THE GENERAL INDUCTIVE ARGUMENT FOR MEASURE ANALYSES WITH ADDITIVE ORDINAL ALGEBRAS

STEFAN BOLD, BENEDIKT LÖWE

In $[BoL\ddot{o}\infty]$ we gave a survey of measure analyses under AD, discussed the general theory of order measures and gave a simple inductive argument for a measure analysis with just two measures that reached the first ω^2 cardinals after a strong partition cardinal. In this article we show that the restriction to two measures can be lifted under the right prerequisites. As a corollary we get a full measure analysis for sums of order measures. This allows us to inductively reduce the measure analysis of an additive ordinal algebra (\mathfrak{A}, \oplus) with a set of generators \mathfrak{V} to the analysis of \mathfrak{V} . The notion of an ordinal algebra is introduced in [JaL \ddot{o} ∞]. This article is to be understood as a technical report, showing the progress we made in generalizing the results from $[BoL\ddot{o}\infty]$, so we refer the reader to that paper for more detailed explanations and definitions of the notions and notations used in this paper.

1. Necessary Lemmas and Definitions

Lemma 1. Let $\kappa < \lambda$ be cardinals, μ a measure on κ and $cf(\lambda) > \kappa$. Then $\operatorname{cf}(\lambda^{\kappa}/\mu) = \operatorname{cf}(\lambda).$

Proof. Cf. [BoL
$$\ddot{o}$$
 ∞ , Lemma 6].

Lemma 2. Let κ be a strong partition cardinal and let μ , η and ν be order measures on κ . Then

- (1) $\kappa^{\kappa}/\mu \leq \kappa^{\kappa}/\mu \oplus \nu$,
- (2) $\kappa^{\kappa}/\nu \leq \kappa^{\kappa}/\mu \oplus \nu$, and (3) $\kappa^{\kappa}/\mu \oplus \nu \leq \kappa^{\kappa}/\mu \oplus \eta \oplus \nu$.

Proof. Cf. [BoL $\ddot{o}\infty$, Lemma 12].

Lemma 3. Let κ be a strong partition cardinal and let μ and ν be order measures, both on κ . Let $\lambda \geq \kappa$ be a cardinal. Then

$$\lambda^{\kappa}/(\mu \oplus \nu) \le (\lambda^{\kappa}/\nu)^{\kappa}/\mu.$$

Proof. Cf. [BoLö∞, Lemma 13].

Theorem 4 (Ultrapower Shifting Lemma). Let β and γ be ordinals and let μ be a κ -complete ultrafilter on κ with $\kappa^{\kappa}/\mu = \kappa^{(\gamma)}$. If for all cardinals $\kappa < \nu \le \kappa^{(\beta)}$

- either ν is a successor and $cf(\nu) > \kappa$,
- or ν is a limit and $cf(\nu) < \kappa$,

Date: January 11, 2006.

²⁰⁰⁰ Mathematics Subject Classification. Primary 03E60, 03E05; Secondary 03E10. Both authors were funded by a DFG-NWO Bilateral Cooperation Grant (DFG KO 1353/3-1;

NWO DN 61-532).

then $(\kappa^{(\beta)})^{\kappa}/\mu \leq \kappa^{(\gamma+\beta)}$.

Proof. Cf. [Lö02, Lemma 2.7].

Definition 5. If $\langle \mu_i : i < m+1 \rangle$ is a finite sequence of measures on κ we write $iUlt_{\alpha}(\mu_0, \cdots, \mu_m)$ for the corresponding iterated Ultrapower:

$$iUlt_{\alpha}(\mu_0, \cdots, \mu_m) := (\dots (\alpha^{\kappa}/\mu_m)^{\kappa}/\dots)^{\kappa}/\mu_0.$$

We write $iUlt(\mu_0, \dots, \mu_m)$ for $iUlt_{\kappa}(\mu_0, \dots, \mu_m)$.

Definition 6. Let $\gamma < \varepsilon_0 (= \sup_{n < \omega} \mathbf{e}_n)$ be an ordinal and $\langle \theta_\alpha ; \alpha \in \gamma \rangle$ the unique sequence of ordinals such that $\theta_0 = 1$, $\theta_{\alpha+1} = \theta_{\alpha} \cdot \omega + 1$ for $\alpha < \gamma$ and $\theta_{\lambda} = 0$ $(\sup_{\alpha<\lambda}\theta_{\alpha})+1$ for limit ordinals $\lambda<\gamma$. For every successor ordinal $\xi<\sup_{\alpha\in\gamma}\theta_{\alpha}\cdot\omega$ the $\vec{\theta}$ -Cantor normal form of ξ is a decomposition of ξ into a finite sum of elements of $\langle \theta_{\alpha}; \alpha \in \gamma \rangle$, i.e., $\xi = \theta_{\alpha_0} + \cdots + \theta_{\alpha_m}$, where $m \in \omega$. It is defined by

- $\alpha_0 := \min\{\alpha \in \gamma; \xi < \theta_{\alpha+1}\}$ and
- $\alpha_{i+1} := \min\{\alpha \in \gamma; \xi < \theta_{\alpha_0} + \dots + \theta_{\alpha_i} + \theta_{\alpha+1}\}.$

By wellfoundedness of < the relativized Cantor normal form of ξ is welldefined and

The $\vec{\theta}$ -Cantor normal form of a limit ordinal $\xi < \sup_{\alpha \in \gamma} \theta_{\alpha} \cdot \omega$ is $\theta_{\alpha_0} + \cdots + \theta_{\alpha_{n-1}} + \cdots + \theta_{\alpha_{n-1}} + \cdots + \theta_{\alpha_{n-1}} + \theta_{\alpha_{n-1}} + \theta_{\alpha_{n-1}} + \cdots + \theta_{\alpha_{n-1}} + \theta_{\alpha_{n-1}}$ $\theta_{\alpha_m} - 1$, where $\theta_{\alpha_0} + \cdots + \theta_{\alpha_m}$ is the relativized Cantor normal form of $\xi + 1$.

2. The abstract combinatorial computation

Theorem 7. Let κ be a strong partition cardinal and $\gamma < \varepsilon_0$ an ordinal. Let $\langle \mu_{\alpha} ; \alpha \in \gamma \rangle$ be a sequence of measures on κ and $\langle \theta_{\alpha} ; \alpha \in \gamma \rangle$, $\langle \iota_{\alpha} ; \alpha \in \gamma \rangle$ sequences of ordinals such that

- i) $\kappa^{\kappa}/\mu_0 = \kappa^{(\theta_0)} = \kappa^+$,

- ii) $\kappa^{\kappa}/\mu_{\alpha+1} = \kappa^{(\theta_{\alpha+1})} = \kappa^{(\theta_{\alpha}\cdot\omega+1)}$ for $\alpha < \gamma$, iii) $\kappa^{\kappa}/\mu_{\lambda} = \kappa^{(\theta_{\lambda})} = \kappa^{((\sup_{\alpha < \lambda} \theta_{\alpha})+1)}$ for limit ordinals $\lambda < \gamma$, iv) $(\kappa^{\kappa}/\nu)^{(\theta_{\alpha})} \le \kappa^{\kappa}/\nu \oplus \mu_{\alpha}$ for order measures ν and $\alpha < \gamma$, and
- v) $\operatorname{cf}(\kappa^{\kappa}/\mu_{\alpha}) = \iota_{\alpha} > \kappa \text{ for } \alpha < \gamma.$

Then for all $\xi < \sup_{\alpha < \gamma} (\theta_{\alpha} \cdot \omega)$ the following is true:

(1) If $\xi > 0$ is a limit ordinal and $\theta_{\alpha_0} + \cdots + \theta_{\alpha_m} - 1$ its $\vec{\theta}$ -Cantor normal form then, with $\zeta = \theta_{\alpha_m} - 1$,

$$\kappa^{(\xi)} = \mathrm{iUlt}_{\kappa^{(\zeta)}}(\mu_{\alpha_0}, \cdots, \mu_{\alpha_{m-1}}) = (\kappa^{(\zeta)})^{\kappa} / (\mu_{\alpha_0} \oplus \cdots \oplus \mu_{\alpha_{m-1}}).$$

(2) If ξ is a successor ordinal and $\theta_{\alpha_0} + \cdots + \theta_{\alpha_m}$ its $\vec{\theta}$ -Cantor normal form then

$$\kappa^{(\xi)} = \mathrm{iUlt}(\mu_{\alpha_0}, \cdots, \mu_{\alpha_m}) = \kappa^{\kappa} / (\mu_{\alpha_0} \oplus \cdots \oplus \mu_{\alpha_m}).$$

(3)

$$\mathrm{cf}(\kappa^{(\xi)}) := \left\{ \begin{array}{ll} \kappa & \mathrm{if } \ \xi = 0, \\ \omega & \mathrm{if } \ \xi > 0 \ \mathrm{is \ a \ limit}, \\ \iota_{\alpha_m} & \mathrm{if } \ \xi = \theta_{\alpha_0} + \dots + \theta_{\alpha_m} \ \mathrm{is \ a \ successor}. \end{array} \right.$$

Proof. By assumption κ is a strong partition cardinal, thus regular. Also, for all limit ordinals $\xi < \sup_{n < \omega} \mathbf{e}_n$, the cofinality of $\kappa^{(\xi)}$ is ω . So the first two parts of (3) are trivial.

We proceed by induction on $\xi > 0$, using the following induction hypothesis:

$$(\mathrm{IH}_{\xi}) \begin{bmatrix} \text{For all } 0 < \beta \leq \xi, \text{ the following three conditions hold:} \\ 1. \text{ If } \beta \text{ is a limit and } \beta + 1 = \theta_{\alpha_0} + \dots + \theta_{\alpha_m}, \text{ then} \\ \kappa^{(\beta)} = \mathrm{iUlt}_{\kappa^{(\zeta)}}(\mu_{\alpha_0}, \dots, \mu_{\alpha_{m-1}}), \text{ where } \zeta = \theta_{\alpha_m} - 1 \\ 2. \text{ If } \beta \text{ is a successor and } \beta = \theta_{\alpha_0} + \dots + \theta_{\alpha_m} \text{ then} \\ \kappa^{(\beta)} = \mathrm{iUlt}(\mu_{\alpha_0}, \dots, \mu_{\alpha_m}) = \kappa^{\kappa}/\mu_{\alpha_0} \oplus \dots \oplus \mu_{\alpha_m} \\ 3. \text{ cf}(\kappa^{(\beta)}) := \begin{cases} \omega & \text{if } \beta > 0 \text{ is a limit,} \\ \iota_{\alpha_m} & \text{if } \beta = \theta_{\alpha_0} + \dots + \theta_{\alpha_m} \text{ is a successor.} \end{cases}$$

Obviously, if all (IH_{ξ}) (for $\xi < \sup_{\alpha < \gamma} (\theta_{\alpha} \cdot \omega)$) hold, the theorem is proven.

By assumption we have $\kappa^{\kappa}/\mu_0 = \kappa^+$ and $\mathrm{cf}(\kappa^+) = cf(\kappa^{\kappa}/\mu_0) = \iota_0$, so IH₁ holds.

For the successor step we assume that IH_{ξ} holds and prove $\mathrm{IH}_{\xi+1}$. If $\xi+1=\theta_{\alpha}$ for some $\alpha<\gamma$, we have by assumption $\kappa^{(\xi+1)}=\kappa^{\kappa}/\mu_{\alpha}$ and $\mathrm{cf}(\kappa^{(\xi+1)})=\mathrm{cf}(\kappa^{\kappa}/\mu_{\alpha})=\iota_{\alpha}$ and thus $\mathrm{IH}_{\xi+1}$ holds. Otherwise let $\theta_{\alpha_0}+\cdots+\theta_{\alpha_m}$ be the $\vec{\theta}$ -Cantor normal form of $\xi+1$. Then

$$\kappa^{(\xi+1)} = (\kappa^{(\theta_{\alpha_0} + \dots + \theta_{\alpha_{m-1}})})^{(\theta_{\alpha_m})}$$

$$= (\kappa^{\kappa}/\mu_{\alpha_0} \oplus \dots \oplus \mu_{\alpha_{m-1}})^{(\theta_{\alpha_m})} \quad \text{IH}$$

$$\leq \kappa^{\kappa}/\mu_{\alpha_0} \oplus \dots \oplus \mu_{\alpha_m} \quad \text{Assumption iv})$$

$$\leq (\kappa^{\kappa}/\mu_{\alpha_m})^{\kappa}/\mu_{\alpha_0} \oplus \dots \oplus \mu_{\alpha_{m-1}} \quad \text{Lemma 3}$$

$$\vdots$$

$$\leq \text{iUlt}(\mu_{\alpha_0}, \dots, \mu_{\alpha_m}) \quad \text{Lemma 3}$$

$$= (\text{iUlt}(\mu_{\alpha_1}, \dots, \mu_{\alpha_m})^{\kappa}/\mu_{\alpha_0}$$

$$= (\kappa^{(\theta_{\alpha_1} + \dots + \theta_{\alpha_m})})^{\kappa}/\mu_{\alpha_0} \quad \text{IH}$$

$$\leq \kappa^{(\theta_{\alpha_0} + \dots + \theta_{\alpha_m})} \quad \text{Theorem 4}$$

$$= \kappa^{(\xi+1)}.$$

Using $\kappa^{(\xi+1)} = iUlt(\mu_{\alpha_0}, \dots, \mu_{\alpha_{m-1}})$ and Lemma 1 (repeatedly) we get

$$\iota_{\alpha_{m-1}} = \operatorname{cf}(\kappa^{\kappa}/\mu_{\alpha_m}) = \dots = \operatorname{cf}((\operatorname{iUlt}(\mu_{\alpha_1}, \dots, \mu_{\alpha_m}))^{\kappa}/\mu_{\alpha_0}) = \operatorname{cf}(\kappa^{(\xi+1)}),$$

which proves $IH_{\xi+1}$.

Now for the limit case. We assume that IH_{β} holds for all $\beta < \xi$ and prove IH_{ξ} . Let $\theta_{\alpha_0} + \cdots + \theta_{\alpha_m} - 1$ be the $\vec{\theta}$ -Cantor normal form of ξ . If α_m is a successor we have $\theta_{\alpha_m} - 1 = \sup_{n \in \omega} \theta_{\alpha_m - 1} \cdot n$ and so we get

$$\kappa^{(\xi)} = \sup_{n \in \omega} \left(\kappa^{(\theta_{\alpha_0} + \dots + \theta_{\alpha_{m-1}} + \theta_{\alpha_{m-1}} \cdot n)} \right)$$

$$= \sup_{n \in \omega} \left(\kappa^{\kappa} / \mu_{\alpha_0} \oplus \dots \oplus \mu_{\alpha_{m-1}} \oplus \mu_{\alpha_{m-1}} \otimes n \right) \qquad \text{IH}$$

$$\leq \sup_{n \in \omega} \left((\kappa^{\kappa} / \mu_{\alpha_{m-1}} \otimes n)^{\kappa} / \mu_{\alpha_0} \oplus \dots \oplus \mu_{\alpha_{m-1}} \right) \qquad \text{Lemma 3}$$

$$= \sup_{n \in \omega} \left((\kappa^{(\theta_{\alpha_m-1} \cdot n)})^{\kappa} / \mu_{\alpha_0} \oplus \dots \oplus \mu_{\alpha_{m-1}} \right) \qquad \text{IH}$$

$$\left[= (\kappa^{(\theta_{\alpha_m} - 1)})^{\kappa} / \mu_{\alpha_0} \oplus \dots \oplus \mu_{\alpha_{m-1}} \right]$$

$$\leq \sup_{n \in \omega} \left(\text{iUlt}_{\kappa^{(\theta_{\alpha_m-1} \cdot n)}} (\mu_{\alpha_0} \oplus \dots \oplus \mu_{\alpha_{m-2}}, \mu_{\alpha_{m-1}}) \right) \qquad \text{Lemma 3}$$

$$\vdots$$

$$\leq \sup_{n \in \omega} \left(\text{iUlt}_{\kappa^{(\theta_{\alpha_m-1} \cdot n)}} (\mu_{\alpha_0}, \dots, \mu_{\alpha_{m-1}}) \right) \qquad \text{Lemma 3}$$

$$\left[= \text{iUlt}_{\kappa^{(\theta_{\alpha_m-1})}} (\mu_{\alpha_0}, \dots, \mu_{\alpha_{m-1}}) \right]$$

$$\leq \sup_{n \in \omega} \left(\text{iUlt}_{\kappa^{(\theta_{\alpha_m-1} + \theta_{\alpha_m-1} \cdot n)}} (\mu_{\alpha_0}, \dots, \mu_{\alpha_{m-2}}) \right) \qquad \text{Theorem 4}$$

$$\vdots$$

$$\leq \sup_{n \in \omega} \left(\kappa^{(\theta_{\alpha_0} + \dots + \theta_{\alpha_m-1} \cdot n)} \right) \qquad \text{Theorem 4}$$

$$\vdots$$

$$\leq \sup_{n \in \omega} \left(\kappa^{(\theta_{\alpha_0} + \dots + \theta_{\alpha_m-1} \cdot n)} \right) \qquad \text{Theorem 4}$$

On the other hand, if α_{m-1} is a limit we have $\theta_{\alpha_m} - 1 = \sup_{\beta \in \alpha_m} \theta_{\beta}$ and so we get

$$\kappa^{(\xi)} = \sup_{\beta \in \alpha_{m}} \left(\kappa^{(\theta_{\alpha_{0}} + \dots + \theta_{\alpha_{m-1}} + \theta_{\beta})} \right)$$

$$= \sup_{\beta \in \alpha_{m}} \left(\kappa^{\kappa} / \mu_{\alpha_{0}} \oplus \dots \oplus \mu_{\alpha_{m-1}} \oplus \mu_{\beta} \right) \qquad \text{IH}$$

$$\leq \sup_{\beta \in \alpha_{m}} \left((\kappa^{\kappa} / \mu_{\beta})^{\kappa} / \mu_{\alpha_{0}} \oplus \dots \oplus \mu_{\alpha_{m-1}} \right) \qquad \text{Lemma 3}$$

$$= \sup_{\beta \in \alpha_{m}} \left((\kappa^{(\theta_{\beta})})^{\kappa} / \mu_{\alpha_{0}} \oplus \dots \oplus \mu_{\alpha_{m-1}} \right) \qquad \text{IH}$$

$$\left[= (\kappa^{(\theta_{\alpha_{m}} - 1)})^{\kappa} / \mu_{\alpha_{0}} \oplus \dots \oplus \mu_{\alpha_{m-1}} \right]$$

$$\leq \sup_{\beta \in \alpha_{m}} \left(\text{iUlt}_{\kappa^{(\theta_{\beta})}} (\mu_{\alpha_{0}} \oplus \dots \oplus \mu_{\alpha_{m-2}}, \mu_{\alpha_{m-1}}) \right) \qquad \text{Lemma 3}$$

$$\vdots$$

$$\leq \sup_{\beta \in \alpha_{m}} \left(\text{iUlt}_{\kappa^{(\theta_{\beta})}} (\mu_{\alpha_{0}}, \dots, \mu_{\alpha_{m-1}}) \right) \qquad \text{Lemma 3}$$

$$\left[= \text{iUlt}_{\kappa^{(\theta_{\alpha_{m}} - 1)}} (\mu_{\alpha_{0}}, \dots, \mu_{\alpha_{m-1}}) \right]$$

$$\leq \sup_{\beta \in \alpha_{m}} \left(\text{iUlt}_{\kappa^{(\theta_{\alpha_{m-1}} + \theta_{\beta})}} (\mu_{\alpha_{0}}, \dots, \mu_{\alpha_{m-2}}) \right) \qquad \text{Theorem 4}$$

$$\vdots$$

$$\leq \sup_{\beta \in \alpha_{m}} \left(\kappa^{(\theta_{\alpha_{0}} + \dots + \theta_{\beta})} \right) \qquad \text{Theorem 4}$$

$$\vdots$$

As we mentioned at the beginning of this proof, the cofinality of $\kappa^{(\xi)}$ for a limit ordinal $0 < \xi < \varepsilon_0$ is ω , which concludes the proof.

Corollary 8. Let κ be a strong partition cardinal and $\gamma < \varepsilon_0$ an ordinal. If $\langle \mu_{\alpha} ; \alpha \in \gamma \rangle$ is a sequence of measures on κ and $\langle \theta_{\alpha} ; \alpha \in \gamma \rangle$, a sequence of ordinals that fulfill the requirements of Theorem 7, then for all $\xi < \sup_{\alpha < \gamma} (\theta_{\alpha} \cdot \omega)$ and finite sequences $\langle \alpha_i ; i \leq m \rangle \in \gamma^{m+1}$ we have

$$\kappa^{(\theta_{\alpha_0}+\dots+\theta_{\alpha_m}+\xi)}=\mathrm{i}\mathrm{Ult}_{\kappa^{(\xi)}}(\mu_{\alpha_0},\dots,\mu_{\alpha_m})=\left(\kappa^{(\xi)}\right)^\kappa/(\mu_{\alpha_0}\oplus\dots\oplus\mu_{\alpha_m}).$$

Proof. If $\theta_{\beta_0} + \cdots + \theta_{\beta_n}$ is the $\vec{\theta}$ -Cantor normal form of $\theta_{\alpha_0} + \cdots + \theta_{\alpha_m} + \xi$, then the $\vec{\theta}$ -Cantor normal form of ξ is an end segment of $\theta_{\beta_0} + \cdots + \theta_{\beta_n}$, i.e. there is a $k \geq 0$ such that $\theta_{\beta_k} + \cdots + \theta_{\beta_n}$ is the $\vec{\theta}$ -Cantor normal form of ξ . And for all i < k

there is a $j \leq m$ such that $\theta_{\beta_i} = \theta_{\alpha_j}$. So by Theorem 7

$$\kappa^{(\theta_{\alpha_0} + \dots + \theta_{\alpha_m} + \xi)} = \kappa^{(\theta_{\beta_0} + \dots + \theta_{\beta_n})} = \kappa^{\kappa} / \mu_{\beta_0} \oplus \dots \oplus \mu_{\beta_n},$$

using Lemma 2 we can insert the missing elements of the sequence $\langle \mu_{\alpha_i}; i \leq m \rangle$ and then apply Lemma 3 to get

$$\kappa^{\kappa}/\mu_{\beta_0} \oplus \cdots \oplus \mu_{\beta_n} \leq \kappa^{\kappa}/\mu_{\alpha_0} \oplus \cdots \oplus \mu_{\alpha_m} \oplus \mu_{\beta_k} \oplus \cdots \oplus \mu_{\beta_n}$$
$$\leq (\kappa^{\kappa}/\mu_{\beta_k} \oplus \cdots \oplus \mu_{\beta_n})^{\kappa}/\mu_{\alpha_0} \oplus \cdots \oplus \mu_{\alpha_m} = (\kappa^{(\xi)})^{\kappa}/\mu_{\alpha_0} \oplus \cdots \oplus \mu_{\alpha_m}.$$

And finally we can use Lemma 3 and Theorem 4, both repeatedly as we did before in the proof of Theorem 7, to reach equality:

$$\left(\kappa^{(\xi)}\right)^{\kappa}/\mu_{\alpha_0}\oplus\cdots\oplus\mu_{\alpha_m}\leq \mathrm{iUlt}_{\kappa^{(\xi)}}(\mu_{\alpha_0},\cdots,\mu_{\alpha_m})\leq\kappa^{(\theta_{\alpha_0}+\cdots+\theta_{\alpha_m}+\xi)}.$$

References

[BoLö∞] Stefan **Bold** and Benedikt **Löwe**, A simple inductive measure analysis for cardinals under the Axiom of Determinacy, submitted to the Proceedings of the North Texas Logic Conference; ILLC Publication Series PP-2005-19.

[JaLö∞] Steve Jackson, Benedikt Löwe, Canonical Measure Assignments. in preparation.
 [Lö02] Benedikt Löwe, Kleinberg Sequences and partition cardinals below δ₅¹, Fundamenta Mathematicae 171 (2002), p. 69-76.

(S. Bold & B. Löwe) Institute for Logic, Language and Computation, Universiteit van Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands *E-mail address*: {sbold, bloewe}@science.uva.nl

(S. Bold & B. Löwe) Mathematisches Institut, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 1, 53115 Bonn, Germany

E-mail address: {bold, loewe}@math.uni-bonn.de