The extent of constructive game labellings

Benedikt Löwe, Brian Semmes^{*}

Institute for Logic, Language and Computation, Universiteit van Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands; *e-mail:* {bloewe, bsemmes}@science.uva.nl

Abstract. We develop a theory of labellings for infinite trees, define the notion of a combinatorial labelling, and show that Δ_2^0 is the largest boldface pointclass in which every set admits a combinatorial labelling.

1 Introduction

Labellings are at the core of the theory of infinite games. The first example of a game labelling was the Zermelo "backward induction technique" from [Zer13] used by Gale and Stewart in [GaSt53] to prove the determinacy of all open sets. This theorem is one of the gems of game theory. Its proof is conceptually clear and arguably constructive.

The Gale-Stewart result is an example of a **constructive determinacy proof**. Such proofs, in particular those using the Cantor-Bendixson method, were investigated by Büchi and Landweber in their seminal paper on games and finite automata [BüLa69]. Büchi describes his fascination with constructive determinacy proofs:¹.

"The [constructive] proof 'actually presents' a winning strategy. The [nonconstructive] proofs do no such thing; all you know at the end is existence of a winning strategy.²

Although Büchi offers a general idea of what it means for a determinacy proof to be constructive, he doesn't give specific criteria. In this paper, we develop a notion of *combinatorial labelling* that is a possible formalization of "constructive proofs": A game that is analyzed by a combinatorial labelling uses the combinatorial structure of the payoff set and no additional background information. We prove that Δ_2^0 is the largest boldface pointclass in which every set admits a combinatorial labelling (in the sense that every set in Δ_2^0 admits a combinatorial

 $^{^{\}star}$ The authors would like to thank Michael Möllerfeld (Münster/Bonn) for many discussions about games in the low levels of the Borel hierarchy. The first author was partially financed by NWO Grant B 62-584. The second author was supported by DAAD Grant A/04/33952.

¹ The term "constructive determinacy" is used by Gurevich in [Gu90] whereas Büchi more technically writes "CB-proof of determinacy".

 $^{^2}$ [Bü83, p. 1171]; italics in the original.

labelling, and any boldface class strictly bigger than Δ_2^0 contains a set without a combinatorial labelling).

The history of set-theoretic game theory has seen determinacy proofs using more complicated arguments, *e.g.*, Davis' argument for the Σ_2^0 games [Da63], Wolfe's argument for the Σ_3^0 -games [Wol55], Paris' argument for the Σ_4^0 -games [Pa72], and in general Martin's inductive proof for Borel games [Ma75,Ma85]. Harvey Friedman proved [Fr71] that the increase in complexity is not avoidable: higher determinacy proofs cannot be done in second order number theory.³

2 Notation & Definitions

We use ω^{ω} to denote infinite sequences of natural numbers, and $\omega^{<\omega}$ to denote finite sequences of natural numbers. For $s \in \omega^{<\omega}$, we use the notation $[s] := \{x \in \omega^{\omega} ; s \subset x\}$ to denote the set of infinite extensions of x. The notation $(s) := \{u \in \omega^{<\omega} ; s \subseteq u\}$ denotes the set of finite extensions of s. If $s, t \in \omega^{<\omega}$ and $t = s^{<}\langle k \rangle$ for some $k \in \omega$, then we say that t is a **successor** of s. If $A \subseteq \omega^{\omega}$, then define $A_{\lfloor s \rfloor} := \{x \in \omega^{\omega} : s^{<}x \in A\}$.

2.1 The Hausdorff Difference Hierarchy

As usual, we call an ordinal α even (odd) if it is of the form $\lambda + 2n$ ($\lambda + 2n + 1$) for some limit ordinal λ and some natural number n. For a sequence $\langle A_{\gamma}; \gamma < \alpha \rangle$, we define the **Hausdorff difference**, Diff($\langle A_{\gamma}; \gamma < \alpha \rangle$), to be the set:

$$\{x \in \bigcup_{\gamma < \alpha} A_{\alpha}; \min\{\gamma; x \in A_{\gamma}\} \text{ has different parity from } \alpha\}.$$

If $A = \text{Diff}(\langle A_{\gamma}; \gamma < \alpha \rangle)$, we call $\langle A_{\gamma}; \gamma < \alpha \rangle$ a **presentation of** A. In general, the presentation of a set need not be unique.

The **Hausdorff difference classes** are defined as follows: $A \in \alpha - \Sigma_1^0$ if there is an increasing sequence $\langle A_\gamma; \gamma < \alpha \rangle$ of open sets such that $A = \text{Diff}(\langle A_\gamma; \gamma < \alpha \rangle)$.

The following theorem expresses the Hausdorff difference classes in terms of the arithmetical hierarchy (for a proof, cf. [Kec94, Theorem (22.27)]):

Theorem 1 (Hausdorff-Kuratowski) $\bigcup_{\alpha < \omega_1} \alpha - \Sigma_1^0 = \Delta_2^0$.

2.2 Games

We consider games with two players, Player I and Player II, and a payoff set $A \subseteq \omega^{\omega}$. Player I begins the game by playing a natural number x_0 . Then, Player II plays a natural number x_1 . The players alternate moves for ω rounds, which

³ The fact that Büchi conjectures that there is a constructive proof of Borel determinacy [Bü83, Problem 1] suggests that his notion of "constructive" is extremely liberal, at least more liberal than our notion of a combinatorial labelling.

produces an element $x = \langle x_0, x_1, x_2, ... \rangle \in \omega^{\omega}$. If x is an element A, then Player I wins. If not, then Player II wins.

We use M_0 to denote the set of finite sequences of even length, and M_1 to denote the set of finite sequences of odd length. A **strategy for Player I** is a function $\sigma : \omega^{<\omega} \cap M_0 \to \omega^{<\omega}$ such that $\sigma(s)$ is a successor of s. Similarly, a **strategy for Player II** is a function $\tau : \omega^{<\omega} \cap M_1 \to \omega^{<\omega}$ such that $\tau(s)$ is a successor of s. If σ is a strategy for Player I and τ is a strategy for Player II, we denote by $\sigma * \tau$ the unique element of ω^{ω} that is produced if Player I follows σ and Player II follows τ .

We call a strategy σ for Player I **winning** if for all counterstrategies τ , $\sigma * \tau \in A$. Similarly, a strategy τ for Player II is **winning** if for all counterstrategies σ , $\sigma * \tau \notin A$. Clearly, at most one player can have a winning strategy, in which case the set A is called **determined**.

For a position $s \in \omega^{<\omega}$, consider the variant of the game beginning at s. An s-strategy for Player I is a function $\sigma : (s) \cap M_0 \to \omega^{<\omega}$ such that $\sigma(u)$ is a successor of u. We define an s-strategy for Player II in the analogous way, as well as the notion of a winning s-strategy.

3 Labellings I: Soundness

We say that $\mathbf{L} = \langle L_{\mathrm{I}}, \langle_{\mathrm{I}}, L_{\mathrm{II}}, \langle_{\mathrm{II}} \rangle$ is a **labelling system** if L_{I} and L_{II} are disjoint sets, \langle_{I} is a well-ordering on L_{I} , and \langle_{II} is a well-ordering on L_{II} . The elements of L_{I} are called **I-labels** and the elements of L_{II} are called **II-labels**. We will sometimes write \mathbf{L} for the set $L_{\mathrm{I}} \cup L_{\mathrm{II}}$. We call any partial function $\ell : \omega^{\langle \omega \rangle} \to \mathbf{L}$ a **labelling**.

Fix a labelling ℓ and a position s. We say that an s-strategy σ for Player I is ℓ -good if it satisfies the following property: if $t \in \operatorname{dom}(\sigma)$ and there exists a $j \in \omega$ such that $\ell(t^{\frown}\langle j \rangle)$ is a I-label, then $\ell(\sigma(t))$ is the \langle_{I} -least element of the set $\{\ell(t^{\frown}\langle j \rangle); j \in \omega\} \cap L_{\mathrm{I}}$. In other words, if there are I-labelled successors of t, $\sigma(t)$ is a I-labelled successor with the smallest possible label.

The Player II case is handled analogously.

Letting A be the payoff set, we say that ℓ is A-sound at s if either $\ell(s)$ is a I-label and every ℓ -good s-strategy for Player I is winning, or if $\ell(s)$ is a II-label and every ℓ -good s-strategy for Player II is winning.

Proposition 2 Let $A \subseteq \omega^{\omega}$ and $s \in \omega^{<\omega}$. Then Player I has a winning sstrategy if and only if there is a labelling ℓ such that $\ell(s) \in L_{I}$ and ℓ is A-sound at s. Similarly, Player II has a winning s-strategy if and only if there is a labelling ℓ such that $\ell(s) \in L_{II}$ and ℓ is A-sound at s.

Proposition 3 For any $A \subseteq \omega^{\omega}$, A is determined if and only if there is a labelling that is A-sound at \emptyset .

We say that a labelling is **globally** A-sound if it is A-sound at every $s \in \omega^{<\omega}$. Note that every globally sound labelling must be total. Proposition 3 becomes false if we consider globally A-sound labellings instead of A-sound at \emptyset labellings, but the result still holds classwise for boldface pointclasses.

Proposition 4 Suppose Γ is a boldface pointclass. Then, using the Axiom of Choice, the following are equivalent:

- 1. Every set in $\boldsymbol{\Gamma}$ is determined.
- 2. For every set $A \in \Gamma$, there is a labelling that is globally A-sound.

4 Labellings II: Combinatorial Labellings

In this section, we will formalize the notion of combinatorial equivalence. We begin with some background information about bisimulations. If $\mathbf{G} = \langle G, E_G \rangle$ and $\mathbf{H} = \langle H, E_H \rangle$ are directed graphs, then we call a relation $R \subseteq G \times H$ a **bisimulation** if the following conditions ("back and forth") hold:

$$\forall g, g^* \in G \forall h \in H \left(\begin{array}{c} \text{if } \langle g, h \rangle \in R \& \langle g, g^* \rangle \in E_G \text{ then there is an} \\ h^* \in H \text{ such that } \langle g^*, h^* \rangle \in R \& \langle h, h^* \rangle \in E_H \end{array} \right) \\ \forall g \in G \forall h, h^* \in H \left(\begin{array}{c} \text{if } \langle g, h \rangle \in R \& \langle h, h^* \rangle \in E_H \text{ then there is a} \\ g^* \in G \text{ such that } \langle g^*, h^* \rangle \in R \& \langle g, g^* \rangle \in E_G \end{array} \right)$$

Let $s \in \omega^{<\omega}$. We can see (s) as a directed graph E such that $\langle u, v \rangle \in E :\Leftrightarrow v$ is a successor of u. If $A \subseteq \omega^{\omega}$ and R is a bisimulation between (s) and (t), we say that R is A-**preserving** if for every $x, y \in \omega^{\omega}$, the following holds:

if
$$\forall n \in \omega[R(s^{(x \upharpoonright n)}, t^{(y \upharpoonright n)})]$$
, then $s^{x} \in A \iff t^{y} \in A$.

Let $s, t \in \omega^{<\omega}$ such that $s, t \in M_0$ or $s, t \in M_1$. We say that s and t are *A*-bisimilar if there is an *A*-preserving bisimulation *R* between (s) and (t) such that $\langle s, t \rangle \in R$. Furthermore, we say that a labelling ℓ is *A*-combinatorial if any two *A*-bisimilar nodes get the same ℓ -label. In other words, ℓ is combinatorial if any two bisimilar nodes have the same label.

Proposition 5 The labellings ℓ_0 and ℓ_1 constructed in the proof of Propositions 3 and 4, respectively, are not in general A-combinatorial.

Proposition 6 There is a Σ_2^0 set A such that no A-sound labelling at \emptyset is A-combinatorial.

Proof. Define A as follows:

$$x \in A : \iff \exists n \forall k \ge n (x(k) = 0).$$

It is clear that A is Σ_2^0 and that Player II has a winning strategy. Note the following key fact:

(*) For every $s, t \in \omega^{<\omega}, A_{\lfloor s \rfloor} = A_{\lfloor t \rfloor}$.

Suppose that ℓ is A-combinatorial. It will be shown that ℓ is not A-sound at \varnothing . If \varnothing is unlabeled, then we are done. If $\ell(\varnothing) \in L_{\mathrm{I}}$, then we are done by Proposition 2. Suppose $\ell(\varnothing) \in L_{\mathrm{II}}$. Since ℓ is combinatorial, it follows from (*) that $\ell(u) = \ell(v) \in L_{\mathrm{II}}$ for all $u, v \in M_1$. Therefore, any strategy τ for Player II is ℓ -good. In particular, the strategy $\tau(s) := s^{\frown}\langle 0 \rangle$ is ℓ -good for Player II. But τ is not winning for Player II: let σ be the strategy for Player I defined by $\sigma(s) := s^{\frown}\langle 0 \rangle$, then $\sigma * \tau \notin A$. It follows that ℓ is not A-sound at \varnothing . \Box **Theorem 7** Let $A \in \alpha - \Sigma_1^0$. Then there is a labelling ℓ that is globally A-sound and A-combinatorial.

This is the main technical theorem of this paper. Its proof proceeds by defining the labelling with a modified Gale-Stewart technique level-by-level along the defining sequence of open sets used to define a given $\alpha - \Sigma_1^0$ set. The proof is modelled closely after known proofs of $\boldsymbol{\Delta}_2^0$ determinacy.

Theorem 8 The pointclass Δ_2^0 is the largest boldface pointclass in which every set set has a labelling that is globally sound and combinatorial.

Proof. By Theorem 7, all sets in $\boldsymbol{\Delta}_2^0$ have a labelling that is globally sound and combinatorial. Let $\boldsymbol{\Gamma}$ be any boldface pointclass containing $\boldsymbol{\Delta}_2^0$. Any boldface pointclass that is a proper superset of $\boldsymbol{\Delta}_2^0$ contains either all $\boldsymbol{\Sigma}_2^0$ sets or all $\boldsymbol{\Pi}_2^0$ sets. If $\boldsymbol{\Gamma}$ contains all $\boldsymbol{\Sigma}_2^0$ sets, then we are done by Proposition 6. If $\boldsymbol{\Gamma}$ contains all $\boldsymbol{\Pi}_2^0$ sets, then the result follows from the fact that there exists a $\boldsymbol{\Pi}_2^0$ set B such that no B-sound labelling at $\boldsymbol{\varnothing}$ is B-combinatorial. Namely, if A is the $\boldsymbol{\Sigma}_2^0$ set from Proposition 6, take $B = \omega^{\omega} \setminus A$. Then a similar argument to the proof of Proposition 6 shows that B has the desired property.

References

[Bü83]	J. Richard Büchi , State-strategies for Games in $F_{\sigma\delta} \cap G_{\delta\sigma}$, Journal of
	Symbolic Logic 48 (1983), p. 1171-1198
[BüLa69]	J. Richard Büchi, Lawrence H. Landweber, Solving Sequential Condi-
	tions by Finite State Strategies, Transaction of the American Math-
	ematical Society 138 (1969), p. 295-311
[Da63]	Morton Davis , Infinite games of perfect information, <i>in:</i> Melvin Dresher,
	Lloyd S. Shapley, Alan W. Tucker (eds.), Advances in Game Theory,
	Princeton 1963 [Annals of Mathematical Studies 52], p. 85–101
[Fr71]	Harvey M. Friedman, Higher Set Theory and mathematical practice,
	Annals of Mathematical Logic 2 (1971), p. 325–357
[GaSt53]	David Gale, Frank M. Stewart, Infinite Games with Perfect Informa-
	tion, in: Harold W. Kuhn, Albert W. Tucker (eds.), Contributions to the
	Theory of Games II, Princeton 1953 [Annals of Mathematical Studies 28],
	p. 245–266
[Gu90]	Yuri Gurevich, Games people play, in: Saunders Mac Lane, Dirk Siefkes
	(eds.), Collected Works of J. Richard Büchi, Berlin 1990, p. 517–524
[Kec94]	Alexander S. Kechris, Classical Descriptive Set Theory, Berlin 1994
	[Graduate Texts in Mathematics 156]
[Ma75]	Donald A. Martin, Borel Determinacy, Annals of Mathematics 102
	(1975), p. $363-371$
[Ma85]	Donald A. Martin, A purely inductive proof of Borel determinacy, in:
	Anil Nerode, Richard A. Shore (eds.), Recursion theory, Proceedings of
	the AMS-ASL summer institute held in Ithaca, N.Y., June 28–July 16,
	1982, Providence RI 1985 [Proceedings of Symposia in Pure Mathematics
	42], p. 303–308

- [Pa72] Jeff Paris, $ZF \vdash \Sigma_4^0$ determinateness, Journal of Symbolic Logic 37 (1972), p. 661–667
- [Wol55] Philip Wolfe, The strict determinateness of certain infinite games, Pacific Journal of Mathematics 5 (1955), p. 841–847
- [Zer13] Ernst Zermelo, Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels, in: E. W. Hobson, A. E. H. Love (eds.), Proceedings of the Fifth International Congress of Mathematicians, Cambridge 1912, Volume 2, Cambridge 1913, p. 501–504