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Abstract. We develop a theory of labellings for infinite trees, define
the notion of a combinatorial labelling, and show that ∆

0

2 is the largest
boldface pointclass in which every set admits a combinatorial labelling.

1 Introduction

Labellings are at the core of the theory of infinite games. The first example of
a game labelling was the Zermelo “backward induction technique” from [Zer13]
used by Gale and Stewart in [GaSt53] to prove the determinacy of all open sets.
This theorem is one of the gems of game theory. Its proof is conceptually clear
and arguably constructive.

The Gale-Stewart result is an example of a constructive determinacy
proof. Such proofs, in particular those using the Cantor-Bendixson method,
were investigated by Büchi and Landweber in their seminal paper on games
and finite automata [BüLa69]. Büchi describes his fascination with constructive
determinacy proofs:1.

“The [constructive] proof ‘actually presents ’ a winning strategy. The
[nonconstructive] proofs do no such thing; all you know at the end is
existence of a winning strategy.2

Although Büchi offers a general idea of what it means for a determinacy proof
to be constructive, he doesn’t give specific criteria. In this paper, we develop a
notion of combinatorial labelling that is a possible formalization of “constructive
proofs”: A game that is analyzed by a combinatorial labelling uses the combi-
natorial structure of the payoff set and no additional background information.
We prove that ∆

0

2 is the largest boldface pointclass in which every set admits a
combinatorial labelling (in the sense that every set in ∆

0

2
admits a combinatorial
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1 The term “constructive determinacy” is used by Gurevich in [Gu90] whereas Büchi
more technically writes “CB-proof of determinacy”.

2 [Bü83, p. 1171]; italics in the original.



labelling, and any boldface class strictly bigger than ∆
0

2
contains a set without

a combinatorial labelling).
The history of set-theoretic game theory has seen determinacy proofs using

more complicated arguments, e.g., Davis’ argument for the Σ
0

2
games [Da63],

Wolfe’s argument for the Σ
0

3-games [Wol55], Paris’ argument for the Σ
0

4-games
[Pa72], and in general Martin’s inductive proof for Borel games [Ma75,Ma85].
Harvey Friedman proved [Fr71] that the increase in complexity is not avoidable:
higher determinacy proofs cannot be done in second order number theory.3

2 Notation & Definitions

We use ωω to denote infinite sequences of natural numbers, and ω<ω to denote
finite sequences of natural numbers. For s ∈ ω<ω, we use the notation [s] :=
{x ∈ ωω ; s ⊂ x} to denote the set of infinite extensions of x. The notation
(s) := {u ∈ ω<ω ; s ⊆ u} denotes the set of finite extensions of s. If s, t ∈ ω<ω

amd t = sa〈k〉 for some k ∈ ω, then we say that t is a successor of s. If A ⊆ ωω,
then define Axsy := {x ∈ ωω : sax ∈ A}.

2.1 The Hausdorff Difference Hierarchy

As usual, we call an ordinal α even (odd) if it is of the form λ+2n (λ+2n+1) for
some limit ordinal λ and some natural number n. For a sequence 〈Aγ ; γ < α〉,
we define the Hausdorff difference, Diff(〈Aγ ; γ < α〉), to be the set:

{x ∈
⋃

γ<α

Aα ; min{γ ; x ∈ Aγ} has different parity from α}.

If A = Diff(〈Aγ ; γ < α〉), we call 〈Aγ ; γ < α〉 a presentation of A. In general,
the presentation of a set need not be unique.

The Hausdorff difference classes are defined as follows: A ∈ α-Σ0

1
if there

is an increasing sequence 〈Aγ ; γ < α〉 of open sets such that A = Diff(〈Aγ ; γ <
α〉).

The following theorem expresses the Hausdorff difference classes in terms of
the arithmetical hierarchy (for a proof, cf. [Kec94, Theorem (22.27)]):

Theorem 1 (Hausdorff-Kuratowski)
⋃

α<ω1
α-Σ0

1
= ∆

0

2
.

2.2 Games

We consider games with two players, Player I and Player II, and a payoff set
A ⊆ ωω. Player I begins the game by playing a natural number x0. Then, Player
II plays a natural number x1. The players alternate moves for ω rounds, which

3 The fact that Büchi conjectures that there is a constructive proof of Borel deter-
minacy [Bü83, Problem 1] suggests that his notion of “constructive” is extremely
liberal, at least more liberal than our notion of a combinatorial labelling.



produces an element x = 〈x0, x1, x2, ...〉 ∈ ωω. If x is an element A, then Player
I wins. If not, then Player II wins.

We use M0 to denote the set of finite sequences of even length, and M1 to
denote the set of finite sequences of odd length. A strategy for Player I is a
function σ : ω<ω ∩ M0 → ω<ω such that σ(s) is a successor of s. Similarly, a
strategy for Player II is a function τ : ω<ω ∩ M1 → ω<ω such that τ(s) is a
successor of s. If σ is a strategy for Player I and τ is a strategy for Player II, we
denote by σ ∗ τ the unique element of ωω that is produced if Player I follows σ
and Player II follows τ .

We call a strategy σ for Player I winning if for all counterstrategies τ , σ∗τ ∈
A. Similarly, a strategy τ for Player II is winning if for all counterstrategies σ,
σ ∗ τ /∈ A. Clearly, at most one player can have a winning strategy, in which case
the set A is called determined.

For a position s ∈ ω<ω, consider the variant of the game beginning at s. An
s-strategy for Player I is a function σ : (s) ∩ M0 → ω<ω such that σ(u) is a
successor of u. We define an s-strategy for Player II in the analogous way, as
well as the notion of a winning s-strategy.

3 Labellings I: Soundness

We say that L = 〈LI, <I, LII, <II〉 is a labelling system if LI and LII are disjoint
sets, <I is a well-ordering on LI, and <II is a well-ordering on LII. The elements
of LI are called I-labels and the elements of LII are called II-labels. We will
sometimes write L for the set LI ∪LII. We call any partial function ` : ω<ω → L
a labelling.

Fix a labelling ` and a position s. We say that an s-strategy σ for Player I
is `-good if it satisfies the following property: if t ∈ dom(σ) and there exists a
j ∈ ω such that `(ta〈j〉) is a I-label, then `(σ(t)) is the <I-least element of the
set {`(ta〈j〉) ; j ∈ ω} ∩LI. In other words, if there are I-labelled successors of t,
σ(t) is a I-labelled successor with the smallest possible label.

The Player II case is handled analogously.
Letting A be the payoff set, we say that ` is A-sound at s if either `(s) is a

I-label and every `-good s-strategy for Player I is winning, or if `(s) is a II-label
and every `-good s-strategy for Player II is winning.

Proposition 2 Let A ⊆ ωω and s ∈ ω<ω. Then Player I has a winning s-
strategy if and only if there is a labelling ` such that `(s) ∈ LI and ` is A-sound

at s. Similarly, Player II has a winning s-strategy if and only if there is a labelling

` such that `(s) ∈ LII and ` is A-sound at s.

Proposition 3 For any A ⊆ ωω, A is determined if and only if there is a

labelling that is A-sound at ∅.

We say that a labelling is globally A-sound if it is A-sound at every
s ∈ ω<ω. Note that every globally sound labelling must be total. Proposition 3
becomes false if we consider globally A-sound labellings instead of A-sound at
∅ labellings, but the result still holds classwise for boldface pointclasses.



Proposition 4 Suppose Γ is a boldface pointclass. Then, using the Axiom of

Choice, the following are equivalent:

1. Every set in Γ is determined.
2. For every set A ∈ Γ , there is a labelling that is globally A-sound.

4 Labellings II: Combinatorial Labellings

In this section, we will formalize the notion of combinatorial equivalence. We
begin with some background information about bisimulations. If G = 〈G, EG〉
and H = 〈H, EH〉 are directed graphs, then we call a relation R ⊆ G × H a
bisimulation if the following conditions (“back and forth”) hold:

∀g, g∗ ∈ G∀h ∈ H

(

if 〈g, h〉 ∈ R & 〈g, g∗〉 ∈ EG then there is an
h∗ ∈ H such that 〈g∗, h∗〉 ∈ R & 〈h, h∗〉 ∈ EH

)

∀g ∈ G∀h, h∗ ∈ H

(

if 〈g, h〉 ∈ R & 〈h, h∗〉 ∈ EH then there is a
g∗ ∈ G such that 〈g∗, h∗〉 ∈ R & 〈g, g∗〉 ∈ EG

)

Let s ∈ ω<ω. We can see (s) as a directed graph E such that 〈u, v〉 ∈ E :⇔ v
is a successor of u. If A ⊆ ωω and R is a bisimulation between (s) and (t), we
say that R is A-preserving if for every x, y ∈ ωω, the following holds:

if ∀n ∈ ω[R(sa(x�n), ta(y�n))], then sax ∈ A ⇐⇒ tay ∈ A.

Let s, t ∈ ω<ω such that s, t ∈ M0 or s, t ∈ M1. We say that s and t are
A-bisimilar if there is an A-preserving bisimulation R between (s) and (t) such
that 〈s, t〉 ∈ R. Furthermore, we say that a labelling ` is A-combinatorial if any
two A-bisimilar nodes get the same `-label. In other words, ` is combinatorial if
any two bisimilar nodes have the same label.

Proposition 5 The labellings `0 and `1 constructed in the proof of Propositions

3 and 4, respectively, are not in general A-combinatorial.

Proposition 6 There is a Σ
0

2
set A such that no A-sound labelling at ∅ is

A-combinatorial.

Proof. Define A as follows:

x ∈ A : ⇐⇒ ∃n∀k ≥ n (x(k) = 0).

It is clear that A is Σ
0

2
and that Player II has a winning strategy. Note the

following key fact:

(*) For every s, t ∈ ω<ω, Axsy = Axty.

Suppose that ` is A-combinatorial. It will be shown that ` is not A-sound
at ∅. If ∅ is unlabeled, then we are done. If `(∅) ∈ LI, then we are done by
Proposition 2. Suppose `(∅) ∈ LII. Since ` is combinatorial, it follows from (*)
that `(u) = `(v) ∈ LII for all u, v ∈ M1. Therefore, any strategy τ for Player
II is `-good. In particular, the strategy τ(s) := sa〈0〉 is `-good for Player II.
But τ is not winning for Player II: let σ be the strategy for Player I defined by
σ(s) := sa〈0〉, then σ ∗ τ /∈ A. It follows that ` is not A-sound at ∅. ut



Theorem 7 Let A ∈ α-Σ0

1
. Then there is a labelling ` that is globally A-sound

and A-combinatorial.

This is the main technical theorem of this paper. Its proof proceeds by defin-
ing the labelling with a modified Gale-Stewart technique level-by-level along the
defining sequence of open sets used to define a given α-Σ0

1
set. The proof is

modelled closely after known proofs of ∆
0

2 determinacy.

Theorem 8 The pointclass ∆
0

2
is the largest boldface pointclass in which every

set set has a labelling that is globally sound and combinatorial.

Proof. By Theorem 7, all sets in ∆
0

2 have a labelling that is globally sound and
combinatorial. Let Γ be any boldface pointclass containing ∆

0

2
. Any boldface

pointclass that is a proper superset of ∆
0

2
contains either all Σ

0

2
sets or all Π

0

2

sets. If Γ contains all Σ
0

2 sets, then we are done by Proposition 6. If Γ contains
all Π

0

2
sets, then the result follows from the fact that there exists a Π

0

2
set B

such that no B-sound labelling at ∅ is B-combinatorial. Namely, if A is the Σ
0

2

set from Proposition 6, take B = ωω \ A. Then a similar argument to the proof
of Proposition 6 shows that B has the desired property. ut
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