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Abstract. This bachelor thesis investigates the possibility to extend Blackwell Determinacy to the reals

and discusses two possibilities. One uses measures with countable support—the other endows the reals

with the Euclidean topology. At the end we propose a possible application.

1 Introduction

Axioms of determinacy are statements about set-theoretic games. Set-theoretic games aren’t
games in the sense that you can play them for recreation—but as normal games they do consist
of players making moves such that at the end one of the players wins.

Gale and Stewart introduced their set-theoretic games in 1953 in their [1]. They were two-
player, perfect information, zero-sum games of infinite length. Perfect information means that
both players know exactly in what situation they are, i.e., they know what they did and what the
opponent did in every turn. Zero-sum means that one player wins and the other one loses. And
infinite length means that there are ω many turns before the game ends.

An important notion in games, is that of a strategy. This is a function telling a player what to
do in every situation. A strategy is winning if a player playing by that strategy wins against
all strategies the opponent could choose. A game is called determined if one of the players
has a winning strategy. A lot of effort has been done to show that certain classes of games are
determined. Determinacy of some larger classes can’t be proven but is used as axioms to get
different forms of set-theory. This works well for games of perfect information. But for imperfect
information games it’s not appropriate as we can see in the following example:

Consider the two-player game where both player pick a number from {0, 1}. Player I wins if they
picked the same number and player II wins if they picked a different number. Neither player knows
what the other picks so we have imperfect information. The only two strategies are “pick 0” and
“pick 1”. They are both ‘bad’ because when you know which one your opponent is playing it’s
easy to beat him. A better strategy seems to randomly pick one of the number—that way at least
you have a fifty-fifty chance of winning, and this is as good as it gets.

So with imperfect information games it seems right to add probability to the strategies. John
von Neumann and Oskar Morgenstern first did this in [7] for finite games. In [8] David Blackwell
extended this concept to games of infinite length. He introduced what he (in [2]) called “Games
with Slightly Imperfect Information” and are now known as Blackwell games, where players
play by so called mixed strategies. In those games every turn is of the form of the above example
but after each turn both players are told again in which situation they are. This is why there is
just slightly imperfect information. Of course determinacy has to be defined in a different way
because now both players can have a reasonable chance of winning.

A nice property of perfect information games is that you can think of them as trees. A game-
state is a node in the tree and a strategy can be seen as a subtree. You lose this when you go to
imperfect information games. But however imperfect information was the motivation to use mixed
strategies, it’s also possible to use the notion of mixed strategies with perfect information games.
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A surprising result by Tony Martin is that the determinacy of all perfect information Blackwell
games is equivalent to the determinacy of all (imperfect information) Blackwell games [5, p. 1579].
This allows us to think of the games as trees again.

Another advantage of perfect information is that it allows to have an infinite set of possible moves.
With imperfect information you can’t have determinacy of all games if you allow infinitely many
moves. We didn’t define determinacy for Blackwell games yet but in short the problem is that
it’s possible that neither player has a ‘good’ strategy as we can see in the following example: Let
both players pick a natural number and player I wins if he picked the larger number. Then for
any mixed strategy for one of the two players the other player can always pick a number such that
he wins with probability arbitrarily close to one.

For perfect information Blackwell games with countably infinitely many possible moves you don’t
have the above problem and determinacy has been defined. The goal of this bachelor thesis however
is to investigate the possibility to define determinacy for Blackwell games on the reals.

In section 2 we give the definitions and introduce determinacy and Blackwell determinacy. In
section 3 we first explain why you can’t just replace ω with

�
to define Blackwell determinacy for

the reals. Then we discuss two ways of defining real Blackwell determinacy and at the end of section
3 we have our main theorem that real Blackwell determinacy follows from real determinacy. The
main work though is not the proof of this theorem but to show that the definitions actually make
sense. In section 4 we state some open questions and address a theorem that might help answering
the question whether real Blackwell determinacy is really stronger than Blackwell determinacy.

2 Definitions

So determinacy is about games. The games are between two players, I and II, who play in turns.
Every turn, the active player plays one element from a given set X after which the turn goes to
the other player. After ω many turns the game is over. I and II then have created an element x of
Xω where player I chose the even numbered elements and player II the odd numbered elements.
I wins this game if x is an element of the given payoff set A. II wins iff I doesn’t. The game on
X with payoff set A is denoted with GX (A). Usually X is a countable set.

2.1 The Axiom of Determinacy

A strategy for player I is a function σ : XEven → X telling the player what to do when it is his
turn. A strategy for player II is a similar function τ : XOdd → X . With XEven (XOdd) we mean
the set of sequences with even (odd) length and elements from X . Given two strategies σ and τ ,
the outcome σ ∗ τ ∈ Xω of the game is recursively defined by

σ ∗ τ(0) = σ(∅)

σ ∗ τ(2k + 1) = τ(x � 2k + 1)

σ ∗ τ(2k + 2) = σ(x � 2k + 2)

Now a strategy σ for player I in GX(A) is called a winning strategy if for every strategy τ for
player II, σ ∗ τ is an element of A. Vice versa a strategy τ for player II is winning if σ ∗ τ 6∈ A

for every strategy σ for player I. A game GX (A) is said to be determined if either player has a
winning strategy for GX(A).

The Axiom of Determinacy (AD) states that Gω(A) is determined for every A ⊆ ωω. AD is
inconsistent with AC (the Axiom of Choice) but is consistent with ZF and implies ACω(

�
), the

Axiom of Countable Choice for sets of reals. AD � is the axiom that says that G � (A) is determined
for every A ⊆

�
ω.
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2.2 Blackwell Determinacy

In Blackwell games the players can have mixed strategies. A mixed strategy is a function σ :
XEven → Prob(X) where Prob(X) is the set of probability measures on X . So in this case, what
a player does in a certain position is not fixed but determined randomly. In the original Blackwell
games the players move simultaneously so that neither player knows what the other did in the nth

turn when he decides what measure he plays in the same turn. But we will only be talking about
perfect information Blackwell games where the players just take turns as before. So a mixed
strategy for player I will be a function σ : XEven → Prob(X) and a mixed strategy for player II
will be a function τ : XOdd → Prob(X).

Given σ and τ , σ ∗ τ isn’t defined anymore. We don’t get just one outcome now. Instead we get
a probability measure.

It will be useful to define νσ,τ as follows:

νσ,τ (x0, . . . , xn−1) =

{

σ(x0, . . . , xn−1) if n is even,
τ(x0, . . . , xn−1) if n is odd.

So in a sense we can simulate a game between σ and τ by letting νσ,τ play against itself.

Let s ∈ X<ω be a finite sequence. Then with |s| we denote the length of s and with [s] we denote
the basic open set of all sequences extending s:

[s] := {x ∈ Xω : s ⊂ x}

Then we can say that the probability of ending up in [s] is equal to the probability that the players
start with playing the elements of s. We write:

µσ,τ ([s]) =
∏

i<|s|

νσ,τ (s � i)({s(i)})

For countable X this will generate a Borel probability measure on X and for Borel sets A we get
µσ,τ (A) as the probability that the game ends in A, i.e., player I wins. Then we assign two values
to a pair of strategies:

val−(σ, τ, A) := sup{µσ,τ (B) : B ⊆ A Borel}

val+(σ, τ, A) := inf{µσ,τ (B) : B ⊇ A Borel}

which are upper and lower bounds for the probability of ending up in A. For a given strategy for
a player we can then look at how well the other player can possibly do against it and we define:

valI(σ, A) := inf{val−(σ, τ, A) : τ a strategy for II}

valII(τ, A) := inf{val+(σ, τ, A) : σ a strategy for I}

Finally we define values for how well both players could do:

val−(A) := sup{valI(σ, A) : σ a strategy for player I}

val+(A) := sup{valII(τ, A) : τ a strategy for player II}

Now a set A is said to be Blackwell determined if val−(A) = val+(A) and the Axiom of

(perfect information1) Blackwell determinacy (Bl-AD) states that every set A ⊆ Xω is Blackwell
determined.

1Remember that Martin showed that the Axiom of prefect information Blackwell determinacy is equivalent to

the original Axiom of Blackwell determinacy.
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3 Real Blackwell games

Our goal is to extend the definition of Blackwell determinacy to games on the reals. The problem
is that we can’t just define the measure µσ,τ as before because for a probability measure P on

�

we don’t necessarily have
∑

x∈ �
P (x) = 1

so it’s not enough to say what does µσ,τ on basic open sets [s] for s ∈
�

<ω. And thus we have to
think of something else.

We play games of length ω on
�

. A mixed strategy σ for player I is a function

σ :
� Even → Prob(

�
)

assigning a measure on
�

to an even sequence of plays (so II made the last move).

In the same way a mixed strategy τ for player II is a function

τ :
� Odd → Prob(

�
)

assigning a measure on
�

to an odd sequence of plays (so I made the last move).

Now we want to define µσ,τ to be a measure on
�

ω such that µσ,τ (A) measures the probability
that the sequence of plays will end up in A when I and II play against each other using their mixed
strategies σ and τ .

We will consider two different definitions which differ in the strategies they allow and in the subsets
of

�
ω they’re defined on. Both definition will give rise to a (possibly different) Axiom of Real

Blackwell Determinacy.

3.1 Countable support

In the first definition we only allow the players to play probability measures on
�

with a count-
able support. There’s a remark in [9, p. 619] where they say it’s possible to extend Blackwell
Determinacy in this way but they don’t show it explicitly. We will do that in this section.

So for every s ∈
�

<ω there exists a countable set S ⊂
�

such that

νσ,τ (s)(S) = 1

In this case we can choose S such that νσ,τ (s)({a}) > 0 for every a ∈ S. So suppose σ and τ

are fixed but arbitrary mixed strategies which only play measures with a countable support. For
every basic open set [s] ⊆

�
ω we define

µσ,τ ([s]) =

|s|−1
∏

i=0

νσ,τ (s � i)({si})

and we show that this defines a measure on the Borel σ-algebra of the product topology on
�

ω

where
�

has the discrete topology. To this end we will use the following theorem without proof.
The theorem can be found in [6, Appendix 2].

Theorem (Carathéodory Extension Theorem).
Let R be a ring of subsets of Ω and let µ : R → [0,∞] be σ-additive. Then µ extends to a measure
µ′ on the σ-algebra σ(R) generated by R.

We define the following ring that includes all basic open sets:

R = {
⋃

s∈A

[s] : A ⊆
� n, n ∈ ω}
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This is the collection of (disjoint) unions of basic open sets that share the number of coordinates
they are fixed on. To show that this is a ring let C ⊆

�
n and D ⊆

�
m so that A =

⋃

s∈C [s] and
B =

⋃

s∈D[s] are arbitrary elements of R. If n = m then A\B =
⋃

s∈C\D[s] and A∪B =
⋃

s∈C∪D[s]
are again elements of R. Otherwise assume without loss of generality that n < m. Then we can
write A =

⋃

{[t] : t ∈
�

m ∧ ∃s ∈ C(s ⊂ t)} so that we are in the above situation again. So R is a
ring.

For C ⊆
�

n, A =
⋃

s∈C [s] ∈ R let

µσ,τ (A) =
∑

s∈C

µσ,τ ([s]).

Notice that because we are in the countable support situation, this uncountable sum is actually
a countable sum since all but countable many terms are equal to zero. We have to show that
this definition is well defined in the sense that different notations for a set A ∈ R give the same
measure. This means we have to show that for n < m, C ⊆

�
n:

µσ,τ

(

⋃

s∈A

[s]

)

= µσ,τ





⋃

s∈A,t∈ � m−n

[sat]





First notice that for s ∈
�

n we have that

∑

x∈ �
µσ,τ ([sax]) =

∑

x∈ �

|s|−1
∏

i=0

νσ,τ (s � i)({si}) · νσ,τ (s){x}

=

|s|−1
∏

i=0

νσ,τ (s � i)({si}) ·
∑

x∈ �

νσ,τ (s)({x})

=

|s|−1
∏

i=0

νσ,τ (s � i)({si})

= µσ,τ ([s]).

(
∑

x∈ � νσ,τ (s){x} = 1 because νσ,τ (s) has countable support.)
So for A ⊆

�
n and B ⊆

�
n+1, if

⋃

s∈A[s] =
⋃

s∈B [s] we have

µσ,τ

(

⋃

s∈B

[s]

)

= µσ,τ





⋃

s∈A,x∈ �

[sax]





=
∑

s∈A

∑

x∈ �
µσ,τ ([sax])

=
∑

s∈A

µσ,τ ([s])

= µσ,τ

(

⋃

s∈A

[s]

)

and with induction we have that µσ,τ is well defined on R.

Now if we show that µσ,τ is σ-additive on R we can use the theorem to extend µσ,τ to σ(R).
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So let A be a countable disjoint collection of elements of R and A =
⋃

A ∈ R and suppose towards
a contradiction that

µσ,τ (A) 6=
∑

B∈A

µσ,τ (B).

A ∈ R so there are n ∈ � and C ⊆
�

n such that A =
⋃

s∈C [s]. Choose n and C such that n is
minimal.

For every B ∈ A there are nB and DB ⊆
�

nB such that B =
⋃

s∈DB
[s]. Let D =

⋃

B∈A DB .
Because n was minimal, for every t ∈ D there is an s ∈ C such that s ⊆ t.

If for every s ∈ C we have that
∑

{µσ,τ ([t]) : t ∈ D ∧ s ⊆ t} = µσ,τ (s), then by definition

µσ,τ (A) =
∑

s∈C

µσ,τ ([s])

=
∑

s∈C

∑

{µσ,τ ([t]) : t ∈ D ∧ s ⊆ t}

=
∑

t∈D

µσ,τ ([t])

=
∑

B∈A

∑

t∈BD

µσ,τ ([t])

=
∑

B∈A

µσ,τ (B)

So by assumption the set Ss of s0 for which
∑

{µσ,τ ([t]) : t ∈ D ∧ s ⊆ t} 6= µσ,τ (s0) is non-
empty. Proceeding in this way, for every element sn+1 ∈ Ssn

we have that the set Ssn+1
= {sn+1 :

µσ,τ (sn+1) 6=
∑

{µσ,τ ([t]) : t ∈ D ∧ sn+1 ⊂ t} is non-empty.

Because the measures have countable support we get countably many of of these non-empty sets
so using ACω(

�
) we get a sequence x ∈

�
ω such that for every finite initial segment s ⊂ x we

have µσ,τ ([s]) 6=
∑

{µσ,τ ([t]) : t ∈ D ∧ s ⊆ t}. Since x ∈ A there is an s ∈ D such that x ∈ [s].
Then s ⊂ x so µσ,τ ([s]) 6=

∑

{µσ,τ ([t]) : t ∈ D ∧ s ⊆ t}. But in this case {t : t ∈ D ∧ s ⊆ t} is just
{s} so we get µσ,τ ([s]) 6= µσ,τ ([s]), a contradiction.

So µσ,τ is σ-additive and can be extended to σ(R). We denote this measure with µC
σ,τ .

3.2 Euclidean topology

In our second definition we allow the players to play any Borel probability measure in every turn
but µσ,τ will only be defined on the Borel sets of

�
ω where

�
ω has the product topology of the

Euclidean topology on the reals
�

.

Let σ and τ be arbitrary but fixed strategies playing Borel probability measures.

For k ≥ 1 let the measure Pk be recursively defined by (B is a Borel set of dimension k):

P1(B) = νσ,τ (∅)(B)

Pn+1(B) =

∫

s∈ � n

νσ,τ (s)(Bs)dPn(s)

where Bs = {x ∈
�

: sax ∈ B}. We will now show that Pk is σ-additive. P1 is a measure by
definition so suppose k = n + 1. Let {Xi : i ∈ ω} be a countable collection of disjoint subsets of
�

k. Then
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Pk

(

⋃

{Xi : i ∈ ω}
)

=

∫

s∈ � n

νσ,τ (s)
((

⋃

{Xi : i ∈ ω}
)

s

)

dPn(s)

=

∫

s∈ � n

∑

i∈ω

νσ,τ (s)((Xi)s)dPn(s)

=
∑

i∈ω

∫

s∈ � n

νσ,τ (s)((Xi)s)dPn(s)

=
∑

i∈ω

Pk(Xi)

So Pk is a measure for every k ≥ 1. We will now want to use the following theorem which can be
found in [6, Appendix 7]:

Theorem (Consistency theorem of Kolmogorov).
For every k ∈ � let Pk be a probability measure on (

�
k, Bor(

�
k)) such that the sequence (Pk)k∈ �

is consistent. Then there exists a measure P on (
�

ω, Bor(
�

ω)) such that for every measurable
B ∈

�
k

P (B ×
� ω) = Pk(B)

The sequence (Pk)k≥1 is said to be consistent if for every k ∈ � and B a k-dimensional Borel set
we have

Pk+1(B ×
�

) = Pk(B).

So we show that our sequence is consistent:

Pk+1(B ×
�

) =

∫

s∈ � k

νσ,τ (s)((B ×
�

)s)dPk(s)

=

∫

s∈ � k

1B(s)dPk(s)

= Pk(B)

Thus we can apply the theorem giving us a measure P on
�

ω. We then use this as our measure
and denote it with µE

σ,τ .

3.3 The Axiom of Real Blackwell Determinacy

For either of the two definitions of µσ,τ we we can define values as before. Let X be either C or
E, then we define

valX−(σ, τ, A) := sup{µX
σ,τ (B) : B ⊆ A Borel}

valX+(σ, τ, A) := inf{µX
σ,τ (B) : B ⊇ A Borel}

valXI (σ, A) := inf{valX−(σ, τ, A) : τ a strategy for II}

valXII(τ, A) := sup{valX+(σ, τ, A) : σ a strategy for I}

valX−(A) := sup{valXI (σ, A) : σ a strategy for player I}

valX+(A) := inf{valXII(τ, A) : τ a strategy for player II}
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Here Borel means Borel in the product topology of either the discrete topology or the Euclidean
topology, depending on which measure we use. We say a set A ⊆

�
ω is real C-Blackwell

determined if valC−(A) = valC+(A) and it is real E-Blackwell determined if valE−(A) =
valE+(A). And we define the Axiom of Real Blackwell Determinacy to mean that every set
A ⊆

�
ω is real Blackwell determined.

This gives us two different axioms. One for the measure that allows countable support strategies
and one for the measure that uses the Euclidean topology. We denote them with Bl-AD

C
� and

Bl-AD
E

� .

So we’ve seen how we can define real Blackwell determinacy. But are the axioms consistent?

Theorem

Let X be either C or E, then
AD � =⇒ Bl-AD

X
�

Proof

Assume AD � and let A ⊆
�

ω be arbitrary. One of the two players has a winning strategy for
G � (A). Suppose σ is a winning strategy for player I. We can interpret σ as a mixed strategy such
that for every mixed strategy τ for player II we get

valX−(σ, τ, A) = valX+(σ, τ, A) = 1

So valXI (σ, A) = 1 and valXII(τ, A) = 1 for every mixed strategy τ for player II. Therefore valX−(A) =
valX+(A) = 1.

Similarly, if τ is a winning strategy for player II, we can interpret it as a mixed strategy and we get
valX−(A) = valX+(A) = 0. So every set A ⊆

�
ω is real X-Blackwell determined. �

So the Axioms of real Blackwell determinacy are implied by the Axiom of real Determinacy. Thus
they are consistent if AD � is consistent.

4 Open questions

Some interesting question about Real Blackwell Determinacy are:

• Are Bl-AD
C

� and Bl-AD
E

� stronger than Bl-AD?

• Are Bl-AD
C

� and Bl-AD
E

� equivalent?

• What is their consistency strength?

In [3, p. 6–7] Robert Solovay proves that if you assume AD � , there exists a normal measure on
the the set of countable sets of reals. It might be possible to prove this under Bl-AD

C
� and this

could help us towards answering the first question. The idea of the proof is as follows:

Let Ω be the set of countable subsets of the reals. Now for A ⊆ Ω consider the game G(A) where
player I and player II subsequently play finite sets of reals and player II wins iff the union of the
played sets is an element of A. Solovay proves that the set

U = {A ⊆ Ω : player II has a winning strategy for G(A)}

is a normal ultrafilter on Ω. He proves this by modifying and combining winning strategies to
create winning strategies for player II to show that certain sets are in U and winning strategies
for player I to show that certain sets are not in U .
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Using the Martin-Vervoort Zero-One Law [4, p 41–42] we can create a similar set U using mixed
strategies:

U = {A ⊆ Ω : the game G(A) has value 0}

And the expectation is that we can do the same modifications and combinations as Solovay did
with the pure strategies. However, it seems that this requires a lot of coding and checking and this
is outside the scope of this bachelor thesis. But if it works it could give us some more understanding
of Bl-AD

C
� and its relation to other axioms.
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