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1. Introduction

This paper deals with the definition of independent choices in logic.
The notion arises in game theoretical semantics, where the truth of a
formula is determined by a game between two players, one who tries
to check the formula, and one who tries to refute it. A version of such
games, introduced by J. Hintikka, is IF logic: independence friendly
logic. This logic uses the quantifier ∃y/x, which means that a value for
y has to be chosen independent of the value for x, and the disjunction
ψ ∨/x θ, which means that a subformula has to be chosen independent
of x. IF logic is described in a number of publications e.g. Hintikka
(1974), Sandu (1993), Hintikka (1996), Hintikka and Sandu (1997).

Hintikka calls the players Me and Nature, or Verifier and Falsifier,
but we will follow Hodges (1997a) and call them ∃loise (female) and
∀belard (male); this has the advantage that pronouns can be used
without the danger of confusion. Furthermore, the names reflect the
choices the players make (in the situations arising in this paper): ∃loise
makes the choice for ∃y,∃y/x,∨, and ∨/x, and ∀belard for ∀ and ∧. A
formula is true if ∃loise has a winning strategy and false if ∀belard has
one.

Below, some examples are given which illustrate the aims of IF logic.
These, and all later examples, are interpreted on the natural numbers
(N). For variables bound by universal quantifiers preferably x and y
will be used, for variables bound by existential quantifiers u and v.

(1) ∀x∃u/x[x = u]

When ∀belard has chosen, ∃loise has to choose u independently of x,
and therefore it may happen that she selects a different number. Hence
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∃loise has no winning strategy, the formula is not true. Also ∀belard
has no winning strategy, so the formula is neither true nor false. The
same holds for

(2) ∀x∃u/x[u 6= x]

The formalization of a strategy for a choice is a function which takes
as arguments the choices previously made and yields the choice that
has to be made. Such a strategy is called independent of a variable
if this variable is not among its arguments. A strategy for a formula
consists of strategies for each of the choices that has to be made. In this
paper we will (with one exception) only consider winning strategies for
∃loise, so all examples are only investigated for being true or not true,
and not for falsehood.

The next example is true on the natural numbers; ∃loise follows the
strategy u := 0 (read as: ‘u becomes 0’ or ‘for u is chosen the value 0’).

(3) ∀x∃u/x[u ≤ x]

The next formula is not true because without information on x, a
guaranteed correct choice between the disjuncts is not possible.

(4) ∀x[x = 7 ∨/x x 6= 7]

The following example is somewhat more complex:

(5) ∀x∃u∀y ∃v/x[x < u ∧ y < v]

The choice of v is independent of x, but may depend on y. A more
familiar representation of this example is by means of a branching
quantifier or Henkin quantifier:

(6)
(
∀x ∃u
∀y ∃v

)
[x < u ∧ y < v]

The formula is true (on N).
As one may have noticed in the examples, the playing of the game

and the application of the strategies proceeds from outside to inside. For
this (and other) reasons Hintikka’s game theoretical interpretation of
IF logic is not compositional. He claimed that a compositional seman-
tics would not be possible. However, Hodges has given an equivalent
compositional interpretation: trump semantics (Hodges, 1997a, Hodges,
1997b). By doing so, he clarified several aspects of the logic. A related
formalization is given by Caicedo and Krynicki (1999).

The main aim of this paper is to show that the existing interpreta-
tions for IF logic (game theoretical semantics and trump semantics)
do not capture the intuitions about independence. In Sections 2–7
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many examples will be given where the intuitive judgements about
the truth of formulas involving independent choices differs from the re-
sults in these interpretations. An alternative semantics, called subgame
semantics, will be proposed in Section 10.

2. The context of a formula

Consider:

(7) ∀x[x 6= 2 ∨ ∃u/x[x = u]]

In the formula it is mentioned that it is possible that x differs from
2. This is no news, x runs over all numbers. Furthermore, as ∃u/x
indicates, information concerning x should play no role when u is se-
lected. We have seen in example (1) that such an independent choice
is not possible. So one expects the formula not to be true. But in game
theoretical semantics the context in which this subformula occurs makes
a difference. For ∃u/x ∃loise chooses the strategy u := 2. Her strategy
for the disjunction is if x 6= 2 then L else R. So if x is different from 2,
she chooses the left hand side of the conjunction, which then is true,
and otherwise the right hand side, which then becomes true by her
choice for u. So (7) is true in game theoretical semantics.

In (1) ∃loise could not find a u independent of x such that x = u.
According to my intuition that also means that she cannot find a u in
situations where she can deduce from the context that x = 2, because
she is supposed not to use the value of x. Using this information is
cheating. This is a first illustration that game theoretical semantics
semantics does not formalize independence.

If one has to find a value for u that for sure equals the value of x,
then one would expect this task to be as difficult as finding a value that
for sure is different: if one knows the value of x, both tasks can be done
easily, but if they have to be performed independently of the value of
x, both tasks are unsolvable. However, in game theoretical semantics
changing 6= into = (or vice versa) may cause a difference. Such a change
turns the true sentence (7) into (8) which is not true.

(8) ∀x[x = 2 ∨ ∃u/x[x = u]]

On the other hand (9) and (10) are true:

(9) ∀x[x = 2 ∨ ∃u/x[x 6= u]]

(10) ∀x[x 6= 2 ∨ ∃u/x[x 6= u]]
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In (9) ∃loise plays the strategies if x = 2 then L else R and u := 2,
and in (10) the strategies if x = 3 then L else R and u := 3. Also
these variants illustrate that the game theoretical interpretation does
not correspond with intuitions on independence.

3. Repetition of subformulas

It is no printing error that in (11) the same subformula occurs twice.

(11) ∀x[∃u/x[x 6= u] ∨ ∃u/x[x 6= u]]

According to my intuition, if one cannot find a u independent of x, one
cannot find that if one may do so, at ones choice, in the left hand side
subformula, or in the right hand side one: it remains the same choice,
and is as difficult on the left as on the right.

In game theoretical semantics, however, (11) is true. A possible
strategy is as follows. If x = 3 then ∃loise chooses the left subformula,
and follows there the strategy always to choose u := 4. Otherwise, she
chooses right, where her strategy is to choose u := 3. Whatever the
value of x is, she always ends in a situation such that x 6= u is true. So
this is a winning strategy: the formula is true.

The above example shows a strange property of game theoretical
semantics. Consider the subformula ∃u/x[x 6= u] ∨ ∃u/x[x 6= u]. If we
replace this by ∃u/x[x 6= u], so changing (11) into (2), the interpre-
tation of the whole formula changes from ‘true’ into ‘not true’. This
phenomenon of IF logic is discovered by Janssen (1997, 1999): φ∨ φ is
not in all contexts equivalent with φ.

Again, one might expect that finding a value u that equals x will be
as difficult as finding one different from x. However changing 6= into =
in (11) makes a difference. Consider:

(12) ∀x[∃u/x[x = u] ∨ ∃u/x[x = u]]

A strategy for the left disjunct has to be a constant function, say u := n,
and the same for the right disjunct, say u := m. This means that ∃loise
can only design a strategy that works for two values of x, whereas
∀belard has many more choices. So she has no winning strategy, the
formula is not true. But when we have as many disjuncts as there are
elements in the domain, the formula becomes true again. For instance,
the infinite disjunction is true on N:

(13) ∀x[∃u/x[x = u] ∨ ∃u/x[x = u] . . .]

For conjunction a related phenomenon arises. Notice that ∀belard
has no strategy which guarantees him that (14) becomes false:
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(14) ∃u∀x/u[x = u]

One might expect that he also has no winning strategy if he may choose
whether he will falsify the formula on the left hand side of a conjunction
or on the right hand side:

(15) ∃u[∀x/u[x = u] ∧ ∀x/u[x = u]]

That is, however, not the case. ∀belard’s strategy for this game is
analogous to the one of ∃loise for (11). For ∧ he could choose the
left disjunct if u = 3, and the right disjunct otherwise. On the left
he follows the strategy x := 4, which makes the conjunct false, and
on the right x := 3 with the same effect. So he has a strategy which
makes the formula always false, hence (15) is false. So here again a
strange property of the game theoretical interpretation: φ∧φ is not in
all contexts equivalent with φ.

The point of this example, and the one concerning φ∨φ, is not that
the laws of traditional logic are broken (although that is not attractive),
but that intuitions concerning independence are violated.

4. Existential quantifiers

Consider

(16) ∀x∃u ∃v/x[x = v]

This examples resembles example (1), the difference is that a vacuous
quantifier u is inserted. The information given by ∃u that there exists
a number tells us nothing new, so one might expect that this change
makes no difference for the task to find a v independent of x. In the
semantics for IF logic as given in Hodges (1997a), the surprising result
-Hodges warns the reader- holds that (16) is true. The strategy ∃loise
follows for ∃v/x is to play v := u. This strategy does not mention
the value for x, and therefore is allowed. The strategy for ∃u is to
play u := x; this dependence is allowed because ∃u has no slash. So
u = x, and, since v = u, it follows that x = v. By choosing these
strategies, ∃loise always wins, whereas the formula without the empty
quantification is not true.

This result is not accordance with intuitions about independence.
The value of v is carefully chosen in such a way that it equals x, hence
is very dependent on x.

The issue is clarified in Hintikka (1996), which appeared after Hodges
(1997a) was written. He says (Hintikka, 1996, p. 63):
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the small extra specification that is needed is that moves connected with
existential quantifiers are always independent of earlier moves with exis-
tential quantifiers

This means that in case an existential quantifier ∃v occurs within the
scope of ∃u, it should be interpreted as if it was written as ∃v/u. So in
(16) the quantifier ∃v/x should be interpreted as ∃v/x,u. In the appendix
to Hintikka’s book, Sandu presents a formal interpretation of IF logic
in which this independence of existential variables on other ones is
formalized (Hintikka, 1996, p.256).

That such an independence was always intended, can be seen for
instance in the examples given in one of the earlier papers on game
theoretical semantics: Hintikka, 1974. Furthermore, Hintikka (1996,
p.64) gives a formula which only is true in infinite models and in the
empty model, but loses this property (which is not expressible in first
order logic) when the extra specification mentioned above is dropped.

We will refer in the sequel to this independence of existential quan-
tifier as the ‘slashing convention’ and with ‘GTS’ to the semantics
with this convention. It is the ‘official’ interpretation of IF logic and
described by Sandu in the appendix Hintikka (1996). Notice that, al-
though in the language of IF logic the only variables which may occur
after a slash are the variables bound by a universal quantifier, also
variables bound by existential quantifiers may, due to the convention,
implicitly arise after a slash.

The slashing convention means that Hodges (1997a) does not give a
compositional version of GTS, but for a closely related interpretation.
In Hodges (1997b) it is indicated how he would design a compositional
semantics obeying the slashing convention.

The slashing convention has consequences which are intuitively very
strange. Consider:

(17) ∃u∃v[u = v]

Due to the convention the second quantifier is implicitly slashed for the
first. This means that the formula is equivalent with:

(18) ∃u ∃v/u[u = v]

According to my intuition, it is impossible to find a v independent of
u such that the two are equal, so (18) is not true. This reaction on the
slashing convention is found on several places in the literature. In their
review of Hintikka, 1996, Cook and Shapiro (1998, p. 311) comment on
Hintikka’s extra specification as follows: ‘However [. . . ] then a sentence
like ∃x∃y[x = y] would not be true over the natural numbers, contra-
dicting Hintikka’s claim that game theoretical semantics agrees with
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ordinary semantics on first-order sentences (Hintikka, 1996, p. 65)’.
Related remarks are found in the review by de Swart et al. (1997) and
in the unpublished PhD-dissertation of Pietarinen (2002, p. 31).

However, these intuitions about (17) and (18) are not reflected in
their game theoretical interpretation: (18) is in game theoretical se-
mantics a true formula. ∃loise’s strategy for the first quantifier is, for
instance, u := 7, and for the second quantifier v := 7. This second
strategy does not mention u, and therefore it allowed in GTS. So,
although in (18) the strategies for u and v must be the same and
a change in the strategy for u has immediate consequences for the
strategy for u, they are nevertheless formally independent in GTS.

Note the strange fact that, due to the convention, in (17) the obvious
strategy u := v is not allowed, whereas in the comparable formula (19)
the strategy u := x is allowed:

(19) ∀x∃u[u = x]

Also in the next example the slashing convention prohibits the ob-
vious strategy:

(20) ∀x∃u[u > x ∧ ∃v[v > u]]

We would like to follow a strategy like v := u + 2: how could we
otherwise achieve that v > u? This is, however, not allowed. The trick is
that the strategy for v incorporates the strategy for u. If we have chosen
the strategy u := x+1, then we now follow the strategy v := (x+1)+2.
So again, although u and v are formally independent, their strategies
have a close relationship.

The examples given in this section show again that there is a dif-
ference between intuitions on independence and the formalization of
independence in game theoretical semantics. Furthermore, it was shown
that there is no direct connection between strategies in GTS and the
classical interpretation.

5. Disjunction

As was the case with existential quantifiers in example (16), also in a
disjunction a vacuous variable u can be used to transfer information
concerning x towards the choice for ∨ which must be independent of x:

(21) ∀x∃u[x = 4 ∨/x x 6= 4]

Example (21) becomes true if one chooses u := x and then decides on
∨/x using the value of u. To avoid this signaling the same solution can
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be used as for (16): state that a disjunction is implicitly slashed for the
existential variables which have scope over it. Although Hintikka does
not mention this variant of the slashing convention, it is incorporated
in the appendix by Sandu (see Hintikka, 1996, p.256). So (21) is not
true in game theoretical semantics.

Also the slashing convention for disjunctions has strange conse-
quences. We will consider three examples. The first is (22) which is,
due to the convention, equivalent with (23):

(22) ∃u[u = 4 ∨ u 6= 4]

(23) ∃u[u = 4 ∨/u u 6= 4]

Of course, (22) should be true, but according to my intuition of in-
dependence, (23) is not true because it requires to make independent
of u a choice between u = 4 and u 6= 4. Nevertheless, both (22) and
(23) are true in GTS. The trick is to follow a constant strategy for
the existential quantifier, e.g. u := 2, and for the disjunction always
to choose R. So instead of letting the value of u determine the choice
(which is not allowed), the strategy for ∃u determines the choice.

The second example has no slashes and is classically true.

(24) ∀x∃u[u = x ∧ [u = 4 ∨ u 6= 4]]

Since u = x, a constant strategy for ∨ cannot be used, and in GTS
the obvious strategy for the disjunction if u = 4 then L else R is
not available because of implicit slashing. But (24) is nevertheless true
because x can be used: follow the strategy if x = 4 then L else R. This
is an unnatural strategy because x does not occur in u = 4 ∨ u 6= 4.

In the third example a slash is added to (24):

(25) ∀x∃u[u = x ∧ [u = 4 ∨/x u 6= 4]]

This formula is intuitively true because the choice between u = 4 and
u 6= 4 has nothing to do with x. In GTS neither this strategy, nor one
using x is allowed. The only strategy ∃loise might play is a constant
strategy, but then she will lose for at least one x. Hence (25) is not true
in GTS. It is remarkable that the following variants of (25) are true in
GTS:

(26) ∀x∃u[u ≤ x ∧ [u = 4 ∨/x u 6= 4]]

(27) ∀x∃u[u > x ∧ [u = 4 ∨/x u 6= 4]]

The strategies for the first example are u := 0 and for the disjunction
choose always R, and for the second example u := x+ 5 and always R.
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Example (25) is a remarkable example. In all other cases where
intuition differs from GTS results, it was the case that a formula which
intuitively is not true, was nevertheless true in GTS. Here the situation
is reverse.

6. Other forms of signaling

In Sections (4) and (5), we have seen how ∃loise could use her own
choices to signal a value to herself that she is assumed not to know,
and that the slashing convention is should prohibit this. But there is a
form of signaling that is not prohibited: she may use a variable chosen
by ∀belard to get information she should not use. Consider:

(28) ∀x∀y[x = y ∨ ∃u/x[u 6= x]]

My intuition says that (28) should not be true because the left disjunct
is not always true, and the right disjunct is not true at all. However,
∃loise can use y to signal the value of x: she follows the strategy u := y,
and the formula becomes true.

7. Signaling blocked

In previous sections we have seen examples of formulas which were true
because information was used that was derived from a variable which
did not occur in the subformula. We will show that this mechanism can
be blocked by an intervening quantifier.

An example we have discussed before is:

(29) ∀x∃u[u = x ∧ [u = 4 ∨ u 6= 4]]

The winning strategy for the disjunction had to be, due to implicit
slashing, if x = 4 then L else R. An enriched variant is:

(30) ∀x∀y∃u[u = x ∧ ∃v[v = y ∧ [u = 4 ∨ u 6= 4]]]

Here the same strategy for the disjunction wins. But if we change the
name of the bound variable v to x (classically allowed), this strategy is
not winning any more:

(31) ∀x∀y∃u[u = x ∧ ∃x[x = y ∧ [u = 4 ∨ u 6= 4]]]

To be precise, in the appendix of Hintikka (1996) the interpretation is
not defined for formulas in which a variable is bound within the scope
of a quantifier that binds the same variable (as in (31)), so the truth
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value of (31) changes from ‘true’ into ‘undefined’. If the definition is
corrected in the obvious way, the truth value changes from ‘true’ to ‘not
true’. This example shows that in IF logic renaming of bound variables
is not allowed because that may change the truth value.

Note that (31) is a formula of predicate logic which is classically
true, but which is not true in GTS. So it is a counterexample to Hin-
tikka’s claim that IF logic is a conservative extension of classical logic
(Hintikka, 1996, p.65).

The problem with renaming of bound variables does not only arise in
connection with implicit slashing . Compare the following two extended
forms of (28):

(32) ∀x∀y∀z[x = y ∨ ∃v ∃u/x[u 6= x ∧ v = z]]

(33) ∀x∀y∀z[x = y ∨ ∃y ∃u/x[u 6= x ∧ y = z]]

In the first example the strategy u := y is winning, but in the second
example it is not. This shows that also in case implicit slashing is not
incorporated, as in Hodges, 1997b and Caicedo and Krynicki, 1999,
change of bound variables is not allowed (so theorem 3.1.a in the latter
paper is not correct in its present formulation).

8. Discussion

The examples given in the previous sections show that strategies in
GTS are on several points in conflict with intuitions on independence.
Most of these conflicts also arise in case implicit slashing is not incorpo-
rated. We have seen that, although the strategies for ∨/x and ∃u/x do
not have x as argument, any information which can be deduced from
other sources is used. Examples of such sources are:
1. The information whether the slashed variable is universally quanti-

fied or existentially (examples (17) and (19)).

2. The context in which the formula is used (examples (9), (11) and
(15)).

3. The strategies used elsewhere in the formula (examples (18), (20)
and (24))

4. Even the value of the slashed variable is used if this value can be
deduced from other information (examples (7), (22) and (28))
These types of information are related, and most types can probably

be conceived of as information obtained from strategies used elsewhere
in the formula. Halpern (1996) discusses related phenomena in game
trees of imperfect information games.
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Because several types of partial information can be used, I conclude
that game theoretical semantics is not a formalization of ‘informa-
tional independence’, but of ‘imperfect information’. It is not impossible
that Hodges would agree with this opinion, because the title of his
paper Hodges (1997a) is ‘Compositional semantics for a language of
imperfect information’, and not ‘. . . for a language of informational
independence’.

9. Towards an alternative interpretation

9.1. The idea

The alternative which will be proposed, is based upon the following
three ideas:
1. There is no implicit slashing.
2. Independence is a local phenomenon.
3. Independence is a kind of uniformity.

The first idea is implemented of course by not having implicit slash-
ing, but also by enlarging the possibilities of explicit slashing. Not only
variables bound by universal quantifiers, but also variables bound by
existential quantifiers may occur after a slash.

The third idea is realized by uniformity restrictions on the strategies
for independent choices. A strategy for ∃u/x is of course a function
which yields the same value for any x. The discussion in the previous
sections show that this strategy should not be tailored on special (im-
perfect) information about x but should uniformly be good. Therefore
the restriction is added that for other values of x the same choice wins
if there is a winning choice at all.

The second idea is obeyed by considering subformulas (including
formulas with free variables) as games on their own. This explains the
name of the alternative: ‘subgame semantics’, henceforth SGS. The
strategy for a subgame may depend on the values of some or all vari-
ables occurring in the subgame, but not on the any other information. A
winning strategy must be winning for that subgame for the current situ-
ation, but irrespective of the context. One might describe this approach
by means of the following metaphor. Associated with a subgame there
is a shelf of winning strategies. When a subgame is played, a strategy
is taken from the corresponding shelf, and this strategy would also be
good when the subgame is played in another context.

It might be useful to emphasize the distinction with other metaphors
of ‘independence’ one finds in the literature. It is not assumed that there
are players who forget a value for a variable and may remember it later
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(see e.g. Pietarinen, 2001), nor is it assumed that there are teams of
players in which for each new variable a new player is introduced who
gets only partial information.

The present approach differs, in a mathematical sense, from other
approaches in the aspect that it is not based on equivalence classes of
information sets within its game tree. One might say that equivalence
classes are introduced among the information sets in all games in which
the subgame arises. We will, however, not define it in that way.

9.2. Examples

As explained above, there are three conditions on a winning strategy
for ∃u/x φ:
1. its arguments are the free variables in φ, except, of course, for x,

2. it yields a value for u which is winning,

3. if the value of x is changed, the same value for u is winning, if there
is a winning choice at all.
Below we will consider examples which illustrate the conditions 1

and 3. The latter condition is split into two parts: the aspect ‘if the
value of x is changed’, and ‘if there is a winning choice at all’.

9.2.1. Condition 1: arguments are the free variables in φ
A first consequence is that there is no implicit slashing and the obvious
strategies involving u can be used in examples below (35) and (36 (these
were suggested by referees as counterexample to a previous version):

(34) ∃u∃v[u = v]

(35) ∀x∃u[u = 0 ∨/x u 6= 0]

(36) ∀x∃v ∃u/x[u = v]

Also the example which intuitively was true, but was not true in GTS,
now has a straightforward winning strategy (if u = 4 then L else R):

(37) ∀x∃u[u = x ∧ [u = 4 ∨/x u 6= 4]]

A second consequence is that certain formulas which were true only
due to the use of non occurring variables, are not true anymore. An
example is:

(38) ∀x∀y[x = y ∨ ∃u/x[u 6= x]]

9.2.2. Condition 3a: if the value of x is changed . . .
Consider the game
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(39) ∀x∃u/x[u = x]

∀belard starts the game by choosing a value for x, and next ∃loise has
to make a choice in the subgame

(40) ∃u/x[u = x]

Does she have a winning strategy for this game? Because of the first
condition on winning strategies, the strategy can only be a constant
function, say u := n. Now the third condition says that this strategy
must be winning for all values of x for which there is a winning choice.
Suppose x = m, where n 6= m. Then there certainly is a winning choice
(viz. u := m), but the original strategy u := n is not winning. Hence
there is no strategy which satisfies the third condition, what means
that there is no winning strategy for ∃loise in (40), so (39) is not true.

The observation that there is no winning strategy for (40) has con-
sequences for many related examples. In

(41) ∀x[x 6= 2 ∨ ∃u/x[x = u]]

the right disjunct has only to be true in case x = 2. So one might
try the strategy u := 2. However, this strategy does not satisfy the
third condition: for other values of x there indeed is a winning choice,
but that is not the choice given by the strategy u := 2. So there is
no winning choice for the right disjunct and the formula is not true.
Analogously, there are no winning strategies in (42) and (43).

(42) ∀x[∃u/x[x 6= u] ∨ ∃u/x[x 6= u]]

(43) ∀x∃v ∃u/x[x 6= u]

Special attention deserves (44) because it seems to provide a method
to circumvent the condition that a strategy only depends on vari-
ables which occur in the subformula under consideration: insert dummy
occurrences.

(44) ∀x∃v[∃u/x[x = u ∧ v = v]]

Here, after v := x, a possible strategy (according to the first two
conditions) is to play u := v. But does this satisfy the third condition?
Consider the subgame:

(45) ∃u/x[x = u ∧ v = v]

Even if v = x, the strategy u := v is not a winning one, because if the
value of x is changed (but not of other variables), the strategy u := v
does not give a guaranteed win. Related examples could be given for
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dummy occurrences after a slash. This all illustrates that, due to the
third condition, adding dummy occurrences for the purpose of signaling
is of no use.

9.2.3. Condition 3b: . . . if there is a winning choice
Consider the branching quantifier formula

(46) ∀x∃u∀y ∃v/x[x < u ∧ y < v]

The strategies u := x+1 and v := y+2 clearly win. But does v := y+2
satisfy the third condition? What happens when in (47) the value of x
is changed?

(47) x < u ∧ y < v

If x is decreased, or increased with 1, then v := y + 2 still wins, but if
x increased by 2 or more, then no choice wins (47) because x < u is
not true. So indeed, the strategy v := y + 2 wins for other values of x,
if the subgame can be won at all. Therefore (46) is true.

Since in SGS a strategy may depend on existentially quantified
variables, strategy v := y + u+ 2 makes (48) true:

(48) ∀x∃u∀y ∃v/x[x < u ∧ (y + u) < v]

Dependency on u can be excluded by expressing this explicitly (as is
done in the formalizations of Hodges (1997a) and Caicedo and Krynicki
(1999)). For instance (49) is not true.

(49) ∀x∃u∀y ∃v/x,u[x < u ∧ (y + u) < v]

The proviso ‘if there is a winning choice’ is also important for:

(50) ∀x[x 6= 1 ∨ ∃u/x[x = 1 ∧ u = x]]

A winning choice for ∃u/x is only possible in positions where x = 1; then
the strategy u := 1 wins. Due to the subformula x = 1 no information
from context is needed to design this strategy. If the value of x is
changed, the strategy does not win, but other moves do not win either.
So the strategy u := 1 is a winning strategy which makes the right
disjunct true in case that x = 1. In other cases the left disjunct is true,
so (50) is true.

The last example (due to Väänänen) was a counterexample to a
previous version. It is one you would not immediately think of:

(51) ∃u ∃v/u[u = 0]
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For v only constant strategies are possible. It does not matter which
one is followed, if there is a winning strategy (so in case u = 0), then
any strategy is winning, and otherwise no one is winning.

10. Definitions

10.1. Introduction

The following choices are made about the definition of the logic:
1. We will only define winning by ∃loise ; so the ‘truth’ of a sentence

will be defined, but not its ‘falsehood’.
2. As is the case in the version by Hintikka, negation only occurs in

front of atomic formulas.
3. All kinds of variables may occur after a slash.
4. Hintikka’s version allows for indexed disjunctions, conjunctions and

relations (as in
∧
i∈{1,2}[∃xPi(x)]), but these are not incorporated.

10.2. The language

The range of variables is denoted with A; in the examples that is N:
the natural numbers 0, 1, 2, . . .. The relation symbols are R1, R2, . . .;
each with a fixed arity. In the examples the binary relation symbols
=, 6=, <, and ≤ are used.

Formulas are defined as follows:
1. If v1, . . . vn are variables, and n is the arity of R, then R(v1, . . . vn)

and ¬R(v1, . . . vn) are formulas.

2. If ψ and θ are formulas, z is a variable, and W a set of variables,
then also the following expressions are formulas: ψ∧θ, ψ∨θ, ψ∨/W θ,
∀zψ, ∃zψ. If z /∈W then ∃z/W ψ is a formula. After a slash will omit
the brackets from W ; so we write ∃u/x and ∃u/x,v.
FV φ is the set of free variables in φ. It consists of those variables

in φ which do not occur in φ as first variable after a ∃ or ∀ symbol. By
the variables occurring in φ are also understood the variables in W ’s
occurring in ∨/W and ∃u/W . So if φ is ∃u/x u = v, then FV φ is {x, v}.

10.3. Positions

A position in a game describes the values of the free variables in φ.
Therefore a position is defined as a finite partial function with domain
the variables, and range the possible values for those variables. The
name ‘position’ is chosen in analogy with a position in a chess game
which gives the information where the pieces stand.
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The following notations concern positions:
pφ the restriction of p to the free variables in φ
Pφ the set of all positions pφ
pφ\W the restriction of p to the free variables in φ except for

those in W
p ∗

[a
u

]
the function obtained by extending p with the value a for
argument u, or, if p was already defined for u, by adapting
it to yield a for u

p ∼u q the position p differs from q only with respect to the value
of u

p ∼W q the position p differs from q only with respect to the
values of the variables in the set W

The notation is also used in combinations, e.g. [p ∗
[a
u

]
]ψ denotes the

restriction to the free variables in ψ obtained from position p ∗
[a
u

]
.

10.4. Playing

Below it will be defined how the game proceeds: which player has to
move and what are his/her possible moves. A move is a transition from
a position p in a game φ to a position in some of its subgames (i.e. a
game based upon a subformula of φ). The possible moves are defined
with induction on φ. Then the occurrence of ∨/W or ∃u/x in φ indicates
that the choice of the move has to be made independent of the variables
in W . So it is a restriction on the motivation for the choice, but not on
the choice itself: it a restriction on possible strategies. Therefore in the
definition of possible moves it makes no difference whether /W occurs
as subscript or not. The role of /W will be defined when we consider
winning strategies in Section 10.6.

The initial position for a formula without free variables is the empty
position: no values for free variables. Formulas with free variables arise
as subgame of a larger game and then their initial position is inherited.
If p in the larger game is defined for more variables than the free
variables in the subgame, then it is restricted to those free ones.

The possible moves in position p in game φ and the player who has
to move are defined by induction on the structure of φ:

∗ Case φ ≡ R(v1, . . . vn) or φ ≡ ¬R(v1, . . . vn)
Here no moves are possible, the game ends.

∗ Case φ ≡ ψ ∧ θ
∀belard chooses L or R. If he chooses L, then game ψ is played from
position pψ (i.e. the restriction of p to FV ψ). Otherwise game θ is
played from position pθ.
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∗ Case φ ≡ ∀xψ
∀belard chooses a value for x, say a, and the game proceeds by
playing ψ from position [p ∗

[a
x

]
]ψ.

∗ Case φ ≡ ψ ∨ θ or φ ≡ ψ ∨/W θ
∃loise chooses L or R. If she chooses L, game ψ is played from
position pψ. If she chooses R, game θ is played from position pθ.

∗ Case φ ≡ ∃uψ or φ ≡ ∃u/W ψ
∃loise chooses a value for u, say b. Then game ψ is played from
position [p ∗

[b
u

]
]ψ.

10.5. Strategies

A strategy for a game (a formula) is a function which for all positions
describes which choice ∃loise will make. The requirement that Cφ does
not depend on variables in a set W will be formalized in Section 10.6
by requiring that Cφ yields the same choice for all values of variables
in W. Therefore there are two types of strategies:
Case φ ≡ ψ ∨ θ or φ ≡ ψ ∨/W θ Cφ:Pφ → {L,R}
Case φ ≡ ∃uψ or φ ≡ ∃u/W ψ Cφ:Pφ → A

Cφ is undefined for other φ ’s.

10.6. Winning positions and winning strategies

A winning strategy for a choice is, informally said, a strategy which
obeys the conditions discussed before and brings ∃loise in a winning
position for some subgame. And a winning position is a position where
she can follow a winning strategy. As you have notice, the one notion
is needed in order define the other. Therefore the notions winning
position and winning strategy (for ∃loise) in game φ are defined
together by induction on the construction of φ as follows.

∗ Case φ ≡ R(w1, w2, . . . wn)
Let ai be the value of wi in p. Position p is a winning position if the
tuple 〈a1, . . . an〉 belongs to the interpretation of R.

∗ Case φ ≡ ¬R(w1, w2, . . . wn)
Let ai be the value of wi in p. Position p is a winning position if the
tuple 〈a1, . . . an〉 does not belong to the interpretation of R.

∗ Case φ ≡ ψ ∨ θ
The choice is a step towards winning.
Position p is a winning if there is a strategy Cφ with the following
property: if Cφ(p) = L then pψ is a winning position in game ψ and
if Cφ(p) = R, then pθ winning position in game θ. A strategy with
this property is called a winning strategy.
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∗ Case φ ≡ ψ ∨/W θ.
Position p is a winning position if there is a strategy Cφ which
satisfies the three requirements mentioned below; such a strategy is
called a winning strategy.

1. The strategy does not have variables in W as argument.
If q ∼W p, then Cφ(q) = Cφ(p).

2. The choice is a step towards winning.
If Cφ(p) = L then position pψ is a winning position in game ψ,
and if Cφ(p) = R then pθ is a winning position in game θ.

3. If the values of variables in W are changed, and there is a win-
ning choice, then the same choice is a step towards winning
Let q ∼W p where q 6= p. Then at least one of the following cases
holds:
1. Neither qψ is a winning position in for game ψ, nor qθ is a

winning position in for game θ
2. Cφ(q) = L(= Cφ(p)) and qψ is a winning position for game
ψ

3. Cφ(q) = R(= Cφ(p)) and qθ is a winning position for game
θ.

∗ Case φ ≡ ∃uψ
The choice is a step towards winning.
Position p is winning if there is b such that [p ∗

[b
u

]
]ψ is a winning

position in the game ψ. A strategy is a winning strategy in position
p if it yields such a value.

∗ Case φ ≡ ∃u/W ψ
Position p is winning if there exists a strategy Cφ which satisfies
the three requirements mentioned below; such strategy is a winning
strategy. The value Cφ(p) is denoted by b.

1. The strategy does not have variables in W as argument.
If q ∼W p then also Cφ(q) = b.

2. The choice is a step towards winning.
[p ∗

[b
u

]
]ψ is a winning position in game ψ.

3. If the values of variables in W are changed, and there is a win-
ning choice, then the same choice is a step towards winning.
If q ∼W p, where p 6= q, and there is a c such that [q ∗

[c
u

]
]ψ is

a winning position in game ψ, then in any case [q ∗
[b
u

]
]ψ is a

winning position in game ψ.

A sentence φ is true if ∃loise has a winning strategy for this game start-
ing in the empty position. This means that she has winning strategies
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for each of the choices she will encounter. If she plays according to the
strategy, she will win, whatever ∀belard plays.

11. An example of the formalism

In order to illustrate the definitions from the previous section, we will
consider one example in detail: the branching quantifier sentence we
have met in (46):

(52) ∀x∃u∀y ∃v/x,u[x < u ∧ y < v]

It will be shown that u := x+1 and v := y+2 form a winning strategy
for this game.

Since the definitions work inside-out, we start with the subgame
x < u ∧ y < v. The winning positions for this game are the positions
in {〈x: a, y: b, u: c, v: d〉 | a, b, c, d ∈ N and a < c and b < d}.

For the subgame ∃v/x,u[x < u ∧ y < v] candidates for winning
positions are the positions in {〈x: a, y: b, u: c〉 | a, b, c ∈ N and a < c};
other positions are certainly not winning because no winning moves are
possible if c ≤ a. In all candidate positions the strategy v := y+2 wins
(other strategies are possible as well). But is it a winning strategy, i.e.
does the strategy also bring ∃loise in a winning position if x is changed?
Is it also winning in positions in {〈x: a′, y: b, u: c〉 | a′, b, c ∈ N} where a′

is arbitrary? If a′ < c the strategy v := y+ 2 wins indeed, and if a′ ≥ c
no choice at all wins. Hence strategy v := y+2 is winning for all values
of x if a winning choice is possible. So it is a winning strategy. This
means that all positions in {〈x: a′, y: b, u: c〉 | a′, b, c ∈ N} are winning
positions.

Next we consider the subgame ∀y ∃v/x,u[x < u∧y < v]. All positions
in {〈x: a, u: c〉 | a, c ∈ N and c > a} are winning because whatever
∀belard plays, ∃loise comes in a winning position.

Finally the subgame ∃u∀y ∃v/x,u[x < u ∧ y < v]. Candidates for
winning positions are {x: a | a ∈ N}. Here the strategy u := x + 1
is a winning strategy because it brings ∃loise in a winning position,
and no further conditions have to be satisfied. So the empty position
is a winning position in the original game (52). This means that (52)
is true : the game starts in a winning position, and ∃loise has winning
strategies for ∃u and ∃v/x,u.
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12. An application to natural language semantics

One of the earliest applications of game theoretical semantics is the
analysis of natural language sentences with branching quantifiers (see
Hintikka, 1974). In this section we will compare such an analysis with
subgame semantics.

A typical example of a branching quantifier sentence (from Hintikka
and Sandu, 1997) is:

(53) Some friend of each townsman and some neighbor of each villager
envy each other

Hintikka (1974, p. 167) explains that, in order such sentences to be
true, the choice of a neighbor of each villager must not depend on the
townsman. This implies, in my opinion, that the choice of the neighbor
must be independent of the choice of the friend as well; otherwise
there would, through that choice, be an indirect dependency on the
townsman.

The IF representation of this sentence, using selfexplaining abbrevi-
ations is:

(54) ∀x∃u∀y ∃v/x[T (x) ∧ V (y) → [F (u, x) ∧N(v, y) ∧ E(u, v)]]

As we know, in GTS the slashed quantifier ∃v/x is implicitly slashed
for u. In this way the requirement is formalized that the choice of the
neighbor depends only on the townsman. In (55), the Skolem form of
(54), this is made explicit: the Skolem function g yielding v has only x
as argument.

(55) ∃f∃g∀x∀y[T (x) ∧ V (y) →
[F (f(x), x) ∧N(g(y), y) ∧ E(f(x), g(y))]]

Consider now the following situation. Among the friends of the
townsmen two groups are distinguished, viz. male and female ones, and
the same among the neighbors of the villagers. Assume now that envy-
ing is a relation between all pairs of male friends and male neighbors,
and also between female friends and female neighbors, but not between
friends and neighbors of different sexes. In this situation the choices of
friends for townsmen and neighbors for villagers have to correspond: in
both cases male ones, or female ones. In this situation, the choice for the
second quantifier (∃v/x) cannot be made independently of the choice
for the first (∃u). So in this model sentence (53) should not be true.
However, (55) comes out true: take for e.g. f and g functions yielding
male friends and neighbors respectively. This shows that the required
independence is not captured by the formalizations (55) and (54). It is
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related to the dependency between existential quantifiers we have seen
before on the level of individuals in ∃u∃v[u = v] and ∃u ∃v/u[u = v].

Let us now consider the subgame analysis of (53). In its representa-
tion v’s independence of u is made explicit:

(56) ∀x∃u∀y ∃v/x,u[T (x) ∧ V (y) → [F (u, x) ∧N(v, y) ∧ E(u, v)]]

Suppose now that in the model under discussion a male friend has
been chosen. Then ∃loise must choose a male neighbor as well, say
Jacob. And if a female friend had been chosen only the choice for a
female neighbor would be winning. But the third condition on winning
strategies for ∃v/x,u requires that for a female friend the original choice
Jacob would be winning as well (‘for other values of x and u the same
choice is winning if there is a winning choice’). That is not the case in
the given model, so there is no winning strategy for ∃v/x,u, and therefore
the formula is not true. So for this example subgame semantics gives
the desired result, whereas that is not the case for game theoretical
semantics.

13. Conclusions

We have investigated Hintikka’s game theoretical semantics for IF logic.
It turned out that this is not a formalization of ‘informational indepen-
dence’, but rather of ‘imperfect information’. The logical properties of
IF logic are remarkable: φ ∨ φ, φ ∧ φ, and φ are not equivalent, bound
variables cannot be renamed, and formulas may get an interpretation
different from the classical interpretation. An alternative interpretation
for IF logic is proposed which agrees with intuitions about independent
choices in logic.
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