator F ∈ X a pair 〈kF, ΦF〉, where kF ≥ 0 (the index of F under X ) and
ΦF ∈ T kF

X
(the definition of F under X ). Intuitively, the pair X (F) describes the

intended reduction for the combinator F in the system X :

Ft1 . . . tkF
→ ΦF[t1, . . . , tkF

] .

Accordingly, CL may be represented as the combinatory system C over L{K,S}

such that:
C(K) = 〈2, v1〉 and C(S) = 〈3, v1v3(v2v3)〉 .
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A combinatory system X over X is said to be linear, resp. pure, iff in the defi-
nition ΦF of an arbitrary F ∈ X each variable has at most one occurrence, resp. no
combinator does occur. It is said to be recursive iff, being X = {F0,F1, . . .}, the
map n 7→ 〈kF, ΦF〉 is recursive. Note that in combinatory systems which are both
pure and linear each combinator F satisfies, for every t1, . . . , tkF

: ‖Ft1 . . . tkF
‖ >

‖ΦF[t1, . . . , tkF
]‖.

We are going to associate to each combinatory system X a standard synthetic
calculus C[X ] and an analytic calculus G[X ]. To this aim let, for F ∈ X, k = kF

and m ≥ k:

– [Ax− F]X be the equation schema:

Ft1 . . . tk = ΦF[t1, . . . , tk] ;

– [Fr]X and [Fl]X be the two inference rules (right and left F-introducton):

s = ΦF[t1, . . . , tk]tk+1 . . . tm
s = Ft1 . . . tm

[Fr]X
ΦF[t1 . . . tk]tk+1 . . . tm = s

Ft1 . . . tm = s
[Fl]X .

The terms tk+1, . . . , tm are said to form the context of the introduction rule
(which is empty in case k = m).

Next, let [%], [σ], [τ ] and [App] be the inference rules of reflexivity, symmetry,
transitivity and ap-congruence of equality (reflexivity being conveniently treated
as a 0-premises rule):

t = t
[%]

t = s

s = t
[σ]

t = s s = r

t = r
[τ ]

t1 = s1 t2 = s2
t1t2 = s1s2

[App] .

Now, the synthetic proof-system C[X ] is defined as the equational calculus deter-
mined by the axiom schemas [Ax− F]X (for each F ∈ X) and the inference rules
[%], [σ], [τ ] and [App]; and the analytic proof-system G[X ] as the equational cal-
culus determined by the “combinatory” introduction rules [Fr]X and [Fl]X (for
each F ∈ X), plus the “structural” inference rules [%], restricted to atomic terms,
[τ ] and [App].

Furthermore, by Cext[X ] and Gext[X ] we shall denote the extension of C[X ],
resp. G[X ], by means of the extensionality rule:

tx = sx

t = s
[Ext ] (x /∈ V (ts)) .

Note that the symmetry rule is not a primitive rule of analytic calculi, yet
the latter are readily seen to be closed under [σ]. As a consequence, it can be
easily verified that the C- and G-calculi are equivalent.

Proposition 1. For every combinatory system X and every equation E,

`C(ext)[X ] E iff `G(ext)[X ] E .
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As a concluding remark, we call the reader’s attention to the fact that, as far
as equational deductive power is concerned, “almost every” calculus C[X ] can
be embedded in CL. More precisely, given an arbitrary recursive combinatory
system X over X = {F0,F1, . . .} we can prove (by applying the multiple fixed
point theorem for CL in the simplest case in which X is finite, and Klop’s infinite
fixed point theorem, see e.g. [1], p. 184, in the general case) that there exists a
set X′ = {F′

0,F
′
1 . . .} of closed T{K,S}-terms such that, for every n ≥ 0 and every

list t1, . . . , tkFn
of T{K,S}-terms:

`CL F′
nt1 . . . tkFn

= Φ′
n[t1, . . . , tkFn

] ,

where Φ′
n is obtained from Φn by replacing every Fi with the corresponding F′

i.
By contrast, it is evident that X -reduction (to be defined in the next section)
cannot, in general, be faithfully simulated by means of standard CL w(eak)-
reduction.

3 Elimination of Transitivity, with Applications

In the first part of this section, we will concentrate on G-calculi without exten-
sionality. The central result, actually that which justifies the attribute ‘analytic’
we have used so far, is:

Main Theorem 1 (Elimination). Let X be a (recursive) combinatory sys-
tem: every derivation D in G[X ] can (effectively) be transformed into a τ -free
derivation D∗ having the same end–equation as D.

This theorem follows as an immediate consequence of a syntactic Reduction
lemma, saying that any given derivation D containing a single and final applica-
tion of the transitivity rule [τ ] can be transformed into a τ -free derivation of the
same end-equation as D. Its proof, in turn, runs by ω3-induction, specifically by
triple induction on the following numerical parameters (in the order) associated
to each derivation D: height (maximum number of applications of combinatory
inferences along a path of D), size (overall number of applications of combina-
tory inferences in D), and rank (sum of the lengths of all terms r occurring as a
cut-term in some application of [τ ] in D).

Owing to the Elimination theorem, we now know that G[X ] and G−[X ]
(G[X ] minus [τ ]) are equivalent. On the other side, given two distinct variables x
and y it is evident that G−[X ] 0 x = y, the ‘naive’ argument alluded to in Sect. 1
being well available once [τ ] has been removed; see also the more general property
(R.4) below. We so have, together with Proposition 1, syntactical consistency as
a bonus:

Proposition 2. For all X , the calculi G−[X ], G[X ], C[X ] are equivalent and
consistent.

A second, easy consequence of the elimination theorem concerns the existence
of a terminating proof-searching strategy in G−[X ], whenever the combinatory
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system X is pure, linear and recursive (like for instance BC I and BCK): on
the one side we do not have the transitivity rule, and on the other side (due
to pureness and linearity) the complexity of a conclusion t = s (i.e. ‖ts‖) of
a combinatory rule is greater than that of its premise. Hence a direct, purely
proof-theoretical demonstration of:

Proposition 3. If X is pure, linear and recursive, then C[X ] is decidable.

In view of further applications let us consider, given an arbitrary combinatory
system X , the (straightforward) relativizations to X of the standard notions of
redex and contractum, one step reduction, (weak) reduction, (weak) normal form
etc. from CL. E.g., we call a term t a X -redex, and t′ its X -contractum, iff
t ≡ Fs1 . . . skF

and t′ ≡ ΦF[s1, . . . , skF
] for some F ∈ X. The induced relations of

one-step X -reduction and X -reduction (the reflexive and transitive closure of the
former) are denoted by→X , resp. ³X , and the set of TX-terms in X -normal form
by NFX (subsequently, the subscript X will be dropped throughout whenever
possible).
X -reducibility and G[X ]-derivability are easily seen to be related as expected:

(R.1) t ³X s ⇒ `G[X ] t = s .

Moreover, by a straightforward induction on the length of τ -free derivations, we
can also prove:

(R.2) `G−[X ] t = s ⇒ ∃r(t ³ r ´ s) ;
(R.3) if D `G−[X ] t = s and the derivation D contains at least one
occurrence of a left (right) combinatory introduction rule, then the term t
(resp.: s) contains at least one occurrence of a X -redex.

The latter (a kind of subterm property of τ -free derivations) immediately yields,
in turn:

(R.4) if D `G−[X ] t = s and t, s ∈ NFX , then t ≡ s .
Now, simply by combining (R.1), (R.2) and the elimination theorem, we get:

Theorem 2 (CR(X )). For every combinatory system X , the relation ³X is
Church-Rosser.

As usual, CR(X ) implies uniqueness of X -normal forms. Note however that
in the present context an alternative proof of that property, which does not
pass through CR, immediately follows from (R.1), (R.4) and Theorem 1. Also,
observe that if X is pure and linear we trivially have (i) strong normalization
for X (for every term t, the X -reduction graph of t is finite) and so, directly and
without using CR, (ii) every LX term t has exactly one X -normal form.

Another interesting consequence of τ -elimination and the subterm property
(R.3) consists in a new, proof-theoretical demonstration of the Leftmost reduction
theorem for CL (usually proved as a corollary to the stronger Standardization
theorem, see e.g. [1] and [8]), here generalized to arbitrary combinatory systems.
The theorem says that the leftmost reduction strategy (³l

X ), consisting in re-
ducing step by step (→l X ) always the leftmost redex occurrence, is normalizing.
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Theorem 3 (Leftmost reduction). For every X and every term t, if t has
the X -normal form s, then t ³l

X s.

The intuitive idea underlying our proof is simple (although the technical details
require some non trivial work, cf. [10]): given a term t having the normal form
s, property (R.1) and Theorem 1 provide us with a τ -free G[X ]-derivation D of
t = s which, by (R.3), doesn’t contain occurrences of right introduction rules, so
allowing the extraction of a leftmost reduction path going from t to s. Specifically,
this leftmost path corresponds to the succession of occurrences of combinatory
inferences which are encountered by “visiting” each node in D’s tree starting
from the bottommost node and following an upward-leftward direction, with
backtracking to the the leftmost not yet visited node when a terminal node is
reached.

Once the extensionality rule is added to the G-calculi, the problem concern-
ing the eliminability of transitivity becomes much more complicated. Indeed, in
this case — by a suitable adaptation of the methods employed in the proof of
Theorem 1 — we are presently able to prove τ -elimination only for a restricted
class of combinatory systems, not including CL (cf. [10]).

Theorem 4 (Restricted elimination). Let X be a linear combinatory sys-
tem: every derivation D in Gext[X ] can (effectively) be transformed into a τ -free
derivation D∗ having the same end–equation as D.

It is an open problem whether the above result can be extended to every
combinatory system X , and in particular to the combinatory system C. As we
showed in [10], a syntactical proof of eliminability of transitivity for Gext[C], the
analytic version of CL + ext , would have a relevant consequence consisting in
a direct proof of the Church-Rosser property for combinatory strong reduction
³s. We recall that ³s is defined by the same rules as weak reduction ³w (i.e.
³C), with the addition of

t ³s s

λ∗x.t ³s λ∗x.s
,

where, for a CL-term r and a variable x, the associated abstraction CL-term
λ∗x.r is defined as usual, see e.g. [8], p. 25. Indeed, ³s is Church-Rosser but,
as far as we know, all the available proofs of CR(³s) are indirect, hinging on
the confluence of λβη-reduction and the equivalence between CL+ext and λβη

calculus (cf. [1], p. 156; [3], Sect. 11E; [7], Chapt. 7; [8], Sect. 8B; see also [6],
[9]).

As a first step towards a positive solution of the conjectured eliminability
of [τ ] in Gext[C], we have recently proved that a necessary condition for the
equivalence of Gext[C] and G−

ext
[C] (cf. Open Problem 6.3 of [10]), saying that

(*) G−
ext

[C] is equivalent to G−[C] +
t = s

λ∗x.t = λ∗x.s ξ
∗ ,

does hold. Actually, G−[C] + [ξ∗] is easily seen to be closed under [Ext ], while
we can now prove the converse direction of (*), i.e. the closure of G−

ext
[C] under
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[ξ∗], by means of a key lemma stating that each G−
ext

[C]-derivation D of an
equation p[x/t[y/r]] = q (with the variable x occurring exactly once in p) can
be transformed into a G−

ext
[C]-derivation D∗ of p[x/(λ∗y.t)r] = q.

We conclude this section by mentioning an interesting application of the re-
stricted elimination theorem, which enables us to show, by purely proof-theoretical
analysis, that certain extensional subsystems of CL+ ext (for instance BCK+ ext)
are decidable.

Theorem 5. For every pure, linear and recursive combinatory system X , Cext[X ]
is decidable.

The key point consists in the proof of a Boundedness lemma saying, for combi-
natory systems X satisfying the above assumptions, that an arbitrary equation
E is τ -free derivable in Gext[X ] iff there exists a τ -free Gext[X ]-derivation D of
E whose length is less than a suitable numerical bound depending uniformly and
effectively on E. This clearly provides a terminating backward proof-searching
strategy for G−

ext
[X ] which in turn yields, because of the equivalence of Gext[X ]

and G−
ext

[X ] given by the restricted elimination theorem, the decidability of the
two equivalent calculi Gext[X ] and Cext[X ].

4 An Analytic Proof-System for λ-Calculus

The feasibility of applying proof-theoretical methods also to the equational the-
ory of λ-calculus was considered in [10]. In particular, in strict analogy with
the peculiar formulation of analytic combinatory calculi, we introduced the cal-
culus G[β] as a possible candidate to represent the analytic counterpart to the
standard, synthetic presentation of the above theory. G[β] is determined by the
following inference rules:

(i) Left and right introduction rules (β-rules):

t[x/r]p1 . . . pn = s

(λx.t)rp1 . . . pn = s
[βl]

t = s[x/r]p1 . . . pn
t = (λx.s)rp1 . . . pn

[βr] (n ≥ 0) ;

(ii) Structural rules: [%] (restricted to variables), [App], [τ ] and

t = s

λx.t = λx.s
[ξ] .

Note that α-congruent λ-terms (λ-terms, as usual, are generated starting from
individual variables by means of application and λ -abstraction) are here identi-
fied, and that we adopt the standard “variable convention” in writing terms and
in doing substitutions (see e.g. [1], p. 26).

The calculus G[β] is clearly equivalent to the standard synthetic equational
calculus C[β] determined by [%], [App], [σ], [τ ], [ξ] and the β-conversion schema
(λx.t)s = t[x/s]. The problem concerning the eliminability of transitivity in
G[β] was left open in [10]. Indeed, it turns out that in trying to adapt to G[β]
the proof of Theorem 1 one encounters similar difficulties as in trying to prove
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Theorem 4 for arbitrary combinatory systems X : (weak) extensionality (here the
rule [ξ]), when combined with a form of non-linearity (here the obvious fact that
in an abstraction term λx.t the variable x may have more than one occurrence),
seems to resist inductive proof-strategies based on natural complexity measures
of derivations.

However, we can now state:

Theorem 6. G[β] admits τ -elimination.

This result, although encouraging, is not completely satisfactory. Indeed, the
only demonstration of it that we presently have is not entirely proof-theoretical,
in so far as it makes essential use of the Church-Rosser theorem for λβ-reduction
³β .

Here is a sketch of the proof. Let us say that a G[β]-derivation D of t = s is a
left-derivation, in symbols D `L t = s (a right-derivation, D `R t = s) whenever
there are no applications of the rule [βr] (of the rule [βl]) in D. We also write
D `− t = s to mean that D is a τ -free derivation of t = s.
Thanks to the left-right symmetry of the calculus, we trivially have:

(β.1) `(−)

L t = s ⇔ `(−)

R s = t .

Also, it is easily verified that:

(β.2) t ³β s ⇒ `L t = s .

Next, by induction on the length of derivations, we can prove the β-inversions:

(β.3) D `−L t = (λx.s)rp1 . . . pn ⇒ ∃D∗( D∗ `−L t = s[x/r]p1 . . . pn ) ,

D `−R (λx.s)rp1 . . . pn = t ⇒ ∃D∗( D∗ `−R s[x/r]p1 . . . pn = t ) .

Let now s(D) denote the overall number of applications of β-rules in D. For
any given derivations D1 `−L t = s and D2 `−L s = r we are able to construct a
derivation D∗ `−L t = r, arguing by induction on ω2 · s(D2) +ω · s(D1) + ‖s‖ and
using (β.3). Hence:

(β.4) D `L t = s ⇒ ∃D∗( D∗ `−L t = s ) (left τ -elimination).

Of course, the symmetrical right τ -elimination follows by (β.1).
A last lemma is needed:

(β.5) D1 `−L t = s and D2 `−R s = r ⇒ ∃D∗( D∗ `− t = r) ,

which is easily proved by induction on ω · (s(D1) + s(D2)) + ‖s‖.
To finally prove Theorem 6, assume that G[β] ` t = s. Then C[β] ` t = s

(that is: t and s are β-convertible) and, by the Church-Rosser theorem for ³β ,
we have that t ³β r and s ³β r for some term r. So, by (β.2), (β.4) and (β.1):

`−L t = r and `−R r = s ,

whence G[β] `− t = s follows by (β.5).
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We think it would be interesting to find an alternative, more direct proof of
the τ -elimination theorem for G[β], as well as to exploit this result towards nice
applications, as we did for combinatory systems. Another open problem, still
to be tackled, concerns the eliminability of the transitivity rule in the calculus
G[β]+ext corresponding to the equational theory of λβη-reduction.
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Abstract. In this paper we consider a “mathematical” proof of the
Church Thesis. The proof is based on very weak assumptions about in-
tuitive computability and the FM–representability theorem from [1]. It
develops and improves the argument from [2]. Our argument essentially
depends on the mathematical model of the world we are in.

1 Introduction

We discuss here a justification of the Church Thesis, called also the Church–
Turing Thesis.1,2

The thesis can be formulated as follows.

Thesis 1 (The Church Thesis, the first formulation, [3] and [4]). 3 Our
intuitive notion of computability is equivalent to the notion of computability de-
fined by means of Turing machines.

The main difficulty in justifying this thesis is proving that Turing machines
can compute every intuitively computable notion. Therefore we concentrate on
this part.

We use various forms of words “computable” and “recursive” in the following
sense:

To compute means physical or abstract activity of carrying out intuitive algo-
rithms, computable means the same as intuitively computable, that is something
which can be computed;

Recursive means something which can be represented by means of any equiv-
alent mathematical model of computations, such as: Turing machines, programs
for register machines, or µ–recursive functions.

According to this terminology, the Church Thesis is the general claim that
exactly those functions (sets, relations) are computable which are recursive.

1 This paper owes a lot to Cezary Cieśliński, Leszek KoÃlodziejczyk, and Konrad
Zdanowski. The majority of the ideas of this paper were formulated in discussions
with them.

2 A sketchy presentation of the argument has been given in [2].
3 We use terms “THESIS” and “CLAIM” for statements with some non–mathematical

content. They are numbered independently of purely mathematical statements.
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1.1 The scheme of our justification

The general scheme of our argument is the following:

1. We start with an ontological part by giving a mathematical model of the
world without actual infinity – finite but potentially infinite. Our argument
is essentially based on the assumption that this is a good mathematical
model of the world in which we live.

2. We characterize the class of concepts which can be meaningfully described in
such a world – FM–representable relations. This gives our first upper bound
for computable notions.

3. Then we consider an epistemological criterion separating effectively com-
putable relations from all other FM–representable relations. The criterion
says that, for a given query of the form “is a given tuple (a1, . . . , an) in a
relation R?”, the answer should be known to us at some stage.

4. We assume relatively weak mathematical explication for to know the answer,
by observing that our knowledge has to be expressible in our language and
we should be able to express our knowledge when knowing the answer. We
obtain on this basis the conclusion that all intuitively computable notions
are computable in the standard mathematical sense.

1.2 The assumptions of our justification

Our justification is essentially based on three assumptions.

1. We assume that a finite but potentially infinite world is a good mathematical
model of our reality. This assumption is discusses in sections 3 and 4.

2. We assume that if we know something then we can express this knowledge
in our language. This assumption seems to be rather obvious.

3. We assume that our language has the following property: the relation be-
tween finite models and sentences of this language is recursive. As a matter
of fact, a stronger version seems to be trivially true. Namely, each sentence of
our language is equivalent to some sentence of finite order. This assumption
is needed for applicability of theorem 3 in our justification. Let us emphasize
that we do not need the assumption of recursivity of syntax, but only of the
semantics in finite models.

It seems that only the first of the three assumptions is essential – in the sense
that it can be considered as doubtful. Therefore we would say that the proof is
given relatively to the first assumption.

2 Computability and recursivity

In 1900, many years before we had at our disposal any serious mathematical
model of computation, Hilbert formulated his tenth problem “Give a method
which, using finitely many operations, will decide whether a given equation can
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be solved in integers.”4. Obviously, the problem would be meaningless if we did
not have any intuitive notion of computability. It is interesting that Hilbert
asks for a positive solution, probably having no idea how a negative one would
look. Even now, we do not know any method of giving negative answers to such
questions which does not involve some variant of the Church Thesis. It seems
obvious that Hilbert and other mathematicians in 1900 had an intuitive notion
of decidability. Otherwise Hilbert’s formulation of the tenth problem would be
meaningless.

Let us observe that no essential doubt was raised against the effectivity of
decision methods computable by means of e.g. Turing machines.5 The analysis
of computability given by Turing in [4] very convincingly supports the claim
that every computable notion is recursive.6 Therefore, as a rule, the following is
generally accepted.

Thesis 2 (Soundness Thesis). All recursively decidable sets and relations are
intuitively decidable.

Let us observe that thesis 2 gives a partial answer to the problem of an upper
bound for intuitive computability. In what follows we assume the soundness
thesis usually without explicit reference to it.

3 Finite but potentially infinite world

The notion of potential infinity was formulated by Aristotle more than 2300 years
ago in Physics [9] and it is still understood in a similar way. Objects, which are
not actually infinite can nevertheless be potentially infinite in the sense that
they can always be enlarged.

Let us put things in a slightly more concrete way. In our practice of computing
technology we never use an actually infinite set of natural numbers. In each
concrete implementation we use only finitely many of them. Nevertheless always
– if it is needed – we can enlarge this set, e.g. by choosing a new representation
using more bits. Using Aristotelian terminology, we say that the set of natural
numbers used in computing technology is only potentially infinite.

Looking at our world we can also consider it as finite but potentially infinite.
Let us observe that modern physics supplies contradictory arguments here, on
the one hand, estimating the number of elementary particles, and on the other
hand using continuous values for describing physical relationships. It seems that

4 “Man soll ein Verfahren angeben, nach welchem sich mittels einer endlichen Anzahl
von Operationen entscheiden läßt, ob die Gleichung in ganzen rationalen Zahlen
lösbar ist.”, lecture delivered by D. Hilbert at Mathematical Congress in Paris 1900,
quotation after [5].

5 Sometimes people misleadingly identify computability with practical computability.
The last notion is beyond our interest in this paper. A short discussion of practical
computability from the point of view of our epistemic abilities can be found in [6].

6 A lot of historical comments about the Church Thesis can be found in [7] and [8].
In these works also an extensive bibliography can be found.
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it can be explained similarly as successful applications of analytical methods in
combinatorics.

In what follows we assume that our world is finite but potentially infinite.
To simplify our arguments we also assume that the only entities available are
natural numbers. If the infinite world can be imagined as the domain of natural
numbers N = (ω,+,×, s, 0) then a finite but potentially infinite world can be
imagined as the FM–domain FM(N ) = {Nk : k = 1, 2, 3, . . .}, where Nk is the
restriction of N to the set {0, 1, . . . k − 1}. In this case the successor function is
treated as a binary relation.

Let us stress here that our way of rejecting actual infinity is very distant
from so called strict finitism. It is much closer to the approach presented by Jan
Mycielski in [10].

4 Other worlds

We give our justification of thesis 1 relatively to the mathematical model of our
world discussed in the previous section. So, if we reject soundness of this model
then the justification is invalid. In this section we consider shortly some different
hipotheses which would refute the Church Thesis.

Firstly, let us assume that our world consists of Euclidean space–time with
arbitrary small material objects. Time is infinitely divisible similarly as space.
Additionally, there is no limit for speed. It seems that the picture can be loosely
considered as describing the Newtonian world.

In such a world we can imagine the possibility of performing infinitely many
steps in bounded time. For instance, the first step is carried out in 1 second, the
second one in 1

2 second, the next one in 1
4 second, and so on. In general the next

step is carried out two times faster than the previous one. In this way countably
many steps can be performed in 2 seconds. Thus we can check any Π0

1 property
of natural numbers in bounded time.

Secondly, let us consider an atomistic model of our reallity. Now again time
and space are infinitely divisible and the space contains a number of nondivisible
objects called atoms, which geometrically can be precisely represented as points.

Having any four points a, b, c, d at any time t we can describe the real num-
ber f(t, a, b, c, d) representing the ratio of the distance between a and b to the
distance between c and d at the moment t. So having any method of gen-
erating time points t0, t1, t2, . . . we can define the function g : ω −→ R as
g(n) = f(tn, a, b, c, d). Now we can compute the function h : ω −→ ω such
that h(n) = n–th digit of g(n). It can happen that h is not recursive.7

Let us observe that while the first example is incompatible with our current
knowledge about the physical world, this is not so obvious in the case of the
second one.

Both examples discussed in this section essentially assume actual infinity. We
discuss them here only to emphasize the relative character of our justification

7 This is a simplified version of an argument against the Church thesis, probably the
most popular in the recent literature, see the discusion in [7].
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of the Church thesis. In a sense the question whether our model of a finite but
potentially infinite world is sound cannot be decided easily. Nevertheless, it seems
that it describes quite well the world of digital computers.

5 FM–representability

In this section we will discuss the notion of FM–representability. Originally it was
motivated by an attempt to transfer the Tarskian method of truth definitions –
as a tool for classifying finite order notions – to finite models.8

In [1] the following problem is considered:

Which infinite classes or relations of natural numbers can be meaningfully
described in such finite but potentially infinite domains?

The explication of being meaningfully described proposed in that paper is
given by the notion of FM–representability. Here and in what follows by a formula
we mean a first order arithmetical formula and by a finite model we mean an
element of the FM–domain FM(N ).

Definition 1. Let R ⊆ ωn. Then R is FM–represented by the formula
ϕ(x1, . . . , xn) if and only if for each a1, . . . , an ∈ ω, ϕ(a1, . . . , an) is true in
almost all finite models exactly when R(a1, . . . , an) and ϕ(a1, . . . , an) is false in
almost all finite models exactly when R(a1, . . . , an) does not hold.

R is FM–representable if it is FM–represented by some formula.

Equivalently, this definition can be formulated as follows: ϕ(x1, . . . , xn) FM–
represents R if ϕ(x1, . . . , xn) correctly describes each finite piece of the charac-
teristic function of R in almost all finite models.

In [1] the class of FM–representable notions is characterized as follows:

Theorem 3 (FM–representability Theorem). Let R ⊆ ωn. Then R is FM–
representable if and only if R is of degree ≤ 0′ (recursive with some recursively
enumerable oracle), or equivalently ∆0

2 in the arithmetical hierarchy.

Let us observe that theorem 3 does not depend on the underlying logic. It
holds for any logic extending elementary logic with a decidable truth relation.
We say that a logic L has a decidable truth relation if and only if the relation
“M |= ϕ” is decidable, for a finite model M and an L–sentence ϕ.

It was observed recently by MichaÃl Krynicki and Konrad Zdanowski [13] that
the arithmetic of multiplication restricted to finite models would also be sufficient
as an underlying theory. This result has been improved in [14] by showing that
the divisibility relation is sufficient here. Some variants of the notion of FM–
representability are discussed in [15].

8 The notion of truth definitions in finite models was formulated in [1], and then
investigated in [2], [11], [12].
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6 FM–representability and recursivity

In this section we give our explication for to know when a formula ϕ(x1, . . . , xn)
correctly answers a question of the form “R(a1, . . . , an)?”.

We say that the formula ψ(x1, . . . , xn) is a testing formula for ϕ(x1, . . . , xn)
and R ⊆ ωn if and only if the following conditions are satisfied:

– for each a1, . . . , an ∈ ω there is n0 such that for each finite model M , M |=
ψ(a1, . . . , an) if and only if card(M) ≥ n0;

– for each a1, . . . , an ∈ ω and each finite model M , if M |= ψ(a1, . . . , an) then
R(a1, . . . , an) if and only if M |= ϕ(a1, . . . , an).

A testing formula for ϕ(x1, . . . , xn) and R ⊆ ωn simply says for given natural
numbers a1, . . . , an whether we know the answer to the question “(a1, . . . , an) ∈
R?” or not. Then according to our explication we would know the answer for
each question of the above form if we have a testing formula. We easily get the
following:

Theorem 4. Let R ⊆ ωn, then R is recursively decidable if and only if there
are formulae ϕ(x1, . . . , xn), ψ(x1, . . . , xn) such that ψ(x1, . . . , xn) is a testing
formula for ϕ(x1, . . . , xn) and R.

7 The proof of the Church Thesis

We consider here the version of the Church Thesis for sets and relations, stating
that:

Thesis 5 (The Church Thesis for sets and relations). Our intuitive notion
of decidability is equivalent to the notion of recursive decidability.

In one direction this thesis follows from the soundness thesis.
Let us consider the following obvious property of intuitively decidable rela-

tions R ⊆ ωn:

Claim. If R is intuitively decidable then each query of the form “R(a1, . . . , an)?”
can be solved in some sufficiently large finite world in such a way that we would
know whether our solution is conclusive or not.

Because we have assumed the existence of a testing formula as an explication
for to know then we can replace claim 7 by a more precise version.

Claim (More mathematical version of claim 7). If R is intuitively decidable then

– there is a formula ϕ(x1, . . . , xn) FM–representing R,
– there is a formula ψ(x1, . . . , xn) which is a testing formula for ϕ(x1, . . . , xn)

and R.

Proof (of thesis 5). Let R ⊆ ωn. By claim 7 we see that R should be
FM–represented by some formula ϕ(x1, . . . , xn). Moreover, we have a formula
ψ(x1, . . . , xn), which a testing formula for ϕ(x1, . . . , xn) and R. Then by theorem
4 the relation R is recursively decidable.

Since the reverse implication follows from thesis 2, we have justified thesis 5.
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8 Concluding remarks

In this paper we have given a “mathematical” proof of the Church Thesis. Of
course such a proof needs some mathematically well–defined knowledge about
intuitive computability. The explanatory value of the proof depends on philo-
sophical plausibility of this knowledge.

A standard approach to justifying the Church Thesis is considering some
general conditions which should be satisfied by possible computations, and then
proving that these conditions imply the thesis. This is exactly the way chosen
by Gandy in [16].

Our mathematical model is rather the model of reality and our knowledge
about results of computations than just another mathematical concept of com-
putations. It seems that our proof meets to the requirements for a proof of the
Church thesis proposed by Gödel.9 According to them the thesis should be jus-
tified on the basis of some properties of intuitive computability which would be
generally accepted as its properties. However, the thesis would be false if we
assumed other mathematical models of our reality. Then the properties of the
notion of intuitive computability would depend on properties of our world.

Finally, let us consider another aspect of our justification. The FM–
representability theorem holds only for logics with a recursive truth relation.
Hence somebody could accuse the justification of containing vicious circle, be-
cause the recursivity in the conclusion follows from recursivity in one of the
premises. However, the assumption is not so strong as its falsity would mean
that there are possible finite computational devices which cannot be correctly
described in our language. Nevertheless we should agree that the justification
proposed is based not only on the assumption about the world, but also about
possible languages used for describing it.
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Abstract. In this paper we introduce a computing system which based
on computations on intervals over [0,1]. We present some natural rea-
sons why this method can be useful and interesting. Our interval-values
are built up from points and atomic intervals. We extend the Boolean
operators to these values in a natural way. Changing the bytes of the
traditional computing to interval-values one gets an interval-valued com-
puting device. We investigate some other operators on interval-values as
well, such as shift and product operators. With a simulation we show
that the interval-valued computing device is an extension of the classical
computing devices working on bits in a byte. We show that, theoretically,
this device is more effective than the traditional computers, because of
the possibility of continuum parallelism. A method is presented to solve
the SAT problem in linear time using the interval-valued approach. Our
device is a fundamental computing device using the usual concept of
intervals to make the computations in a more effective way.

1 Introduction

In the end of the 20th century many so-called natural computing device have
appeared in the (theoretical) computer science. They are, for instance the DNA-
computing devices (insertion-deletion systems, splicing systems), the quantum-
computing, and the membrane-computing [2]. To show the efficiency of these
systems, there are shown that for example the SAT problem can be solved by
polynomial time with some of their help. It is a very strong argument for these
systems because there is not known algorithm to solve the SAT problem (or
any other NP-complete problem) in polynomial time with a classical computing
device.

In this paper we investigate a so-called interval-valued computing device.
The intervals are very common. When one is drawing with a pencil on a paper,
(s)he uses points and (approximate) intervals. We would like to use this natural
concept for a computing device. In a traditional computer there are some bits
(usually the number of them is a power of 2) in a byte and the computing process
uses a/some byte(s) in a computing step. One byte can refer a natural number
in the interval between 0 and 2k−1. Theoretically the efficiency of the computer
is highly depend on the value of k. In our investigation a so-called byte can refer



An Interval-valued Computing Device 167

not only a finite number of integers and not for real numbers in a given interval,
but for interval-values, which mean very high efficiency in computing. To show
the efficiency of our system we show a method to simulate the traditional –
finitely many bits in a byte – computing and we solve the SAT problem in linear
time.

The structure of the paper is as follows: after giving some natural motivations,
first we recall some basic concepts of the classical propositional logic and the work
of a central processing unit of a traditional computer. After this we present our
new system, in which the computing is going with intervals. We show how our
system can simulate a classical computing device and why this system is more
general. We will show how the interval-valued computing device can solve the
SAT problem in linear time, as well. Finally we will summarize our results.

2 Motivations from the Nature

As it is already mentioned when one use a pencil and (s)he draws on a paper then
the figure contains points and lines. Restricting the paper to a 1-dimensional line
the figure contains intervals (and points). So the intervals are very common for
humans and using them looks very natural.

In this part we have some arguments why and how interval-values can be
represented in the nature. Everybody knows that in our world almost every
material objects are built up by atoms. The size of the atoms is approximately
an Angstrom (̊a), which is 10−10 meter. In physics and in chemistry there are
materials and methods that can be used up to the measure-mistake is comparable
with the size of the atom. Well-known, for instance that using traditional photo-
cameras the resolution of the photo is extremely high. Films for photography are
coated with a number of very thin light-sensitive emulsion layers consisting of
silver salts and/or dyes. The resolution is very high because the used chemical
materials, especially the silver-colloids make the reaction by molecule [3].

In some TFT and LCD devices the polarization of the molecule can be
changed by ones. So using a sequence of atoms or molecule and changing some
measurable properties of any of them can be represented with a device, which
uses interval-values. (With enough large devices with enough large resolution
one can imagine continuous intervals, as a pencil leaves a ‘continuous’ graphite
line on the paper.) We are going to represent and use an abstract device in this
paper; and now we do not care about the technical details of a possible machine
which works in the practice with interval-values in its registers and how the
calculation with these interval-values can be realised in physical level.

3 Preliminaries: the Traditional Computing (with
Classical Logic)

In this section we recall some basic definitions and facts of the classical logic
[1] and the “classical” computing devices [7, 8]. We are going to use and extend
them.
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3.1 The Classical Logic

In classical logic we have statements, each of them either true or false. We use
notation 1 for true and sign 0 for false. From the atomic statements, the complex
statements can be built by the connectives. See Table 1 for the basic ones.

There are some more logical operators in classical logic, but we can define
them by using the basic operators.
(equivalence: A ≡ B =def (A → B) ∧ (B → A), ‘xor’: A ⊕ B =def A ≡ ¬B,
‘nand’: A&B =def ¬A ∨ ¬B, ‘nor’: A|B =def ¬A ∧ ¬B.)

Table 1. Truth-table of basic logical operators

Name 1st variable 2nd variable negation conjunction disjunction implication

Sign A B ¬A A∧B A∨B A→B

values 0 0 1 0 0 1

0 1 1 0 1 1

1 0 0 0 1 0

1 1 0 1 1 1

3.2 Traditional Computers: Bits and Operations

We call bit the unit of information, which is the answer of a yes-no question.
This concept is widely used in information theory and in statistical physics also.
The Central Processing Unit in a computer uses some bits – called a byte – to
calculate in the same time. The number of bits in a byte first was 4, later was 8
in 1980 (for example in Commodore 64), after a decade 16, after this 32 etc. So
we can say that the higher the number of bits in a byte, the higher the level of
the CPU in a computer. (In computers they use only powers of two.)

The Arithmetical-Logical Unit is a part of the CPU which can produce some
logical and non-logical operators (add, shift etc.). First we are dealing with logical
operators of the ALU. The basic logical operators are negation, conjunction and
disjunction. In fact they use ‘xor’, ‘nand’ and ‘nor’ operations also, but they are
not independent from our basic operators, therefore one can express them by
the basic operators. These operators work on bytes, but they work on each bit
of the bytes (see Table 2). Note, that sometimes the decimal or the hexadecimal
representation of a byte is used, but they are only simple translations from the
binary form.

As we can see the logical operations are going in a parallel way on each bit.
It is one of the reasons why a computer using more bits in a byte can be faster
(in theoretically). The calculations of a classical computer based on the classical
logic and on some other operations. Now, some non-logical (usually they called
arithmetical) operators will be detailed.

We underline non-logical operators: the shift operators. They are the left- and
the right-shift. They work on only one argument, cancelling one of the terminal
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Table 2. The basic logical operators on a byte (bits), where the value of each xj and
yi is either 0 or 1, actually

value of A negation of A value of B conjunction of A
and B

disjunction of A
and B

x1 x2 . . . xn ¬x1¬x2. . .¬xn y1 y2 . . . yn x1 x2 . . . xn

∧ ∧... ∧

y1 y2 . . . yn

x1 x2 . . . xn

∨ ∨... ∨

y1 y2 . . . yn

bits and writing 0 to the other end of the byte (see Table 3). Mathematically
these operations mean the double (forgetting the first bit) or the (integer part
of the) half of the operand.

Table 3. Shifting bits in a byte

value of A in binary code left-shift A right-shift A

x1 x2 . . . xn x2 x3 . . . xn 0 0 x1 x2 . . . xn−1

The add operator is one of the most important operators of bits, which is
more complex than the previous ones and it can be calculated with the previous
operators. The following construction can add two numbers represented by n
bits. The i-th index means the bit representing the coefficient of the value 2n−i.
We will construct the value C by induction, which are the overflow bits. (The
ALU uses logical gates to get sum of two numbers.) The calculation starts with
the last bits and going step by step to the first one.

Let Cn = An ∧Bn.
After this: Ci = (Ai ∧Bi) ∨ (Ai ∧ Ci+1) ∨ (Bi ∧ Ci+1). (n > i ≥ 1)
The bit values of the result are: Rn = An ⊕Bn, and
Ri = (Ai ⊕Bi)⊕ Ci+1. (n > i ≥ 1) and
C1 is the overflow bit of the result.
This calculation is the basis of the computations of traditional computers, at

the physical level the calculation is based on signs 0’s and 1’s.
We reviewed the basic operators of traditional computing as well as the basic

operators of the classical propositional logic.

4 The Interval-valued Computing Device

In this section we are presenting our new system. First we define what the
interval-values mean in a mathematical way. After this we extend some logical
operators to the interval-valued system (based on [5, 6]). Some non-logical oper-
ators are also shown. In the second subsection of the section we show that our
system is an extension of the traditional computing devices. The interval-valued
device (using some restrictions for the used interval-values) can simulate the
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traditional computing. Finally, in this section a method is presented how our
device solves the SAT problem in efficient way.

4.1 Mathematical Description of the System

In this section, – using mathematical accuracy – we describe our model of com-
putation. The computing device is almost similar to the processing unit of a
traditional computer, but using interval-values in the computation instead of
bytes.

The Interval-values In the interval-valued computing system we will use
interval-values above [0, 1]. We give an iterative definition:
Each interval [a, b] with 0 ≤ a ≤ b ≤ 1 is an atomic interval which contains all
the points x between a and b (a ≤ x ≤ b). With special choosing a = b we receive
that each point of the interval [0, 1] is an atomic interval itself.
The union and the difference of two interval-values are interval-values. (the union
of two interval-values consists of each point which occurs at least one of the orig-
inal one, while the difference of the interval-values A and B contains each point
which is in A but not in the interval-value B)

Each interval-value can be constructed from atomic interval-values using only
operations union and difference.

We have two special interval-values: the empty and the full interval. We will
refer them with the signs ⊥ and T, respectively. They can be seen in Figure 1.
T is an atomic interval: [0, 1] and ⊥ can be obtained as the difference of any
interval-value with itself (or difference of any interval-value and T).

Fig. 1. Graphical representation of the interval-values ⊥ and T

Logical Operations with Interval-values In this part we present a natural
extension of the Boolean operators of classical logic to the interval-valued system
[5]. Each point of [0, 1] is either in the interval-value or not. We use the basic
connectives of the interval-values as the connectives work in classical logic for
each of the points of the interval [0, 1]. More precisely, let A(x) the characteristic
function of the interval-value A, i.e. A(x) = 1 if x ∈ A and A(x) = 0 if x /∈ A.
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Let the characteristic function of interval-value B be B(x). Then the interval-
value resulted by a logical operator acting on interval-values A, B, contains all
the points x which have value 1 using the same logical operations between the
characteristic values of the interval-values at point x. Table 4 shows what this
procedure give for the basic logical connectives.

Table 4. The basic logical operators for interval-values

Name negation conjunction disjunction implication

Sign ¬A A ∧ B A ∨ B A → B

Value T \ A A ∩ B A ∪ B ¬(A\B) = ¬A ∪ B

Set theoretically: complement intersection union

It is trivial that the negation of an interval-value is an interval-value (the
result is the difference of T and the interval-value). The disjunction and the
implication of two interval-values are interval-values as well, as Table 4 shows.

Fig. 2. Examples for logical operations with interval-values, negation (left), conjunction
and disjunction (right)

Now, we are proving it for the conjunction, by using the set-theoretical De-
Morgan’s law. A∩B is equal to ¬(¬A∪¬B) therefore A∧B is an interval-value
when A and B are interval-values.

Figure 2 shows some examples for acting logical connectives among interval-
values. Theoretically, the logical operations of interval-values act in continuum
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many points in a parallel way. Note, that in graphical representation – for the
sake of simplicity – we deal with points only when they play an important role,
elsewhere we represents only the interval components with non-zero length.

Non-logical Operators Similarly as the traditional computer has more oper-
ations, to use our system as a general computing device we need to introduce
some other operations. To make our system more efficient we will investigate the
shift operators in two different ways.

But, first we introduce the first-length function which will help us. This
function assigns a real number to each interval-value, namely the length of its
first component. More precisely:

Flength(A) = b − a, if A contains the open interval (a, b) and A does not
contain any interval (a, c) with c ≥ b, moreover the difference of A and [a, b]
does not contain any point x with x < a.

Flength(A) = 0, in other cases.

By the help of the previous function we investigate two kinds of shift opera-
tors. Both of them have two operands. The left-shift operator will shift the first
interval-value by first-length of the second operand to the left, and removing
the part which is shifted out of the interval [0, 1]. Opposite to this, we define
the right-shift operator in a circular way, i.e. the parts shifted above 1 will ap-
pear at the other end of [0, 1]. Mathematically, let Lshift(A,B) and Rshift(A,B)
be the interval-values given after A was shifted to the left and to the right by
Flength(B). (Similarly, we use the notation as the characteristic function of the
interval-value.) Then,

Lshift(A,B)(x) = A(x+ Flength(B)) if 0 ≤ x+ Flength(B) ≤ 1, and

Lshift(A,B)(x) = 0 in other cases.

Rshift(A,B)(x) = A(frac(x − Flength(B))), where x < 1. The function frac
gives the fractional part of a real, i.e. frac(x) = x − int(x), where int(x) is the
greatest integer which is not greater than x. Finally, for completeness let

Rshift(A,B)(1) = Rshift(A,B)(0).

In Figure 3 some examples are shown both for operations Rshift and Lshift.
The second (ancillary-) operands are shown with grey colour to help understand-
ing, but they are not real parts of the resulted interval-values.

Note, that with Lshift one loose all the information which go outside of the
interval [0, 1]. Opposite to this case, using Rshift only the information at the
point 1 will loose.

These operators are very effective ones, with combined use of them one can
move or delete any part of an interval-value. The deletion can be in the following
way. Use the Rshift to shift the interval-value such a way that the part – which
should be deleted – begins at 0. Then, using Lshift the chosen part [0, a) will be
deleted. After this cutting, using Rshift again the remained part can be shifted
back to its original place.
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Fig. 3. Examples of shift operators with interval-values

Now we are presenting another operator with which one can multiply the
interval-values, namely the (Fractalian) Product. Let A contain k interval com-
ponents with ends ai,1, ai,2(1 ≤ i ≤ k) and B contain l components with ends
bi,1, bi,2(1 ≤ i ≤ l). Then let the value of C = A ∗ B be the following: let the
number of components of C be k · l. For this process we can use double indexes
for the components of C. Let the starting and ending point of the ij-th compo-
nent be ai1 + bj1(ai2 − ai1) and ai1 + bj2(ai2 − ai1) respectively. An endpoint
belongs to the interval iff the original endpoints belong to the interval-values of
the original interval-values A and B.

As we can see in the definition, this product looks like the Cartesian product;
the indexes works in the same way. The component ij of C comes from the i-th
component of A and the j-th component of B. Moreover, it is easy to show, that
the sum of the lengths of the components of A ∗ B is exactly the same as the
product of the sum of the length of the components of A and the sum of the
length of B. Note that the (Fractalian) Product is not a symmetric operator.

In Figure 4 there are examples shown.

4.2 Modelling Traditional Computing Devices with the
Interval-valued Device

In this part we show that the interval-valued system can easily simulate a tra-
ditional computing device. Suppose that the traditional device use n bits in a
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Fig. 4. Examples for Product of the interval-values

byte. Take the interval-values [m/n, (m+1)/n] (for 0 ≤ m ≤ n−1), each of them
represents the (m + 1)st bit. When the ALU of a classical computer works on
some bytes then the interval-valued device uses the interval-values representing
the bytes.

Modelling logical operators is trivial therefore we omit them. The shift op-
erators need for example the atomic interval-value P = [0, 1/n]. Left-shift can
also be simulated in a trivial way. We show the simulation method of right-shift:
using Rshift is not enough in its pure form, because of its circular property. It
is easy to show that Rshift(Lshift(Rshift(A,P ), P ), P ) gives the desired result
shifting the interval-value to the right with eliminating the shifted-out part.

Now we introduce an abbreviation: let Rshift(A, 2B) mean that we use twice
the operator with the same second operand: Rshift(Rshift(A,B), B). We will use
this abbreviation with any positive integers (here up to n). Similarly: Lshift(A, kB) =def

Lshift(Lshift(. . . (Lshift(A,B), . . .), B), B) using it k times.
The simulation of the Add operation is going in the following way:
Let A and B be two interval-values which represent numbers as bit-values.

Using the shift operators we can translate the Add operator: First we construct
the interval-value of overflow C. The last bit of C is

Cn = Rshift(Lshift(A ∧B,¬P ),¬P ).

Note that here Lshift(A ∧ B,¬P ) has the same meaning as shifting by the
value (n− 1)P . Similar statement holds for the Rshift.
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In the iteration method (we gather the bits and add a new one in each step)
i goes from n− 1 to 2 decreasing by 1 in each step:

Ci = Ci+1 ∨ Lshift(Rshift(Rshift(Lshift(A ∧B, (i− 1)P ), (i− 1)P )∨

Rshift(Lshift(A ∧ Lshift(Ci+1, P ), (i− 1)P ), (i− 1)P )∨
Rshift(Lshift(B ∧ Lshift(Ci−1, P ), (i− 1)P ), (i− 1)P ), (n− i)P ), (n− i)P ).

(The last value, C2 contains all the overflow bits that we need to the calcula-
tion. The first overflow bit – which is the overflow bit actually, – would be given
by only the next step of these iteration with the value of C1 which we do not
need to the operation.) And now we use ‘xor’ to get the sum of A and B:

A+B = (A⊕B)⊕ Lshift(C2, P ).

As we showed the interval-valued system can simulate the classical com-
puting with finitely many bits in a byte. To the simulation we used only re-
stricted interval-values, which can be obtained from the atomic interval-value
P = [0, 1/n] by logical operations and shifts. Therefore one can say that the
interval-valued device is an extension of the classical one. Moreover, in logical
computation our system looks like a system with continuum-many bits in a byte:
each point of [0, 1] can represent a bit.

4.3 Solving SAT Problem with the Interval-valued Device

As one of our last results, showing the theoretical efficiency of the interval-valued
computing device we solve the SAT problem. The SAT problem is the following:
given a formula in propositional logic, decide whether it is satisfiable or not (it
means logical falsity when it is unsatisfiable). This problem is an NP-complete
problem and plays very important role in complexity-theory.

Usually only formulae in conjunctive (or in k-ary conjunctive) normal form
are used, but in this paper we do not use any restriction about the forms of
them.

Assume that there are number n variables occur in the formula. Let the
interval-value be assigned to the i-th variable

Ai =

2i−1−1⋃

j=0

[
j

2i−1
,

2j + 1

2i

)
.

One can compute them using the product operator: Ai+1 = Ai ∗ [0, 0.5) ∨ ¬Ai ∗
[0, 0.5).

Then one can evaluate the logical formula using interval-values Ai. If the
result has the value ⊥, then the formula is unsatisfiable. Elsewhere the formula
is satisfiable, moreover if the first-length of the result is 1 then the formula is
a Boolean tautology. We show that the formula can be evaluated to true when
the result using interval-values differs with ⊥. Assume that the characteristic
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function of the result is 1 at x (such a value must exist in an interval-value
which is not equal to ⊥). In this case let the values of the formula evaluated
by Boolean variables be the following: let the value of the i-th Boolean variable
be the characteristic value Ai(x). With these values the propositional formula
must evaluate to true, similarly with the interval-value at point x. The process
can be seen in the next example (see Fig. 5). Let the formula be ¬((B ∧ C) →
¬(C ∨ (D → ¬B))). The figure shows that this formula is satisfiable (it is true
when B and C are both true), but it is not a Boolean tautology.

One can see that to check the satisfiability of a formula we need interval-
values not more than the length of the formula. More precisely, counting the
number of variables and logical connectives, their sum gives an upper bound to
the number of interval-values are needed for the calculation, because without
using lazy evaluation we need the interval-value of all the variables, and of each
subformula of the original.

Calculating the satisfiability of a formula with interval-values looks like to the
evaluation going in parallel way, building the Boolean truth-table of the formula
by lines.

Fig. 5. Solving the satisfiability of the formula ¬((B ∧ C) → ¬(C ∨ (D → ¬B))).
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5 Conclusion

In our paper we investigated a new theoretical model of computing. Our natu-
rally motivated device works with interval-values. The interval-values are used
as bytes in traditional computers. An abstract mathematical description of the
system is given. Beside the logical operators, some non-logical operators are also
defined. The interval-valued computing device is an extension of the classical
computing devices. To present its applicability and efficiency we showed how it
can solve the SAT problem. The key-point is that the system use parallelism in
a natural way because its architecture.

Note, that in [5] some other non-logical operators were introduced, such as
mirror of intervals. Using them the computation can be in a faster way. Note
also, that for simplicity in practice one can use only closed intervals by closing
the result after each operation.

It is a matter of a future work to analyze the practical applicability of the
interval-valued system (or one of its restricted forms). Both physical realisation
and the way of possible programming of the system can be interesting. Interesting
questions about the system, that how efficient it can be. It may solve EXPTIME
or PSPACE problems in polynomial time. By simulating classical computing the
computing power should be at least the level of Turing machines, but in this
system one can use continuum many values (moreover the number of possible
interval-values is more than continuum), therefore the power can be more. How
one can use it in a more efficient way?
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1 Introduction

We consider a kind of while programs over an abstract data type, that along with
the usual assignment and loop statements has also a non-deterministic choice
statement xi := arbitrary(A), where A is a subset of the basic set. After the ex-
ecution of such a statement, the register xi is evaluated with an arbitrary element
of A. The choice of this element is completely arbitrary – it does not depend on
the input, the current configuration, etc. Due to this non-deterministic operator,
one and the same input may lead to different computational paths, both finite
and infinite. By analogy with the non-deterministic Turing machines, we can
speak about the set, accepted by a non-deterministic program P – this is the set
L(P ) of those inputs, for which there exists a finite (accepting) computation. The
set of all inputs I, such that every computation, starting from I is finite, is the
set D(P ) of the so-called points of ∀-definedness of P (cf. Manna [1]). It is clear
that the set of all points of ∀-definedness of a non-deterministic Turing machine
is again Turing semi-recognizable (although at exponential prise). However, this
is no longer true for the type of non-determinism that we consider here ([2], [3]).
For example, in [2] it is shown that for the case of non-deterministic programs
over the natural numbers IN with a choice operator xi := arbitrary(IN), the
sets D(P ) coincide with the Π1

1 sets, while the sets L(P ) are exactly the recur-
sively enumerable sets. In [3] a syntactical characterization of the sets L(P ) and
D(P ) for the most general case of non-deterministic programs with counters and
stacks is obtained.

In the present work we study the sets D(P ) and L(P ) for a non-deterministic
program P over an admissible abstract structure A. We give both explicite and
inductive characterization of these sets. In the next section we introduce the
appropriate definitions and formulate the precise results.

2 Preliminaries

Given an arbitrary total structure A0 = (B; f1, . . . , fa;P1, . . . , Pb) (the case fi is
a constant is also possible), its least acceptable extention A [4] is determined as
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follows: Take an object O 6∈ B and let 〈 〉 be a pairing operation, such that no
element of B0 = B∪{O} is an ordered pair. Let B∗ be the least set, that contains
B0 and is closed under 〈 〉. Denote by L and R the left and right decoding
functions for the mapping 〈 〉 (assume that L(s) = R(s) = O for s ∈ B0).
The initial functions and predicates of A0 are extended on B∗ by the equalities
fi(s1, . . . , sn) = O for (s1, . . . , sn) 6∈ Bn and Pi(s1, . . . , sn) = ”falsity” for
(s1, . . . , sn) 6∈ Bn.

Now put A = (B∗;O, 〈 〉, L,R, f1, . . . , fa;B,P1, . . . , Pb). We shall suppose
that the equality relation is among the basic predicates of A. Throughout the
paper we shall assume this structure A fixed. As customary, the natural numbers
will be identified with the elements of the set Nat = {O, 〈O,O〉, 〈〈O,O〉, O〉, . . . }.
Using the coding function 〈 〉, we define a coding ¿ À of all finite sequences
from B∗, putting ¿ À= O,¿s1, . . . , sn+1À= 〈¿ s1, . . . , sn À, sn+1〉.

A non-deterministic program P over A is a construction of the type
input(x1, . . . , xk),S ., where x1, . . . , xk are the input variables of P and S is a
statement. Here a statement is defined inductively as follows: initial statements
are xi := τ (assignment) and xi := arbitrary(B∗) (choice statement); if S1 and
S2 are statements, then S1;S2 (composition) and while C do S od (loop) are
statements (here τ and C are a term and a quantifier-free formula in the lan-
guage LA of A). The semantics of the assignment, the composition and the
loop statements is the usual one. As we said above, the execution of the choice
statement xi := arbitrary(B∗) assigns to the register xi an arbitrary element of
B∗. Let us notice that, since B∗ is infinite, the computational trees are infinite
branching, hence D(P ) turns out to be much more complex than L(P ). The
precise definitions, concerning the sets L(P ) and D(P ), are in the next section.

We will need infinite sequences {Φn}n of quantifier-free formulas in LA for
the explicite description of the sets D(P ) and L(P ). Let us call such a sequence
primitive recursive, if the function, which assigns to each n the code of Φn is
primitive recursive.

We next remind some basic notations and results concerning inductive defin-
ability (cf. for example [4]). Let ϕ(x1, . . . , xk, X) be a first-order formula in LA,
in which the relational variable X occurs only positively. Then ϕ determines the
mapping Γϕ : P((B∗)k)→ P((B∗)k), defined with Γϕ(A) = {(s1, . . . , sk)|
A |= ϕ(s1, . . . , sk, A)}. The sets Iξϕ are defined by transfinite induction on ξ:

Iξϕ = Γϕ(
⋃
η<ξ I

η
ϕ). Then the set Iϕ =

⋃
ξ I

ξ
ϕ is the least fixed point of Γϕ. Finally,

for every s̄ ∈ Iϕ put |s̄|ϕ = min{ξ|s ∈ Iξϕ}. It is convenient to consider that for
all s̄ 6∈ Iϕ, |s̄|ϕ = ζ, where ζ is any ordinal, greater than sup{|s̄|ϕ : s̄ ∈ Iϕ}. A
set A ⊆ (B∗)m is inductively definable (by ϕ on A) if A is Iϕ or a section of Iϕ
for some X-positive formula ϕ.

For the inductive characterization we will need formulas in the first-order
language of an extention A

+ of A. The structure A
+ is (A;Nat, Seq, U, φ), where

U(a, s) is some fixed universal relation for all quantifier-free formulas with one
free variable in LA, and φ(a, n) is some fixed universal function for all unary
primitive recursive functions.

Now we are ready to formulate our main result.
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Theorem 1. Let D and L be subsets of (B∗)k. Then the following statements
are equivalent:

(i) There exists a non-deterministic program P over A such that D = D(P ) and
L = L(P ).

(ii) There exists a primitive recursive sequence of quantifier-free formulas {Φn}n
in LA with variables among x1, . . . , xk, y such that

L = {(s1, . . . , sk)| ∃αα:IN→B∗∃n A |= Φn(s1, . . . , sk, ᾱ(n))},

D = {(s1, . . . , sk)| ∀αα:IN→B∗∃n A |= Φn(s1, . . . , sk, ᾱ(n))}.
(iii) There exists an X-positive quantifier-free formula ϕ(x1, . . . , xk, y, z, t,X) in

L
A

+ such that

L = {(s1, . . . , sk)|(s1, . . . , sk, O,O) ∈ I∃yϕ},

D = {(s1, . . . , sk)|(s1, . . . , sk, O,O) ∈ I∀yϕ}.

Here, as usual, ᾱ(n) stands for ¿ α(1), . . . , α(n) À. We can imagine the
sequence α = α(1), α(2), . . . in (ii) as the sequence of the successive values,
returned by the choice statement in the course of the computation. Clearly, if we
have these values in advance, the execution of P (no matter finite or infinite) over
a fixed input (s1, . . . , sk) is uniquely determined. Our proposition (ii) says that
this execution can be carried out in some canonical way: compute successively
Φ0(s̄, ᾱ(0)), Φ1(s̄, ᾱ(1)), . . . until you find the first n for which Φn(s̄, ᾱ(n)) holds.
(Here and further, when saying that a formula Φ holds, we will mean that it holds
in the relevant structure – A or A

′.) Another way to formulate (ii) is to say that
some absolutely prime computable (cf. [5]) on A predicate R exists, such that
L = {s̄|∃α∃nR(s̄, ᾱ(n))} and D = {s̄|∀α∃nR(s̄, ᾱ(n))}.

In [6] it is shown that the relations Seq,Nat, U , and the graph of φ are
∆0

1-positively inductively definable on A. Hence the sets I∀yϕ are in fact Π0
1 -

positive inductive on A. Thus the equivalence between (i) and (iii) gives us also
a computational characterization of the Π0

1 -positive inductive definitions on A.
As for the sets of the type I∃yϕ, i.e., the sets that are Σ0

1 -positive inductively
definable on A – in [7] it is shown that they coincide with the absolutely search
computable relations.

In the next section we prove the implication (i)⇒ (ii) of Theorem 1, in our
last section are the proofs of (ii)⇒ (iii) and (iii)⇒ (i).

3 Syntactical characterization of the sets L(P ) and D(P )

We will need a detailed description of the input-output relation of P , which
comprises the whole memory of P (i.e. all the registers that occur in P ). Set
mem(S) = max{n|xn occurs in S} and take an arbitrary m ≥ mem(S). We can
view the statement S as a nondeterministic transducer, that takes as an input a
tuple (s1, . . . , sm) and, if halts, returns as an output the current memory state
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– say some (t1, . . . , tm) (of course, we will have ti = si for the variables xi, that
do not occur in S). The set of all (s1, . . . , sm, t1, . . . , tm), thus obtained, is the
input-output relation Rm(S) of the statement S. We define also a set Dm(S) of
all points of ∀-definedness of S as the collection of all inputs (s1, . . . , sm), such
that every computation of S, starting with input (s1, . . . , sm), is finite. We will
describe the sets Rm(S) and Dm(S) by sequences of em clauses. A clause is a
syntactical expression of the form Φ→ (τ1, . . . , τm), where Φ is a quantifier-free
formula and τ1, . . . , τm are terms in LA (the tuple (τ1, . . . , τm) will sometimes
be contracted to τ̄). We will consider recursive sequences {Φn → τ̄n}n, whose
variables are among x1, . . . , xm, y1, y2, . . . . Our intention is xi to hold the current
value of the register xi of S, while the y-variables are for the additional input,
coming from the choice statement. More precisely, we will place in yn the value,
returned after the n-th invocation of the choice statement.

Let E be an expression with variables among x1, . . . , xm, y1, . . . , yn. We shall
write E(s1, . . . , sm, α) for the value

E(x1/s1, . . . , xm/sm, y1/α(1), . . . , yn/α(n))

of E in A. Now suppose that S is a statement with registers among x1, . . . , xm
and Σ = {Φn → (τn1 , . . . , τ

n
m)}n is a sequence of clauses with variables among

x1, . . . , xm, y1, y2, . . . Say that Σ represents Rm(S) and Dm(S), iff for all (s̄, t̄):

(s̄, t̄) ∈ Rm(S) ⇐⇒ ∃α∃n(Φn(s̄, α)& τn1 (s̄, α) = t1 & . . .& τnm(s̄, α) = tm) (1)

s̄ ∈ Dm(S) ⇐⇒ ∀α∃nΦn(s̄, α). (2)

A sequence Σ = {Φn → τ̄n}n is treelike (on A), if for every s̄, α and n:
Φn(s̄, α)⇒ ∀k 6= n¬Φk(s̄, α). Say that Σ is primitive recursive, if the function
λn.”the code of Φn → τ̄n” is primitive recursive. Finally, let us say that S is
representable, if there exists a primitive recursive treelike Σ, that represents
Lm(S) and Dm(S) for m = mem(S). Using induction on the definition of S, in
the next three propositions we prove that every statement is representable.

Proposition 1. Assignment and choice statements are representable.

Proof. The assignment xi := τ is obviously representable by the treelike se-
quence Σ = {Φn → τ̄n}n, where Φ0 is x1 = x1 and for n > 0 Φn is ¬(x1 = x1);
τ0
i = τ , τ0

j = xj for i 6= j and for n > 0 τnj = xj , 1 ≤ j ≤ m. For the choice
statement xi := arbitrary(B∗) the sequence Σ is almost the same – the unique
difference is that τ 0

i = y1 instead or τ . ut

If E is an expression (a term or a quantifier-free formula) with variables
among x1, . . . , xm, y1, . . . , yn, and τ1, . . . , τm are terms and p ∈ IN, then

E[x1|τ1 . . . , xm|τm, y1|y1+p, . . . , yn|yn+p] (or E[x̄|τ̄ , ȳ|ȳ + p] for short)

will denote the expression, obtained from E after the simultaneous replacement
of xi by τi and yi by yi+p. We have the following substitution property:
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E[x̄|τ̄ , ȳ|ȳ + p](s1, . . . , sm, α) = E(s′1, . . . , s
′
m, α

′), (3)

where s′i = τi(s̄, α), 1 ≤ i ≤ m, and α′(i) = α(i+ p), i ≥ 1.
Let us fix some primitive recursive coding π of the pairs of natural numbers

with decoding functions l and r, such that r(n) < n for all n > 0.

Proposition 2. If S1 and S2 are representable, then so is S = S1;S2.

Proof. Let mem(S) = m and suppose that the sequences {Γ n → (γn1 , . . . , γ
n
m)}n

and {∆n → (δn1 , . . . , δ
n
m)}n represent S1 and S2, resp. Let pn be the maximal

index of an y-variable, that occurs in Γ n → (γn1 , . . . , γ
n
m). For n = π(k, l) set

Φn = Γ k&∆l[x1|γk1 , . . . , xm|γkm, ȳ|ȳ + pk],

τni = δli[x1|γk1 , . . . , xm|γkm, ȳ|ȳ + pk], 1 ≤ i ≤ m.
Clearly, {Φn → τ̄n}n is primitive recursive and one can easily check that it is
also treelike. We are going to show that it represents Rm(S). Let us notice that

(s1, . . . , sm, t1, . . . , tm)∈Rm(S)⇔ ∃q1 . . . ∃qm((s̄, q̄)∈Rm(S1)&(q̄, t̄) ∈ Rm(S2))

⇔ ∃β∃k(Γ k(s̄, β) & γk1 (s̄, β) = q1 & . . . & γkm(s̄, β) = qm) &

∃β′∃l(∆l(q̄, β′) & δl1(q̄, β′) = t1 & . . . & δlm(q̄, β′) = tm).

Now suppose that (s̄, t̄) ∈ Rm(S) and take β, β′, k and l as above. Put n = π(k, l),
α(i) = β(i), 1 ≤ i ≤ pk and α(pk + i) = β′(i) for i ≥ 1. Then using (3) we get

Φn(s̄, α)⇔ Γ k(s̄, α) & ∆l[x̄|γ̄k, ȳ|ȳ + pk](s̄, α)⇔ Γ k(s̄, β) & ∆l(q̄, β′),

hence Φn(s̄, α) holds. Further, τni (s̄, α) = δli[x̄|γ̄k, ȳ|ȳ + pk](s̄, α) = δli(q̄, β
′) = ti

for 1 ≤ i ≤ m. So we established the first direction of (1). For the opposite
direction proceed in a similar way.

Towards proving the equivalence (2), let us make the following observation:

s̄ ∈ Dm(S)⇔ s̄ ∈ Dm(S1) & ∀t̄((s̄, t̄) ∈ Rm(S1)⇒ t̄ ∈ Dm(S2)). (4)

Suppose that s̄ ∈ Dm(S) and take an arbitrary α. According to (4), s̄ ∈
Dm(S1), hence for some k : Γ k(s̄, α). Let ti = γki (s̄, α), 1 ≤ i ≤ m. Then
(s̄, t̄) ∈ Rm(S1) and again by (4), t̄ ∈ Dm(S2). Put β(i) = α(i+ pk), i > 0. Since
{∆n → δ̄n}n represent S2 and t̄ ∈ Dm(S2), there is an l with ∆l(t̄, β). From
here by (3) we get ∆l[x̄|γ̄k, ȳ|ȳ + pk](s̄, α), which together with Γ k(s̄, α) yields
Φn(s̄, α) for n = π(k, l).

Conversely, assume that ∀α∃nΦn(s̄, α). We will check that the right-hand
side of (4) holds, hence s̄ ∈ Dm(S). Indeed, ∀α∃nΦn(s̄, α) implies ∀α∃nΓ n(s̄, α),
so s̄ ∈ Dm(S1). Take t̄ such that (s̄, t̄) ∈ Rm(S1). Then there exist k and
q1, . . . , qpk

such that Γ k(s̄, q̄) and ti = γk(s̄, q̄), 1 ≤ i ≤ m. We have to see
that t̄ ∈ Dm(S2), or equivalently, ∀β∃l∆l(t̄, β). Indeed, take an arbitrary β and
put α(i) = qi, 1 ≤ i ≤ pk, and α(pk+i) = β(i), i ≥ 1. For this α there is an n with
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Φn(s̄, α), i.e. Γ l(n)(s̄, α) and ∆r(n)[x̄|γ̄l(n), ȳ|ȳ + pl(n)](s̄, α). We have, however,

that Γ k(s̄, q̄), or written with α, Γ k(s̄, α). Since {Γn → γ̄n}n is treelike, this
yields l(n) = k. Hence ∆r(n)[x̄|γ̄l(n), ȳ|ȳ + pl(n)] is in fact ∆r(n)[x̄|γ̄k, ȳ|ȳ + pk],

so ∆r(n)[x̄|γ̄k, ȳ|ȳ + pk](s̄, α) is true, and by (3), ∆r(n)(t̄, β) is true. ut

Proposition 3. If S1 is representable, then so is S = while C do S1 od.

Proof. Denote mem(S) = m and suppose that {Γ n→(γn1 , . . . , γ
n
m)}n represents

S1. Let again pn be the maximal index of an y-variable, that occurs in Γ n → γ̄n.
We define the sequence {Φn → τ̄n}n by induction on n as follows:

Φ0 = ¬C, τ0
i = xi for 1 ≤ i ≤ m, and for n > 0

Φn = C&Γ l(n)& Φr(n)[x̄|γ̄l(n), ȳ|ȳ + pl(n)], τ
n
i = γ

r(n)
i [x̄|γ̄l(n), ȳ|ȳ + pl(n)].

We have that r(n)<n for n>0, so the definition is correct. Clearly {Φn→ τ̄n}n
is primitive recursive. The fact that it is treelike follows by an easy induction on
n.

According to the semantics of the while-loop, Rm(S) is the least set satisfying

(s̄, t̄) ∈ Rm(S)⇔ ¬C(s̄)&t̄ = s̄ ∨ C(s̄)&∃q̄((s̄, q̄) ∈ Rm(S1)&(q̄, t̄) ∈ Rm(S))
(5)

i.e. Rm(S) is Iϕ for ϕ(x̄, ȳ, X) : ¬C(x̄)&ȳ = x̄∨C(x̄)&∃z̄((x̄, z̄) ∈ Rm(S1)&(z̄, ȳ)
∈ X). By transfinite induction on |(s̄, t̄)|ϕ we will show that

(s̄, t̄) ∈ Rm(S)⇒ ∃α∃n(Φn(s̄, α)& τ̄n(s̄, α) = t̄). (6)

If |(s̄, t̄)|ϕ = 0, then ¬C(s̄) and clearly (6) holds for n = 0 and α – arbitrary.
Suppose that |(s̄, t̄)|ϕ > 0. Then C(s̄) and there exists q̄ : (s̄, q̄) ∈ Rm(S1), (q̄, t̄) ∈
Rm(S) and |(q̄, t̄)|ϕ < |(s̄, t̄)|ϕ. By induction hypothesis, there exists β ′ and l
such that Φl(q̄, β′) and τ l(q̄, β′) = t̄. We have (s̄, q̄) ∈ Rm(S1), hence for some
β and k: Γ k(s̄, β) and Γ k(s̄, β) = q̄. Now put n = π(k, l), α(i) = β(i) for
1 ≤ i ≤ pk and α(pk + i) = β′(i) for i ≥ 1. The proof of the fact that Φn(s̄, α)
and τ̄n(s̄, α) = t̄ is similar to the proof of the previous proposition. Thus we
established (6), which is the first half of (1). For the second half, using induction
on n, we are going to prove t hat

∀s̄∀t̄∀α(Φn(s̄, α) & τ̄n(s̄, α) = t̄⇒ (s̄, t̄) ∈ Rm(S)). (7)

Skipping the obvious case n = 0, take some n = π(k, l) > 0 and suppose that
Φn(s̄, α) and τn(s̄, α) = t̄. From here C(s̄) and Γ k(s̄, α). Put q̄ = γk(s̄, α). Then
clearly (s̄, t̄) ∈ Rm(S1), therefore in order to get (s̄, t̄) ∈ Rm(S) it is sufficient,
according to (5), to get (q̄, t̄) ∈ Rm(S). Indeed, let β(i) = α(i + pk), i ≥ 1. We
have Φn(s̄, α), in particular, Φl[x̄|γ̄k, ȳ|ȳ + pk](s̄, α), and applying (3), we get
Φl(q̄, β) and t̄ = τ l[x̄|γ̄k, ȳ|ȳ+pk](s̄, α) = τ l(q̄, β). Now the induction hypothesis
for l < n gives us the desired (q̄, t̄) ∈ Rm(S).

Using the definition of Dm(S), one can easily check that

s̄ ∈ Dm(S)⇔ ¬C(s̄) ∨ s̄ ∈ Dm(S1) & ∀q̄((s̄, q̄) ∈ Rm(S1)⇒ q̄ ∈ Dm(S)). (8)
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Actually, Dm(S) is the least set, satisfying (8), i.e. Dm(S) = Iψ for ψ(x̄,X) :
¬C(x̄) ∨ x̄ ∈ Dm(S1) & ∀z̄((x̄, z̄) ∈ Rm(S1)⇒ z̄ ∈ X).

Using induction on |s̄|ψ, we will prove that s̄ ∈ Dm(S)⇒ ∀α∃nΦn(s̄, α). The
case |s̄|ψ = 0 is again trivial. Take s̄ ∈ Dm(S) with |s̄|ψ > 0 and arbitrary α.
According to (8), s̄ ∈ Dm(S1), hence there is a k with Γ k(s̄, α). Set q̄ = γ̄k(s̄, α).
Further, (s̄, q̄) ∈ Rm(S1) and applying again (8), we get q̄ ∈ Dm(S). Clearly
|q̄|ψ < |s̄ψ|. Put β(i) = α(i+pk), i ≥ 1. By induction hypothesis for q̄ there exists
l: Φl(q̄, β). Now using (3), we get Φl[x̄|γ̄k, ȳ|ȳ + pk](s̄, α), hence Φπ(k,l)(s̄, α).

Suppose finally that ∀α∃nΦn(s̄, α) and towards contradiction, assume that
s̄ 6∈ Dm(S). Let us notice first that ∀α∃nΓ n(s̄, α). Indeed, take an α. Then
there is an n with Φn(s̄, α). Clearly n > 0 (otherwise ¬C(s̄) and we would have
s̄ ∈ Dm(S)). Therefore Γ l(n)(s̄, α), so ∀α∃nΓn(s̄, α). From here, s̄ ∈ Dm(S1).
However, s̄ 6∈ Dm(S), which means, according to (8), that there exists s̄1 :
(s̄, s̄1) ∈ Rm(S1) and s̄1 6∈ Dm(S). Since {Γn → γ̄n}n represents S1, there
exist n1 and q11 , . . . , q

1
pn1

such that, putting q̄1 = (q11 , . . . , q
1
pn1

), we will have

Γn1(s̄, q̄1) and γn1(s̄, q̄1) = s̄1. Since s̄1 6∈ Dm(S), C(s̄) holds, hence n1 > 0.
Let us check that, similarly to s̄, ∀α∃nΦn(s̄1, α). Indeed, take an arbitrary α
and set β(i) = qi, 1 ≤ i ≤ n1 and β(i + pn) = α(i) for i ≥ 1. We know that
there exists n (and n > 0) with Φn(s̄, β). From here, Γ l(n)(s̄, β), and since
we have also Γn1(s̄, β), l(n) = n1. Further, Φr(n)[x̄|γ̄l(n), ȳ|ȳ + pl(n)](s̄, β) =

Φr(n)[x̄|γ̄n1 , ȳ|ȳ+pn1)](s̄, β) = Φr(n)(s̄1, α), so ∀α∃nΦn(s̄1, α) does hold. Iterating
this construction, we get for every i ≥ 1 an index ni > 0 and elements q̄i =
(qi1, . . . , q

i
pni

) and s̄i such that (putting s̄0 = s̄):

Γni(s̄i−1, q̄i) & γni(s̄i−1, q̄i) = s̄i & s̄i 6∈ Dm(S).

Now put αi = qi1, . . . , q
i
pni
, qi+1

1 , . . . , qi+1
pni+1

, . . . . So we have Γni(s̄i−1, αi) and

γni(s̄i−1, αi) = s̄i. For the sequence α1 there exists anN > 0 such that ΦN (s̄, α1).
Hence Γ l(N)(s̄, α1) and Γn1(s̄, α1), so l(N) = n1 and Φr(N)[x̄|γ̄l(N), ȳ|ȳ + pl(N)]

(s̄, α1) = Φr(N)(s̄1, α2) and s̄1 6∈ Dm(S), hence r(N) > 0, thus Γ l(r(N))(s̄1, α2),
which combined with Γ n2(s̄1, α2) gives us l(r(N)) = n2. Repeating this argument
we get that for every i, l(ri−1(N)) = ni and ni > 0, which is impossible. ut

Now take a program P : input(x1, . . . , xk); S. Let the primitive recursive se-
quence Σ = {Γn → (γn1 , . . . , γ

n
m)}n represents S. We may assume that the

y-variables of the clause Γ n → γ̄n are among y1, . . . , yn (otherwise insert a
sufficient number of dummy clauses ¬(x1 = x1)→ (x1, . . . , xm) in Σ.) Put

Φn = Γn[xk+1|xk, . . . , xm|xk, y1|Ln−1(y), y2|Ln−2(R(y)), . . . , yn|L0(R(y))].

Clearly Γn(s1, . . . , sk, . . . , sk, α) ⇔ Φn(s1, . . . , sk, ᾱ(n)). From here, having in
mind that Σ represents S, we conclude that the sequence {Φn}n satisfies the
statement (ii) of Theorem 1.
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4 Inductive definability of the sets L(P ) and D(P )

In this section we are going to check the implications (ii)⇒ (iii) and (iii) ⇒ (i)
of Theorem 1. For the first one, take a primitive recursive sequence {Φn}n of
quantifier free formulas with variables among x1, . . . , xk, y. Set

L = {s̄| ∃α∃nΦn(s̄, ᾱ(n))}, D = {s̄| ∀α∃nΦn(s̄, ᾱ(n))}.

Define the relation R ⊆ (B∗)k+3 × P((B∗)k+2) as follows:

R(s̄, q, n, t, A)⇔ Nat(n) & Seq(t) & (Φn(s̄, t) ∨ (s1, . . . , sk, n+1, t∗q) ∈ A). (9)

Here as usual t ∗ q stands for ¿ t1, . . . , tn, q À, provided t =¿ t1, . . . , tn À. We
shall write α Â t to denote that α extends t, i.e. α(i) = ti for i = 1, . . . , n. Let
us first check that the relation R can be represented by a quantifier-free formula
in L

A
+ . Indeed, let a be an index of the primitive recursive function, that codes

{Φn}n, i.e. such that for every n, φ(a, n) is the code of Φn. Having in mind our
definition of the universal relation U , we may claim that

Φn(s1, . . . , sk, t)⇔ U(φ(a, n),¿s1, . . . , sk, tÀ).

Hence the right-hand side of (9) can be rewritten asNat(n) & Seq(t)& (U(φ(a, n),
¿s1, . . . , sk, tÀ) ∨ (s1, . . . , sk, 〈n,O〉, 〈t, q〉) ∈ A), which means that R is defin-
able on A

+ by the following formula ϕ(x1, . . . , xk, y, z, t,X):

Nat(z)&Seq(t)&(U(φ(a, z),¿ x1, . . . , xk, tÀ)∨ (x1, . . . , xk, 〈z,O〉, 〈t, y〉) ∈ X).

We claim that the sets L and D are sections of I∃yϕ and I∀yϕ for the above ϕ.

Proposition 4. L = {s̄|(s̄, O,O) ∈ I∃yϕ}, D = {s̄|(s̄, O,O) ∈ I∀yϕ}.
Proof. For the inclusion L ⊇ {s̄|(s̄, O,O) ∈ I∃yϕ} let us check the following more
general statement (where lh(t) stands for the length of t):

((s1, . . . , sk, n, t) ∈ I∃yϕ & lh(t) = n) ⇒ ∃ααÂt∃mΦm(s̄, ᾱ(m)). (10)

The proof is by induction on |(s̄, n, t)|∃yϕ. If |(s̄, n, t)|∃yϕ = 0, then Φn(s̄, t)
holds, hence for any α Â t, Φn(s̄, ᾱ(n)). When |(s̄, n, t)|∃yϕ > 0, there exists q
such that |(s̄, n+ 1, t ∗ q)| < |(s̄, n, t)| and by induction hypothesis Φm(s̄, ᾱ(m))
holds for some m and α Â t ∗ q, hence for α Â t. Now putting n = O and
t =¿À= O in (10) we get (s̄, O,O) ∈ I∃yϕ ⇒ ∃α∃nΦn(s̄, ᾱ(n))⇔ s̄ ∈ L.

For the opposite implication, towards contradiction, assume that there exists
s̄ ∈ L such that (s̄, O,O) 6∈ I∃yϕ. Take α and n with Φn(s̄, ᾱ(n)) and put qi =
α(i). We have (s̄, O,O) 6∈ I∃yϕ, hence ¬Φ0(s̄,¿À) and ∀q(s̄, 1,¿ q À) 6∈ I∃yϕ.
From here, for q1 = α(1) we get ¬Φ1(s̄,¿ q1 À) and ∀q(s̄, 2,¿ q1, q À) 6∈ I∃yϕ.
Iterating this construction we obtain that for every k, ¬Φk(s̄,¿ q1, . . . , qk À) –
a contradiction.

The equality D = {s̄|(s̄, O,O) ∈ I∀yϕ} is verified in a very similar way:
for the first inclusion use the implication (s̄, n, t) ∈ I∀yϕ & lh(n) = t ⇒
∀ααÂt∃mΦm(s̄, ᾱ(m)), and a contraposition – for the second one. ut
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Thus we have proved the implication (ii) ⇒ (iii) of Theorem 1. It remains
to establish the validity of (iii) ⇒ (i). To do this, take an arbitrary quantifier-
free formula ϕ(x1, . . . , xk, y,X) in L

A
+ , in which the k-ary relational variable

X occurs positively. Clearly, for the implication (iii) ⇒ (i) it is sufficient to
construct a non-deterministic program P such that L(P ) = I∃yϕ and D(P ) =
I∀yϕ. To simplify the construction, we will assume that k = 1, hence ϕ, written
in disjunctive normal form, is equivalent to

χ(x, y)∨χ1(x, y)&τ1
1 ∈X& . . .&τ1

j1 ∈ X ∨ · · ·∨χn(x, y)&τn1 ∈ X& . . .&τnjn ∈ X.

We will consider the case n = 2, since it is sufficiently representative. Without
essential loss of generality we may assume also that j1 = j2 = 1. Finally, we will
omit the formulas χ1 and χ2 in ϕ (dropping the formula χ, however, trivializes
our task). So ϕ takes the form

χ(x, y) ∨ τ(x, y) ∈ X ∨ µ(x, y) ∈ X.

where τ, µ and χ are terms and a quantifier-free formula in L
A

+ .

Below we define a nondeterministic program Q over A
+, that works on

strings, i.e. on those t ∈ B∗, such that Seq(t).
Q : input(t); q := arbitrary(B∗); z :=head(t); while¬χ(z, q) do
t :=append(tail(t),¿τ(z, q), µ(z, q)À); q := arbitrary(B∗); z :=head(t)) od.

Here head, tail, and append are the usual string-transforming operations. It is
an easy exercise to show that these operations, as well as the relations Seq, Nat,
U and the universal function φ can be computed by means of (deterministic)
while-programs over A. Hence the program Q may be thought of as a non-
deterministic program over A.

Put L = L(Q)∩Seq andD = D(Q)∩Seq. Clearly, for every t =¿ t1, . . . , tnÀ:

¿ t1, . . . , tn À ∈ L⇔ ∃q(χ(t1, q) ∨ ¿ t2, . . . , tn, τ(t1, q), µ(t1, q)À∈ L)

¿ t1, . . . , tn À ∈ D ⇔ ∀q(χ(t1, q) ∨¿ t2, . . . , tn, τ(t1, q), µ(t1, q)À∈ D). (11)

Now let P be the program input(x); t :=¿ xÀ; Q0, where Q0 is the body
of the program Q, i.e. Q0 is Q without its input statement. We claim that
for this program P it is true that L(P ) = I∃yϕ and D(P ) = I∀yϕ. It is clear
from the construction of P , that s ∈ L(P ) ⇔ ¿ s À∈ L(Q) ⇔ ¿ s À∈ L
and s ∈ D(P ) ⇔ ¿ s À∈ D(Q) ⇔ ¿ s À∈ D. So, we have to prove that
I∃yϕ = {s| ¿ sÀ∈ L} and I∀yϕ = {s| ¿ sÀ∈ D}. Half of these equalities is a
direct consequence of the next more general statement.

Proposition 5. For every s ∈ B∗:
(i) s ∈ I∃yϕ ⇒ ∀t(t =¿ t1, . . . , s, . . . , tn À ⇒ t ∈ L),
(ii) s ∈ I∀yϕ ⇒ ∀t(t =¿ t1, . . . , s, . . . , tn À ⇒ t ∈ D).

Proof. (i) Induction on |s|∃yϕ. If it is 0, then there exists q: χ(s, q). We continue
with an inner induction on pos(s, t) – the position of s in t =¿ t1, . . . , s, . . . , tn À.
If pos(s, t) = 1, i.e. t =¿ s, t2, . . . , tn À, then t ∈ L, since χ(s, q) (and, of
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course, since L satisfies (11)). If pos(s, t) = i > 1, then pos(s, t′) = i − 1 for
t′ =¿ t2 . . . , s, . . . , tn, τ(t1, q), µ(t1, q) À. So by induction hypothesis t′ ∈ L,
hence using again (11), we get that t ∈ L. Now suppose that |s|∃yϕ > 0. Then
there exists q : min(|τ(s, q)|∃yϕ, |µ(s, q)|∃yϕ) < |s|∃yϕ. By induction hypothesis,
t′′ =¿ t2, . . . , tn, τ(s, q), µ(s, q)À∈ L. We will need an induction on i = pos(s, t)
again. Indeed, if i = 1, then t =¿ s, t2, . . . , tn À and since t′′ ∈ L, then t ∈ L,
too. If i > 1, then pos(s, t′) = i− 1 for t′ =¿ t2 . . . , s, . . . , tn, τ(t1, q), µ(t1, q)À.
So by induction hypothesis for i− 1 we get t′ ∈ L, hence t ∈ L as well.

For the part (ii) of the proposition, proceed by induction on |s|∀yϕ, using this
time the fact that |s|∀yϕ = sup{min(|τ(s, q)|∀yϕ, |µ(s, q)|∀yϕ) + 1 : ¬χ(s, q)}. ut

It remains to prove the inclusions {s|¿sÀ∈L}⊆I∃yϕ and {s|¿sÀ∈D} ⊆
I∀yϕ. Again they are partial cases of the following more general proposition.

Proposition 6. For any t1, . . . , tn in B∗:
(i) ¿ t1, . . . , tn À ∈ L⇒ ∃i(ti ∈ I∃yϕ),
(ii) ¿ t1, . . . , tn À ∈ D ⇒ ∃i(ti ∈ I∀yϕ).

Proof. We will use the observation that L and D are in fact the least sets,
satisfying (11), in other words, L = I∃yψ and D = I∀yψ, where ψ(x, y,X) is:

Seq(x) & (χ(head(x), y)∨append(tail(x),¿τ(head(x), y), µ(head(x), y)À) ∈ X).

The proofs of (i) and (ii) are again very similar. Let us check this time the sec-
ond one. It is by induction on |t|∀yψ for t =¿ t1, . . . , tn À∈ D. If |t|∀yψ = 0,
then ∀qχ(t1, q) holds, hence t1 ∈ I∀yϕ. Assume now that |t|∀yψ > 0. Hence
|t|∀yψ = sup{| ¿ t2 . . . , tn, τ(t1, q), µ(t1, q)À |∀yψ + 1 : ¬χ(t1, q)}. If there ex-
ists ti with i ∈ {2, . . . , n}, such that ti ∈ I∀yϕ, (ii) is verified. Otherwise for
every q : ¬χ(t1, q) we must have, according to the induction hypothesis for
¿ t2 . . . , tn, τ(t1, q), µ(t1, q) À, that τ(t1, q) ∈ I∀yϕ or µ(t1, q) ∈ I∀yϕ. This
means, however, that t1 ∈ I∀yϕ. ut

References

1. Manna, Z.: Mathematical theory of partial correctness. Lect. Notes in Math. 188
(1971) 252 – 269

2. Skordev, D.: Computability in Combinatory Spaces. Kluwer Academic Publishers,
Dordrecht–Boston–London (1992)

3. Pchelarov, I.: Characterization of non-deterministic programs in abstract structures.
Master’s thesis, Sofia University, Dept. of Maths and Inf. (2003)

4. Moschovakis, Y. N.: Elementary induction on abstract structures. North - Holland,
Amsterdam (1974)

5. Moschovakis, Y. N.: Abstract first order computability I. Trans. Amer. Math. Soc.
138 (1969) 427–464

6. Nikolova, S. K.: Π0
1 -positive inductive definability on abstract structures. Ann.

Univ. Sofia 90 (1996) 91 – 108
7. Grilliot, T. G.: Inductive definitions and computability I. Trans. Amer. Math. Soc.

151 (1971) 309–317



Computable Principles in Admissible Structures

Vadim Puzarenko

Sobolev mathematical institute SB RAS
Novosibirsk, Russia
vagrig@math.nsc.ru

1 Preliminaries

This paper is devoted to a computability approach which is developed by Yu.
Ershov last time. Using this approach S. Goncharov, Yu. Ershov and D. Sviri-
denko proposed theory of semantic programming in 1985 [1, 2]. Here the exact
correspondences between computability on admissible sets and properties of enu-
meration ideals are established. Furthermore, one reducibility on admissible sets
is introduced. Some lattice theoretical properties of this reducibility are studied.
In particular, it is showed that there are minimal elements in proper sublattices
under the reducibility. The properties from descriptive set theory are studied in
these elements and in enumeration ideals. The technique developed here is used
in description of admissible sets in which the field of reals is definable.

Let σ ⊇ {U,∈,∅} be a fixing signature where U,∈,∅ are interpreted in
models as urelements, the membership relation and the empty set respective-
ly. As usual, ∃y ∈ xϕ and ∀y ∈ xϕ are shortenings of ∃y((y ∈ x) ∧ ϕ) and
∀y((y ∈ x)→ ϕ) respectively, where ϕ is a formula in signature σ.

Axioms of KPUσ :
1. existence of empty set: (¬U(∅) ∧ ∀y ∈ ∅¬(y = y));
2. extensionality: ∀x∀y((¬U(x) ∧ ¬U(y)) → (∀z((z ∈ x) ↔ (z ∈ y)) → (x =
y)));
3. pair: ∀x∀y∃z((x ∈ z) ∧ (y ∈ z));
4. union: ∀x∃y∀z ∈ x∀t ∈ z(t ∈ y);
5. foundation (for every formula ϕ(x, z1, . . . , zn) in σ):
∀z1 . . . ∀zn(∃xϕ(x, z1, . . . , zn)→ (∃xϕ(x, z1, . . . , zn) ∧ ∀y ∈ x¬ϕ(y, z1, . . . , zn)));
6. set structure: ∀x(∃y(y ∈ x)→ ¬U(x));
A class of ∆0 formulas is the least class containing atomic formulas and closed
under ∧, ∨, →, ¬ and ∀y ∈ x, ∃y ∈ x.
7. ∆0 separation (for every ∆0 formula ϕ(x, z1, . . . , zn) in σ which doesn’t
contain y free): ∀z1 . . . ∀zn∀x∃y((z ∈ y)↔ ((z ∈ x) ∧ ϕ));
8. ∆0 collection (for every ∆0 formula ϕ(x, z1, . . . , zn) in σ which doesn’t
contain y free): ∀z1 . . . ∀zn(∀z ∈ x∃uϕ→ ∃y∀z ∈ x∃u ∈ yϕ).

Further, we will consider models in some finite signature only.
Ordinals in models of KPU are defined as in the set theory. A set a is called

transitive iff ∀y ∈ a∀z ∈ y(z ∈ a). A transitive set a is called an ordinal if it
contains transitive sets only.
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An ordinal or a height of a model AM of KPU is the collection of all ordinals
of this model (we denote this collection as Ord(AM)). A model AM of KPU is
called an admissible set if Ord(AM) is standard, i.e. it is a well ordered set.
Examples.

1. Every model of the theory ZF can be considered as a model of KPU.
2. Let HYP(N) be the least under inclusion admissible set which contains a

structure N as its element. E.g if N is the standard model of arithmetics
then Ord(HYP(N)) = ωCK1 . Moreover, any countable admissible ordinal
greater than ω is represented as Ord(HYP(N, P )) for a proper P ⊆ ω.

3. Let M be a collection of urelements equipped with a structure M and let
HF (M) be the least set which is closed under ∪, x 7→ {x} and contains
M ∪ {∅} as a subset. Then HF(M) is the least admissible set over M. It is
called a hereditarily finite set over M. Notice that Ord(HF(M)) = ω.

4. Let D be a nonprincipal ultrafilter over ω. Then (HF(∅))ω

ÁD is a model
of KPU which has continuum many natural ordinals and hence it is not
admissible set.

5. Let D be a nonprincipal ultrafilter over ω, let Sn be an n-element set,
and let HF(Sn) be a hereditarily finite set over Sn. Then

∏
D

HF(Sn) is a

model of KPU which has continuum many natural ordinals, too. However,
Th(

∏
D

HF(Sn)) has no admissible set.

From now on, we will denote the standard model of arithmetics by N. Generally
we can define the hierarchy of all definable sets on arbitrary admissible set.

Σn and Πn formulas have forms ∃x1∀x2 . . . Qxnϕ and ∀x1∃x2 . . . Qxnϕ, re-
spectively, where ϕ is ∆0 in both cases.
Let A be an admissible set and let R be a relation on dom(A). We say that
R ∈ ΣA

n (R ∈ ΠA
n ) if R is definable by some Σn(Πn) formula in A (possibly with

parameters). We say that R ∈ ∆A
n if R ∈ ΠA

n ∩ΣA
n .

R is called A-computably enumerable (A-c.e.) ifR ∈ ΣA
1 .R is called A-computable

(A-c.) if R ∈ ∆A
1 .

Notice that ω ⊆ Ord(A) and ω is A-c., for any admissible set A.

Theorem 1. Let A be an admissible set. Then the following holds:

∆A
1

⊆

⊆

ΣA
1

ΠA
1

⊆

⊆
∆A

2

⊆

⊆

ΣA
2

ΠA
2

. . .

. . .

Moreover, all the inclusions are strong.

Proposition 1. Let A be an admissible set. Then the following conditions hold
for every m > 1:
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1. for any n > 1, there exists a n + 1-ary ΣA
m predicate which is universal for

the class of all n-ary ΣA
m predicates;

2. for any n > 1, there exists a n + 1-ary ΠA
m predicate which is universal for

the class of all n-ary ΠA
m predicates;

3. for any n > 1, there is no n+ 1-ary ∆A
m predicate which is universal for the

class of all n-ary ∆A
m predicates;

4. R(x1, . . . , xn) ∈ ΣA
m iff there exists Q(y, y1, . . . , yn) ∈ ∆A

m such that R =
{〈a1, . . . , an〉 | ∃y Q(y, a1, . . . , an)}, n > 1;

5. R(x1, . . . , xn) ∈ ΠA
m iff there exists Q(y, y1, . . . , yn) ∈ ∆A

m such that R =
{〈a1, . . . , an〉 | ∀y Q(y, a1, . . . , an)}, n > 1.

6. ΣA
m is closed under ∧, ∨, ∃x, ∃x ∈ a and it is not closed under ¬;

7. ΠA
m is closed under ∧, ∨, ∀x, ∀x ∈ a and it is not closed under ¬;

8. ∆A
m is closed under ∧, ∨, ¬.

Examples.

1. Let A be an admissible set. Then ΣA
1 is closed under ∀x ∈ a, by Σ reflection

principle.
2. Let A be a hereditarily finite set. Then ΣA

n is closed under ∀x ∈ a.

3. The closure of Σ
HYP(N)
2 under ∀x ∈ a, ∨, ∧, ∃x coincides with

⋃
nΣ

HYP(N)
n .

Let A,B ⊆ ω. We say that A 6e B iff
∀n ∈ ω(n ∈ A⇔ ∃u[〈m,u〉 ∈W&(Du ⊆ B)])

for some c.e. W where Du is the canonical numbering of finite subsets of ω.
A ≡e B ® (A 6e B&B 6e A).
Le ® P(ω)Á≡e

. 〈Le,6〉 is an upper semilattice with the least element. Moreover,
de(A) t de(B) = de(A⊕B) where

A⊕B ® {2n | n ∈ A} ∪ {2n+ 1 | n ∈ B}.
I ⊆ Le is called an ideal if the following conditions hold:
• 0 ∈ I;
• a,b ∈ I ⇒ a t b ∈ I;
• b ∈ I,a 6 b⇒ a ∈ I.
Let X ⊆ Le. Then 〈X〉 is an ideal generated by X. An ideal is called principal
if it is generated by one element. We denote 〈{x}〉 by x̂ .

Theorem 2. (A. Morozov, V. Puzarenko; [6]) 1. Given an admissible set A, the
collection of all A-c.e. subsets of ω is closed under ⊕ and e-reducibility.
2. Given an ideal I, there exists an admissible set AI such that the collection of
e-degrees of all AI-c.e. subsets of ω is equal to I.

Let Ie(A) be the collection of e-degrees of all A-c.e. subsets of ω.
ThΣ(A) ® {Φ | Φ is Σ1 sentence, A |= Φ}.

Proposition 2. [8] Ie(A) = 〈de(ThΣ(A, a)) | a ∈ dom(A)〉.

Th∃(M) ® {Φ | Φ is ∃ sentence, M |= Φ}.
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Proposition 3. [6] Ie(HF(M)) = 〈de(Th∃(M, a)) | a ∈ dom(M)<ω〉.
Let S be a class of sets and binary relations containing ∅, ω and the universal

set U , i.e. A ⊆ U , for every A ∈ S. We say that S satisfies

– the total extension property iff, for any partial function ϕ ∈ S, there exists
a total function f ∈ S such that ϕ ⊆ f ;

– the separation property iff, for any disjoint sets A0, A1 ∈ S, there exists
D ∈ S such that U \D ∈ S, A0 ⊆ D and A1 ⊆ D;

– the existence of a universal function iff there exists a universal function for
the class of all unary functions from S;

– the reduction property iff, for any A0, A1 ∈ S, there exist disjoint sets
B0, B1 ∈ S such that B0 ⊆ A0, B1 ⊆ A1 and B0 ∪B1 = A0 ∪A1;

– the uniformization property iff, for every binary relation R ∈ S, there exists
a function ρ ∈ S such that ρ ⊆ R and δρ = Pr1(R);

– the enumeration (via ω) property iff, for any non-empty A ∈ S, there exists
a function ψ ∈ S which acts from ω onto A;

– the quasi-projectibility (in ω) property iff, for any A ∈ S, there exists a
partial function ψ ∈ S which acts from some subset D ⊆ ω onto A.

Here we denote the domain of ϕ and the projection on the first coordinate of R
by δϕ and Pr1(R), respectively.

We will say that an admissible set A satisfies a property P iff ΣA
1 satisfies

this property. Let J be an enumeration ideal and let P be one of properties
considered above except of existence of a universal function. Then we will say
that J satisfies P iff

⋃J satisfies this property. Notice that an ideal J satisfies
the enumeration property iff it is generated by total degrees. If an admissible set
A has the height ω and satisfies the enumeration property then it is recursively
listed.

2 Reducibilities on Admissible Sets

Let A be an admissible set and let S be arbitrary set. A map ν : dom(A) ³ S
(onto S) is called A-numbering of S.
Let S ⊆ P(dom(A)). A-numbering ν is called computable if Γ ∗

ν ® {〈x, y〉 ∈
dom(A)2 | y ∈ ν(x)} ∈ ΣA

1 .
A-numbering ν is called definable if Γ ∗

ν ∈
⋃
nΣ

A
n .

We will denote the class of all computable in A collections ( which have some
computable A-numbering) of subsets of ω as Sω(A).
(1985; Yu. Ershov) Let M = 〈M,Q1, . . . , Qk〉 be an arbitrary model in some
finite relation language. We say that M is Σ definable in an admissible set A
(and we denote it as M 6Σ A) if there exists an A-numbering ν of M such that
ν−1(=), ν−1(Q1), . . ., ν−1(Qk) are A-c.
We say that M is definable in A (and we denote it as M 6 A) if there exists an
A-numbering ν of M such that ν−1(=), ν−1(Q1), . . ., ν−1(Qk) are in

⋃
nΣ

A
n .

(2002; A. Morozov) We say that an admissible set A is Σ-reducible to an ad-
missible set B (and we denote it as A vΣ B) if there exists a B-numbering ν of
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dom(A) such that {〈x, y〉 | ν(x) = {ν(z) | z ∈ y}} is B-c., as it was in definition
of A 6Σ B
(2004) We say that an admissible set A is enumerably reducible to an admissible
set B (and we denote it as A vE B) if there exists a B-numbering ν of dom(A)
such that ν−1(C) is B-c.e., for every binary A-c.e. predicate C.

We say that p-reducibility (6p∈ {6Σ ,vΣ ,vE}) on admissible sets preserves P
if A 6p B implies P (A) ⊆ P (B).

Ie Sω Ord Set structure
6Σ – – – –
vE + + – –
vΣ + + + +

Examples.

1. HYP(N) 6Σ HF(HYP(N)). However,Π1
1 = Ie(HYP(N)) ­ Ie(HF(HYP(N))) =

∆1
1.

2. HYP(S) vE HF(S), where S is some infinite model in the empty signature.

Theorem 3. (Yu. Ershov [3]) M 6Σ A⇔ HF(M) 6Σ A⇔ HF(M) vΣ A.

Proposition 4. HF(∅) vE A, for every admissible set A.

Proposition 5. Let A and B be admissible sets and ν be a map such that ν :
A vE B. Then ν−1(ΣA

m) ⊆ ΣB
m, ν−1(ΠA

m) ⊆ ΠB
m, ν−1(∆A

m) ⊆ ∆B
m, for any

m > 1.

• Let A be an admissible set. An admissible set J(A) is called a jump if there
are surjective maps ν0 : dom(A) ³ dom(J(A)) and ν1 : dom(J(A)) ³ dom(A)

such that ν−1
0 (Σ

J(A)
1 ) ⊆ ΣA

2 , ν−1
1 (ΣA

2 ) ⊆ ΣJ(A)
1 .

Given an admissible set A, there exists a jump J(A) which is unique up to
E-equivalence.

Proposition 6. Let A, B be admissible sets and let M be a model in some finite
signature. Then the following conditions hold:

1. A vE J(A);

2. A vE B⇒ J(A) vE J(B);

3. M 6 A iff M 6Σ Jn(A) for some n ∈ ω.

3 Computable Principles on Admissible Sets

Theorem 4. We have the following correspondences between principles on ad-
missible sets:
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Moreover, all the transitions are strong for exception maybe of 3.

4 Construction

Theorem 5. [8] Let A be an admissible set and let P be one of the following
properties: uniformization, reduction, separation, total extension, existence of
a universal function, enumerability via ω, quasi-projectibility in ω. Then there
exists a model MA in the signature {Q4} such that the following conditions hold:
1. A ≡E HF(MA);
2. P (A)⇔ P (HF(MA)).

Example. HYP(N) satisfies quasi-projectibility in ω, uniformization, reducti-
on, existence of a universal Σ function and does not satisfy other principles. In
particular, it is not enumerable via ω, nevertheless, it is recursively listed. By
theorem 2, there exists a hereditarily finite set satisfying the same properties
and being E-equivalent to HYP(N).

5 Semilattices under E-Reducibility

Let DE(A) be the class of all admissible sets which are E-equivalent to A.
Rα = {DE(A) | A is admissible, card(A) = α},
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R6α = {DE(A) | A is admissible , card(A) 6 α},
Rα,I = {DE(A) | A is admissible, card(A) = α, Ie(A) = I},
R6α,I = {DE(A) | A is admissible, card(A) 6 α, Ie(A) = I},
where I is an ideal of e-degrees and α is an infinite cardinal.
An upper semilattice 〈L,6〉 is called distributive if x 6 y t z ⇒ ∃y0 6 y∃z0 6
z[x = y0 t z0] for any x, y, z ∈ L.

Theorem 6. Let I be an e-ideal and α be an infinite cardinal such that α >
card(I). Then the following conditions hold:

1. 〈Rα,vE〉, 〈R6α,vE〉, 〈R6α,I ,vE〉, 〈Rα,I ,vE〉 are upper semilattices of
cardinality not greater than 2α;

2. if I is at most countable ideal then card(Rω,I) = 2ω and hence card(Rω) =
2ω;

3. 〈Rα,vE〉, 〈R6α,vE〉 and 〈Rα,I ,vE〉 have the least elements;
4. 〈R6α,I ,vE〉 has the least element iff I is a principal ideal or α = ω;
5. if β is a cardinal such that α < β then there exist embeddings
〈R6α,vE ,t,0〉 ↪→ 〈R6β ,vE ,t,0〉,
〈Rα,vE ,t,0〉 ↪→ 〈Rβ ,vE ,t,0〉,
〈R6α,I ,vE ,t〉 ↪→ 〈R6β,I ,vE ,t〉 and
〈Rα,I ,vE ,t,0〉 ↪→ 〈Rβ,I ,vE ,t,0〉;

6. 〈Le,6,t, 8,0〉 ↪→ 〈Rω,vE ,t, J,0〉 and hence 〈R6α,vE〉 and 〈Rα,vE〉 are
not distributive;

7. if α > ω then 〈R6α,vE〉 is not a lattice; furthermore, if I is nonprincipal
then 〈R6α,I ,vE〉 is not a lattice, too.

Let 0α,I be the least element of 〈Rα,I ,vE〉, where I is an ideal and α is an
infinite cardinal with α > card(I).

6 Minimal Elements: General Case

Let I and α be an ideal and an infinite cardinal such that α > card(I). Construct
a model Mα,I in the signature {P 2} as a disjunct union of trees of kind DS ,
S ∈ ⋃ I (we take exactly α trees of kind DS , for every such S):
• every vertex has either one or two immediate successors;
• a vertex x has two immediate successors iff height(x) ∈ S;

•P (x, y)⇔





x is a root&(x = y);

x is not a root&(x is an immediate

successor of y).

Then HF(Mα,I) ∈ 0α,I .

Theorem 7. [6] Let A be an admissible set such that A ∈ 0α,I . Then S ⊆
P(ω) is computable in A iff S ∪ {∅} = {Θn(R,A) | n ∈ ω, de(R) ∈ I} for
some computable sequence of enumeration operators {Θn}n∈ω and A ⊆ ω with
de(A) ∈ I.
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We say that I satisfies the property of universal function existence if collection
of all the graphs of functions f with de(Γf ) ∈ I is computable in admissible sets
from 0α,I .

Theorem 8. [8] Let P be one of the following properties: existence of a universal
function, separation, total extension. Then there exists an admissible set A ∈
0α,I such that P (A)⇔ P (I).

7 Minimal Elements: Case of Non-principal Ideal

Let I be a nonprincipal ideal and α be an infinite cardinal such that α > card(I).

Theorem 9. (2004) Let A be an admissible set such that A ∈ 0α,I . Then the
reduction principle does not hold in A.

Let A be an admissible set and let ν be an A-numbering of S. ν is called positive
if ην ® {〈x, y〉 ∈ dom(A)2 | ν(x) = ν(y)} is A-c.e. ν is called decidable if
ην is A-c. ν is called single-valued if there is a total A-c. function f such that
ην = {〈x, y〉 | f(x) = f(y)}. ν is called definable if ην ∈

⋃
nΣ

A
n .

Theorem 10. [8] Let A be an admissible set such that A ∈ 0α,I . Then there is
no positive computable A-numbering of the collection of all A-c.e. sets.

Theorem 11. [4] 1. There exists an admissible set A such that there is a single-
valued computable A-numbering of the collection of all A-c.e. sets.
2. There exists an admissible set A such that there is a decidable computable
A-numbering of the collection of all A-c.e. sets but there is no single-valued
computable A-numbering of this collection.

8 Minimal Elements: Case of Principal Ideal

Let C ⊆ ω. We construct a model NC in the signature {0, s2, f2} in the following
way:
dom(NC) = ω ] {zn | n ∈ C}, where zn 6= zn′ when n 6= n′;
0 ∈ ω is the least element of ω and s is the successor function on ω;

f maps n to zn when n ∈ C. Notice that HF(NC) ∈ 0ω,I if I = d̂e(C).

Proposition 7. Let B,C ⊆ ω. Then B 6e C iff HF(NB) vE HF(NC).

Proposition 8. Let C ⊆ ω. Then HF(NJe(C)) ≡E J(HF(NC)).

Proposition 9. Let A be an admissible set which is quasi-projectible in ω. Then
the following conditions hold:

1. Ie(A) is a principal ideal.

2. If C ⊆ ω and Ie(A) = d̂e(C) then A ≡E HF(NC). In particular, A ∈
0ω,Ie(A).
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3. A does not satisfy the total extension property.

Theorem 12. [7] Let C ⊆ ω and let P be one of the following properties: enu-
merability via ω, uniformization, reduction, existence of a universal function,

separation. Then P (HF(NC))⇔ P (d̂e(C)).

Theorem 13. (I. Kalimullin, V. Puzarenko; [7]) We have the following corres-
pondences between the principal ideals:
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9 Some Applications

This approach allows to give a natural description of all the admissible sets in
which the field of reals is definable.

Theorem 14. [5] Let R be a field of reals and let A be an admissible set. Then R
is definable in A iff P(ω) is definable in A, i.e. there is a definable A-numbering
of P(ω).

As corollary, we can prove the following

Theorem 15. (Yu. Ershov [3]) Let T be one of the following theories: infinite
sets without structures, dense linear order, algebraically closed fields. Then R is
not definable in hereditarily finite sets HF(M) over M |= T.

Theorem 16. [5] Let R be a field of reals and let A be an admissible set with
Ord(A) > ω. Then R is Σ-definable in A iff P(ω) ⊆ dom(A).

Theorem 17. [8] There exists an admissible set A such that R 6 A but R ­Σ A.
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Abstract. A rather restricted kind of computability called calculability
is considered on locally finite lattices. Besides arbitrary given functions,
its definition uses as an initial function also a four-argument one whose
value equals the third or the fourth argument depending on whether
the first argument is dominated by the second one. New functions are
constructed by means of substitution and of supremum and infimum
attained when one of the arguments ranges between varying limits. In
one of the examples the calculable functions have a certain relation to
the Bounded Arithmetic of S. R. Buss, and in another one they coin-
cide with the so-called elementary definable functions considered by the
present author in 1967. Under some assumptions that are satisfied in
these two examples, the calculable functions on the natural numbers are
characterized through definability by formulas with bounded quantifiers
and domination by termal functions.

1 Introduction

The study of restricted kinds of computability is often used for achieving a better
applicability of the theory of computability to problems about complexity of
computations. In the present paper one such restricted kind called calculability
will be examined. It is a sort of relative computability that makes sense not only
on the natural numbers, but on any non-degenerate locally finite lattice. An
example to the definition of calculability will be shown to have a certain relation
to the Bounded Arithmetic introduced in [1].

2 The main definition and some examples to it

Let L be a non-degenerate lattice that is locally finite, i.e. {y ∈ L |x ≤ y ≤ z}
is a finite set for any x, z in L. For instance, L could consist of all finite subsets
of some infinite set and be partially ordered by the inclusion relation, or could
be the set of the positive integers partially ordered by the divisibility relation.
In fact we are interested mainly in the case when L is some subset of the set Z
of the integers and L is linearly ordered in the usual way (the most important
case will be the one when L is the set N of the natural numbers, but there are
also other cases that deserve some interest – for example the case of L = Z and
the case of L = {0, 1}).
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Each function considered in this paper will be, except explicitly said some-
thing else, a total function of some non-zero number of arguments in the set L,
i.e. a mapping of Ln into L for some positive integer n. We shall denote by P the
set of the projection functions, i.e. of the functions λx1 . . . xn. xi with 1 ≤ i ≤ n.
The function λxyst. (if x ≤ y then s else t) will be denoted by δL. Whenever f
is an m-ary function, and g1, . . . , gm are n-ary functions, the function

λx1 . . . xn. f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn))

will be called their composition. For any non-negative integer n and any (n+ 1)-
ary function f one can consider the two (n+ 2)-ary functions

λx1 . . . xnuv.
∨

y∈[u..v]L

f(x1, . . . , xn, y) , λx1 . . . xnuv.
∧

y∈[u..v]L

f(x1, . . . , xn, y) ,

where [u..v]L = {y ∈ L |u ∧ v ≤ y ≤ u ∨ v} (the subscript L will be usually
omitted). These two functions will be denoted by f+ and f−, respectively.

Let A be a set of functions. The functions termal in A form the smallest class
of functions containing A∪P and closed under compositions. The functions that
are termal in A ∪ {δL} will be called piecewise termal in A. Our main subject
will be the smallest class of functions containing A ∪ {δL} ∪ P that is closed
under compositions and contains f+ and f− for any f in it. The functions
belonging to this class will be called calculable in A or A-calculable, for short.
Obviously, all functions termal in A are piecewise termal in A, and all functions
piecewise termal in A are A-calculable. (The converse statements are not true
in the general case.)

Remark 1. Each A-calculable function is absolutely search computable (in the
sense of [2]) in λxy. x ∨ y, λxy. x ∧ y, λxz. card{y ∈ L |x ≤ y ≤ z} and the
functions from some finite subset of A.

Remark 2. For any positive integer n the functions λx1 . . . xn. x1 ∨ . . . ∨ xn and
λx1 . . . xn. x1 ∧ . . . ∧ xn are A-calculable, and they are even piecewise termal in
A if L is linearly ordered. This statement is trivial for n = 1. For n = 2 one can
use the equalities

u ∨ v =
∨

y∈[u..v]

y , u ∧ v =
∧

y∈[u..v]

y ,

in the general case and the equalities

u ∨ v = δL(u, v, v, u) , u ∧ v = δL(u, v, u, v)

in the case of linearly ordered L. The general statement can be proved by in-
duction.

The following denotations will be used sometimes in the sequel:

f+
a = λx1 . . . xnv. f

+(x1, . . . , xn, a, v) ,

f+
a,b = λx1 . . . xn. f

+(x1, . . . , xn, a, b)

for any natural number n, any (n+ 1)-ary function f and any a, b in L.
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Remark 3. Suppose L is linearly ordered, there is a least element a in L, and
the constant a regarded as a one-argument function is piecewise termal in A.
Then the class of the A-calculable functions is the smallest class of functions
containing A ∪ {δL} ∪ P that is closed under compositions and contains f+

a for
any f in it. To prove this, it is sufficient to prove the following two statements:

(i) For any A-calculable function f the function f+
a is also A-calculable.

(ii) Whenever C is a class of functions with the properties formulated above, and
f is a function belonging to C, the functions f+ and f− also belong to C.
The statement (i) is obvious, since f+

a is obtained from f+ by means of
a substitution of a into it. As to the statement (ii), it follows (assuming f is
(n+ 1)-ary) from the equalities

f+(x̄, u, v) = δL(u, v, g(x̄, u, v), g(x̄, v, u)) ,

f−(x̄, u, v) = h+
a (x̄, u, v, f(x̄, u)) ,

where x̄ stands for x1, . . . , xn ,

g(x̄, s, t) =
∨

y∈[a..t]

δL(y, s, f(x̄, s), f(x̄, y)) ,

and h is defined by consecutively setting

l(x̄, u, v, z) =
∨

y∈[u..v]

δL(z, f(x̄, y), a, z) ,

h(x̄, u, v, z) = δL(l(x̄, u, v, z), a, z, a)

(comment: for any given x̄, u, v the inequality l(x̄, u, v, z) ≤ a is equivalent to
the equality l(x̄, u, v, z) = a, and it is satisfied by an element z of L if and only
if z ≤ f(x̄, y) for all y in [u..v] , therefore {h(x̄, u, v, z) | z ∈ [a..f(x̄, u)]} is the
set of all such z ).

Remark 4. Suppose L is linearly ordered, there are a least element a and a
greatest element b in L, and the constants a and b regarded as one-argument
functions are piecewise termal in A. Then the class of the A-calculable functions
is the smallest class of functions containing A ∪ {δL} ∪ P that is closed under
compositions and contains f+

a,b for any f in it. Indeed, f+
a,b is A-calculable for any

A-calculable function f , and, on the other hand, if f is an (n+ 1)-ary function
for some non-negative integer n, then f+

a = g+
a,b, where g is defined by means of

the equality
g(x̄, v, y) = δL(y, v, f(x̄, y), f(x̄, v))

( x̄ stands again for x1, . . . , xn ), hence any class of functions with the properties
formulated in the present remark has also the properties formulated in Remark 3.

Remark 5. If L is linearly ordered, there are a least and a greatest element in L,
and all constants regarded as one-argument functions are piecewise termal in A,
then all A-calculable functions are piecewise termal in A. This can be seen by
using Remarks 2 and 4.
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Remark 6. All A-calculable functions are piecewise termal in A also in the case
when L has exactly two elements (hence L is linearly ordered). Indeed, then
[u..v] = {u, v}, therefore

f+(x̄, u, v) = f(x̄, u) ∨ f(x̄, v) , f−(x̄, u, v) = f(x̄, u) ∧ f(x̄, v)

for all x̄, u, v , and we may use Remark 2.

Now we shall consider some examples to the definition of calculability. In
each of them except for the last one, L will be a subset of Z, and the usual
linear ordering will be tacitly assumed to be the partial order on L (according
to Remark 6 the examples with L = {0, 1} concern in fact the ordinary theory
of Boolean functions).

Example 1. Let L = N , A = {λx. 0, λx. 1, λxy. x + y, λxy. x · y} . Then
the A-calculable functions will be shown to coincide with the class of functions
considered in [4] and called elementary definable there.1 By its definition (slightly
paraphrased), the class of the elementary definable functions is the smallest class
of functions in N containing λxy. (if x = y then 1 else 0) , λxy. x+ y , λxy. x · y
and the projection functions, that is closed under compositions and contains f+

0

for any f in it. Therefore (in view of Remark 3) it is sufficient to prove the
calculability of the function λxy. (if x = y then 1 else 0) in the concrete A
considered now and the elementary definability of the functions λx. 0 , λx. 1
and δL. This can be done by means of the equalities

(if x = y then 1 else 0) = δL(x, y, δL(y, x, 1, 0), 0) ,

1 = (if x = x then 1 else 0) , 0 = (if 1 = 1 + 1 then 1 else 0),

δL(x, y, s, t) = g+
0 (x, y, y) · s + g+

0 (y + 1, x, x) · t ,

where g = λt1t2z.(if t1 + z = t2 then 1 else 0) .

Example 2. Let L = N , A = {λx. 0 , λxy. x+y , λxy. x·y , λx.
∣∣x
∣∣ , λxy. x#y} ,

where
∣∣x
∣∣ is the length of the binary representation of x if x > 0 and 0 otherwise,

x#y is 2|x|·|y|. In [1] some theories of arithmetic are studied that have the
functions from A and the functions λx. x + 1 , λx. bx/2c as their primitive
functions and ≤ as their primitive relation (the study of these theories, and
especially of formulas in them with bounded quantifiers, is related to problems
of feasible computability). The functions λx. x+ 1 , λx. bx/2c are A-calculable
thanks to the equalities

1 = 0#0 , bx/2c =
∨

y∈[0..x]

δL(y + y, x, y, 0) ,

hence adding them toA would not enlarge the class of theA-calculable functions.
A comparison with Example 1 shows that all elementary definable functions be-
long to this class. The converse is not true, because the elementary definable

1 The class in question is a subclass (most likely a proper one) of the class of the lower
elementary functions introduced in [3].
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functions are dominated by polynomials, whereas the function λxy. x#y is not.
By a certain fairly general statement concerning calculability (to be proved in
the last section), the class considered now can be characterized in a simple way
through definability by formulas with bounded quantifiers in the language of the
above-mentioned theories (the elementary definable functions can be character-
ized in a similar way by formulas with bounded quantifiers in a more restricted
language).

Example 3. Let L = N and the ternary functions f1 and f2 be defined as follows:

f1(x, y, z) = (if x+ y = z then 0 else 1) ,

f2(x, y, z) = (if x · y = z then 0 else 1) .

Since f1 and f2 are piecewise termal in the set A from Example 1, all func-
tions calculable in {f1, f2} are calculable in that A, hence they are elementary
definable. However, the converse is not true. For example, the constant 1 (re-
garded say as a one-argument function) is not calculable in the set {f1, f2},
since, whenever an n-ary function f is calculable in this set, the inequality
f(x1, . . . , xn) ≤ x1 ∨ . . . ∨ xn holds for all x1, . . . , xn in N. We note that the
constant 0 is still calculable (and even termal) in {f1, f2} thanks to the equality
0 = f2(f2(x, x, x), f2(x, x, x), f2(x, x, x)) . By Remark 2, the functions of the
form λx1 . . . xn. x1 ∨ . . . ∨ xn are also calculable in {f1, f2}. As an example of
{f1, f2}-calculable function, that is not piecewise termal in {f1, f2}, we shall
mention the predecessor function (defined as 0 at 0) – its value at x can be
represented as ∨

y∈[0..x]

δL(f1(y, f1(x, x, x), x), 0, y, 0) .

Example 4. Let L = Z , A = {λx. 1 , λxy. x − y , λxy. x · y } . Then the
functions λx. 0 , λx. − x , λxy. x + y are termal in A thanks to the equalities
0 = x − x, −x = 0 − x, x + y = x − (−y) . The class of the A-calculable
functions is the smallest class of functions containing A∪{δL}∪P that is closed
under compositions and contains f+

0 for any f in it – this can be shown by using
the equalities

f+(x̄, u, v) =
∨

z∈[0..v−u]

f(x̄, v − z) , f−(x̄, u, v) = −
∨

z∈[0..v−u)]

−f(x̄, v − z) .

The A-calculable functions can be characterized also in the following more ex-
plicit way: an n-argument function f is A-calculable if and only if there exist
two elementary definable 2n-argument functions ψ and θ in N such that

f(i1 − j1, . . . , in − jn) = ψ(i1, j1, . . . , in, jn)− θ(i1, j1, . . . , in, jn)

for all i1, j1, . . . , in, jn in N.

Example 5. Let L = {0, 1}, and let A consist of the constants 0 and 1 regarded
as one-argument functions. Since λxy. δL(x, y, 1, 0) is the Boolean implication,
the Post Theorem shows that all Boolean functions are A-calculable. Another
proof of this will be given in the next section.
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Example 6. Let L = {0, 1}, A = ∅. Then any A-calculable function f belongs
to both Post classes T0 and T1, i.e. f(0, . . . , 0) = 0 and f(1, . . . , 1) = 1 . A proof
of the converse statement will be given in the next section.

Example 7. Let L = {0, 1}, A = {λx. 0}. Then all A-calculable functions
belong to T0, and the converse statement will be proved in the next section.

Example 8. Let L be an infinite subset of N, f be a unary function that trans-
forms any element of L into some greater one, and g be the unary function that
transforms any x from L into the least element of L greater than x. Then g is
{f}-calculable thanks to the equality

g(x) =
∧

y∈[x..f(x)]L

δL(y, x, f(x), y) .

(However, a choice of L and f is possible such that g cannot be obtained by
means of a recursive operator from f and the functions λxy. x ∨ y, λxy. x ∧ y,
λxz. card{y ∈ L |x ≤ y ≤ z} mentioned in Remark 1.)

Example 9. Let L consist of all finite subsets of some infinite set, and A be any
set of functions in L. The equalities

x1 \ x2 =
∧

y∈[∅..x1]L

(if x1 ≤ x2 ∨ y then y else x1) , ∅ = x \ x

show that λx1x2. x1 \ x2 is A-calculable if and only if λx. ∅ is A-calculable.

3 A-calculable predicates

We continue adhering to the assumptions and conventions from the beginning
of the previous section. Thus a non-degenerate locally finite lattice L and a set
A of functions in it will be again supposed to be given. For any positive integer
n and any n-argument predicate p on L the (n+ 2)-argument function

λx1 . . . xnst. (if p(x1, . . . , xn) then s else t)

will be denoted by p∗, and it will be called the representing function of p (ob-
viously there is a one-to-one correspondence between the predicates and their
representing functions). A predicate will be called calculable in A or A-calculable,
for short, if the representing function of this predicate is A-calculable.

Remark 7. If there are two distinct elements a and b of L such that the corre-
sponding one-argument constant functions are A-calculable then one can charac-
terize the A-calculability of predicates in a more usual way. In such a situation,
an n-argument predicate p on L is A-calculable if and only if the n-argument
function

p∗a,b = λx1 . . . xn. (if p(x1, . . . , xn) then a else b)
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is A-calculable. This is clear from the equalities

p∗a,b(x̄) = p∗(x̄, a, b) ,

p∗(x̄, s, t) = δL(p∗a,b(x̄), a, δL(a, p∗a,b(x̄), s, t), t) .

Next example can be used together with Example 7 to show that the assumption
about A-calculability of a and b in the previous remark cannot be omitted (be-
cause the function λx. (if x = 1 then 0 else 1) is not A-calculable in the situation
from Example 7).

Example 10. Let L = {a, b}, where a < b. Then the predicates p = λx. (x = a)
and q = λx. (x = b) are A-calculable thanks to the equalities

p∗(x, s, t) = δL(s, t, δL(x, s, s, t), δL(x, t, s, t)) ,

q∗(x, s, t) = δL(s, t, δL(t, x, s, t), δL(s, x, s, t)) .

Immediate examples of A-calculable predicates (for any A) are the identically
true and the identically false ones, as well as the predicate λx1x2. (x1 ≤ x2) .
The class of the A-calculable n-argument predicates is closed under negation,
conjunction and disjunction, as seen from the equalities

(not p)∗(x̄, s, t) = p∗(x̄, t, s),

(p and q)∗(x̄, s, t) = p∗(x̄, q∗(x̄, s, t), t),

(p or q)∗(x̄, s, t) = p∗(x̄, s, q∗(x̄, s, t)).

The class of the A-calculable predicates is closed also under substitution of A-
calculable funcrions, i.e. whenever p is an A-calculable m-argument predicate,
and f1, . . . , fn are A-calculable n-argument functions, the predicate

q = λx1 . . . xn. p(f1(x1, . . . , xn), . . . , fm(x1, . . . , xn))

is also A-calculable. This is clear from the equality

q∗(x̄, s, t) = p∗(f1(x̄), . . . , fm(x̄), s, t).

By using the above properties one can easily see the A-calculability of a lot of
other predicates. For example λx1x2. (x1 = x2) is A-calculable as a conjunction
of λx1x2. (x1 ≤ x2) and λx1x2. (x2 ≤ x1) . In the conditions of Example 10
each n-argument predicate on L turns out to be A-calculable, since it can be
obtained from predicates of the form λx1 . . . xn. (xi = a) by means of negation,
conjunction and disjunction.

The definition of calculability ensures one more kind of closedness of the class
of the A-calculable predicates. Namely, if p is an A-calculable (n+ 1)-argument
predicate on L for some non-negative integer n then the following two predicates
are also A-calculable:

q = λx1 . . . xnuv. ( p(x1, . . . , xn, y) for all y ∈ [u..v] ) ,

r = λx1 . . . xnuv. ( p(x1, . . . , xn, y) for some y ∈ [u..v] ) .
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This follows from the equalities

q∗(x̄, u, v, s, t) = δL
( ∨

y∈[u..v]

p∗(x̄, y, s ∧ t, s ∨ t), s ∧ t, s, t
)
,

r∗(x̄, u, v, s, t) = δL
( ∧

y∈[u..v]

p∗(x̄, y, s ∧ t, s ∨ t), s ∧ t, s, t
)
.

For any n-argument function f the predicate λx1 . . . xny. (y = f(x1, . . . xn))
will be said to represent f . If f is A-calculable then this predicate is also A-
calculable, as it follows from some of the above-mentioned properties. Next
lemma gives a way for reasoning in the opposite direction, namely from the
A-calculability of the predicate representing a function to the A-calculability of
the function itself.

Lemma 1. Let f, g, h be n-argument functions such that g(x̄) ≤ f(x̄) ≤ h(x̄)
for any x̄ in Ln, and the functions g and h, as well as the predicate representing
f , are A-calculable. Then the function f is also A-calculable.

Proof. If p is the predicate that represents f then

f(x̄) =
∨

y∈[g(x̄)..h(x̄)]

p∗(x̄, y, y, g(x̄))

for any x̄ in Ln. ut

An n-argument function f will be called A-calculable on a subset X of Ln

if f coincides on X with some A-calculable n-argument function. Clearly an
n-argument function is A-calculable if and only if it is A-calculable on the
whole Ln. A combined application of this fact and the following lemma can
be useful for proving the A-calculability of some functions.

Lemma 2. Let X1, . . . , Xk, where k ≥ 2, be subsets of Ln, and the predicates
λx1 . . . xn. ( (x1, . . . , xn) ∈ Xi ) , i = 2, . . . , k, be A-calculable. If an n-argument
function is A-calculable on each of the sets X1, . . . , Xk, then it is A-calculable
also on their union.

Proof. It is sufficient to prove the statement of the lemma for the case of k = 2,
since the statement for the general case can be obtained from there by induc-
tion. The reasoning for the case of k = 2 looks as follows: if an n-argument
function f coincides on Xi with the A-calculable function gi for i = 1, 2, then
f coincides on X1 ∪X2 with the function λx1 . . . xn. p

∗(x̄, g2(x̄), g1(x̄)) , where
p = λx1 . . . xn. ( (x1, . . . , xn) ∈ X2 ) . ut

By application of Lemma 2, we shall fulfil now the promises made in the
three examples with L = {0, 1} of the previous section. In the case of Example 5,
given an arbitrary n-ary function f , we take k = 2, X1 = {x̄ | f(x̄) = 0} and
X2 = {x̄ | f(x̄) = 1}. In the case of Example 6, given an n-ary function f
belonging to T0 ∩ T1, we take k = n and Xi = {x̄ | f(x̄) = xi} for i = 1, . . . , n.
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Finally, in the case of Example 7, given an n-ary function f belonging to T0, we
take k = n + 1 and Xn+1 = {x̄ | f(x̄) = 0}, the sets X1, . . . , Xn being defined
in the same way as in the case of Example 6. In each of these cases, the given
function f is A-calculable on any of the corresponging sets X1, . . . , Xk, hence
it is A-calculable on their union (because all predicates are A-calculable in the
case of a two-element L). On the other hand, it is easy to show that the union
in question is equal to {0, 1}n in each of the three cases.

4 Definability by formulas with bounded quantifiers

Let a signature Σ be given with some function symbols and only one predicate
symbol, and let this predicate symbol be a binary one. Let S be a structure
for Σ such that the domain of S is N, and let the predicate symbol of Σ be
interpreted in S as the relation ≤ between natural numbers. In addition to the
interpretation in S of any functional symbol of Σ we shall consider also its
adapted interpretation in S - meaning the interpretation of the symbol in S if
the symbol is not a constant of Σ and the one-argument constant function whose
value is the interpretation of the symbol otherwise. Taking L to be the set N
with the relation ≤, we shall consider any set A of functions such that each
function in A is the adapted interpretation in S of some function symbol of Σ,
and the adapted interpretation of each function symbol of Σ is A-calculable.2

Under some additional assumptions we shall study the connection between A-
computability and definability by bounded formulas of the first-order language
LΣ corresponding to Σ.

Having in mind the above-mentioned interpretation of the predicate symbol
of Σ, we shall write the atomic formulas of LΣ as inequalities between terms. By
definition, a formula of LΣ is bounded if it is constructed from atomic formulas
by means of negation, conjunction, disjunction and bounded quantifiers of the
forms (∀ξ ≤ τ), (∃ξ ≤ τ) with term τ not containing the variable ξ (assuming
that (∀ξ ≤ τ)F and (∃ξ ≤ τ)F are abbreviations for ∀ξ((ξ ≤ τ) → F ) and
∃ξ((ξ ≤ τ) & F ), respectively).

The additional assumptions we make are the following ones: (i) the con-
stant 0 regarded as a one-argument function is piecewise termal in A, (ii) a
two-argument function exists that is termal in A and dominates its arguments,
and (iii) each function belonging to A is dominated by some function termal in
A and monotonically increasing with respect to any of its arguments.

The assumption (i) allows to apply Remark 3, and the other two assumptions
imply that each A-calculable function is dominated by some function termal in
A. All three of them are satisfied if A is as in Example 1 or Example 2 (even

2 The simplest choice is to take as A the set consisting of the adapted interpretations
in S of all function symbols of Σ, but sometimes certain of these interpretations
can be omitted. For instance we must have in Σ function symbols for the functions
λx. x + 1 and λx. bx/2c in order to get the language of the theories studied in [1],
but it is not necessary to include the functions themselves in the set A – this set can
be as in Example 2.
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if one strengthens the assumptions by replacing “is piecewise termal in” and “is
termal in” with “belongs to” and by skipping the phrase “dominated by some
function termal in A and”).

Lemma 3. For any A-calculable function the predicate representing it is defin-
able by means of some bounded formula of LΣ.

Proof. By using the characterization of A-calculability indicated in Remark 3.
The domination property discussed above is used in the reasoning about com-
position for turning some quantifiers into bounded ones. ut
Lemma 4. All predicates definable by means of bounded formulas of LΣ are
A-calculable.

Proof. By induction using properties indicated in the previous section. ut
Theorem 1. A function f is A-calculable if and only if the predicate represent-
ing f is definable by means of some bounded formula of LΣ and f is dominated
by some function termal in A.

Proof. By Lemmas 1, 3 and 4. ut
Theorem 2. A predicate in L is A-calculable if and only if it is definable by
means of some bounded formula of LΣ.

Proof. The “if”-direction is given by Lemma 4. Suppose now that p is an A-
calculable n-argument predicate in L. Let q be the n-argument predicate that is
false at (0, . . . , 0) and coincides with p at all other elements of Ln. The predicate
q is definable by means of a bounded formula of LΣ , since q(x1, . . . , xn) is true
if and only if xi 6= 0 and xi = p∗(x1, . . . , xn, xi, 0) for some i in {1, . . . , n}. Then
it remains to note that either p = q or p is equal to the disjunction of q and the
predicate λx1 . . . xn. ( (x1, . . . , xn) = (0, . . . , 0) ) . ut
Remark 8. The assumptions made in this section are still not sufficient for the
existence of A-calculable non-zero constant functions (consider for instance the
case of A = {λx. 0, λxy. x + y}). However, if there exists an A-calculable non-
zero constant function (for instance if A is as in Example 1 or Example 2) then
the above proof can be replaced by an essentially simpler one. Indeed, if b is
the value of such a constant function then the definability of the A-calculable
n-argument predicate p can be seen from the equality

p = λx1 . . . xn. (0 = p∗(x1, . . . , xn, 0, b) ) .
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Abstract. An enumeration degree in which there are no total functions
is called a non-total enumeration degree. It appears that the non-totality
of enumeration degrees is the quasi-minimality according to Slaman and
Sorbi.

1 Enumerations of sets and enumeration degrees

Terminology and notations similar to those of monograph [8] are used. Let ω
denote the set of positive integers, A,B,C, . . . ,X (with or without indices) will
be used to denote subsets of ω; D (with or without indices) will be used to
denote finite subsets of ω. For given partial function α : ω → ω let δα, ρα
and τα = {〈x, α(x)〉 : x ∈ δα} be the domain, the range and the graph of α
respectively. The use of f, g only to denote total functions, i.e. δf = δg = ω is
restricted. Let us denote the characteristic function of A by cA(x) = {(x, 0) :
x ∈ A}∪ {(x, 1) : x /∈ A}. A set A is said to be single-valued, if A = τα for some
partial function α.

Let A ≤e B (A is enumeration reducible to B or A is e-reducible to B), if
there is a uniform algorithm for enumerating A given any enumeration of B (see
[2]). Formally

A ≤e B ⇐⇒ (∃n)(∀x)[x ∈ A ⇐⇒ (∃u)[〈x, u〉 ∈Wn & Du ⊆ B]].

Let Φn : 2ω → 2ω be such mapping that for any X

Φn(X) = {x : (∃u)[〈x, u〉 ∈Wn & Du ⊆ X]}.

Then A ≤e B ⇐⇒ (∃n)[A = Φn(B)]. Φn is called the enumeration operator or
e-operator with c.e. index n.

Let as usual A ≡e B ⇐⇒ A ≤e B & B ≤e A, let de(A) = {B : B ≡e A}
be the e-degree of A and finally let de(A) ≤ de(B) ⇐⇒ A ≤e B. It is easy to
see that this defines a partial ordering relation on e-degrees. For partial function
α, β α ≤e A or α ≤e β if τα ≤e A or τα ≤e τβ, respectively. The set of e-
degrees partially ordered by ≤ is denoted as De. It is well known that De forms
an upper semilattice with least element 0e = {Wn : n ∈ ω} in which the least
upper bound of the e-degrees a and b is a∨b = de(A⊕B). It is known [1] that
there are e-degrees a and b which do not have the greatest lower bound a ∧ b
in De. So the binary operation ∧ is partial.
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We denote the upper semilattice of Turing degrees as DT . As for all A,B

A ≤T B ⇐⇒ cA ≤e cB

there is an isomorphic embedding ε : DT → De : ε(dT (A)) = de(cA). An e-
degree a is said to be total, if it contains a total function. We denote the set of
all total e-degrees by T. It is rather obvious that T is an upper subsemilattice
of De and ρε = T.

We say that any enumeration of A 6= ∅ is a total function p : ω → A
so that ρp = A. We denote the set of all enumerations of A by P(A). Let
De(A) = {de(τp) : p ∈ P(A)} be partially ordered by ≤ . We note that if
|A| = 1 then De(A) = {0e}.

In general case we have the following

Proposition 1. If |A| ≥ 2 and a = de(A) then De(A) = T(≥ a) = {x ∈ T :
x ≥ a}.

The following theorem which is a known result of [6] shows that the e-
reducibility can be defined via enumerations.

Theorem 1. For any sets A, |A| ≥ 2 and B

A ≤e B ⇐⇒ De(B) ⊆ De(A).

The following theorem 2 below has intuitive underlying reason. It appears
that e-reducibility of sets can be defined through enumerations (as total func-
tions), and in this definition it is possible to change the places of the quantifiers
(see to compare our intuitive definition of e-reducibility): A is e-reducible to B if
for any enumeration of B there is an algorithm allowing to get some enumeration
of A. Formally,

Theorem 2. A ≤e B ⇐⇒ (∀p ∈ P(B))(∃n)[A = Φn(τp)].

The proof of this theorem uses the idea from Selman’s proof.

The properties of De(A) depend essentially on A. For example now as it is
shown corollary 1 of theorem 1 some algebraic properties of De(A) depend on
whether de(A) is total or not total e-degree.

Corollary 1. For any set A

de(A) ∈ T ⇐⇒ De(A) has the least element .

From this corollary it follows that if a = de(A) is a non-total degree then
firstly a /∈ De(A) and secondly De(A) has no the least elements. What is it
possible to tell about non-total e-degrees except that they do not contain total
functions?
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2 Quasi-minimality as a sufficient condition of
non-totality

The first important question about e-reducibility was solved by Yu. Medvedev
[3]: De \ T 6= ∅. Yu. Medvedev announced the existence of a non-computably
enumerable set A so that

∀f [f ≤e A⇒ f is computable].

In Rogers’s monograph [4] (see p.280) this result was proved in the following
way:

∃α[α is not partial computable & (∀f)[f ≤e α⇒ f is computable]].

It is clear that de(τα) is not total, i.e. it is non-total. J. Case [1] called Medvedev’s
sets quasi-minimal and their degrees quasi-minimal e-degrees. We note that there
are non-total e-degrees which are not quasi-minimal. For this we recall what is
known as c -quasi-minimal e-degrees. A set A is called C-quasi-minimal and the
e-degree a = de(A) is called c -quasi-minimal where c = de(C) if C < A and

∀f [f ≤e A⇒ f ≤e C].

The existence of c -quasi-minimal e-degrees for any c ∈ De was proved by L.P.
Sasso [5]. Let Qc be the set of all c-quasi-minimal e-degrees.

The family {Qc : c ∈ De} concerning the set-theoretic inclusion ⊆ is ar-
ranged rather difficultly. Not completing all possible relation we shall note some
of them in the following

Proposition 2. For any a, b, c ∈ De

(i) a ∈ Qc ⇐⇒ {a} ∪Qa ⊆ Qc;

(ii) c < a⇒ [a /∈ Qc ⇐⇒ Qa ∩Qc = ∅];
(iii) c > 0e & c /∈ Q⇒ Q ∩Qc = ∅;
(iv) a|b & [a ∈ T ∨ b ∈ T]⇒ Qa ∩Qb = ∅;
(v) a ∈ Qc & b ∈ Qc ⇒ [a ∨ b ∈ Qc ⇐⇒ Qa ∩Qb 6= ∅].

In fact for any a,b ∈ Qc both situations are possible: a∨b ∈ Qc and a∨b /∈ Qc.

In the articles [9] and [10] the special classes of sets of which e-degrees are
non-total are determined. Let a0, a1, . . . be the elements of the infinite set A
in ascending order (or be the direct enumeration of A). A set A is called e-
hyperimmune if there is no total function g so that g ≤e A and an ≤ g(n) for
all n ∈ ω. As shown in the following theorem there are e-hyperimmune (and
therefore, non-total) e-degrees which are not f-quasi-minimal for any f ∈ T.

Theorem 3. There is e-hyperimmune set A so that e-degree a = de(A) is not
f-quasi-minimal for any f ∈ T.
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Proof. We construct step by step a set A in order to satisfy the following
requirements:

eHI: ∀g[g ≤e A⇒ ∃m[am > g(m)]],
where am is m-th member of the direct enumeration of A;

NQ: ∀f [f ≤e A⇒ ∃g[g ≤e A & g 6≤e f ]].
(Here and below the symbols f and g are used as variables which range over the
set of all total functions.) Let g0 <e g1 <e . . . be a sequence of the total functions,
Gs = {〈s, x, gs(x)〉 : x ∈ ω} and Hs = {〈m,x, y〉 : m > s & m,x, y ∈ ω} for
all s ∈ ω. The part of A which has been constructed by the ending of step
s is denoted by As. The construction provides A0 ⊆ A1 ⊆ · · · ⊆ As ⊆ . . . .
Let A = ∪s∈ωAs. While constructing we choose the sequence {zs}s∈ω from A
which will be of the auxiliary character. Below the symbol D denotes a variable
which ranges over the family of all finite sets. We recall just one more notation:
Bdz = {x : x < z & x ∈ B}.

Step 0. Set A0 = G0 and z0 = minA0.
Step s+1. Let s = 2n. We denote by H̃s = Hs \ {0, 1, . . . , z∗s} where z∗s =

max{zi : i ≤ s}. See whether

∃D[D ⊆ H̃s & Φn(As ∪D) is not single − valued ]. (1)

If (1) holds then let D∗ have the least canonical index. Set As+1 = As∪G∗
s+1∪D∗

where G∗
s+1 = Gs+1 \ {0, 1, . . . , z∗s}. Otherwise

∀D[D ⊆ H̃s ⇒ Φn(As ∪D) is single − valued ]. (2)

In this case we set As+1 = As ∪G∗
s+1. In any cases we set zs+1 = zs.

Let s = 2n+ 1. See whether

(∃D)(∃m)[D ⊆ H̃s & Φn(Asdz∗s ∪D)(m) ↓ & Φn(Asdz∗s ∪D)(m) < am], (3)

where am is the m-th member of the direct enumeration of Asdz∗s ∪D. We define
here

Φn(Asdz∗s ∪D)(m) ↓ ⇐⇒ ∃α[Φn(Asdz∗s ∪D) = τα & m ∈ δα]

where α is a variable which ranges over the family of all one-place partial func-
tions. If (3) holds then let D∗ have the least canonical index and let m∗ be the
least number. Set As+1 = As ∪D∗ and zs+1 = am∗. Otherwise set As+1 = As.
The description of our construction is completed.

That the requirement eHI is satisfied will be proved. Let g ≤e A then τg =
Φn(A) for some n ∈ ω. We consider the step s + 1 where s = 2n + 1. If the
condition (3) holds then

g(m∗) = Φn(Asdz∗s ∪D∗)(m∗) = Φn(As+1)(m∗) = Φn(A)(m∗) < am∗ = zs+1,

as the direct enumeration of As+1dz∗s+1 does not change at next steps and it
coincide with the direct enumeration of Adzs+1.
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We suppose that the condition (3) does not hold then

(∀D)(∀m)[D ⊆ H̃s & Φn(Asdz∗s ∪D)(m) ↓⇒ Φn(Asdz∗s ∪D)(m) ≥ am],

where am is m-th member of the direct enumeration of Asdz∗s ∪D. As Asdz∗s ∪
{x} ⊆ A for all x ∈ A then Φn(Asdz∗s ∪ {x}) ⊆ Φn(A) = τg. Therefore

(∀x ∈ A)(∀m)[x > z∗s ⇒ Φn(Asdz∗s ∪D)(m) ↓ & Φn(Asdz∗s ∪D)(m) ≥ am].

Let Asdz∗s ∪ {x} contains j + 1 elements for x > z∗s . Then for m = j we have

(∀x ∈ A)[x > z∗s ⇒ Φn(Asdz∗s ∪D)(j) ≥ x].

As A be the infinite set then the value of g(j) cannot be defined and this con-
tradicts the totality of the function g. Hence if τg = Φn(A) for some n ∈ ω then
the condition (3) must be fulfilled and then ∃m[am > g(m)] where am is m-th
member of the direct enumeration of A. This means that A is e-hyperimmune
set.

Now one can prove that requirement NQ is satisfied as well. For this it is
sufficient to verify the validity of two statements:

(i) gs ≤e A for all s ∈ ω and
(ii) As ≤e gs for all s ∈ ω.

We complete the proof of the theorem. Let f ≤e A, i.e. τf = Φn(A) for some
n ∈ ω. We consider step s + 1 where s = 2n. It is clear that the condition
(1) does not hold. Hence Φn(As ∪ H̃s) is the single-valued set. We have τf =
Φn(A) ⊆ Φn(As∪H̃s). By the totality of the function f and the single-valuedness
of Φn(As ∪ H̃s) one obtains τf = Φn(As ∪ H̃s) i.e. f ≤e As ∪ H̃s ≤e As.

We suppose that gs+1 ≤e f then gs+1 ≤e f ≤e As ≤e gs what contradicts
the hypothesis gs+1 6≤e gs. Thus

∀f [f ≤e A⇒ ∃s[gs ≤e A & gs 6≤e f ]]

and requirement NQ is satisfied. This implies that A is not τf -quasi-minimal set
for any total function f . The theorem is proved completely.

From this theorem it follows that f-quasi-minimality is not a necessary con-
dition of non-totality of e-degrees.

3 Quasi-minimality as a necessary condition of
non-totality

In the article [7] a relativized variant of the quasi-minimality generalizing the
concept of the c-quasi-minimal e-degree is offered. We recall this

Definition 1 (Slaman, Sorbi). Let I 6= ∅ be a set of e-degrees. E-degree a is
called I-quasi-minimal if

(i) c < a for any c ∈ I,
(ii) f ≤ a ⇐⇒ ∃c[c ∈ I & f ≤ c] for any f ∈ T.
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In particular if I = {c} then I-quasi-minimal e-degree is c-quasi-minimal e-
degree. It is clear that any I-quasi-minimal e-degree is non-total. From [7] it
follows that there is G-quasi-minimal e-degree for any growing sequence G =
{gs}s∈ω of total e-degrees gs = de(τgs) for all s ∈ ω.

Now we are able to suggest the following characterization of non-total e-
degrees.

Theorem 4. Any non-total e-degree a is f- quasi-minimal for some total e-
degree f < a or G-quasi-minimal for some family of total e-degrees G = {gs}s∈ω
forming the growing sequence g0 < g1 < · · · < gs < · · · < a.
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Abstract Stone Duality is a revolutionary theory that axiomatises general
topology directly, without using either set theory or infinitary lattice theory.
Every expression in the calculus denotes both a continuous function and a pro-
gram. The closed interval is compact, whereas in the Russian school of com-
putable analysis it is not. Nevertheless, the reasoning looks remarkably like a
sanitised form of that in classical topology.

This paper applies ASD to elementary real analysis, culminating in the In-
termediate Value Theorem, ie the solution of equations f(x) = 0 for continuous
f : R → R. As is well known from both numerical and constructive consider-
ations, the equation cannot be solved if f “hovers” near 0, whilst tangential
solutions will never be found.

In ASD, both these failures and the general method of finding solutions of
the equation when they exist are explained by the new concept of “overtness”.

Overtness, like compactness, is a purely topological concept. It replaces met-
rical properties such as total boundedness, and cardinality conditions such as
having a countable dense subset. It is also related to locatedness in constructive
topology and recursive enumerability in recursion theory.

Overtness and compactness are expressed by the two modal operators, which
may be interpreted as higher-order, parallel, non-deterministic logic programs,
which find solutions of equations in a uniform way.
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Abstract. We develop a Core Specification Theory (CST) and define
a notion of computability for this theory. We then introduce relational
and functional specifications and use the framework to explore the con-
nections between specification and computability.

1 Specification and Implementation

Generally, specification languages ([2], [7], [8], [4], [8], [9], [10]) do not insist that
specifications should be implementable. For example, both Z and VDM allow
the specification of non-computable relations and functions. But should they1?
Given that the aim of specification is to produce specifications of implementable
systems, there seems little point in specifying ones that are not. The same issue
would never arise with programming languages. However, with specification lan-
guages, there are considerations having to do with expressive power that muddy
the waters. In particular, we might be prepared to allow non-implementable
specifications if they facilitate more succinct and transparent ways of expressing
the implementable ones. The objective of this paper is to perform a preliminary
investigation of these issues. To this end, we introduce and study a notion of
computability for specification languages. Obviously, we cannot do so for every
language; instead, we turn to the following idea.

2 A Core Specification Theory

By a Specification Theory (ST) we shall mean a package that consists of a spec-
ification language, a logic and a collection of axioms that govern its associated
constructs. To support our investigation, we put in place a core specification
theory (CST) [12]. It is a theory of numbers, sets and products. These construc-
tors are present in all the major specification languages in one form or another.
So this theory will provide us with a core framework with which to study the
interaction between computability and specification.

1 [11] have carried out a very thorough study of computability in abstract data types
where notions of soundness and completeness for a specification method are pre-
sented. Despite this, actual specification languages do not seem to restrict matters
to computable specifications -under any definition. For example, in Z there is no
restriction on the wff that may be used in a specification.
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The language has three syntactic categories: wff, types and terms. Generally,
we shall employ upper case Roman letters A,B,C,D,...for type terms. These are
generated from N, the natural number type, by the construction of Cartesian
products (⊗) and sets (Set). For the terms, apart from the individual variables,
we admit the constant zero (0) and the numerical successor function (+). For
Cartesian products, we include the pairing function () and the selection func-
tions (πi). Finally, for sets we require a constants (∅T ) for the empty sets of
each type, and a binary insertion function (~) that adds an element to a set.
Generally, we employ lower case Roman letters a, b, c, ... for individual terms
with u, u1, u2, ...v, v1, v2, ..w, ..x, ..y, ..z reserved for term variables. Finally, we
introduce the wff, for which we employ lower case Greek letters. The atomic
wff include absurdity (Ω), equality, set membership (∈) and the ordering rela-
tion on the natural numbers (<) . General wff are generated from these by the
propositional connectives and the type quantifiers.

T ::= N | T ⊗ T | Set(T )

t ::= x | 0 | t+
(t, t) | π1(t) | π2(t)

∅T | t~ t

φ ::= Ω | t = t | t ∈ t | t < t

¬φ | φ ∧ φ | φ ∨ φ | φ→ φ

∀x : T · φ | ∃x : T · φ

Where e is a term or wff, we write e[t1, .., tn/x1, .., xn] for the substitution
of the terms ti for the variables xi. Type membership is defined as follows:
t : T , ∃x : T · x = t.

We present the logic in a sequent style, where sequents take the following
form Γ ` φ, where Γ is a finite set of wff. The system is determined by the
following axioms and rules. The structural rules and the equality axiom schemes
take the obvious shape.

A φ ` φ W
Γ ` ψ
Γ, φ ` ψ

E1 x : T ` x = x

E2 x : T, y : T ` x = y → (φ[x]→ φ[y])

The rules for the propositional connectives are the standard classical ones, and
the following quantifier rules are subject to the normal side conditions about
dependency.

∀i Γ, x : A ` φ
Γ ` ∀x : A · φ ∀e Γ ` ∀x : A · φ Γ ` t : A

Γ ` φ[t/x]

∃i Γ ` φ[t/x] Γ ` t : A

Γ ` ∃x : A · φ ∃e Γ ` ∃x : A · φ Γ, x : A,φ ` η
Γ ` η
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The axioms for the numbers are given as follows.

N1 0 : N

N2 x : N ` x+ : N

N3 x : N ` x+ 6= 0

N4 x : N, y : N ` x+ = y+ → x = y

N5

φ[0] x : N ` φ[x]→ φ[x+]

x : N ` φ[x]

N6 x : N ` ¬(x < 0)

N7 x : N, y : N ` x < y+ ↔ (x < y ∨ x = y)

Cartesian products are governed by the following axioms.

P1 x : A, y : B ` (x, y) : A⊗B
P2 z : A⊗B ` π1(z) : A

P3 z : A⊗B ` π2(z) : B

P4 x : A, y : B ` π1(x, y) = x ∧ π2(x, y) = y

P5 x : A⊗B ` x = (π1(x), π2(x))

Finally, the axioms for sets parallel those for numbers.

S1 ∅A : Set(A)

S2 x : A, y : Set(A) ` x~ y : Set(A)

S3 x : A, y : Set(A) ` x~ (x~ y) = x~ y

S4 x : A, y : A, z : Set(A) ` x~ (y ~ z) = y ~ (x~ z)

S5

φ[∅A] x : A, y : Set(A) ` φ[y]→ φ[x~ y]

y : Set(A) ` φ[y]

S6 x : A ` x /∈ ∅A
S7 y : Set(A), x : A, z ∈ A ` z ∈ x~ y ↔ (z = x ∨ z ∈ y)

This completes the statement of the CST. Note that the following is provable,
i.e. sets are extensional.

Proposition 1. (Extensionality)

∀x : Set(A) · ∀y : Set(A) · (∀z : A · z ∈ x↔ z ∈ y)→ x = y

We shall now enrich the language slightly by adding type variables. They
will only play a schematic role as place holders in our treatment of polymorphic
specifications. While we still employ upper case Roman letters for type terms, we
now reserve X,X1, X2, , ..., Y, Y1, Y2, .., Z, ... for type variables. The type terms
are now allowed to include type variables as atomic type terms, and all the rules
and axioms are extended to this extended language. Call this extended theory
CST+. Note that the following is derivable in this theory - where the type
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variables X1, .., Xn occur in Γ, φ and Γ [T1, .., Tn] and φ[T1, .., Tn] are the result
of replacing Xi by Ti, 1 ≤ i ≤ n.

Γ ` φ
Γ [T1, .., Tn] ` φ[T1, .., Tn]

(SUB)

To see this, one has only to note that each axiom and rule is stated for arbitrary
type terms, and so, if it holds for the case where the type variables occur, it
holds when T1, .., Tn replaces them. Similar considerations yield that CST+ is
a conservative extension of CST. So we shall use CST for both.

3 Computability

Our notion of computability for CST owes much to [6], [1], [3] and unpublished
work by Wilfred Hodges. In particular, they argue that computability can be re-
garded as Σ-definability. However, unike the above, CST has types. This brings
some twists and turns, including the need to include products and numbers.

Definition 1. The class of Σ−Wff of CST are given by the following syntax.

σ ::= α | ¬α | σ ∧ σ | σ ∨ σ | ∃x : T · σ
where

α ::= Ω | t = t | t ∈ t | t < t

The class of Π−Wff are obtained by replacing, in the above syntax, ∃x : T · σ
by ∀x : T · σ. Let σ be a Σ−wff and π a Π−wff. If

CST ` σ ↔ π

Then we shall say that σ is ∆ or Computable.

The proof-theoretic strength of a theory is largely determined by the strength
of its induction principles. So we consider a sub-theory in which these are re-
stricted to Σ-wff. More precisely, in the rules N5 and S5, φ must be a Σ-wff. We
shall name the theory CST with these restricted induction principles, CST ¹ Σ.

4 Specifications

In system specification, new relation/function symbols are introduced/specified.
We first deal with relations. We specify new relations via the following defini-
tional style - a style reminiscent of Z.

Definition 2. Let φ be any Σ−wff. Let T1, ..., Tk be distinct type terms and let
x1, ..., xk (k ≥ 0) be all the free variables of φ. Furthermore, let X1, .., Xn be
exactly the type variables that occur in at least one of the types T1, ..., Tk, and
include all the type variables of φ. Then a Schema Specification has the form

R , [x1 : T1, .., xk : Tk | φ[R, x1, .., xk]] (S)
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We shall call the type information the Declaration and the wff the Predi-

cate. We extend the definition of Σ-wff to include all atomic wff of the form
R(t1, .., tk).

This introduces a new k-place relation symbol R into the language. Notice
that we permit R to occur recursively in the predicate. To facilitate matters, we
assume that φ contains some k-place predicate variable introduced for substitu-
tion purposes i.e. φ[R, x1, .., xk] is obtained by substituting R for it.

These specifications are to be understood as contextual definitions. More for-
mally, S introduces a new relation R that satisfies all type substitution instances
of the following.

x1 : T1, .., xk : Tk ` R(x1, .., xk)↔ φ[R, x1, .., xk] (Rel)

i.e. every instance that may be obtained by replacing, in the declaration and the
predicate,Xi by someAi, 1 ≤ i ≤ n. This ensures that the relation is polymorphic
and that the SUB rule still applies to the extended theory. Following Z, we shall
also write schema in their more graphic form.

Example 1. The following is recursive specification of addition.

Add

x : N, y : N, z : N

(y = 0 ∧ x = z)∨
y 6= 0 ∧ ∃u : N · y = u+ ∧ ∃w : N · z = w+ ∧Add(x, u, w)

Example 2. Provided that φ is a Σ-wff, we may introduce bounded quantifiers
as follows.

∀φ

y : Set(X)

(y = ∅X)∨
∃u : X · ∃v : Set(X) · y = u~ v ∧ φ[u] ∧ ∀φ(v)

Written in their familiar guise, these satisfy all type substitution instances of
the following.

y : Set(X) ` ∀x ∈ y · φ↔ ∀x : X · x ∈ y → φ

y : Set(X) ` ∃x ∈ y · φ↔ ∃x : X · x ∈ y ∧ φ
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This enables us to specify the following set constructors of standard set the-
ory.

Example 3. (Power Set)

Power

u : Set(X), v : Set(Set(X))

(∀x ∈ v · x ⊆ u) ∧ ∅ ∈ v ∧ ∀z ∈ u · ∀w ∈ v · z ~ w ∈ v

Example 4. (Generalised Union)

∪

u : Set(Set(X), v : Set(X)

(∀x ∈ v · ∃w ∈ u · x ∈ w) ∧ (∀w ∈ u · x ∈ w → x ∈ v)

The next example operation is also schematic with respect to the included
wff: it is a specification of separation for sets.

Example 5. (Separation) Let ψ be Σ-wff.

Sepψ

u : Set(X), v : Set(X)

(∀z ∈ v · z ∈ u ∧ ψ[z]) ∧ ∀z ∈ u · ψ[z]→ z ∈ v

There are some important special cases of schema that are theoretically and
practically significant.

Definition 3. Let R , [x : I, y : O | ψ] . Define the Domain of R as follows.

DomR = [x : I | ∃y : O · ψ]

We shall say that R defines a Total relation if ∀x : I ·DomR(x) and that R is
Functional iff ∀x : I · ∃≤1y : O · ψ[x, y]. By SUB, if these hold. they do so for
all instances.

Proposition 2. (CST ¹ Σ ) Generalised Union, Power and Separation are to-
tal and functional
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Proof. By restricted induction and extensionality.¥
However, relation specifications, even when functional, have not been intro-

duced as genuine function symbols which can be applied to arguments in the
standard way. This is the content of the following.

Definition 4. Let R , [x : I, y : O | ψ] be functional. We may then introduce
a new function symbol into the language via the following Recursive Function

Schema

F ,Pun [x : I, y : O | ψ[F, x, y]] (FS)

We shall call this a Σ-Function. The class of Σ-wff is extended to include
new terms of the form F (t) where F is a Σ-function i.e. the atomic wff can now
include these terms. In the special case where R is also total, we shall write Fun
for Pun.

The specification FS is intended to introduce a new function symbol into the
language and, in particular, F (t) is a new term. FS is intended to go beyond S.
More specifically, given PF, FS is to be logically interpreted as the introduction
of a new function symbol that satisfies the following.

x : I ` F (x) : O (F1)

x : I ` (∃y : O · ψ[x, y])→ ψ[x, F (x)] (F2)

Every time we introduce a new relational or function symbol, we enrich the
language and the theory. However, we require that specifications should generate
conservative extensions: otherwise, we would have no guarantee that the proper-
ties of the old theory, which we may rely on during specification, are maintained.
Suppose that we have extended the language of CST with a new well-typed 2

relation R. Let CSTR be the theory in which all the rules of CST are extended
to this new language, together with the axiom Rel. Similarly, let CSTF be the
theory with a new well-typed function symbol F and where all the rules of CST
are extended to this new language together with the axioms F1, F2. The details
of the following can be found in [12]. The proof is in three stages that we shall
now sketch.

– Use a translation to show that non-recursive specifications are conservative.
For example, for relations, we translate them away as follows, where we
illustrate with:

R , [x : T [X] | φ[X,x]]

We translate relative to a type assignment context c that assigns types to
variables

R(t)c = φ[A, t] where relative to c, t has the unique type T [A]

2 An atomic wff of the form a ∈ b is well-typed if, in the context, a has type T and b
has type Set(T ). One of the form a = b is well-typed if, in the context, a has type
T and b has type T. Roughly, in a given declaration context, a wff is well-typed if all
its atomic wff are. We say roughly, since ∀x : T · φ will be well-typed in a context c,
if φ is in c augmented by the declaration x : T.
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The other wff translate compositionally -except the quantifiers that translate
as

(∀x : T · φ)c = ∀x : T · φc,x:T

– Show that specifications that are monotone and compact can be unpacked
in terms of non-recursive ones. For example, if the following recursive spec-
ification is monotone and compact

R , [x : A | φ[R, x]]

It can be unpacked from below as:

R ,

[
x : A | ∃w : N · w > 0 ∧ ∃z : Set(N ⊗ Set(A)) ·Map(z) ∧ x ∈ z(w)∧

Dom(z) = [k] ∧ ∀y < w · ∀u ∈ z(y) · φ[u, z(y)]

]

– The argument is completed by showing that Σ-wff are monotone and com-
pact. This is by induction on the structure of Σ-wff, and is standard.

Theorem 1. CSTR and CSTF are conservative extensions of CST

5 Refinement

We have offered, by way of our examples, some evidence that computable specifi-
cations are enough for practice. Extensionally, they surely ought to be. However,
they are not always as elegant and transparent as one might want. The following
idea addresses this worry.

Definition 5. Let

R , [x : I, y : O | ψ]

S , [x : I, y : O | η]

We shall say that S is a Refinement of R, written as R v S, iff

∀x : I ·DomR(x)→ DomS(x) (1)

∀x : I ·DomR(x)→ ∀y : O · ψ[x, y]↔ η[x, y] (2)

This gives us more expressive power. Our suggestion is that we should only
employ non-sigma specifications, if they can be refined to Σ-ones. For example,
our original power set operation is a refinement of the following more obvious
and transparent one.

Power′

u : Set(X), v : Set(Set(X))

∀x : Set(X) · x ∈ v ↔ x ⊆ u
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There are more demanding examples, but we require more infrastructure to
set them up. In case the reader thinks that all specifications can be refined to
Σ ones, any numerical relation that is not Recursively enumerable, supplies a
counter-example.

6 Models in PA

Since the following constructions are well documented in [5], we shall only sketch
matters. Let N =< N, 0,+> be any model of PA. We represent pairing in the
model in the standard way. It is primitive recursive function and so can be
represented in PA . Moreover, it is a matter of arithmetic, that this is injective
and surjective and that there are PA representable functions π1, π2 that satisfy
the standard axioms. In the model we define: A⊗B , {(x, y) · x ∈ A ∧ y ∈ B}.
For the representation of finite sets, we require the following result from [5].

– For each x, y, there are unique u ≤ y, v ≤ 1, w ≤ 2x such that y = u×2x+1 +
v× 2x +w. Then define: x ∈ y , Bit(x, y) = 1 where Bit(x, y) is the unique
v ≤ 1 such that: ∃u ≤ y · ∃w < 2x · y = u× 2x+1 + v × 2x + w. The proof of
the following may also be found in [5].

– In PA we have: ∀x · ∀y · ∃!z · ∀u · u ∈ z ↔ u = x ∨ u ∈ y. This provides a
representation of union, and hence insertion. This leaves us to represent the
Set constructor. Here we appeal to the representation of recursive predicates
in (PA). First, we add to PA a unary numerical predicate symbol X. The
following is a standard result from formal number theory.

– For each Σ-wff φ, there is a Σ-definable θ such that

1. ∀x · φ[θ, x]→ θ[x]

2. [∀x · φ[ψ, x]→ ψ[x]]→ ∀x · θ[x]→ ψ[x]

where φ[θ] is to be interpreted as φ with every occurrence of any wff of the
form θ[u] substituted for X(u).

To construct a representation of the Set constructor, we first apply this result
to the Σ-wff: φ[x] = x = 0∨∃u : A · ∃v ·X ·x = u~ v. Given the θ for this φ, we
represents the set constructor in the model as: Set[A] = {x · θ[x]}. This leads to
the following.

Lemma 1. Every model of PA may be expanded to a model of CST.

Standard argumentation then yields:

Theorem 2. CST is a conservative extension of PA. Indeed CST ¹ Σ is con-
servative over primitive recursive arithmetic.

This whole model construction can be turned into a translation where the
Σ-wff are translated to those of PA. We conclude that given these computability
considerations, specification theories need not have the proof theoretic power of
Higher order logic, let alone ZF set theory.
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In [2] we have asked a question What do we get if we replace the constant 0 of
Gödel’s primitive recursive functionals (system T ) by 1 and omit the successor
function S? The resulting system T− is seemingly weak because no function can
grow beyond the maximum of its arguments and 1, but rather surprisingly, the
predicates of T− are exactly the Kalmár elementary predicates.

Let T−
k denote the class of predicates we get when the recursors in the system

T− are restricted to yield values of at most type level k. Here the type 0 has
level 0 and σ → τ has level max(n + 1,m) where n and m are the levels of σ
and τ respectively. We have proved in [3] that the predicates in the hierarchy
T−

0 ⊆ T−
1 ⊆ T−

2 ⊆ T−
3 ⊆ T−

4 . . . match level by level the complexity-theoretic
alternating space-time hierarchy:

SPACE(LIN) ⊆ TIME(2LIN) ⊆ SPACE(2LIN) ⊆ TIME(22LIN

) ⊆ SPACE(22LIN

) . . .

Suppose that we encode the words of finite alphabets as functions of type 0→ 0
and consider the 0, 1-valued functionals F : (0→ 0)→ 0→ 0 which are applied
as F (a, n) with n the length of the input word a. Such predicates F in the above
hierarchy T−

k match now the correspoding complexity classes:

LOGSPACE ⊆ PTIME ⊆ PSPACE ⊆ POLYEXPTIME ⊆ POLYEXPSPACE . . .

A characterization similar to the last one was obtained in [1]. There is a crucial
difference, however. The authors of [1] work with finite functionals where the
type 0 is restricted to the numbers less than n. Our functionals are infinite
because the type 0 is interpreted as the domain of natural numbers.

This parallel suggested to us that the infinite functionals can be viewed as
limits of finite ones where the cardinality n of the type 0 grows towards infinity.
The construction can be compared to the definition of reals by the limits of
Cauchy sequences of rationals. A couple of years ago we were able to define a
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class of, what we called, convergent functionals, as limits of finite ones. We have
almost characterized (we did not have a proof of a single lemma) the conver-
gent functionals as the Kleene-Kreisel functionals which are the total functionals
from the class of Scott-Ershov partial continuous functionals. The first author
presented in the June of 2003 our work on convergent functionals at a logic sem-
inar in Oslo where Dag Norman, who was sitting in the audience, immediately
recognized the construction as equivalent to a model-theoretical one by reduced
products which he had co-authored in [4].

This characterization remains relatively unknown although it gives a strik-
ingly simple semantics to the Kleene-Kreisel functionals. Moreover, it has a direct
connection to the functionals over finite domains which are so important from
the point of view of complexity. To remedy the situation we will present our limit
construction where, as an improvement over [4], we have been able to discover
for every Kleene-Kreisel functional the existence of a canonical sequence of finite
functionals whose limit is the functional. The canonical sequence converges to
the limit without any detours, i.e. as soon as possible. The natural definitions of
functionals from T− happen to be by their canonical sequences.

We will present as a further result a theorem similar to the famous trade-off
theorem of Schwichtenberg [5]. We think that our theorem nicely illuminates
the surprising alternation of space and time in the above hierarchies. Schwicht-
enberg’s theorem permits to trade in the definition of (infinite) functionals the
detours through type levels k+1 yielded by α-ordinal recursion for exponentially
longer recursion of length wα yielding values of type level k only. Our theorem
permits to trade the detours through the types of level 2k+ i, i = 0, 1 (standing
for space) with recursion of length n (standing for time) for recursion of length
2nk+i (the tower of k+ i exponentials) which yields values of type levels k. Finite
functionals of type levels k can be coded in space 2nk . With i = 0 we obtain a
space class and with i = 1 a time class.

References

1. A. Goerdt, H. Seidl. Characterizing complexity classes by higher type primitive
recursive definitions, Lecture Notes in Computer Science LNCS vol. 464, Springer
1990.

2. L. Kristiansen, P. J. Voda. The surprising power of restricted programs and Goedel’s
functionals, Computer Science Logic Conf. CSL’03, LNCS vol. 2803, Springer Ver-
lag, 2003

3. L. Kristiansen, P. J. Voda. Programming languages capturing complexity classes
Nordic Workshop on Programming Theory NWPT-04 Uppsala, 2004.

4. D. Normann, E. Palmgren, V. Stoltenberg-Hansen. Hyperfinite type structures,
Journal of Symbolic Logic, vol. 64 1216-1242, 1999.

5. H. Schwichtenberg. Elimination of higher type levels in definitions of primitive re-
cursive functionals, in Logic Colloquium’ 73, eds. Rose, Shepherdson. North Hol-
land 1974.



A Very Slow Growing Hierarchy for the Howard
Bachmann Ordinal

Andreas Weiermann?

Mathematical Institute of Utrecht University
Postbox 80010, 3508 Utrecht, The Netherlands,

weierman@math.uu.nl

Abstract. Continuing [4] we investigate natural systems of fundamen-
tal sequences for the limits less than the Howard Bachmann ordinal η0

and show that there is a (natural) Bachmann system of fundamental
sequences such that the resulting slow growing hierarchy (Gα)α<η0 does
not majorize the elementary recursive functions. This result is surprising
since usually the slow growing hierarchy along η0 classifies the provably
recursive functions of PA. The assignment we use is natural in so far as
the resulting fast growing Hardy hierarchy (Hα)α<η0 (cf. [2]) classifies
the provably recursive functions of ID1.
The paper is based on an involved technical verification. From a technical
point of view it only requires basic familiarity with [1].

This article is motivated by the classical classification problem for the recursive
functions and the resulting problem of comparing the slow and fast growing
hierarchies. It has been claimed, for example in [3] p. 439 l.-5, that for sufficiently
big prooftheoretic ordinals the slow and fast growing hierarchies will match up.
The results of this paper indicate that this claim might not be true in general.

For an ordinal α less than the Howard Bachmann ordinal let Nα be the
number of symbols in α which are different from 0 and +. For a limit ordinal
λ let λ[x] := max{β < λ : Nβ ≤ Nλ + x}. This assignment of fundamental
sequences is natural and does not change the growth rate of the induced fast
growing hierarchy but the induced slow growing hierarchy (along the Howard
Bachmann ordinal) consists of elementary functions only.

It is further somewhat surprising that we encounter the following sharp
threshold phenomenon for the slow growing hierarchy. For a given real num-
ber ε > 0 let λε[x] := max{β < λ : Nβ ≤ (1 + ε) ·Nλ+ x}. Then for ε = 0 the
resulting slow growing hierarchy is very slow growing whereas for any ε > 0 the
resulting slow growing hierarchy becomes fast growing and matches up with the
fast growing hierarchy at the ordinal of PA. We conjecture that within the phase
transition, i.e. when in the definition of λε[x] the number ε is a function of λ
and x, we may arrange other behaviours of the resulting slow growing hierarchy.

? The author is a Heisenberg fellow of the DFG and has been supported in part by
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Definition 1. Inductive definition of a set of terms T and a set P ⊆ T .
0 ∈ T,
a ∈ T & i ∈ {0, 1} ⇒ Dia ∈ P,
a0, . . . , an ∈ P and n ≥ 1 ⇒ (a0, . . . , an) ∈ T.

Notations:
1. a, b, c, d, e range over T.
2. If a ∈ P , then we identify the one element sequence (a) with the term a.
3. The empty sequence ( ) is identified with the term 0.
4. x, y, z, i, l,m, n range over non negative integers.

Definition 2. Recursive definition of a ≺ b for a, b ∈ T.
a ≺ b holds, iff one of the following cases holds:
1. a = 0 and b 6= 0,
2. (a = D0a0 & b = D1b0) or
3. (a = Dia0 & b = Dib0 & a0 ≺ b0),
4. a = (a0, . . . , am) & b = (b0, . . . , bn) & 1 ≤ m+ n and
[(m < n&∀i ≤ n(ai = bi)) or (∃k ≤ min{m,n}(∀i < k(ai = bi) & ak ≺ bk))]

Lemma 1. (T,≺) is a linear order.

Definition 3. Assume that M,N ⊆ T.
M ¹ N :⇐⇒ ∀x ∈M∃y ∈ N(x ¹ y).
a ¹ N :⇐⇒ {a} ¹ N .
M ≺ a :⇐⇒ ∀x ∈M(x ≺ a).
(a1, . . . , am) + (b1, . . . , bn) := (a1, . . . , ai, b1, . . . , bn)
where i ∈ {1, . . . ,m} is maximal with b1 ¹ ai.

Definition 4. Recursive definition of K∗a and Ka for a ∈ T.
K∗0 := ∅, K0 := ∅,
K∗(a0, . . . , an) :=

⋃
i≤n K∗ai, K(a0, . . . , an) :=

⋃
i≤n Kai,

K∗D1a := K∗a, KD1a := Ka,
K∗D0a := {a} ∪K∗a, KD0a := {D0a}.

Lemma 2. K∗c ≺ a =⇒ Kc ≺ D0a.

Definition 5. Inductive definition of a set of terms OT ⊆ T.
0 ∈ OT,
a0, . . . , an ∈ OT ∩ P , n ≥ 1 and an ¹ . . . ¹ a0 =⇒ (a0, . . . , an) ∈ OT,
a ∈ OT =⇒ D1a ∈ OT,
a ∈ OT & K∗a ≺ a =⇒ D0a ∈ OT.

Notations.
1 := D00, ω := D01, Ω := D10.
T0 := {x ∈ T : x ≺ Ω}, OT0 := OT ∩ T0.

Theorem 1. (OT,≺) is a well-order. The order type of (OT0,≺) is equal to η0,
the Howard Bachmann ordinal.
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Definition 6. b /c a :⇐⇒ b ≺ a & ∀d ∈ OT (b ¹ d ¹ a⇒ K∗b ¹ K∗d ∪K∗c)
[ a, b, c ∈ T ]..

Lemma 3. 1. a ≺ D1a.
2. a, b ∈ OT0 & a ≺ b =⇒ K∗a ¹ K∗b.
3. b /c a & K∗a ≺ a & K∗c ≺ b
& a, b ∈ OT =⇒ K∗b ≺ b.
4. b /c a =⇒ d+ b /c d+ a &
Dib /c Dia (i ∈ {0, 1}).

Proof. We prove assertion 3. Assume that b ¹ K∗b. Choose a subterm d of b with
b ¹ K∗d such that the length of d is minimal possible. Then d = D0e with K∗e ≺
b ¹ e ¹ a, since K∗b ¹ K∗c ∪ K∗a ≺ a. Then we obtain K∗b ¹ K∗c ∪ K∗e ≺ b.
Contradiction.

Definition 7. Definition of tp(a) ∈ {0, 1, ω,Ω} for a ∈ T.
tp(0) := 0.
tp(1) := 1.
tp(Ω) := Ω.
tp(a) = 1 ⇒ tp(Dia) := ω.
tp(a) = ω ⇒ tp(Dia) := ω
tp(a) = Ω ⇒ tp(D0a) := ω.
tp(a) = Ω ⇒ tp(D1a) := Ω.
tp((a0, . . . , an)) := tp(an).

Definition 8. Recursive definition of a{c} ∈ T for c ∈ T0 and a ∈ T with
tp(a) = Ω.
Ω{c} := c.
(D1a){c} := D1a{c}.
a = (a0, . . . , an) ⇒
a{c} := (a0, . . . , an−1) + an{c}.

Lemma 4. 1. tp(a) = Ω & c ∈ T0 ⇒ a{c}¢c a.
2. tp(a) = Ω & c, d ∈ T0 & c ≺ d ⇒ a{c} ≺ a{d}.
3. tp(a) = Ω & c ∈ T0 ⇒ K∗a{c} ¹ K∗a{0} ∪K∗c.
4. a ∈ OT, tp(a) = Ω & c ∈ OT0 ⇒ a{c} ∈ OT.

Definition 9. Recursive definition of Na for a ∈ T .
N0 := 0.
N(a0, . . . , an) := Na0 + . . .+Nan.
NDia := 1 +Na.

Definition 10. Definition of a[x] and a[[x]] for a ∈ OT.
a[x] := max{b ∈ OT : b ≺ a & Nb ≤ Na+ x}.
a[[x]] := max{b ∈ OT : b ≺ a & Nb ≤ x}.

Lemma 5. 1. (a0, . . . , an−1, an)[x] = (a0, . . . , an−1) + an[x].
2. a = (a0, . . . , an), b = (a1, . . . , an), x ≥ Na0 =⇒ a[[x]] = a0 + b[[x−Na0]].
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3. a = (a0, . . . , an), x < Na0 =⇒ a[[x]] = a0[[x]].
4. a[[0]] = 0.
5. (D1a)[x] = D1a[x].
6. x > 0 =⇒ (D1a)[[x]] = D1a[[x− 1]].

Definition 11. Recursive definition of Ga(x) for a ∈ OT0.
G0(x) := 0.
Ga+1(x) := Ga(x) + 1.
Ga(x) := Ga[x](x) if tp(a) = ω.

Lemma 6. Let a, b ∈ OT0.
1. a = (a0, . . . , an) =⇒ Ga(x) = Ga0

(x) + · · ·+Gan
(x).

2. a = D0(b+ 1) =⇒ Ga(x) = GD0b(x) +Ga[[x+1]](x).
3. a ¹ b & Na ≤ x+ 1 =⇒ Ga(x) ≤ Gb(x).

Definition 12. Definition of Ta(x) for a ∈ T .
T0(x) := 1.
Ta(x) := Ta[[x]](x) + 2.

Remark. Ta(x) is defined by recursion on the cardinality of the set {b ≺ a :
Nb ≤ x}.

Lemma 7. 1. a ¹ b & Na ≤ x⇒ Ta(x) ≤ Tb(x).
2. a ¹ b⇒ Ta(x) ≤ Tb(x).

Proof. 1. By induction on the cardinality of the set {c ≺ b : Nc ≤ x}. Assume
that Tb(x) = Tb[[x]](x) + 2. Then a ¹ b[[x]] and the induction hypothesis yields
Ta(x) ≤ Tb[[x]](x) and the assertion follows.
2. If a = 0 then the assertion is clear. Assume that Ta(x) = Ta[[x]](x) + 2 and
Tb(x) = Tb[[x]](x) + 2. Then a[[x]] ¹ b[[x]] and the assertion follows from 1.

Definition 13. Recursive definition of Cx(a, g) for a ∈ OT and g, x < ω.
1. Cx(0, g) := 0.
2. Cx((a0, . . . , an), g) := Cx(a0, g) + · · ·+ Cx(an, g).
3. Cx(D0a, g) := g ·GD0a(x).

4. Cx(D1a, g) := g2
TD1a(x+1) · (Cx(a, g) + 1).

Lemma 8. If a ∈ OT0 then Cx(a, g) = g ·Ga(x).

Proof by induction on Na.
1. a = 0. Then the assertion is obvious.
2. a = (a0, . . . , an). Then the induction hypothesis yields Cx(a, g) = Cx(a0, g) +
· · ·+ Cx(an, g) = g ·Ga0

(x) + · · ·+ g ·Gan
(x) = g ·G(a0,...,an)(x).

3. a = D0b. Then Cx(a, g) = g ·Ga(x).

Lemma 9. If a, b ∈ OT, K∗b ≺ a, Nb ≤ x+ 1 and g = G(D0a)[[x+1]](x)

then Cx(b, g) ≤ g2Tb(x+1)+1

.
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Proof by induction on Nb.
1. b = 0. Then the assertion is obvious.
2. b = (b0, . . . , bn). Then n + 1 ≤ x + 1, Nbi ≤ x + 1 and K∗bi ⊆ K∗b ≺ a

for i = 0, . . . , n. The induction hypothesis yields Cx(bi, g) ≤ g2
Tbi

(x+1)+1

for

i = 0, . . . , n. Thus Cx(b, g) = Cx(b0, g) + · · · + Cx(bn, g) ≤ g2
Tb0

(x+1)+1

+ · · · +
g2

Tbn
(x+1)+1 ≤ (x+ 1) · g2Tb(x+1)−1 ≤ g2Tb(x+1)+1

,
since x+ 1 ≤ g and Tbi

(x+ 1) ≤ Tb(x+ 1) by Lemma 7.
3. b = D0c. Then Cx(b, g) = g·GD0c(x). K∗b ≺ a yields b ≺ D0a. Thus Nb ≤ x+1
yields b ¹ (D0a)[[x+ 1]] and Gb(x) ≤ G(D0a)[[x+1]](x) hence Cx(b, g) ≤ g2.

4. b = D1c. Then the induction hypothesis yields Cx(c, g) ≤ g2Tc(x+1)+1

hence

Cx(b, g) = g2
TD1c(x+1) ·(Cx(c, g)+1) ≤ g2

TD1c(x+1) ·(g2Tc(x+1)+1

+1) ≤ g2
TD1c(x+1)+1

=

g2Tb(x+1)+1

since Tc(x+ 1) + 1 < TD1c(x+ 1) because c ≺ D1c and Nc ≤ x.

Lemma 10. If x < Na then K∗a[[x]] ¹ K∗a.

Proof by induction on Na using Lemma 5.
1. a = 0. Then the assertion is obvious.
2. a = (a0, . . . , an). Let b := (a1, . . . , an).
2.1. x < Na0. Then a[[x]] = a0[[x]] and the induction hypothesis yields K∗a[[x]] =
K∗a0[[x]] ¹ K∗a0 ⊆ K∗a.
2.2. x = Na0. Then a[[x]] = a0 and K∗a0 ⊆ K∗a.
2.3. x > Na0. Then a[[x]] = a0 + b[[x−Na0]]. x < Na yields x−Na0 < Nb and
the induction hypothesis yields K∗b[[x − Na0]] ¹ K∗b. Thus K∗a[[x]] = K∗a0 ∪
K∗b[[x−Na0]] ¹ K∗a0 ∪K∗b = K∗a.
3. a = D0b. Then a[[x]] ≺ a ≺ Ω, thus K∗a[[x]] ¹ K∗a by assertion 2 of Lemma
3.
4. a = D1b. Then Na = 1 +Nb.
4.1. b = 0. Then Na = 1 hence x = 0 and the assertion is obvious.
4.2. tp(b) ∈ {ω,Ω}. We may assume that x > 0. Then (D1b)[[x]] = D1b[[x − 1]].
x < Na yields x− 1 < Nb. The induction hypothesis yields K∗b[[x − 1]] ¹ K∗b,
hence K∗a[[x]] ¹ K∗a.
4.3. b = c+ 1. Then a[[x]] = D1c · y + (D1c)[[z]] where ND1c > z. The induction
hypothesis yields K∗(D1c)[[z]] ¹ K∗D1c hence K∗a[[x]] ¹ K∗a.

Lemma 11. If a, b ∈ OT , tp(b) = ω and b[x] ¹ a ¹ b then K∗b[x] ≤ K∗a.

Proof by induction on Nb.
1. b = (b0, . . . , bn). Then b[x] = (b0, . . . , bn−1) + bn[x] by assertion 1 of Lemma
5. b[x] ¹ a ¹ b yields a = (b0, . . . , bn−1) + c for some c with bn[x] ¹ c ¹ bn. The
induction hypothesis yields K∗bn[x] ¹ K∗c hence K∗b[x] ¹ K∗a.
2. b = D0c. Then b[x] ¹ a ¹ b ≺ Ω and K∗b[x] ¹ K∗a.
3. b = D1c.
3.1. tp(c) = ω. Then b[x] = D1c[x] ¹ a ¹ D1c. Thus a = D1d+e for some d with
c[x] ¹ d ¹ c. The induction hypothesis yields K∗c[x] ¹ K∗d hence K∗b[x] ¹ K∗a.
3.2. c = d + 1. Then (D1c)[x] = D1d · y + (D1d)[[z]] with z < ND1d and y > 0.
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Lemma 10 yields K∗(D1d)[[z]] ≤ K∗D1d. D1d · y + (D1d)[[z]] ¹ a ¹ D1c yields
a = D1d+ e for some e ≺ D1c hence K∗b[x] ¹ K∗a.

Lemma 12. Assume that b ∈ OT .
1. b[x]¢x b.
2. K∗b[x] ≺ b[x].
3. D0b[x] ∈ OT .

Lemma 13. Assume D0b ∈ OT. If x < ω and tp(b) = ω then D0b[x] ∈ OT and
(D0b)[x] = D0b[x].

Proof. Lemma 12 yields K∗b[x] ≺ b[x], hence D0b[x] ∈ OT. By definition we have
D0b[x] ¹ (D0b)[x]. Assume now that (D0b)[x] = D0c+d for some d ≺ D0(c+1).
If d 6= 0 then D0(c + 1) would be a better choice for (D0b)[x] than D0c + d.
Hence d = 0. We have N(D0b)[x] = 1 + Nb + x = 1 + Nc, thus Nc = Nb + x.
c ≺ b yields c ¹ b[x] hence D0c ≤ D0b[x]. Therefore D0b[x] = (D0b)[x].

Lemma 14. Assume that a, b ∈ OT , tp(b) = ω, K∗b ≺ a and g = G(D0a)[[x+1]](x).
Then Cx(b[x], g) ≤ Cx(b, g).

Proof by induction on b.
1. b = (b0, . . . , bn) with tp(bn) = ω.
Then K∗bn ≺ a and the induction hypothesis yields Cx(bn[x], g) ≤ Cx(bn, g).
Then Cx(b[x], g) = Cx(b0, g) + · · ·+ Cx(bn[x], g) ≤ Cx(b0, g) + · · ·+ Cx(bn, g) =
Cx(b, g). 2. b = D0c.
Then b[x] ≺ Ω and Lemma 8 yields Cx(b[x], g) = g · Gb[x](x) = g · Gb(x) =
Cx(b, g).
3. b = D1c where tp(c) = ω.
We have K∗c ⊆ K∗b ≺ a and the induction hypothesis yields Cx(c[x], g) ≤
Cx(c, g). Therefore Lemma 7 yields Cx(b[x], g) = Cx(D1c[x], g)

= g2
TD1c[x](x+1)

· (Cx(c[x], g) + 1) ≤ g2
TD1c(x+1) · (Cx(c, g) + 1) = Cx(b, g). 4.

b = D1c where c = d+ 1.
In this critical case we have b[x] = D1d + (D1c)[[x+ 1]] = D1d · y + (D1c)[[z]]
where z < ND1c and y > 0. Lemma 10 yields K∗(D1c)[[z]] ¹ K∗D1c ¹ K∗b ≺ a.
Thus K∗(D1c)[[x + 1]] ≺ a. Hence Lemma 9 yields Cx(b[x], g) = Cx(D1d, g) +

Cx((D1c)[[x+ 1]], g) ≤ g2
TD1d(x+1) ·(Cx(d, g)+1)+g2

T(D1c)[[x+1]](x+1)+1

≤ g2
TD1c(x+1) ·

(Cx(c, g) +1) = Cx(b, g) since TD1c(x+1) > T(D1c)[[x+1]](x+1)+1 and TD1c(x+
1) ≥ TD1d(x+ 1).

Lemma 15. tp(a) = Ω & a{0} ≺ b ≺ a ⇒ Na{0} < Nb.

Proof by induction on Na.
1. a = Ω. Then a{0} = 0 and the assertion is obvious.
2. a = (a0, . . . , an). a{0} ≺ b ≺ a yields b = (a0, . . . , an−1) + c for some c
with an{0} ≺ c ≺ an. The induction hypothesis yields Nan{0} < Nc hence
Na{0} < Nb.
3. a = D1c. a{0} = D1c{0} ≺ b ≺ D1c yields b = D1d+e for some e ≺ D1(d+1)
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and c{0} ¹ d ≺ c. The induction hypothesis yields Nc{0} ≤ Nd. If e 6= 0 then
Nb ≥ Nd+Ne+ 1 > Na. If e = 0 then c{0} ≺ d ≺ c. The induction hypothesis
yields Nc{0} < Nd hence the assertion.

Lemma 16. Assume that D0a, b, c ∈ OT , tp(a) = tp(c) = Ω, b ¹ c ¹ a,
K∗b ≺ a and Nb ≤ Nc+ x. Then b ¹ c{(D0a)[[x+ 1]]}.
Proof by induction on Nb.
1. b = 0. Then the assertion is obvious.
2. b = (b0, . . . , bm). Assume that c = (c0, . . . , cn).
2.1. b0 = c0, . . . , bm = cm and m < n. Then b ¹ (c0, . . . , cm) ¹ c{(D0a)[[x+ 1]]}.
2.2. ∃i ≤ min{m,n}[b0 = c0, . . . , bi−1 = ci−1, bi ≺ ci].
If i < n then b ≺ (c0, . . . , ci) ¹ c{(D0a)[[x+ 1]]}.
Assume i = n and bn, . . . , bm ≺ cn].
2.2.1. m = n. Nb ≤ Nc + x yields Nbn ≤ Ncn + x. The induction hypothesis
yields bn ¹ cn{(D0a)[[x+ 1]]} hence b ¹ c{(D0a)[[x+ 1]]}.
2.2.2. m > n. Nb ≤ Nc+ x yields Nbn, . . . , Nbm ≤ Ncn + x− 1 The induction
hypothesis yields for x > 0 that bn, . . . , bm ¹ cn{(D0a)[[x]]} ≺ cn{(D0a)[[x+ 1]]}.
For x = 0 we obtain bn, . . . , bm ¹ cn{0} = cn{(D0a)[[x]]} by Lemma 15. Since
cn{(D0a)[[x+ 1]]} ∈ P we obtain (bl, . . . , bn) ≺ cn{(D0a)[[x+ 1]]} hence b ≺
c{(D0a)[[x+ 1]]}.
3. b = D0c. K∗b ≺ a yields K∗c ∪ {c} ≺ a hence b ≺ D0a, thus b ¹ (D0a)[[Nb]].
3.1. c = Ω. Then Nc = 1 and b ¹ (D0a)[[x+ 1]] = c{(D0a)[[x+ 1]]}.
3.2. Ω ≺ c. Then b ¹ Ω ¹ c[0] ¹ c{(D0a)[[x+ 1]]}.
4. b = D1d.
4.1. c = (c0, . . . , cn) with n ≥ 1.
Then b = D1d ¹ c0 ¹ c{0} ≤ c{(D0a)[[x+ 1]]}.
4.2. c = D1e. Nb ≤ Nc+x yields Nd ≤ Ne+x. The induction hypothesis yields
d ¹ e{(D0a)[[x+ 1]]} since e ≺ D1e ¹ a. Thus b = D1d ¹ D1e{(D0a)[[x+ 1]]} =
c{(D0a)[[x+ 1]]}.
Corollary 1. Assume that tp(a) = Ω, b ¹ a, K∗b ≺ b and Nb ≤ Na+ x. Then
b ≤ a{(D0a)[[x+ 1]]}.
Proof. Put c = a in Lemma 16.

Lemma 17. Assume that D0a ∈ OT and tp(a) = Ω. Let z < ND0a. Then
(D0a)[[z]] = D0a{0} if z = ND0a[0] and (D0a)[[z]] = (D0a{0})[[z]] else.

Proof. It suffices to show (D0a)[[z]] ¹ D0a{0}. Assume for a contradiction that
D0a{0} ≺ (D0a)[[z]] ≺ D0a. Then (D0a)[[z]] = D0b + d for some b with a{0} ¹
b ≺ a. Lemma 15 yields Nb ≥ Na{0}. If d 6= 0 then N(D0b+d) ≥ ND0a{0}+1 =
ND0a. This contradicts z < ND0a. Hence d = 0 and a{0} ≺ b ≺ a. Lemma 15
yields Nb > Na{0} hence ND0b ≥ ND0a. This contradicts z < ND0a.

Lemma 18. Assume that D0a ∈ OT and tp(a) = Ω. Let z < N(D0a). Let
d0a(0, z) := (D0a{0})[[z]] and d0a(y + 1, z) := D0a{d0a(y, z)}. Then d0a(y, z) ≺
d0a(y + 1, z) and d0a(y, z) ∈ OT . Moreover (D0a)[[x]] = d0a(y, z′) where y and
z′ are chosen such that (Na+ 1) · y + z′ = x and z′ < Na+ 1.
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Proof. By induction on y we show d0a(y, z) ≺ d0a(y + 1, z).
Assume first that y = 0.
Then d0a(0, z) = (D0a{0})[[z]] and d0a(1, z) = D0a{(D0a{0})[[z]]}. If z = 0
then d0a(0, z) < d0a(1, z) is obvious. Assume that z 6= 0. Lemma 10 yields
K∗(D0a{0})[[z]] ¹ K∗(D0a{0}) ¹ K∗a{0} ≺ a{(D0a{0})[[z]]}. Lemma 2 yields
K(D0a{0})[[z]] ≺ D0a{(D0a{0})[[z]]} hence (D0a{0})[[z]] ≺ D0a{(D0a{0})[[z]]}.
Now assume that y = y′ + 1.
The induction hypothesis yields d0a(y′, z) ≺ d0a(y′ + 1, z) hence a{d0a(y′, z)} ≺
a{d0a(y′ + 1, z)} thus d0a(y, z) ≺ d0a(y + 1, z).

By induction on y we show d0a(y, z) ∈ OT.
Assume y = 0.
Then d0a(y, z) = (D0a{0})[[z]] ∈ OT.
Assume y = y′ + 1.
Then d0a(y, z) := D0a{d0a(y′, z)}. The induction hypothesis yields d0a(y′, z) ∈
OT hence a{d0a(y′, z)} ∈ OT.
We have to show K∗a{d0a(y′, z)} ≺ a{d0a(y′, z)} and compute K∗a{d0a(y′, z)} ¹
K∗a{0} ∪ K∗d0a(y′, z). Lemma 4 yields a{0} ¢0 a hence K∗a{0} ≺ a{0} since
K∗a ≺ a. We first consider the case y′ = 0. If z = 0 then d0a(y′, z) = 0 hence
K∗a{d0a(y′, z)} = K∗a{0} ≺ a{0} = a{d0a(y′, z)}. If z > 0 then (D0a{0})[[z]] 6=
0 and Lemma 10 yields K∗d0a(y′, z) ¹ K∗D0a{0} ¹ K∗a{0} ∪ a{0} ¹ a{0} ≺
a{(D0a{0})[[z]]}.
Now assume that y′ > 0. We already have shown that {d0a(y′ − 1, z)} ≺
d0a(y′, z). The induction hypothesis yields d0a(y′, z) ∈ OT hence K∗a{d0a(y′ −
1, z)} ≺ a{d0a(y′ − 1, z)} hence K∗a{d0a(y′, z)} = K∗D0a{d0a(y′ − 1, z)} ¹
K∗a{0} ∪K∗{d0a(y′ − 1, z)} ∪ {d0a(y′ − 1, z)} ¹ {d0a(y′ − 1, z)} ≺ d0a(y′, z).

Now we prove (D0a)[[x]] = d0a(y, z′) by induction on x where (Na+1)·y+z′ =
x and z′ < Na + 1. If x < N(D0a) then the assertion follows from Lemma 17.
Now assume that x ≥ N(D0a). The choice of y and z′ and the definition of
(D0a)[[x]] yield (D0a)[[x]] ≥ d0a(y, z′) since Nd0a(y, z′) = x.
Now assume that (D0a)[[x]] = D0b+ c with b ≺ a and c ≺ D0(b+ 1). Then c = 0
since otherwise D0(b + 1) would be a better choice than D0b + c for (D0a)[x].
We have b ¹ a, tp(a) = Ω, K∗b ≺ b and Nb ≤ x = Na + 1 + x − Na − 1. The
induction hypothesis yields (D0a)[[x−Na− 1]] = d0a(y − 1, z). Lemma 1 yields
b ¹ a{(D0a)[[x−Na]]} hence D0b ¹ D0a{(D0a)[[x−Na−1]]} = d0a(y, z) ∈ OT.

Corollary 2. Assume that tp(a) = Ω. Then D0a{(D0a)[[x+ 1]]} ∈ OT and
(D0a)[x] = D0a{(D0a)[[x+ 1]]}.

Proof. Lemma 18 yields (D0a)[x] = (D0a)[[Na+ 1 + x]] = D0a{(D0a)[[x+ 1]]} ∈
OT.

Definition 14. Recursive definition of a nominal form Cx(a, g) for a ∈ OT with
tp(a) = Ω and g < ω.
1. Cx(Ω, g) := ?.
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2. Cx((a0, . . . , an−1, an), g) := Cx(a0, g) + · · ·+ Cx(an−1, g) + Cx(an, g).

3. Cx(D1a, g) := g2
TD1a(x+1) · (Cx(a, g) + 1).

If C is a nominal form then C[? := c] denotes the result of replacing every
occurrence of ? in C by c.

Lemma 19. If a ∈ OT, tp(a) = Ω and c ∈ OT0 then Cx(a[c], g) ≤ Cx(a, g)[? :=
g ·Gc(x)].

Proof by induction on Na.
1. a = Ω. Then Lemma 8 yields Cx(a[c], g) = Cx(c, g) = g · Gc(x) = ?[? :=
g ·Gc(x)].
2. a = (a0, . . . , an). Then the induction hypothesis yields Cx(a[c], g) = Cx(a0, g)+
· · ·+ Cx(an−1, g) + Cx(an[c], g) ≤ Cx(a0, g) + · · ·+ Cx(an−1, g) + Cx(an, g)[? :=
g ·Gc(x)] = Cx(a, g)[? := g ·Gc(x)] 3. a = D1b.
Then assertion 2 of Lemma 7 and the induction hypothesis yields Cx(a[c], g) =

Cx(D1(b[c]), g) = g2
TD1b[c](x+1)

· (Cx(b[c], g) + 1) ≤ g2
TD1b(x+1) · (Cx(b, g)[? :=

g ·Gc(x)] + 1) = Cx(a, g)[? := g ·Gc(x)].

Lemma 20. If a ∈ OT and tp(a) = Ω then Cx(a, g)[? := g2] ≤ Cx(a, g).

Proof by induction on Na.

1. a = Ω. Then Cx(a, g)[? := g2] = g2 and Cx(D10, g) = g2
TD10(x+1) ·(0+1) ≥ g2.

2. a = (a0, . . . , an)
Then the induction hypothesis yields Cx(a, g)[? := g2] = Cx(a0, g) + · · · +
Cx(an−1, g) + Cx(an, g)[? := g2] ≤ Cx(a0, g) + · · · + Cx(an−1, g) + Cx(an, g) =
Cx(a, g). 3. a = D1b. Then the induction hypothesis yields Cx(a, g)[? := g2] =

g2
TD1b(x+1) · (Cx(b, g)[? := g2] + 1)

≤ g2
TD1b(x+1) · (Cx(b, g) + 1)

= Cx(a, g).

Theorem 2. Let D0a ∈ OT0 and g := G(D0a)[[x+1]](x). Let D0b ∈ OT and
assume that K∗D0b ≺ a. Then

GD0b(x) ≤ 1 + Cx(b, g).

Proof by induction on D0b.
1. GD00(x) = 1 ≤ 1 + Cx(0, g).
2. b = c+ 1. Then GD0b(x) = GD0c+(D0b)[[x+1]](x) = GD0c(x) +G(D0b)[[x+1]](x) ≤
1 + Cx(c, g) + g = 1 + Cx(c+ 1, g) since Cx(1, g) = g and G(D0b)[[x+1]](x) ≤
G(D0a)[[x+1]](x) by assertion 3 of Lemma 6.
3. tp(b) = ω.
Then the induction hypothesis, Lemma 13 and Lemma 14 yield

GD0b(x) = G(D0b)[x](x) = GD0(b[x])(x) ≤ 1 + Cx(b[x], g) ≤ 1 + Cx(b, g) 4.
tp(b) = Ω.
Then the induction hypothesis, Lemma 2, Lemma 19 and Lemma 20 yield
GD0b(x) = GD0b[(D0b)[[x+1]]](x) ≤ 1 + Cx(b{(D0b)[[x+ 1]]}, g) ≤ 1 + Cx(b, g)[? :=
g ·G(D0b)[[x+1]](x)](x) ≤ 1 + Cx(b, g)[? := g2] ≤ 1 + Cx(b, g)
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Lemma 21. Let Ux := {a ∈ T : Na ≤ x} and #Ux be the cardinality of Ux.

Then #Ux ≤ 444x

.

Proof. By induction on x. Obviously #U0 = 1 and #Ux+1 is less than or equal
to one plus the cardinality of the Cartesian product {0, 1, 2} ×Ux × · · ·Ux ×Ux
with x + 2 factors. For, if a ∈ T then a is either of the form (a0, . . . , an) with
n ≤ x and ai ∈ Tx or a is of the form D0b or D1b for b ∈ Tx. Hence, arguing by

induction, #Ux+1 ≤ 3 · (#Ux)x ≤ 3 · (444x

)x ≤ 444x+1

.

Theorem 3. Let p(x) := 444x

. If a ∈ OT0 and Na ≤ x then Ga(x) ≤ p(p(p(Ta(x+
1)))).

Proof. By induction on Na.
1. a = 0. Then the assertion is obvious.
2. a = (a0, . . . , an)
Then the induction hypothesis yieldsGa(x) = Ga0

(x)+· · ·+Gan
(x) ≤ p3(Ta0

(x+
1)) + · · ·+ p3(Tan

(x+ 1)) ≤ p3(Ta(x+ 1)).
2. a = D0b. Let g := (D0a)[[x+ 1]]. Then the induction hypothesis yields

Ga(x) ≤ Cx(a, g) ≤ g2Ta(x+1) ≤ (p3(Ta[[x+1]](x+ 1)))2
Ta(x+1) ≤ p3(Ta(x+ 1)).

Theorem 4. Let 40(x) := x and 4n+1(x) := 44n(x). If a ∈ OT0 and Na ≤ x
then Ga(x) ≤ 412(x).
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We consider hierarchies of recursive functions which are defined relative to
a given parameter which is either a real number or a function. For small or
slowly growing values of the parameter the induced hierarchy will be rather slow
growing. When the parameter crosses through a certain threshold the resulting
hierarchy will consist of rapidly growing functions.

In the presentation we will describe this setting in general terms. We give
detailed phase transition results for the Paris Harrington function of dimension
3 with three colours. These Ramsey functions vary in growth from being double
exponential to at least Ackermannian. We conjecture that a full classification
(which has not been achieved yet) of the phase transition in this case will provide
progress on a classic USD 500 problem of Erdoes.

Moreover we consider the phase transition problem for the slow growing
hierarchy where for a limit ordinal λ the fundamental sequence at argument x
is given by the max over all β < λ such that the norm of β is less than or equal
to x plus (1 + ε) times the norm of λ. There will be a sharp phase transition for
ε close to 0.
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Abstract. We consider the issue of computability at the most funda-
mental level of physical reality: the Planck scale. To this aim, we consider
the theoretical model of a quantum computer on a non commutative
space background, which is a computational model for quantum gravity.
In this domain, all computable functions are the laws of physics in their
most primordial form, and non computable mathematics finds no room
in the physical world.
Moreover, we show that a theorem that classically was considered true
but non computable, at the Planck scale becomes computable but non de-
cidable. This fact is due to the change of logic for observers in a quantum-
computing universe: from standard quantum logic and classical logic, to
paraconsistent logic.

A quantum computer [24] can simulate [13] perfectly and efficiently a quan-
tum mechanical system. Precision is due to discreteness from both sides: qubits
in the quantum register, and discrete spectra in the quantum system. Efficiency
is due to quantum parallelism in the quantum computer. However, there is not
an isomorphism between the quantum computer and the quantum system, be-
cause the latter lies on a classical background (classical space-time, which is a
smooth manifold).

The classical background is not taken into account during the simulation, but
only at the end, when a classical output is obtained by measurement. Because of
that, a great deal of quantum information remains hidden. The hidden quantum
information is due to the irreversibility of a standard quantum measurement,
but this is related to the situation of the external observer in a classical back-
ground, which cannot be put in one-to-one correspondence with the machine
computational state.

One might argue, then, that in a discrete space-time like a lattice, one could
overcome this problem. However, we wish to recover the hidden information in a
physical discrete space-time, that is, both discrete and Lorentz invariant. And,
obviously, a lattice breaks Lorentz invariance. The simplest way out is to consider
a quantum space background like a fuzzy sphere [23], which is both discrete and

? I wish to thank G. Battilotti and G. Sambin for useful discussions. Work supported
by the research project “Logical Tools for Quantum Information Theory”, Depart-
ment of Pure and Applied Mathematics, University of Padova.
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Lorentz invariant. This choice arises quite naturally. In fact, in a recent paper
[36], we showed that the non commutative algebra of quantum logic gates of a
quantum computer of N qubits, is associated, by the non-commutative version
of the Gelfand-Naimark theorem [21], with a quantum space which is a fuzzy
sphere with n = 2N elementary cells.

The background space and the quantum computer are then in a one-to-one
correspondence. An “external” observer on the quantum space background auto-
matically becomes an “insider” observer with respect to the quantum computer.
Thus, in this model, one can conceive a reversible quantum measurement [36],
performed by an “insider observer”, a hypothetical being living on the fuzzy
sphere. There is no hidden information anymore: all the quantum information
remains available.

Recently, we investigated about the logic [2] of the internal observer, which
turns to be a paraconsistent [9], [27] and symmetric logic, like basic logic [30],
where both the non-contradiction and the excluded middle principles are invali-
dated. The isomorphism between the quantum computer and the quantum space
background turns to be quite useful, as it leads to a quantum-computational ba-
sic formulation [37] of quantum gravity (space-time at the Plank scale).

It is usually assumed that, at the Planck scale the very concept of space-time
becomes meaningless, and should be replaced by a discrete geometrical structure.
(A major example is Loop Quantum Gravity (LQG) [28], [32], [26], where the
discrete structure is realized by spin networks [25], [29]).

We believe that the modification of the concept of space-time at the Planck
scale leads to a modification of the concept of computability. (This does not
mean, however, that at the Planck scale there is the so-called hyper computabil-
ity [17], [20], [6], [5], by which it would be possible to construct some hyper-
machines, or utilize some quantum systems that can calculate non-recursive
functions).

It might be that the quantum hidden information, due to the inconsistency
between Quantum Mechanics and its classical background, is responsible of the
appearance of non computable problems, in relation with the standard quantum
logic [3] of the external observer. In fact the proof of a theorem can be considered
as an algorithm, and when this algorithm is run by a quantum computer, you
can only know if it is true or false but the proof will remain unknown to you.
Then, one is faced with the same kind of problems encountered in the simulation
of a quantum system.

Instead, if one imagines a quantum computer embedded in a quantum space
or, in other words, a “quantum computing space” (the classical world having
been “erased”), the very definition of computability is modified. This is related
to the new logic of the “internal” observer. In fact, if an “observer” could enter a
quantum space and put itself in a one-to-one correspondence with the quantum
states of the computer, then a complete meta-system would arise.

In other words, in a quantum space-time isomorphic to a quantum com-
puter, all problems would appear to be computable. However, the complete
meta-system would appear “inconsistent” with respect to a classical world. Of
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course the Planck scale is (at least at present) unreachable experimentally, nev-
ertheless, studying quantum computability at the fundamental scale, can lead
to a deeper insight into the foundations of Quantum Mechanics.

Deutsch [10], [11] claims that the laws of Physics determine which functions
can be computed by a universal computer. Also, he says that the only thing that
privileges the set of computable functions (or the set of quantum-computable
functions) is that it is instantiated in the laws of physics. But one can go a bit
further: in the quantum computer view of space-time at the Planck scale [38],
quantum space-time is a universal quantum computer that quantum-evaluates
recursive functions which are the laws of Physics in their most primordial and
symbolic form. In other words, at the Planck scale because of the isomorphism
between a quantum computer and quantum space-time (quantum gravity), the
laws of physics are identified with quantum functions. This is the physical source
of computability, and leads to the conclusion that at the Planck scale, only
computable mathematics exists.

We would like to make a remark: Deutsch says that all computer programs
may be regarded as symbolic representations of some of the laws of physics,
but it is not possible to interpret the whole universe as a simulation on a giant
quantum computer because of computational universality. We fully agree with
that, and we wish to make it clear that, in our view, quantum space-time is not
a simulation but is itself a quantum computer, and, by quantum evaluating the
laws of Physics, it just computes its own evolution.

One might then ask what would happen to the observer logical dichotomy
mentioned above, in the case the whole universe were a giant quantum computing-
fuzzy sphere. Actually, by using the holographic principle [18], and the isomor-
phism between the quantum computer and the fuzzy sphere, one is able to settle
a minimal model [37] for Loop Quantum Gravity, which has been called Compu-
tational Loop Quantum Gravity (CLQG). This leads to a discrete area spectrum
for the cosmological horizon, which can be viewed as the surface of a giant fuzzy
sphere, whose elementary cells encode the whole quantum information of the
universe.

The amount of quantum information stored by the cosmological horizon since
the Big Bang was computed in [39], [38] and [22], and it turned to be N ≈ 10120

qubits. The area of an elementary cell [9] of the event horizon of a fuzzy black
hole-quantum computer is:

AEC =
N

2N
A0,

where A0 is the elementary area in LQG, of the order of a Planck area: A0 ≈ l2P
, where lp ≈ 10−33cm is the Planck length. In the case the whole universe were a
fuzzy quantum computer, an elementary cell of the cosmological horizon would
have an area:

AEC =
10120

210120A0,

which is extremely small, but finite.
If the internal observer, inside the fuzzy quantum universe, is still able to

intuitively recognize discreteness of space-time, he will also be able to use para-
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consistent logic in his judgments. If instead the observer focuses on his percep-
tions, he will make, in his mind, automatically the two limits: N −→ ∞ and
AEC −→ 0. In this way he would pretend he lives in a classical space-time, and
will automatically become an Aristotelian logician, with respect to the universe
as a whole. It should be noticed that those limits are full of implications. In
fact, they mean that an infinite string of bits (infinite classical information) is
encoded in a point of space. We would like to call this situation: “Information
singularity” as it reminds the Big Bang, where an infinite amount of energy
(instead of information) is concentrated in a point.

However, there is effectively an increase of information entropy, in this model,
as far as N increases, as well as a tendency to the continuum. We are faced with
signals of higher complexity and quantum information loss. It becomes harder
and harder, for the internal observer, in this situation, to maintain a coherent
superposition of truth values in his logical judgements. In fact, he starts to
lose his capacity to distinguish the discrete space-time structure from a smooth
manifold, and perceives an increase of complexity. We argue then, that non
computable mathematics is an emergent feature of computable mathematics
at higher levels of complexity, as perceived by the observer/logician. In digital
physics [14], [34], which relies on the strong Church-Turing thesis (the universe
is equivalent to a Turing machine) it is assumed that it exists a program for a
universal computer which computes the dynamical evolution of the universe.

Of course, this is an algorithmic view of physical reality, and it can be easily
adopted if one assumes that real numbers and continuous physical quantities
comprised continuous space-time, are absent. Because of that, when the lim-
its discussed above are taken into account, the digital paradigm starts to fade,
and needs some extra insights. We believe that the relation between non com-
putability and emergent information complexity might be better investigated in
the context of Chaitin’s algorithmic information theory (AIT) [7].

In our model, as we have seen, the universe is the result of the identification of
a huge quantum computer with a quantum (non commutative) space. The soft-
ware version of the cosmic computer represents the universe as a simulation. But
we, like Deutsch, strongly disagree with this approach. Instead, in the hardware
version, the universe computes its own dynamical evolution. The cosmological
models described in [38], [39] and particularly in [37], where LQG is itself the
cosmic computer, obviously belong to the hardware version. As Deutsch illus-
trated in [12], a universal quantum Turing machine (or quantum computer) has
the same computability power of a universal classical Turing machine.

It follows that, as a quantum computer, the universe can compute only
Turing-computable functions. As a physical universe, it computes the laws of
physics in their most primordial form. Then, the laws of physics are all Turing-
computable. Consequently, non computable mathematics is outside the realm of
the physical world.

The observer is internal with respect to the fuzzy quantum-computer uni-
verse, and can only use paraconsistent logic, with respect to the universe as
a whole. In the mind of the observer, there are two strong axioms, which are
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the converse of the non contradiction and excluded middle principles, respec-
tively. The first axiom, namely the converse of the non contradiction principle:
` A ∧ ¬A, does not allow the observer to use classical truth values in his judge-
ments (measurements) and, for him, classical decidability is now meaningless.

However, the internal observer is also external with respect to a quantum
subsystem, like a quantum computer inside the quantum computing universe. In
this case, the observer utilizes standard quantum logic. The Boolean outputs of
his standard (irreversible) quantum measurement are the truth values of classical
logic. The double logic of the observer, leads to a change in the interpretation
of the first Gödel’s incompleteness theorem [16] at the Planck scale, as we will
see in the following. Simply, there is a change in the concept of truth: what
classically was true but non-computable appears now to be computable but non
decidable.

Let us consider the famous “couple” of quantum computing: Alice (A) and
Bob (B). Alice (A) lives in a classical space-time, which is also the classical
background of the quantum computer (QC). A is an external observer with
respect to the QC, and is equipped with standard quantum logic when she
performs a standard quantum measurement; otherwise, she is endowed with
classical logic. Instead, B lives in a quantum space isomorphic to the QC, he is
an internal observer, and is equipped with paraconsistent logic.

Let us suppose that a theorem (T) is given to A. T is computable, but the
computation of T is too long (and hard) for A and for her classical computa-
tional tools (classical computer or classical Turing machine). Then, A gives T
as an algorithm to the QC. By using quantum parallelism (and entanglement),
the QC computes T efficiently. T is true, and the output is 1. However, A will
never have the demonstration at her disposal, because, to get the result, she had
to destroy the superposition, and lose quantum information. Thus, T appears
to A as Gödel’s formula G would have appeared to a mathematician: true, but
not (for A) computable. Of course, T “is” computable, as the QC has just com-
puted it. But, with respect to the external observer (A), the QC has behaved
like another human (B), the internal observer. In fact B can verify that T is
computable, but will tell A that T is not computable, as he will never provide
her the demonstration.

Then, A will enter in a quantum space whose elementary cells are in a one-
to-one correspondence with the computational states (B’s states). Now, A can
verify herself that T is computable, as B is computing it. But now, neither A nor
B will ever know whether T is true or false, because 0 and 1 are classical truth
values, which are not obtainable anymore, now that the classical world has been
“erased” for the couple A-B.

Let us suppose that the QC is the whole universe. Now A and B are both
internal observers, and both use paraconsistent logic with respect to the universe
as a whole. The question: “Is T is true or false?” has no answer. In the passage
from the classical to the quantum stage, there is a change in the meaning of
definitions.
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In the classical setting, T was true, but the quantum demonstration was not
provided, so T appeared as Gödel’s sentence G, true but non computable. In
the quantum setting, the quantum demonstration of T is available: T clearly
appears to be computable. But the classical truth values are now meaningless:
T is (classically) undecidable.
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