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Preface

Computational social choice is an interdisciplinary field of study bringing together ideas from
social choice theory and computer science. It is concerned with the application of techniques
developed in computer science, such as complexity analysis or algorithm design, to the study
of social choice mechanisms, such as voting procedures or fair division algorithms. It also
seeks to import concepts from social choice theory into computing, for instance for the
analysis of computer networks or multiagent systems.

These are the proceedings of COMSOC-2008, the 2nd International Workshop on Compu-
tational Social Choice, hosted by the Department of Computer Science at the University
of Liverpool on 3-5 September 2008. The first COMSOC workshop has been held in 2006
in Amsterdam. The aim of the workshop series is to bring together different communities:
computer scientists interested in computational issues in social choice; people working in ar-
tificial intelligence and multiagent systems who are using ideas from social choice to organise
societies of artificial software agents; logicians interested in the logic-based specification and
analysis of social procedures; and last but not least people coming from social choice theory
itself. COMSOC is intended to continue as a regular biannual event.

While COMSOC has started as an initiative of people with a background in computer science
(and logic and AI), we hope to continue to strengthen ties with the social choice theory
community. We are therefore particularly pleased about the significant level of participation
of prominent members of this community in the workshop, be it as Programme Committee
members, reviewers, invited speakers, or contributing authors.

We received 55 submissions (not including a handful of off-topic submissions that were
deleted at the outset). This represents a 15% increase over 2006. Each submission has been
reviewed by three members of the Programme Committee, supported by a large number
of additional reviewers. We eventually accepted 36 papers out of the 55 submissions for
presentation at the workshop.

This volume collects revised versions of these accepted papers, taking the comments of our
reviewers into account. It also includes abstracts of the talks by our five invited speakers:
Salvador Barberà (Barcelona), Rohit Parikh (CUNY), Tuomas Sandholm (Carnegie Mellon),
Moshe Tennenholtz (Technion), and William Thomson (Rochester). As for the first edition
of the workshop, the Call for Papers explicitly solicited submissions of both original papers
and of papers describing recently published work, so some of the papers have recently
appeared also in other publication venues. The reason for this policy has been to try to
accommodate the varying publishing traditions of different disciplines and to ensure that
COMSOC-2008 would attract a representative sample of the best work in the field. The
copyright for the articles in this volume lies with the individual authors.

The programme covers a wide range of topics, ranging from complexity questions in election
manipulation, over ranking systems, coalitional voting games and mechanism design, to
judgment aggregation. Important topics that have been missing from the 2006 programme
and that are included in the present volume are the analysis of tournaments, matching
theory, and belief merging. On the other hand, not all of the topics covered in 2006 are
again represented in this year’s programme. To name just one example, COMSOC-2006
included two sessions on fair division and resource allocation problems. Unfortunately, this
year we do not have contributed papers in this area (but the topic still does get some
coverage, thanks to the invited talk by William Thomson). We hope that all of these
subfields of computational social choice will continue to flourish over the coming years and
be well represented at future editions of COMSOC.
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Individual and Group Strategy Proofness of
Voting Rules: The Case for Restricted

Domains

Salvador Barberà

All nontrivial voting rules are manipulable at some preference profiles when defined on a
universal domain. This manipulation is possible even by single individuals, and “a fortiori”,
by coalitions of voters. This negative result may be reversed if the functions are defined in
appropriately restricted domains of preferences, and only preferences in that same domain
can be used to manipulate.

In the first part of the talk I will exemplify the type of results regarding non-
manipulability by individuals (or strategy-proofness) that one can obtain under domain
restrictions. I will pay special attention to the domain of separable preferences on grids.
I will present a characterization of all strategy-proof rules in that context, consider the
complications that arise in the presence of feasibility constraints and discuss the relevance
of that paradigmatic case. I will also briefly touch upon the case of voting rules whose
outcomes are lotteries.

In the second part of the talk I will consider the added difficulties that arise if one
wants to guarantee that a rule is non-manipulable by coalitions of voters, in addition to
being individually strategy-proof. I will also consider intermediate cases, where only “large
enough” groups may manipulate. I will also show that, in spite of these difficulties, some
domains of preferences have the nice property that all strategy-proof rules that one can
define on them are also necessarily group strategy-proof (or at least strategy-proof in front
of coalitions that are not “too large”). I will provide a characterization of those nice domains
of preferences for which both types of requirements become equivalent.

Salvador Barberà
Departament d’Economia i d’Història Econòmica and CODE
Universitat Autònoma de Barcelona
08193 Bellaterra (Barcelona), Spain
Email: salvador.barbera@uab.es
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Talk, Cheap Talk, and States of Knowledge

Rohit Parikh

Applications of Epistemic Logic have by now become a major industry and an area once
dominated by philosophers has now attracted large followings among both AI people and
economists. We will discuss some of our own work in this area, including applications to
various social issues, like consensus, common knowledge, elections, the sorts of things which
candidates running for office are apt to say, and why.

Very important issues in conversation and in the working of other interactions are the
ways in which states of knowledge and belief change when things happen or when someone
says something. There is a great deal of material on this topic where issues like Kripke struc-
ture tranformation [3], and history based models [10] enter. In sophisticated applications,
Gricean implicature [5], or cheap talk [2, 11] may also enter.

Gricean implicature assumes a co-operative stance, whereas cheap talk is a notion which
also makes sense when the interests of the speaker and listener are only partially aligned.
Game theoretic considerations become relevant.

States of knowledge and changes in them have social and economic consequences, and
there have been developments starting with Aumann’s seminal paper [1], followed by work
by [4, 9] and others. Milgrom and Stokey’s no trade theorem [6] is also an important
consequence.

We will give an overview of representations of states of knowledge, of changes in them,
and the social consequences.
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Expressiveness in Mechanisms and its

Relation to Efficiency: Our Experience from

$40 Billion of Combinatorial Multi-attribute
Auctions, and Recent Theory

Tuomas Sandholm

Abstract

A recent trend (especially in electronic commerce) is higher levels of expressiveness
in the mechanisms that mediate interactions such as auctions, exchanges, catalog
offers, voting systems, matching of peers, and so on. Participants can express their
preferences in drastically greater detail than ever before. In many cases this trend
is fueled by modern algorithms for winner determination that can handle the richer
inputs. But is more expressiveness always a good thing? What forms of expressive-
ness should be offered? In this talk I will first report on our experience from over $40
billion of combinatorial multi-attribute sourcing auctions. Then, I will present recent
theory that ties the expressiveness of a mechanism to an upper bound on efficiency
in a domain-independent way in private-information settings. Time permitting, I
will also discuss theory and experiments on applying expressiveness to ad auctions,
such as sponsored search and real-time banner ad auctions with temporal span and
complex preferences.

1 Introduction

By carefully crafting mechanisms it is possible to design better auctions, exchanges, catalog
offers, voting systems, and so on. A recent trend in the world—especially in electronic
commerce—is a demand for higher levels of expressiveness in the mechanisms that mediate
interactions such as the allocation of resources, matching of peers, or elicitation of privacy
and security preferences.

The most famous expressive mechanism is a combinatorial auction (CA), which allows
participants to express valuations over packages of items. CAs have the recognized benefit of
removing the exposure problems that bidders face when they have preferences over packages
but in traditional auctions are allowed to submit bids on individual items only. CAs also
have other acknowledged benefits.

Expressiveness also plays a key role in multi-attribute settings where the participants
can express preferences over vectors of attributes of the item—or, more generally, of the
outcome.

The trend toward expressiveness is also reflected in the richness of preference expression
offered by businesses as diverse as matchmaking sites, sites like Amazon and Netflix, and
services like Google’s AdSense. In Web 2.0 parlance, this demand for increasingly diverse
offerings is called the Long Tail [1].

2 Our real-world experiences with expressive mecha-
nisms in sourcing

In the first part of the talk, I will share some of my experiences from using expressiveness
in practice. I started building winner determination algorithms for combinatorial auctions
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in 1997, and founded a company, CombineNet, Inc., in 2000 to field expressive mechanisms.
Since then we have fielded over 500 expressive auctions. These auctions have been in the area
of strategic sourcing, that is, the process by which large companies buy materials, products,
services, and transportation from their suppliers, striking long-term contracts based on each
auction.

Our auction designs, which we now call expressive commerce, hybridize and generalize
both combinatorial and multi-attribute auctions [7, 9]. Expressive commerce combines the
advantages of highly expressive human negotiation with the advantages of electronic reverse
auctions. The idea is that supply and demand are expressed in drastically greater detail
than in traditional electronic auctions, and are algorithmically cleared. This creates an
efficiency improvement in the allocation (a win-win between the buyer and the sellers), but
the market clearing problem is a highly complex combinatorial optimization problem. We
developed the fastest custom tree search algorithms for solving it. We have hosted over $40
billion of sourcing using the technology, and created over $5 billion of hard-dollar savings
plus numerous harder-to-quantify benefits. The suppliers also benefited by being able to
express production efficiencies and creativity, and through exposure problem removal.

We found that the traditional form of expressive bidding in CAs, package bidding (possi-
bly with different forms of exclusivity constraints between bids), is a much too impoverished
a bidding language to be usable in practice. In contrast, we found that there are a host
of more compact and natural expressiveness constructs, and they are all used in concert in
our auctions. These include various flexible forms of package bids, rich forms of conditional
discount offers, various forms of discount schedules, side constraints, expressions of cost
drivers, and multiattribute bidding [7].

In our events the bid taker can also express various forms of preferences and constraints.
By conducting what-if analysis by changing these, the bid taker can form a quantitative
understanding of the tradeoffs available in the supply chain, such as cost versus multiple
measures of practical implementability of the allocation, cost versus multiple measures of
quality of the allocation, and cost versus multiple measures of long-term risk entailed by
the allocation [7].

Furthermore, by allowing expressive offers over different combinations of the items to be
sourced, the winner determination, as a side effect, ends up redesigning the supply chain.
For example, in a sourcing event where Procter & Gamble sourced in-store displays using
our hosting service and technology, we sourced items from different levels of the supply
chain in one event: buying colorants and cardboard of different types, buying the service of
printing, buying the transportation, buying the installation service, etc. [8]. Some suppliers
made offers for some of those individual items while others offered complete ready-made
displays (which are, in effect, packages of the lower-level items), and some bid for partial
combinations. The market clearing determined the lowest-cost (adjusted for the Procter
& Gamble’s constraints and preferences) solution and thus, in effect, configured the supply
chain multiple levels upstream.

An additional interesting aspect of bidding with cost drivers and alternates (e.g., using
attributes) is that the winner determination algorithm not only decides who wins, but also
ends up optimizing the configuration (setting of attributes) for each item, and the process
by which each item is made.

3 Theory

Intuitively, one would think that increases in expressiveness would lead to more efficient
mechanisms. That is also what the CombineNet experiences suggest. However, until now
we have lacked a general theory that ties expressiveness and efficiency.
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We developed a theory that ties the expressiveness of mechanisms to their efficiency in
a domain-independent manner [3]. We introduce two new expressiveness measures, 1) max-
imum impact dimension, which captures the number of ways that an agent can impact the
outcome, and 2) shatterable outcome dimension, which is based on the concept of shattering
from computational learning theory. We derive an upper bound on the expected efficiency
of any mechanism under its most efficient Nash equilibrium. Remarkably, it depends only
on the mechanism’s expressiveness. We prove that the bound increases strictly as we allow
more expressiveness. We also show that in some cases a small increase in expressiveness
yields an arbitrarily large increase in the bound.

Finally, we study channel-based mechanisms. The restriction is that these mechanisms
take expressions of value through channels from agents to outcomes, and select the outcome
with the largest sum. (Channel-based mechanisms subsume most combinatorial and multi-
attribute auctions, the Vickrey-Clarke-Groves mechanism, etc.) In this class, a natural
measure of expressiveness is the number of channels allowed (this generalizes the k-wise
dependence measure of expressiveness used in the combinatorial auction literature). We
show that our domain-independent measures of expressiveness appropriately relate to the
natural measure of expressiveness of channel-based mechanisms: the number of channels
allowed. Using this bridge, our general results yield interesting implications. For example,
any (channel-based) multi-item auction that does not allow rich combinatorial bids can be
arbitrarily inefficient—unless agents have no private information.

4 Applications to ad auctions and exchanges

Advertisement auctions and exchanges are relatively new forms of buying and selling ad
space. They are an opportune next area of application for expressive mechanisms.

4.1 The case of an isolated sponsored search auction

Sponsored search auctions (the dispatch of typically textual ads in response to keyword-
based web searches) account for tens of billions of dollars in revenue annually (e.g., to
Google, Yahoo!, and Microsoft) and are some of the fastest growing mechanisms on the
Internet. However, the most frequent variant of these mechanisms does not allow bidders
to offer a separate bid for each ad position, and is thus inexpressive on a fundamental
level. Here we attempt to characterize the cost of this inexpressiveness [2]. We adapt the
theoretical framework discussed in the previous section to show that the commonly used
generalized second price (GSP) mechanism is arbitrarily inefficient for some distributions
over agent preferences. We then describe a search technique that computes an upper bound
on the expected efficiency of the GSP mechanism for any given distribution over agent
preferences. We report the results of running our search technique on synthetic preference
distributions. Our results demonstrate that the cost of inexpressiveness is most severe when
agents have diverse preferences (such as having both brand advertisers and value advertisers
in the auction) and relatively low profit margins. Our results also show that designating one
or more positions as “premium” and soliciting an extra bid for these positions eliminates
almost all of the inefficiency.

4.2 Highly expressive real-time ad auctions that span time

The prevalence and variety of online advertising in recent years has led to the development
of an array of services for both advertisers and purveyors of media. Because matching an
advertiser’s needs (demand) with a content provider’s properties (e.g., locations on displayed
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web pages) is a complex enterprise, often automated matching is used to match ad channels1

with advertisers. One famous example is sponsored search. Internet auctions of traditional
advertising (TV, radio, print) are also emerging (e.g., via companies like Google and Spot
Runner). Auctions and exchanges for banner ads have also been established—e.g., Right
Media (now part of Yahoo! ) and DoubleClick (now part of Google)—although many banner
ad bulk contracts are still manually negotiated.

There has been considerable research on developing auction mechanisms for allocating ad
channels, with a focus on issues like auction design, charging schemes (e.g., per impression or
per click-through (CT)), bidder strategies, and so on. However, attention has focused almost
exclusively on improving single-period expressiveness, still with per-impression or per-CT
prices. As has been well-documented in other auction domains like sourcing, requiring
bidders and bid takers to shoehorn their preferences into the impoverished language of
per-item bids is usually undesirably restrictive.

Here we explore the use of expressive bidding for online banner ad auctions. For ease of
presentation, we discuss banner ads, but the general principles and specific techniques we
propose can be applied to other forms of online advertising (electronic auctions of TV and
radio ads, sponsored search, etc.) as well.

In many domains, the value of a set of ads may not be an additive function of value of its
individual elements. For instance, in an advertising campaign, campaign-level expressiveness
is important. Advertisers may value particular sequences of ads, rather than individual ads
per se. Efficiency (and revenue) maximization in such an environment demand that we
allow bidders to express bids (propose contracts) on complex allocations, and that bid
takers optimize over sequences of allocations to best match bidder preferences, in a way
that cannot be accommodated using per-item bidding.

The key technical challenge for expressive ad auctions is optimization: determining the
optimal allocation of ad channels to very large numbers of complex bids in real-time. This
is further complicated by the stochastic nature of the domain—both supply (number of
impressions or CTs) and demand (future bids) are uncertain—which suggests the need for
online allocation.

To address these issues, we introduced the idea of an optimize-and-dispatch architec-
ture [6] where an optimizer is run only every so often and it parameterizes a dispatcher that
operates in real time. The optimizer can be run at fixed intervals, or based on any other
trigger conditions, such as supply or demand significantly deviating from their projections.
The framework can, in principle, handle any forms of expressive preferences as inputs, and
we discuss several forms of expressiveness that are important in ad auctions, but which prior
ad auction mechanisms inherently cannot support.

We recently implemented these ideas [4]. We model the problem as a Markov deci-
sion process (MDP), whose solution is approximated in several ways. First we perform
optimization only periodically. Following the general optimize-and-dispatch framework, our
optimization generates an on-line dispatch policy that assigns ad channels to advertisers
in real-time. Our dispatch policies use the fractional assignment of (dynamically defined)
channels to specific contracts. To approximate the optimization itself, we consider two
approaches. The first is deterministic optimization using expectations of all random vari-
ables and exploiting our combinatorial optimization technology for winner determination
in expressive markets [7]. We propose a second, sample-based approach derived from van
Hentenryck and Bent’s [5] online model for stochastic optimization—but with novel adap-
tations to a continuous decision space. This approach leverages the deterministic winner
determination technology, applying it to multiple possible future scenarios in order to form a

1Here we use the word “channel” totally differently than in the “channel-based” mechanisms discussed
earlier in this abstract. Here, each “channel” is a subset of supply such that no bid distinguishes between
different forms of supply within the channel.
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dispatch policy. In both cases, periodic reoptimization is used to overcome the approximate
nature of the methods. Our experiments demonstrate the benefits of expressive bidding for
ad auctions over various per-item strategies, and the value of our stochastic optimization
techniques.
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Ranking, Trust, and Recommendation
Systems: An Axiomatic Approach

Moshe Tennenholtz

In the classical theory of social choice, a theory developed by game-theorists and theoretical
economists, we consider a set of agents (voters) and a set of alternatives. Each agent
ranks the alternatives, and the major aim is to find a good way to aggregate the individual
preferences into a social preference. The major tool offered in this theory is the axiomatic
approach: study properties (termed axioms) that characterize particular aggregation rules,
and analyze whether particular desired properties can be simultaneously satisfied. In a
ranking system [1] the set of voters and the set of alternatives coincide, e.g. they are both
the pages in the web; in this case the links among pages are interpreted as votes: pages that
page p links to are preferable by page p to pages it does not link to; the problem of preference
aggregation becomes the problem of page ranking. Trust systems are personalized ranking
systems [3] where the ranking is done for (and from the perspective of) each individual agent.
Here the idea is to see how to rank agents from the perspective of a particular agent/user,
based on the trust network generated by the votes. In a trust-based recommendation system
the agents also express opinions about external topics, and a user who has not expressed an
opinion should be recommended one based on the opinions of others and the trust network
[6]. Hence, we get a sequence of very interesting settings, extending upon classical social
choice, where the axiomatic approach can be used.

On the practical side, ranking, reputation, recommendation, and trust systems have
become essential ingredients of web-based multi-agent systems (e.g. [9, 13, 7, 14, 8]). These
systems aggregate agents’ reviews of products and services, and of each other, into valuable
information. Notable commercial examples include Amazon and E-Bay’s recommendation
and reputation systems (e.g. [12]), Google’s page ranking system [11], and the Epinions
web of trust/reputation system (e.g. [10]). Our work shows that an extremely powerful way
for the study and design of such systems is the axiomatic approach, extending upon the
classical theory of social choice. In this talk we discuss some representative results of our
work [14, 1, 2, 4, 5, 3, 6].
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Lorenz Rankings of Rules for the Adjudication
of Conflicting Claims

William Thomson

For the problem of adjudicating conflicting claims (O’Neill, 1982; for a survey, see Thomson,
2003), we offer simple criteria to compare rules on the basis of the Lorenz order. They exploit
several recently developed techniques to structure the space of rules.

The first results concern the family of “ICI rules” (Thomson, 2008, forthcoming). This
family contains the constrained equal awards (Maimonides, 12th Century), constrained equal
losses (Maimonides, 12th Century), Talmud (Aumann and Maschler, 1985), and minimal
overlap (Ibn Ezra, 12th Centrury; O’Neill, 1982) rules. We obtain a condition relating the
parameters associated with two rules in the family guaranteeing that one Lorenz dominates
the other. We prove parallel results for a second family (CIC family, Thomson, 2008,
forthcoming), which is obtained from the first one by exchanging, for each problem, how well
agents with relatively larger claims are treated as compared to agents with relatively smaller
claims. This second family also contains the constrained equal awards and constrained equal
losses rules.

The next results concern the family of “consistent” rules (Young, 1987). A rule is
consistent if the recommendation it makes for each problem is never contradicted by the
recommendation it makes for each reduced problem obtained by imagining some claimants
leaving the scene with their awards and reassessing the situation at that point. The main
result here is the identification of circumstances under which the Lorenz order is “lifted by
consistency” from the two-claimant case to arbitrarily many claimants. (The concept of
lifting is adapted from one developed for properties of rules by Hokari and Thomson, 2008,
forthcoming.) This means that if two rules are consistent and one of them Lorenz dominates
the other in the two-claimant case, this domination extends to arbitrarily many claimants.

Finally, we exploit the notion of an operator on the space of rules (Thomson and Yeh,
2008, forthcoming). An operator is a mapping that associates with each rule another one.
The operators we consider are the duality operator, the claims truncation operator, and the
attribution of minimal right operator. We also consider the operator that associates with
each rule and each list of non-negative weights for them adding up to one, their weighted
average. An operator “preserves an order” if whenever a rule Lorenz dominates another one,
this domination extends to the two rules obtained by subjecting them to the operator. We
identify circumstances under which certain operators preserve the Lorenz order (or reverse
it), and circumstances under which a rule can be Lorenz compared to the rule obtained by
subjecting it to the operator.

William Thomson
Department of Economics
University of Rochester
Rochester, NY 14627, USA
Email: wth2@troi.cc.rochester.edu
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A fair payoff distribution for myopic rational

agents

Stéphane Airiau and Sandip Sen

Abstract

We consider the case of self-interested agents that are willing to form coalitions for
increasing their individual rewards. We assume that each agent gets an individual
payoff which depends on the coalition structure (CS) formed. We consider a CS to
be stable if no individual agent has an incentive to change coalition from this CS.
Stability is a desirable property of a CS: if agents form a stable CS, they do not
spend further time and effort in selecting or changing CSs. When no stable CSs
exist, rational agents will be changing coalitions forever unless some agents accept
suboptimal results. When stable CSs exist, they may not be unique, and choosing
one over the other will give an unfair advantage to some agents. In addition, it may
not be possible to reach a stable CS from any CS using a sequence of myopic rational
actions. We provide a payoff distribution scheme that is based on the expected utility
of a rational myopic agent (an agent that changes coalitions to maximize immediate
reward) given a probability distribution over the initial CS. To compute this expected
utility, we model the coalition formation problem with a Markov chain. Agents share
the utility from a social welfare maximizing CS proportionally to the expected utility
of the agents, which guarantees that agents receive at least as much as their expected
utility from myopic behavior. This ensures sufficient incentives for the agents to use
our protocol.

1 Introduction

In the literature on coalition formation, valuation functions are typically defined only over a
coalition, and the agents need to decide or negotiate a payoff distribution. We are interested
in cases where the payoff distribution is defined for each partition of the agents into coalition
structures (CS): each agent knows its payoff for any CS. This model corresponds to the
hedonic aspect of coalition formation [1, 2, 4, 7] where the payoff of an agent, not the value
of a coalition, depends only on the members of its coalition. We can view this assumption
from two perspectives. The first perspective is that the environment provides a payoff to
each agent. This can happen when the agents’ individual goals are different but correlated
and the CSs have different effects on different agents’ performance. This formulation can
model a community of agents that help each other improve their respective private utilities:
each agent obtains a private utility which can be boosted with the help of other agents
in the community. Another example is that of firms forming coalitions in a supply chain
domain: each firm in a coalition provides preferred rates or discounts for its services to
other members of its coalition. The benefit of each member of the coalition depends on
the behaviors of other firms. Each firm in the coalition is autonomous: each sells and
buys goods, and makes its own profit or loss. Note that firms still benefit from being in a
coalition but the benefit varies from firm to firm in any given CS. The second perspective is
to consider that the payoff distribution has already been computed using a stability criteria,
e.g., the Kernel [5]. Given a CS and a valuation function, it is always possible to compute a
Kernel-stable payoff distribution. Let us consider two different CSs with associated Kernel-
stable payoff distributions. In both cases, the payoff distribution is stable, but an agent may
prefer to form the first CS when another agent would prefer the second: even if agents are
using a stable payoff distribution, agents may still have incentive to change CS.
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In the papers related to hedonic coalition formation [1, 2, 4, 7], one assumption is that
there is no transfer of utility. Under these assumptions it is known that the core or the set
of Nash-stable equilibria may be empty. In particular, the personal goals of the agents may
be conflicting, there may not be any CS that satisfies all the agents at the same time: for
each CS, at least one agent may have an incentive to change coalitions. Some research deals
with the search of conditions for the existence of stable coalition structures [1, 2, 4], but we
want to provide a solution even when no stable CSs exist. The compromise we propose is
based on allowing transfer of utility to make a CS stable.

From a societal point of view, we also want the society to perform well as a whole,
hence our mechanism selects a social welfare maximizing CS. The computation of the side-
payments to stabilize the CS is based on the expected utility of myopic and rational agents
(i.e., agents that change coalition to maximize their immediate payoff). The computation
of the expected utility uses the analysis of a Markov chain where a state of the chain
corresponds to a CS and a transition corresponds to the will of an agent to change coalition.
The analysis of the chain differentiate the transient states from the ergodic states1, the
latest corresponds to the Sink equilibria in [9] for games in normal forms: myopic rational
agents are bound to be trapped in a set of ergodic states. The expected utility of the agent
is a weighted average of the utility over the ergodic states. We view the expected utility as
a means to weight the importance of an agent in the coalition formation process. We share
the utility of a social welfare maximizing CS proportionally to this expected utility. Under
the assumption that the initial CS is chosen at random, we show that each agent is better
off following our protocol.

Most current studies on coalition formation in the multiagent community assume known
valuation functions that estimate the worth of a coalition and where the valuation of any
coalition is independent of the other coalitions present in the population [10, 14, 15]. How-
ever, this may not always be appropriate. In situations when the population of agents is
competing for a resource or a niche, e.g., in electronic supply chains, the valuation of a
coalition depends on the organization of the other agents. More generally, the presence
of shared resources (if a coalition uses some resource, they will not be available to other
coalitions) or conflicting goals (non-members can move the world farther from a coalition’s
goal state) [13] makes a valuation function depend on CS. We are especially interested in
studying those situations where the worth of a coalition depends on the other coalitions
that are present in the population [6, 12]. Our approach can also be used in that context
as shown by our empirical example.

The paper is organized as follows. In Section 2, we present the coalition framework and
the existing stability concepts for coalition formation when in the non transferable utility
case. In Section 3, we show how to build a Markov chain that models the coalition formation
process, how to use it to compute the expected utility. Finally in Section 4, we present and
discuss our proposed solution. We conclude and discuss future work in Section 5.

2 Coalition Framework

2.1 Problem Description

We consider a set N of n agents; N is also known as the grand coalition. A coalition
structure (CS) s = {S1, · · · ,Sm} is a partition of N , where Si is the ith coalition of agents
with ∪i∈[1..m]Si = N and i 6= j ⇒ Si ∩ Sj = ∅. S is the set of all CSs. The coalition of
agent i in s is noted as s(i). We consider that an agent i has a preference order %i over S

1Ergodic states are states that the chain will keep coming back to, whereas transient states are states
that the chain will eventually leave to never visit again.
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and for a CS s, an agent i has a valuation vi(s). These assumptions have two consequences:

• Each agent has a private utility which depends on the other agents present in the
coalition, as for hedonic coalition formation [1, 4, 2, 7]. Coalitions do not always
receive a reward as a whole: each agent has a private cost and benefit which depends
on the organization of the agents. Members of a coalition help each other, which
can globally reduce the cost or increase the private benefit of each member. For
example, soccer players have a private utility, or satisfaction, which depends on the
other members of the team.

• Unlike in the hedonic coalition formation case, we are working in the more general
case where the valuation of a coalition depends on the other coalitions present in the
population. For an agent i such that i ∈ C and two CSs s1 and s2 such that C ∈ s1 and
C ∈ s2, it is possible that ui(s1) 6= ui(s2). In our soccer example, the satisfaction of a
player in a team playing a league may also depend on how the remaining players are
dispatched in the other team, for example, he may prefer that the best players are put
in different teams than put altogether in a “dream team”. A more generic example
involves agents competing for an environmental niche. The payoff of a coalition may
be higher when the competitors work alone than when the competitors also decide to
team together to form a more competitive group. Ray and Vohra [12] consider this
problem and propose a protocol where agents propose a coalition and a distribution
of the coalitions’ worth. Other agents can accept or reject the proposition. One issue
is that, when proposing a coalition, an agent does not know which CS will ultimately
form. Hence, the payoff distribution proposed by an agent is conditioned on the CS
that is finally selected. Ray and Vohra consider that the agents’ offer contains a payoff
distribution for each possible CS, which is not realistic for large populations. But such
elaborate offers allow them to show the existence of an equilibrium.

We further assume that there is no coordinated change of coalitions; one agent at a time
can change coalition. This assumption prevents uncertainties about the state of the CS.
For example, let agents i, j and k form singleton coalitions. At this point, agent i would
like to join agent k, and agent j would like to join agent i, but neither i or j would like
to form the grand coalition. If we allowed simultaneous moves, the resulting state would
be unclear. The grand coalition may be formed though it was not the intent of agent i or
j. The resultant CS could also be {{i, k}, {j}} where agent i joined agent k, and agent j
tried to join the coalition of agent i, but ended up joining an empty coalition. It could also
be {{i, j}, {k}} where agent j joined agent i, and agent k refused that both agent i and j
joined it at the same time. We avoid such ambiguities with this assumption.

Finally, we assume that agents are myopic and rational, and members of a coalition
accepts a new member only when all members agree. After a change of CS, it is possible,
if not likely, that another agent changes its coalition, leading to a different CS. As it is
computationally expensive to perform multi-steps look ahead because of the large state
space, we consider myopic agents that change coalition to maximize their immediate reward.
We believe it is reasonable to assume that current members can control when other agents
can join a coalition. Moreover, it would not be myopic rational for a member i to accept
a new agent if this meant a payoff loss for i. Hence, we also assume that all members of
a coalition must agree to accept a new member and, if some member i refuses, we will say
that agent i vetoes the transition. We also make the implicit assumption that members of
a coalition cannot prevent a member to leave, even if some of the remaining members lose
utility.
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2.2 Stability Concepts

We first start by giving the definition of stability concepts in the non-transferable utility
case when the value function depends only on the members of the coalition [4]. In the
following, %i denotes a preference order over coalitions.

Definition 2.1. A coalition structure s is core stable iff @C ⊂ N | ∀i ∈ C,C �i s(i).

Definition 2.2. A coalition structure s is Nash stable (∀i ∈ N) (∀C ∈ s ∪ {∅}) s(i) %i

C ∪ {i}

Definition 2.3. A coalition structure s is individually stable iff (@i ∈ N) (@C ∈ s ∪
{∅}) | (C ∪ {i} �i s(i)) and (∀j ∈ C, C ∪ {i} %j C)

Definition 2.4. A coalition structure s is contractually individually stable iff (@i ∈
N) (@C ∈ s∪ {∅}) | (C ∪ {i} �i s(i)) and (∀j ∈ C, C ∪ {i} %j C) and (∀j ∈ s(i) \ {i}, s(i) \
{i} %j s(i))

If a CS is core stable, no subset of agents has incentive to leave their respective coalition
to form a new one. In a Nash stable CS s, no single agent i has an incentive to leave its
coalition s(i) to join an existing coalition in s or create the singleton coalition {i}. The
two other criteria add a constraint on the members of the coalition joined or left by the
agent. For an individually stable CS, there is no agent that can change coalition from s(i)
to C ∈ (s\ s(i))∪{∅} yielding better payoff for itself, and the members of C should not lose
utility. The contractually individual stability in addition requires that the members of s(i),
the coalition left by i, should not lose utility.

The definition of Nash, individually and contractually individually stability can easily
be extended to the case where the value of a coalition depends on the CS. Another criterion
for a rational agent to be a member of a coalition is individual rationality [6]: an agent i
would consider joining a coalition only when it is beneficial for itself. The agent compares
the situation when it is on its own and when it is a member of a coalition. However, the
payoff the agent gets when it is by itself depends on the CS. The minimum payoff that agent
i can guarantee on its own is ri = mins∈S ,{i}∈s vi(s) [6] (the minimum is over all the CSs
where agent i forms a coalition on its own). An agent is individual rational when its payoff
in a coalition with other agents is greater than the minimum payoff it can get on its own.

For some coalition formation problem, it is possible that no CS satisfies any of these
stability criteria. Satisfying the individually or contractually individually stability criteria
may depend on the protocol used by the agents to form coalition. For example, an academic
can freely leaves its department to join a new one, provided that no member of the new
department will suffer from its presence. In some cases, the coalition left is allowed to
demand compensation. For example, as pointed out in [7], a player of a soccer team can
join another club, but its former club can receive a compensation for the transfer. In the
following, we will only assume that members of a coalition can veto the entrance of new
agent in their coalition. Hence, we consider as our main stability criterion the individually
stability.

2.3 Graphical representation

We can represent the relation % by a preference graph of the coalition formation
process: each node is a CS, and there exists an edge from node S to node T when ∃i ∈
N | T �i S. The transition graph of the coalition formation process is a directed
graph where the nodes represent the CSs, and edges are valid transitions between two CSs.
A transition from node s to node t is valid when

18



• ∃i ∈ N , ∃C ∈ (t \ s(i)) ∪ {∅} | t = (s \ s(i) \C) ∪ (C ∪ {i}) and t � s. In other words,
there is an agent i that is better off leaving its coalition s(i) to either join an existing
coalition in s or to form a singleton coalition.

• and ∀j ∈ C, t %j s, i.e., this transition is not vetoed by the members of the coalition
C joined by i (of course, i is always allowed to form a singleton coalition).

Incidentally, another agent j may also prefer t over s (for example, when i moves to an
existing coalition C, all agents in C may benefit). Hence, a transition may be beneficial
for more than one agent. However, only the agent that changes the coalition can induce
the transition. Even if it is beneficial for members of C, C’s members cannot force i to
leave its current coalition to join them (this action would be considered to be a group action
whereas in our model, we consider only individual actions). In the case where two agents i
and j that were previously forming singleton coalitions now form a coalition of two agents
in the new CS, it may be difficult to interpret which agent induced the transition: as it is
beneficial for both agents, an interpretation of the transition can be that agent i joins the
coalition {j} or vice versa. Our interpretation is that both agents are responsible for this
transition. Hence we make an exception for this case.

Since we assume that agents are myopically rational, for a given CS, each agent will only
choose the transition that yields the maximum immediate payoff gain over all its possible
legal moves. For each state, there can then be at most n outgoing edges, one for each of
the n agents (this happens when every agent prefer another CS over the current one). This
prunes the number of transitions from the preference graph to the transition graph.

Property 1. A CS s is individually stable iff there is no outgoing edge from state s in the
transition graph of the coalition formation.

The proof is obvious given the definition of the transition graph. In Figure 1(a), we
present an example with three agents where the payoff of an agent is shown below its
label in a coalition. In this example, no CS is core or Nash stable. However, {{1, 2, 3}}
is individually stable. However, if the agents start from the bottom of the lattice (where
each agent forms a singleton coalition) or any other CS in the mid level, the agents will be
trapped in a cycle: for each CS in the mid-level, one agent benefits from leaving its coalition
in that CS to join the singleton agent. We present a different scenario in Figure 1(b): the
CS {{0}{1, 2}} is Nash stable, core stable (and hence individually stable), and the grand
coalition is individually stable. From any CS, it is possible to reach an individually stable
CS.

3 A Markov Chain model

A myopic rational agent will change coalitions if it can immediately gain utility by doing so.
In this paper, we assume that the valuation is common knowledge. It is therefore possible
to build and analyze the transition graph. Given the assumption that only one agent at a
time can change coalition, we are now in position to estimate the probability of transition
between any two CSs. For each outgoing edge e from CS s, the probability of making this
transition is either

• 1
o(s) , where o(s) is the out degree of a node, i.e., the number of agents that want to
change from s.

• 2
o(s) when two agents i and j that are each forming a singleton coalition merge to form
the two-agent coalition {i, j} and it is the best choice for both i and j.
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Figure 1: Example of Coalition Formation problem (double boxed CS are individually stable)
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1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
0 1

3
1
3

1
3 0


Table 1: Transition Matrices for Figure 1(a)

As the probability of a transition does not depend upon the prior states of the population,
the Markov assumption is verified. We have now completely defined a Markov chain. From
the above specified transition model, we can construct the transition matrix P of the Markov
chain. The size of the matrix is B(n)×B(n), where n is the number of agents and B(n) is
the Bell function. The dimension of the matrix can be quite large, however, the matrix is
sparse: for each row of the matrix, there can be only up to n positive entries2. In Table 1,
we present the transition matrix for the example of Figure 1(a).

As agents change from one CS to another, the chain moves from one state to another.
A state of a Markov chain is either transient or ergodic: ergodic states are states that
the chain will keep coming back to, whereas transient states are states that the chain will
eventually leave to never visit again. In the long term, the chain will be in one of the ergodic
states. The ergodic states form multiple strongly connected components. If the size of such
a strongly connected component is one, it means that the corresponding CS is individually
stable (it may also be core or Nash stable, but not necessarily). The study of the Markov
chain will tell us, given a probability distribution over the initial state, the probability to
reach each strongly connected component, and, once reached, what is the proportion of time
spent in each ergodic states. Hence, the value of the expected utility is an average over the

2S can be represented by a lattice where each CS at a given level of the lattice contains the same number
of coalitions. For each level i in the lattice, an agent has at most i actions: joining one of the existing i− 1
coalitions and forming a singleton coalition if it is not already forming one. As there are n levels, the
maximum number of transitions from a CS is n.
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Figure 2: Example of the ART domain: probability to be in an ergodic state

possible stable CSs, and the CSs that are parts of some cycle. More formally, let E be the
set of ergodic states of the Markov chain. For each strongly connected component X ⊂ E ,
we compute the probability pXto reach X, and then for each state s of X, we compute
the fraction of time ps spent in s in the limit (the chain may visit a state in X more often
then another). If a CS s is at least individually stable, then the size of the corresponding
component is one, and ps = 1. For each ergodic state s ∈ E , let X(s) be the strongly
connected component of s. The expected utility E(vi) is then E(vi) =

∑
s∈E

pX(s) · ps · vi(s).

In Figure 2, we present an example issue from the Agent Reputation and Trust
testbed [8]. In the testbed, agents provide appraisals about artifacts and compete for a
pool of clients. To improve their appraisals, agents can ask other agents for appraisals for
artifacts and reputation of other agents. We consider collusion of agents: agents can form a
coalition where members provide their truthful appraisals, which benefits all members. In a
domain with 8 agents, we computed the valuation function and the associated Markov chain
for a particular instance, and the outcome is presented in Figure 2. In that instance, the
Markov chain contains 4,140 CSs, 26,641 transitions, 62 stable CSs and 5 additional ergodic
states which correspond to some strongly connected components.

4 A Fair Payoff Distribution for Myopic Rational Agent

It is possible that some coalition formation problem do not have any stable CS. To operate
efficiently, we require that the agents remain in a CS. We propose that the agent forms a CS
s? that maximizes social welfare. However, s? may not be stable, hence we want to share
the utility u? of s? that provides the agent an incentive to stay in that CS.

The utility function, as a whole, tells how good the agent is. A first candidate is to
share u? proportionally to the average utility over all the CSs. This assumes that each CS is
equally important and we believe it is not so. Another candidate is to consider an average
over the stable CSs. However, such stable CSs may not always exist, and even if they do,
there may not be a path allowing to reach a stable CS (as in the example of Figure 1(a)).
If we assume any CS is likely to be the initial CS, we can compute an expected utility when
the agents are myopic, rational, and when members of a coalition can veto the entrance of
new members. The expected utility is a great metric to determine and compare the strength
of each agent in the coalition formation process. We will show that the payoff obtained is
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at least its expected utility, which is a sufficient incentive for using our proposed payoff
distribution.

4.1 Choice of Final Payoff Distribution and Corresponding CS

The expected value E(vi)we computed using the Markov chain assumes that the initial CS
is chosen uniformly over S , in other word, it is no biased by the initial CS. E(vi) reflects
the utility that agent i receives on average when all agents are myopically rational. We
consider that this value represents the strength of an agent given the valuation function.
Agents with high E(vi) should obtain a larger payoff than agents with lower E(vi).

To be used in a real world application, it is not desirable to have agents continuously
change coalitions: agents should form a stable CS and have no incentive to further change
coalition. To maximize the agents’ payoff, we choose as the final CS s? one of the CSs that
maximizes social welfare. This CS may not be a stable, but it guarantees maximal total
payoff to the agents. As we view the expected utility value as a measure of the strength
of each agent, we propose a distribution of v(s?) to all agents proportional to the expected
payoff of the agents, i.e., we prescribe the payoff to agent i to be

ui =
E(vi)∑

j∈N E(vj)
v(s?).

Note that this value is guaranteed to be at least as good as E(vi), as shown by Property 2.
So, when agents share the payoff we propose, they are guaranteed to have at least the
expected value when they were changing coalitions to maximize their immediate reward,
and in general, they may get more. In addition, the payoff distribution is Pareto Optimal
as we share the value of a social welfare maximizing CS (if an agent gets more utility, at
least another agent must lose some). We believe that these incentives are sufficient for the
agents to accept our proposed value. Not only is the payoff distribution fair, as the share
of utility the agents receive is proportional to their expected utility over the chain, but the
outcome is also efficient as it maximizes social welfare.

Property 2. ui = E(vi)P
j∈N E(vj)

v(s?) ≥ E(vi), i.e., the payoff of an agent is at least as good as
the expected utility that an agent would get on average if the agents are myopically rational.

Proof. Let E denote the set of the ergodic states of a Markov chain. For player i, the
expected payoff is a weighted average over the ergodic states: E(vi) =

∑
s∈E αsvi(s), where

αs is the weight of the ergodic state s and we have
∑

s∈E αs = 1. The transient states
are only used to determine the probability of leading to one of the ergodic sets: the αs’s
are determined by the transient and the ergodic states (when there is a cycle or a regular
sub-chain).

∀s, v(s) ≤ v(s?)
∀s, αs · v(s) ≤ αs · v(s?) as αs ≥ 0∑
s∈E αs · v(s) ≤

∑
s∈E αs · v(s?)∑

s∈E αs · v(s) ≤ v(s?) ·
∑

s∈E αs∑
s∈E αs · v(s) ≤ v(s?), as

∑
s∈E αs = 1∑

s∈E αs

∑
j∈N vj(s) ≤ v(s?)∑

j∈N

∑
s∈E αsvj(s) ≤ v(s?)∑

j∈N E(vj) ≤ v(s?)
E(vi) ≤ E(vi)P

j∈N E(vj)
v(s?) as E(vi) ≥ 0.
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Another important question is to determine whether the payoff distribution vi is individ-
ually rational: is an agent guaranteed to get as much as when an agent is forming a singleton
coalition? The minimum payoff an agent can guarantee for itself is ri = mins∈S , {i}∈s vi(s).
For example, consider the three-agent example in Figure 3. The value obtained by i is
209
36 = 5.806, which is lower than 6, the minimum payoff that agent i receives when it forms

a singleton coalition. This means that the payoff obtained by an agent in a coalition from
our protocol is less than the worst payoff obtained by the agent when it forms a singleton
coalition. Although possible in the general case, this may not be likely in practice: the worst
case scenario for an agent should be when it forms a singleton coalition and when all other
agents in the population try to minimize its payoff. As shown by Property 3, if the worst
payoff for an agent occurs when it is forming a singleton coalition, our protocol is individual
rational.

{i j k}
7 2 2

{i j}
0 5

{k}
6

{i}
6

{j}
0

{k}
0

{i}
6

{j k}
1 1

{i k}
5 0

{j}
1

There is a cycle with 4 states, hence, the proportion spent in each state is 1
4
. The value of

the optimal CS is 11. The minimum value of agent i when it is in a singleton coalition is 6.
E(vi) = 1

4 (7 + 0 + 6 + 6) = 4.75
E(vj) = 1

4 (2 + 5 + 0 + 1) = 2
E(vk) = 1

4 (2 + 6 + 0 + 1) = 2.25

vi = 4.75
4.75+2+2.25 · 11 = 5.8056 < 6 = 216

36

vj = 2
4.75+2+2.25 · 11 = 2.4444 > 0

vk = 2.25
4.75+2+2.25 · 11 = 2.75 > 0

Figure 3: Case where the protocol is not individual rational: i’s payoff is lower than ri, i’s
minimum payoff when it forms a singleton.

Property 3. If (∀s ∈ S ) vi(s) ≥ ri = mins∈S |{i}∈s, then ui ≥ ri, i.e., the payoff distribu-
tion ui is individually rational.

Proof. The hypothesis ∀s ∈ S , vi(s) ≥ ri means that for any CS, the valuation of agent
i is at least equal to i’s minimum valuation when it forms a singleton coalition, i.e., the
payoff of an agent in a coalition with at least another agent should be at least the minimum
payoff the agent receives when it is on its own in a singleton coalition. Hence, we have∑

s∈E αsvi(s) ≥
∑

s∈E αsri, and then E(vi) ≥ ri as
∑

s∈E αs = 1. From Proposition 2, we
have ui ≥ E(vi) ≥ ri.

4.2 Computational Complexity of the centralized algorithm

We now consider the complexity of computing the payoff distribution if a centralized entity
was used. To compute the canonical form of a stochastic matrix, we first need to compute
the communication classes of the matrix and this operation is polynomial in the size of the
matrix (O(B(n)2)). Then, to determine the canonical form of the matrix, we need to find
the permutation matrix, which can also be done in quadratic time, hence in O(B(n)2). To
compute the limit behavior of the Markov chain, either a matrix has to be inverted (which
can be done in O(B(n)3), or a linear system needs to be solved (iterative methods can also
be used here). The complexity is then O(B(n)3). The fact that the matrix is sparse should
allow for faster computation. The search of the optimal CS is O(B(n)) if the brute force
method is applied. As we consider valuation function that depends on CS, we cannot use
the faster algorithm in [11]. The computation of the side-payments and the execution of the
payments has linear complexity. Hence, the complexity of the protocol is O(B(n)3).
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4.3 Experiments with Random Valuation Function

We now experiment with random valuation functions. The valuation of a coalition C for a
particular CS is drawn from a uniform distribution in [0, C]. Using this distribution, it is on
average better to have coalitions containing many agents, but the valuation function is not
superadditive. The valuation of each member of C is distributed randomly: each member
i ∈ C receives wi · v(C) with zi drawn from a uniform distribution in [0, 1] and wi = ziP

j∈C zi
.

We now present the result of a particular valuation function with 6 agents where the number
of CSs is 203. The associated Markov chain has 54 transient states and 149 ergodic states.
The associated transition matrix of size 203 × 203 = 41209 has only 735 positive entries,
the matrix is quite sparse. The CS with maximal social welfare is not individually stable.
The value of the agents are shown in Table 4.3: the second column (avg) represents the
average payoff of an agent over all CSs, the third column vi is the expected utility of an
agent computed with the Markov chain, the fourth column wi is the share of the value of
the optimal CS and the last column vi is payoff of the agents from our protocol. Note that
in the example, the value allocated to the agents from our protocol is much larger than the
expected value from traversing the Markov chain.

agent avg vi wi vi

0 0.50 0.61 0.17 0.96
1 0.49 0.63 0.17 0.99
2 0.50 0.60 0.16 0.93
3 0.51 0.64 0.18 1.00
4 0.56 0.54 0.15 0.85
5 0.50 0.58 0.16 0.90

Table 2: Agents utilities for a random valuation function

4.4 Discussion on the payoff distribution

Our protocol uses global properties of the valuation function and shares the utility of the
optimal CS, s?, in a fair manner. The distribution of the valuation of s?, however, is not
according to the actual coalitions present in s?. In other words, given the payoff function
vi, it is possible that, for each coalition C ∈ s?,

∑
i∈C ui 6=

∑
i∈C vi(s?).

This is different from the traditional assumption in game theory where agents share the
value of their coalition. For some agents i, vi(s?) > ui, which may not appear fair. What
we propose to the agents is to sign a binding contract to form s? and receive ui as a payoff.
If one agent does not want to sign the contract, the agents can form a random CS and
try to find a stable CS3. From Proposition 2, we see that the expected utility from such
a process is at most as good as the value proposed by the protocol and hence the agents
have an incentive to accept the guaranteed value while saving on the “cost” of continual
change. Hence, on one hand, we want the entire population of agents to cooperate and work
together, which has a flavor of using the grand coalition. On the other hand, we want to
use the synergy between the agents, and thus form a CS that maximizes social welfare. The
reward the agent obtain is designed to be fair for all agents and reflects the performance of
the agents over all CSs.

To compute the expected utility of an agent, we have assumed that the coalition forma-
tion process starts in a CS picked randomly from a uniform distribution. Of course, some

3Note that some agents may benefit from starting the coalition formation process in s?, hence, if some
agents deviate, other agents should force the restart the coalition formation process from a random CS
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probability distribution for the initial CSs will benefit some agents in detriment of others.
We believe that the probability distribution of the initial CS is part of the definition of the
coalition formation problem, and agents do not have any control over it. It is from the entire
definition of the coalition formation problem that we compute the expected utility, which
we use as a measure of the strength of an agent. If it the distribution is not uniform, the
probability to reach the strongly connected components will be different (some components
may not be reachable). In addition, the search of the CS that maximizes social welfare
should be performed on the subset of CSs that are reachable from the set of possible initial
CSs. Minor modification of our computations are needed to address these changes.

5 Conclusion, current and future work

Myopic rational agents who receive a private payoff that depends on the CS may never
reach an agreement on the CS to be formed. It may be possible that for each CS, at least
one agent has an incentive to change coalition. We designed a protocol that computes a
payoff distribution so that agents are guaranteed to have at least the expected utility from
a process where each agent would change coalition to maximize its immediate reward. The
protocol assumes that 1) the valuation function provides a payoff for each individual agent
given a CS and 2) the agents are myopically rational. The payoff function we propose is
based on the value of a social welfare maximizing CS and on the expected utility of the
agents if they try to change coalitions to maximize their immediate reward. Following our
protocol, the agents form the optimal CS, which makes the multiagent system efficient from
the viewpoint of a system designer. The valuation of the optimal CS is shared proportionally
to the expected utility of the agents. We argue that this is a fair distribution as the payoff
obtained by an agent reflects the behavior of the agents over the entire space of CSs, i.e.,
it is a global property of the valuation function. When the agents follow our protocol, they
are guaranteed to have a payoff which is at least their expected value if all agents try to
maximize their immediate reward.

The drawback of our approach is its computational cost: the agents needs to build
a Markov chain where the number of states is equal to the number of the CSs, which
is exponential in the number of agents. Although the corresponding transition matrix is
sparse, this method may not be suitable for large number of agents (10 and more). The
agents can approximate the expected value by simulating the Markov chain. In that case,
they only need to be able to evaluate the best coalitional move from a given CS.

Because of the computational cost, we are studying algorithms to approximate the com-
putation of the Markov chain. By sampling the chain, we can obtain rapidly good estimate of
the expected utility of the agents. Another current line of research is the design of protocols
and the issue of revealing the valuation function. In the general case, agents have to reveal
their valuation, and protocol as [3] can help us ensure that no agent can take advantage of
knowledge asymmetry. When agents are sharing a niche, e.g., when the valuation function
represent a share attributed to each agent, the agents only need to reveal a preference order
over the CSs and no agent has incentive to lie unilaterally.
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Computing the Degree of Manipulability in

the Case of Multiple Choice

Fuad Aleskerov, Daniel Karabekyan, Remzi Sanver, Vyacheslav Yakuba

Abstract

The problem of the manipulability of known social choice rules in the case of mul-
tiple choice is considered. Several concepts of expanded preferences (preferences
over the sets of alternatives) are elaborated. As a result of this analysis ordinal
and nonordinal methods of preferences expanding are defined. The notions of the
degree of manipulability are extended to the case under study. Using the results of
theoretical investigation, 22 known social choice rules are studied via computational
experiments to reveal their degree of manipulability.

1 Introduction

The problem of manipulation in voting is that the voter can achieve the best social decision
for herself by purposely changing her sincere preferences. Theoretical investigations of the
manipulation problem were first made in [5] [11]. There, it was shown that if some rather
weak conditions hold, any nondictatorial choice rule is manipulable. To which extent social
choice rules are manipulable was studied in [1] [7]. However, estimating the degree of manip-
ulability is a very difficult computational problem — to resolve it simplifying assumptions
are made. The main and the strongest assumption used is a tie-breaking rule, which allow to
consider manipulation problem in the framework of single-valued choice. According to such
rule from the set of winning alternatives only one winner is chosen. For example, in [1] [3]
in the case of multiple choice the outcome has been chosen with respect to the alphabetical
order. This is the most common type of tie-breaking rule because it is simple to implement.
But this method also breaks the symmetry between candidates, that can distort the results
of computation. The weaker tie-breaking rule was introduced in [9]. According to this rule,
a winner is chosen at random in the event of a tie.

Manipulation problem in the case of multiple choice has not been elaborated in detail not
only by its computational difficulty, but also because of absence of the common framework
allowing to construct preferences over sets of alternatives.
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2 The framework

We use notations from [1]. There is a finite set A consisting of m alternatives (m > 2). Let
A = 2A\ {∅} denote a set of all not-empty subsets of the set A. Each agent from a finite
set N = {1, ..., n} , n > 1, has preference Pi over alternatives from the set A and expanded
preference EPi over the set A.

Preferences Pi are assumed to be linear orders, i.e., Pi satisfies the following conditions:

• irreflexivity (∀x ∈ A xPx),
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• transitivity (∀x, y, z ∈ A xPy and yPz ⇒ xPz),

• connectedness (∀x, y ∈ A x 6= y either xPy or yPx).

An ordered n-tuple of preferences Pi is called a profile, −→P . A group decision is made by
a social choice rule using −→P and is considered to be an element of the set A. Let L denote
the set of all linear orders on A . Then the social choice rule can be defined as F : Ln −→ A.

Manipulation in the case of multiple choice can be described as follows. Let
−→
P = {P1, . . . , Pi, . . . , Pn}

be the profile of agents’ sincere preferences, while
−→
P −i = {P1, . . . , Pi−1, P

′
i , Pi+1, . . . , Pn}

is a profile in which all agents but i-th declare their sincere preferences, and P ′i is agent i’s
deviation from her sincere preference Pi. Let C(−→P ), C(−→P −i) denote social choice (a subset
of the set A) with respect to profile −→P and profile −→P −i, correspondingly. Then we say that
manipulation takes place if for i-th agent C(−→P −i)EPiC(−→P ), where EPi is the expanded
preference of i-th agent. In other words, we suppose that outcome when the i-th agent
deviates from her true preference is more preferable according to her expanded preference
(i.e., according to her preferences over sets) than in the case when she reveals her sincere
preference.

3 Basic assumptions for preferences expansion

Let us give some basic conditions of the relationship between preferences over alternatives
and expanded preferences over outcomes (sets of alternatives).

First condition was introduced in [6] and is also known as Kelly’s Dominance axiom.
Here we will use the stronger version of Kelly’s axiom introduced in [8]

Kelly’s Dominance axiom (strong). ∀i ∈ N and ∀−→P ,
−→
P ′ ∈ Ln, if(

∀x ∈ C(−→P ) and ∀y ∈ C(
−→
P ′) ⇒ xPiy or x = y

)
and(

∃z ∈ C(−→P ) and ∃w ∈ C(
−→
P ′)⇒ zPiw

) ,

then C(−→P ) (EP (Pi))C(
−→
P ′).

We should notice, that this assumption allows us to compare social choices which have
at most one alternative in the intersection.

Example. Let x1Pix6Pix7Pix9. Using this condition, we can say that
{x1, x6}EPi {x6, x9}, but we cannot compare sets {x1, x6, x7} and {x6, x7, x9}.

In other words, if two outcomes are different only by one alternative, the set which has
more preferable alternative must be more preferable than another set.

Gärdenfors principle. ∀i ∈ N , ∀−→P ∈ Ln and ∀y ∈ A/C(−→P )
1)
(
C(−→P )

)
EPi

(
C(−→P ) ∪ {y}

)
whenever ∀x ∈ C(−→P ) : xPiy

2)
(
C(−→P ) ∪ {y}

)
EPi

(
C(−→P )

)
whenever ∀x ∈ C(−→P ) : yPix

This condition is also known as Gärdenfors principle defined in [4]. It can be explained
in the following way. If we add to some set an alternative which is more (respectively,
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less) preferable than every alternative in the chosen set, new outcome should be more
(respectively, less) preferable than the old one.

In the literature, for example in [2], another conditions can be found. But almost all
of them do not allow us to compare every possible sets of alternatives. For example, for
lexicographic preferences (x1Pix2Pi . . . Pixm−1Pixm) we can not compare sets {x1, x6, x7}
and {x2, x4} or {x1, x100} and {x99, x101}. Thus, we should define algorithms of preferences
expanding which satisfy conditions mentioned above and allow us to compare all the sets of
alternatives.

4 Preference expanding methods

4.1 Lexicographic methods

4.1.1 Leximin

This algorithm of preferences expansion is introduced in [8] and is based on the well-known
maximin behaviour approach. Here we will use it in the form given in [10]. This method is
based on comparison of the worst alternatives of any two sets. If the worst alternatives are
the same, then we should compare second-worst altenatives and so on. If this is impossible,
that is, when one social choice is a subset of another social choice, then the greater set is
preferred to the lesser one.

Let us describe leximin method of preferences expanding. From preferences Pi ∈ L we
can recieve leximin expanded preferences EPi by the following algorithm.

Two social choices X,Y ∈ A are compared:

1. If |X| = |Y | = k, where k ∈ {1, . . . ,m− 1}, then sort alternatives from each social
choice from the most preferred to the least one, that is: X = {x1, . . . , xk} and Y =
{y1, . . . , yk}, where xjPixj+1 and yjPiyj+1 ∀j ∈ {1, . . . , k − 1}. Then X EPi Y if and
only if xhPiyh for the greatest h ∈ {1, . . . , k} for which xh 6= yh.

2. If |X| 6= |Y |, then sort alternatives from each social choice from the least preferred to
the most one, that is: X =

{
x1, . . . , x|X|

}
and Y =

{
y1, . . . , y|Y |

}
, where xj+1Pixj

∀j ∈ {1, . . . , |X| − 1} and yj+1Piyj ∀j ∈ {1, . . . , |Y | − 1}. There can be two cases:

(a) xh = yh ∀h ∈ {1, . . . ,min {|X| , |Y |}}. That is, one social choice is a subset of
another social choice. Then, it was already mentioned above, the greater set is
preferred to the lesser one, that is, X EPi Y if and only if |X| > |Y |.

(b) ∃h ∈ {1, . . . ,min {|X| , |Y |}} for which xh 6= yh. Then X EPi Y if and only if
xhPiyh for the least h ∈ {1, . . . ,min {|X| , |Y |}}, for which xh 6= yh.

For example, for three alternatives and preferences aPibPic over them, leximin expanded
preferences EPi will be

{a}EPi {a, b}EPi {b}EPi {a, c}EPi {a, b, c}EPi {b, c}EPi {c}

4.1.2 Leximax

This preferences expanding method is similar to the leximin one, but in this case the best of
any two social choices are compared. If the best alternatives are the same, then we should
compare second-best altenatives and so on. If this is impossible, that is, when one social
choice is a subset of another social choice, then the lesser set is preferred to the greater one.

For example, for three alternatives and preferences aPibPic over them, leximax expanded
preferences EPi will be
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{a}EPi {a, b}EPi {a, b, c}EPi {a, c}EPi {b}EPi {b, c}EPi {c}

4.2 Probabilistic methods

These methods of preferences expanding in contrast to lexicographic methods suggest that
for voter not only the presence of the alternative in a social choice is important, but the
probability that this alternative would be the final outcome is important as well. Here two
algorithms are considered: an ordering is constructed based on the probability of the best
alternative and an ordering is constructed based on the probability of the worst alternative.

4.2.1 Ordering based on the probability of the best alternative

This preference expanding algorithm is based on the element-wise comparison of two social
choices. If the best alternatives of two sets are the same, then the set, in which the proba-
bility that this alternative would be the final outcome is higher, is more preferable. In fact,
it will be the lesser set. If the best alternatives are the same and have equal probability to
be the final outcome, then next alternatives are compared in the same way.

Example. In the set {a, b, c} probability that alternative a would be the final outcome
equals 1

3 (we assume that each alternative of the winning set has equal probability to be
chosen as final outcome). In the set {a, c} this probability equals 1

2 . In other words, there
will be {a, c}EPi {a, b, c} by expanded preferences based on the probability of the best
alternative algorithm.

For example, for three alternatives and preferences aPibPic over them, expanded prefer-
ences EPi based on the probability of the best alternative will be:

{a}EPi {a, b}EPi {a, c}EPi {a, b, c}EPi {b}EPi {b, c}EPi {c}

4.2.2 Ordering based on the probability of the worst alternative

This preferences expanding method is similar to the previous, but in this case the probability
of the worst alternative is consider. The set in which this probability is higher is less
preferable.

For example, for three alternatives and preferences aPibPic over them, expanded prefer-
ences EPi based on the probability of the worst alternative will be:

{a}EPi {a, b}EPi {b}EPi {a, b, c}EPi {a, c}EPi {b, c}EPi {c}

4.3 Ordinal methods

This approach is based on the assumption of expected utility maximization introduced by
von Neuman and Morgenstern. Here we will use a particular case of this assumption.

1. First of all, we will assign utility of each alternative for its place in preferences. In
fact, we will rank the alternatives - the best one will receive the rank m, the next one
the rank m− 1, and so on. The worst alternative has the rank of 1.

2. We assume that each alternative has equal probability to be chosen as the final out-
come. It means that utility of the set of alternatives is equal to the average utility
value of all alternatives within this set.

In fact, even these assumptions do not allow us to compare all social choices when m > 2.
For example, for three alternatives and preferences aPibPic over them, there are sets {a, b, c},
{a, c}, {b}, which have equal utility of 2 according to this approach. So, we need to consider
additional assumptions.
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4.3.1 Lexicographic expansions

These methods suggest the use of lexicographic approach to the sets which are uncompared
by ordinal method itself. Note that new expanded preferences may differ from lexicographic
preferences.

4.3.2 Probabilistic expansions

This methods suggest the use of probabilistic approach to the sets which are uncompared
by ordinal method itself. For example, for four alternatives and preferences aPibPicPid over
them, expanded preferences EPi based on ordinal method with the probability of the worst
alternative approach are (the groups of the sets for which expansion is used are underlined):

{a}EPi {a, b}EPi{b}EPi {a, b, c}EPi {a, c}EPi
EPi {a, b, d}EPi{b, c}EPi {a, b, c, d}EPi {a, d}EPi

EPi {a, c, d}EP i {c}EPi {b, c, d}EPi {b, d}EPi {c, d}EPi {d}

4.3.3 Attitude to risk expansions

These methods are based on attitude to risk approach. In the case when the expected
utility of several sets is equal, the risk-averse voter will prefer the set with the lowest
variance and risk-lover voter will prefer the set with the highest variance. For up to 6
alternatives expanded preferences based on ordinal method with this expansions coincide
with expanded preferences based on ordinal method with probabilistic expansion. If the
number of alternatives is greater than 7 the coincidence does not hold.

Example. Let us consider lexicographic preferences x1Pix2Pi . . . Pixn, where n ≥ 7.
There are sets {x1, x5, x6} and {x2, x3, x7} which have the equal rank and the equal variance.
So, these sets are uncompared by ordinal method with attitude to risk expansions.

For three alternatives these methods yield the same results as probabilistic methods,
but for four alternatives this fact does not hold. For example, for four alternatives and the
preferences aPibPicPid over them, expanded preferences EPi based on ordinal method with
risk-lover expansion are (the groups of the sets for which expansion is used are underlined):

{a}EPi {a, b}EPi{a, c}EPi {a, b, c}EPi {b}EPi
EPi {a, b, d}EPi{a, d}EPi {a, b, c, d}EPi {b, c}EPi

EPi {a, c, d}EP i {b, d}EPi {b, c, d}EPi {c}EPi {c, d}EPi {d}

4.3.4 Cardinality expansions

This approach is based on comparison of the cardinality of sets which are uncomapred by
ordinal method itself. We assume, that when expected utility of several sets is equal, then for
voter a cardinality is important. There are two methods: one assumes that the greater set
is preferred to smaller one in case of the same rank, and the other assume that the smaller
set is preferred to the greater one. Note that these assumptions are rather non-binding.
It allows us to compare all sets only when there are three alternatives. However, even in
this case this method do not give different results. For example, for three alternatives and
preferences aPibPic over them, expanded preferences EPi based on ordinal method with
greater set approach yield the same result as leximax method and ordinal method with
leximax expansion:

{a}EPi {a, b}EPi {a, b, c}EPi {a, c}EPi {b}EPi {b, c}EPi {c}

For more than four alternatives cardinality expansion itself don’t allows to compare all
sets of alternatives. So, additional expansions mentioned above should be added in this
case.
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5 Indices of manipulability

Number of alternatives being m, the total number of possible linear orders is obviously equal
to m!, and total number of profiles with n agents is equal to (m!)n. In [7] to measure a
degree of manipulability of social choice rules the following index was introduced (we call it
Kelly’s index and denote as K) :

K = d0
(m!)n ,

where d0 is the number of profiles in which manipulation takes place1.
In [1] index of freedom of manipulation is introduced. We also introduce two similar

indices: the degree of nonsensitivity to preference change and probability of getting worse.
Let us note that for an agent there are (m! − 1) linear orders to use instead of her sincere
preference. Denote as κ+

i (i = 1, ..., n; 0 ≤ κ+
i ≤ m! − 1) the number of orderings in

which voter is better off, κ0
i - the number of orderings when the result of voting remain

the same and κ−i -the number of orderings in which voter is worse off. It is obvious that
κ+
i + κ0

i + κ−i = (m! − 1). Dividing each κi to (m! − 1) one can find the share of each
type of orderings for an agent i in this profile. Summing up each share over all agents and
dividing it to n one can find the average share in the given profile. Summing the share over
all profiles and dividing this sum to (m!)n we obtain three indices

I1 =
∑(m!)n

j=1

∑n

i=1
κi

(m!)n·n·(m!−1)

where κi is κ+
i , κ0

i or κ−i . It is obvious that I+
1 + I0

1 + I−1 = 1.
These indices K and I1 (as well as index J) measure the degree of manipulability in

terms of the share of manipulable profiles or the share of orderings using which an agent
can manipulate.

The following two indices show the efficiency of manipulation, i.e., to which extent
an agent can be better off via manipulating her sincere ordering. Let under a profile −→P
social decision be the set C

(−→
P
)

which stands at k-th place from the top in the expanded

preferences of i-th agent. Let after her manipulation the social decision be a set C
(−→
P ′
)

which stands in the expanded preferences of the i-th agent at j-th place from the top, and
let j < k. Then θ = j − k shows how is the i-th agent better off. Let us sum up θ for
all advantageous orderings κ+

i (defined above), and let us divide the obtained value to κ+
i .

Denote this index through Zi, which shows an average ”benefit” (in terms of places) of
manipulation of the agent i gained via manipulaiton κ+

i orderings from (m!− 1). Summing
up this index over all agents and over all profiles, we obtain the index under study

I2 =
∑(m!)n

j=1

∑n

i=1
Zi

(m!)n·n

The next criterion I3 is a modification of I2. Instead of evaluating the ”average” benefit
Zi for i-th agent, we evaluate the value

Zmax
i = max(Z1, ..., Zκi).

In other words, the value Zmax
i show the maximal benefit which can be obtained by

agent i. Summing up this index over all agents and over all profiles, we obtain our next
index under study

1In [1] an extended version of Kelly’s index was introduced. Denote by λk the number of profiles in which

exactly k voters can manipulate. Construct index Jk =
λk

(m!)n which shows the share of profiles in which

exactly k voters can manipulate. Obviously, K = J1 + J2 + ... + Jn. Then one can consider the vectorial
index J = (J1, J2, ..., Jn).

32



I3 =
∑(m!)n

j=1

∑n

i=1
Zmax

i

(m!)n·n

The indices K, I1, I2, I3, J have been calculated for each of the rules introduced in the
next section. The indices I1, I2 and I3 were introduced in [1].

6 Social Choice Rules

The calculation of indices is performed for up to m = 5 alternatives for 22 social choice
rules. In this work the results only for 5 rules will be given.

1. Plurality Rule
Choose alternatives, that have been admitted to be the best by the maximum number

of agents, i.e.

a ∈ C(−→P )⇐⇒ [∀x ∈ A n+(a,−→P ) ≥ n+(x,−→P )],

where n+(a,−→P ) = card{i ∈ N | ∀y ∈ A aPiy}

2. Approval Voting.
Let us define

n+(a,−→P , q) = card{i ∈ N | card{Di(a)} ≤ q − 1},

i.e., n+(a,−→P , q) means the number of agents for which a is placed on q’th place in their
orderings. Thus, if q = 1, then a is the first best alternative for i-th voter; if q = 2, then
a is either first best or second best option, etc. The integer q can be called as degree of
procedure.

Now we can define Approval Voting Procedure with degree q

a ∈ C(−→P )⇔ [∀x ∈ A n+(a,−→P , q) ≥ n+(x,−→P , q)],

i.e., the alternatives are chosen that have been admitted to be between q best by the maxi-
mum number of agents.

It can be easily seen that Approval Voting Procedure is a direct generalization of Plurality
Rule; for the latter q = 1.

3. Borda’s Rule.
Put to each x ∈ A into correspondence a number ri(x,

−→
P ) which is equal to the cardi-

nality of the lower contour set of x in Pi ∈
−→
P , i.e. ri(x,

−→
P ) = |Li(x)| = |{b ∈ A : xPib}|.

The sum of that numbers over all i ∈ N is called Borda’s count for alternative x,

r(a,−→P ) =
n∑
i=1

ri(a, Pi).

Alternative with maximum Borda’s count is chosen., i.e.

a ∈ C(−→P )⇐⇒ [∀b ∈ A, r(a,−→P ) ≥ r(b,−→P )].

4. Black’s Procedure.
If Condorset winner exists, it is to be chosen. Otherwise, Borda’s Rule is applied.

5. Threshold rule.
Let v1(x) be the number of agents for which the alternative x is the worst in their

ordering, v2(x) is the number of agents placing the x second worst, and so on, vm(x)
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the number of agents considering the alternative x the best. Then we order the alternatives
lexicographically. The alternative x is said to V -dominate the alternative y if: v1(x) < v1(y)
or, if there exists k not more than m, s.t. vi(x) = vi(y), i = 1, ..., k − 1, and vk(x) < vk(y).
In other words, first, the number of worst places are compared if these numbers are equal
then the number of second worst places are compared and so on. The alternatives which
are not dominated by other alternatives via V are chosen.

7 Computation scheme

The calculation of indices is performed for up to m = 5 alternatives. For small number
of voters n all possible profiles are checked for manipulability and respective indices are
evaluated. For greater number of voters the statistical scheme is used.

For each profile under consideration in both exhaustive and statistical schemes, all m!-1
manipulating orderings for each voter are generated and the respective choice sets of ma-
nipulating profiles are compared with the choice of the original profile, using all introduced
methods of the preference extensions.

8 Results

In the case of 3 alternatives there are 4 different types of extended preferences. For example,
if preferences over are aPibPic then the extended preferences are as follows:

1. Leximin method, Ordinal method with leximin or greater set extensions.

{a}EPi {a, b}EPi {b}EPi {a, c}EPi {a, b, c}EPi {b, c}EPi {c}

2. Leximax method, Ordinal method with leximax or lesser set extensions.

{a}EPi {a, b}EPi {a, b, c}EPi {a, c}EPi {b}EPi {b, c}EPi {c}

3. Probabilistic method based on the probability of the worst alternative, Ordinal method
with risk-averse extension.

{a}EPi {a, b}EPi {b}EPi {a, b, c}EPi {a, c}EPi {b, c}EPi {c}

4. Probabilistic method based on the probability of the best alternative, Ordinal method
with risk-lover extension.

{a}EPi {a, b}EPi {a, c}EPi {a, b, c}EPi {b}EPi {b, c}EPi {c}

The results of Kelly’s index calculation for 3 and 4 voters are presented in the tables
1 and 2 correspondingly. In the brackets near the name of the rule the results from [1]
are given. One can see that in most cases, especially in the case of 4 voters, the degree of
manipulability in the case of single-valued choice is underestimated. We also can state that
for almost all rules Method 1 and Method 3 have the same Kelly’s index as well as Methods
2 and 4.

In Figures 1 and 2 the results of calculation for the larger number of voters are given.
Kelly’s index is shown on the Y-axis and the logarithm of the number of voters is shown on
the X-axis. The calculation was made for each number of voters from 3 to 25 and then for
29, 30, 39, 40 and so on up to 100. That explains changes at the figures when number of
voters is more than 25.

We can make several conclusions from these figures.

34



Method 1 Method 2 Method 3 Method 4
Plurality (0,1667) 0,2222 0 0,2222 0

Approval q=2 0,1111 0,6111 0,1111 0,6111
Borda (0,2361) 0,3056 0,4167 0,3056 0,4167
Black (0,1111) 0,0556 0,1667 0,0556 0,1667

Threshold 0,3056 0,4167 0,3056 0,4167

Table 1: The case of 3 alternatives and 3 voters

Method 1 Method 2 Method 3 Method 4
Plurality (0,1852) 0,3333 0,3333 0,3333 0,3333

Approval q=2 0,2963 0,2963 0,2963 0,2963
Borda (0,3102) 0,3611 0,4028 0,3611 0,4028
Black (0,1435) 0,2361 0,2778 0,2778 0,2361

Threshold 0,4028 0,4028 0,4028 0,4028

Table 2: The case of 3 alternatives and 4 voters

Figure 1: Kelly’s index for Leximin extension method.
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Figure 2: Kelly’s index for Leximax extension method.

1. The answer on the question which rule is less manipulable depends on the method
of preferences extension. For example, for the number of voters divisible by 3 Ap-
proval voting rule is less manipulable than Plurality rule for Method 1 and is more
manipulable for Method 2.

2. If the number of voters is small Threshold rule is less manipulable than Borda rule.
But when the number of voters is high enough Borda rule is better in Kelly’s sense.
The exact minimum number of voters needed depends on the method used.

3. Black’s Procedure is least manipulable almost for any number of voters and for any
method.

4. Kelly’s index for Black’s Procedure and Method 1 depends on even or odd number of
the voters considered. At the same time for rules such as Plurality, Approval voting
and Threshold, there is a cycle length of m. In this case there is a cycle length of 3.
The dependence from the number of alternatives is explained by differences in number
and cardinality of ties produced by rules. For example, the set {a, b, c} can appear as
the result of plurality voting only in the case when the number of voters is divisible
by the number of alternatives.

In Figure 3 the results of calculation of I1 index for 3 alternatives, 3 voters and Method
1 are given. The left part of each row is the degree of freedom of manipulation. The right
part is the probability of getting worse. The middle part is the degree of nonsensitivity to
preference change. In Figure 4 the results of calculation of I1 index for 3 alternatives, 100
voters and Method 1 are given. We can see that the bigger the number of voters is, the less
is freedom of manipulation as well as the probability of getting worse.
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Figure 3: I1 for Leximin extension method and 3 alternatives.

Figure 4: I1 for Leximin extension method and 100 alternatives.
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On the Complexity of Rationalizing Behavior

Jose Apesteguia and Miguel A. Ballester

Abstract

We study the complexity of rationalizing choice behavior. We do so by analyzing two
polar cases, and a number of intermediate ones. In our most structured case, that is
where choice behavior is defined in universal choice domains and satisfies the “weak
axiom of revealed preference,” finding the complete preorder rationalizing choice
behavior is a simple matter. In the polar case, where no restriction whatsoever
is imposed, either on choice behavior or on choice domain, finding the complete
preorders that rationalize behavior turns out to be intractable. We show that the
task of finding the rationalizing complete preorders is equivalent to a graph problem.
This allows the search for existing algorithms in the graph theory literature, for the
rationalization of choice.

1 Introduction

The theory of individual decision making is typically formulated on the basis of two dif-
ferent approaches. A revealed preference approach that directly studies individual choice
behavior through choice correspondences. Or a preference relation approach, where tastes
are summarized through binary relations. Clearly, the relation between these two distinct
formal approaches to individual behavior is a fundamental question in economics. It is
said that a collection of preference relations rationalizes choice behavior, whenever both
approaches identify the same alternatives for every possible choice problem that may arise.1

This problem has attracted a great deal of attention in the literature.
Drawing on the tools of theoretical computer science, we study the question of how

complex it is to find the preference relations that rationalize choice behavior. That is, given
any possible choice rule, how difficult it is to construct the collection of preference relations
that summarizes choice behavior. In spite of the fact that the question of rationalization is
central to economics, to the best of our knowledge this paper is the first one to study the
practical difficulty of rationalization.

We analyze two polar cases and some intermediate ones. In the first place we study what
we call the rational procedure. This is the case where the choice correspondence satisfies
the well-known consistency property known as the “weak axiom of revealed preference”
(WARP). The classic result in this case is that a choice correspondence defined on the
universal choice domain (i.e., choice is defined on all possible choice problems) satisfying
WARP is rationalized by a unique complete preorder. We show that finding the complete
preorder in such a case is a simple matter, as there are algorithms that can easily construct
it.

We then turn the analysis to the polar case where no restriction whatsoever is imposed,
neither on choice behavior nor on the choice domain. In other terms, we do not impose
any consistency property on choice behavior; neither WARP, nor any other property. With
regard to the choice domain, we consider arbitrary collections of choice problems. Then,
drawing from a seminal paper by Kalai, Rubinstein, and Spiegler (2002; hereafter KRS),
in order to rationalize behavior we use a collection (a book) of complete preorder relations
(rationales), such that for every choice problem A in the domain of feasible choice problems,
the choice c(A) is maximal in A for some complete preorder. Clearly, there are multiple
books that rationalize a given choice rule. KRS naturally propose to focus on those books

1In the next section we will make precise the terminology we use in this introduction.

39



that use the minimal number of preference relations. In this case, we show that, contrary to
the previous one, finding a minimal book is a difficult computational problem (see Theorem
3.2). That is, there is little hope for the existence of an algorithm that for every possible
choice rule finds a minimal book in a reasonable time frame. Hence, in this extremely
unstructured case, the task of finding the collection of preferences that rationalize behavior
is in general intractable.

Now, the question arises whether it is the conjunction of (i) unstructured choice behavior
and (ii) unrestricted choice domain that leads to the computational hardness of the problem
of rationalization. It could be the case that the difficulty in finding the preference relations
rationalizing choice comes from the unstructured nature of behavior. It turns out that the
answer to this question seems to depend on the single or multi-valued nature of the choice
function.

Theorem 3.4 suggests that in the case of single-valued choice functions, the essence of the
intractability of rationalization is triggered by the interplay of both unstructured behavior
and unrestricted domain. Theorem 3.4 shows that under the universal choice domain, the
problem of finding a minimal book is quasi-polynomially bounded. However, we argue that
in the case of choice correspondences the practical difficulty of rationalizing behavior may
be due to the nature of choice behavior per se.

The challenge is then to understand the driving force of the complexity of rationalization.
If we are able to understand the roots of the complexity in rationalizing choice behavior, we
may use this to search for specific algorithms that behave well under certain circumstances.
We start this challenge by defining two binary relations on the space of choice problems,
that capture two fundamental properties on the structural relation of choice problems. By
doing so we will be able to draw a connection with a graph theory problem (see Theorem
4.3). This is especially useful since there is a wealth of algorithms for graph problems that
may be used to solve the problem of rationalization of certain choice structures.

We then end the analysis by exploring a specific case, inspired by the recent work of
Manzini and Mariotti (2007; hereafter MM). MM study the nature of choice functions
that can be rationalized by sequentially applying a fixed set of asymmetric binary relations.
Among other results, they provide a full characterization for the case when a choice function
is sequentially rationalizable by two rationales. Such a choice function is called a Rational
Shortlist Methods (RSMs). Using the tools derived for establishing the connection with
graph theory, we show that the rationalization of RSMs through multiple rationales turns
out to be a computationally tractable problem.

Apart from those papers already mentioned, Salant (2003), Ok (2005), and Xu and Zhou
(2007) constitute recent related works. Salant (2003) studies two computational aspects of
choice when the “independence of irrelevant alternatives” (IIA) axiom does not necessarily
hold: the amount of memory choice behavior requires, and the computational power needed
for the computation of choice. He shows that the rational procedure is favored by these
considerations. Ok (2005) provides an axiomatic characterization of choice correspondences
that satisfy the IIA axiom. Finally, Xu and Zhou (2007) propose the rationalization through
extensive games with perfect information, and provide a full characterization of those choice
functions that can be so rationalized.

The rest of the paper is organized as follows. Section 2 gives the definitions on choice
behavior and binary relations, and makes precise the notion of rationalization we will use
throughout the paper. Furthermore, it contains a brief introduction to the theory of NP-
completeness. Section 3 contains the complexity results. In section 4 we draw on the
connection between the problem of rationalization and the literature on graph theory. Fi-
nally, section 5 concludes and relates our work to the economics literature on language and
to the bounded rationality literature.
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2 Preliminaries

2.1 Choice behavior and preference relations

Let X be a finite set of n objects. We denote by U the set of all non-empty subsets of
X. We also consider the general case of arbitrary domains D ⊆ U , with D 6= ∅. A choice
correspondence c on D assigns to every A ∈ D a non-empty set of elements c(A) ⊆ A. A
single-valued choice function simply assigns to every A ∈ D, a unique element c(A) ∈ A.2

The weak axiom of revealed preference is the classic consistency property:

Weak Axiom of Revealed Preference (WARP): Let A,B ∈ D and assume
x, y ∈ A ∩B; if x ∈ c(A) and y ∈ c(B), then we must also have x ∈ c(B).

WARP imposes a great deal of structure on choice. This can be best appreciated through
its implications on the connection with preference relations. In order to elaborate on the
connection between choice behavior and preference relations, which is central to this paper,
we first introduce some notation. Denote by � a binary relation on X, �⊆ X ×X. Binary
relations � and ∼ are the asymmetric and symmetric parts of �, respectively. Hence, x � y
if and only if x � y and ¬(y � x), and x ∼ y if and only if x � y and y � x. We will say
that a binary relation is a preorder if it is reflexive and transitive. We will often refer to
complete preorders by rationales. We will say that a binary relation is a linear order if it
is antisymmetric, transitive, and complete. Finally, we will say that it is a partial order if
it is reflexive, antisymmetric, and transitive. For any A ∈ D, M(A,�) denotes the set of
maximal elements in A with respect to �, that is, M(A,�) = {x ∈ A : y � x for no y ∈ A}.
Let c(A) � c(B), A,B ∈ D, denote the case when for every x ∈ c(A) and y ∈ c(B), we have
x � y.

The classic notion of rationalization of a choice correspondence deals with the issue of
existence of a unique complete preorder relation � that explains choice behavior defined on
U .3 The question is whether there is a � such that c(A) = M(A,�) for every A ∈ U . A
well-known result establishes that a choice correspondence c satisfies WARP if and only if
there is a complete preorder � such that c(A) = M(A,�) for every A ∈ U .4 This result
makes it clear that if c does not satisfy WARP then a broader definition of rationalization
is needed.

In the context of single-valued choice functions and universal choice domains U ,
KRS propose the rationalization of any possible choice function through collections
of linear orders. The interest is naturally directed to the minimal number of linear
orders that rationalizes choice behavior. Here we use this notion of rationalization. To
this end we extend the original definition to include choice correspondences and arbi-
trary choice domains D. Accordingly, we also substitute linear orders by complete preorders.

Minimal Rationalization by Multiple Rationales (RMR): A K-tuple of complete
preorders (�k)k=1,...,K on X is a rationalization by multiple rationales (RMR) of c if for
every A ∈ D, there is a k ∈ {1, . . . ,K}, such that c(A) = M(A,�k). It is said to be
minimal if any other RMR of c has at least K preference relations.

Note that a minimal RMR is an extension of the classic idea of rationalization by one
rationale. In fact, if c satisfies WARP, then the minimal RMR is composed of one complete

2To avoid tedious duplication of notation, we denote both the multi-valued and the single-valued cases
by c. In any case, the context will be specific enough to avoid confusion.

3 Uzawa (1957), Arrow (1959), Richter (1966) and Sen (1970) were among the first to study aspects of
this problem.

4Moulin (1985) and Suzumura (1983) provide surveys of the related literature.
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preorder. Further, note also that the case of choice correspondences generalizes the case of
single-valued choice functions. The classic result in the latter context is that a single-valued
choice function c is rationalized by a linear order if and only if c satisfies the property of
independence of irrelevant alternatives (IIA):

Independence of Irrelevant Alternatives (IIA): For any A,B ∈ D, if y ∈ A ⊆ B
and y ∈ c(B), then y ∈ c(A).

We highlight an especially important class of choice sets; the collection of c-maximal
sets. These are the sets that must be explained in order to rationalize behavior. A set S is
c-maximal if any addition to S of elements (consistent with the domain of choice problems
D) leads to a change in choice behavior with respect to the original elements of S. Formally,

c-Maximal Sets: A subset S ∈ D is said to be c-maximal if for all T ∈ D, with S ⊂ T ,
it is the case that c(S) 6= c(T ) ∩ S. Denote the family of c-maximal sets under the choice
domain D by MD

c .

For any c-maximal set there is no possibility of obtaining its associated elements from
any other superset of it included in the domain D, and thus, the study of choice behavior
needs to incorporate it.5 Clearly, all other choice sets in D can be trivially associated with
at least one c-maximal set.

2.2 NP-completeness

We now present an informal introduction to the notion of complexity we use in this paper.
For an excellent, detailed and formal account see Garey and Johnson (1979).6

The theory of NP-completeness is conventionally centered around decision problems.
These are problems formulated with a yes-or-no answer. Consequently, we define a decision
problem that is the binary analog of the problem of finding a minimal RMR of a choice
correspondence c on D as follows.

Rationalization by Complete Preorders in D (RCP-D): Given a choice corre-
spondence c on D, can we find k ≤ K complete preorders that constitute a rationalization
by multiple rationales of c?

Appropriately setting D or U , and complete preorders or linear orders, we may define
the binary problems Rationalization by Complete Preorders in U , RCP-U , Rationalization
by Linear Orders in D, RLO-D, and Rationalization by Linear Orders in U , RLO-U .

In this paper we use the proof-by-reduction technique to prove that a particular (decision)
problem is NP-complete. That is, to prove that a given problem Π in NP is in fact NP-
complete, we show that it contains a known NP-complete problem Π′ as a special case.

3 Complexity of rationalization

We start with the classic, structured case, where D = U and WARP holds. Let us call this
case the rational procedure. Then we will study the polar case of the rational procedure.

5In the simpler case of single-valued choice functions, the condition to identify the class of c-maximal
sets is simply c(S) 6= c(T ).

6See also Cormen, Leiserson, Rivest, and Stein (2001). Ballester (2004) and Aragones, Gilboa, Postlewaite
and Schmeidler (2005) provide introductions in the context of economics.
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This is the case where no restriction whatsoever is imposed either on choice behavior, or on
the choice domain. At the same time, we will deal with a number of intermediate cases.

3.1 Structured choice behavior: The rational procedure

We start by considering the case where a choice correspondence defined over the universal
choice domain U satisfies WARP. We have already mentioned that this represents a very
structured case, as it is well-known that there exists a unique complete preorder relation �
rationalizing c.

Now the question arises of how difficult it is to find the rationalizing binary relation �.
Intuitively, it seems that the high degree of structure of the rational procedure implies that
finding the rationale is not a difficult task. This is in fact the case. It is easy to show that
the set |MU

c | is small, as it contains at most n elements. The simplicity of the family of
maximal sets allows us to consider very simple algorithms to obtain the rationalization of
choice behavior in polynomial time. Consider for instance the following trivial one.

Take X0 = X and iteratively define Xk = Xk−1 \ c(Xk−1) if Xk−1 \ c(Xk−1) 6= ∅ holds.
Then, the set of maximal elements is the collection of sets {Xk}, with cardinality equal to
or less than n. Clearly, every element is chosen from exactly one set Xk. Then, the rationale
can be defined by stating that x � y if and only if x ∈ Xl, y ∈ Xj , with Xl, Xj in the family
of c-maximal sets {Xk} and k ≤ j.

We summarize the above in the following observation.

Observation 3.1 Let the choice correspondence c be a rational procedure and D = U ,
then |MU

c | ≤ n and the problem of finding the complete preorder � that rationalizes c is
polynomial.

There are two important remarks to Observation 3.1. First, as a corollary to the above,
finding the linear order � rationalizing a single-valued choice function defined on U that
satisfies IIA is also polynomial. This follows from the fact that the single-valued case is but
a special case of the multi-valued choice correspondence.

Second, the results also hold for arbitrary choice domains D. To find the binary relation
rationalizing c when D 6= U , simply write x � y if and only if x ∈ c(A) and y ∈ A, A ∈ D.
It is easy to see that WARP guarantees that such a binary relation is a complete preorder.

3.2 Unstructured behavior and unrestricted domain

We now turn to the polar case of the rational procedure where we neither impose structure
on choice behavior, nor on the domain of choice sets. This means that, in general, there
is not a single binary relation rationalizing choice behavior, but a set of them in the sense
of KRS. It is clear that the problem of finding the rationales in this case is a much more
demanding task than the one we faced for the rational procedure in the previous section.
In fact we show below that the task is demanding to the point of being intractable. That
is, we show that finding a minimal RMR in this setting belongs to the class of NP-complete
problems, and hence unless P=NP, there is no hope of finding an efficient algorithm that
for every choice correspondence c gives a minimal RMR in a reasonable time frame.

We can now state our first NP-complete result.

Theorem 3.2 RCP-D is NP-complete.

It can be shown that the c used in the proof is single-valued and the binary relations
defined from the partition of the graph are linear orders. Hence, the following corollary to
(the proof of) Theorem 3.2 is immediate.
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Corollary 3.3 RLO-D is NP-complete.

Theorem 3.2 (and Corollary 3.3) show that the conjunction of (i) unstructured choice
behavior and (ii) unrestricted choice domain lead to the NP-completeness of the problem
of rationalization. But are the two conditions required to get the intractability result?
In principle, it could be that the real difficulty in finding a minimal RMR is completely
triggered by choice behavior per se, or it could be that it is the interplay of behavior and
domain that drives the result. Theorem 3.4 below suggests that in the case of single-valued
choice functions it is the interplay of both, unstructured behavior and unrestricted domain,
that triggers the intractability of finding the rationales.

Theorem 3.4 RLO-U is quasi-polynomially bounded.

Theorem 3.4 suggests that RLO-U is not NP-complete.7 Otherwise, Theorem 3.4 would
imply that all NP-complete problems are quasi-polynomially bounded. However, in spite of
continuous efforts such a bound has never been found for NP-complete problems. Indeed,
there is the strong conviction this will never happen.

The question with regard to choice correspondences defined on U , however, remains open.
The naive algorithm used in Theorem 3.4 is not quasi-polynomially bounded in this case.
It is not difficult to see that the number of possible complete preorders is upper bounded
by n!2. The problem arises because, in the case of complete preorders, the n− 1 bound on
the maximum number of preference relations to check for rationalization does not hold. In
fact, it is straightforward to see that the bound turns out to be 2n. This implies that the
naive algorithm for choice correspondences cannot be quasi-polynomially bounded, having
an exponential order of magnitude. Therefore, it may well be the case that with choice
correspondences, the practical difficulty in finding a minimal RMR is triggered by choice
behavior per se.

The challenge for future research is then to understand the driving force of the complexity
of rationalization, and use this understanding to find specific algorithms that behave well
under certain circumstances. In the next section we start this task by drawing a connection
with graph theory. This is especially useful since there is a wealth of algorithms for graph
problems that may solve the problem of rationalization of certain choice structures.

4 On the structure of the complexity of rationalization

4.1 Rationalization and graph theory

The following binary relations capture two fundamental properties on the structural relation
of maximal sets.

Definition 4.1 Let A,B ∈ MD
c , A → B if and only if c(A) ∩B /∈ {∅, c(B) ∩A}.

This first binary relation → states the conditions under which a set A blocks another
set B, in the sense that A and B cannot be rationalized by a binary relation � writing
c(A) � c(B). Define HA = A \ c(A), A ∈ D. Then, when c is single-valued, → reduces to:
A → B if and only if c(A) ∈ HB .

Definition 4.2 Let A,B ∈ MD
c , A−B if and only if c(A) ∩ c(B) 6= ∅.

7The naive algorithm of Theorem 3.4 does not necessarily behave well in unrestricted choice domains D.
The reason being that in this case the input size need not be as high as 2n, but for example, it could be n.
This gives an exponential order of magnitude for the naive algorithm.
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A − B means that sets A and B are linked in the rationalization problem. That is,
whenever A − B, if A and B are to be rationalized by the same binary relation �, then it
must be that c(A) ∼ c(B).

Finally, we use the above two binary relations to define an oriented cycle.

Oriented Cycle: The collection {At}n
t=1 ∈ MD

c , n ≥ 2, is an oriented cycle if

1. A1 = An,

2. for every i ∈ {1, . . . , n− 1}, either Ai → Ai+1, or Ai −Ai+1, and

3. there is j ∈ {1, . . . , n− 1} such that Aj → Aj+1.

We are now in a position to introduce a graph theory problem over the space of
c-maximal sets.

Minimal Non-Oriented Partition (NOP): A partition of MD
c {Vp}p=1,...,P is said

to be a non-oriented partition if for every class Vp there is no oriented cycle. It is said to
be minimal if any other NOP has at least P classes.

A (minimal) NOP is constructed over the set MD
c according to the binary relations →

and −. Hence, a class Vp in the partition has a clear interpretation: all the sets in the class
Vp can be rationalized through a complete preorder �p. Then, an NOP gives information
on which choice problems can be rationalized together.

The following theorem establishes that finding a minimal RMR is equivalent to find-
ing a minimal NOP. This opens the possibility of drawing upon the established algorithm
knowledge on graph theory problems.

Theorem 4.3 Let c be a choice correspondence:
-If {�p}p=1,...,P is a minimal RMR, then there is a minimal NOP {Vp}p=1,...,P .
-If {Vp}p=1,...,P is a minimal NOP, then there is a minimal RMR {�p}p=1,...,P .

The significance of Theorem 4.3 is best appreciated in the case of single-valued choice
functions. Recall that when c is single-valued, A → B if and only if c(A) ∈ HB , A,B ∈ MD

c .
That is, A blocks B if and only if the chosen element in A belongs to B and, at the same,
time this element is not chosen in B. It is clear that such a case is inconsistent with a
linear order rationalizing B and writing c(A) � c(B). Also, note that A − B if and only
if c(A) = c(B). Then the relation between minimal RMRs and minimal NOPs simplifies
considerably. This is because for any three sets A1, A2, B ∈ MD

c , whenever c(A1) = c(A2),
then A1 → B if and only if A2 → B. This implies that, whenever there is an oriented cycle,
there is a cycle composed of elements related only through→. Hence the analysis can obviate
the equivalence relation −, and focus on (MD

c ,→). The latter is simply an standard directed
graph, and the structure defined as an oriented cycle reduces to the standard notion of a
directed cycle. There is an immense literature on graphs without directed cycles, typically
known as directed acyclic graphs (DAGs).8 This is especially important since Theorem 4.3
guarantees that there is much to gain from the results in this literature. Hence, our problem
reduces to find a minimal partition into DAGs.

8See, e.g., Cormen, Leiserson, Rivest, and Stein (2001).
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4.2 An example

The study of concrete choice procedures appears particularly appealing. It is likely that the
structure inherent to specific choice procedures allows for the tractability of rationalization.
Here we provide an example that draws on the previous subsection.

Manzini and Mariotti (2007) study the nature of choice functions defined on U that
can be rationalized by sequentially applying a set of asymmetric binary relations in a fixed
order. Among other results, they provide a full characterization of the case when a choice
function is sequentially rationalized by two asymmetric binary relations. Such a choice
function is called a Rational Shortlist Method (RSM). Their characterization makes use of
the classical property of expansion.

Expansion: If x ∈ c(A) and x ∈ c(B), A,B ∈ U , then x ∈ c(A ∪B).

It is not difficult to observe that the set MU
c shrinks considerably whenever this property

holds. Clearly, for each element x in X there is at most one element in MU
c for which x

is the chosen element, namely, the union of all subsets A for which x is chosen. Denote
the latter by M(x). Then the problem of finding a minimal RMR here reduces to finding a
minimal partition into DAGs over the universal set of alternatives X according to ⇀↽, where
for every x 6= y,

x ⇀↽ y if and only if M(x) → M(y) if and only if x ∈ M(y)

Hence the rationalization of RSMs through multiple rationales turns out to be a com-
putationally tractable problem.

5 Final remarks

We have used the tools of theoretical computer science to study the complexity of finding
the preference relations that rationalize choice behavior. The question of rationalizability
of choice behavior has played a central role in economics. However, surprisingly enough,
virtually no attention has been given to the practical problem of computing the rationales.

We have shown that, in the classical case, when the weak axiom of revealed preference
holds, finding the preference relation rationalizing choice behavior is easy. There are poly-
nomial time algorithms that compute the rationale quickly. On the other hand, when we
neither impose any restriction on choice behavior nor on the domain, we have shown that
the problem of rationalization is NP-complete. Therefore, there is little hope of finding an
efficient algorithm bounded above by a a polynomial function. Furthermore, we have shown
that in the case of single-valued choice functions, it is the conjunction of unstructured choice
and unrestricted domain that drives the intractability result. Under the universal domain,
the problem of finding a minimal book is quasi-polynomially bounded. On the other hand,
we argue that in the choice correspondences case, it may well be the case that the difficulty
in finding a minimal book is triggered by choice behavior per se.

We then turned to trying to better understand the complexity of rationalization. To this
end we identified two binary relations over choice sets that capture part of the essence of
rationalization. Furthermore, these binary relations define a problem in graph theory that
is equivalent to the problem of rationalization. This is particularly interesting since the
complexity issues have attracted a great deal of attention in graph theory. The equivalence
result provided allows for the searching of existing algorithms in graph theory that can be
used for the problem of rationalization.

Apart from the literature on rationalization, our results relate to two other strands in the
literature. First, the problem of rationalization can be read as the problem of transmission
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of information (choice behavior in different situations), given a specific grammar (complete
preorders a la KRS). Under this interpretation, our paper is related to the economics lit-
erature on language (see Rubinstein, 2000). Rubinstein stresses the importance of binary
relations to natural language. In this sense, our results establish that there are practical
limitations to the design of a grammar with the ability to transmit any kind of information.
Several questions arise. Does the structure of natural speech imply the existence of a collec-
tion of complete preorders computable in polynomial time? What, if anything, is lost in the
transmission of information, if the problem of constructing a grammar is upper bounded by
a polynomial time algorithm?

Second, an immediate conclusion from our results is that the more structured behavior
is, the easier it is to rationalize it in practice. That is, rationality makes things easier. This
type of observation has been recognized in the bounded rationality literature from different
perspectives. Tversky and Simonson (1993) note that the standard maximization problem
is hard to beat in terms of its simplicity of formulation. It is most likely that any descriptive
bounded rationality model is condemned to involve a more cumbersome formulation. Also,
Salant (2003) shows that the rational procedure requires the least memory possible and that
the automatation required to compute the rational procedure is the smallest possible.
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Alternatives to Truthfulness are Hard to

Recognize

Vincenzo Auletta, Paolo Penna, Giuseppe Persiano and Carmine Ventre

Abstract

The central question in mechanism design is how to implement a given social choice
function. One of the most studied concepts is that of truthful implementations in
which truth-telling is always the best response of the players. The Revelation Princi-
ple says that one can focus on truthful implementations without loss of generality (if
there is no truthful implementation then there is no implementation at all). Green
and Laffont [1] showed that, in the scenario in which players’ responses can be par-
tially verified, the revelation principle holds only in some particular cases.
When the Revelation Principle does not hold, non-truthful implementations become
interesting since they might be the only way to implement a social choice function
of interest. In this work we show that, although non-truthful implementations may
exist, they are hard to find. Namely, it is NP-hard to decide if a given social choice
function can be implemented in a non-truthful manner, or even if it can be imple-
mented at all. This is in contrast to the fact that truthful implementability can be
recognized efficiently, even when partial verification of the agents is allowed. Our
results also show that there is no “simple” characterization of those social choice
functions for which it is worth looking for non-truthful implementations.
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1 Introduction

Social choice theory deals with the fact that individuals (agents) have different preferences
over the set of possible alternatives or outcomes. A social choice function maps these
preferences into a particular outcome, which is not necessarily the one preferred by the
agents. The main difficulty in implementing a social choice function stems from the fact
that agents can misreport their preferences. Intuitively speaking, a social choice function
can be implemented if there is a method for selecting the desired outcome which cannot
be manipulated by rational agents. By ‘desired outcome’ we mean the one specified by the
social choice function applied to the true agents’ preferences.

More precisely, each agent has a type which specifies the utility he derives if some outcome
is selected. When agents are also endowed with payments, we consider agents with quasi
linear utility: the type specifies the gross utility and the agent’s utility is the sum of gross
utility and payment received. In either case, a rational agent reports a type so to maximize
his own utility and the reported type must belong to a domain consisting of all possible
types. In the case of partially verifiable information, the true type of an agent further
restricts the set of types that he can possibly report [1].

One of the most studied solution concepts is that of truthful implementations in which
agents always maximize their utilities by truthfully reporting their types. The Revelation
Principle says that one can focus on truthful implementations without loss of generality: A
social choice function is implementable if and only if it has a truthful implementation. Green
and Laffont [1] showed that, in the case of partially verifiable information, the Revelation
Principle holds only in some particular cases. When the Revelation Principle does not
hold, non-truthful implementations become interesting since they might be the only way
to implement a social choice function of interest. Although a non-truthful implementation
may induce some agent to misreport his type, given that he reports the type maximizing his
utility, it is still possible to compute the desired outcome “indirectly”. Singh and Wittman
[3] observed that the Revelation Principle fails in several interesting cases and show sufficient
conditions for the existence of non-truthful implementations.

1.1 Our contribution

In this work, we study the case in which the declaration of an agent can be partially verified.
We adopt the model of Green and Laffont [1] in which the ability to partially verify the
declaration of an agent is encoded by a correspondence function M : M(t) is the set of
the possible declarations of an agent of type t. Green and Laffont [1] characterized the
correspondences for which the Revelation Principle holds; that is, correspondences M for
which a social choice function is either truthfully implementable or not implementable at
all.

We show that although non-truthful implementations may exist, they are hard to find.
Namely, it is NP-hard to decide if a given social choice function can be implemented for
a given correspondence in a non-truthful manner. This is in contrast to the fact that it is
possible to efficiently decide whether a social choice function can be truthfully implemented
for a given correspondence. Our results show that there is no “simple” characterization
of those social choice functions that violate the Revelation Principle. These are the social
choice functions for which it is worth looking for non-truthful implementations since this
might be the only way to implement them.

We prove these negative results for a very restricted scenario in which we have only one
agent and at most two possible outcomes, and the given function does not have truthful
implementations. We give hardness proofs both for the case in which payments are not
allowed and the case in which payments are allowed and the agent has quasi linear utility.
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In general payments are intended as a tool for enlarging the class of social choice functions
that can be implemented. We find that there is a rich class of correspondences for which it
is NP-hard to decide if a social choice function can be implemented without payments, while
for the same correspondences it is trivial to test truthful implementability with payments
via the approach in [3]. Finally, we complement our negative results by showing a class of
correspondences for which there is an efficient algorithm for deciding whether a social choice
function can be implemented.

We note that the characterization of Green and Laffont [1] has no direct implication
in our results. Indeed, the property characterizing the Revelation Principle can be tested
efficiently. Moreover, when the Revelation Principle does not hold, we only know that there
exists some social choice function which is only implemented in a non-truthful manner.
Hence, we do not know if the social choice function of interest can be implemented or not.
Note that this question can be answered efficiently when the Revelation Principle holds
since testing the existence of truthful implementations is computationally easy.

Road map. We introduce the model with partial verification by Green and Laffont [1] in
Section 2. The case with no payments is studied in Section 3. Section 4 presents our results
for the case in which payments are allowed and the agent has quasi linear utility. We draw
some conclusions in Section 5.

2 The Model

The model considered in this work is the one studied by Green and Laffont [1] who considered
the so called principal-agent scenario. Here there are two players: the agent, who has a type
t belonging to a domain D, and the principal who wants to compute a social choice function
f : D → O, where O is the set of possible outcomes. The quantity t(X) denotes the utility
that an agent of type t assigns to outcome X ∈ O.

The agent observes his type t ∈ D and then transmits some message t′ ∈ D to the
principal. The principal applies the outcome function g : D → O to t′ and obtains outcome
X = g(t′). We stress that the principal fixes the outcome function g in advance and then
the agent rationally reports t′ so to maximize his utility t(g(t′)). Even though the principal
does not exactly know the type of the agent, it is reasonable to assume that some partial
information on the type of the agent is available. Thus the agent is restricted to report a
type t′ in a set M(t) ⊆ D, which is specified by a correspondence function M : D → 2D. We
will only consider correspondences M(·) for which truth-telling is always an option; that is,
for all t ∈ D, t ∈ M(t). Notice that the case in which the principal has no information (no
verification is possible) corresponds to setting M(t) = D for all t.

Definition 1 ([1]) A mechanism (M, g) consists of a correspondence M : D → 2D and
an outcome function g : D → O. The outcome function g induces a best response rule
φg : D → D defined by φg(t) ∈ arg maxt′∈M(t){t(g(t′))}. If t ∈ arg maxt′∈M(t){t(g(t′))} then
we set φg(t) = t.

The correspondence M can be represented by a directed graph GM (which we call the
correspondence graph) defined as follows. Nodes of GM are types in the domain D and an
edge (t, t′), for t 6= t′, exists if and only if t′ ∈ M(t). We stress that the correspondence
graph of M does not contain self-loops, even though we only consider correspondences M
such that t ∈ M(t) for all t ∈ D. We will often identify the correspondence M with its
correspondence graph GM and say, for example, that a correspondence is acyclic meaning
that its correspondence graph is acyclic. Sometimes it is useful to consider a weighted
version of graph GM . Specifically, for a function g : D → O, we define GM,g to be the
weighted version of graph GM where edge (t, t′) has weight t(g(t))− t(g(t′)).
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We study the class of M -implementable social choice functions f : D → O.

Definition 2 ([1]) An outcome function g : D → O M -implements social choice function
f : D → O if for all t ∈ D g(φg(t)) = f(t) where φg(·) is the best response rule induced by
g. A social choice function f : D → O is M -implementable if and only if there exists an
outcome function g : D → O that M -implements f .

The social choice functions that can be truthfully M -implemented are of particular
interest.

Definition 3 ([1]) An outcome function g : D → O truthfully M -implements social choice
function f : D → O if g M -implements f and φg(t) = t for all t ∈ D. A social choice
function f : D → O is truthfully M -implementable if and only if there exists an outcome
function g : D → O that truthfully M -implements f .

The classical notions of implementation and of truthful implementation are obtained by
setting M(t) = D for all t ∈ D. Actually in this case the two notions of implementable
social choice function and of truthfully implementable social choice function coincide due to
the well-known revelation principle.

Theorem 4 (The Revelation Principle) If no verification is possible (that is, M(t) =
D for all t ∈ D), a social choice function is implementable if and only if it is truthfully
implementable.

The Revelation Principle does not necessarily hold for the notion of M -implementation and
of truthful M -implementation. Green and Laffont [1] indeed give a necessary and sufficient
condition on M for the revelation principle to hold. More precisely, a correspondence M
satisfies the Nested Range Condition if the following holds: for any t1, t2, t3 ∈ D if t2 ∈ M(t1)
and t3 ∈ M(t2) then t3 ∈ M(t1).

Theorem 5 (Green-Laffont [1]) If M satisfies the NRC condition then a social choice
function f is M -implementable if and only if f is M -truthfully implementable. If M does
not satisfy the NRC condition then there exists an M -implementable social choice function
f that is not truthfully M -implementable.

Besides its conceptual beauty, the Revelation Principle can also be used in some cases
to decide whether a given social choice function f is M -implementable for a given corre-
spondence M . Indeed, if the Revelation Principle holds for correspondence M , the prob-
lem of deciding M -implementability is equivalent to the problem of deciding truthful M -
implementability which, in turn, can be efficiently decided.

Theorem 6 There exists an algorithm running in time polynomial in the size of the domain
that, given a social choice function f and a correspondence M , decides whether f is truthfully
M -implementable.

Proof. To test truthful M -implementability of f we consider graph GM,f where edge
(t, t′) has weight t(f(t)) − t(f(t′)). Then it is obvious that f is M -truthful implementable
if and only if no edge of GM,f has negative weight. 2

3 Hardness of the Implementability problem

In this section we prove that the following problem is NP-hard.
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Problem 1 The Implementability problem is defined as follows.
Input: domain D, outcome set O, social choice function f : D → O and correspondence

M .
Task: decide whether there exists an outcome function g that M -implements f .

The following lemma, whose proof is immediate, gives sufficient conditions for an outcome
function g to M -implement social choice function f .

Lemma 7 For outcomes O = {T, F}, if the following conditions are satisfied for all a ∈ D
then outcome function g M -implements social choice function f .

1. If f(a) = T and a(T ) < a(F ) then, for all v ∈ M(a), we have g(v) = T .

2. If f(a) = F and a(T ) < a(F ) then, there exists v ∈ M(a) such that g(v) = F .

3. If f(a) = T and a(T ) > a(F ) then, there exists v ∈ M(a) such that g(v) = T .

4. If f(a) = F and a(T ) > a(F ) then, for all v ∈ M(a), we have g(v) = F .

The reduction. We reduce from 3SAT. Let Φ a Boolean formula in 3-CNF over the
variables x1, · · · , xn and let C1, · · · , Cm be the clauses of Φ. We construct D, O, M and
f : D → O such that f is M -implementable if and only if Φ is satisfiable. We setO = {T, F}.
We next construct a correspondence graph GM representing M . We will use variable gadgets
(one per variable) and clause gadgets (one per clause).

z2
i

...

...

T

TT

TT F

from clause-gadgets

from clause-gadgets

ti ui

wi

vi z1
i

(a) The variable gadget

to variable-gadgets

dj cj

FT

(b) The clause gadget

Figure 1: Gadgets used in the reduction.

The variable gadget for the variable xi is depicted in Figure 1(a). Each variable xi of
the formula Φ adds six new types to the domain D of the agent, namely, ti, ui, vi, wi, z1

i

and z2
i satisfying the following relations:

ti(F ) > ti(T ), (1)
ui(F ) > ui(T ), (2)
vi(T ) > vi(F ), (3)
wi(T ) > wi(F ). (4)

The labeling of the vertices defines the social choice function f ; that is, f(ti) = T, f(vi) =
T, f(wi) = T, f(z1

i ) = T, f(z2
i ) = T, and f(ui) = F. Directed edges of the gadget describe

the correspondence M (rather the correspondence graph). Thus, for example, M(ti) =

53



{ti, ui} and M(ui) = {ui, vi, wi}. Nodes vi and wi have incoming edges from the clause
gadgets. The role of these edges will be clear in the following.

We observe that (1) implies that the social choice function f is not truthfully M -
implementable. Indeed ti prefers outcome F = f(ui) to T = f(ti) and ui ∈ M(ti).
Moreover, by Lemma 7, for any outcome function g implementing f we must have
g(ti) = g(ui) = T . On the other hand, since f(ui) = F it must be the case that any g
that M -implements f assigns outcome F to at least one node in M(ui) \ {ui}. Intuitively,
the fact that every outcome function g that M -implements f must assign F to at least one
between vi and wi corresponds to assigning “false” to respectively literal xi and x̄i.

The clause gadget for clause Cj of Φ is depicted in Figure 1(b). Each clause Cj adds
types cj and dj to the domain D of the agent such that

cj(T ) > cj(F ), (5)
dj(T ) > dj(F ). (6)

As before the labeling defines the social choice function f and we have f(dj) = T and
f(cj) = F . Moreover, directed edges encode correspondence M . Besides the directed edge
(cj , dj), the correspondence graph contains three edges directed from dj towards the three
variable gadgets corresponding to the variables appearing in the clause Cj . Specifically, if
Cj contains the literal xi then dj has an outgoing edge to node vi. If Cj contains the literal
x̄i then dj has an outgoing edge to node wi. Similarly to the variable gadget, we observe
that (5) implies that for any g M -implementing f it must be g(dj) = F . Therefore, for g
to M -implement f it must be the case that, for at least one of the neighbors a of dj from a
variable gadget, we have g(a) = T . We will see that this happens if and only if the formula
Φ is satisfiable. This concludes the description of the reduction.

We next prove that the reduction is correct. Suppose that Φ is satisfiable, let τ be a
satisfying truth assignment and let g be the outcome function defined as follows. For the
i-th variable gadget we set g(ti) = g(ui) = g(z1

i ) = g(z2
i ) = T . Moreover, if xi is true in τ ,

then we set g(vi) = T and g(wi) = F ; otherwise se set g(vi) = F and g(wi) = T . For the
j-th clause gadget, we set g(dj) = g(cj) = F .

Thus, to prove that the outcome function produced by our reduction M -implements f ,
it is sufficient to show for each type a the corresponding condition of Lemma 7 holds. We
prove that conditions hold only for a = ui and a = dj , the other cases being immediate. For
ui we have to verify that Condition 2 of Lemma 7 holds. Since τ is a truth assignment, for
each i vertex ui has a neighbor vertex for which the outcome function g gives F . For dj we
have to verify that Condition 3 of Lemma 7 holds. Since τ is a satisfying truth assignment,
for each j there exists at least one literal of Cj that is true in τ ; therefore, vertex dj has a
neighbor vertex for which the outcome function g gives T .

Conversely, consider an outcome function g which M -implements the social choice func-
tion f . This means that, for each clause Cj , dj is connected to at least one node, call it aj ,
from a variable gadget such that g(aj) = T . Then the truth assignment that sets to true
the literals corresponding to nodes a1, · · · , am (and gives arbitrary truth value to the other
variables) satisfies the formula.

The following theorem follows from the above discussion and from the observation that
the reduction can be carried out in polynomial time and the graph we constructed is acyclic
with maximum outdegree 3.

Theorem 8 The Implementability Problem is NP-hard even for outcome sets of size 2
and acyclic correspondences of maximum outdegree 3.
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3.1 Corrrespondences with outdegree 1

In this section, we study correspondences of outdegree 1.
We start by reducing the problem of finding g that M -implements f , for the case in

which GM is a line, to the problem of finding a satisfying assignment for a formula in 2CNF
(that is every clause has at most 2 literals). We assume D = {t1, · · · , tn}, O = {o1, · · · , om}
and that, for i = 2, · · · , n, M(ti) = {ti, ti−1} and M(t1) = {t1}. We construct a formula
Φ in 2CNF in the following way. The formula Φ has the variables xij for 1 ≤ i ≤ n and
1 ≤ j ≤ m. The intended meaning of variable xij being set to true is that g(ti) = oj . We will
construct Φ so that every truth assignment that satisfies Φ describes g that M -implements
f . We do so by considering the following clauses:

1. Φ contains clauses (xif(ti) ∨ xi−1f(ti)), for i = 2, · · · , n, and clause x1f(t1).

These clauses encode the fact that for g to M -implement f it must be the case that
there exists at least one neighbor a of ti in GM such that g(a) = f(ti).

2. Φ contains clauses (xij → xik), for i = 1, · · · , n and for 1 ≤ k 6= j ≤ m.

These clauses encode the fact that g assigns at most one outcome to ti.

3. Φ contains clauses (xif(ti) → xi−1k) for all i = 2, · · · , n and for all k such that ti(ok) >
ti(f(ti)).

These clauses encode the fact that if g M -implements f and g(ti) = f(ti) then agent
of type ti does not prefer g(ti−1) to g(ti). Therefore, in this case ti’s best response is
ti itself.

4. Φ contains clauses (xi−1f(ti) → xik) for all i = 2, · · · , n and for all k such that ti(ok) ≥
ti(f(ti)).

These clauses encode the fact that if g M -implements f and g(ti−1) = f(ti) then agent
of type ti does not prefer g(ti) to g(ti−1). Therefore, in this case ti’s best response is
ti−1.

It is easy to see that Φ is satisfiable if and only if f is M -implementable. The above reasoning
can be immediately extended to the case in which each node of GM has outdegree at most
1 (that is GM is a collection of cycles and paths). We thus have the following theorem.

Theorem 9 The Implementability Problem can be solved in time polynomial in the sizes
of the domain and of the outcome sets for correspondences of maximum outdegree 1.

4 Implementability with quasi linear utility

In this section we consider mechanisms with payments; that is, the mechanism picks an
outcome and a payment to be transferred to the agent, based on the reported type of the
agent. Therefore a mechanism is now a pair (g, p) where g is the outcome function and
p : D → R is the payment function. We assume that the agent has quasi linear utility.

Definition 10 A mechanism (M, g, p) for an agent with quasi-linear utility is a triplet where
M : D → 2D is a correspondence, g : D → D is an outcome function, and p : D → R is a
payment function.

The mechanism defines a best-response function φ(g,p) : D → D where φ(g,p)(t) ∈
arg maxt′∈M(t){t(g(t′))+p(t′)}. If t ∈ arg maxt′∈M(t){t(g(t′))+p(t′)} then we set φg(t) = t.
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Definition 11 The pair (g, p) M -implements social choice function f : D → O for an
agent with quasi-linear utility if for all t ∈ D, g(φ(g,p)(t)) = f(t).

The pair (g, p) truthfully M -implements social choice function f for an agent with quasi-
linear utility if (g, p) M -implements f and, for all t ∈ D, φ(g,p)(t) = t.

In the rest of this section we will just say that (g, p) M -implements (or truthfully M -
implements) f and mean that M -implementation is for agent with quasi-linear utility.

Testing truthful M -implementability of a social choice function f can be done in time
polynomial in the size of the domain by using the following theorem that gives necessary
and sufficient conditions. The proof is straightforward from the proof of [2] (see also [4]).

Theorem 12 Social choice function f is truthfully M -implementable if and only if GM,f

has no negative weight cycle.

As in the previous case when payments were not allowed, if M has the NRC property then
the Revelation Principle holds and the class of M -implementable social choice functions
coincides with the class of truthfully M -implementable social choice functions. We next
ask what happens for correspondences M for which the NRC property does not hold. Our
answer is negative as we show that the following problem is NP-hard.

Problem 2 The Quasi-Linear Implementability problem is defined as follows.
Input: domain D, outcome set O, social choice function f : D → O and correspondence

M .
Task: decide whether there exists (g, p) that M -implements f .

We start with the following technical lemma.

Lemma 13 Let M be a correspondence and let f be a social choice function for which
correspondence graph has a negative-weight cycle t → t′ → t of length 2. If (g, p) M -
implements f then

{φ(g,p)(t), φ(g,p)(t′)} 6⊆ {t, t′}.
Proof. Let us assume for sake of contradiction that (g, p) M -implements f and that

{φ(g,p)(t), φ(g,p)(t′)} ⊆ {t, t′}. (7)

Since cycle C := t → t′ → t has weight

t(f(t))− t(f(t′)) + t′(f(t′))− t′(f(t)) < 0 (8)

then f(t) 6= f(t′). Therefore, since (g, p) M -implements f , it holds φ(g,p)(t) 6= φ(g,p)(t′) and
thus (7) implies that {φ(g,p)(t), φ(g,p)(t′)} = {t, t′}.

Suppose that φ(g,p)(t) = t′ and thus φ(g,p)(t′) = t. Then for (g, p) to M -implement f it
must be the case that g(t) = f(t′), g(t′) = f(t). But then the payment function p must
satisfy both the following:

p(t′) + t(f(t)) ≥ p(t) + t(f(t′)),
p(t) + t′(f(t′)) ≥ p(t′) + t′(f(t)),

which contradicts (8). The same argument can be used for the case φ(g,p)(t) = t and
φ(g,p)(t′) = t′. 2
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The reduction. We are now ready to show our reduction from 3SAT to the Quasi-
Linear Implementability problem. The reduction is similar in spirit to the one of the
previous section. We start from a Boolean formula Φ in conjunctive normal form whose
clauses contain exactly 3 literals and we construct a domain D, a set of outcomes O, a social
choice function f , and a correspondence M such that there exists (g, p) that M -implements
f if and only if Φ is satisfiable.

We set O = {T, F} and fix constants 0 < β < δ. Let x1, . . . , xn be the variables and
C1, . . . , Cm be the clauses of Φ. The reduction uses two different gadgets: variable gadgets
and clause gadgets.
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T
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TT F

from clause-gadgets

from clause-gadgets

ti ui

wi

vi z1
i

(a) The variable gadget

to variable-gadgets

dj cj

FT

(b) The clause gadget

Figure 2: Gadgets used in the reduction.

We have one variable gadget for each variable; the gadget for xi is depicted in Figure 2(a)
where the depicted edges are edges of GM . Each variable xi of the formula Φ adds six new
types to the domain D: ti, ui, vi, wi, z

1
i , and z2

i satisfying the following two non-contradicting
inequalities:

ti(T )− ti(F ) < ui(T )− ui(F ), (9)
ui(T )− ui(F ) = β. (10)

Nodes vi and wi have incoming edges from the clause gadgets. The role of these edges will
be clear in the following. The labeling of the nodes describes the social choice function f to
be implemented. More precisely, we have that f(ti) = f(vi) = f(wi) = f(z1

i ) = f(z2
i ) = T

and f(ui) = F .
We observe that, by (9), cycle C := ti → ui → ti has negative weight. Moreover, since

φ(g,p)(ti) ∈ M(ti) = {ti, ui}, by Lemma 13, it must be the case that φ(g,p)(ui) 6∈ {ti, ui}.
Therefore, if (g, p) M -implements f then g(φ(g,p)(ui)) = f(ui) = F , and thus g assigns
outcome F to at least one of the neighbors of ui. Intuitively, the fact that the outcome
function g assigns F to at least one between vi and wi corresponds to assigning “false” to
literal xi and x̄i.

We have one clause gadget for each clause; the gadget for clause Cj is depicted in
Figure 2(b). Each clause Cj of Φ adds two new types to the domain D: cj and dj satisfying
the following two non-contradicting inequalities:

cj(F )− cj(T ) < dj(F )− dj(T ), (11)
dj(T )− dj(F ) = δ. (12)

Node dj has three edges directed towards the three variable gadgets corresponding to the
variables appearing in the clause Cj . Specifically, if the clause Cj contains the literal xi
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then dj is linked to the node vi. Conversely, if Cj contains the literal x̄i then dj is connected
to the node wi. The social choice function f is defined by the labeling of the nodes; that is,
f(dj) = T and f(cj) = F .

Similarly to the variable gadget, we observe that (11) implies that cj and dj constitute a
cycle of negative weight of length 2. Since φ(g,p)(cj) ∈ {cj , dj}, then, by Lemma 13, it must
be the case that φ(g,p)(dj) 6∈ {cj , dj}. Since for any (g, p) that M -implements f it must be
the case that g assigns T to dj ’s best response, then g assigns outcome T to at least one of
the neighbors of dj from a variable gadget. We will see that this happens for all clauses if
and only if the formula Φ is satisfiable. This concludes the description of the reduction.

We next prove that the reduction described above is correct. Suppose Φ is satisfiable, let
τ be a satisfying assignment for Φ, let γ be a constant such that β < γ < δ and consider the
following pair (g, p). For i = 1, · · · , n, we set g(a) = T and p(a) = 0 for all nodes a of the
variable gadget for xi except for vi and wi. Then, if τ(xi) = 1, we set g(vi) = T , p(vi) = 0,
g(wi) = F and p(wi) = γ. If instead τ(xi) = 0, we set g(vi) = F , p(vi) = γ, g(wi) = T and
p(wi) = 0. For j = 1, · · · , m, we set g(cj) = g(dj) = F and p(cj) = p(dj) = 0.

We now show that (g, p) M -implements f . We show this only for types ui from variable
gadgets and types dj from clause gadgets, as for the other types the reasoning is immediate.
Notice that by definition, g assigns F to exactly one of vi and wi and T to the other. Thus,
denote by a the vertex a ∈ {vi, wi} such that g(a) = F and by b the vertex b ∈ {vi, wi}
such that g(b) = T . We show that a is ui’s best response under (g, p). Observe that
ui(g(a))+p(a) = ui(F )+γ > ui(F ) = ui(g(ti))+p(ti). Therefore ti is not ui’s best response.
On the other hand, we have ui(g(b))+p(b) = ui(T ). But then, since γ > β = ui(T )−ui(F ),
we have that a is ui’s best response under (g, p).

For dj , we observe that, since τ satisfies clause Cj , there must exists at least one literal
of Cj that is true under τ . By the definition of g, there exists at least one neighbor, call
it aj , of dj from a variable gadget such that g(aj) = T . We next show that aj is dj ’s best
response. Notice that p(aj) = 0. For all vertices b adjacent to dj for which g(b) = F , we
have p(b) ≤ γ. But then, since γ < δ = dj(T )− dj(F ) we have that aj is dj ’s best response
under (g, p).

Conversely, consider an outcome function (g, p) that implements f and construct truth
assignment τ as follows. Observe that, for any clause Cj , dj and cj constitute a cycle of
negative weight and length 2. Moreover, cj ’s best response is either cj or dj and thus, by
Lemma 13, it must be the case that dj ’s best response is a vertex, call it aj , from a variable
gadget such that g(aj) = T . Then if aj = vi for some i then we set τ(xi) = 1; if instead
aj = wi for some i we set τ(xi) = 0. Assignment τ (arbitrarily extended to unspecified
variables) is easily seen to satisfy Φ.

The above discussion and the observation that the reduction can be carried out in poly-
nomial time proves the following theorem.

Theorem 14 The Quasi-Linear Implementability problem is NP-hard even for out-
come sets of size 2.

5 Conclusions

We have seen that is it NP-hard to decide if a given social choice function can be implemented
even under the premise that the function does not admit a truthful implementation. Indeed,
for these function it is NP-hard to decide if there is a non-truthful implementation, which
in turn is the only way to implement them. An important factor here is the structure of
the domain and the partial information, which we encode in the correspondence graph. In
particular, we have the following results:
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Correspondence Graph No Payments Payments and Quasi-linear Agent
Path Polynomial [Th. 9] Always implementable [3, Th. 4]

Directed acyclic NP-hard [Th. 8] Always implementable [3, Th. 4]
Arbitrary NP-hard [Th. 8] NP-hard [Th. 14]

Note that for directed acyclic graphs, the Quasi Linear Implementability Problem
(where we ask implementability with payments) is trivially polynomial since all social choice
functions are implementable wheras it is NP-hard to decide if an implementation without
payments exists. So, it is also difficult to decide if payments are necessary or not for
implementing a given function. Once again, this task becomes easy when restricting to
truthful implementations [4].

Another interesting fact is that the problem without payments is difficult not because
there are many possible outcomes, but because an agent may have several ways of misre-
porting his type. Indeed, the problem is easy if the agent has at most one way of lying
(Theorem 9), but becomes NP-hard already for three (Theorem 8). The case of two remains
open.

Finally, the fact that we consider the principal-agent model (the same as in [1]) only
makes our negative results stronger since they obviously extend to the case of several agents
(simply add extra agents whose corresponding function is M(t) = {t}).

On the other hand it remains open whether the positive result for graphs of outdegree at
most 1 can be extended to many agents. Here the difficulty is the inter-dependence between
the best response rules of the agents.
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Università di Salerno, Italy.
Email: auletta@dia.unisa.it

Paolo Penna
Dipartimento di Informatica ed Applicazioni,
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Complexity of comparison of influence of

players in simple games

Haris Aziz1

Abstract

Coalitional voting games appear in different forms in multi-agent systems, social
choice and threshold logic. In this paper, the complexity of comparison of influ-
ence between players in coalitional voting games is characterized. The possible rep-
resentations of simple games considered are simple games represented by winning
coalitions, minimal winning coalitions, weighted voting game or a multiple weighted
voting game. The influence of players is gauged from the viewpoint of basic player
types, desirability relations and classical power indices such as Shapley-Shubik index,
Banzhaf index, Holler index, Deegan-Packel index and Chow parameters. Among
other results, it is shown that for a simple game represented by minimal winning
coalitions, although it is easy to verify whether a player has zero or one voting
power, computing the Banzhaf value of the player is #P-complete. Moreover, it is
proved that multiple weighted voting games are the only representations for which
it is NP-hard to verify whether the game is linear or not. For a simple game with
a set W m of minimal winning coalitions and n players, a O(n.|W m| + n2log(n))
algorithm is presented which returns ‘no’ if the game is non-linear and returns the
strict desirability ordering otherwise. The complexity of transforming simple games
into compact representations is also examined.

1 Introduction

1.1 Overview

Simple games are yes/no coalitional voting games which arise in various mathematical
contexts. Simple games were first analysed by John von Neumann and Oskar Morgenstern
in their monumental book Theory of Games and Economic Behaviour [25]. They also
examined weighted voting games in which voters have corresponding voting weights and a
coalition of voters wins if their total weights equal or exceed a specified quota. Neumann
and Morgenstern [25] observe that minimal winning coalitions are a useful way to represent
simple games. A similar approach has been taken in [11]. We examine the complexity
of computing the influence of players in simple games represented by winning coalitions,
minimal winning coalitions, weighted voting games and multiple weighted voting games.

1.2 Outline

In Section 2, we outline different representations and properties of simple games. In Section
3, compact representations of simple games are considered. After that, the complexity of
computing the influence of players in simple games is considered from the point of view of
player types (Section 4), desirability ordering (Section 5), power indices and Chow parame-
ters (Section 6). The final Section includes a summary of results and some open problems.

1The author would like to thank Prof. Mike Paterson and anonymous referees for valuable suggestions.
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2 Background

2.1 Definitions

Definitions 2.1. A simple voting game is a pair (N, v) with v : 2N → {0, 1} where v(∅) = 0,
v(N) = 1 and v(S) ≤ v(T ) whenever S ⊆ T . A coalition S ⊆ N is winning if v(S) = 1 and
losing if v(S) = 0. A simple voting game can alternatively be defined as (N,W ) where W is
the set of winning coalitions. This is called the extensive winning form. A minimal winning
coalition (MWC) of a simple game v is a winning coalition in which defection of any player
makes the coalition losing. A set of minimal winning coalitions of a simple game v can be
denoted by Wm(v). A simple voting game can be defined as (N,Wm). This is called the
extensive minimal winning form.

For the sake of brevity, we will abuse the notation to sometimes refer to game (N, v) as
v.

Lemma 2.2. For a simple game (N,W ), Wm can be computed in polynomial time.

Proof. For any S ∈W , remove elements from S until any further removals would make the
coalition losing. The resultant coalition S′ is a member of Wm.

Definition 2.3. A coalition S is blocking if its complement (N \S) is losing. For a simple
game G = (N,W ), there is a dual game Gd = (N,W d) where W d contains all the blocking
coalitions in G.

Definitions 2.4. The simple voting game (N, v) where
W = {X ⊆ N,

∑
x∈X wx ≥ q} is called a weighted voting game(WVG). A weighted voting

game is denoted by [q;w1, w2, ..., wn] where wi is the voting weight of player i. Usually,
wi ≥ wj if i < j.

Definitions 2.5. An m-multiple weighted voting game (MWVG) is the simple game (N, v1∧
· · · ∧ vm) where the games (N, vt) are the WVGs [qt;wt

1, . . . , w
t
n] for 1 ≤ t ≤ m. Then

v = v1 ∧ · · · ∧ vm is defined as:

v(S) =
{

1, if vt(S) = 1, ∀t, 1 ≤ t ≤ m.
0, otherwise.

The dimension of (N, v) is the least k such that there exist WMGs (N, v1), . . . , (N, vk) such
that (N, v) = (N, v1) ∧ . . . ∧ (N, vk).

Definitions 2.6. A WVG [q;w1, . . . , wn] is homogeneous if w(S) = q for all S ∈ Wm.
A simple game (N, v) is homogeneous if it can be represented by a homogeneous WVG. A
simple game (N, v) is symmetric if v(S) = 1, T ⊂ N and |S| = |T | implies v(T ) = 1.

It is easy to see that symmetric games are homogeneous with a WVG representation of
[k; 1, . . . , 1︸ ︷︷ ︸

n

]. That is the reason they are also called k-out-of-n simple games.

Banzhaf index [2] and Shapley-Shubik index [23] are two classic and popular indices to
gauge the voting power of players in a simple game. They are used in the context of weighted
voting games, but their general definition makes them applicable to any simple game.

Definition 2.7. A player i is critical in a coalition S when S ∈W and S \ i /∈W . For each
i ∈ N , we denote the number of coalitions in which i is critical in game v by the Banzhaf
value ηi(v). The Banzhaf Index of player i in weighted voting game v is βi = ηi(v)∑

i∈N ηi(v) .

62



Definitions 2.8. The Shapley-Shubik value is the function κ that assigns to any simple
game (N, v) and any voter i a value κi(v) where κi =

∑
X⊆N (|X| − 1)!(n − |X|)!(v(X) −

v(X − {i})). The Shapley-Shubik index of i is the function φ defined by φi = κi

n!

Definition 2.9. ([8]) For a simple game v, Chow parameters, CHOW(v) are
(|W1|, . . . |Wn|; |W |) where Wi = {S : S ⊆ N, i ∈ S}.

2.2 Desirability relation and linear games

The individual desirability relations between players in a simple game date back at least to
Maschler and Peleg [18].

Definitions 2.10. In a simple game (N, v),

• A player i is more desirable/influential than player j (i �D j) if v(S ∪ {j}) = 1 ⇒
v(S ∪ {i}) = 1 for all S ⊆ N \ {i, j}.

• Players i and j are equally desirable/influential or symmetric (i ∼D j) if v(S∪{j}) =
1⇔ v(S ∪ {i}) = 1 for all S ⊆ N \ {i, j}.

• A player i is strictly more desirable/influential than player j (i �D j) if i is more
desirable than j, but if i and j are not equally desirable.

• A player i and j are incomparable if there exist S, T ⊆ N \{i, j} such that v(S∪{i}) =
1, v(S ∪ {j}) = 0, v(T ∪ {i}) = 0 and v(T ∪ {j}) = 1.

Linear simple games are a natural class of simple games:

Definitions 2.11. A simple game is linear whenever the desirability relation �D is complete
that is any two players i and j are comparable (i � j, j � i or i ∼ j).

For linear games, the relation R∼ divides the set of voters N into equivalence classes
N/R∼ = {N1, . . . , Nt} such that for any i ∈ Np and j ∈ Nq, i � j if and only if p < q.

Definitions 2.12. A simple game v is swap robust if an exchange of two players from two
winning coalitions cannot render both losing. A simple game is trade robust if any arbi-
trary redistributions of players in a set of winning coalitions does not result in all coalitions
becoming losing.

It is easy to see that trade robustness implies swap robustness. Taylor and Zwicker [24]
proved that a simple game can be represented by a WVG if and only if it is trade robust.
Moreover they proved that a simple game being linear is equivalent to it being swap robust.

Taylor and Zwicker [24] show in Proposition 3.2.6 that v is linear if and only if �D

is acyclic which is equivalent to �D being transitive. This is not guaranteed in other
desirability relations defined over coalitions [9].

Proposition 2.13. A simple game with three or fewer players is linear.

Proof. For a game to be non-linear, we want to player 1 and 2 to be incomparable, i.e., there
exist coalitions S1, S2 ⊆ N \{1, 2} such that v({1}∪S1) = 1, v({2}∪S1) = 0, v({1}∪S2) = 0
and v({2} ∪ S2) = 1. This is clearly not possible for n = 1 or 2. For n = 3, without loss
of generality, v is non-linear only if v({1} ∪ ∅) = 1, v({2} ∪ ∅) = 0, v({1} ∪ {3}) = 0 and
v({2} ∪ {3}) = 1. However the fact that v({1} ∪ ∅) = 1 and v({1} ∪ {3}) = 0 leads to a
contradiction.
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3 Compact representations

Since WVGs and MWVG are compact representations of coalitional voting games, it is
natural to ask which voting games can be represented by a WVG or MWVG and what is
the complexity of answering the question. Deineko and Woeginger [6] show that it is NP-
hard to verify the dimension of MWVGs. We know that every WVG is linear but not every
linear game has a corresponding WVG. Carreras and Freixas,[3] show that there exists a six-
player simple linear game which cannot be represented by a WVG. We now define problem
X-Realizable as the problem to decide whether game v can be represented by form X.

Proposition 3.1. WVG-Realizable is NP-hard for a MWVG.

Proof. This follows directly from the proof by Deineko and Woeginger [6] that it is NP-hard
to find the dimension of a MWVG.

Proposition 3.2. WVG-Realizable is in P for a simple game represented by its minimal
winning, or winning, coalitions.

This follows directly from Theorem 6 in [11]. The basic idea is that any simple game can
be represented by linear inequalities. The idea dates back at least to [16] and the complexity
of this problem was examined in the context of set covering problems. However it is one thing
to know whether a simple game is WVG-Realizable and another thing to actually represent
it by a WVG. It is not easy to represent a WVG-Realizable simple game by a WVG where
all the weights are integers as the problem transforms from linear programming to integer
programming.

Proposition 3.3. (Follows from Theorem 1.7.4 of Taylor and Zwicker[11]) Any simple
game is MWVG-Realizable.

Taylor and Zwicker [24] showed that for every n ≥ 1, there is simple game of dimension
n. In fact it has been pointed out by Freixas and Puente [12] that that for every n ≥ 1, there
is linear simple game of dimension n. This shows that there is no clear relation between
linearity and dimension of simple games. However it appears exceptionally hard to actually
transform a simple game (N,W ) or (N,Wm) to a corresponding MWVG. The dimension
of a simple game may be exponential (2(n/2)−1) in the number of players [24]. A simpler
question is to examine the complexity of computing, or getting a bound for, the dimension
of simple games.

4 Complexity of player types

A player in a simple game may be of various types depending on its level of influence.

Definitions 4.1. For a simple game v on a set of players N , player i is a

• dummy if and only if ∀S ⊆ N , if v(S) = 1, then v(S \ {i}) = 1;

• passer if and only if ∀S ⊆ N , if i ∈ S, then v(S) = 1;

• vetoer if and only if ∀S ⊆ N , if i /∈ S, then v(S) = 0;

• dictator if and only if ∀S ⊆ N , v(S) = 1 if and only if i ∈ S.

It is easy to see that if a dictator exists, it is unique and all other players are dummies.
This means that a dictator has voting power one, whereas all other players have zero voting
power. We examine the complexity of identifying the dummy players in voting games. We
already know that for the case of WVGs, Matsui and Matsui [19] proved that it is NP-hard
to identify dummy players.
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Lemma 4.2. A player i in a simple game v is a dummy if and only if it is not present in
any minimal winning coalition.

Proof. Let us assume that player i is a dummy but is present in a minimal winning coalition.
That means that it is critical in the minimal winning coalition which leads to a contradiction.
Now let us assume that i is critical in at least one coalition S such that v(S ∪ {i}) = 1 and
v(S) = 0. In that case there is a S′ ⊂ S such that S′ ∪ {i} is a MWC.

Proposition 4.3. For a simple game v,

1. Dummy players can be identified in linear time if v is of the form (N,Wm).

2. Dummy players can be identified in polynomial time if v is of the form (N,W ).

Proof. We examine each case separately:

1. By Lemma 4.2, a player is a dummy if and only if it is not in member of Wm

2. By Lemma 2.2, Wm can be computed in polynomial time.

From the definition, we know that a player has veto power if and only if the player is
present in every winning coalition.

Proposition 4.4. Vetoers can be identified in linear time for a simple game in the following
representations: (N,W ), (N,Wm), WVG and MWVG.

Proof. We examine each of the cases separately:

1. (N,W ): Initialize all players as vetoers. For each winning coalition, if a player is not
present in the coalition, remove him from the list of vetoers.

2. (N,Wm): If there exists a winning coalition which does not contain player i, there
will also exist a minimal winning coalition which does not contain i.

3. WVG: For each player i, i has veto power if and only if w(N \ {i}) < q.

4. MWVG: For each player i, i has veto power if and only if N \ {i} is losing.

Proposition 4.5. For a simple game represented by (N,W ), (N,Wm), WVG or MWVG,
it is easy to identify the passers and the dictator.

Proof. We check both cases separately:

1. Passers: This follows from the definition of a passer. A player i is a passer if and only
if v({i}) = 1.

2. Dictator: It is easy to see that if a dictator exists in a simple game, it is unique. It
follows from the definition of a dictator that a player i is a dictator in a simple game
if v({i}) = 1 and v(N \ {i}) = 0.
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5 Complexity of desirability ordering

A desirability ordering on linear games is any ordering of players such that
1 �D 2 �D . . . �D n. A strict desirability ordering is the following ordering on play-
ers: 1 ◦ 2 ◦ . . . ◦ n where ◦ is either ∼D or �D.

Proposition 5.1. For a WVG:

1. A desirability ordering of players can be computed in polynomial time.

2. It is NP-hard to compute the strict desirability ordering of players.

Proof. WVGs are linear games with a complete desirability ordering. For (1), it is easy to
see that one desirability ordering of players in a WVG is the ordering of the weights. When
wi = wj , then we know that i ∼ j. Moreover, if wi > wj , then we know that i is at least
as desirable as j, that is i � j. For (2), the result immediately follows from the result by
Matsui and Matsui [19] where they prove that it is NP-hard to check whether two players
are symmetric.

Let v be a MWVG of m WVGs on n players. It is easy to see that if there is an ordering
of players such that such that wt

1 ≥ wt
2 ≥ . . . ≥ wt

n for all t, then v is linear. However, if
an ordering like this does not exist, this does not imply that the game is not linear. The
following is an example of a small non-linear MWVG:

Example 5.2. In game v = [10; 10, 9, 1, 0]∧[10; 9, 10, 0, 1], players 1 and 2 are incomparable.
So, whereas simple games with 3 players are linear, it is easy to construct a 4 player non-
linear MWVG.

Proposition 5.3. It is NP-hard to verify whether a MWVG is linear or not.

Proof. We prove this by a reduction from an instance of the classical NP-hard PARTITION
problem.

Name: PARTITION
Instance: A set of k integer weights A = {a1, . . . , ak}.
Question: Is it possible to partition A, into two subsets P1 ⊆ A, P2 ⊆ A so that P1∩P2 = ∅
and P1 ∪ P2 = A and

∑
ai∈P1

ai =
∑

ai∈P2
ai?

Given an instance of PARTITION {a1, . . . , ak}, we may as well assume that
∑k

i=1 ai is
an even integer, 2t say. We can transform the instance into the multiple weighted voting
v = v1 ∧ v2 where v1 = [q; 20a1, . . . , 20ak, 10, 9, 1, 0] and v2 = [q; 20a1, . . . , 20ak, 9, 10, 0, 1]
for q = 10 + 20t and k + 4 is the number of players.

If A is a ‘no’ instance of PARTITION, then we see that a subset of weights
{20a1, . . . , 20ak} cannot sum to 20t. This implies that players k + 1, k + 2, k + 3, and
k + 4 are not critical for any coalition. Since players 1, . . . , k have the same desirability
ordering in both v1 and v2, v is linear.

Now let us assume that A is a ‘yes’ instance of PARTITION with a partition (P1, P2). In
that case players k +1, k +2, k +3, and k +4 are critical for certain coalitions. We see that
v({k+1}∪({k+4}∪P1)) = 1, v({k+2}∪({k+4}∪P1)) = 0, v({k+1}∪({k+3}∪P1)) = 0
and v({k + 2} ∪ ({k + 3} ∪P1)) = 1. Therefore, players k + 1 and k + 2 are not comparable
and v is not linear.

Proposition 5.4. For a simple game v = (N,Wm), it can be verified in O(n|Wm|) time if
v is linear or not.
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Proof. Makino [17] proved that for a positive boolean function on n variables represented
by the set of all minimal true vectors minT (f), it can be checked in O(n|minT (f)|) whether
the function is regular (linear) or not. Makino’s algorithm CHECK-FCB takes minT (f) as
input and outputs ‘yes’ if f is regular and ‘no’ otherwise. The proof involves encoding the
minimal true vectors by a fully condensed binary tree. Then it follows that it can be verified
in O(n(|Wm|)) whether a simple game v = (N,Wm) is linear or not.

Corollary 5.5. For a simple game v = (N,W ), it can be verified in polynomial time if v
is linear or not.

Proof. We showed earlier that (N,W ) can be transformed into (N,Wm) in polynomial time.
After that we can use Makino’s method [17] to verify whether the game is linear or not.

Muroga [20] cites Winder [26] for a result concerning comparison between boolean vari-
ables and their incidence in prime implicants of a boolean function. Hilliard [14] points
out that this result can be used to check the desirability relation between players in WVG-
Realizable simple games. We generalize Winder’s result by proving both sides of the impli-
cations and extend Hilliard’s observation to that of linear simple games.

Proposition 5.6. Let v = (N,Wm) be a linear simple game and let dk,i = |{S : i ∈ S,
S ∈Wm, |S| = k}|. Then for two players i and j,

1. i ∼D j if and only if dk,i = dk,j for k = 1, . . . n.

2. i �D j if and only if for the smallest k where dk,i 6= dk,j, dk,i > dk,j.

Proof. 1. (⇒) Let us assume i ∼D j. Then by definition, v(S∪{j}) = 1⇔ v(S∪{i}) = 1
for all S ⊆ N \ {i, j}. So S ∪ {i} ∈ Wm if and only if S ∪ {j} ∈ Wm. Therefore,
dk,i = dk,j for k = 1, . . . n.

(⇐) Let us assume that i �D j. Since v is linear, i and j are comparable. Without
loss of generality, we assume that i �D j. Then there exists a coalition S \ {i, j} such
that v(S ∪ {i}) = 1 and v(S ∪ {j}) = 0 and suppose |S| = k − 1. If S ∪ {i} ∈ Wm,
then dk,i > dk,j . If S ∪ {i} /∈ Wm then there exists S′ ⊂ S such that S′ ∪ {i} ∈ Wm.
Thus there exists k′ < k such that dk′,i > dk′,j .

2. (⇒) Let us assume that i �D j and let k′ be the smallest integer where dk′,i 6= dk′,j .
If dk′,i < dk′,j , then there exists a coalition S such that S ∪ {j} ∈Wm, S ∪ {i} /∈Wm

and |S| = k′ − 1. S ∪ {i} /∈ Wm in only two cases. The first possibility is that
v(S ∪ {i}) = 0, but this is not true since i �D j. The second possibility is that
there exists a coalition S′ ⊂ S such that S′ ∪ {i} ∈ Wm. But that would mean that
v(S′ ∪ {i}) = 1 and v(S′ ∪ {j}) = 0. This also leads to a contradiction since k′ is the
smallest integer where dk′,i 6= dk′,j .

(⇐) Let us assume that for the smallest k where dk,i 6= dk,j , dk,i > dk,j . This means
there exists a coalition S such that S ∪ {i} ∈ Wm, S ∪ {j} /∈ Wm and |S| = k − 1.
This means that either v(S ∪ {j}) = 0 or there exists a coalition S′ ⊂ S such that
S′ ∪ {i} ∈ Wm. If v(S ∪ {j}) = 0, that means i �D j. If there exists a coalition
S′ ⊂ S such that S′ ∪ {j} ∈ Wm, then dk′,j > dk′,i for some k′ < k. This leads to a
contradiction.

We can use this theorem and Makino’s ‘CHECK-FCB’ algorithm [17] to make an algo-
rithm which takes as input a simple game (N,Wm) and returns NO if the game is not linear
and returns the strict desirability ordering otherwise.
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Algorithm 1 Strict-desirability-ordering-of-simple-game
Input: Simple game v = (N,Wm) where N = {1, . . . , n} and Wm(v) = {S1, . . . , S|W m|} .
Output: NO if v is not linear. Otherwise output desirability equivalence classes starting
from most desirable, if, v is linear.
1: X = CHECK-FCB(Wm)
2: if X = NO then
3: return NO
4: else
5: Initialize an n × n matrix D where entries di,j = 0 for all i and j in N
6: for i = 1 to |Wm| do
7: for each player x in Si do
8: d|Si|,x ← d|Si|,x + 1
9: end for

10: end for
11: return classify(N,D, 1)
12: end if

Algorithm 2 classify
Input: set of integers classindex, n × n matrix D, integer k.
Output: subclasses.
1: if k = n + 1 or |classindex| = 1 then
2: return classindex

3: end if
4: s← |classindex|
5: mergeSort(classindex) in descending order such that i > j if dk,i > dk,j .
6: for i = 2 to s do
7: subindex← 1; classindex.subindex ← classindex[1]
8: if dk,classindex[i] = dk,classindex[i−1] then
9: classindex.subindex ← classindex.subindex ∪ classindex[i]

10: else if dk,classindex[i] < dk,classindex[i−1] then
11: subindex← subindex + 1
12: classindex.subindex ← {classindex[i]}
13: end if
14: end for
15: Returnset← ∅
16: A← ∅
17: for j = 1 to subindex do
18: A← classify(classindex.j, D, k + 1)
19: Returnset← A ∪ Returnset
20: end for
21: return Returnset

Proposition 5.7. The time complexity of Algorithm 1 is O(n.|Wm|+ n2log(n))

Proof. The time complexity of CHECK − FCB is O(n.|Wm|). The time complexity of
computing matrix D is O(Max(|Wm|, n2). For each iteration, sorting of sublists requires at
most O(nlog(n)) time. There are at most n loops. Therefore the total time complexity is
O(n.|Wm|) + O(Max(|Wm|, n2) + O(n2log(n)) = O(n.|Wm|+ n2log(n)).
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Corollary 5.8. The strict desirability ordering of players in a linear simple game v =
(N,W ) can be computed in polynomial time.

Proof. The proof follows directly from the Algorithm. Moreover, we know that the set of all
winning coalitions can be transformed into a set of minimal winning coalitions in polynomial
time.

6 Power indices and Chow parameters

Apart from the Banzhaf and Shapley-Shubik indices, there are other indices which are also
used. Both the Deegan-Packel index [5] and the Holler index [15] are based on the notion
of minimal winning coalitions. Minimal winning coalitions are significant with respect to
coalition formation [4]. The Holler index, Hi of a player i in a simple game corresponds to
the Banzhaf index with one difference: only swings in minimal winning coalitions contribute
towards the Holler index.

Definitions 6.1. We define the Holler value Mi as {S ∈ Wm : i ∈ S}. The Holler index
which is called the public good index is defined by Hi(v) = |Mi|∑

j∈N |Mj | . The Deegan Packel

index for player i in voting game v is defined by Di(v) = 1
|W m|

∑
S∈Mi

1
|S| .

Compared to the Banzhaf index and the Shapley-Shubik index, both the Holler index and
the Deegan-Packel index do not always satisfy the monotonicity condition. In [19], Matsui
and Matsui prove that it is NP-hard to compute the Banzhaf index, Shapley-Shubik index
and Deegan-Packel index of a player. We can use a similar technique to also prove that it is
NP-hard to compute the Holler index of players in a WVG. This follows directly from the
fact that it is NP-hard to decide whether a player is dummy or not. Prasad and Kelly [21]
and Deng and Papadimitriou [7] proved that for WVGs, computing the Banzhaf values and
Shapley-Shubik values is #P-parsimonious-complete and #P-metric-complete respectively.
(For details on #P-completeness and associated reductions, see [10]). Unless specified,
reductions considered with #P-completeness will be Cook reductions (or polynomial-time
Turing reductions).

What we see is that although it is NP-hard to compute the Holler index and Deegan-
Packel of players in a WVG, the Holler index and Deegan-Packel of players in a simple game
represented by its MWCs can be computed in linear time:

Proposition 6.2. For a simple game (N,Wm), the Holler index and Deegan-Packel index
for all players can be computed in linear time.

Proof. We examine each of the cases separately:

• Initialize Mi to zero. Then for each S ∈Wm, if i ∈ S, increment Mi by one.

• Initialize di to zero. Then for each S ∈ Wm, if i ∈ S, increment di, by 1
|S| . Then

Di = di

|W m| .

Proposition 6.3. For a simple game v = (N,W ), the Banzhaf index, Shapley Shubik index,
Holler index and Deegan-Packel index can be computed in polynomial time.

Proof. The proof follows from the definitions. We examine each of the cases separately:

• Holler index: Transform W into Wm and then compute the Holler indices.
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• Deegan-Packel: Transform W into Wm and then compute the Deegan-Packel indices.

• Banzhaf index: Initialize Banzhaf values of all players to zero. For each S ∈W , check
if the removal of a player results in S becoming losing (not a member of W ). In that
case increment the Banzhaf value of that player by one.

• Shapley-Shubik index: Initialize Shapley values of all players to zero. For each S ∈W ,
check if the removal of a player results in S becoming losing (not a member of W ). In
that case increment the Shapley value of the player by (|S| − 1)!(n− |S|)!.

The time complexity for all cases is polynomial in the order of the input.

For a simple game (N,Wm), listing W the winning coalitions may take time exponential
in the number of players. For example, let there be only one minimal winning coalition
S which contains players 1, . . . , dn/2e. Then the number of winning coalitions to list is
exponential in the number of players. Moreover, if |Wm| > 1, minimal winning coalitions
can have common supersets. It is shown below that for a simple game (N,Wm), even
counting the total number of winning coalitions is #P-complete. Moreover, whereas it is
polynomial time easy to check if a player has zero voting power (a dummy) or whether it has
voting power 1 (dictator), it is #P-complete to find the actual Banzhaf or Shapley-Shubik
index of the player.

Proposition 6.4. For a simple game v = (N,Wm), the problem of computing the Banzhaf
values of players is #P-complete.

Proof. The problem is clearly in #P. We prove the #P-hardness of the problem by providing
a reduction from the problem of computing |W |. Ball and Provan [1] proved that computing
|W | is #P-complete. Their proof is in context of reliability functions so we first give the
proof in terms of simple games. It is known that known [22] that counting the number of
vertex covers is #P-complete (a vertex cover in a graph G = (V,E) is a subset C of V such
that every edge in E has at least one endpoint in C). Now take a simple game v = (N,Wm)
where for any S ∈ Wm, |S| = 2. Game v has a one-to-one correspondence with a graph
G = (V,E) such that N = V and {i, j} ∈Wm if and only if {i, j} ∈ E(G). In that case the
total number of losing coalitions in v is equal to the number of vertex covers of G. Therefore
the total number of winning coalitions is equal to 2n−(number of vertex covers of G) and
computing |W | is #P-complete.

Now we take a game v = (N,Wm) and convert it into another game v′ = (N ∪ {n +
1},Wm(v′)) where for each S ∈ Wm(v), S ∪ {n + 1} ∈ Wm(v′). In that case computing
|W (v)| is equivalent to computing the Banzhaf value of player n + 1 in game v′. Therefore,
computing Banzhaf values of players in games represented by MWCs is #P-hard.

It follows from the proof that computing power of collectivity to act( |W |
2n ) and Chow

parameters for a simple game (N,Wm) is #P-complete. Goldberg remarks in the conclusion
of [13] that computing the Chow parameters of a WVG is #P-complete. It is easy to
prove this. The problem of computing |W | and |Wi| for any player i is in #P since a
winning coalition can be verified in polynomial time. It is easy to reduce in polynomial
time the counting version of the SUBSET-SUM problem to counting the number of winning
coalitions. Moreover, for any WVG v = [q;w1, . . . , wn], |W (v)| is equal to |Wn+1(v′)| where
v′ is [q;w1, . . . , wn, 0]. Therefore computing |Wi| and |W | for a WVG is #P-complete.

7 Conclusion

A summary of results has been listed in Table 1. A question mark indicates that the specified
problem is still open. It is conjectured that computing Shapley values is #P-complete and
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Table 1: Summary of results
(N, W ) (N, W m) WVG MWVG

IDENTIFY-DUMMIES P linear NP-hard NP-hard

IDENTIFY-VETOERS linear linear linear linear

IDENTIFY-PASSERS linear linear linear linear

IDENTIFY-DICTATOR linear linear linear linear

CHOW PARAMETERS linear #P-complete #P-complete #P-complete

IS-LINEAR P P (Always linear) NP-hard

DESIRABILITY-ORDERING P P P NP-hard

STRICT-DESIRABILITY P P NP-hard NP-hard

BANZHAF-VALUES P #P-complete #P-complete #P-complete

BANZHAF-INDICES P ? NP-hard NP-hard

SHAPLEY-SHUBIK-VALUES P ? #P-complete #P-complete

SHAPLEY-SHUBIK-INDICES P ? NP-hard NP-hard

HOLLER-INDICES P linear NP-hard NP-hard

DEEGAN-PACKEL-INDICES P linear NP-hard NP-hard

it is NP-hard to compute Banzhaf indices for a simple game represented by (N,Wm). It is
found that although WVG, MWVG and even (N,Wm) is a relatively compact representation
of simple games, some of the important information encoded in these representations can
apparently only be accessed by unraveling these representations. There is a need for a
greater examination of transformations of simple games into compact representations.
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Divide and Conquer: False-Name

Manipulations in Weighted Voting Games

Yoram Bachrach and Edith Elkind

Abstract

Weighted voting is a well-known model of cooperation among agents in decision-
making domains. In such games, each player has a weight, and a coalition of players
wins if its total weight meets or exceeds a given quota. Usually, the agents’ power
in such games is measured by a power index, such as, e.g., Shapley–Shubik index.
In this paper, we study how an agent can manipulate its voting power (as measured
by Shapley–Shubik index) by distributing his weight among several false identities.
We show that such manipulations can indeed increase an agent’s power and provide
upper and lower bounds on the effects of such manipulations. We then study this
issue from the computational perspective, and show that checking whether a benefi-
cial split exists is NP-hard. We also discuss efficient algorithms for restricted cases
of this problem, as well as randomized algorithms for the general case.

1 Introduction

Collaboration and cooperative decision-making are important issues in many types of inter-
actions among self-interested agents. In many situations, agents must take a joint decision
leading to a certain outcome, which may have a different impact on each of the agents. A
standard and well-studied way of doing so is by means of voting, and in recent years, there
has been a lot of research on applications of voting to multiagent systems as well as on com-
putational aspects of various voting procedures. One of the key issues in this domain is how
to measure the power of each voter, i.e., his impact on the final outcome. In particular, this
question becomes important when the agents have to decide how to distribute the payoffs
resulting from their joint action: a natural approach would be to pay each agent according
to his contribution, i.e., his voting power.

This issue is traditionally studied within the framework of weighted voting games, which
provide a model of decision-making in many political and legislative bodies, and have also
been applied in the context of multiagent systems. In such a game, each of the agents
has a weight, and a coalition of agents wins the game if the sum of the weights of its
participants exceeds a certain quota. Having a larger weight makes it easier for an agent
to affect the outcome; however, the agent’s power is not always proportional to his weight.
For example, if the quota is so high that the only winning coalition is the one that includes
all agents, intuitively, all agents have equal power, irrespective of their weight. This idea
is formalized using the concept of a power index, which is a systematic way of measuring
a player’s influence in a weighted voting game. There are several ways to define power
indices. One of the most popular approaches relies on the fact that weighted voting games
form a subclass of coalitional games, and therefore one can use the terminology and solution
concepts that have been developed in the context of general coalitional games. In particular,
an important notion in coalitional games is that of the Shapley value [12], which is a classical
way to distribute the gains of the grand coalition in general coalitional games. In the context
of weighted voting, the Shapley value (also known as the Shapley–Shubik power index [13])
provides a convenient measure of an agent’s power and has been widely studied from both
a normative and a computational perspective.

As suggested above, power indices measure the agents’ power and can be used to de-
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termine their payoffs. However, to be applicable in real-world scenarios, this approach has
to be resistant to dishonest behavior, or manipulation, by the participating agents. In this
paper we study the effects of one form of manipulation in weighted voting games, namely,
false-name voting. Under this manipulation, an agent splits his weight between himself and
a “fake” agent who enters the game. While the total weight of all identities of the cheating
agent remains the same, his power (as measured by the Shapley–Shubik power index) may
change. In open anonymous environments, such as the internet, this behavior is virtually
impossible to detect, and therefore it presents a challenge to the designers of multiagent
systems that rely on weighted voting. The goal of this paper is to measure the effects of
false-name voting and analyze its computational feasibility. Our main results here are as
follows:

• We precisely quantify the worst-case effect of false-name voting on agents’ payoffs.
Namely, we show that in an n-player game, false-name voting can increase an agent’s
payoff by a factor of 2n/(n + 1), and this bound is tight. On the other hand, we show
that false-name voting can decrease an agent’s payoff by a factor of (n + 1)/2, and
this bound is also tight.

• We demonstrate that finding a successful manipulation is not a trivial task by proving
that it is NP-hard to verify if a beneficial split exists. However, we show that if all
weights are polynomially bounded, the problem can be solved in polynomial time, and
discuss efficient randomized algorithms for this problem.

We also study several variants of the problem, such as splitting into more than two identities,
as well as the dual problem of manipulation by merging, where several agents pretend to be
one.

2 Related Work

In his seminal paper, Shapley [12] considered coalitional games and the question of fair
allocation of the utility gained by the grand coalition. The solution concept introduced in
this paper became known as the Shapley value of the game. The subsequent paper [13]
studies the Shapley value in the context of simple coalitional games, where it is usually
referred to as the Shapley–Shubik power index. Another measure of a player’s influence in
voting games is the Banzhaf power index [1].

Both of these power indices have been well studied. Straffin [14] shows that each index
reflects certain conditions in a voting body. Paper [5] describes certain axioms that char-
acterize these two indices, as well as several others. These indices were used to analyze the
voting structures of the European Union Council of Ministers and the IMF [7, 6].

The applicability of the power indices to measuring political power in various domains
has raised the question of finding tractable ways to compute them. However, this problem
appears to be computationally hard. Indeed, the naive algorithm for calculating the Shapley
value (or the Shapley–Shubik power index) considers all permutations of the players and
hence runs in exponential time. Moreover, paper [3] shows that computing the Shapley
value in weighted voting games is #P-complete.

Despite this hardness result, several works show how to compute these power indices
in some restricted domains, or discuss ways to approximate them [9, 11, 8, 4]. A good
survey of algorithms for calculating power indices in weighted voting games is [10]. Many
of these approaches work well in practice, which justifies the use of these indices as payoff
distribution schemes in multiagent domains.

False-name manipulation has been studied in the context of non-cooperative games such
as auctions [16, 17], and, more recently, also in cooperative games [2, 15]. However, to the
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best of our knowledge, ours is the first paper to systematically study this type of behavior
in weighted voting.

3 Preliminaries and Notation

Coalitional Games A coalitional game G = (I, v) is given by a set of agents I =
{a1, . . . , an}, |I| = n, and a function v : 2I → R that maps any subset (coalition) of
the agents to a real value. This value is the total utility these agents can guarantee to
themselves when working together. To simplify notation, we will sometimes write i instead
of ai.

A coalitional game is simple if v can only take values 0 and 1, i.e., v : 2I → {0, 1}. In
such games, we say that a coalition C ⊆ I wins if v(C) = 1, and loses if v(C) = 0. An agent
i is critical, or pivotal, to a winning coalition C if the agent’s removal from that coalition
would make it a losing coalition: v(C) = 1, v(C \ {i}) = 0.
Weighted Voting Games A weighted voting game G is a simple game that is described by
a vector of players’ weights w = (w1, . . . , wn) and a quota q. We write G = [w1, . . . , wn; q],
or G = [w; q]. In these games, a coalition is winning if its total weight meets or exceeds the
quota. Formally, for any J ⊆ I we have v(J) = 1 if

∑
i∈J wi ≥ q and v(J) = 0 otherwise.

We will often write w(J) to denote the total weight of a coalition J , i.e., w(J) =
∑

i∈J wi.
Also, we set wmax = maxi=1,...,n wi.
Shapley Value Intuitively, the Shapley value of an agent is determined by his marginal
contribution to possible coalitions. Let Πn be the set of all possible permutations (orderings)
of n agents. Each π ∈ Πn is a one-to-one mapping from {1, . . . , n} to {1, . . . , n}. Denote
by Sπ(i) the predecessors of agent i in π, i.e., Sπ(i) = {j | π(j) < π(i)}. The Shapley value
of the ith agent in a game G = (I, v) is denoted by ϕG(i) and is given by the following
expression:

ϕG(i) =
1
n!

∑
π∈Πn

[v(Sπ(i) ∪ {i})− v(Sπ(i))]. (1)

We will occasionally abuse notation and say that an agent i is pivotal for a permutation π
if it is pivotal for the coalition Sπ(i) ∪ {i}.

The Shapley-Shubik power index is simply the Shapley value in a simple coalitional
game (and therefore in the rest of the paper we will use these terms interchangeably). In
such games the value of a coalition is either 0 or 1, so the formula (1) simply counts the
fraction of all orderings of the agents in which agent i is critical for the coalition formed by
his predecessors and himself. The Shapley-Shubik power index thus reflects the assumption
that when forming a coalition, any ordering of the agents entering the coalition has an equal
probability of occurring, and expresses the probability that agent i is critical.

While there exist several other approaches to determining the players’ influence in a
game, the Shapley value has many useful properties that make it very convenient to work
with. We will make use of two of these properties, namely, the normalization property and
the dummy player property. The former simply states that the sum of Shapley values of
all players is equal to 1. The latter claims that the value of a dummy player is 0, where a
player i is called a dummy if he contributes nothing to any coalition, i.e., for any C ⊆ I we
have v(C ∪{i}) = v(C). It is easy to verify from the definitions that Shapley value has both
of these properties.
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4 False-Name Manipulations

As discussed in the introduction, it might be possible for a player to change his total payoff
by splitting his weight between several identities. We will start by providing a few examples
of such scenarios.

Example 1. Consider a voting game G = [8, 8, 1, 2; 11], i.e., a game with a quota of q = 11,
and four agents a1, . . . , a4, where a1 has weight w1 = 8, a2 has weight w2 = 8, a3 has weight
w3 = 1, and agent a4 has weight w4 = 2.

Using formula (1) to compute the Shapley value of a4, we get ϕG(a4) = 4/24. Now,
suppose agent a4 splits his weight equally between two new identities a′4 and a′′4 , resulting in
a new game G′ = [8, 8, 1, 1, 1; 11]. Calculating the Shapley value of a′4 and a′′4 in this game,
we get ϕG′(a′4) = ϕG′(a′′4) = 12/120. Hence, although the total weight of all identities
of player a4 is the same as in the original game, the total power held by the agent and his
false-name “accomplice” has increased, since ϕG′(a′4)+ϕG′(a′′4) = 24/120 > ϕG(a4) = 4/24.

Our next example shows that false-name manipulations are not necessarily beneficial.

Example 2. Consider a game G = [3, 3, 2; 4]. Agent a3 with the weight of w3 = 2 has
Shapley value of ϕG(a3) = 2/6. Splitting his weight between two identities a′3 and a′′3 results
in a game G′ = [3, 3, 1, 1; 4]. The Shapley values of the two identities a′3 and a′′3 of the agent
a3 in the new game are ϕG′(a′3) = ϕG′(a′′3) = 4/24, so we have ϕG(a3) = ϕG′(a′3)+ϕG′(a′′3).
Consequently, a3 neither gained nor lost power by splitting.

Moreover, weight-splitting can be risky for the manipulator, as illustrated by the follow-
ing example.

Example 3. Consider a game G = [2, 2, 2; 5]. Agent a3 with the weight of w3 = 2 has
Shapley value of ϕG(a3) = 2/6. By splitting into two agents, each with a weight of 1,
this agent can get the following game G′ = [2, 2, 1, 1; 5]. The Shapley values of the two
agents a′3 and a′′3 in the new game are ϕG′(a′3) = ϕG′(a′′3) = 2/24, so we have ϕG(a3) >
ϕG′(a′3)+ϕG′(a′′3). Hence, the splitting agent has lost power by splitting, i.e., it was harmful
for him to split.

4.1 Effects of Manipulation: Upper and Lower Bounds

We have seen that an agent can both increase and decrease his total payoff by splitting his
weight. In this subsection, we provide upper and lower bounds on how much he can change
his payoff by doing so. We restrict our attention to the case of splitting into two identities;
the general case is briefly discussed in Section 7.

To simplify notation, in the rest of this section we assume that in the original game
G = [w1, . . . , wn; q] the manipulator is agent an, and he splits into two new identities a′n
and a′′n, resulting in a new game G′.

Theorem 4. For any game G = [w1, . . . , wn; q] and any split of an’s into a′n and a′′n, we
have ϕG′(a′n)+ϕG′(a′′n) ≤ 2n

n+1ϕG(an), i.e., the manipulator cannot gain more than a factor
of 2n/(n + 1) < 2 by splitting his weight between two identities. Moreover, this bound is
tight, i.e., there exists a game in which agent an increases his payoff by a factor of 2n/(n+1)
by splitting into two identities.

Proof. Fix a split of an into a′n and a′′n. Let Πn−1 be the set of all permutations of the
first n − 1 agents. Consider any π ∈ Πn−1. Let P (π) be the set of all permutations of the
agents in G′ that can be obtained by inserting a′n and a′′n into π. Let Π∗

n+1 be the set of all
permutations π∗ of agents in G′ such that a′n or a′′n is pivotal for π∗. Finally, Let P ∗(π, k)
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be the subset of P (π) ∩ Π∗
n+1 that consists of all permutations π′ ∈ P (π) in which at least

one of the a′n and a′′n appears between the kth and the (k +1)st element of π′ and is pivotal
for π′. Every permutation in Π∗

n+1 appears in one of the sets P ∗(π, k) for some π, k, so we
have

ϕG′(a′n) + ϕG′(a′′n) =
|Π∗

n+1|
(n + 1)!

≤ 1
(n + 1)!

∑
π,k

|P ∗(π, k)|.

On the other hand, it is not hard to see that |P ∗(π, k)| ≤ 2n for any π, k: there are two
ways to place a′n and a′′n between the kth and the (k +1)st element of π, n−1 permutations
in P ∗(π, k) in which a′n appears after the kth element of π, but a′′n is not adjacent to it,
and n − 1 permutations in P ∗(π, k) in which a′′n appears after the kth element of π, but
a′n is not adjacent to it. Moreover, if P ∗(π, k) is not empty, then an is pivotal for the
permutation f(π, k) obtained from π by inserting an after the kth element of π. Moreover,
if (π1, k1) 6= (π2, k2) then f(π1, k1) 6= f(π2, k2). Hence,

ϕG(an) ≥ 1
n!

∑
π,k:P∗(π,k) 6=∅

1 ≥ 1
n! · 2n

∑
π,k

|P ∗(π, k)| ≥ n + 1
2n

(ϕG′(a′n) + ϕG′(a′′n)).

We conclude that the manipulator cannot gain more than a factor of 2n/(n + 1) < 2 by
splitting his weight between two identities.

To see that this bound is tight, consider the game G = [2, 2, . . . , 2; 2n] and suppose
that one of the agents (say, an) decides to split into two identities a′n and a′′n resulting
in the game G′ = [2, . . . , 2, 1, 1; 2n]. Clearly, in both games the only winning coalition
consists of all agents, so we have ϕG(an) = 1/n, ϕG′(a′n) = ϕG′(a′′n) = 1/(n + 1), i.e.,
ϕG′(a′n) + ϕG′(a′′n) = 2n

n+1ϕG(an).

We have seen that no agent can increase his payoff by more than a factor of 2 by splitting
his weight between two identities. In contrast, we will now show that an agent can decrease
his payoff by a factor of Θ(n) by doing so. This shows that a would-be manipulator has to be
careful when deciding whether to split his weight, and motivates the algorithmic questions
studied in the next two sections.

Theorem 5. In any weighted voting game, no agent can lower his payoff by more than
a factor of (n + 1)/2 by splitting his weight between two identities. Moreover, there exists
a weighted voting game in which splitting into two identities decreases the manipulator’s
payoff by a factor of (n + 1)/2.

Proof. To prove the first part of the theorem, fix a split of an into a′n and a′′n and consider
any permutation π of agents in G such that an is pivotal for π. It is easy to see that at
least one of a′n and a′′n is pivotal for the permutation f(π) obtained from π by replacing
an with a′n and a′′n (in this order). Similarly, at least one of a′n and a′′n is pivotal for the
permutation g(π) obtained from π by replacing an with a′′n and a′n (in this order). Moreover,
all permutations of agents in G′ obtained in this manner are distinct, i.e., for any π, π′ we
have g(π) 6= f(π′), and π 6= π′ implies f(π) 6= f(π′), g(π) 6= g(π′). Consequently, if Π∗

n is
the set of all permutations π of the agents in G such that an is pivotal for π, and Π∗

n+1 is
the set of all permutations π of the agents in G′ such that a′n or a′′n is pivotal for π, we have
|Π∗

n+1| ≥ 2|Π∗
n| and

ϕG′(a′n) + ϕG′(a′′n) =
|Π∗

n+1|
(n + 1)!

≥ 2|Π∗
n|

(n + 1)!
=

2
n + 1

ϕG(an).

To see that this bound is tight, consider the game G = [2, 2, . . . , 2; 2n − 1] and suppose
that one of the agents (say, an) decides to split into two identities a′n and a′′n resulting in
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the game G′ = [2, . . . , 2, 1, 1; 2n − 1]. In the original game G, the only winning coalition
consists of all agents, so we have ϕG(an) = 1/n. Now, consider any permutation π of
the players in G′. We claim that a′n is pivotal for π if and only if it appears in the nth
position of π, followed by a′′n. Indeed, if π(a′n) = n, π(a′′n) = n + 1, then all players in the
first n − 1 positions have weight 2, so w(Sπ(a′n)) = 2n − 2, w(Sπ(a′n) ∪ {a′n}) = 2n − 1.
Conversely, if π(a′n) = n + 1, we have w(Sπ(a′n)) = 2n − 1 = q, and if π(a′n) ≤ n − 1,
we have w(Sπ(a′n) ∪ {a′n}) ≤ 2(n − 1). Finally, if π(a′n) = n, but π(a′′n) 6= n + 1, we have
w(Sπ(a′n)∪ {a′n}) = 2n− 2 < q. Consequently, a′n is pivotal for (n− 1)! permutations, and,
by the same argument, a′′n is also pivotal for (a disjoint set of) (n−1)! permutations. Hence,
we have ϕG′(a′n) + ϕG′(a′′n) = 2(n−1)!

(n+1)! = 2
n+1ϕG(an).

5 Complexity of Finding a Beneficial Manipulation

We now examine the problem of finding a beneficial weight split in weighted voting games
from the computational perspective. Ideally, the manipulator would like to find a payoff-
maximizing split, i.e., a way to split his weight between two or more identities that results
in the maximal total payoff. A less ambitious goal is to decide whether there exists a
manipulation that increases the manipulator’s payoff. However, it turns out that even this
problem is computationally hard: in the rest of the section, we will show that checking
whether there exists a payoff-increasing split is NP-hard, even if the player is only allowed
to use two identities. To formally define the computational problem, we assume that all
weights and the quota are integer numbers given in binary.

Definition 6. An instance of Beneficial Split is given by a weighted voting game G =
[w1, . . . , wn; q] and a certain target agent ai. We are asked if there is a way for ai to split his
weight wi between several new agents a

(1)
i , . . . , a

(k)
i so that the sum of their Shapley values

is greater than the Shapley value of ai. Formally, an instance (G, ai) is a “yes”-instance if
there exists a k ≥ 2 and weights w

(1)
i , . . . , w

(k)
i such that

∑
j=1,...,k w

(j)
i = wi and in the new

game
G′ = [w1, . . . , wi−1, w

(1)
i , . . . , w

(k)
i , wi+1, . . . , wn; q]

we have ϕG′(a(1)
i ) + · · ·+ ϕG′(a(k)

i ) > ϕG(ai).

Remark 7. Note that we are looking for a strictly beneficial manipulation, i.e., one that
increases the total Shapley value of the manipulator. Indeed, if we were just interested in a
split that is not harmful, the problem would always have a trivial solution: by the dummy
axiom, assigning a weight of 0 to the new agent does not affect the Shapley value of all
agents and therefore is not harmful.

Our hardness proof is by a reduction from Partition, which is a classical NP-complete
problem. An instance of Partition is given by a set of n weights T = {t1, . . . , tn}. It is a
“yes”-instance if it is possible to split T into two subsets P1 ⊆ T , P2 ⊆ T so that P1∩P2 = ∅,
P1 ∪ P2 = T , and

∑
ti∈P1

ti =
∑

ti∈P2
ti, and a “no”-instance if no such partition exists.

The high-level idea of the reduction is as follows. Given an instance of Partition
T = {t1, . . . , tn}, we create a weighted voting game G with n + 2 agents a1, . . . , an, ax, ay,
weights w = (8t1, ..., 8tn, 1, 2), and a quota of q = 4

∑
i ti + 3. The weights are chosen

so that ay is a dummy if the original instance of Partition is a “no”-instance, but has
some power if it is a “yes”-instance. Moreover, when a partition exists, agent ay can gain
power by splitting into two agents of weight 1 each. It follows that T is a “yes”-instance of
Partition if and only if (G, ay) a “yes”-instance of Beneficial Split. For the rest of the
proof, we write A = {a1, . . . , an} and for any A′ ⊆ A we set w(A′) =

∑
i:ai∈A′ wi.
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Lemma 8. If T is a “no”-instance of Partition, then agent ay is a dummy player.

Proof. Suppose that T is a “no”-instance of Partiton. Consider any A′ ⊆ A. The set A can
be partitioned into two equal-weight subsets if and only if T can, so either w(A′) < w(A)/2,
or w(A′) > w(A)/2. We will show that in either case ay cannot be critical to either A′∪{ay}
or A′ ∪ {ax, ay}, i.e., ay is dummy player.

The weights of all agents in A are multiples of 8, so w(A)/2 is a multiple of 4. Similarly,
the weight of A′ is a multiple of 8. Hence, if w(A′) < w(A)/2, it follows that w(A′) ≤
w(A)/2 − 4 and w(A′ ∪ {ax, ay}) ≤ w(A)/2 − 4 + 3 < q. Therefore, A′ ∪ {ax, ay} (and a
forteriori A′ ∪ {ay}) is not a winning coalition, so ay cannot be pivotal for it.

Similarly, if w(A′) > w(A)/2, then w(A′) ≥ w(A)/2+4 > q, so A′ is a winning coalition.
Therefore ay cannot be critical for A′ ∪ {ay} or A′ ∪ {ax, ay}. We conclude that by the
dummy axiom the Shapley value of ay is 0.

Corollary 9. If T is a “no”-instance of Partition, then (G, ay) is a “no”-instance of
Beneficial Split.

Proof. By Lemma 8, if T is a “no”-instance of Partition, the agent ay is a dummy in
G. Now, take any possible split of ay into several agents a

(1)
y , . . . , a

(k)
y and consider any

permutation π of the agents in the new game. If there is a j ≤ k such that a
(j)
y is pivotal

for π, then ay is pivotal for the permutation obtained from π by deleting all agents a
(l)
y with

l 6= j and replacing a
(j)
y , with ay, a contradiction. We conclude that all a

(j)
y , j = 1, . . . , k

are dummy players and hence their total Shapley value is 0. Therefore, ay gains no power
by splitting and (G, ay) is a “no”-instance of Beneficial Split.

Lemma 10. If T is a “yes”-instance of Partition, then ay can increase his power by
splitting into two agents, i.e., (G, ay) is a “yes”-instance of Beneficial Split.

Proof. Let T be a “yes”-instance of Partition. Let 〈P1, P2〉 be a partition of T , so w(P1) =
w(P2). It corresponds to a partition 〈A1, A2〉 of A, where ai ∈ A1 if and only if ti ∈ P1;
obviously, we have w(A1) = w(A2). We denote |A1| = s, so |A2| = n− s.

It is easy to see that ay is critical for A1∪{ax, ay} as well as for A2∪{ax, ay}. There are
(s+1)!(n−s)! permutations of a1, . . . , an, ax, ay that put ay directly after some permutation
of A1 ∪ {ax}. Similarly, there are s!(n− s + 1)! permutations putting ay directly after some
permutation of A2 ∪ {ax}. Thus, for each partition Xi = 〈P i

1, P
i
2〉, where |P i

1| = s, we have
at least (s + 1)!(n − s)! + s!(n − s + 1)! distinct permutations where ay is critical. On the
other hand, as shown in Lemma 8, if A′ is a subset of A such that w(A′) 6= w(A)/2, then
ay is not critical for A′ ∪ {ay} or A′ ∪ {ay, ax}, since either w(A′) ≤ w(A)/2− 4 < q − 3 or
w(A′) ≥ w(A)/2 + 4 > q.

Let P be the set of all partitions of T , where each partition is counted only once, i.e.,
P contains exactly one of the 〈P1, P2〉 and 〈P2, P1〉. For each Pi = 〈P i

1, P
i
2〉 ∈ P, we denote

|P i
1| = si. There is a total of (n+2)! permutations of players in G. Thus, the Shapley value

of ay in G is

ϕG(ay) =
∑

Pi∈P
(si+1)!(n−si)!+si!(n−si+1)!

(n+2)! =
∑

Pi∈P
si!(n−si)!(si+1+n−si+1)

(n+2)! =∑
Pi∈P

si!(n−si)!(n+2)
(n+2)! =

∑
Pi∈P

si!(n−si)!
(n+1)! .

We now consider what happens when ay splits into two agents, a′y and a′′y , w(a′y) =
w(a′y) = 1, resulting in a game G′ = [8t1, . . . , 8tn, 1, 1, 1;

∑n
i=1 ti + 3].

Again, let 〈P1, P2〉, |P1| = si, |P2| = n− si, be a partition of T , so w(P1) = w(P2), and
let 〈A1, A2〉 be the corresponding partition of A. Consider any permutation π which places
a′′y directly after some permutation of A1 ∪ {ax, a′y}; clearly, a′′y is critical for π. Similarly,
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a′′y is critical for any permutation π′ which places a′′y directly after some permutation of
A2 ∪ {ax, a′y}. There are (si + 2)!(n − si)! permutations putting a′′y directly after some
permutation of A1 ∪ {ax, a′y} and si!(n − si + 2)! permutations putting a′′y directly after
some permutation of A2 ∪ {ax, a′y}.

Thus, for each partition Pi =< P i
1, P

i
2 >, where |P i

1| = si, we have (si + 2)!(n − si)! +
si!(n− si + 2)! permutations where a′′y is critical. Switching the roles of a′y and a′′y , both of
which have the same weight and are thus equivalent, we also get that there are (si +2)!(n−
si)!+si!(n−si +2)! permutations where a′y is critical. There are n+3 agents in G′, so there
is a total of (n+3)! permutations of the agents. Thus each partition Pi = (P i

1, P
i
2), |Pi| = si,

contributes si!(n−si)!
(n+1)! to the Shapley value of ay in G, and 2 (si+2)!(n−si)!+si!(n−si+2)!

(n+3)! to the
sum of the Shapley values of a′y or a′′y in G′. We will now show that for any partition Pi

2
(si + 2)!(n− si)! + si!(n− si + 2)!

(n + 3)!
>

si!(n− si)!
(n + 1)!

. (2)

Summing these inequalities over all partitions Pi will imply ϕG′(a′y) + ϕG′(a′′y) > ϕG(ay),
as desired. Inequality (2) can be simplified to

2
(s + 1)(s + 2) + (n− s + 1)(n− s + 2)

(n + 2)(n + 3)
> 1,

where we use s instead of si to simplify notation, or, equivalently, 2(s + 1)(s + 2) + 2(n −
s + 1)(n− s + 2)− (n + 2)(n + 3) > 0. Now, observe that 2(s + 1)(s + 2) + 2(n− s + 1)(n−
s + 2)− (n + 2)(n + 3) = (n− 2s)2 + n + 2 > 0 for any n. This proves inequality (2) for any
s, n. It follows that if there is a partition, agent ay always gains by splitting into two agents
of weight 1. Thus, if T is a “yes”-instance of Partition, then (G, ay) is a “yes”-instance of
Beneficial Split.

We summarize our results in the following theorem.

Theorem 11. Beneficial Split is NP-hard, even if the only allowed split is into two
identities with equal weights.

Proof. We transform an instance T of Partition into an instance (G, ay) of Beneficial
Split as explained above. We combine Corollary 9 and Lemma 10, and see that T is a
“yes” instance of Partition if and only if the (G, ay) is a “yes”-instance of Beneficial
Split. This completes the reduction.

Remark 12. Note that we have not shown that Beneficial Split is in NP, so we have not
proved that it is NP-complete. There are two reasons for this. First, if we allow splits into
an arbitrary number of identities, some of the candidate solutions may have exponentially
many new agents (e.g., an agent with weight wi can split into wi agents of weight 1), or
agents whose weights are rational numbers with superpolynomially many digits in their binary
representation. Second, even if we circumvent this issue by only considering splits into two
identities with integer weights, it is not clear how to verify in polynomial time whether a
particular split is beneficial. In fact, since computing the Shapley value in weighted voting
games is #P-complete, it is quite possible that Beneficial Split is not in NP.

6 Finding Beneficial Splits

In Section 5, we have shown that it is hard even to test if any beneficial split exists, let
alone to find the optimal split. This can be seen as a positive result, since complexity of
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finding beneficial splits serves as a barrier for this kind of manipulative behavior. However,
it turns out that in many cases manipulators can overcome this difficulty. Indeed, recall that
our hardness reduction is from Partition. While this problem is NP-hard, its hardness—
and hence the hardness of our problem—crucially relies on the fact that the weights of the
elements are represented in binary. Indeed, if the weights are given in unary, there is a
dynamic programming-based algorithm for Partition that runs is time polynomial in size
of the input (such algorithms are usually referred to as pseudopolynomial). In particular, if
all weights are polynomial in n, the running time of this algorithm is polynomial in n. In
many natural voting domains the weights of all agents are not too large, so this scenario is
quite realistic. It is therefore natural to ask if there exists a pseudopolynomial algorithm
for the problem of finding a beneficial split.

It turns out that the answer to this question is indeed positive as long as there is a
constant upper bound K on the number of identities that the manipulator can use and
all weights are required to be integer. To see this, recall that there is a pseudopolynomial
algorithm for computing the Shapley value of any player in a weighted voting game [10].
This algorithm is based on dynamic programming: for any weight W and any 1 ≤ k ≤ n,
it calculates the number of coalitions of size k that have weight W . One can use the
algorithm of [10] to find a beneficial split for a player ai with weight wi in a game G as
follows. Consider all possible splits wi = w

(1)
i + · · · + w

(K)
i , where w

(j)
i ∈ Z, w

(j)
i ≥ 0 for

j = 1, . . . ,K. Clearly, the number of such splits is at most (wi)K , which is polynomial in n
for constant K. Evaluate the Shapley values of all new agents in any such split and return
“yes” if and only if any of these splits results in an increased total payoff. Let A(G) be
the running time of the algorithm of paper [10] on instance G. The running time of our
algorithm is O((wi)KK ·A(G)), which is clearly pseudopolynomial.

We will now consider a more general setting, where only the weight of the manipulator
is polynomially bounded, while the weights of other players can be large. To simplify the
presentation, we limit ourselves to the case of two-way splits; however, our approach applies
to splits into any constant number of identities. We can use the same high-level approach
as in the previous case, i.e., considering all possible splits (because of the weight restriction,
there is only polynomially many of them), and computing the Shapley values of both new
agents for each split. However, if we were to implement the latter step exactly, it would take
exponential time. Therefore, in this version of our algorithm, we replace the algorithm of [10]
with an approximation algorithm for computing the Shapley value. Several such algorithms
are known: see, e.g., [8, 4]. We will use these algorithms in a black-box fashion. Namely,
we assume that we are given a procedure Shapley(G, ai, δ, ε) that for any given values of
ε > 0 and δ > 0 outputs a number v that with probability 1 − δ satisfies |v − ϕG(ai)| ≤ ε
and runs in time poly(n log wmax, 1/ε, 1/δ). We show how to use this procedure to design
an algorithm for finding a beneficial split and relate the performance of our algorithm to
that of Shapley(G, ai, δ, ε).

Our algorithm is described in Figure 1. It takes a pair of parameters (δ, ε) as an input,
and uses the procedure Shapley(G, ai, δ, ε) as a subroutine. The algorithm outputs “yes”
if it finds a split whose total estimated payoff exceeds the payoff of the manipulator in the
original game by at least 3ε. It can easily be modified to output the optimal split.

Proposition 13. With probability 1−3δ, the output of our algorithm satisfies the following:
(i) If the algorithm outputs “yes”, then (G, ai) admits a beneficial integer split; (ii) Con-
versely, if there is an integer split that increases the payoff to the manipulator by more than
6ε, our algorithm outputs “yes”. Moreover, the running time of our algorithm is polynomial
in nwi, 1/ε, and 1/δ.

Proof. Suppose that the algorithm outputs “yes”. We have Prob[v∗ < ϕG(ai) − ε] < δ,
Prob[v′ > ϕG′(a′i) + ε] < δ, Prob[v′′ > ϕG′(a′′i ) + ε] < δ. Hence, with probability at least
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FindSplit(G = [w; q], ai, δ, ε);
v∗ =Shapley(G, ai, δ, ε);
for j = 0, . . . , wi

w′
i = j, w′′

i = wi − j;
G′ = [w1, . . . , wi−1, w

′
i, w

′′
i , wi+1, . . . , wn; q];

v′ = Shapley(G′, a′i, δ, ε), v′′ =Shapley(G′, a′′i , δ, ε);
v = v′ + v′′;
if v > v∗ + 3ε then return yes;

return no;

Figure 1: Algorithm FindSplit(G = [w; q], ai, δ, ε)

1− 3δ, if v′ + v′′ > v∗ + 3ε, then ϕG′(a′i) + ϕG′(a′′i ) + 2ε > ϕG(ai)− ε + 3ε, or, equivalently,
ϕG′(a′i) + ϕG′(a′′i ) > ϕG(ai).

Conversely, suppose that there is a beneficial split of the form (w′
i, w

′′
i ) that improves

player ai’s payoff by at least 6ε. As before, with probability at least 1 − 3δ we have that
v∗ ≤ ϕG(ai) + ε and at the step j = w′

i it holds that v′ ≥ ϕG′(a′i) − ε, v′′ ≥ ϕG′(a′′i ) − ε.
Then v = v′ + v′′ ≥ ϕG′(a′i) + ϕG′(a′′i )− 2ε > ϕG(ai) + 6ε− 2ε ≥ v∗ + 3ε, so the algorithm
will output “yes”.

While our algorithm does not guarantee finding a successful manipulation, it is possible
to control the approximation quality (at the cost of increasing the running time), so that a
successful manipulation is found with high probability.

Thus we can see that manipulators have several ways to overcome the computational
difficulty of finding the optimal manipulation. Thus, other measures are required to avoid
such manipulations.

7 Extensions

In this section, we consider some variants of the model studied in the paper. Our results
here are rather preliminary and provide several interesting directions for future research.

Splitting into more than two identities So far, we have mostly discussed the gain (or
loss) that an agent can achieve by splitting into two identities. However, it is also possible
for an agent to use three or more false names. Potentially, the number of identities an agent
can use can be as large as his weight (and if the weights are not required to be integer,
it can even be infinite). It would be interesting to see which of our results hold in this
more general setting. For example, while our computational hardness result holds for splits
into any number of identities, the algorithmic results of the previous section only apply
to splits into a constant number of new identities. An obvious open problem here is to
design a pseudopolynomial algorithm for finding a beneficial integer split into any number
of identities, or to prove that this problem is NP-hard even for small weights (i.e., weights
that are polynomial in n). Another question of interest here is to extend the upper and
lower bounds of Section 4.1 for this setting.

Manipulation by merging Each situation in which splitting is harmful for an agent
directly corresponds to a situation where it is beneficial for several agents to merge, i.e.,
pretend that they are a single agent whose weight is equal to the total weight of the manip-
ulators.

Some of the results presented in the paper can easily be translated to this domain. In
particular, it is not hard to see that the proof of Theorem 11 can be adapted to show that
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it is NP-hard to check whether there exists a beneficial merge, and the results of Section 4.1
can be interpreted in terms of merging rather than splitting. However, this problem is very
different from the game-theoretic perspective, as it involves coordinated actions by several
would-be manipulators who then have to decide how to split the (increased) total payoff.
We propose it as a direction for future work.

8 Conclusions

We have considered false-name manipulations in weighted voting games. We have shown
that these manipulations can both increase and decrease the manipulator’s payoffs, and
provided tight upper and lower bounds on the effects of false-name voting. We have also
shown that testing whether a beneficial manipulation exists is NP-hard. One may ask why we
view this hardness result as an adequate barrier to manipulation, while using Shapley value
(which itself is #P-hard to compute) as a payoff division scheme and therefore assuming
that it can be computed. To resolve this apparent contradiction, note that the Shapley value
corresponds to the voting power, and the players may try to increase their voting power by
weight-splitting manipulation even if they cannot compute it. Also, when the Shapley value
is used to compute payments, the center, which performs this computation, may have more
computational power than individual agents. Furthermore, a payoff division scheme that is
based on approximate computation of Shapley value may still be acceptable to the agents,
whereas the manipulator may want to know for sure that attempted manipulation will not
hurt him (and we have seen that in some cases weight-splitting can considerably decrease
the agent’s payoffs), or provide him with sufficient benefits to offset the costs of splitting.
While the approximation algorithm discussed in the previous section can be used for this
purpose, it only works if the manipulator’s weight is small. Generalizing it to large weights
(i.e., showing that if a beneficial split exists, it can be found by testing a polynomial number
of splits) is an interesting open question.

In this paper, we presented results on false-name voting for the case when the payoffs
are distributed according to the Shapley value. An obvious research direction is to see if one
can derive similar results for other power indices, such as Banzhaf index, as well as other
solution concepts used in co-operative games such as, e.g., the nucleolus. More generally, it
would be interesting to design a payoff distribution scheme that is resistant to this type of
manipulation, or prove that it does not exist.

The study of weighted voting has many applications both in political science and in
multiagent systems. There are several possible interpretations for identity-splitting in these
contexts, such as obtaining a higher share of the grand coalition’s gains when these are
distributed according to the Shapley value, or obtaining more political power by splitting
a political party into several parties with similar political platforms. In the first case, a
false-name manipulation is hard to detect in open anonymous environments, and can thus
be very effective. In the second case, the manipulation is done using legitimate tools of
political conduct. Therefore, we conjecture that false-name manipulation is widespread
in the real world and may become a serious issue in multiagent systems. It is therefore
important to develop a better understanding of the effects of this behavior and/or design
methods of preventing it.
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Computing Kemeny Rankings,

Parameterized by the Average KT-Distance

Nadja Betzler, Michael R. Fellows, Jiong Guo, Rolf Niedermeier, and
Frances A. Rosamond

Abstract

The computation of Kemeny rankings is central to many applications in the context
of rank aggregation. Unfortunately, the problem is NP-hard. Extending our previous
work [AAIM 2008], we show that the Kemeny score of an election can be computed
efficiently whenever the average pairwise distance between two input votes is not
too large. In other words, Kemeny Score is fixed-parameter tractable with respect
to the parameter “average pairwise Kendall-Tau distance da”. We describe a fixed-
parameter algorithm with running time O(16⌈da⌉

· poly).

1 Introduction

Aggregating inconsistent information has many applications ranging from voting scenarios
to meta search engines and fighting spam [1, 4, 5, 7]. In some sense, one deals with consensus
problems where one wants to find a solution to various “input demands” such that these
demands are met as well as possible. Naturally, contradicting demands cannot be fulfilled
at the same time. Hence, the consensus solution has to provide a balance between opposing
requirements. The concept of Kemeny consensus (or Kemeny ranking) is among the most
important research topics in this context. In this paper, extending our previous work [3],
we study new algorithmic approaches based on parameterized complexity analysis [6, 9, 13]
for efficiently computing optimal Kemeny consensus solutions in practically relevant special
cases.

Kemeny’s voting scheme can be described as follows. An election (V, C) consists of a
set V of n votes and a set C of m candidates. A vote is a preference list of the candidates.
For instance, in the case of three candidates a, b, c, the order c > b > a would mean that
candidate c is the best-liked and candidate a is the least-liked for this voter. A “Kemeny
consensus” is a preference list that is “closest” to the preference lists of the voters. For each
pair of votes v, w, the so-called Kendall-Tau distance (KT-distance for short) between v
and w, also known as the number of inversions between two permutations, is defined as

KT-dist(v, w) =
∑

{c,d}⊆C

dv,w(c, d),

where the sum is taken over all unordered pairs {c, d} of candidates, and dv,w(c, d) is 0 if v
and w rank c and d in the same order, and 1 otherwise. Using divide-and-conquer, the
KT-distance can be computed in O(m · log m) time [12]. The score of a preference list l with
respect to an election (V, C) is defined as

∑

v∈V KT-dist(l, v). A preference list l with the
minimum score is called a Kemeny consensus of (V, C) and its score

∑

v∈V KT-dist(l, v) is
the Kemeny score of (V, C), denoted as K-score(V, C). The underlying decision problem is
as follows:

Kemeny Score

Input: An election (V, C) and a positive integer k.
Question: Is K-score(V, C) ≤ k?
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Known results. We summarize the state of the art concerning the computational com-
plexity of Kemeny Score. Bartholdi et al. [2] showed that Kemeny Score is NP-
complete, and it remains so even when restricted to instances with only four votes [7, 8].
Given the computational hardness of Kemeny Score on the one side and its practical rele-
vance on the other side, polynomial-time approximation algorithms have been studied. The
Kemeny score can be approximated to a factor of 8/5 by a deterministic algorithm [15] and to
a factor of 11/7 by a randomized algorithm [1]. Recently, a polynomial-time approximation
scheme (PTAS) has been developed [11]. However, the running time is completely impracti-
cal and the result is only of theoretical interest. Conitzer, Davenport, and Kalagnanam [5, 4]
performed computational studies for the efficient exact computation of a Kemeny consensus,
using heuristic approaches such as greedy and branch-and-bound. Hemaspaandra et al. [10]
provided further, exact classifications of the classical computational complexity of Kemeny
elections. Very recently, we initiated a parameterized complexity study based on various
problem parameterizations [3]. We obtained fixed-parameter tractability results for the
parameters “score”, “number of candidates”, “maximum KT-distance between two input
votes”, and “maximum position range of a candidate”.1 For more details, see Section 2

New results. Our main result is that Kemeny Score can be solved in O(16⌈da⌉ ·
poly(n, m)) time, where da denotes the average KT-distance between the pairs of input votes.
This represents a significant improvement of the previous algorithm for the maximum KT-
distance between pairs of input votes, which has running time O((3dmax + 1)! · poly(n, m)).
Clearly, da ≤ dmax.

1.1 Preliminaries

Let the position of a candidate c in a vote v, denoted by v(c), be the number of candidates
that are better than c in v. That is, the leftmost (and best) candidate in v has position 0
and the rightmost has position m − 1. For an election (V, C) and a candidate c ∈ C, the
average position pa(c) of c is defined as

pa(c) :=
1

n
·
∑

v∈V

v(c).

For an election (V, C) the average KT-distance da is defined as

da :=
1

n(n− 1)
·

∑

{u,v}∈V,u6=v

KT-dist(u, v).

Note that an equivalent definition is given by

da :=
1

n(n− 1)
·

∑

a,b∈C

#v(a > b) ·#v(b > a),

where for two candidates a and b the number of input votes in which a is ranked better than
b is denoted by #v(a > b). This definition is useful if the input is provided by the outcomes
of the pairwise elections of the candidates including the margins of victory.

We briefly introduce the relevant notions of parameterized complexity theory [6, 9, 13].
Parameterized algorithmics aims at a multivariate complexity analysis of problems. This
is done by studying relevant problem parameters and their influence on the computational
complexity of problems. The hope lies in accepting the seemingly inevitable combinatorial

1The parameterization by position range has only been discussed in the long version of [3].
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explosion for NP-hard problems, but confining it to the parameter. Hence, the decisive
question is whether a given parameterized problem is fixed-parameter tractable (FPT) with
respect to the parameter, often denoted k. In other words, for an input instance I together
with the parameter k, we ask for the existence of a solving algorithm with running time f(k)·
poly(|I|) for some computable function f .

2 Parameterizations of the Kemeny Score Problem

In recent work [3], we initiated a parameterized complexity study of Kemeny Score. In
this section, we review the considered parameterizations and results.

An election can be interpreted as having (at least) two “dimensions”, the set of votes and
the set of candidates. Thus, the “number n of votes” and the “number m of candidates” lead
to natural parameterizations. Fixed-parameter tractability with respect to the parameter
“number of votes” would imply P=NP since Kemeny Score is already NP-complete for
instances with four votes [7]. In contrast, concerning m as a parameter, there is a trivial
algorithm that tests all m! orderings of the candidates for a Kemeny consensus. Using a
dynamic programming approach, we were able to lower the combinatorial explosion in m;
more specifically, we provided an exact algorithm running in O(2m ·m2n) time [3].2

A common parameterization in parameterized algorithmics is the size of the solution of
a problem, motivating the consideration of “Kemeny score k” as a parameter. Using the
Kemeny score as a parameter, a preprocessing procedure (that is, a “problem kerneliza-
tion”) together with a search tree approach led to a fixed-parameter algorithm that runs
in O(1.53k + m2n) time. The drawback of this parameterization is that the Kemeny score
can become large for many instances.

Finally, we turned our attention to two structural parameterizations: the “maximum
range of candidate positions” and the “maximum KT-distance”.3 For an election (V, C),
the maximum range r of candidate positions is defined as

r := max
v,w∈V,c∈C

{|v(c)− w(c)|}.

For this parameterization, we developed a dynamic programming algorithm that is based
on the observation that we can “decompose” the input votes into two parts. The resulting
running time is O((3r+1)! ·r log r ·mn). Further, the maximum KT-distance dmax is defined
as

dmax := max
v,w∈V

KT-dist(v, w).

We showed that for every election we have r ≤ dmax. Thus, our results for the maximum
range of candidate positions also hold for the maximum distance. The parameterization
by dmax was the main reason to study the parameterization by the maximum range of
candidate positions and, further, motivated us to consider the average distance as parameter
in this work.

In our previous work [3], we also extended some of our findings to two generalizations
of Kemeny Score; in one case allowing ties and in the other case dealing with incomplete
information. For more details, we refer to there [3].

2In a different context, this result has been independently achieved by Raman et al. [14].
3In the conference version of [3] we only dealt with the maximum KT-distance as parameter whereas

in the full version (invited for submission to a special issue of Theoretical Computer Science) we discussed
both structural parameterizations as we do here.
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3 Parameter “Average KT-Distance”

In this section, we further extend the range of parameterizations studied so far by giving
a fixed-parameter algorithm with respect to the parameter “average KT-distance”. We
start with showing how the average KT-distance can be used to upper-bound the range of
positions that a candidate can take in any optimal Kemeny consensus. Based on this crucial
observation, we then state the algorithm.

3.1 A Crucial Observation

Our fixed-parameter tractability result with respect to the average KT-distance of the input
is based on the following lemma.

Lemma 1. Let da be the average KT-distance of an election (V, C) and d := ⌈da⌉. Then,
in every optimal Kemeny consensus l, for every candidate c ∈ C with respect to its average
position pa(c) we have pa(c)− d < l(c) < pa(c) + d.

Proof. The proof is by contradiction and consists of two claims: First, we show that we can
find a vote with Kemeny score less than d · n, that is, the Kemeny score of the instance is
upper-bounded by d·n. Second, we show that in every Kemeny consensus every candidate is
in the claimed range. More specifically, we prove that every consensus in which the position
of a candidate is not in a “range d of its average position” has a Kemeny score greater than
d · n, a contradiction to the first claim.

Claim 1: K-score(V, C) < d · n.

Proof of Claim 1: To prove Claim 1, we show that there is a vote v ∈ V with
∑

w∈V KT-dist(v, w) < d · n, implying this upper bound for an optimal Kemeny consen-
sus as well. By definition,

da =
1

n(n− 1)
·

∑

{v,w}∈V,v 6=w

KT-dist(v, w) (1)

⇒∃v ∈ V with da ≥
1

n(n− 1)
· n ·

∑

w∈V

KT-dist(v, w) =
1

n− 1
·

∑

w∈V

KT-dist(v, w) (2)

⇒∃v ∈ V with da · n >
∑

w∈V

KT-dist(v, w). (3)

Since we have d = ⌈da⌉, Claim 1 follows directly from Inequality (3).

The next claim shows the given bound on the range of possible candidates positions.

Claim 2: In every optimal Kemeny consensus l, every candidate c ∈ C fulfills
pa(c)− d < l(c) < pa(c) + d.

Proof of Claim 2: We start by showing that, for every candidate c ∈ C we have

K-score(V, C) ≥
∑

v∈V

|l(c)− v(c)|. (4)

Note that, for every candidate c ∈ C, for two votes v, w we must have KT-dist(v, w) ≥
|v(c) − w(c)|. Without loss of generality, assume that v(c) > w(c). Then, there must be at
least v(c)−w(c) candidates that have a smaller position than c in v and that have a greater
position than c in w. Further, each of these candidates increases the value of KT-dist(v, w)
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by one. Based on this, Inequality (4) directly follows as, by definition, K-score(V, C) =
∑

v∈V KT-dist(v, l).
To simplify the proof of Claim 2, in the following, we shift the positions in l such

that l(c) = 0. Accordingly, we shift the positions in all votes in V , that is, for every v ∈ V
and every a ∈ C, we decrease v(a) by the original value of l(c). Clearly, shifting all positions
does not affect the relative differences of positions between two candidates. Then, let the
set of votes in which c has a nonnegative position be V + and let V − denote the remaining
set of votes, that is, V − := V \V +.

Now, we show that if candidate c is placed outside of the given range in an optimal Ke-
meny consensus l, then K-score(V, C) > d ·n. The proof is by contradiction. We distinguish
two cases:

Case 1: l(c) ≥ pa(c) + d.
As l(c) = 0, in this case pa(c) becomes negative. Then,

0 ≥ pa(c) + d ⇔ −pa(c) ≥ d.

It follows that |pa(c)| ≥ d. The following shows that Claim 2 holds for this case.

∑

v∈V

|l(c)− v(c)| =
∑

v∈V

|v(c)| =
∑

v∈V +

|v(c)|+
∑

v∈V −

|v(c)|. (5)

Next, replace the term
∑

v∈V − |v(c)| in (5) by an equivalent term that depends on |pa(c)|
and

∑

v∈V + |v(c)|. For this, use the following, derived from the definition of pa(c):

n · pa(c) =
∑

v∈V +

|v(c)| −
∑

v∈V −

|v(c)|

⇔
∑

v∈V −

|v(c)| = n · (−pa(c)) +
∑

v∈V +

|v(c)| = n · |pa(c)|+
∑

v∈V +

|v(c)|.

The replacement results in

∑

v∈V

|l(c)− v(c)| = 2 ·
∑

v∈V +

|v(c)| + n · |pa(c)| ≥ n · |pa(c)| ≥ n · d.

This says that K-score(V, C) ≥ n · d, a contradiction to Claim 1.

Case 2: l(c) ≤ pa(c)− d.
Since l(c) = 0, the condition is equivalent to 0 ≤ pa(c) − d ⇔ d ≤ pa(c), and we have that
pa(c) is nonnegative. Now, we show that Claim 2 also holds for this case.

∑

v∈V

|l(c)− v(c)| =
∑

v∈V

|v(c)| =
∑

v∈V +

|v(c)|+
∑

v∈V −

|v(c)|

≥
∑

v∈V +

v(c) +
∑

v∈V −

v(c) = pa(c) · n ≥ d · n.

Thus, also in this case K-score(V, C) ≥ n · d, a contradiction to Claim 1.

Based on Lemma 1, for every position we can define the set of candidates that can take
this position in an optimal Kemeny consensus. The subsequent definition will be useful for
the formulation of the algorithm.
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Definition 1. Let (V, C) be an election. For i ∈ {0, . . . , m − 1}, let Pi denote the set
of candidates that can assume the position i in an optimal Kemeny consensus, that is,
Pi := {c ∈ C | pa(c)− d < i < pa(c) + d}.

Based on Lemma 1, we can easily show the following.

Lemma 2. For every position i, the size of Pi is at most 4d.

Proof. The proof is by contradiction. Assume that there is a position i with |Pi| > 4d. Due
to Lemma 1, for every candidate c ∈ Pi the positions which c may assume in an optimal
Kemeny consensus can differ by at most 2d−1. This is true because, otherwise, candidate c
could not be in the given range around its average position. Then, in a Kemeny consensus,
each of the at least 4d + 1 candidates must hold a position that differs at most by 2d − 1
from position i. As there are only 4d − 1 such positions (2d − 1 on the left and 2d − 1 on
the right of i), one obtains a contradiction.

3.2 Basic Idea of the Algorithm

In Subsection 3.4, we will present a dynamic programming algorithm for Kemeny Score.
It exploits the fact that every candidate can only appear in a fixed range of positions in
an optimal Kemeny consensus.4 The algorithm “generates” a Kemeny consensus from the
left to the right. It tries out all possibilities for ordering the candidates locally and then
combines these local solutions to yield a Kemeny consensus.

More specifically, according to Lemma 2 the number of candidates that can take a
position i in an optimal Kemeny consensus for any 0 ≤ i ≤ m − 1 is at most 4d. Thus,
for position i, we can test all possible candidates. Having chosen a candidate for position i,
the remaining candidates that could also assume i must either be left or right of i in a
Kemeny consensus. Thus, we test all possible two-partitionings of this subset of candidates
and compute a “partial” Kemeny score for every possibility. For the computation of the
partial Kemeny scores at position i we make use of the partial solutions computed for the
previous position i− 1.

3.3 Definitions for the Algorithm

To state the algorithm, we need some further definitions. For i ∈ {0, . . . , m − 1}, let I(i)
denote the set of candidates that could be “inserted” at position i for the first time, that is,

I(i) := {c ∈ C | c ∈ Pi and c /∈ Pi−1}.

Let F (i) denote the set of candidates that must be “forgotten” at latest at position i, that
is,

F (i) := {c ∈ C | c /∈ Pi and c ∈ Pi−1}.

For our algorithm, it is essential to subdivide the overall Kemeny score into partial
Kemeny scores (pK). More precisely, for a candidate c and a subset of candidates R with
c /∈ R, we set

pK(c, R) :=
∑

c′∈R

∑

v∈V

dR
v (c, c′),

where for c /∈ R and c′ ∈ R we have dR
v (c, c′) := 0 if in v we have c′ > c, and dR

v (c, c′) := 1,
otherwise. Intuitively, the partial Kemeny score denotes the score that is “induced” by

4In contrast, the previous dynamic programming algorithms from [3] for the parameters “maximum
range of candidate positions” and “maximum KT-distance” rely on decomposing the input. Further, here
we obtain a much better running time by using a more involved dynamic programming approach.

90



candidate c and the candidate subset R if the candidates of R have greater positions than c
in an optimal Kemeny consensus.5 Then, for a Kemeny consensus l := c0 > c1 > · · · > cm−1,
the overall Kemeny score can be expressed by partial Kemeny scores as follows.

K-score(V, C) =
m−2
∑

i=0

m−1
∑

j=i+1

∑

v∈V

dv,l(ci, cj) (6)

=

m−2
∑

i=0

∑

c′∈R

∑

v∈V

dR
v (ci, c

′) for R := {cj | i < j < m} (7)

=
m−2
∑

i=0

pK(ci, {cj | i < j < m}). (8)

Next, consider the three-dimensional dynamic programming table. Roughly speaking,
define an entry for every position i, every candidate c that can assume i, and every candidate
subset C′ of Pi\{c}. The entry stores the “minimum partial Kemeny score” over all possible
orders of the candidates of C′ under the condition that c takes position i and all candidates
of C′ take positions smaller than i. To define the dynamic programming table formally, we
need some further notation.

Let Π(C′) denote the set of all possible orders of the candidates in C′, where C′ ⊆ C.
Further, consider a Kemeny consensus in which every candidate of C′ has a position smaller
than every candidate in C\C′. Then, the minimum partial Kemeny score restricted to C′ is
defined as

min
(c1>c2>···>cx)∈Π(C′)

{

x
∑

s=1

pK(cs, {cj | s < j < m} ∪ (C\C′))

}

with x := |C′|.

That is, it denotes the minimum partial Kemeny score over all orders of C′. We define
an entry of the dynamic programming table T for a position i, a candidate c ∈ Pi, and a
candidate subset P ′

i ⊆ Pi with c /∈ P ′
i . For this, we define L :=

⋃

j≤i F (j) ∪ P ′
i . Then, an

entry T (i, c, P ′
i ) denotes the minimum partial Kemeny score restricted to the candidates in

L∪ {c} under the assumptions that c is at position i in a Kemeny consensus, all candidates
of L have positions smaller than i, and all other candidates have positions greater than i.
That is, for |L| = i− 1, define

T (i, c, P ′
i ) := min

(c0>···>ci−1)∈Π(L)

i−1
∑

s=0

pK(cs, C\{cj | j ≤ s}) + pK(c, C\(L ∪ {c})).

3.4 Dynamic Programming Algorithm

The algorithm is displayed in Fig. 1. It is easy to modify the algorithm such that it outputs
an optimal Kemeny consensus: for every entry T (i, c, P ′

i ), one additionally has to store a
candidate c′ that minimizes T (i − 1, c′, (P ′

i ∪ F (i))\{c′}) in line 11. Then, starting with
a minimum entry for position m − 1, we reconstruct a Kemeny consensus by iteratively
adding the “predecessor” candidate. The asymptotic running time remains unchanged.
Moreover, in several applications, it is helpful not having one optimal Kemeny consensus
but to enumerate all of them. At the expense of an increased running time, our algorithm can
be extended to provide such an enumeration by storing all possible predecessor candidates.

Lemma 3. The algorithm in Fig. 1 correctly computes Kemeny Score.

5By convention and somewhat counterintuitive, we say that candidate c has a greater position than
candidate c

′ if c
′
> c in a vote.
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Input: An election (V, C) and, for every 0 ≤ i < m, the set Pi of candidates that can
assume position i in an optimal Kemeny consensus.
Output: The Kemeny score of (V, C).

Initialization:
01 for i = 0, . . . , m− 1
02 for all c ∈ Pi

03 for all P ′
i ⊆ Pi\{c}

04 T (i, c, P ′
i) := +∞

05 for all c ∈ P0

06 T (0, c, ∅) := pK(c, C\{c})

Update:
07 for i = 1, . . . , m− 1
08 for all c ∈ Pi

09 for all P ′
i ⊆ Pi\{c}

10 if |P ′
i ∪

⋃

j≤i F (j)| = i− 1 and T (i− 1, c′, (P ′
i ∪ F (i))\{c′}) is defined then

11 T (i, c, P ′
i) = min

c′∈P ′

i
∪F (i)

T (i− 1, c′, (P ′
i ∪ F (i))\{c′})

+ pK(c, (Pi ∪
⋃

i<j<m

I(j))\(P ′
i ∪ {c}))

Output :
12 K-score = minc∈Pm−1

T (m− 1, c, Pm−1\{c})

Figure 1: Dynamic programming algorithm for Kemeny Score
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Proof. For the correctness, we have to show two points:
First, all table entries are well-defined, that is, for an entry T (i, c, P ′

i) concerning po-
sition i there must be exactly i − 1 candidates that have positions smaller than i. This
condition is assured by line 10 of the algorithm.6

Second, we must ensure to find an optimal solution. Due to Equality (8), we know
that the Kemeny score can be decomposed into partial Kemeny scores. Thus, it remains
to show that the algorithm considers a decomposition that leads to an optimal solution.
For every position the algorithm tries all candidates in Pi. According to Lemma 1, one
of these candidates must be the “correct” candidate c for this position. Further, for c we
can show that the algorithm tries a sufficient set of possibilities to partition all remaining
candidates C\{c} such that they have either smaller or greater positions than i. More
precisely, every candidate of C\{c} must be in exactly one of the following three subsets:

1. The set F of candidates that have already been forgotten, that is, F :=
⋃

0≤j≤i F (j),

2. the set of candidates that can assume position i, that is, Pi\{c}, or

3. the set I of candidates that are not inserted yet, that is, I :=
⋃

i<j<m I(j).

Due to Lemma 1 and the definition of F (j), we know that a candidate of F cannot take
a position greater than i− 1 in an optimal Kemeny consensus. Thus, it is sufficient to try
only partitions in which the candidates of F have positions smaller than i. Analogously, one
can argue that for all candidates in I it is sufficient to consider partitions in which they have
positions greater than i. Thus, it remains to try all possibilities to partition the candidates
of Pi. This is done in line 09 of the algorithm. Thus, the algorithm returns an optimal
Kemeny score.

Theorem 1. Kemeny Score can be solved in O(n2 ·m log m+16d ·(16d2 ·m+4d·m2 log m ·
n)) time with average KT-distance da and d := ⌈da⌉. The size of the dynamic programming
table is O(16d · 4dm).

Proof. The dynamic programming procedure requires the set of candidates Pi for 0 ≤ i < m
as input. To determine Pi for all 0 ≤ i < m, we need the average positions of all candidates
and the average KT-distance da of (V, C). To determine da, we compute the pairwise
distances of all pairs of votes. As we have O(n2) pairs and the pairwise KT-distance can be
computed in O(m log m) time [12], this takes O(n2 ·m log m) time. The average positions
of all candidates can be computed in O(n ·m) time by iterating once over every vote and
adding the position of every candidate to a counter variable for this candidate. Thus, the
input for the dynamic programming algorithm can be provided in O(n2 ·m log m) time.

Concerning the dynamic programming algorithm itself, due to Lemma 2, for 0 ≤ i < m,
the size of Pi is upper-bounded by 4d. Then, for the initialization as well as for the update,
the algorithm iterates over m positions, 4d candidates, and 24d candidates subsets. Whereas
the initialization in the innermost step (line 04) can be done in constant time, in every
innermost step of the update phase (line 11) we have to look for a minimum entry and
we have to compute a pK-score. To find the minimum, we have to consider all candidates
of P ′

i ∪ F (i). As P ′
i ∪ F (i) is a subset of Pi−1, it can contain at most 4d candidates.

Further, the required pK-score can be computed in O(n · m log m) time. Thus, for the
dynamic programming we arrive at the running time of O(m · 4d · 24d · (4d + n ·m log m)) =
O(16d · (16d2 ·m + 4d ·m2 log m · n)).

6It can still happen that a candidate takes a position outside of the required range around its average
position. Since such an entry cannot lead to an optimal solution according to Lemma 1, this does not affect
the correctness of the algorithm. To improve the running time it would be convenient to “cut away” such
possibilities. We defer considerations in this direction to an extended version of this paper.
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Concerning the size of the dynamic programming table, there are m positions and at most
4d candidates that can assume a position. The number of considered subsets is bounded
from above by 24d. Hence, the size of T is O(16d · 4d ·m).

Finally, let us discuss the differences between the dynamic programming algorithm we
used for the “maximum range of candidate positions” in [3] and the algorithm presented
in this work. In our previous work [3], the dynamic programming table stored all possible
orders of the candidates of a given subset of candidates. In this work, we eliminate the need
to store all orders by using the decomposition of the Kemeny score into partial Kemeny
scores. This allows us to restrict the considerations for a position to a candidate and its
order relative to all other candidates. We believe that our new approach can also be used
to improve the running time of the algorithm of [3].

4 Conclusion

We significantly improved the running time for a natural parameterization (maximum KT-
distance between two input votes) for the Kemeny Score problem. There have been some
experimental studies [5, 4] that hinted that the Kemeny problem is easier when the votes
are close to a consensus (and thus tend to have a small average distance). Our results for
the average distance parameterization can be regarded as a theoretical explanation for this
behavior.

As further challenges for future work, we envisage the following:

• Extend our findings to the Kemeny Score problem with input votes that may have
ties or that may be incomplete (also see [3]).

• Extend our results to improve the running time for the parameterization by position
range—we conjecture that this is not hard to do.

• Improve the running time as well as the memory consumption (which is exponential
in the parameter)—we believe that significant improvements are still possible.

• Implement the algorithms for the parameters “number of candidates”, “range of po-
sition of candidates” [3], and “average KT-distance” (including some maybe heuristic
improvements of the running times).

• Investigate typical values of the average KT-distance, either under some distributional
assumption or for real-world data.
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Three-sided stable matchings with cyclic

preferences and the kidney exchange problem1

Péter Biró and Eric McDermid

Abstract

Knuth [14] asked whether the stable matching problem can be generalised to three
dimensions i. e., for families containing a man, a woman and a dog. Subsequently,
several authors considered the three-sided stable matching problem with cyclic pref-
erences, where men care only about women, women only about dogs, and dogs only
about men. In this paper we prove that if the preference lists may be incomplete,
then the problem of deciding whether a stable matching exists, given an instance of
three-sided stable matching problem with cyclic preferences is NP-complete. Con-
sidering an alternative stability criterion, strong stability, we show that the problem
is NP-complete even for complete lists. These problems can be regarded as special
types of stable exchange problems, therefore these results have relevance in some
real applications, such as kidney exchange programs.

1 Introduction

An instance of the Stable Marriage problem (SM) comprises a set of n men a1, . . . , an and
a set of n women b1, . . . , bn. Each person has a complete preference list consisting of the
members of the opposite sex. If bj precedes bk on ai’s list then ai is said to prefer bj to bk.
The problem is to find a matching that is stable in the sense that no man and woman both
prefer each other to their current partner in the matching. The Stable Marriage problem
was introduced by Gale and Shapley [9]. They constructed a linear time algorithm that
always finds a stable matching for an SM instance.

Considering the Stable Marriage problem with Incomplete Lists (SMI), the only differ-
ence is that the numbers of men and women are not necessarily equal and each preference
list consist of a subset of the members of the opposite sex, i.e., each person lists his or
her acceptable partners. Here, a matching M is a set of acceptable pairs, and M is stable
if for every pair (ai, bj) /∈ M, either ai prefers his matching partner M(ai) to bj or bj

prefers her matching partner M(bj) to ai. We can model this problem by a bipartite graph
G = (A ∪ B, E), where the sets of vertices, A and B, correspond to the sets of men and
women, respectively, and the set of edges, E represents the acceptable pairs. An extended
version of the Gale–Shapley algorithm always produces a stable matching for this setting
too.

In an instance of the Stable Marriage problem with Ties and Incomplete Lists (SMTI) it
is possible that an agent is indifferent between some acceptable agents from the opposite set;
in such a case, these agents appear together in a tie in the preference list. Here, a matching
M is stable if there is no blocking pair (ai, bj) /∈ M such that ai is either unmatched or
prefers bj to M(ai), and simultaneously bj is either unmatched or prefers ai to M(bj).
Manlove et al. [15] proved that the problem of finding a stable matching of maximum
cardinality for an instance of SMTI, the so-called MAX SMTI problem, is NP-hard.

The Three-Dimensional Stable Matching problem (3DSM), also referred to as the Three
Gender Stable Marriage problem, was introduced by Knuth [14]. Here, we have three sets
of agents: men, women and dogs, say, and each agent has preference over all pairs from

1This work was supported by EPSRC grant EP/E011993/1.The first author was supported also by OTKA
grant K69027.
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the two other sets. A matching is a set of disjoint families i.e., triples of the form (man,
woman, dog). A matching is stable if there exists no blocking family that is preferred by all
its members to their current families in the matching.

Alkan [2] gave the first example of an instance of 3DSM where no stable matching exists.
Ng and Hirschberg [17] proved that the problem of deciding whether a stable matching exists,
given an instance of 3DSM, is NP-complete; later Subramanian [26] gave an alternative proof
for this. Recently, Huang [10] proved that the problem remains NP-complete even if the
preference lists are “consistent”. (A preference list is inconsistent if, for example, man m
ranks (w1, d1) higher than (w2, d1), but he also ranks (w2, d2) higher than (w1, d2), so he
does not consistently prefer woman w1 to woman w2.)

As an open problem, Ng and Hirschberg [17] mentioned the cyclic 3DSM, defined formally
in Section 2, where men only care about women, women only care about dogs and dogs only
care about men. Boros et al. [5] showed that if the number of agents n, is at most 3 in every
set, then a stable matching always exists. Eriksson et al. [8] proved that this also holds for
n = 4 and conjectured that a stable matching exists for every instance of cyclic 3DSM.

In Section 2, we study the cyclic 3DSM problem with Incomplete Lists (cyclic 3DSMI).
Here, each preference list may consist of a subset of the members of the next gender, i.e. his,
her or its acceptable partners, and the cardinalities of the sets are not necessarily the same,
a matching is a set of acceptable families. Thus cyclic 3DSMI is obtained via a natural
generalisation of cyclic 3DSM in a way analogous to the extension SMI of SM. First we give
an instance of cyclic 3DSMI for n = 6 where no stable matching exists. Then, by using
this instance as a gadget, we show that the problem of deciding whether a stable matching
exists in an instance of cyclic 3DSMI is NP-complete. We reduce from max smti.

In Section 3, we study the cyclic 3DSM problem under strong stability. A matching is
strongly stable if there exists no weakly blocking family. This is a family not in the matching
that is weakly preferred by all its members (i.e. no member prefers his original family to
the new blocking family). We show that the problem of deciding whether a strongly stable
matching exists in an instance of cyclic 3DSM is NP-complete.

In Section 4, we describe the correspondence between the cyclic 3DSMI problem and the
so-called stable exchange problem with restrictions, defined in Section 4. More precisely, we
show that the 3-way stable 3-way exchange problem for tripartite cyclic graphs is equivalent
to cyclic 3DSMI. Therefore, the complexity result for cyclic 3DSMI applies also to the 3-
way stable 3-way exchange problem, which is an important model for the kidney exchange
problem (this application is described in further detail in Section 4).

We remark that all of these problems (namely, SM, SMI, 3DSM, 3DSMI, cyclic 3DSM
and cyclic 3DSMI) can be considered as special coalition formation games, where the notion
of a stable matching is equivalent to the notion of a core element in the corresponding NTU-
game. Those games, where the set of basic coalitions contain all singletons (i.e. where every
player has the right not to cooperate with the others) correspond to the stable matching
problems with incomplete lists. See more about this correspondence in [3].

2 Cyclic 3DSMI is NP-complete

Problem definition

We consider three sets of agents: M , W , D (men, women and dogs). Every man has a strict
preference list over the women that are acceptable to him. Analogously, every woman has a
strict preference list over her acceptable dogs, and every dog has a strict preference list over
its acceptable men. The list of an agent x is denoted by P (x). A matching F is a set of
disjoint families, i.e., triples from M ×W ×D, such that for each family (m, w, d) ∈ F , w is
acceptable to m, d is acceptable to w and m is acceptable to d. Formally, if (m, w, d) ∈ F ,
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then we say that F(m) = w, F(w) = d and F(d) = m, thus in a matching, F(x) ∈ P (x)∪{x}
holds for every agent x, where F(x) = x means that agent x is unmatched in F . Note that
agent x prefers y to being unmatched if y ∈ P (x).

A matching F is said to be stable if there exists no blocking family, that is a triple
(m, w, d) /∈ F such that m prefers w to F(m), w prefers d to F(w) and d prefers m to F(d).

We define the underlying directed graph DI = (V, A) of an instance I of cyclic 3DSMI
as follows. The vertices of DI correspond to the agents, so V (DI) = M ∪ W ∪ D, and
we have an arc (x, y) in DI if y ∈ P (x). This type of directed graph where A(DI) ⊆
(M ×W ) ∪ (W ×D) ∪ (D ×M) is called a tripartite cyclic digraph. Therefore, a matching
of I corresponds to a disjoint packing of directed 3-cycles in DI .

An unsolvable instance of cyclic 3DSMI

We give an instance of cyclic 3DSMI with n = 6, denoted by R6, where no stable matching
exists.

Example 1. The preference lists and underlying graph of R6 are as shown below. Here,
the thickness of arrows correspond to preferences.

m1 : w1, w
′
1 w1 : d1, d

′
1 d1 : m2, m

′
2

m2 : w2, w
′
2 w2 : d2, d

′
2 d2 : m3, m

′
3

m3 : w3, w
′
3 w3 : d3, d

′
3 d3 : m1, m

′
1

m′
1 : w3 w′

1 : d3 d′1 : m1

m′
2 : w1 w′

2 : d1 d′2 : m2

m′
3 : w2 w′

3 : d2 d′3 : m3

w3

m
′

2

d
′

2

m
′

3

w
′

3

d
′

3

m′

1
m1

w1

d1

m2

w2

m3

d3

w
′

1
d
′

1

w
′

2

d2

We refer to the agents {mi, wi, di : 1 ≤ i ≤ 3} = I as the inner agents of R6 and the
agents {m′

i, w
′
i, d

′
i : 1 ≤ i ≤ 3} = O as the outer agents of R6.

Lemma 1. The instance R6 of cyclic 3DSMI admits no stable matching.

Proof. By inspection of the underlying graph of R6, we can observe that the only accept-
able families are of the form (mi, w

′
i, di−1), (mi, wi, d

′
i) and (m′

i, wi−1, di−1), so that any
acceptable family contains exactly two inner agents. It is clear that for any matching F , it
must be the case that at least one inner agent is unmatched in F . By the symmetry of the
instance we may suppose without loss of generality that the inner agent m1 is unmatched
in F . Then, the family (m1, w

′
1, d3) is a blocking family for F .

We note that the 9 acceptable families of R6 have a natural cyclic order, the same order
that the directed 9-cycle has which is formed by the 9 inner agents in the underlying graph,
such that if an acceptable family is not in a stable matching F then the successor family
must be in F . For example, if (m1, w1, d

′
1) /∈ F then (m′

2, w1, d1) ∈ F , since (m1, w1, d
′
1)

would be blocking otherwise. This argument gives an alternative proof for the above Lemma.
The instance created by removing the inner agent m1 from R6, denoted by R6 \m1, be-

comes solvable, since F∗ = {(m′
2, w1, d1), (m2, w2, d

′
2), (m3, w

′
3, d2), (m

′
1, w3, d3)} is a stable
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matching for R6 \m1. In fact, F∗ is the unique stable matching for R6 \m1, so we denote
it by FR6\m1

. This is because in R6 \m1 we have 7 acceptable families in a row with the
property discussed above: if an acceptable family is not in a stable matching F then the
subsequent family must be in F . We state this claim formally below; its proof follows from
the symmetry of the instance.

Lemma 2. Let ai be an inner agent of R6. Then, R6 \ ai admits a unique stable matching,
denoted by FR6\ai

.

The instance R6 will also be of use to us as a gadget in the NP-completeness proofs of
the subsequent sections.

The NP-completeness proof

In [15], Manlove et al. proved that determining if an instance of SMTI admits a complete
stable matching is NP-complete, even if the ties appear only on the women’s side, and each
woman’s preference list is either strictly ordered or consists entirely of a tie of size two (these
conditions holding simultaneously).

We refer to the MAX SMTI problem under the above restrictions as Restricted SMTI.
The underlying graph G = (A∪B, E) of a Restricted SMTI instance is such that the set A =
{a1, a2, . . . , an} consists of men ai, all of whom have strictly ordered preference lists, while
the set B of women can be partitioned into two sets B1 ∪B2 = {b1, . . . , bn1

}∪ {bT
1 , . . . , bT

n2
}

where n1 + n2 = n, each woman bj ∈ B1 has a strictly ordered preference list, and each
woman bT

j ∈ B2 has a preference list consisting solely of a tie of length 2. We denote a

woman who can either be a member of B1 or B2 by b
(T )
i .

In the remainder of this section we describe a polynomial-time reduction from Restricted
SMTI to cyclic 3DSMI. Let I be an instance of Restricted SMTI with the underlying graph
G = (A ∪ B, E). We construct an instance I ′ of cyclic 3DSMI with sets M , W , and D of
men, women, and dogs as follows.

The sets of men and women of I ′ are created in direct correspondence to the men and
women in I, so let M = {m1, . . . , mn} and W = W1 ∪W2 = {w1, . . . , wn1

}∪{wT
1 , . . . , wT

n2
}.

The set of dogs of I ′ consists of two parts D1 ∪D2 = D, defined by creating a dog dj,i in
D1 if ai ∈ P (bj), and creating a dog dT

j in D2 if bT
j ∈ B2.

Let us now describe the construction of the strictly ordered preference lists of I ′. We let
P (x)[l] denote the lth entry in agent x’s preference list, and a tie in the preference list of
an agent is indicated by parentheses. The preference lists of I ′ are defined by the following
cases:

1. If P (ai)[l] = b
(T )
j then let P (mi)[l] = w

(T )
j (1 ≤ l ≤ r, where r is the length of ai’s

list).

2. If P (bj)[l] = ai then let P (wj)[l] = dj,i and P (dj,i) = mi (1 ≤ l ≤ r, where r is the
length of bj’s list).

3. If P (bT
j ) = (ap, aq) then let P (wT

j ) = dT
j and P (dT

j ) = mpmq (in arbitrary order).

This is the proper part of the instance. Next we construct the additional part of the
instance by creating n = |M | copies of R6, such that the t-th copy of R6 consists of inner
agents {mti

, wti
, dti

: 1 ≤ i ≤ 3} and outer agents {m′
ti
, w′

ti
, d′ti

: 1 ≤ i ≤ 3} with preference
lists as described in Example 1. We add these n copies of R6 to the instance in the following
way. In the t-th added copy of R6, denoted by R6t, replace the inner agent mt1 in R6t with
man mt ∈ M by replacing each occurrence of mt1 in the preference lists of each agent in
R6t with mt. Also, let mt1 ’s acceptable partners in R6t, namely wt1 and w′

t1
be appended
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in this order to the end of mt’s list. The final preference list of man mt along with R6t is
shown below. The portion of mt’s preference list consisting of women from the proper part
of the instance is denoted by Pt.

mt : Pt wt1 w′
t1

mt2 : wt2 w′
t2

mt3 : wt3 w′
t3

m′
t1

: wt3

m′
t2

: wt1

m′
t3

: wt2

wt1 : dt1 d′t1
wt2 : dt2 d′t2
wt3 : dt3 d′t3
w′

t1
: dt3

w′
t2

: dt1

w′
t3

: dt2

dt1 : mt2 m′
t2

dt2 : mt3 m′
t3

dt3 : mt m′
t1

d′t1 : mt

d′t2 : mt2

d′t3 : mt3

This ends the reduction, which plainly can be computed in polynomial time. Now, we
prove that there is a one-to-one correspondence between the complete stable matchings in
I and the stable matchings in I ′.

First we show that there is a one-to-one correspondence between the matchings of I and
the matchings in the proper part of I ′. This comes from the natural one-to-one correspon-
dence between the edges of I and the families in the proper part of I ′. More precisely, if M
is a matching in I, then the corresponding matching Fp in the proper part of I is created as
follows: (ai, bj) ∈ M ⇐⇒ (mi, wj , dj,i) ∈ Fp and (ai, b

T
j ) ∈ M ⇐⇒ (mi, w

T
j , dT

j ) ∈ Fp.
To prove this, it is enough to observe that two edges in I are disjoint if and only if the two
corresponding families in I ′ are also disjoint. Next, we show that stability is preserved by
this correspondence.

Lemma 3. A matching M of I is stable if and only if the corresponding matching Fp in
the proper part of I ′ is stable.

Proof. It is enough to show that an edge (ai, bj) is blocking in I if and only if the corre-
sponding family (mi, wj , dj,i) is also blocking in I ′; and similarly, an edge (ai, b

T
j ) is blocking

in I if and only if the corresponding family (mi, w
T
j , dT

j ) is also blocking in I ′.
Suppose first that (ai, bj) is blocking in I, which means that ai is either unmatched

or prefers bj to M(ai) and bj is either unmatched or prefers ai to M(bj). This implies
that mi prefers wj to Fp(mi), wj prefers dj,i to M(wj), and dj,i is unmatched in Fp, i.e.
(mi, wj , dj,i) is blocking in I ′. Similarly, if (ai, b

T
j ) is blocking then ai is either unmatched

or prefers bT
j to M(ai) and bT

j is unmatched in M. This implies that mi prefers wT
j to

Fp(mi), wT
j and dT

j are both unmatched in Fp, and hence (mi, w
T
j , dT

j ) is blocking in I ′.
In the other direction, if (mi, wj , dj,i) is blocking in I ′, then mi prefers wj to Fp(mi),

wj prefers dj,i to Fp(wj), and dj,i is unmatched in Fp. This implies that ai is either
unmatched or prefers bj to M(ai) and bj is either unmatched or prefers ai to M(bj), so
(ai, bj) is blocking in I. Similarly, if (mi, w

T
j , dT

j ) is blocking in I ′, then wT
j and dT

j are both

unmatched in Fp and mi prefers wT
j to Fp(mi). This implies that ai is either unmatched

or prefers bT
j to M(ai) and bT

j is unmatched in M, so (ai, b
T
j ) is blocking in I.

Furthermore, if the matching M is complete, then we can enlarge the corresponding
matching to the additional part of I ′ by matching every R6t \mt in the unique stable way,
so by adding FR6t\mt

to Fp for every t. This leads to the following one-to-one correspondence
between the complete stable matchings of I and the stable matching of I ′.

Lemma 4. The instance I admits a complete stable matching M if and only if the reduced
instance I ′ admits a stable matching F , where F is the corresponding matching of M.
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Proof. The stability of M implies that F is stable in the proper part of I ′ by Lemma 3.
The completeness of M and Lemma 2 implies that F is also stable in the additional part
of I ′.

In the other direction, if F is stable then every man in M must be matched in a proper
family, since otherwise, if a proper man mt does not have a proper partner in F then
R6t would contain a blocking family, by Lemma 1. This implies that the corresponding
matching M, defined in Lemma 3, is complete. The stability of M is a consequence of
Lemma 3. Finally, we note that the additional part has a unique stable matching, since
every R6t \ at must be matched in the unique stable way indicated by Lemma 2, which
implies the one-to-one correspondence.

The following Theorem is a direct consequence of Lemma 4.

Theorem 1. Determining the existence of a stable matching in a given instance of cyclic
3DSMI is NP-complete.

3 Cyclic 3DSM under strong stability is NP-complete

Problem definition

For an instance of cyclic 3DSM, a matching F is strongly stable if there exists no weakly
blocking family, that is a family (m, w, d) /∈ F such that m prefers w to F(m) or w = F(m),
w prefers d to F(w) or d = F(w), and d prefers m to F(d) or m = F(d). We note that in a
weakly blocking family at least two members obtain a better partner, since the preference
lists are strictly ordered.

An unsolvable instance

We firstly show that, by completing the preference lists of R6 in an arbitrary way (i.e. by
appending agents not on the lists in an arbitrary order to the tail of the original lists),
the resulting instance of cyclic 3DSM, denoted by R6, does not admit any strongly stable
matching. The subinstance R6 of R6 is called the suitable part of R6, the original entries
of an agent x in R6 are the suitable partners of x and the families of R6 are called suitable
families.

Lemma 5. The instance R6 of cyclic 3DSM admits no strongly stable matching.

Proof. Suppose for contradiction that F is a strongly stable matching. As the 9 inner agents
form a 9-cycle in the underlying directed graph, the 9 suitable families have a natural
cyclic order. We show that if a suitable family, say (m1, w1, d

′
1) is not in F , then the

successor suitable family (m′
2, w1, d1) must be in F , which would imply a contradiction given

that the number of these suitable families is odd. If (m1, w1, d
′
1) /∈ F then F(w1) = d1,

since otherwise (m1, w1, d
′
1) would be weakly blocking. Similarly, (m′

2, w1, d1) /∈ F implies
F(d1) = m2. But this means that (m2, w1, d1) ∈ F , so (m2, w

′
2, d1) is weakly blocking.

Recall that FR6\at
is the unique stable matching for R6 \ at. Let R6 \ at denote the

instance created by removing an inner agent at from R6. We denote by CR6\at
the subset

of agents of R6 \ at that are covered by FR6\at
, and by UR6\at

those who are uncovered by
FR6\at

, respectively.

Lemma 6. Let at be an inner agent of R6. For every matching F∗ ⊇ FR6\at
of R6 \at, no

suitable family can be weakly blocking, and therefore no agent from CR6\at
can be involved

in a weakly blocking family. For any other matching, at least one suitable family is weakly
blocking.
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Proof. It is straightforward to verify that FR6\at
is a strongly stable matching for R6 \ at,

so no suitable family in R6 \ at can weakly block F∗ ⊇ FR6\at
. Moreover, no agent x of

CR6\at
can be involved in a non-suitable weakly blocking family either, since x has a suitable

partner in F∗.
Suppose that F ′ is a matching of R6 \ at which is not a superset of FR6\at

. As in the
proof of Lemma 5, we use the fact that if a suitable family is not in F ′, then the successor
suitable family is either in F ′ or weakly blocking. Therefore, if we do not include four
from the seven suitable families of R6 \ at in a matching then one of them would be weakly
blocking.

The NP-completeness proof

The reduction we describe in this section again begins with an instance of Restricted SMTI,
only we assume without loss of generality the role of the men and women of the instance
to be “reversed”. To be precise, we assume a given instance of Restricted SMTI I that
its vertex set ((A1 ∪ A2) ∪ B) consists of a set A1 = {a1, a2, . . . , an1

} of men with strictly
ordered preference lists, and A2 = {aT

1 , aT
2 , . . . , aT

n2
} of men with preference lists consisting

of a single tie of length 2, and n1 + n2 = n. The set B = {b1, b2, . . . , bn} consists entirely of
women with strictly ordered preference lists.

Given an instance I of Restricted SMTI as defined above, we create an instance I ′ of
cyclic 3DSM. First we create a proper instance I ′p of cyclic 3DSMI as a subinstance of I ′

with agents Mp ∪Wp ∪Dp in the following way.
First we create a set Wp of n women {w1, w2, . . . , wn} such that the preference list of

woman wj is a single entry, dog dj ∈ Dp. The preference list of dj is such that if P (bj)[l] = ai,
then P (dj)[l] = mi, otherwise if P (bj)[l] = aT

i , then P (dj)[l] = m′
i,j for 1 ≤ l ≤ r, where r

is the length of bj ’s list. So the preference list of dog dj is essentially the “same” as that of
woman bj, only with men in Mp rather than A.

For each man ai ∈ A1, create a man mi ∈ Mp, such that if P (ai)[l] = bj , then let
P (mi)[l] = wj for 1 ≤ l ≤ r, where r is the length of ai’s list. So the preference list
of man mi is essentially the “same” as that of man ai. For each man aT

i ∈ A2, with
a preference list consisting of a single tie of length two, say (br, bs), we create five men
mT

i , m′
i,r, m

′′
i,r, m

′
i,s, m

′′
i,s, four women w′

i,r, w
′′
i,r , w

′
i,s, w

′′
i,s and four dogs d′i,r, d

′′
i,r, d

′
i,s, d

′′
i,s

where the preference list of mT
i contains w′

i,r and w′
i,s in an arbitrary order, and the other

preference lists are as shown below.

m′
i,r : w′

i,r wr

m′′
i,r : w′′

i,r

m′
i,s : w′

i,s ws

m′′
i,s : w′′

i,s

w′
i,r : d′i,r d′′i,r

w′′
i,r : d′′i,r d′i,r

w′
i,s : d′i,s d′′i,s

w′′
i,s : d′′i,s d′i,s

d′i,r : m′′
i,r mT

i

d′′i,r : m′
i,r m′′

i,r

d′i,s : m′′
i,s mT

i

d′′i,s : m′
i,s m′′

i,s

We also add these agents to Mp, Wp and Dp, respectively. Note that in I ′p every set of
agents has the same cardinality: np = |Mp| = |Wp| = |Dp| = n+4n2. The notions of proper
agent, proper partner and proper family are defined in the obvious way.

The additional part of instance I ′ contains three subinstances. The suitable part of
I ′ is the disjoint union of 3np copies of R6, such that the ith copy of R6, denoted R6i,
incorporates the ith agent of I ′p, as described in the previous reduction in the proof of
Theorem 1 (we omit the full description of this process again). The new agents are referred
to as additional agents.
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Let Fs = ∪i∈{1,...3np}FR6i\ai
be the so-called suitable matching of the additional part,

where ai is the proper agent of R6i. We call the set C = ∪i∈{1,...3np}CR6i\ai
covered

additional agents, as these additional agents are covered by Fs, and we call the set U =
∪i∈{1,...3np}UR6i\ai

uncovered additional agents, as these additional agents are not covered
by Fs.

The fitting part of I ′ is constructed on U as follows. Note that U has equal numbers
of men, women and dogs. The fitting part consists of disjoint families that covers U , so
that every agent has exactly one agent in his/her/its list, i.e. the fitting part is a complete
matching of U , denoted by Ff .

Finally, the dummy part is obtained by an arbitrary extension of the preference lists, so
that by putting together the four subinstances, the proper and the three additional parts,
we get the complete instance I ′. The preferences of the agents over the partners in different
parts respect the order in which we defined these parts: the list of a proper agent contains
the proper partners first, then the suitable partners, and finally the dummy partners; the list
of a covered additional agent contains the suitable partners first, then the dummy partners;
the list of an uncovered additional agent contains the suitable partners first, then the fitting
partner, and finally the dummy partners.

First we show that there is a one-to-one correspondence between the complete stable
matchings of I and the complete strongly stable matchings of I ′p. The stability is pre-
served via the following one-to-one correspondence between the complete matchings of I
and complete matchings of I ′:

(ai, bj) ∈M ⇐⇒ (mi, wj , dj) ∈ Fp

(aT
i , bs) ∈ M ⇐⇒ (mT

i , w′
i,s, d

′
i,s), (m

′′
i,s, w

′′
i,s, d

′′
i,s), (m

′
i,s, ws, ds) ∈ Fp

(aT
i , bs) /∈ M ⇐⇒ (m′

i,s, w
′
i,s, d

′′
i,s), (m

′′
i,s, w

′′
i,s, d

′
i,s) ∈ Fp

Lemma 7. A complete matching M of I is stable if and only if the corresponding complete
matching Fp of I ′p is strongly stable.

Proof. As a man aT
i cannot belong to a blocking pair in I, it may be verified that his

corresponding copy mT
i cannot belong to a weakly blocking family in Ip either. Therefore,

it is enough to show that a pair (ai, bj) is blocking for M if and only if the corresponding
family (mi, wj , dj) is blocking for Fp. But this is obvious, because the preference lists of ai

and mi are essentially the same, and the preference lists of bj and dj are also essentially the
same.

Now, given a matching M of I let us create the corresponding matching F of I ′ by
adding Fs and Ff to Fp, so F = Fp ∪ Fs ∪ Ff .

Lemma 8. The instance I admits a complete stable matching M if and only if the reduced
instance I ′ admits a strongly stable matching F , where F is the corresponding matching of
M.

Proof. Suppose that we have a complete stable matchingM of I, and F is the corresponding
matching in I ′. Lemma 7 implies that every proper agent has a proper partner in F and
no proper family is weakly blocking. Therefore, no proper agent can be involved in any
weakly blocking family either. By construction of Fs, every covered additional agent has a
suitable partner in F and by Lemma 6, no suitable family is weakly blocking. Therefore, no
such agent can be part of any weakly blocking family. Finally, every uncovered additional
agent has a fitting partner in F , so these agent cannot form a weakly blocking family either,
since an uncovered additional agent prefers only suitable partners to fitting partners, which
cannot be involved in a weakly blocking family. Hence F is strongly stable.
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In the other direction, suppose that F is a strongly stable matching of I ′. Every proper
agent must have a proper partner, since otherwise if at had no proper partner in F , then
R6t would contain a suitable weakly blocking family by Lemma 5. So the corresponding
matching M in I is complete. The stability of M is a consequence of Lemma 7. Finally,
we note that the additional agents must be matched in the unique strongly stable way in
F , namely, the covered additional agents must be covered by matching Fs by Lemma 6,
and the uncovered additional agents must be covered by Ff , since otherwise a fitting family
would weakly block F . Therefore, we have a one-to-one correspondence as was claimed.

Theorem 2. Determining the existence of a strongly stable matching in a given instance
of cyclic 3DSM is NP-complete.

4 Stable exchanges with restrictions

Problem definition

Given a simple digraph D = (V, A), where V is the set of agents, suppose that each agent
has exactly one indivisible good, and (i, j) ∈ A if the good of agent j is suitable for agent i.
An exchange is a permutation π of V such that, for each i ∈ V , i 6= π(i) implies (i, π(i)) ∈ A.
Alternatively, an exchange can be considered as a disjoint packing of directed cycles in D.

Let each agent have strict preferences over the goods, that are suitable for him. These
orderings can be represented by preference lists. In an exchange π, the agent i receives the
good of his successor, π(i); therefore the agent i prefers an exchange π to another exchange
σ if he prefers π(i) to σ(i). An exchange π is stable if there is no blocking coalition B, i.e.
a set B of agents and a permutation σ of B where every agent i ∈ B prefers σ to π. An
exchange is strongly stable is there exists no weakly blocking coalition B with a permutation
σ of B where for every agent i ∈ B, either σ(i) = π(i) or i prefers σ to π, and σ(i) 6= π(i)
for at least one agent i ∈ B.

Complexity results about stable exchanges

Shapley and Scarf [25] showed that the stable exchange problem is always solvable and a
stable exchange can be found in polynomial time by the Top Trading Cycle (TTC) algorithm,
proposed by Gale. Moreover, Roth and Postlewaite [18] proved that the exchange obtained
by the TTC algorithm is strongly stable and this is the only such solution. We note that
they considered this problem as a so-called houseswapping game, where a core element
corresponds to a stable solution. (For further details about these connections with Game
Theory, see [3].)

In some applications the length of the possible cycles is bounded by some constant l.
In this case we consider an l-way exchange problem. Furthermore, the size of the possible
blocking coalitions can also be restricted. We say that an exchange is b-way stable if there
exists no blocking coalition of size at most b. Because of some applications, the most relevant
problems are for constants 2 and 3. Henceforth we also refer to “2-way” as “pairwise” in the
context of cycle lengths and blocking coalitions sizes. We remark that if b = l then a stable
exchange corresponds to a core-solution of some related NTU-game, because the possible
coalitions, those that can form and those that can block, are the same (see [3] for details).

For l = b = 2, the pairwise stable pairwise exchange problem is in fact, equivalent to
the stable roommates problem. Therefore, a stable solution may not exist [9], but there is a
polynomial-time algorithm that finds a stable solution if one does exist [11] or reports that
none exists. For l = b = 3, the 3-way stable 3-way exchange problem is NP-hard, even for
three-sided directed graphs, as is stated by the following theorem.
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Theorem 3. The 3-way stable 3-way exchange problem for tripartite directed graphs is
equivalent to the cyclic 3DSMI problem, and is therefore NP-complete.

Finally, we note that Irving [12] proved recently that the stable pairwise exchange and the
3-way stable pairwise exchange problems are NP-hard. The pairwise stable 3-way exchange
problem is open. This particular problem can be a relevant regarding the application of
kidney exchanges, next described.

Kidney exchange problem

Living donation is the most effective treatment that is currently known for kidney failure.
However a patient who requires a transplant may have a willing donor who cannot donate
to them for immunological reasons. So these incompatible patient-donor pairs may want to
exchange kidneys with other pairs. Kidney exchange programs have already been established
in several countries such as the Netherlands [13] and the USA [20].

In most of the current programs the goal is to maximise the number of patients that
receive a suitable kidney in the exchange [21, 22, 23, 1] by regarding only the eligibility of
the grafts. Some more sophisticated variants consider also the difference between suitable
kidneys. Sometimes the “total benefit” is maximised [24], whilst other models [19, 6, 7, 4]
require first the stability of the solution under various criteria.

The length of the cycles in the exchanges is bounded in the current programs, because
all operations along a cycle have to be carried out simultaneously. Most programs allow
only pairwise exchanges. But sometimes 3-way exchanges are also possible, like in the New
England Program [16] and in the National Matching Scheme of the UK [27]2. In these kind
of applications, if one considers stability as the first priority of the solution, then we obtain
a 3-way stable 3-way exchange problem, where the incompatible patient-donor pairs are
the agents and their preferences are determined according to the special parameters of the
suitable kidneys.

Finally, we remark that although the induced digraph of a real kidney exchange instance
may have special properties (see e.g. [22] about the effect of the blood-types on the digraph)
the problem remains hard, even for realistic situations. For example, if we have three sets
of patient-donor pairs with blood types O-A, A-B and B-O, then the digraph may appear
to be tripartite. But this particular case of the 3-way stable 3-way exchange problem is also
hard by Theorem 3.

5 Further questions

For cyclic 3DSMI, the smallest instance that admits no stable matching given here satisfies
n = 6. Is there an even smaller counterexample? In the case of strong stability, we are
aware of instances of cyclic 3DSM for n = 4 that admit no strongly stable matching.

The main questions that remain unsolved are (i) whether there exists an instance of
cyclic 3DSM that admits no stable matching, and (ii) whether there is a polynomial-time
algorithm to find such a matching or report that none exists, given an instance of cyclic
3DSM.

23-way exchanges may be also allowed in the national program of the USA (as it is declared to be a goal
of the system in the future in the Proposal for National Paired Donation Program [28]).
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Equilibria in Social Belief Removal1

Richard Booth and Thomas Meyer

Abstract

In studies of multi-agent interaction, especially in game theory, the notion of equilibrium often
plays a prominent role. A typical scenario for the belief merging problem is one in which
several agents pool their beliefs together to form a consistent “group” picture of the world.
The aim of this paper is to define and study new notions of equilibria in belief merging. To do
so, we assume the agents arrive at consistency via the use of a social belief removal function,
in which each agent, using his own individual removal function, removes some belief from his
stock of beliefs. We examine several notions of equilibria in this setting, assuming a general
framework for individual belief removal due to Booth et al. We look at their inter-relations as
well as prove their existence or otherwise. We also show how our equilibria can be seen as a
generalisation of the idea of taking maximal consistent subsets of agents.

1 Introduction
The problem of multi-agent belief merging has received a lot of attention in KR in recent years
[13, 14, 5]. The problem occurs when several agents each have their own beliefs, and want to
combine or pool them into a consistent “group” picture of the world. A problem arises when two
or more agents have conflicting beliefs. Then such conflicts need to be smoothed out. In studies
of multi-agent interaction the notion of equilibrium often plays a prominent role (most famously in
[18]). It would therefore seem natural to investigate such notions in belief merging. The purpose of
this paper is to define and study some possible notions of equilibria in a belief merging setting.

To enable a clear formulation of such notions, we will employ the approach to merging advocated
in [5] and inspired by the contraction+expansion approach to belief revision [9, 16], in which the
merging operation is explicitly broken down into two sub-operations. In the first stage, the agents
each modify their own beliefs in such a way as to make them jointly consistent. This is called social
contraction in [5]. In the second, trivial, stage, the beliefs thus obtained are conjoined. In this
approach, the crucial question becomes “how do the agents modify their beliefs in the first stage?”
In this paper we assume agents do so by removing some sentence from their stock of beliefs. More
precisely we associate to each agent i its very own individual removal function >i which computes
the result of removing any given sentence. A social belief removal function is then a function which,
given a profile of individual removal functions as input, returns a (consistent) profile consisting of
the results of each agent’s removal. The central question studied in this paper is “when can the
outcome of a social removal function be said to be in equilibrium?”.

How can we express the idea of equilibrium in social removal? As our starting point we would
like to propose the following general principle for multi-agent interaction:

Principle of Equilibrium
Each agent simultaneously makes the appropriate response to what all the other agents do.

It remains to formalise what “appropriate” means. In the theory of strategic games (see, e.g., [20]
as well as Section 6 of the present paper) agents are assumed to have their own preferences over the
set of all outcomes. Then a Nash equilibrium [18] is a profile consisting of each agent’s selected
action, in which no agent can achieve a more preferred outcome by changing his action, given the
actions of the other agents are held fixed. Hence in this setting “appropriate” may be equated with

1A longer version of this paper (including the more important proofs) appears in the Proceedings of the 11th International
Conference on Principles of Knowledge Representation and Reasoning (KR 2008).
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“best” in a precise sense. We will see that the framework of social belief removal offers up new and
interesting ways of formalising what “appropriate” might mean.

Of course the explicit introduction of individuals’ removal functions raises the question of what
kind of belief removal function we should assume is being used. Do agents use AGM contraction
[1], or severe withdrawal [22], or perhaps a belief liberation function [6]? Luckily there exists a
general family, called basic removal [7] which contains all these families and more besides. Thus
we find it convenient to use this family as a basis.

The plan of the paper is as follows. In Section 2 we set up the framework of social removal
functions. Then in Section 3 we focus on the agents’ individual removal functions, reviewing some
results about basic removal functions and giving some concrete examples of such functions. In
Section 4 we introduce our first equilibrium notion, that of a removal equilibrium, and examine
its compatibility with some plausible minimal change properties, before proving the existence of
such equilibria for arbitrary basic removal profiles in Section 5. We also briefly look at the notion
of perfect removal equilibria. In Section 6 we move on to entrenchment equilibria, which can
be thought of as Nash equilibria of the strategic game where agent preferences over outcomes are
derived from their entrenchment orderings, and examine their relationship with removal equilibria.
We also suggest a possible refinement of this idea, the strong entrenchment equilibrium. In Section 7
we show how our equilibria can be thought of as generalising the idea of taking maximal consistent
subsets of agent. We finish with a concluding section.

Preliminaries: We work in a finitely-generated propositional language L. Classical logical con-
sequence and logical equivalence are denoted by ` and≡ respectively. W denotes the set of possible
worlds/interpretations for L. Given θ ∈ L, we denote the set of worlds in which θ is true by [θ].
The set of non-tautologous sentences in L is denoted by L∗. We will usually talk of belief sets, but
assume a belief set is always represented by a single sentence standing for its set of logical con-
sequences. We assume a set of agents A = {1, . . . , n}. A belief profile is any n-tuple of belief
sets. Given two belief profiles we shall write (φi)i∈A ≡ (φ′i)i∈A iff φi ≡ φ′i for all i, and write
(φi)i∈A ≡∧ (φ′i)i∈A iff

∧
i∈A φi ≡

∧
i∈A φ

′
i. Clearly we have ≡⊆≡∧ for belief profiles. We say the

belief profile is consistent iff the conjunction of its elements is consistent.

2 Social belief removal
As we said above, we assume each agent i ∈ A comes equipped with its own removal function >i,
which tells it how to remove any given sentence from its belief set. In this paper we view >i as a
unary function on the set L∗ of non-tautologous sentences, i.e., agents are never required to remove
>. The result of removing λ ∈ L∗ from i’s belief set is denoted by >i(λ). We assume i’s initial
belief set can always be recaptured from >i alone by just removing the contradiction, i.e., i’s initial
belief set is >i(⊥). We call any n-tuple (>i)i∈A of removal functions a removal profile.

Definition 1 A social removal function F (relative to A) is any function which takes as input any
removal profile (>i)i∈A and outputs a consistent belief profile F((>i)i∈A) = (φi)i∈A such that, for
each i ∈ A, there exists λi ∈ L∗ such that φi ≡ >i(λi).

Each social removal function yields a merging operator for removal profiles – we just take the
conjunction

∧
i∈A φi of the agents’ new belief profile. However in this paper our main interest will

be in the profile itself.
The above definition differs from Booth’s social contraction in two main ways. First, here we

explicitly associate from the outset an individual removal function to each i, whereas this was only
implicit in [5]. More importantly, unlike in social contraction, we will allow agents to use removal
functions which don’t necessarily satisfy the Inclusion property, i.e., removing a sentence may lead
to new beliefs entering i’s belief set. As is argued in [6], this situation can arise quite naturally. This
motivates the use of the term social removal rather than social contraction.
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What properties might we expect from a social removal function F? Throughout the paper we
will mention various postulates for F, but to begin with the following two properties have – on the
face of it – a strong appeal from a “minimal change” viewpoint:

(FVac) If (>i(⊥))i∈A is consistent then F((>i)i∈A) ≡ (>i(⊥))i∈A

(FVac∧) If (>i(⊥))i∈A is consistent then F((>i)i∈A) ≡∧ (>i(⊥))i∈A

Both these rules deal with the case the initial belief sets of the agents are already jointly consistent.
(FVac) says that in this case the agents’ beliefs should remain unchanged. Although intuitively
appealing, we will later have grounds for believing this rule is a touch too strong (specifically in
contexts where the agents’ individual removal functions might not adhere to the Vacuity rule –
see next section). Rule (FVac∧) is weaker. It requires only that the result should be conjunction-
equivalent to the profile of the agents’ initial belief sets.

3 Basic and hyperregular removal
What properties should be assumed of the individual removal functions >i? We will assume agents
always use basic removal [7].

Definition 2 A function > : L∗ → L is a basic removal function iff it satisfies the following rules:
(>1) >(λ) 6` λ
(>2) If λ1 ≡ λ2 then >(λ1) ≡ >(λ2)
(>3) If >(χ ∧ λ) ` χ then >(χ ∧ λ ∧ ψ) ` χ
(>4) If >(χ ∧ λ) ` χ then >(χ ∧ λ) ` >(λ)
(>5) >(χ ∧ λ) ` >(χ) ∨>(λ)
(>6) If >(χ ∧ λ) 6` λ then >(λ) ` >(χ ∧ λ)

All these rules are familiar from the literature on belief removal. Rule (>1) is the Success postulate
which says the sentence to be removed is no longer implied by the new belief set, while (>2) is a
syntax-irrelevance property. Rule (>3) is sometimes known as Conjunctive Trisection [11, 21]. It
says if χ is believed after removing the conjunction χ ∧ λ, then it should also be believed when
removing the longer conjunction χ ∧ λ ∧ ψ. Rule (>4) is closely-related to the rule Cautious
Monotony from the area of non-monotonic reasoning [15], while (>5) and (>6) are the two AGM
supplementary postulates for contraction [1].

Note the non-appearance in this list of the AGM contraction postulates Vacuity (>(⊥) 6` λ
implies >(λ) ≡ >(⊥)), Inclusion (>(⊥) ` >(λ)) and Recovery (>(λ)∧λ ` >(⊥)), none of which
are valid in general for basic removal. Inclusion has been questioned as a general requirement for
removal in [6], while Recovery has long been noted as controversial (see, e.g., [10]). Vacuity is a
little harder to argue against. It says if the sentence to be removed is not in the intial belief set, then
the belief set should remain unchanged. Nevertheless we feel there are plausible removal scenarios
in which it may fail, one of which will be described in Section 3.1 below when we introduce the
subclass of prioritised removal functions. For basic removals Inclusion actually implies Vacuity [7].

Note: The postulates are the same ones as in [7], but their appearance is changed to take into
account the fact we take > to be a unary operator which returns a sentence (rather than a logically-
closed set of sentences). We also leave out one rule from the list in [7], which in our reformulation
corresponds to “>(⊥) ∧ ¬λ ` >(λ)”. This rule turns out to be redundant, being derivable mainly
from (>3).

As well as the above postulates, [7] also gave a semantic account of basic removal. A context is
any pair C = (≤,�) of binary relations over W such that (i) ≤ is a total preorder, i.e., transitive and
connected, and (ii) � is a reflexive sub-relation of ≤. From any such C we may define a removal
operator >C by setting

[>C(λ)] = {w ∈W | w � w′ for some w′ ∈ min≤([¬λ])}.
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That is, the set of worlds following removal of λ is determined by first locating the ≤-minimal
worlds in [¬λ], and then taking along with these all worlds which are less than them according to �.
We call >C the removal function generated by C. [7] showed >C is a basic removal function and that
in fact every basic removal function is generated from a unique context. For another, closely-related,
family of belief removal functions see [8].

In this paper, another property which we will find useful, especially for technical reasons, is
Hyperregularity [12]:

If > (λ ∧ χ) 6` λ then > (λ ∧ χ) ≡ >(λ).

This rule says if the removal of λ∧χ excludes λ then removing λ∧χ is the same as removing just λ.
This property is very strong. Not only does it imply Vacuity, but in the presence of (>1) and (>2) it
implies (>3)-(>6). It is probably too strong to be required in general. Indeed given (>1) and (>2)
it can be shown to imply the“Decomposition” property of removal, i.e, either >(λ ∧ χ) ≡ >(λ) or
>(λ ∧ χ) ≡ >(χ), which has been noted as overly strong in [9, p66]. Despite this it is nevertheless
still satisifed by several interesting sub-classes of basic removal (see Section 3.1 below), and when
proving results we will sometimes find it a useful stepping-stone towards the more general basic
removal. In terms of contexts, it corresponds to requiring the following condition on (≤,�), for all
w1, w2, w3 ∈W :
(C-hyp) If w1 � w2 and w2 ∼ w3 then w1 � w3

(where ∼ is the symmetric closure of ≤), i.e, whether or not w1 � w2 depends only on the ≤-rank
of w2.

Definition 3 A hyperregular removal function is any basic removal function satisfying Hyperregu-
larity.

In [7] it was shown that hyperregular removal functions correspond precisely to the class of
linear liberation operators from [6].

3.1 Some examples of basic removal functions
We now give three concrete families of operators, all of which come under the umbrella of basic
removal. These families will be useful when we come to describing examples of equilibria.

(i). Prioritised removal Let 〈Σ,v〉 be any finite set of consistent sentences Σ, totally preordered
by a relation v over Σ. Intuitively the different sentences in Σ correspond to different possible
extensions, prioritised by v (and with sentences lower down in the ordering given higher priority).
Given such a set, for any λ ∈ L∗ let Σ(λ) = {γ ∈ Σ | γ 6` λ}. Then we define >〈Σ,v〉 from 〈Σ,v〉
by setting:

>〈Σ,v〉(λ) =
{ ∨

minv Σ(λ) if
∨

Σ 6` λ
> otherwise.

In other words, after removing λ, the new belief set is just the disjunction of all the v-minimal
elements in Σ which do not entail λ. In case there is no sentence in Σ which fails to imply λ, then
the result is just >. We will call any removal function definable in this way a prioritised removal
function. A similar family of removal has also been studied in [4].

One can easily check that >〈Σ,v〉 satisfies (>1)-(>6) and so forms a basic removal function.
Note however that >〈Σ,v〉 will fail to satisfy Vacuity (hence also Hyperregularity) in general. For
example suppose Σ = {p,¬p} but v is the “flat” ordering on Σ which ranks both sentences equally.
This would correspond to a situation in which an agent has equally good reasons to believe p and
¬p. The belief set corresponding to this is then >〈Σ,v〉(⊥) = p ∨ ¬p, i.e., since the agent cannot
choose between p and ¬p, he commits to neither. But >〈Σ,v〉(p) = ¬p. That is, the direction to
remove p tips the balance in favour of ¬p, and the agent thus comes to believe ¬p, even though p
was not in the initial belief set. We take this plausible removal scenario as indication that the Vacuity
rule may be too strong in general.
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(ii). Severe withdrawal [22]. A severe withdrawal function may be represented by a logical chain
ρ = β1 ` β2 ` · · · ` βm, with >ρ(λ) = βi, where i is minimal such that βi 6` λ (equals> if no such
i exists). Severe withdrawal functions always satisfy Inclusion and Hyperregularity. It is easy to see
they form a special case of prioritised removal. Severe withdrawal functions also have a simple
representation in terms of their generating contexts (≤,�). They are just those basic removals for
which ≤=�.
(iii). σ-liberation [6]. σ-liberation functions again use a sequence of sentences σ = (α1, . . . , αs).
Given such σ and λ ∈ L∗, define a sequence of sentences fi(σ, λ) inductively on i by setting
f0(σ, λ) = >, and then for i > 0,

fi(σ, λ) =
{
fi−1(σ, λ) ∧ αi if fi−1(σ, λ) ∧ αi 6` λ
fi−1(σ, λ) otherwise.

In other words, fs(σ, α) is obtained by starting with>, and then working through σ from left to right,
adding each sentence provided doing so does not lead to the inference of λ. (In [6] the direction was
right-to-left, but this difference is inessential.) Then >σ(λ) = fs(σ, λ). (This is very closely-related
to the “linear base-revision” of [19].) σ-liberation functions do not satisfy Inclusion in general, but
they do satisfy Hyperregularity (and hence also Vacuity). In terms of their generating contexts, σ-
liberation functions correspond to those contexts (≤,�) which satisfy the Hyperregularity condition
(C-hyp) and for which � is transitive.

The three families described above are inter-related as follows: severe withdrawal⊂ σ-liberation
⊂ prioritised removal. The inclusions are strict. In addition to these three, [7] showed basic removal
includes many other well-known families of removal functions, including systematic withdrawal
[17], AGM contraction and even AGM revision. In the rest of the paper we shall assume the
domain of a social removal function is the set of all n-tuples of basic removal functions.

4 Removal equilibria
When is the outcome of an operation of social removal in equilibrium? Our first idea is the following.

Definition 4 (φi)i∈A is a removal equilibrium for (>i)i∈A iff it is consistent and, for each i ∈ A,
φi ≡ >i(¬

∧
j 6=i φj).

This definition is a direct formulation of the idea that each agent removes precisely the “right”
sentence to be consistent with every other agent. As such this seems like a good candidate for a first
formalisation of the word “appropriate” in our Principle of Equilibrium from the introduction.
Example 1 Assume A = {1, 2} and suppose both agents use severe withdrawal to remove beliefs.
Let >1 and >2 be specified by the logical chains (p∧ q) ` q and (¬p∧¬q) ` (¬p∨¬q) resp. Then
there are three possible removal equilibria for the profile (>1,>2): (1) (p∧ q,>), corresponding to
a case where 1 removes nothing and 2 removes everything, (2) (>,¬p ∧ ¬q), corresponding to the
opposite case, and (3) (q,¬p∨¬q), corresponding to the case where both agents give up something,
but not everything.

We might be interested in requiring the following property for social removal functions:

(FREq) F((>i)i∈A) is a removal equilibrium for (>i)i∈A.
Is (FREq) even consistent? In other words, do removal equilibria always exist for any profile of
basic removal functions? We shall shortly answer this question in the affirmative. But before that
we examine such equilibria in the special case when (>i(⊥))i∈A is consistent, and examine the
compatibility of (FREq) with (FVac) and (FVac∧). First, the following example shows (FREq) is
not compatible with (FVac).
Example 2 Again suppose A = {1, 2}. Suppose agent 1 uses the prioritised removal function
>〈Σ,v〉 where Σ = {p,¬p} and v is the flat priority ordering, and suppose agent 2 uses the se-
vere withdrawal function specified by the single element logical chain (p). We have >1(⊥) ≡ >
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and >2(⊥) = p. Then >1(⊥) ∧ >2(⊥) is equivalent to p and so is clearly consistent, but
(>1(⊥),>2(⊥)) is not a removal equilibrium. This is because, while we do have >2(¬>) ≡ p,
we have >1(¬p) ≡ p 6≡ >.

Thus for general basic removal profiles, we cannot require both (FREq) and (FVac). At first
glance it might be thought (FVac) is unquestionable, and so it is (FREq) which must be given up.
However we believe that as soon as one takes the step – as we do – to relax Vacuity for individual
removal >, then (FVac) itself becomes less “untouchable”. Thus we believe this incompatibility
with (FVac) should not by itself be taken as reason to reject (FREq). Furthermore the next result
(which may be proved using the same construction as in Prop. 9 below) shows (FREq) is compatible
with (FVac∧).

Proposition 1 If (>i(⊥))i∈A is consistent then there exists a removal equilibrium (φi)i∈A for
(>i)i∈A such that (φi)i∈A ≡∧ (>i(⊥))i∈A.

In Example 2 we do indeed have a removal equilibrium which is conjunction-equivalent to
(>1(⊥),>2(⊥)), namely (p, p).

Note that in Example 2, agent 1 uses a removal function which does not satisfy Vacuity. The
next result says that if we do insist on Vacuity for individual removal functions, then we do achieve
compatibility with (FVac).

Proposition 2 Suppose each >i satisfies Vacuity, and suppose (>i(⊥))i∈A is consistent. Then
(>i(⊥))i∈A is a removal equilibrium for ((>i)i∈A).

However, even if the >i satisfy Vacuity, this might not be the only removal equilibrium. That is, even
in this restricted domain case, (FREq) is not enough by itself to imply (FVac) or even (FVac∧).
Example 3 Let > be the σ-liberation function determined by the sequence (p,¬p). Then the belief
set associated to > is >(⊥) = p. Now suppose we have n agents, all using this same removal
function >. Then for the resulting removal profile there are two removal equilibria. As well as the
expected (p)i∈A we also get (¬p)i∈A!

It might seem bizarre that (¬p)i∈A should be recognised as an equilibrium in this example. Why
should the agents all jump across to ¬p when they can just as well stay with the comfort of p? In
fact the situation is analogous to that with Nash equilibrium itself. We shall expand on this point
later after we introduce the notion of entrenchment equilibria.

By restricting the domain of F further, we do force a unique removal equilibrium in the case
when the initial belief sets are jointly consistent.

Proposition 3 Suppose each >i satisfies Inclusion (and hence also Vacuity). Then if (>i(⊥))i∈A is
consistent then it is the only removal equilibrium for (>i)i∈A.

5 Existence of removal equilibria
In this section we prove that removal equilibria are guaranteed to exist when the agents use basic
removal functions to remove beliefs. First we concentrate on the case when all agents use hyperreg-
ular removal, providing two concrete social removal operators which satisfy (FREq). We will build
on this case to prove existence in the general basic removal case.

5.1 The hyperregular case: First method
Our first social removal function F1 requires the upfront specification of a linear order on A. Without
loss we take this order here to be just the numerical one on A = {1, 2, . . . , n}. Given a removal
profile (>i)i∈A, we define F1((>i)i∈A) = (φi)i∈A inductively by setting

φi = >i(¬
∧
j<i

φj).
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In other words, φ1 is just taken to be agent 1’s initial belief set >1(⊥), and then each agent takes
his turn to remove the negation of the conjunction of the belief sets of all those agents whose turn
has already passed. By an easy induction on i, and using the fact each >i satisfies (>1), we know
¬

∧
j<i φj ∈ L∗ and so >i(¬

∧
j<i φj) is well-defined. In particular we know from (>1) that

φn = >n(¬
∧

j<n φj) 6` ¬
∧

j<n φj and so (φi)i∈A is consistent.

Proposition 4 If all >i satisfy Hyperregularity then F1 returns a removal equilibrium for (>i)i∈A.

F1 might not return a removal equilibrium for general basic removal profiles. This can be seen
on Example 2, where running the above procedure returns the non-equilibrium (>, p).

What other properties does F1 satisfy? Well to begin, it can be shown to satisfy (FVac) (in
the hyperregular case). Also, let’s say two removal functions > and >′ are revision-equivalent iff
>(λ)∧¬λ ≡ >′(λ)∧¬λ for all λ ∈ L∗. (i.e., the revision functions defined from them via the Levi
Identity [16] are the same). Then we have:

Proposition 5 F1 satisfies the following rule for social removal functions:

(FRev∧) If >i and >′
i are revision-equivalent for each i ∈ A then F((>i)i∈A) ≡∧ F((>′

i)i∈A).

In fact F1 satisfies this property even in the general basic removal case. Letting F1((>i)i∈A) =
(φi)i∈A and F1((>′

i)i∈A) = (φ′i)i∈A, the proof proceeds by induction on i that
∧

j≤i φj ≡
∧

j≤i φ
′
j .

This result implies that if we are only interested in the result of merging, we could just focus on
revision functions only.

One questionable property of F1 is we always get φ1 = >1(⊥) for any input removal pro-
file. Thus agent 1 never leaves his initial belief set. He assumes a dictator-like role. Our second
construction aims at rectifying this.

5.2 The hyperregular case: Second method
Our second construction is just like the first, except now, at the start of the process, agent 1 removes
some fixed, possibly consistent, sentence χ (chosen independently of the given removal profile)
rather than remove ⊥ as before. Formally, the function F2 makes use of an auxilliary function s
which takes as arguments a removal profile (>i)i∈A together with a sentence χ ∈ L∗, and outputs a
belief profile (ηi)i∈A. The ηi are defined inductively by setting η1 = >1(χ), and then for i > 1,

ηi = >i(¬
∧
j<i

ηj).

Note that if χ ≡ ⊥ then this is just F1((>i)i∈A). Is this a removal equilibrium? In fact the result of
this operation will be a removal equilibrium for agents 2, . . . , n, but not necessarily for agent 1.

Proposition 6 Assume all >i satisfy Hyperregularity and let s(χ | (>i)i∈A) = (ηi)i∈A. Then for
each i > 1, ηi ≡ >i(¬

∧
j 6=i ηj), but in general η1 6≡ >1(¬

∧
j>1 ηj).

In case η1 6≡ >1(¬
∧

j>1 ηj) we just try again with s(χ ∧ ¬
∧

j>1 ηj | (>i)i∈A). Precisely, F2

is defined via the following iterative procedure:

1. Calculate s(χ | (>i)i∈A) = (ηi)i∈A.

2. If η1 ≡ >1(¬
∧

j>1 ηj) then STOP and output F2((>i)i∈A) = (ηi)i∈A. Otherwise set χ :=
χ ∧ ¬

∧
j>1 ηj and go to step 1.

In case the termination condition in step 2 is not met, it can be shown χ 6≡ χ∧¬
∧

j>1 ηj , so we
generate a stricly stronger sentence to input back into s(· | (>i)i∈A) in step 1. Hence the process
continues at most until we input ⊥. But in this case s(⊥ | (>i)i∈A) = F1((>i)i∈A) as we have
seen. Hence:

Proposition 7 If all the >i satisfy Hyperregularity then F2 satisfies (FREq).
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For example, if we run this method on Example 3, taking χ = p, we obtain the 2nd equilibrium
F2((>)i∈A) = (¬p)i∈A. Hence we see F2 does not validate (FVac∧). It also does not satisfy
(FRev∧), since it can be shown the σ-liberation function from Example 3 is revision-equivalent to
the severe withdrawal function >ρ determined by the 1-element chain ρ = (p). But if we again take
χ = p then F2((>ρ)i∈A) = (p)i∈A.

Note although agent 1 no longer has dictator-like powers in F2, agent j still dominates all agents
k for which 2 ≤ j < k, in the sense that if F2((>i)iA) = (φi)i∈A, we always end up with φj =
>j(¬

∧
s<j φs). This means j never takes into account the beliefs of k > j when calculating his

new beliefs.
A natural question to ask is: is every removal equilibrium for (>i)i∈A obtainable by the above

iterative method for appropriate choices of ordering of agents and starting points χ? The next
example shows the answer is generally no.

Example 4 Suppose three agents, all using severe withdrawal functions specified respectively by
the following logical chains: >1 : (p ↔ ¬q) ` (p ∨ q), >2: ¬q ` (p ∨ ¬q), >3: ¬p ` (¬p ∨ q).
Then the reader may check (φ1, φ2, φ3) = (p ∨ q, p ∨ ¬q,¬p ∨ q) is a removal equilibrium (giving
a merging result of φ1 ∧ φ2 ∧ φ3 ≡ p ∧ q). However, note this equilibrium has the special property
that for each i, there is no proper subset X ⊂ {j ∈ A | j 6= i} such that φi ≡ >i(¬

∧
j∈X φj).

Hence this point cannot be reached using F2, since as we just remarked, there we always end up
with φ2 ≡ >2(¬φ1).

In the above example it could be said that at the point (p ∨ q, p ∨ ¬q,¬p ∨ q) the three agents
are all in a state of perfect tension with regard to one another. Each agent contributes equally to the
equilibrium. We make the following definition:

Definition 5 Let (φi)i∈A be a removal equilibrium for (>i)i∈A. Then it is a perfect removal equilib-
rium iff for each i, there is no proper subset X ⊂ {j ∈ A | j 6= i} such that φi ≡ >i(¬

∧
j∈X φj).

The next question is: do perfect removal equilibria always exist for any given removal profile?
The answer is no, because according to the definition we may not have φi ≡ >i(¬

∧
j∈∅ φj), i.e.,

we may not have φi ≡ >i(⊥). However, we may conceive of examples in which, for every removal
equilibrium there exists at least one agent i for which φi ≡ >i(⊥). Indeed this will typically happen
in the case of drastic removal profiles, see Section 7 below.

5.3 Existence: The general case
We have established that if all agents use hyperregular removal, then removal equilibria are guar-
anteed to exist. We now extend this fact to the case of arbitrary basic removal profiles. Given an
arbitrary (>i)i∈A, we first convert each >i to its hyperregular version >h

i , and then show that every
removal equilibrium for (>h

i )i∈A can be converted into an equilibrium for the original profile. To
do this we go back to the semantic representation of basic removal functions which was mentioned
after Defn. 2.

Definition 6 Let > be a basic removal function and (≤,�) its generating context. Then the hy-
perregular version of > is the removal operator >h generated by (≤,�h), where �h is defined by:
w1 �h w2 iff w1 � w3 for some w3 s.t. w3 ∼ w2 (where ∼ is the symmetric closure of ≤).

The following are the relevant properties of >h:

Proposition 8 (i). >h satisfies Hyperregularity. (ii). For all λ ∈ L∗, >(λ) ` >h(λ). (iii). > and
>h are revision-equivalent.

Now, suppose we start with arbitrary (>i)i∈A and suppose we have found some removal equi-
librium (φ′i)i∈A for the hyperregular versions (>h

i )i∈A. Then for each i set

φi = >i(¬(
∧
j<i

φj ∧
∧
j>i

φ′j)).
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Proposition 9 (φi)i∈A is a removal equilibrium for (>i)i∈A. Furthermore (φi)i∈A ≡∧ (φ′i)i∈A.

The second part of this proposition implies that if we are interested only in the result of merging,
we might as well just use the Hyperregular versions.

6 Entrenchment equilibria
In this section we investigate another equilibrium notion for social belief removal, which is more
directly comparable to the usual notion of Nash equilibrium in strategic games. To do so we will
first show how any removal profile (>i)i∈A defines a particular strategic game G((>i)i∈A) and then
use the Nash equilibria of this game to define our new notion of equilibrium. We start by recalling
the definitions of strategic game and Nash equilibrium. (See, e.g., [20].)

Definition 7 A strategic game (over A) is a pair 〈(Ai)i∈A, (-i)i∈A〉, where, for each i ∈ A:

• Ai is the set of actions available to agent i,
• -i is a total preorder over ×i∈AAi, i.e., the preference relation of agent i.

The set ×i∈AAi is the set of action profiles for the agents in A, i.e., the set of tuples consisting of a
chosen action ai ∈ Ai for each agent i. Given two action profiles (ai)i∈A and (bi)i∈A, (ai)i∈A -j

(bi)i∈A means agent j prefers (the outcome resulting from) the action profile (bi)i∈A at least as
much as (ai)i∈A.

Definition 8 A Nash equilibrium of a strategic game 〈(Ai)i∈A, (-i)i∈A〉 is an action profile (a∗i )i∈A
such that, for each j ∈ A, and any aj ∈ Aj we have (ai)i∈A -j (a∗i )i∈A, where ai = a∗i for i 6= j.

In a Nash equilibrium no single agent can change his action in a way which leads to a more preferred
outcome for him, given that the other agents’ actions remain fixed.

How can we define a strategic game from a removal profile? Well first note in our situation of
social belief removal too each agent takes an action – he chooses which sentence to remove. That
is, the set of possible actions of agent i may be identified with L∗. What, then, is the preference
relation of agent i over the resulting set of action profiles ×j∈AL∗? Clearly each agent prefers any
action profile leading to a consistent outcome over one which leads to inconsistency. But what is
his preference between different profiles leading to consistent outcomes? One natural idea is that
agents prefer to remove less entrenched sentences [9]. Given agent i is using removal function >i,
his entrenchment ordering (over L∗) EE

i is given by

λEE
i χ iff >i (λ ∧ χ) 6` λ.

Thus χ is at least as entrenched as λ iff the removal of the conjuction causes λ to be excluded. It
expresses that agent i finds it at least as easy to discard λ as χ.

Proposition 10 If >i is a basic removal function, and EE
i is defined from >i as above then EE

i

forms a standard entrenchment ordering in the sense of [9]. In particular EE
i is a total preorder

over L∗.

Given this, agent i’s preference relation -E
i over the set ×j∈AL∗ is may be specified completely

as follows. Given any two action profiles (λj)j∈A and (χj)j∈A, we set (λj)j∈A -E
i (χj)j∈A iff one

of the following two conditions holds:
either (i). (>j(λj))j∈A is inconsistent

or (ii). (>j(λj))j∈A and (>j(χj))j∈A are both consistent and χi EE
i λi.

Since EE
i is a total preorder over L∗, it is easy to check -E

i forms a total preorder over the set of all
action profiles.

Definition 9 Given a removal profile (>i)i∈A, the strategic game 〈(L∗)i∈A, (-E
i )i∈A〉 defined from

(>i)i∈A as above will be denoted by G((>i)i∈A).

117



Given all this, we are ready to define our next equilibrium notion.

Definition 10 (φi)i∈A is an entrenchment equilibrium for (>i)i∈A iff it is consistent and (φi)i∈A ≡
(>i(λ∗i ))i∈A for some Nash equilibrium (λ∗i )i∈A of the game G((>i)i∈A).

Put more directly, an entenchment equilibrium is an outcome (φi)i∈A which is consistent and for
which no single agent may deviate and remove a less entrenched sentence without destroying this
consistency. This brings us to the following social removal property:

(FEEq) F((>i)i∈A) is an entrenchment equilibrium for (>i)i∈A.

What is the relationship between entrenchment equilibria and removal equilibria?

Proposition 11 Every removal equilibrium for (>i)i∈A is an entrenchment equilibrium for (>i)i∈A.
Furthermore if all >i are hyperregular then every entrenchment equilibrium for (>i)i∈A is a re-
moval equilibrium for (>i)i∈A.

Thus if all agents use hyperregular removal then the two notions of equilibrium coincide. How-
ever, in general, not every entrenchment equilibrium is a removal equilibrium, since for example if
(>i(⊥))i∈A is consistent then it is always an entrenchment equilibrium, because ⊥ is always min-
imally entrenched for any basic removal function. However we have already seen that it might not
be a removal equilibrium.

As we saw in Example 3, even in the hyperregular case, if (>i(⊥))i∈A is consistent it might still
not be the only entrenchment equilibrium. It might seem irrational for both agents to give up p in this
example, when it’s possible for both to remove a less entrenched sentence (i.e. ⊥) while preserving
consistency. This kind of counterintuitive result is not restricted to entrenchment equilibria. In
fact it is inherent in the concept of Nash equilibrium itself. It has long been recognised that the
Nash equilibrium does not rule out sub-optimal solutions in the case where agents have identical
preferences over outcomes. This is illustrated by the following example, taken from [20, p16].

Example 5 Suppose two agents {1, 2} who wish to go to a concert together, but must choose be-
tween going to a Mozart (Mo) concert or a Mahler (Ma) concert. Thus the set of actions for both
agents is A = {Mo,Ma}. We assume both agents have identical preferences over the four possible
action profiles. Firstly, the agents want to reach agreement, so the two profiles in which they choose
different actions are the least preferred. Moreover, both agents prefer to see the Mozart concert.
Thus the preference relation - of both agents is specified completely by

(Mo,Ma) ∼ (Ma,Mo) ≺ (Ma,Ma) ≺ (Mo,Mo).

(Just for this example we are using ∼ and ≺ to denote the symmetric closure and strict part of -
respectively.) In this game there are two Nash equilibria (Ma,Ma) and (Mo,Mo). Even though
both agents have a mutual interest in reaching (Mo,Mo), the Nash equilibrium does not rule out the
inferior outcome (Ma,Ma).

This anomaly led several authors to propose refined equilibria concepts for strategic games. One
such refinement, the strong Nash equilibrium [3], says roughly that no set – not just singletons as
with Nash – of agents can make a joint change in strategy which leads to a more preferred outcome
for all agents in that set.

Definition 11 A strong Nash equilibrium of a strategic game 〈(Ai)i∈A, (-i)i∈A〉 is an action profile
(a∗i )i∈A such that, for any X ⊆ A, and each tuple (ai)i∈X , there exists j ∈ X such that (ai)i∈A -j

(a∗i )i∈A, where ai = a∗i for i 6∈ X .

This leads to the corresponding refinement for entrenchment equilibria.

Definition 12 (φi)i∈A is a strong entrenchment equilibrium for (>i)i∈A iff it is consistent and
(φi)i∈A ≡ (>i(λ∗i ))i∈A for some strong Nash equilibrium (λ∗i )i∈A of the game G((>i)i∈A).
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The following property thus strengthens (FEEq):

(FEEq+) F((>i)i∈A) is a strong entrenchment equilibrium for (>i)i∈A.

In Example 3 the only strong entrenchment equilibrium is (p)i∈A. For hyperregular removal pro-
files, it can be shown function F1 defined earlier satisfies (FEEq+), but F2 does not. Thus strong
entrenchment equilibria always exist for hyperregular removal profiles. However at the time of writ-
ing it is an open problem whether they always exist for general basic removal profiles. It would also
be interesting to try and find a necessary and sufficient condition for a removal equilibrium to be a
strong entrenchment equilibrium (even in the hyperregular case).

7 Equilibria as maxiconsistent sets
The simplest kind of removal function is what might be termed drastic removal, in which the result
of removing λ is >(⊥) if λ is not entailed by the initial belief set, or > if it is entailed. That is, an
agent either leaves his belief set unchanged, or throws out all beliefs. Drastic removals correspond
to the severe withdrawal functions determined by single-element logical chains.

If all agents use drastic removal, then removal/entrenchment equilibria reduce to taking maximal
consistent sets of agents. X ⊆ A is maximally consistent iff (i)

∧
i∈X >i(⊥) is consistent, and (ii)∧

i∈Y >i(⊥) is inconsistent for all X ⊂ Y ⊆ A.

Proposition 12 Suppose all >i are drastic removal functions. Then (φi)i∈A is a removal (or en-
trenchment) equilibrium for (>i)i∈A iff {i | φi ≡ >i(⊥)} is a maximally consistent subset of A.

Thus we see that the main notions of equilibria studied in this paper (removal and entrenchment)
can be seen as generalisations of the idea of taking maximal consistent sets.

8 Conclusion
We have defined several notions of equilibrium in the framework of social removal functions, for-
mulated purely in the language of belief removal operators. Assuming all agents use basic removal
functions to remove their own beliefs, we proved our equilibria are always guaranteed to exist. We
gave several examples to illustrate these notions, and we showed that they generalise in some sense
the idea of resolving inconsistency by taking maximal consistent subsets of agents.

For future work, we want to generalise our results to handle social removal under integrity con-
straints [14]. An IC social removal function is a function taking as arguments a removal profile and
a consistent sentence Ψ, which returns a belief profile which is consistent with Ψ. The equilibrium
notions described in this paper should extend to this setting. For example an IC removal equilibrium
could be defined to be any belief profile (φi)i∈A for which φi ≡ >i(¬(Ψ ∧

∧
j 6=i φj)) for all i.

Social belief removal functions have obvious similarities to social choice rules [2]. A social
choice rule takes as input a profile of total preorders over the set of alternatives together with a given
subset A of the alternatives, and outputs a subset of A – the chosen elements of A for the group. By
conjoining the elements of the output of a social belief removal function we obtain an output of the
same type as with social choice rules, but the input of a social belief removal function can be viewed
as richer than that for social choice, since a basic removal function corresponds to a total preorder
≤ plus a reflexive sub-relation�. It would be interesting to explore any (im)possibility theorems for
social removal functions.
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A Computational Analysis of the

Tournament Equilibrium Set∗

Felix Brandt, Felix Fischer, Paul Harrenstein, and Maximilian Mair

Abstract

A recurring theme in the mathematical social sciences is how to select the “most
desirable” elements given a binary dominance relation on a set of alternatives.
Schwartz’s tournament equilibrium set (TEQ) ranks among the most intriguing,
but also among the most enigmatic, tournament solutions proposed so far in this
context. Due to its unwieldy recursive definition, little is known about TEQ. In
particular, its monotonicity remains an open problem to date. Yet, if TEQ were
to satisfy monotonicity, it would be a very attractive solution concept refining both
the Banks set and Dutta’s minimal covering set. We show that the problem of de-
ciding whether a given alternative is contained in TEQ is NP-hard. Furthermore,
we propose a heuristic that significantly outperforms the naive algorithm for com-
puting TEQ. Early experimental results support the conjecture that TEQ is indeed
monotonic.

1 Introduction

A recurring theme in the mathematical social sciences is how to select the “most desirable”
elements given a binary dominance relation on a set of alternatives. Examples are diverse
and include selecting socially preferred candidates in social choice settings (e.g., Fishburn,
1977; Laslier, 1997), finding valid arguments in argumentation theory (e.g., Dung, 1995;
Dunne, 2007), determining the winners of a sports tournament (e.g., Dutta and Laslier,
1999), making decisions based on multiple criteria (e.g., Bouyssou et al., 2006), choosing
the optimal strategy in a symmetric two-player zero-sum game (e.g., Duggan and Le Breton,
1996), and singling out acceptable payoff profiles in cooperative game theory (Gillies, 1959;
Brandt and Harrenstein, 2008). In social choice theory, where dominance-based solutions
are most prevalent, the dominance relation can simply be defined as the pairwise majority
relation, i.e., an alternative a is said to dominate another alternative b if the number of
individuals preferring a to b exceeds the number of individuals preferring b to a. As is
well known from Condorcet’s paradox (de Condorcet, 1785), the dominance relation may
contain cycles and thus need not have a maximum, even if each of the underlying individual
preferences does. As a consequence, the concept of maximality is rendered untenable in
most cases, and a variety of so-called solution concepts that take over the role of maximality
in non-transitive relations have been suggested (see, e.g., Laslier, 1997).

The tournament equilibrium set (TEQ) introduced by Schwartz (1990) ranks among
the most intriguing, but also among the most enigmatic, solution concepts that has been
proposed for tournaments, i.e., asymmetric and complete dominance relations. Due to
its unwieldy recursive definition, however, preciously little is known about TEQ (Dutta,
1990; Laffond et al., 1993). In particular, whether TEQ satisfies the important property of
monotonicity remains an open question to date. If it does, TEQ constitutes a most attractive
tournament solution, refining both the minimal covering set and the Banks set (Laslier, 1997;
Laffond et al., 1993).

Recent work in computer science has addressed the computational complexity of almost
∗An earlier version of this paper appeared in the proceedings of the 23rd AAAI Conference on Artificial

Intelligence (AAAI).
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all common solution concepts (see, e.g., Woeginger, 2003; Alon, 2006; Conitzer, 2006; Brandt
et al., 2007). The minimal covering set and the tournament equilibrium set, however, have
remained notable exceptions. Laslier writes that “Unfortunately, no algorithm has yet been
published for finding the minimal covering set or the tournament equilibrium set of large
tournaments. For tournaments of order 10 or more, it is almost impossible to find (in the
general case) these sets at hand” (Laslier, 1997, p.8). The minimal covering set has recently
been shown to be computable in polynomial time (Brandt and Fischer, 2008). In this paper
we prove that the same is not true for TEQ, unless P equals NP. We first give an arguably
simpler alternative to Woeginger’s (2003) NP-hardness proof for membership in the Banks
set. Then the construction used in that proof is modified so as to obtain the analogous
result for TEQ. In contrast to the Banks set, there is no obvious reason to suppose that
the TEQ membership problem is in NP; it may very well be even harder. In the second
part of the paper, we propose and evaluate a heuristic for computing TEQ that performs
reasonably well on tournaments with up to 150 alternatives. Experiments further support
the conjecture that TEQ is indeed monotonic.

2 Preliminaries

A tournament T is a pair (A,�), where A is a finite set of alternatives and � an irreflex-
ive, anti-symmetric, and complete binary relation on A, also referred to as the dominance
relation. Intuitively, a � b signifies that alternative a beats b in a pairwise comparison. We
write T for the class of all tournaments and have T (A) denote the set of all tournaments on
a fixed set A of alternatives. If T is a tournament on A, then every subset X of A induces
a tournament T |X = (X,�|X), where �|X = {(x, y) ∈ X ×X : x � y}.

As the dominance relation is not assumed to be transitive in general, there need not
be a so-called Condorcet winner, i.e., an alternative that dominates all other alternatives.
A tournament solution S is defined as a function that associates with each tournament T
on A a subset S(T ) of A. The definition of a tournament solution commonly includes the
requirement that S(T ) be non-empty if T is defined on a non-empty set of alternatives and
that it select the Condorcet winner if there is one (Laslier, 1997, p.37). For X a subset of A,
we also write S(X) for the more cumbersome S(T |X), provided that the tournament T is
known from the context. A tournament solution S is said to be monotonic if for any two
tournaments T, T ′ ∈ T (A) which only differ in that b � a in T and a � b in T ′, a ∈ S(T ) im-
plies that also a ∈ S(T ′), i.e., reinforcing an alternative cannot cause it to be excluded from
the solution set. Monotonicity is a vital property that all reasonable tournament solutions
satisfy. In this paper, we will be concerned with two particular tournament solutions, the
Banks set and Schwartz’s tournament equilibrium set (TEQ). For a proper formal definition,
however, we need some auxiliary notions and notations.

Let R be a binary relation on a set A. We write R∗ for the transitive reflexive closure
of R. By the top cycle TC A(R) we understand the maximal elements of the asymmetric
part of R∗. A subset X of A is said to be transitive if R is transitive on X. For X ⊆ Y ⊆ A,
X is called maximal transitive in Y if X is transitive and no proper superset of X in Y is.
Clearly, since A is finite, every transitive set is contained in a maximal transitive set. Given
a set Z = {Zi}i∈I of pairwise disjoint subsets of A, a subset X of A will be called a choice
set for Z if it contains precisely one element from each subset Zi ∈ Z.

In tournaments, maximal transitive sets are also referred to as Banks trajectories. The
Banks set BA(T ) of a tournament T then collects the maximal elements of the Banks
trajectories.

Definition 1 (Banks set) Let T be a tournament on A. An alternative a ∈ A is in the
Banks set BA(T ) of T if a is a maximal element of some maximal transitive set in T .
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b c

a

d e

Figure 1: Example due to Schwartz, 1990, where BA(T ) = {a, b, c, d} and TEQ(T ) =
{a, b, c}. The TEQ relation → is indicated by thick edges.

The tournament equilibrium set TEQ(T ) of a tournament T on A is defined as the top
cycle of a particular subrelation of the dominance relation, referred to as the TEQ relation
in the following. The underlying idea is that an alternative is only “properly” dominated,
i.e., dominated according to the subrelation, if it is dominated by an element that is selected
by some tournament solution concept S. To make this idea precise, for X ⊆ A, we write
DX(a) = { b ∈ X : b � a } for the dominators of a in X, omitting the subscript when
X = A. Thus, for each alternative a one examines the set D(a) of its dominators, and
solves the subtournament T |D(a) by means of the solution S. In the subrelation a is then
only dominated by the alternatives in S(D(a)). This of course, still leaves open the question
as to the choice of the solution concept S. Now, in the case of TEQ, S is taken to be TEQ
itself! This recursion is well-defined because for any X ⊆ A and a ∈ X, the set DX(a) is a
proper subset of X. Thus, in order to determine the TEQ relation in a subtournament T ,
one has to calculate the TEQ of smaller and smaller subtournaments of T .

Definition 2 (Tournament equilibrium set) Let T ∈ T (A). For each subset X ⊆ A,
define the tournament equilibrium set TEQ(X) for X as

TEQ(X) = TC X(→X),

where →X is defined as the binary relation on X such that for all x, y ∈ X,

x →X y if and only if x ∈ TEQ(DX(y)).

Recall that in particular, TEQ(∅) = ∅. The TEQ relation →X is a subset of the dominance
relation �, and if DX(x) 6= ∅, then there is some y ∈ DX(x) with y →X x. Furthermore,
Definition 2 directly yields a recursive algorithm to compute TEQ. Some reflection reveals
that this naive algorithm requires time exponential in |A| in the worst case.

It can easily be established that the Banks set and TEQ both select the Condorcet winner
of a tournament if there is one. Moreover, in a cyclic tournament on three alternatives,
the Banks set and TEQ both consist of all alternatives. In more complex tournaments,
however, the Banks set and TEQ may differ. Consider, for example, the tournament T
depicted in Figure 1. We first calculate the TEQ relation →. Thus, e.g., for alternative e
we find D(e) = {a, c, d}, which constitutes a three-cycle, and so TEQ(D(e)) = {a, c, d}.
Accordingly, a → e, c → e, as well as d → e. Doing this for all alternatives, we find
TEQ(T ) = {a, b, c} as the top cycle TC (→) of the relation →. By contrast, the Banks set
consists of the four elements a, b, c and d. E.g., d ∈ BA(T ), because {d, c, e} is a maximal
transitive set with maximal element d. Nevertheless, TEQ is always included in the Banks
set.
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Proposition 1 (Schwartz, 1990) Let T = (A,�) be a tournament. Then, TEQ(T ) ⊆
BA(T ).

Proof: We prove by structural induction on X that TEQ(X) ⊆ BA(X) for all subsets X
of A. The case X = ∅ is trivial, as then TEQ(X) = BA(X) = ∅. So, assume that
TEQ(X ′) ⊆ BA(X ′), for all X ′ ( X. We prove that TEQ(X) ⊆ BA(X) as well. To this
end, consider an arbitrary a ∈ TEQ(X). Either DX(a) = ∅ or DX(a) 6= ∅. In the former
case, a is the Condorcet winner in X and therefore a ∈ BA(X). In the latter case, x →X a
for some x ∈ X. Having assumed that a ∈ TEQ(X), i.e., a ∈ TC (→X), there is also an
x′ ∈ X with a →X x′. Accordingly, a ∈ TEQ(DX(x′)). By the induction hypothesis, also
a ∈ BA(DX(x′)). Therefore, there is some maximal transitive set Y in DX(x′) of which a
is the maximal element. Then, Y ∪ {x′} is a transitive set in X. Now let Y ′ ⊆ X be
a maximal transitive set in X containing Y ∪ {x′} with a′ as maximal element. Observe
that a′ ∈ BA(X). Then, a′ � x′ and so a′ ∈ DX(x′). Now consider Y ′ ∩DX(x′). Clearly,
Y ∩DX(x′) is a transitive set in DX(x′) which contains a′ as its maximal element. Moreover,
Y ⊆ Y ′∩DX(x′). By maximality of Y it then follows that Y = Y ′∩DX(x′) and that a = a′.
We may conclude that a ∈ BA(X). �

Otherwise, little is known and much surmised about the theoretical properties of TEQ.
For example, Schwartz (1990) conjectured that the top cycle of the TEQ relation is always
weakly connected, a property of TEQ we will refer to as CTC for connected top cycle.
Laffond et al. (1993) showed that TEQ satisfying CTC is equivalent to it having a number
of useful properties. In particular, TEQ is monotonic if and only if CTC holds. Moreover,
CTC implies the inclusion of TEQ in the minimal covering set (see, e.g., Laslier, 1997),
another appealing tournament solution. Thus, if TEQ satisfies CTC it might be considered
a very strong solution concept. Otherwise, TEQ lacks the vital property of monotonicity
and as such it would be severely flawed as a tournament solution.

3 An Alternative NP-Hardness Proof for Membership
in the Banks Set

We begin our investigation of the computational complexity of the TEQ membership prob-
lem by giving an alternative proof for NP-hardness of the analogous problem for the Banks
set. The latter was first demonstrated by Woeginger (2003) using a reduction from graph
three-colorability. Our proof works by a reduction from 3SAT , the NP-complete satisfiabil-
ity problem for Boolean formulas in conjunctive normal form with exactly three literals per
clause (see, e.g., Papadimitriou, 1994). It is arguably simpler than Woeginger’s, and a much
similar construction will be used in the next section to prove NP-hardness of membership
in TEQ. The tournaments used in both reductions will be taken from a special class T ∗.

Definition 3 (The class T ∗) A tournament (A,�) is in the class T ∗ if it satisfies the
following properties. There is some odd integer n ≥ 1, the number of layers in the tour-
nament, such that A = C ∪ U1 ∪ · · · ∪ Un, where C, U1, . . . , Un are pairwise disjoint and
C = {c0, . . . , cn}. Each Ui is a singleton if i is even, and Ui = {u1

i , u
2
i , u

3
i } if i is odd.

The complete and asymmetric dominance relation � is such that for all ci ∈ Ci, cj ∈ Cj,
ui ∈ Ui, uj ∈ Uj (0 ≤ i, j ≤ n):

(i) ci � cj, if i > j,

(ii) ui � cj, if i = j,

(iii) cj � ui, if i 6= j,
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Figure 2: Tournament TBA
ϕ for the 3CNF formula ϕ = (¬p∨s∨q)∧ (p∨s∨r)∧ (p∨q∨¬r).

Omitted edges are assumed to point downwards.

(iv) ui � uj, if i < j and at least one of i and j is even,

(v) uk
i � ul

i, if i is odd and k ≡ l − 1 (mod 3)

We also refer to c0 by d, for “decision node” and to
⋃

1≤i≤n Un by U . For i = 2k, we
have as a notational convention Ui = Yk = {yk} and set Y =

⋃
1≤2k≤n Yk.

Observe that this definition fixes the dominance relation between any two alternatives except
for some pairs of alternatives that are both in U .

As a next step in the argument, we associate with each instance of 3SAT a tournament
in the class T ∗. An instance of 3SAT is given by a formula ϕ in 3-conjunctive normal
form (3CNF ), i.e., ϕ = (x1

1∨x2
1∨x3

1)∧· · ·∧(x1
m∨x2

m∨x3
m), where each x ∈ {x1

i , x
2
i , x

3
i : 1 ≤

i ≤ m} is a literal. For each clause x1
i ∨x2

i ∨x3
i we assume x1

i , x2
i and x3

i to be distinct literals.
We moreover assume the literals to be indexed and by Xi we denote the set {x1

i , x
2
i , x

3
i }.

For literals x we have x̄ = ¬p if x = p, and x̄ = p if x = ¬p, where p is some propositional
variable. We may also assume that if x and y are literals in the same clause, then x 6= ȳ. We
say a 3CNF ϕ = (x1

1 ∨x2
1 ∨x3

1)∧ · · · ∧ (x1
m ∨x2

m ∨x3
m) is satisfiable if there is a choice set V

for {Xi}1≤i≤m such that v′ = v̄ for no v, v′ ∈ V . Next we define for each 3SAT formula ϕ
the tournament TBA

ϕ .

Definition 4 (Banks construction) Let ϕ be a 3CNF (x1
1∨x2

1∨x3
1)∧· · ·∧(x1

m∨x2
m∨x3

m).
Define TBA

ϕ = (C ∪ U,�) as the tournament in the class T ∗ with 2m − 1 layers such that
for all 1 ≤ j < 2m,

Uj =

{
Xi if j = 2i− 1,
{yi} if j = 2i

and such that for all x ∈ Xi and x′ ∈ Xj (1 ≤ i, j ≤ m),

x � x′ if both j < i and x′ = x̄ or both i < j and x′ 6= x̄.

Observe that in conjunction with the other requirements on the dominance relation of a
tournament in T ∗, this completely fixes the dominance relation � of TBA

ϕ .
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An example of a tournament TBA
ϕ for a 3CNF ϕ is shown in Figure 2. We are now in

a position to present our alternative proof that the Banks membership problem is NP-
complete.

Theorem 1 The problem of deciding whether a particular alternative is in the Banks set
of a tournament is NP-complete.

Proof: Membership in NP is obvious. For a fixed alternative d, we can simply guess a
transitive subset of alternatives V with d as maximal element and verify that V is also
maximal with respect to set inclusion.

For NP-hardness, we show that TBA
ϕ contains a maximal transitive set with maximal

element d if and only if ϕ is satisfiable. First observe that V is a maximal transitive subset
with maximal element d in TBA

ϕ only if both

(i) for all 1 ≤ i < 2m there is a u ∈ Ui such that u ∈ V , and

(ii) there are no 1 ≤ i < j < 2m, u ∈ Ui, u′ ∈ Uj with u, u′ ∈ V such that uj � ui.

Regarding (i), if there is an 1 ≤ i < 2m such that no element of Ui is contained in V , we can
always add ci to V in order to obtain a larger transitive set. If (ii) were not to hold, both i
and j have to be odd for uj to dominate ui. However, in light of (i), there has to be k with
i < k < j and u′′ ∈ Uk such that u′′ ∈ V . It follows that V is not transitive because u, u′′,
and u′ form a cycle. If there is maximal transitive set V with maximal element d complying
with both (i) and (ii), a satisfying assignment of ϕ can be obtained by letting all literals
contained in X ∩ V be true.

For the opposite direction, assume that ϕ is satisfiable. Then there is a choice set W for
{Xi}1≤i≤m such that x′ = x̄ for no x, x′ ∈ W . Obviously V = W ∪ {y1, . . . , ym−1} ∪ {d}
does not contain any cycles and thus is transitive with maximal element d. In order to
obtain a larger transitive set with a different maximal element, we need to add ci for some
1 ≤ i ≤ m to V . However, V ∪ {ci} always contains a cycle consisting of ci, d, and u for
some u ∈ Ui, contradicting the transitivity of V ∪ {ci}. We have thus shown that d is the
maximal element of some maximal transitive set in TBA

ϕ containing V as a subset. �

4 NP-hardness of Membership in TEQ

In this section we prove that the problem of deciding whether a particular alternative is in
the TEQ of a tournament is NP-hard. To this end, we refine the construction that was used
in the previous section to prove NP-completeness of membership in the Banks set.

Definition 5 (TEQ construction) Let ϕ be a 3CNF (x1
1∨x2

1∨x3
1)∧· · ·∧(x1

m∨x2
m∨x3

m).
Further for each 1 ≤ i < m, let there be a set Zi = {z1

i , z2
i , z3

i }. Define TTEQ
ϕ as the

tournament (A,�) in T ∗ with 4n− 3 layers such that A = C ∪U1 ∪ · · · ∪U4n−3 and for all
1 ≤ i ≤ m,

Uj =


Xi if j = 4i− 3,
Zi if j = 4i− 1,
{yi} otherwise.

As in the Banks construction, we let for all x ∈ Xi and x′ ∈ Xj (1 ≤ i, j ≤ m)

x � x′ if both j < i and x′ = x̄ or both i < j and x′ 6= x̄.

Finally, for all 1 ≤ i, j ≤ m, xk
i ∈ Xi and zl

j ∈ Zj,

xk
i � zl

j if and only if i < j or both i = j and k = l.
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Figure 3: Tournament TTEQ
ϕ for the 3CNF formula ϕ = (¬p∨s∨q)∧(p∨s∨r)∧(p∨q∨¬r).

An example for such a tournament is shown in Figure 3.
We now proceed to show that a 3SAT formula ϕ is satisfiable if and only if the decision

node d is in the tournament equilibrium set of TTEQ
ϕ . We make use of the following lemma.

Lemma 1 Let T = (C ∪U,�) be a tournament in T ∗ and let B ⊆ C ∪U such that d ∈ B.
Then, for each u ∈ U ∩B there exists some c ∈ C ∩B such that c →∗

B u.

Proof: Let ci ∈ C ∩B be such that DB(ci) ∩C = ∅, i.e., ci is the alternative in C with the
highest index among those included in B. Then,

ci →B c for all c ∈ B ∩ C with c 6= ci. (1)

For this, merely observe that by construction ci is the Condorcet winner in DB(c). Hence,
ci ∈ TEQ(DB(c)) and ci →B c.

The lemma itself then follows from the stronger claim that for each u ∈ U ∩ B there is
some c ∈ C ∩ B with both c →∗

B u and c ∈ TEQ(B). This claim we prove by structural
induction on supersets B of {d}.

If B = {d}, U ∩B = ∅ and the claim is satisfied trivially. So let {d} be a proper subset
of B. Again, if U ∩ B = ∅, the claim holds trivially. So we may assume there be some
u ∈ U ∩B. Then, d ∈ DB(u) by construction of T . If DB(u)∩U = ∅, DB(u) is a non-empty
subset of C ∩B, and so is TEQ(DB(u)). It follows that for some c ∈ TEQ(DB(u)) ∩ C we
have c →B u. If, on the other hand, DB(u)∩U 6= ∅, the induction hypothesis is applicable
and we have c ∈ TEQ(DB(u)) for some c ∈ C ∩ B. Hence, c →B u. With u having been
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chosen arbitrarily, we actually have that for all u ∈ U ∩ B, there is some c ∈ C ∩ B with
c →B u. It remains to be shown that there is some c ∈ C ∩ TEQ(B) with c →∗

B u.
To this end, again consider ci ∈ C ∩ B such that DB(ci) ∩ C = ∅. It suffices to show

that ci →∗
B b for all b ∈ B, as then both ci ∈ TEQ(B) ∩ C and ci →∗

B u. So, consider an
arbitrary b ∈ B. If b = ci, the case is trivial. If b ∈ C ∩ B but b 6= ci, we are done by (1).
If instead b ∈ U ∩ B, then c →∗

B b for some c ∈ C ∩ B, as we have shown in the first part
of the proof. If c = ci, we are done. Otherwise, we can apply (1) to obtain ci →B c′ →∗

B b
and hence ci →∗

B b. �

We are now ready to state the main theorem of this paper.

Theorem 2 Deciding whether a particular alternative is in the tournament equilibrium set
of a tournament is NP-hard.

Proof: By reduction from 3SAT . Consider an arbitrary 3CNF ϕ and construct the tourna-
ment TTEQ

ϕ = (C ∪ U,�). This can be done in polynomial time. We show that

ϕ is satisfiable if and only if d ∈ TEQ(TTEQ
ϕ ).

For the direction from left to right, observe that by an argument analogous to the proof of
Theorem 1 it can be shown that ϕ is satisfiable if and only if d ∈ BA(TTEQ

ϕ ). So assuming
that ϕ is not satisfiable yields d /∈ BA(TTEQ

ϕ ). By the inclusion of TEQ in the Banks set
(Proposition 1), it follows that d /∈ TEQ(TTEQ

ϕ ).
For the opposite direction, assume that ϕ is satisfiable. Then there is a choice set W for

{Xi}1≤i≤m such that x′ = x̄ for no x, x′ ∈W . Obviously W∪{y1, . . . , ym−1}∪{zj
i ∈ Z : xj

i ∈
W} = {u1, . . . , un} contains no cycles and thus is transitive. Without loss of generality we
may assume that ui ∈ Ui for all 1 ≤ i ≤ n. For each 1 ≤ i ≤ n + 1, define a subset Di of
alternatives as follows. Set Dn+1 = A and Di =

⋂
i≤j≤n+1 D(uj) for each 1 ≤ i ≤ n. Hence,

D1 ( · · · ( Dn+1. In an effort to simplify notation, we write →i and Di(x) for →Di
and

DDi
(x), respectively. It then suffices to prove that

d ∈ TEQ(Dk), for all 1 ≤ k ≤ n + 1. (2)

The theorem then follows as the special case in which k = n+1. We first make the following
observations concerning the TEQ relation →i in each Di, for each 1 ≤ i, j ≤ n + 1:

(i) uj ∈ Di if and only if j < i,

(ii) cj ∈ Di if and only if j < i,

(iii) ci →i+1 cj if j < i ≤ n,

(iv) ui →i+1 ci, if i ≤ n.

For (i), observe that if j < i, uj ∈ D(ui) by transitivity of the set {u1, . . . , un}. Hence,
uj ∈ Di. If on the other hand j ≥ i, then uj /∈ D(uj) and thus uj /∈ Di. For (ii), observe that
cj ∈ D(ui) for all i 6= j and thus cj ∈ Di if j < i. However, cj /∈ D(uj) and hence cj /∈ Di

if j ≥ i. For (iii), merely observe that ci is the Condorcet winner in Di+1(cj), if j < i ≤ n.
To appreciate (iv), observe that by construction Di+1(ci) has to be either a singleton {ui}
for some ui ∈ Ui, or Ui itself. The former is the case if Ui ⊆ Y , or if Ui ⊆ X and i 6= n.
The latter holds if Ui = Un or if Ui ⊆ Z. In either case, TEQ(Di+1(ci)) = Di+1(ci) and
ui →i+1 ci holds. For the case in which Ui ⊆ X with i 6= n, let Ui = {ui, u

′
i, u
′′
i }. By

construction, Ui+2 ⊆ Z and u′i, u
′′
i /∈ D(ui+2). Accordingly, u′i, u

′′
i /∈ Di+1. From ui ∈ Di+1

it then follows that Di+1 ∩ Ui = {ui}.
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Algorithm 1 Tournament Equilibrium Set
procedure TEQ(X)
R← ∅
B ← C ← arg mina∈X |D(a)|
loop

R← R ∪ {(b, a) : a ∈ C ∧ b ∈ TEQ(D(a))}
D ←

⋃
a∈C TEQ(D(a))

if D ⊆ B then return TC B(R) end if
C ← D
B ← B ∪ C

end loop

We are now in a position to prove (2) by induction on k. For k = 1, observe that d is
a Condorcet winner in D1 and thus d ∈ TEQ(D1). For the induction step, let k = i + 1.
With observation (i) we know that ui ∈ Di+1 and, in virtue of the induction hypothesis,
also that d ∈ TEQ(Di). Hence, d →i+1 ui. Moreover, by observations (iii) and (iv),
ci →i+1 d →i+1 ui →i+1 ci, i.e., ci, d and ui constitute a →i+1-cycle. In virtue of Lemma 1
and observation (ii), we may conclude that ci →∗

i+1 a for all a ∈ Di+1. Accordingly,
{ci, d, ui} ⊆ TC Di+1

(→i+1) and d ∈ TEQ(Di+1), which concludes the proof. �

5 A Heuristic for Computing TEQ

Computational intractability of the TEQ membership problem implies that TEQ cannot be
computed efficiently either. Nevertheless, the running time of the naive algorithm, which
straightforwardly implements the recursive definition of TEQ, can be greatly reduced when
assuming that TEQ satisfies CTC. This assumption can fairly be made. For if CTC were
not to hold, TEQ would be non-monotonic and thus compromised as a solution concept,
the issue of computing it moot.

Algorithm 1 computes TEQ by starting with the set B of all alternatives that have
dominator sets of minimal size (i.e., the so-called Copeland winners). These alternatives
are good candidates to be included in TEQ and the small size of their dominator sets speeds
up the computation of their TEQ-dominators. Then, all alternatives that TEQ-dominate
any alternative in B are iteratively added to B until no more such alternatives can be
found, in which case the algorithm returns the top cycle of →B . Of course, the worst-case
running time of this algorithm is still exponential, but experimental results suggest that it
outperforms the naive algorithm by a factor of about five in uniform random tournaments
with up to 150 vertices (see Table 1). We implemented two versions of the naive algo-
rithm, which differ in the subroutine that determines the top cycle. The first one uses the
Floyd-Warshall algorithm with an asymptotic complexity of O(n3), whereas the second one
employs Kosaraju’s algorithm with a complexity of O(n2) (see, e.g., Cormen et al., 2001).
Surprisingly, the variant relying on Floyd-Warshall performs slightly better on moderately
sized instances due to factors hidden in the asymptotic notation that are amplified as a
consequence of TEQ’s recursive definition.

While choosing tournaments uniformly at random might be useful for benchmarking
algorithms, it raises a number of conceptual problems. First, in voting and most other
applications uniform random tournaments do not represent a reasonably realistic model
of social preferences. Secondly, these tournaments are “almost” regular and tournament
solutions almost always select all alternatives in regular tournaments. One model of random
tournaments that have more structure can be obtained by defining an arbitrary linear order
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|A| Floyd-Warshall Kosaraju Algorithm 1
Uniform random tournaments (p = 0.5)

50 0.48 s 0.59 s 0.09 s
100 53.33 s 65.73 s 9.57 s
150 1 166 s 1 429 s 210 s

Structured random tournaments (p = 0.8)
50 13.87 s 16.56 s 0.01 s

100 18 416 s 21 382 s 8.46 s
150 — — 1273 s

Table 1: Experimental evaluation of algorithms that compute TEQ. Average running time
for ten instances on a 3.2GHz Core2Duo machine. Both versions of the naive algorithm
did not terminate within 24 hours when run on structured random tournaments with 150
vertices.

on the alternatives a1, . . . , am and letting ai � aj for i < j with probability p > 0.5.
Letting p = 1 yields a “completely structured” transitive tournament. The more structure
a tournament possesses, the more Algorithm 1 outperforms the naive algorithm, due to the
increasing number of large dominator sets that have to be analyzed by the latter at every
level of the recursion. In large structured tournaments, the performance gap becomes rather
impressive (see Table 1). For example, the naive algorithm requires more than five hours
to compute the TEQ of a structured random tournament with 100 vertices whereas it takes
Algorithm 1 about eight seconds.1

We have further used the naive algorithm to try to disprove CTC (and thus TEQ’s mono-
tonicity), but failed to find a counterexample by an exhaustive search in all tournaments
with up to ten vertices (roughly ten million non-isomorphic tournaments), all regular tour-
naments with up to 13 vertices, and all locally transitive tournaments with up to 20 vertices.
We also investigated a fairly large number of uniform and structured random tournaments,
again to no avail. This can be considered mild evidence that TEQ is indeed monotonic.
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Approximability of Manipulating Elections1

Eric Brelsford, Piotr Faliszewski, Edith Hemaspaandra,
Henning Schnoor and Ilka Schnoor

Abstract

In this paper, we set up a framework to study approximation of manipulation, con-
trol, and bribery in elections. We show existence of approximation algorithms (even
fully polynomial-time approximation schemes) as well as obtain inapproximability
results. In particular, we show that a large subclass of scoring protocols admits fully
polynomial-time approximation schemes for the coalitional weighted manipulation
problem and that if certain families of scoring protocols (e.g., veto) admitted such
approximation schemes then P = NP. We also show that bribery for Borda count
is NP-complete and that there is no approximation algorithm that achieves even a
polynomial approximation ratio for bribery in Borda count for the case where voters
have prices.

1 Introduction

Elections are an essential mechanism that each democratic society uses to make joint deci-
sions. They are also important tools within computer science. For example, [DKNS01] show
how to build a meta search-engine via conducting elections between other search engines;
Ephrati and Rosenschein [ER97] use voting to solve certain planning problems; and in the
context of multiagent systems, elections and voting are naturally used to obtain the joint
decisions of agent societies.

Unfortunately, a famous result of Gibbard [Gib73] and Satterthwaite [Sat75] states that
(see also the work of Duggan and Schwartz [DS00]) for any reasonable election system (with
at least 3 candidates) there exist scenarios where at least some voters have an incentive to
vote strategically, i.e., to vote not according to their true preferences but in a way that yields
a result more desirable for them. Similarly, the result of an election can be skewed by an
external agent who bribes some of the voters to change their votes or even by the authority
organizing the election, via, e.g., encouraging or discouraging particular candidates from
participating, or via arranging voting districts in a certain way.

The possibility that the result of the election can be skewed via strategic voting, bribery,
or procedural control is very disconcerting. In the early 90s, Bartholdi, Orlin, Tovey, and
Trick [BTT89, BO91, BTT92] suggested a brilliant way to circumvent this issue. They
observed that since all voters are computationally-bounded entities, even if various forms of
manipulating elections are possible in principle,2 they constitute a real threat only if it is
computationally easy, for a given election system, to determine the appropriate actions that
affect the result in the desired way (i.e., for the case of strategic voting to determine how the
manipulators should vote; for the case of bribery determine who to bribe and how, etc.). To
measure the computational difficulty of manipulation and control, Bartholdi, Orlin, Tovey,
and Trick used the complexity-theoretic notion of NP-hardness.

The ideas of Bartholdi, Orlin, Tovey and Trick did not receive that much attention
until a few years ago, when it became apparent that elections and voting are important
tools in the context of multiagent systems, and that software agents are capable of much
more systematic attempts at manipulating elections than, say, humans. Thus, in recent

1This is an extended version of the AAAI-08 paper with the same title.
2In the literature the technical term manipulation means strategic voting. In this section by manipulating

we mean the general notion of affecting the result of an election.
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years many papers focused on the computational analysis of voting rules with respect to
manipulation, e.g., [CSL07, EL05, PR07, PRZ07, HH07], bribery [FHH06, FHHR07, Fal08],
and control [HHR07, FHHR07, PRZ07]. Most of these papers focus on obtaining polynomial-
time algorithms and NP-hardness results for various forms of affecting the result of elections.
However, NP-hardness gives only worst-case complexity guarantees, and it might very well
be the case that even though, say, manipulation in a given election system is NP-hard,
finding effective manipulations is often easy. Recently, Conitzer and Sandholm [CS06], and
Procaccia and Rosenschein [PR07] looked into these issues and they provide examples of
voting rules and distributions of votes for which this is the case. We will refer to the approach
presented, among others, in these two papers as frequency of hardness approach.

In this paper we refine the study of the complexity of manipulating elections via analysis
of approximability of NP-hard election-manipulation problems. An important contribution
of this paper is a natural, uniform objective function that can be used to measure the effec-
tiveness of a particular manipulation, bribery, or control attempt. Thus we set up a general
framework for studying approximation for these problems.3 Our function is particularly
interesting for the case of manipulation, where defining a natural objective function is not
straightforward.

We show existence of approximation algorithms (even fully polynomial-time approxima-
tion schemes) for manipulation for a large subclass of voting rules known as scoring protocols
(for bounded numbers of candidates) as well as obtain inapproximability results regarding
several prominent families of scoring protocols (e.g., veto and k-approval for unbounded
number of candidates). We prove NP-hardness of bribery for Borda count and inapprox-
imability of bribery for Borda count for the case where each voter has a price for changing
its vote. Hardness results for control (i.e., changing the outcome of the election by adding

voters) of unweighted Borda elections have been obtained by Russell [Rus07]. We use a
similar technique to prove that the bribery problem for unweighted Borda is NP-complete.
To the best of our knowledge, our NP-hardness result for Borda is the first hardness result
for a problem of affecting the result of unweighted Borda count elections via modifying the
voters.

Related work Several previous papers studied approximation of various manipulation
and bribery problems but each of them used objective functions specifically tailored to their
tasks. In particular, Faliszewski [Fal08] studied approximability of the total cost of a bribery
for plurality and approval voting. Zuckerman, Procaccia and Rosenschein [ZPR08], among
other things, studied approximability of the minimum number of unweighted manipulators
needed to change the result of an election for several voting systems, including Borda count.

We contrast our approach and results with the frequency of hardness approach. The
existence of an approximation algorithm (in particular, the existence of a fully polynomial-
time approximation scheme) for a given election problem is much stronger evidence that this
problem is practically easy than a frequency of hardness result stating that the problem is
easy often, according to some distribution. The reason for this is that a polynomial-time ap-
proximation algorithm guarantees to find a near-optimal answer for every input instance. If
our problem is frequently easy it might still be the case that the instances that we encounter
in practice happen to be the “rare” difficult ones. On the other hand, inapproximability is a
worst case notion. If a problem is in general inapproximable, it might still be the case that
most of its instances are easy (are easily approximable). Nonetheless, inapproximability of
a given NP-hard election problem is stronger evidence of its computational hardness than
NP-hardness alone.

We focus on manipulation and bribery rather than on control, but we mention that
Brelsford [Bre07] studied several control problems from the point of view of approximation.

3To be technically correct, our approach is limited to voting rules that assign numerical scores to the

candidates. This is the case for most standard voting rules.

134



2 Preliminaries

Elections An election E is a pair (C, V ), where C is a finite set of candidates and V a
finite multiset of strict linear orders on C. An order v ∈ V is called a vote and represents
the preference of a voter over the candidates. The winner of an election E depends on
the underlying election system. In this paper we consider only election systems that are
represented by scoring protocols and families of scoring protocols. A scoring protocol is a
vector (α1, . . . , αm) of natural numbers with α1 ≥ · · · ≥ αm. Using this protocol the winner
of an election E with m candidates can be determined as follows: Every candidate c gets αi

points for every vote that ranks c in the ith place and scoreE(c) is the sum of all points c
gets in this way. In the end c is a winner if no other candidate has a higher score. We also
allow the votes in E to have weights, in this case each vote with weight w ∈ N is counted
as w identical votes.

Let (Si)i≥1 be a family of scoring protocols such that Si is a scoring protocol of length
i. We represent by (Si)i≥1 the election system that uses Sm to determine the winner of an
election with m candidates. Borda count is the election system using ((i−1, i−2, . . . , 0))i≥1,
and veto is the election system using ((1, 1, . . . , 1, 0))i≥1.

Approximating Elections In this paper we study approximation algorithms for manip-
ulation and bribery. In both problems our goal is to ensure that a specified candidate is a
winner but in manipulation we attempt to reach this goal via, in essence, adding a certain
number of votes, whereas in bribery we do so via changing up to a given number of votes.
(Note that sometimes manipulation is defined as allowing to change a specified set of voters.
Our version allows to state our results in an easier notation—it is easy to see that these
notions describe the exact same issue. One may view adding the manipulators’ votes as
a process where the manipulators make up their minds as to how to vote, and then cast
their votes. Note that unlike for e.g., bribery, the original votes of the manipulators are
completely irrelevant for the problem to determine if a designated candidate can be made
a winner.) We also study the manipulation problem where the voters additionally have
weights, and the bribery problem where the votes have prices which the briber has to pay
in order to change the vote.

We require our approximation algorithms to produce “solutions” to their respective
instances. A solution is a strategy specifying which actions to perform, i.e., what votes to
add for the case of manipulation and which votes to change (and how to change them) for
the case of bribery.

In our model we assume that we know all the votes that are supposed to be cast in the
election. In reality, however, we are often limited to only having a guess regarding these
votes. Thus we are interested in finding a strategy that benefits the specified candidate as
much as possible so that this candidate has a good change of becoming a winner even if the
guess is a little off.

In the setting of scoring protocols (or any other score-based election system), a natural
way to measure the performance of a candidate p in an election E (written as perfE(p)) is
scoreE(p)−max{scoreE(c) | c ∈ C \ {p}}, the difference between the score of p and that of
p’s strongest competitor. perfE(p) tells us “how much” p wins the election or “how close”
p is to winning it. Obviously, p wins the election E if and only if perfE(p) is nonnegative.

A natural measure of the effectiveness of a manipulating action s within election E is
the increase of performance of the favorite candidate p obtained by applying this action.

Definition 1 β(E, s) = perfs(E)(p) − perfE(p), where s(E) denotes the election resulting

from applying action s to E.

Note that the β function allows us to deal with uncertainty in a natural way: If we only
have knowledge about a part of the election, then it is a natural goal to give our candidate as
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much of a headstart in the part of the election that we do know as possible. This is exactly
what is expressed in the β-function. Also, β can be applied not only to manpulation and
bribery as studied in this paper, but to just about every possible way to interfere with the
result of an election. We therefore believe it to be a uniform way to describe the “success”
of the action of a dishonest party in an election scheme.

Finally observe that for given strategies (added voters, bribes, etc.), the value of β can be
negative. However, for scoring protocols (and most other natural election rules) it is easy to
come up with strategies that have a nonnegative value of β (strategies that do nothing at all
suffice). Hence we require our approximation algorithms to only output “reasonable” strate-
gies, i.e., strategies for which the value of β is nonnegative. We now define our optimization
problems (which we will prefix with the election system under consideration):

$-bribery-max The input I consists of an election E, for each existing vote a natural number
defining its price, a preferred candidate p, and a natural number k representing the
budget available to the briber. Solutions consist of a set of votes in the election E such
that the sum of their prices does not exceed the budget k, and new votes to replace
them with. The goal is to find a solution s maximizing β(E, s).

weighted-manipulation-max Here, the input I consists of an election E where each vote is
accompanied by its weight, the preferred candidate p, and a list of weights (of the
manipulators). A solution consists of a vote for each manipulator. Again, the goal is
to find a solution s such that β(E, s) is maximal.

Note that if we could compute the maximum value of β for a given optimization problem
then, naturally, we could solve the corresponding decision problem. This means that if
the corresponding decision problem is NP-hard (as is often the case for manipulation and
bribery) then we cannot hope to compute the optimal value of β exactly. However, since β
is defined as an increase in p’s performance and thus its maximum value is positive in most
settings, we can attempt to use natural techniques to compute it approximately.

Approximation Algorithms and Elections The quality of an approximation algorithm
is usually measured by comparing the solutions it computes to the optimal ones. For our
optimization problems, an instance I contains the election itself, the preferred candidate,
and additional parameters limiting the possible strategies for affecting the result of the
election (i.e., the available budget in $-bribery and the weights of the manipulators in
manipulation). For such an instance I containing the election E, we define an optimal

solution to be a solution s that achieves the maximal possible value of β(E, s) among all

legal solutions. We define OPT(I) as β(E, s) for such an optimal solution s.
Given an instance I, an approximation algorithm A is required to produce a legal solu-

tion A(I), that is, a solution that respects the constraints specified in I. For a positive real
constant c, we say that A is a factor c approximation algorithm, if for each instance I con-
taining the election E, we have that β(E,A(I)) ≥ 1

cOPT(I). Such an algorithm guarantees
that the effectiveness of the solution obtained from applying A to the instance is at least 1

c
of the effectiveness that the optimal solution achieves.

We say that an algorithm A is a polynomial-time approximation scheme if for each input
(I, ε), where ε is a rational value between 0 and 1 and where I contains an election E, it holds
that: (a) A produces a solution s = A(I, ε) such that β(E, s) ≥ (1−ε) ·OPT(I), and (b) for
each fixed value of ε, A runs in time polynomial in |I|. If, in fact, A runs in time polynomial
in both |I| and 1

ε then A is a fully polynomial-time approximation scheme (FPTAS). In the
current paper we only consider maximization problems, analogous definitions can be given
for minimization problems as well.
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3 Manipulation in Scoring Protocols

Hemaspaandra and Hemaspaandra [HH07] showed that for each scoring protocol α =
(α1, . . . , αm) such that it is not the case that α2 = · · · = αm the problem α-weighted-
manipulation is NP-complete (see also [CSL07, PR07]). In this section we show that,
nonetheless, weighted manipulation is easy for a large class of scoring protocols in prac-
tice. We do so via showing FPTASes for the scoring protocols in this class.

Let α be a scoring protocol. An instance I of α-weighted-manipulation-max is a tuple
(E, w, p) where E = (C, V ) is an election with candidate set C and weighted nonmanipu-
lative voters V , w = (w1, . . . , wn) is a sequence of weights of the manipulative voters, and
p ∈ C is our preferred candidate. Our goal is to maximize the performance of p. That is,
our goal is to find a solution sol such that β(E, sol ) = OPT(I).

Theorem 2 Let α = (α0, . . . , αm) be a scoring protocol such that α0 > α1. There is an

algorithm A that given a rational number ε, 0 < ε < 1, and an instance I = (E, w, p) of

α-weighted-manipulation-max computes, in polynomial time in |I| and 1
ε , a solution sol such

that β(E, sol ) ≥ (1− ε)OPT(I).

Note that Theorem 2 claims that for each separate scoring protocol (α0, . . . , αm), where
α0 > α1, there is a separate algorithm. In particular, each of the algorithms from Theorem 2
is tailored for a fixed number of candidates. Before we jump to the proof, we need to
introduce some notation.

Let α = (α0, . . . , αm) be a scoring protocol where α0 > α1 and let C = {p, c1, . . . , cm} be
a set of candidates. p is our preferred candidate whose performance we want to maximize.
We implicitly assume that we have a set V of nonmanipulative voters, however in this
discussion the only incarnation of the nonmanipulative voters is through the sequence s
below.

We let w = (w1, . . . , wn) be the sequence of weights of the manipulators. Naturally, to
maximize p’s performance, each manipulator ranks p first. The complexity of α-weighted-
manipulation-max comes from the difficulty in arranging the remainder of the manipulators’
votes in such a way as to minimize the score of p’s most dangerous competitor.

By E(C, w) we mean the set of all elections over the candidate set C with voter set con-
taining exactly voters with weights w1, . . . , wn. Let s = (s1, . . . , sm) be a sequence of nonneg-
ative integers. Intuitively, the sequence s gives the scores that candidates c1 through cm re-
ceive from the nonmanipulative voters. By Sα(E, s) we mean maxi∈{1,...,m}{scoreE(ci)+si}
and by Tα(w, s) we mean minE∈E(C,w) Sα(E, s). Function Tα(w, s) measures the smallest
possible top score of a candidate from {c1, . . . , cm} after the manipulators cast their votes.
We now prove that for each scoring protocol α there is an FPTAS for Tα.

Lemma 3 Let α = (α0, . . . , αm) be a scoring protocol and let C = {p, c1, . . . , cm}. There

is an algorithm T that given a rational number ε, 0 < ε < 1, a sequence s = (s1, . . . , sm) of

nonnegative integers and a sequence of manipulators weights w = (w1, . . . , wn) computes an

election E ∈ E(C, w) such that Sα(E, s) ≤ (1 + ε)Tα(w, s). Algorithm T runs in polynomial

time in n, m, and 1
ε .

Proof. Set wmax = max{w1, . . . , wn} and set K = εwmax

nα1
. Set w′ = (K⌈w1

K ⌉, . . . , K⌈
wn

K ⌉).

It is possible to compute in polynomial time in n, m, and 1
ε an election E′ ∈ E(C, w′) such

that Sα(E′, s) = Tα(w′, s). (One can do so via a routine dynamic programming approach;
we enforce that in our solution each voter ranks p first.) Let E be an election identical to E′

only that appropriate voters have weights w1, . . . , wn instead of w′
1, . . . , w

′
n. Our algorithm

outputs E.
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It is easy to see that our algorithm can be made to work in polynomial time as required.
Let us now show that the solution it produces satisfies the requirements regarding quality.

It is easy to see that Tα(w, s) ≥ α1wmax and that Sα(E′, s) ≤ Tα(w, s) + α1nK. The
former is true because some candidate needs to get α1 points from the manipulator with
weight wmax and the second follows from the fact that for each i in {1, . . . , n} we have
wi ≤ w′

i < wi + K. For the same reason Sα(E, s) ≤ Sα(E′, s).
Thus, Sα(E, s) ≤ Tα(w, s) + α1nK = Tα(w, s) + εwmax. Since Tα(w, s) ≥ α1wmax, this

yields that Sα(E, s) ≤ (1+ε)Tα(w, s). (Note that, technically, this argument is only correct
if α1 ≥ 1 but, naturally, if α1 = 0 then the theorem is trivially satisfied.) This completes
the proof. �

With Lemma 3 at hand we can prove Theorem 2.

Proof. Our input is I = (E, w, p), where E = (C, V ) is an election with candidate set
C = {p, c1 . . . , cm} and set V of nonmanipulative voters, w = (w1, . . . , wn) is a sequence of
manipulators’ weights, and p is our preferred candidate. Our goal is to find a solution sol

(a collection of votes for the manipulators to cast) that maximizes β(E, sol ).
Let W =

∑n
i=1 wi and let wmax = max{w1, . . . , wn}. For each i in {1, . . . , m} let

si = scoreE(ci). We assume that the candidates c1, . . . , cm are listed in such an order that
s1 ≥ s2 ≥ · · · ≥ sm. Since α0 > α1, in every optimal solution each manipulator ranks p
first and so OPT(I) = Wα0− (Tα(w, s)−s1). It would seem that computing approximately
Tα(w, s) should be enough to get a good approximation of OPT(I), but unfortunately
Tα(w, s) can be much bigger than OPT(I). We have to, in some sense, reduce its value first.

Note that we can disregard all candidates cj such that s1 − sj > α1W . If there are k
such candidates then the manipulators may simply rank them on the first k positions after
p. For the sake of simplicity, we assume that there are no such candidates.

Let s′ = (s1−sm, . . . , sm−sm). It is easy to see that OPT(I) = Wα0−(Tα(w, s)−s1) =
Wα0 − (Tα(w, s′) − s′1). Additionally, via the above paragraph, we have that for each s′i
it holds that s′i ≤ α1W . However, this means that Tα(w, s′) ≤ 2α1W . This is so because
at worst the candidate whose score is the value of Tα(w, s′) gets α1W points from s′ and
another α1W points from the manipulators.

Using algorithm T from Lemma 3, we fill-in the manipulators’ votes to form an election
E′ ∈ E(C, w) such that all voters in E′ rank p first and Tα(w, s′) ≤ Sα(s′, E′) ≤ (1 +
ε′)Tα(w, s′), where ε′ = 1

2α1

ε. (Recall that in our setting α1 is a constant.) Votes obtained
in this way are the solution sol that our algorithm produces and we have β(E, sol ) =
Wα0 − (Sα(s′, E′)− s′1). Note that

OPT(I) = Wα0 − (Tα(w, s′)− s′1)

≥ Wα0 − (Sα(s′, E′)− s′1)

≥ Wα0 − ((1 + ε′)Tα(w, s′)− s′1)

= Wα0 − (Tα(w, s′)− s′1)− ε′Tα(w, s′)

= OPT(I)− ε′Tα(w, s′).

Since OPT(I) ≥W (this is a consequence of the fact that α0 > α1), Tα(w, s′) ≤ 2α1W , and
ε′ = 1

2α1
ε, via the above calculations, OPT(I) ≥Wα0 − (Sα(s′, E′)− s′1) ≥ (1− ε)OPT(I)

and thus OPT(I) ≥ β(E, sol ) ≥ (1− ε)OPT(I). This completes the proof. �

Interestingly, we can use Theorem 2 to obtain results similar to those of Zuckerman,
Procaccia, and Rosenschein [ZPR08], but for the case of scoring protocols α = (α0, . . . , αm)
such that α0 > α1. Note that Theorem 4 below says that there is a separate algorithm
for each scoring protocol of the given form. (Also, keep in mind that each single scoring
protocol only works with a fixed number of candidates.)
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Theorem 4 Let ε be a rational number, 0 < ε < 1, and let α = (α0, . . . , αm) be

a scoring protocol such that α0 > α1. There is an algorithm that given an instance

I = (E, w, p) of α-weighted-manipulation, where w = (w1, . . . , wn) is the sequence of

manipulators’ weights, has the property that if there is a successful manipulation for in-

stance I, it finds, in polynomial time in |I| and 1
ε , a successful manipulation for instance

I ′ = (E, (w1, . . . , wn, wn+1), p), where wn+1 = ⌈ε max{w1, . . . , wn}⌉.

We omit the easy proof. (The idea is to simply find a good enough approximation and
then add a single voter, with appropriate weight, that ranks p first.)

Theorem 2 notwithstanding, we now show that for the case of an unbounded number of
candidates there are no FPTASes for veto-weighted-manipulation-max and for k-approval-
weighted-manipulation-max, unless P 6= NP.

Theorem 5 If P 6= NP, there is no FPTAS for veto-weighted-manipulation-max.

To prove Theorem 5 it suffices to show that the unary version of weighted manipulation
in veto, i.e., one where each weight is encoded in unary, is NP-complete. In unary-encoded
variant of weighted manipulation (in veto and in each fixed scoring protocol) it holds that
the maximum value of β function is polynomially bounded. Thus, if there was an FPTAS for
veto-weighted-manipulation-max, then one could, via a good enough approximation, solve
veto-weighted-manipulation exactly in polynomial time. This is a contradiction if P 6= NP.

Theorem 6 unary-veto-weighted-manipulation is NP-complete.

Proof. We will reduce from the NP-complete problem Unary-3-Partition [GJ79]: Given a
multiset A of 3m positive integers in unary and an integer bound B in unary such that for
each a ∈ A, B/4 < a < B/2 and such that

∑

a∈A a = mB, does there exist a partition of A
into m subsets A1, . . . , Am such that

∑

a∈Ai
a = B for all i? (Note that ‖Ai‖ = 3 for all i;

hence the problem’s name.)
Our reduction works as follows. The election consists of one voter of weight B with

preference c1 > c2 > · · · > cm > p and the manipulators have weights a1, . . . , a3m.
We claim that there is a successful partition of A if and only if p can be made a winner

in our constructed election. First suppose that there exists a partition of A into m subsets
A1, . . . , Am such that

∑

a∈Ai
a = B. Let the manipulators corresponding to Ai veto candi-

date ci. Note that every candidate ci receives exactly B vetoes. In the resulting election,
score(p) = mB (p is never vetoed), and score(ci) = B + mB − B = mB, and so p is a
winner of the election. For the converse, suppose the manipulators vote in such a way that
p is a winner of the election. Without loss of generality, we may assume that p is never
vetoed, and so score(p) = mB. In order for p to be a winner, score(ci) can be at most mB.
∑

ci
score(ci) = m2B, and so this can only happen if score(ci) = mB for all ci. It follows

that each ci receives exactly B vetoes. Let Ai consist of the multi-set of the weights of the
voters that veto ci. Then A1, . . . , Am is a partition such that

∑

a∈Ai
a = B for all i. �

The same approach can be used to show NP-hardness (and thus non-existence of FPTAS
unless P = NP) for unary manipulation for many other families of scoring protocols.

Theorem 7 If P 6= NP, there is no FPTAS for k-veto-weighted-manipulation-max,

k-weighted-approval-manipulation-max, and generalized versions of k-weighted-approval-

manipulation-max where, as in k-approval, voters give only points to the first k candidates,

but any α1 ≥ α2 ≥ · · · ≥ αk > 0 is allowed.
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4 The Bribery Problem for Borda Count

In this section, we prove hardness results for the Borda count election system.

NP-hardness of the decision version We start by showing that Borda-bribery is NP-
complete. In Borda-bribery we are given an election E, a distinguished candidate p, and
a nonnegative integer k, and we ask if it is possible to ensure that p is a winner of E via
modifying at most k votes. Note that our result regards the simplest variant of bribery
where each voter has unit weight and unit price. Hardness of more involved variants (i.e.,
ones including prices or weights or both) follows naturally.

Our proof works via a reduction from a specifically crafted restriction of the set cover
problem.

Problem: 34-XC

Input: Set S, ‖S‖ = n, sets T1, . . . , T 3

4
n, where ‖Ti‖ = 4 for each Ti and where

each s ∈ S is in exactly 3 sets Ti.
Question: Is there a set I ⊆

{

1, . . . , 3
4n

}

such that for i, j ∈ I, i 6= j, Ti ∩ Tj = ∅ and
⋃

i∈I Ti = S?

It easily follows from the definition that each correct solution I has exactly 1
4n elements.

This problem was shown to be NP-complete in [FHS08] (there phrased as a version of
1-in-3-satisfiability which is easily seen to be the same problem).

Theorem 8 Borda-bribery is NP-complete.

Proof. For a set A of candidates, writing A in a vote means A in some arbitrary, but fixed,

order.
←−
A denotes the candidates of A in reverse order.

Let S = {s1, . . . , sn}, T1, . . . , T 3

4
n be an instance of 34-XC. Let k1 = n4 and k2 =

n4 − 8n3 − 4n2 (without loss of generality, assume that n is large enough for k2 to be
positive). Our candidate set C is {p} ∪ S ∪ P1 ∪ P2, where P1 and P2 are sets of padding
candidates such that ‖P1‖ = k1 and ‖P2‖ = k2. We set P = P1 ∪ P2. The voter set is
defined as follows. For each set Ti, we introduce a voter who votes as follows:

vi = Ti > P1 > S \ Ti > P2 > p.

We also introduce m votes of the form p > S > P and m votes of the form
←−
S > p >

←−
P .

By increasing m we increase the point differences between pairs of candidates where one
candidate comes from S ∪ {p} and the other from P , without at the same time affecting
the point differences between pairs of candidates where both candidates come from S ∪ {p}
or both come from P . In particular, we can choose m large enough such that with bribing
at most 1

4n voters, the padding candidates cannot be made to win the election. We choose
such a value for m, and hence the briber only has to ensure that the candidate p has at least
as many points as each candidate in S in order for p to win the election. This allows us to
establish a direct correspondence between bribery attempts bribing at most 1

4n voters and
the 34-XC instance, by showing that a bribery is successful if and only if the bribed votes
of the form vi correspond to a set cover (and the new votes are set in a reasonable way, i.e.,
they rank p first, then the padding candidates, and then the candidates in S).

In the 3
4n votes vi introduced earlier, p does not gain any points. For each candidate si

in S, there are exactly 3 “good votes” (votes corresponding to a set Tj where si ∈ Tj), and
3
4n− 3 “bad votes” (corresponding to sets Tj not containing si). In a good vote, si gains at
least good-min := (‖C‖ − 4) points (since the worst position that si can be voted in here is
the fourth position). On the other hand, the most points that si can make in a good vote
is good-max := (‖C‖− 1) points, this occurs if si is in the first position of the vote. For the
bad votes, the minimum number of points that si can make is bad-min := (‖C‖ − k1 − n)
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points (the worst position that si can be in for these votes is the (k1 + n)th spot), and the
maximum gained in a bad vote is bad-max := (‖C‖ − k1 − 5) points (the best position to
be voted here is the (k1 + 5)th position, since each set Ti contains exactly 4 elements).

Since the briber only has to ensure that p beats the candidates in S, we only need to
consider briberies of the form where the “deleted voters” are those corresponding to some
set Ti, (deleting votes of this form is obviously better for increasing the performance of p
than deleting one of the votes where S and p share the n+1 top spots) and the added voters
vote p first, then the padding candidates, and then the candidates in S (if the briber wants
to make p win, then obviously the bribed voters will vote p first, and since we constructed
the election in such a way that the padding candidates cannot win, we can without loss of
generality assume that the candidates in S are voted last). We fix such a bribery attempt,
and for each element si ∈ S, let ti be the number of good votes for si that are deleted by
the briber. We show that the bribery is successful if and only if ti ≥ 1 for all of the si, due
to the cardinality restrictions, this then implies that the deleted voters correspond to an
exact cover in the sense of 34-XC (since we allow exactly 1

4n voters to be bribed).
In order to prove this, we need to show the following: If for an element si, the number

ti is at least 1, then the maximal number of points that si can have in the bribed election is
less than the number of points for the preferred candidate p. On the other hand, if ti = 0,
then the minimum number of points that si has in the bribed election exceeds the score of
the candidate p. We now prove this claim by computing these numbers.

The maximal number of points that si can have if ti ≥ 1 (obviously, it suffices to
consider the case ti = 1) occurs when si has the maximum number of possible points in
its 2 remaining good votes, and the maximal number of points in its 1

2n− 2 remaining bad
votes. Additionally, the candidate si has the above-mentioned M points gained from the
votes where all the padding candidates are voted behind all of the candidates in S and the
candidate p, and it gains at most 1

4n(n− 1) points from the additional bribed votes (if the
candidate is voted in the first spot of the S-block in each of these votes). Therefore, the
maximal number of points in the bribed election for ti = 1 is bribed-max := 2 · good-max+
(1
2n− 2) · bad-max + M + 1

4n(n− 1), which is the same as 3
4n2 + 1

2nk2−
9
4n + 2k1 + 8 + M .

On the other hand, for ti = 0, the minimal number of points for a candidate si is the
following (3 good votes remaining, plus 1

2n − 3 bad votes, the M points from above, and
minimally 0 points from the additional bribed votes):

bribed-min := 3 ·good-min+(1
2n−3)·bad-min+M , and this is 1

2nk2+ 7
2n+3k1−12+M .

Finally, our preferred candidate has exactly p-score := 1
4n(‖C‖ − 1) + M points, which

is the same as 1
4n2 + 1

4n(k1 + k2) + M .
The required inequality bribed-max < p-score < bribed-min now simplifies to 3

4n2 −
9
4n + 8 < 1

4n2 + (1
4n− 2)k1 −

1
4nk2 < k1 + 7

2n− 12. Substituting the definitions of k1 and
k2, this is equivalent to 3

4n2 − 9
4n + 8 < n3 + 1

4n2 < n4 + 7
2n− 12, which is clearly true for

large enough n. Since we can assume that the input instance has a sufficient size, the proof
is completed. �

Nonapproximability of Bribery We now show that there are no efficient approximation
algorithms for $-bribery-max. The following result does not only show that there is no
polynomial-time approximation algorithm for the problem that achieves an approximation
rate of a constant factor, it also excludes a polynomial relationship between results that can
be achieved efficiently and the optimal solution.

Theorem 9 For every polynomial q there is no polynomial-time approximation algorithm A
for Borda-$-bribery-max such that for all instances I containing the election E, A computes

a solution s such that q(β(E, s)) ≥ OPT(I) , unless P = NP.
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This result is significantly stronger than just excluding constant-ratio approximation
algorithms: It also shows that for no constant c there is a polynomial-time approximation
algorithm A that guarantees to produce a solution A(I) for every instance I containing the
election E such that β(E,A(I)) is at least (OPT(I))1/c. Also, the NP-hardness proven in
Theorem 8 refers to an even more restricted version of the problem (where no prices are
allowed), hence it does not directly follow from the non-approximability proof.

Proof. Let q be a polynomial and assume A is a polynomial time approximation algorithm
for $-bribery-max, such that for all instances I containing the election E: q(β(E,A(I))) ≥
OPT(I). We show that we can use A to decide 34-XC in polynomial time. Note that the
construction is similar but easier than the one in the proof of Theorem 8.

Choose d, n0 ∈ N such that q(k) ≤ kd for all k ≥ n0. Let S = {s1, . . . , sn} , T1, . . . , T 3

4
n

be an instance of 34-XC. Without loss of generality assume that n ≥ n0. Let m be a natural
number such that m > n2d + 3

4n2 − 15
4 n + 11 and let C = S ∪ {p, c1, . . . , cm} be a set of

candidates, where p is our preferred candidate. Let V =
{

v1, . . . , v 3

4
n

}

be a set of votes

with
vi = p > Ti > c1 > · · · > cm > S \ Ti

for every i ∈
{

1, . . . , 3
4n

}

, and let W = {w1, w
′
1 . . . , wl, w

′
l} be a set of votes with

wi = p > s1 > · · · > sn > c1 > · · · > cm,

w′
i = sn > · · · > s1 > p > cm > · · · > c1

for every i ∈ {1, . . . , l}. We set the price of each vote in V to 1 and the price of each vote in
W to 1

4n+1. The effect of W is that it leaves the relative scores of p and the candidates in S
invariant, while increasing them relatively to the scores of the padding candidates c1, . . . , cm.
We introduce enough of these votes such that for every possible bribery, the candidates in
S will always have more points than the padding candidates. Clearly a polynomial number
of these votes suffices. The algorithm A cannot change these votes, since their cost exceeds
the budget 1

4n.
Let E be the election with candidates C and votes V ∪W . We apply A on the instance

I = (E, 1
4n, p) and show that q(β(E,A(I))) > n2d if and only if S, T1, . . . , T 3

4
n is a yes-

instance of 34-XC. This shows that we can use A to decide the problem 34-XC, which can
only happen if P = NP.

First note that scoreE(p) = 3
4n(n + m) + l(2m + n) and for each s ∈ S: 3(n + m− 4) +

l(2m + n) ≤ scoreE(s) ≤ 3(n + m− 1) + (3
4n− 3)(n− 5) + l(2m + n).

Now let S, T1, . . . , T 3

4
n be a yes-instance of 34-XC and let J ⊆

{

1, . . . , 3
4n

}

specify an

exact cover of S. We bribe in the following way: For every i ∈ J we replace vi by v′i = p >
c1 > · · · > cm > S. Let V ′ = {v′i | i ∈ J} ∪

{

vi | i ∈
{

1, . . . , 3
4n

}

\ J
}

be the set of votes
obtained from V with this bribe and E′ the election with candidates C and votes V ′ ∪W .
Since J is an exact cover, for every candidate s ∈ S we changed exactly one of the votes in V
where s was in a position among the top five candidates, therefore there are two votes left in
V where s is in one of the first five positions and in all other votes in V s is voted among the
last n candidates. Thus scoreE′(s) ≤ 2(n+ m− 1)+ (3

4n− 2)(n− 1)+ l(2m+n). Note that
scoreE′(p) = scoreE(p). It follows q(β(E, A(I))) ≥ OPT(I) ≥ m− 3

4n2 + 15
4 n− 11 > n2d.

Assume there is no exact cover for S, T1, . . . , T 3

4
n. Note that A(I) changes exactly 1

4n
votes from V and no vote from W . Let EA be the election obtained from E by applying the
bribing strategy A(I). Since there is no exact cover, there is a candidate s ∈ S such that for
all vi ∈ V with s ∈ Ti it holds that vi is not changed by A(I) and thus vi is a vote in EA.
That means there are at least three votes in EA that rank s among the first 5 candidates,
thus we get the lower bound scoreEA

(s) ≥ 3(n + m − 4) + l(2m + n). By assuming that
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p is ranked first in all votes it follows scoreEA
(p) ≤ 3

4n(n + m − 1) + l(2m + n). Hence
β(E,A(I)) ≤ 3

4n2 − 27
4 n + 24. W.l.o.g. we can assume that n is large enough to ensure that

3
4n2 − 27

4 n + 24 ≤ n2. Then q(E, β(A(I))) ≤ q(n2) ≤ n2d, concluding the proof. �

The above proof also works for a variant of the bribery problem where the voters have
boolean indicators whether they can be bribed or not (instead of prices).
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Abstract

The paper a discusses the interaction properties between preference and choice of
coalitions in a strategic interaction. A language is presented to talk about the conflict
between coalitionally optimal and socially optimal choices. Norms are seen as social
constructions that enable to enforce socially desirable outcomes.

aThis paper has been presented at the Ninth International Workshop on Deontic Logic
in Computer Science (DEON’08) and it is to be found in the conference proceedings (see
[4]).

1 Introduction

One fundamental issue of social choice theory [1] is how to aggregate the preferences of
individual agents in order to form decisions to be taken by society as a whole. However,
once we want to take into account the capabilities of agents, as we do in Multi Agent
Systems, mere social choice functions are not enough to explain how and (especially) why
individual interests are aggregated in the way they are. In this context, norms should be
seen as social constructions that enable us to enforce socially desirable outcomes [5].

In particular there are situations in which individual preferences are not compatible
and coalitions compete to achieve a given social order. A typical case is that of an agent’s
capability to positively or negatively affect the realization of other agents’ preferences. In our
paper we will view the enactment of norms as aimed at the regulation of such interactions.
By enacting a norm we mean the introduction of a normative constraint on individual and
collective choices in a Multi Agent System.

We are specifically concerned with cases where the collective perspective is at odds with
the individual perspective. That is, cases where we think that letting everybody pick their
own best action regardless of others’ interest gives a non-optimal result. The main question
we are dealing with is then: how do we determine which norms, if any, are to be imposed?

To answer this question, the paper presents a language to talk about the conflict between
coalitionally optimal and socially optimal choices, and it expresses deontic notions referring
to such circumstances.

1.0.1 Motivating Example

Let us consider a situation (Table 1) in which two players have the possibility of passing
believed (truth) or disbelieved information (lie). If both players do not lie, they share their
information, being both better off. If they both lie, they do not receive any advantage. But
the worst case for a player is the one in which he does not lie and the opponent does.

In this situation, a legislator that wants to achieve the socially optimal state (players do
not lie), should declare that lying is forbidden, thereby labeling the combinations of moves
(lie, lie), (lie, truth) and (truth, lie) as violations.

The lying matrix is nothing but a Prisoner Dilemma [11], that is an interactive situation
in which the advantages of cooperation are overruled by the incentive for individual players
to defect. In Prisoner Dilemmas, individually rational players have no incentive to cooperate,
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because defecting is better for a player considering all possible answers of the opponent. Note
that cooperation is in the interest of the players themselves, since they would be better off
than if they had pursued the unique Nash Equilibrium [11], ending up in the (lie, lie) state.
However it is by no means clear that players should not pursue their own interest. In fact
once we reach a state in which one player lies and the other does not lie, we cannot move
to any other state without one of the two players being worse off.

1.0.2 A deontic logic for efficient interactions

Once we view a deontic language as regulating a Multi Agent System, we can say that a
set of commands promote a certain interaction, prohibiting certain others. Following this
line of reasoning it is possible, given a notion of optimality or efficiency, to provide a set of
deontic formulas that agree with such notion, as we have done with Pareto Optimality.

What we do then is to provide a deontic language for all possible interactions, based on
an underlying notion of optimality. This is quite a difference from the legal codes that we
can find in a certain society, where norms are either explicitly and specifically formulated
and written down in law books, contracts, etc., or are left implicit in the form of promises,
values or mores [5]. The obligations and prohibitions in our system result from one general
norm saying that all actions of sub-groups that do not take into account the interests of the
society as a whole, are forbidden. Then, one way to use our logic is to derive obligations,
permissions and prohibitions from conflicting group preferences, and use these as suggestions
for norm introduction in the society.

We do not claim that the meaning of these operators, as studied in deontic logic, cor-
responds to our semantics, but rather we claim that when people make new norms they
should choose those norms on the basis of the economical order behind them [17].

In order to represent abilities of agents we employ coalition logic [13], and we model an
agent’s preferences as a preorder on the domain of discourse. To model optimal social norms
we introduce a generalization of the economical notion of Strong Pareto Efficiency (see for
instance [11]), described as those sets of outcomes from which the grand coalition (i.e. the
set of all agents taken together) has no interest to deviate. Our generalization consists of the
fact that we do not make the assumption that these outcomes are singletons. In particular
(unless specified) we do not make the assumption of playability described in [13], according
to which the set of all agents can bring about any realizable outcome of the system. We
consider then the elements of the complement of the efficient choices, i.e. all those that are
not optimal, and we build the notion of obligation, prohibition and permission on top of
them.

We postpone to future work all considerations about the effectivity of the norm, that
is, all considerations about how, to what extent and in what way, the norm influences the
behaviour of the agents involved.

As system designers, our aim is then to construct efficient social procedures that can
guarantee a socially desirable property to be reached. We think that normative system
design is at last a proper part of the Social Software enterprise [12].

XXXXXXXXXXRow
Column

Truth Lie

Truth (3, 3) (0, 4)
Lie (4, 0) (1, 1)

Table 1: Lying or not lying
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The paper is structured as follows: In the first section we introduce the notions of
effectivity and preference, discuss its relevant properties with respect to the problem of
finding optimal social norms, and introduce the notion of domination, Pareto Efficiency and
violation. In the second part we describe the syntax, the structures and the interpretation
of our language. In the third part we discuss the deontic and collective ability modalities
and their properties, and compare them with classical deontic and agency logics; moreover
we discuss the introduction of further constraints in the models, in particular playability of
the effectivity function. We show some examples to give the flavour of the situations we are
able to capture with our formalism. A discussion of future work will follow and a summary
of the present achievements will conclude the paper.

2 Effectivity and preference

We start by defining some concepts underlying the deontic logic of this paper. They concern
the power and the preferences of collectives. We begin with the first of these, by introducing
the concept of a dynamic effectivity function, adopted from [13].

2.1 Effectivity

Definition 1 (Dynamic Effectivity Function)
Given a finite set of agents Agt and a set of states W , a dynamic effectivity function is

a function E : W → (2Agt → 22W

).

Any subset of Agt will henceforth be called a coalition. For elements of W we use variables
u, v, w, . . .; for subsets of W we use variables X,Y, Z, . . .; and for sets of subsets of W (i.e.,
elements of 22W

) we use variables X ,Y,Z, . . .. The elements of W are called ‘states’ or
‘worlds’; the subsets of Agt are called ‘coalitions’; the sets of states X ∈ E(w)(C) are called
the ‘choices’ of coalition C in state w. The set E(w)(C) is called the ‘choice set’ of C in w.
The complement of a set X or of a choice set X are calculated from the obvious domains.

A dynamic effectivity function assigns, in each world, to every coalition a set of sets of
states. Intuitively, if X ∈ E(w)(C) the coalition is said to be able to force or determine that
the next state after w will be some member of the set X. If the coalition has this power, it
can thus prevent that any state not in X will be the next state, but it might not be able to
determine which state in X will be the next state. Possibly, some other coalition will have
the power to refine the choice of C.

Many properties can be attributed to dynamic effectivity functions. An extensive dis-
cussion of them can be found in [13]. For what follows we do not need all the properties
that may be considered reasonable for effectivity. However the following properties seem to
be minimally required:

1. coalition monotonicity: for all X,w,C,D, if X ∈ E(w)(C) and C ⊆ D, then X ∈
E(w)(D);

2. regularity: for all X,w,C, if X ∈ E(w)(C), then X 6∈ E(w)(C);

3. outcome monotonicity: for all X,Y,w,C, if X ∈ E(w)(C) and X ⊆ Y , then Y ∈
E(w)(C);

4. inability of the empty coalition: for all w, E(w)(∅) = {W}

If a dynamic effectivity function has these properties, it will be called coherent.
The first property says that the ability of a coalition is preserved by enlarging the

coalition. In this sense we do not allow new members to interfere with the preexistent
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capacities of a group of agents. The second property says that if a coalition is able to force
the outcome of an interaction to belong to a particular set, then no possible combinations
of moves by the other agents can prevent this to happen. We think that regularity is a key
property to understand the meaning of ability. If an agent is properly able to do something
this means that others have no means to prevent it. The third property says that if a
coalition is able to force the outcome of the interaction to belong to a particular set, then
that coalition is also able to force the outcome to belong to all his supersets. Outcome
monotonicity is a property of all effectivity functions in coalition logic, which is therefore a
monotonic modal logic [13]. The last condition is the “Inability of the Empty Coalition”.
As notice also by [2] such properties forces the coalition modality for the empty coalition to
be universal: intuitively the empty coalition cannot bring about non-trivial consequences.

Proposition 1 If the effectivity function is coherent then all coalitional effectivity functions
are nonempty and do not contain the empty set.

The last property ensures that the choice of the empty coalition is always the largest pos-
sible one. This property imposes that for all C,w,E(w)(C) 6= ∅ (by coalition monotonicity)
and that ∅ 6∈ E(w)(C) (by regularity).

2.2 Preference

Once we have defined the notion of effectivity, we also need to make reference to the prefer-
ences of coalitions. The notion of preference in strategic interaction can be understood and
modeled in many ways [16]. However we believe that in strategic reasoning players need to
have preferences over the possible outcomes of the game. Thus those are the preferences
that constitute our main concern. Nevertheless we know from the properties of effectivity as
described above, that coalitions may have different abilities at different states, in particular
the grand coalition of agents may gain or lose power while changing a state: the effectivity
is actually a dynamic effectivity.

The claim is thus that agents do have a fixed ordering over the domain of discourse (what
we call preferences), and that they generate their strategic preference considering where the
game may end (called domination). We are going to define both, discussing their properties.

We start from a preference relation for individuals over states working our way up to
preferences for coalitions over sets. To do so, we start from an order on singletons, and we
provide some properties to lift the relation to sets.

Definition 2 (Individual preferences for states) A preference ordering (≥i)i∈Agt con-
sists of a partial order (reflexive, transitive, antisymmentric) ≥i⊆ W ×W for all agents
i ∈ Agt, where v ≥i w has the intuitive reading that v is ‘at least as nice’ as w for agent i.
The corresponding strict order is defined as usual: v >i w if, and only if, v ≥i w and not
w ≥i v.

Definition 3 (Individual preferences for sets of states) Given a preference ordering
(≥i)i∈Agt, we lift it to an ordering on nonempty sets of states by means of the following
principles.

1. {v} ≥i {w} iff v ≥i w; (Singletons)

2. (X ∪ Y ) ≥i Z iff X ≥i Z and Y ≥i Z; (Left weakening)

3. X ≥i (Y ∪ Z) iff X ≥i Y and X ≥i Z. (Right weakening)

148



We do not give a comprehensive specification of the logical properties of preference
relations for coalitions, because this would not be relevant for the remainder of this paper.
Different types of interaction may warrant the assumption of different properties for such a
relation. Nevertheless, these are some properties that seem minimally required for calling
some relation a preference relation. The first ensures that preferences are copied to possible
choices. The properties of left and right weakening ensure a lifting from singletons to sets.

The lifting enables us to deal with preference under uncertainty or indeterminacy. The
idea is that if an agent were ever confronted with two choices X,Y he would choose X over
Y provided X >i Y

1.
Preferences do not consider any realizability condition, they are simply basic aspirations

of individual agents, on which to construct a more realistic order on the possible outcomes
of the game, which are by definition dependent on what all the agents can do together.

Out of agents’ preferences, we can already define a classical notion of Pareto Efficiency.

Definition 4 (Strong Pareto efficiency) Given a choice set X , a choice X ∈ X is
Strongly Pareto efficient for coalition C if, and only if, for no Y ∈ X , Y ≥i X for all
i ∈ C, and Y >i X for some. When C = Agt we speak of Strong Pareto Optimality.

We will use the characterization of Pareto Efficiency and Optimality to refer to the
notions we have just defined, even though the classical definitions (compare with [11]) are
weaker.

The last definition is clearer when we consider the case X = E(w)(C), but it is formulated
in a more abstract way in order to smoothen the next two definitions.

Proposition 2 Given the preference relation over choices ≥i, and taking A,B in a choice
set X of a coaltion C, with PE(A) to indicate that the choice A is Strongly Pareto Efficient
in X , Strong Pareto Efficiency is monotonic, that is A ⊆ B implies that PE(B) whenever
PE(A).

Proof Suppose A ⊆ B and PE(A) and suppose it is not the case that PE(B). This means
that there is a choice X in the choice set X of C such that X >i B for some i ∈ C. But
being A ⊆ B this would imply that X >i A, contradicting the assumption that PE(A).

Pareto Efficiency is usually defined disregarding the strategies of the players. Neverthe-
less, once we claim that the outcome of an interaction need not be a singleton, we need to
adapt our evaluation of efficiency to such an assumption.

We now construct a preference relation on choices. To do so we first need to look at the
interaction that agents’ choices have with one another.

Definition 5 (Subchoice) If E is an effectivity function, and X ∈ E(w)(C), then the
X-subchoice set for C in w is given by EX(w)(C) = {X ∩ Y | Y ∈ E(w)(C)}.

As an example, let us take Table 1. Consider expressions of the form (LieC) to be
intended as the set of worlds that make the proposition LieC true, with the obvious reading.
In our example we have for instance the following cases:

• E(LieC)(w)(R) = {(LieC ∧ LieR), (LieC ∧ TruthR)}

• E(TruthC)(w)(R) = {(TruthC ∧ LieR), (TruthC ∧ TruthR)}
1Preference lifting in interaction is also addessed by Gardenfors in [6]. A modal account of it is given in

Fenrong Liu’s PhD thesis [9].
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Subchoices allow us to reason on a restriction of the game and to consider possible moves
looking from a coalitional point of view, i.e. what is best for a coalition to do provided the
others have already moved.

When agents interact therefore they make choices on the grounds of their own prefer-
ences. Nevertheless the moves at their disposal need not be all those that the grand coalition
has. We can reasonably assume that preferences are filtered through a given coalitional ef-
fectivity function. That is we are going to consider what agents prefer among the things
they can do.

Definition 6 (Domination) Given an effectivity function E, X is undominated for C in
w (abbr. XBC,w) if, and only if, (i) X ∈ E(w)(C) and (ii) for all Y ∈ E(w)(C), (X ∩ Y )
is Pareto efficient in EY (w)(C) for C.

The idea behind the notion of domination is that if X ′ and X ′′ are both members of
E(w)(C) then, in principle, C will not choose X ′′, if X ′ dominates X ′′. This property
ensures that a preference takes into account the possible moves of the other players. This
resembles the notion of Individual Rationality in Nash solutions [11], according to which an
action is chosen reasoning on the possible moves of the others.

Continuing our example, we have the following cases:

• (LieR)BR,w for any w.

• (LieC)BC,w for any w.

• not (LieC , LieR)BAgt,w

The preceding three definitions capture the idea that ‘inwardly’ coalitions reason Pareto-
like, and ‘outwardly’ coalitions reason strategically, in terms of strict domination. A coalition
will choose its best option given all possible moves of the opponents. Looking at the defini-
tion of Optimality we gave, we can see that undomination collapses to individual rationality
when we only consider individual agents, and to Pareto efficiency when we consider the
grand coalition of agents.

Proposition 3

XBAgt,w iff X is a standard Pareto Optimal Choice in w.

XBi,w iff X is a standard Dominating Choice in w for i.

Proof For the first, notice that since E(w)(∅) = {W} (i.e., the empty coalition has no
powers), then X is undominated for Agt in w iff it is Pareto efficient in E(w)(Agt) for Agt
(i.e., it is Pareto optimal in w). The second is due to the restriction of undomination to
singleton agents.

Nevertheless, in our framework, domination is a relation between the choice sets of
a given coalition. This approach looks different from the standard one (see for instance
Osborne and Rubinstein [11]) that considers instead domination as a property of states.

Proposition 4 Game-theoretical domination is expressible in our framework.

It is possible to rewrite a domination of a state x over a state y as the domination of the
choice {x} over {y}, making it a particular case of our definition.

Proposition 5 Undomination is monotonic, that is for X in E(C)(w) for some C,w, if
X ⊆ Y and XBC,w then YBC,w.

which follows from monotonicity of Pareto Optimality for choices and outcome mono-
tonicity.
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2.2.1 Violation

The fundamental idea of this work is that an efficient way to impose normative constraints in
a Multi Agent System is to look at the optimality of the strategic interaction of such system.
In particular the presence of possible outcomes in which agents could not unanimously
improve (Pareto Efficient) can be a useful guide line for designing a new set of norms to be
imposed.

Following this line we define a set of violation sets as the set of those choices that are
not a Pareto Efficient interaction.

Definition 7 (Violation) If E is an effectivity function and C ⊆ C ′, then the choice
X ∈ E(w)(C) is a violation by C towards C ′ in w (X ∈ V IOLC,C′,w) iff there is a Y ∈
E(w)(C ′ \ C), s.t. (X ∩ Y ) is not undominated for C ′ in w.

In words, X is a violation if it is not safe for the other agents, in the sense that not all
the moves at their disposal yield an efficient outcome.

We indicate with V IOLC,w the set violations by C at w towards Agt2.

Proposition 6 If C=C ′ then a violation is a dominated choice; If C=C ′=Agt a violation
is a Pareto inefficient choice.

If we consider the Prisoner Dilemma of Table 1 the following holds:

• (LieR) = V IOLR,w for any w, since (LieR ∧ LieC) is not Agt- undominated;

• (LieC ∧ LieR) = V IOLAgt,w for any w, since not Pareto Efficient.

We can observe here that any choice made by a single agent is a violation. The reason
why it is so has to be found in the form of the game, that requires the grand coalition to
form for an efficient outcome to be forced.

3 Logic

We now introduce the syntax of our logic, an extension of the language of coalition logic
[13] with modalities for permission, prohibition and obligation, and a modality for rational
choice.

3.1 Language

Let Agt be a finite set of agents and Prop a countable set of atomic formulas. The syntax
of our logic is defined as follows:

φ ::= p|¬φ|φ ∨ φ|[C]φ|P (C, φ)|F (C, φ)|O(C, φ)|[rationalC ]φ

where p ranges over Prop and C ranges over the subsets of Agt. The other boolean connec-
tives are defined as usual. The informal reading of the modalities is: “Coalition C can choose
φ”, “It is permitted (/forbidden/obligated) for coalition C to choose φ”, “It is rational for
coalition C to choose φ”.

2One interesting question is whether given any dynamic effectivity function and preference relation (with
the above defined properties) we can always find a coalitionally dominated action (and hence a Pareto
Efficient interaction). The acquainted reader will have noticed the resemblance of this problem with that of
nonemptiness of the Core [11]. We leave though to further work the analysis of this relation. In case there
is none, we may consider a satisfactory notion of optimal choice - as done for instance by Horty [7] - that
looks at the relation between the choices in the choice sets of each coalition.
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3.2 Structures

Definition 8 (Models) A model for our logic is a quadruple

(W,E, {≥i}i⊆Agt, V )

where:

• W is a nonempty set of states;

• E : W −→ (2Agt −→ 22W

) is a coherent effectivity function;

• ≥i⊆W ×W for each i ∈ Agt, is the preference relation;

• V : W −→ 2Prop is the valuation function.

3.3 Semantics

The satisfaction relation of the formulas with respect to a pointed model M,w is defined as
follows:

M,w |= p iff p ∈ V (w)
M,w |= ¬φ iff M,w 6|= φ

M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ
M,w |= [C]φ iff [[φ]]M ∈ E(w)(C)

M,w |= [rationalC ]φ iff ∀X(XBC,w ⇒ X ⊆ [[φ]]M )
M,w |= P (C, φ) iff ∃X ∈ E(w)(C) s.t. X ∈ V IOLC,w and X ⊆ [[φ]]M

M,w |= F (C, φ) iff ∀X ∈ E(w)(C)(X ⊆ [[φ]]M ⇒ X ∈ V IOLC,w)
M,w |= O(C, φ) iff ∀X ∈ E(w)(C)(X ∈ V IOLC,w ⇒ X ⊆ [[φ]]M )

In this definition, [[φ]]M =def {w ∈W | M,w |= φ}.
The modality for coalitional ability is standard from Coalition Logic [13]. The modality

for rational action requires for a proposition φ to be rational (wrt a coalition C in a given
state w) that all undominated choices (for C in w) be in the extension of φ. This means
that there is no safe choice for a coalition that does not make sure that φ will hold. Notice
that it is still possible for a coalition to pursue a rational choice that may be socially not
rational.

The deontic modalities are defined in terms of the coalitional abilities and preferences.
A choice is permitted whenever it is safe, forbidden when it may be unsafe (i.e. when it
contains an inefficient choice), and obligated when it is the only choice that is safe.

4 Discussion

The definition of strong permission does not allow for a permitted choice of an agent to be
refined by the other agents towards a violation. In fact we define permission for φ as “a
φ-choice guarantees safety from violation”. A more standard diamond modality would say “
doing φ is compatible with no violation”. A “safety” definition of permission has also been
studied in [18], [14], [10], [3].
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4.1 Properties

It is now interesting to look at what we can say and what we cannot say within our system.

Some Validities
1 P (C, φ)→ ¬O(C,¬φ)
2 F (C, φ)↔ ¬P (C, φ)
3 P (C, φ) ∨ P (C,ψ)→ P (C, φ ∨ ψ)
4 O(C, φ)→ ([C]φ→ P (C, φ))
5 [rationalC ]φ ∧ [rationalAgt]¬φ→ F (C, φ)
6 O(C, φ) ∨O(C,ψ)→ O(C, φ ∨ ψ)
7 O(C,>)
8 F (C, φ) ∧ F (C,ψ)→ F (C, φ ∧ ψ)
9 [rationalC ]φ ∧ (φ→ ψ)→ [rationalC ]ψ

Some non-Validities
10 ¬O(C,¬φ)→ P (C, φ)
11 P (C, φ ∨ ψ)→ P (C, φ) ∨ P (C,ψ)
12 O(C, φ)↔ ¬O(C,¬φ)
13 [rationalC ]φ↔ [rationalAgt]φ
14 O(C, φ)→ P (C, φ)
15 O(C, φ ∨ ψ)→ O(C, φ) ∨O(C,ψ)

The first validity says that the presence of permission imposes the absence of contrasting
obligations, but the converse is not necessarily true. The second that prohibition and
permission are interdefinable. The third says that the permission of φ or the permission
of ψ implies the permission of φ or ψ. The fourth that the obligation to choose φ for an
agent plus the ability to do something entails the permission to carry out φ. The validity
number 5 says that the presence of a safe state that is rational for the grand coalition of
agents is a norm for every coalition, even in case of conflicting preferences, i.e. in case of
conflict the interest of the grand coalition prevails. The sixth one that obligation for φ or
obligation for ψ implies the obligation for φ or ψ. Validity 7 says that there are no empty
normative systems. The next validity says that prohibition is conjunctive. The last validity
says that rational moves are monotonic. This has interesting implications on the choices of
the agents, since refraining, i.e. choosing the biggest possible outcome, is always rational.

It is also useful to look at the non-validities: Number 10 says that if an agent is not
obliged to choose something then it is permitted to do the contrary. But of course an
agent may not be able to do anything, or may be not able to refine the choices “until the
optimal”. The next non-validity says that a permission of choice is not equivalent to a choice
of permission. Number 12 says that a coalition can be obliged to do contradictory choices.
This situation happens when a coalition is powerless or optimality is not possible. The next
non validity says that the rational action for a certain coalition does not necessarily coincide
with that of the grand coalition. Number 14, that ought does not imply can. The last does
not allow to detach specific obligation from obligatory choices.
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4.1.1 Further Assumptions

Playability Our notion of agency is more general than that of game theory. In particular
we assume that even the grand coalition of agents may not determine a precise outcome of
the interaction.

This is due to the abandonment of the property of playability of the effectivity function,
that requires, together with regularity, outcome monotonicity, coalition monotonicity that:

• X 6∈ E(C) implies X ∈ E(C), that is any choice excluded to a coalition is possible for
the rest of the agents (maximality);

• For all X1, X2, C1, C2 such that C1 ∩ C2 = ∅, X1 ∈ E(C1) and X2 ∈ E(C2) imply
that X1 ∩X2 ∈ E(C1 ∪ C2) (superadditivity)

Playability is a very strong property but it is needed to talk about games. As proved in
[13] [Theorem 2.27], strategic games correspond exactly to playable effectivity functions 3.
With playable effectivity functions, the grand coalition can determine the exact outcome of
the game and the dynamic effectivity function for the grand coalition of agents is the same
in any state.

M,w |= [Agt]φ⇔M |= [Agt]φ

Moreover the fact that preferences do not change, induces the following stronger invari-
ance:

M,w |= [rationalAgt]φ⇔M |= [rationalAgt]φ

So not only is every outcome reachable, but any situation shares the same social opti-
mality. Notice that this is independent of the solution concept we may consider.

Finite Domain Another interesting assumption can be made about the finitness of the
domain of discourse. With finite W , for C being the class of our models, we have that

Proposition 7 |=C [rationalAgt]φ
implies that there exists an efficient outcome in the class of coalition models C

Another property is the following:

|=C [rationalAgt]¬φ ∧ [C]φ→ F (C, φ)

(REG)
which says that any coalition has to refrain from a choice that is against an optimal state

independently of its own preferences. A corresponding propery for obligation is instead the
following:

|=C [rationalAgt]¬φ ∧ [C]¬φ→ O(C,¬φ)

(REG’)

3The proof involves the definition of strategic game as a tuple 〈N, {Σi|i ∈ N}, o, S〉 where N is a set
of players, each i being endowed with a set of strategies σi from Σi, an outcome function that returns the
result of playing individual strategies at each of the states in S; the definition of α effectivity function for
a nonempty strategic game G, EαG : ℘(N) → ℘℘(S) defined as follows: X ∈ EαG∃σC∀σCo(σC ;σC) ∈ X.
The above mentioned theorem establishes that EαG = E in case E is playable and G is a nonempty strategic
game.
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Coalitionally optimal norms The logic can be extended to treat norms that do not lead
to a socially optimal outcome, but a coalitionally optimal outcome. That is it is possible to
construct a deontic logic that pursues the interests of a particular coalition, independently
of the other players’ welfare. This extension is related to the work of Kooi and Tamminga
on conflicting moral codes [8].

We limit the description to the obligation operator, the others are straightforward.
M,w |= OC′

(C, φ) iff ∀X(X BC,w and X ∈ V IOLC,C′,w ⇒ X ⊆ [[φ]]M )
where V IOLC,C′,w is a C violation towards C ′, with C ⊆ C ′.
For this operator it holds that

|=C OC(C, φ)↔ [rationalC ]φ

that is playing for oneself boils down to rational action, and

|=C OAgt(C, φ)↔ O(C, φ)

that is, with the new operator we can express our original obligation operator.

4.2 Example: Norms of Cooperation

To consider forbidden all non optimal choices may seem a very strong requirement. Never-
theless, take the example in Table 1.

It is interesting to notice how V IOL is not equivalent to the situations that each player
is forbidden to choose. This is due to the fact that each player can only refine the choices
of the other players, but cannot determine alone the outcome of the game: a permitted
choice cannot be refined by permitted choices towards an inefficient outcome. Moreover
M |= [R]¬(TR) ∧ [rationalR,C ](TR), that by (REG) allows to conclude F (R,¬(TR)).

No agent is in fact obligated not to lie, but only permitted. Why is it so? Because no
agent can alone reach a singleton state that is only good. But of course as a coalition {R,C}
has the obligation to end up in the optimal state.

Prisoner Dilemma, but think also of Coordination Games, in which individual players
cannot reach a socially optimal outcome, have rules that say something about how coalitions
should choose. This indirectly says something about the coalitions that are necessary to
achieve an optimal outcome, i.e. about the coalitions that should form.

4.3 Future Work

The work here described allows for several developments. Among the most interesting ones
is the study of the relation between imposed outcomes and steady states that describe where
the game will actually end up (i.e. Nash Solution, the Core etc.). Conversely another feature
that is worth studying is those structures in which Pareto Efficiency is not always present.
Agents will reckon some actions as optimal even though there is no social equilibrium that
can ever be reached. One more feature concerns the possibility of an inconsistent normative
system. Further work could be done looking at the factual obedience of the norm, and how
a norm affects preferences of agents (see for instance the work in [15]).

5 Conclusion

In this paper we proposed a deontic logic for optimal social norms. We described the
concept of social optimality, explicitly linking it with the economical concept of Pareto
Efficiency. Moreover we generalized the notion of Pareto Efficiency to capture those strategic
interactions in which even the grand coalition of agents is not able to achieve every outcome.
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Technically we did not assume playability of the coalitional effectivity functions. It is an
important question in itself to understand the class of interactions to which such effectivity
function corresponds. On top of the notion of Optimality we constructed a deontic language
to talk about a normative system resulting from the imposition of such norms. We analyzed
the properties of the language and discussed in details various examples from game theory
and social science.
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Coalition Structures in Weighted Voting

Games

Georgios Chalkiadakis and Edith Elkind and Nicholas R. Jennings

Abstract

Weighted voting games are a popular model of collaboration in multiagent systems.
In such games, each agent has a weight (intuitively corresponding to resources he can
contribute), and a coalition of agents wins if its total weight meets or exceeds a given
threshold. Even though coalitional stability in such games is important, existing
research has nonetheless only considered the stability of the grand coalition. In this
paper, we introduce a model for weighted voting games with coalition structures.
This is a natural extension in the context of multiagent systems, as several groups of
agents may be simultaneously at work, each serving a different task. We then proceed
to study stability in this context. First, we define the CS-core, a notion of the core
for such settings, discuss its non-emptiness, and relate it to the traditional notion of
the core in weighted voting games. We then investigate its computational properties.
We show that, in contrast with the traditional setting, it is computationally hard to
decide whether a game has a non-empty CS-core, or whether a given outcome is in
the CS-core. However, we then provide an efficient algorithm that verifies whether an
outcome is in the CS-core if all weights are small (polynomially bounded). Finally,
we also suggest heuristic algorithms for checking the non-emptiness of the CS-core.

1 Introduction

Coalitional games [8] provide a rich framework for the study of cooperation both in eco-
nomics and politics, and have been successfully used to model collaboration in multiagent
systems [9, 3]. In such games, teams (or coalitions) of agents come together to achieve a
common goal, and derive individual benefits from this activity.

A particularly simple, yet expressive, class of coalitional games is that of weighted voting
games (WVGs) [11]. In a weighted voting game each player (or agent) has a weight, and a
coalition wins if its members’ total weight meets or exceeds a certain threshold, and loses
otherwise. Weighted voting has straightforward applications in a plethora of societal and
computer science settings ranging from real-life elections to computer operating systems,
as well as a variety of settings involving multiagent coordination. In particular, an agent’s
weight can be thought of as the amount of resources available to this agent, and the threshold
indicates the amount of resources necessary to achieve a task. A winning coalition then
corresponds to a team of agents that can successfully complete this task.

Originally, research in weighted voting games was motivated by a desire to model
decision-making in governmental bodies. In such settings, the threshold is usually at least
50% of the total weight, and the issues of interest relate to the distribution of payoffs within
the grand coalition, i.e., the coalition of all agents. Perhaps for this reason, to date, all
research on weighted voting games tacitly assumes that the grand coalition will form. How-
ever, in multiagent settings such as those described above, the threshold can be significantly
smaller than 50% of the total weight, and several winning coalitions may be able to form
simultaneously. Moreover, in this situation the formation of the grand coalition may not,
in fact, be a desirable outcome: instead of completing several tasks, forming the grand
coalition concentrates all agent resources on finishing a single task. In contrast, the overall
efficiency will be higher if the agents form a coalition structure (CS), i.e., a collection of
several disjoint coalitions.
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To model such scenarios, in this paper we introduce a model for WVGs with coalition
structures. We then focus on the issue of stability in this setting. A structure is stable
when rational agents are not motivated to depart from it, and thus they can concentrate
on performing their task, rather than looking for ways to improve their payoffs. Therefore,
stability provides a useful balance between individual goals and overall performance. To
study it, we extend the notion of the core—a classic notion of stability for coalitional games—
to our setting, by defining the CS-core for WVGs. We then provide a detailed study of this
concept, comparing it with the classic core and analyzing its computational properties.

Our main contributions are as follows: (1) we define a new model that allows weighted
voting games to admit coalition structures (Sec. 3); (2) we define the CS-core for such games,
relate it to the classic core, and describe sufficient conditions for its non-emptiness (Sec. 4);
(3) we show that several natural CS-core-related problems are intractable—namely, it is
NP-hard to decide the non-emptiness of the CS-core and coNP-complete to check whether
a given outcome is in the CS-core (Sec. 5). Interestingly, this contrasts with what holds
in weighted voting games without coalition structures, where both of these problems are
polynomial-time solvable; (4) we provide a polynomial-time algorithm to check if a given
outcome is in the CS-core in the important special case of polynomially-bounded weights.
We then show how to use this algorithm to efficiently check if a given coalition structure
admits a stable payoff distribution, and suggest a heuristic algorithm to find an allocation
in the core (Sec. 6). Before presenting our results, we provide some background and a brief
review of related work.

2 Background and Related Work

In this section, we provide an overview of the basic concepts in coalitional game theory. Let
I, |I| = n, be a set of players. A subset C ⊆ I is called a coalition. A coalitional game with
transferable utility is defined by its characteristic function v : 2I 7→ R that specifies the value
v(C) of each coalition C [12]. Intuitively, v(C) represents the maximal payoff the members
of C can jointly receive by cooperating, and it is assumed that the agents can distribute
this payoff between themselves in any way.

While the characteristic function describes the payoffs available to coalitions, it does not
prescribe a way of distributing these payoffs. We say that an allocation is a vector of payoffs
x = (x1, . . . , xn) assigning some payoff to each i ∈ I. We write x(S) to denote

∑
i∈S xi.

An allocation is feasible for the grand coalition if x(I) ≤ v(I). An imputation is a feasible
allocation that is also efficient, i.e., x(I) = v(I).

A weighted voting game (WVG) is a coalitional game G given by a set of agents I =
{1, . . . , n}, their weights w = {w1, . . . , wn}, wi ∈ R+, and a threshold T ∈ R; we write
G = (I;w;T ). We use w(S) to denote

∑
i∈S wi. For a coalition S ⊆ I, its value v(S) is 1 if

w(S) ≥ T ; otherwise, v(S) = 0. Without loss of generality, the value of the grand coalition
I is 1 (i.e., w(I) ≥ T ).

One of the best-known solution concepts describing coalitional stability is the core[8].

Definition 1. An allocation x is in the core of G iff x(I) = v(I) and for any S ⊆ I we
have x(S) ≥ v(S).

If an allocation x is in the core, then no subgroup of agents can guarantee all of its
members a higher payoff than the one they receive in the grand coalition under x. This
definition of the core can therefore be used to characterize the stability of the grand coalition.

The setting where several coalitions can form at the same time can be modeled using
coalition structures. Formally, a coalition structure (CS ) is an exhaustive partition of the
set of agents. CS(G) denotes the set of all coalition structures for G. Given a structure
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CS = {C1, . . . , Ck}, an allocation x is feasible for CS if x(Ci) ≤ v(Ci) for i = 1, . . . , k and
efficient for CS if this holds with equality.

Games with coalition structures were introduced by Aumann and Dreze [2], and are
obviously of interest from an AI/multiagent systems point of view, as illustrated in Section 1.
Indeed, in this context dealing with coalition structures other than the grand coalition is of
uttermost importance: simply put, there is a plethora of realistic application scenarios where
the emergence of the grand coalition is either not guaranteed, might be perceivably harmful,
or is plainly impossible. In particular, in the context of WVGs, by forming several disjoint
winning coalitions, the agents generate more payoff than in the grand coalition. Additional
motivation from an economics perspective is given in [2], which contains a thorough and
insightful discussion on why coalition structures arise.

Now, there exists a handful of approaches in the multiagent literature that do take
coalition structures explicitly into account. Sandholm and Lesser [9] discuss the stability of
coalition structures when examining the problem of allocating computational resources to
coalitions. In particular, they introduce a notion of bounded rational core that explicitly
takes into account coalition structures. Apt and Radzik [1] also do not restrain themselves
to problems where the outcome is the grand coalition only. Instead, they introduce various
stability notions for abstract games whose outcomes can be coalition structures, and discuss
simple transformations (essentially split and merge rules) by which stable partitions of the
set of players may emerge. Dieckmann and Schwalbe [5] also propose a version of the
core with coalition structures when dealing with coalition formation in a dynamic context.
Finally, Chalkiadakis and Boutilier also define a core with coalition structures when tackling
coalition formation under uncertainty [4]. None of these papers studies WVGs, however.

A thorough discussion of weighted voting games can be found in [11]. The stability-
related solution concepts for WVGs (without coalition structures) have recently been studied
by Elkind et al. [6], who also investigate them from computational perspective. However,
there is no existing work in the literature studying WVGs with coalition structure—a class
of games that we now proceed to define.

3 Coalition structures in WVGs

We now extend the traditional model for WVGs to allow for coalition structures. First,
an outcome of a game is now a pair of the form (coalition structure, allocation) rather
than just an allocation. Furtheremore, in the traditional model, any allocation of payoffs
among the participating agents is required to be an exhaustive partition of the value of the
grand coalition. In other words, it is always an imputation, i.e., an allocation of payoffs
that is feasible and efficient for the grand coalition I. As we now allow WVGs to admit
coalition structures, we replace the aforementioned requirement with similar requirements
with respect to a coalition structure:

First, we no longer require an allocation to be an imputation in the classic sense. Instead,
we demand that, for a given outcome (CS ,x), the allocation x of payoffs for I is feasible
for CS . In this way, CS may contain zero or more winning coalitions. Furthermore, we
define an imputation for a coalition structure CS as a vector p of non-negative numbers
(p1, . . . , pn) (one for each agent in I), such that for every C ∈ CS it holds p(C) = v(C) ≤ 1;
we write p ∈ I(CS ). That is, an imputation is now a feasible and efficient allocation of the
payoff of any coalition C ∈ CS .
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4 Core and CS-core of weighted voting games

In this section we define the core of WVG games with coalition structures, relate it to the
“classic” core of WVG games without coalition structures, and obtain some core character-
ization results for a few interesting classes of WVG games.

The definition of the core (Def. 1) takes the following simple form in the traditional
WVGs setting (see, e.g., [6]):

Definition 2. The core of a WVG game G = (I;w;T ) is the set of imputations p such
that, ∀S ⊆ I, w(S) ≥ T ⇒ p(S) ≥ 1.

Intuitively, an imputation p is in the core whenever the payoffs defined by p are such
that any winning coalition already receives collective payoff of 1 (and therefore no coalition
can improve its payoff by breaking away from the grand coalition).

This notion of the core cannot be directly used for coalition structures: indeed, it de-
mands that an allocation is an imputation in the traditional sense, and therefore no im-
putation for a coalition structure with more than one winning coalition can ever be in the
core. We will now extend this definition to the setting with coalition structures. Namely,
we define the core of weighted voting games with coalition structures, or CS-core, as follows:

Definition 3. The CS-core of a WVG game G = (I;w;T ) with coalition structures is the
set of outcomes (CS ,p) such that ∀S ⊆ I, w(S) ≥ T ⇒ p(S) ≥ 1 and ∀C ∈ CS it holds
p(C) = v(C).

Intuitively, given an outcome that is in the CS-core, no coalition has an incentive to
break away from the coalition structure.

Now, it is well-known (see, e.g., [6]) that in weighted voting games the core is non-empty
if and only if there exists a veto player, i.e., a player that belongs to all winning coalitions,
and an imputation is in the core if and only if it distributes the payoff in some way between
the veto players. This directly implies the following result.

Observation 1 (An imputation in the core induces an outcome in the CS-core). Let G =
(I;w;T ). If the core of G is non-empty, then, for any p in the core, the outcome ({I},p)
is in the CS-core of G.

However, it turns out that the CS-core may be non-empty even when the core is empty.

Example 1. Consider a weighted voting game G = (I;w;T ), where I = {1, 2, 3}, w =
(1, 1, 2) and T = 2. It is easy to see that none of the players in G is a veto player, so G
has an empty core. On the other hand, the outcome (CS ,p), where CS = {{1, 2}, {3}},
p = (1/2, 1/2, 1) is in the CS-core of G. Indeed, agent 3 is getting a payoff of 1 under this
outcome, so his payoff cannot improve. Therefore, the only deviation available to the other
two players is to form singleton coalitions, and this is clearly not beneficial.

We now show that if the threshold T is strictly greater than 50% the CS-core and the
core coincide.

Proposition 1 (In absolute majority games, the cores coincide). Let G = (I;w;T ) be a
WVG game with T > w(I)/2. Then there is an outcome (CS ,p) in the CS-core of G if and
only if p is in the core of G. Consequently, G has a non-empty core if and only if it has a
non-empty CS-core.

Proof. Suppose that an outcome (CS ,p) is in the CS-core of G. As T > w(I)/2, CS can
contain at most one winning coalition C, and hence p(I) = 1. Consider any player i ∈ C
such that pi > 0. If pi is not a veto player, we have w(I \{i}) ≥ T , p(I \{i}) < 1, so (CS ,p)
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is not in the CS-core of G, a contradiction. Hence, under p only the veto players get any
payoff, which implies that p is in the core of G. Conversely, if p is in the core of G, it is
easy to see that ({I},p) is in the CS-core of G.

We can also prove the following sufficient condition for non-emptiness of the CS-core.

Theorem 1. Any weighted voting game G = (I;w;T ) that admits a partition of players
into coalitions of weight T has a non-empty CS-core.

Proof. Let CS = {C1, . . . , Ck} be the corresponding partition such that w(Ci) = T for all
i = 1, . . . , k. Define p by setting pj = wj/T for all j = 1, . . . , n. Consider any winning
coalition S. We have w(S) ≥ T , so p(S) = w(S)/T ≥ 1, and hence S does not want to
deviate. As this holds for any S with v(S) = 1, the outcome (CS ,p) is in the CS-core of
G.

However, it is not the case that the CS-core of a weighted voting game is always non-
empty. In particular, this follows from the fact that the CS-core coincides with the core in
games with T > w(I)/2, and such games may have an empty core. We now show that the
CS-core can be empty also if T < w(I)/2:

Example 2. Consider a weighted voting game G = (I;w;T ), where I = {1, 2, 3, 4, 5},
w = (1, 1, 1, 1, 1) and T = 2. We now show that this game has empty CS-core. Indeed,
consider any CS ∈ CS(G) and any p ∈ I(CS ). Clearly, CS can contain at most two
winning coalitions, so p(I) ≤ 2. Now, if there is a coalition C ∈ CS, |C| ≥ 3, such that
pi > 0 for all i ∈ C, any two players i, j ∈ C can deviate by forming a winning coalition and
splitting the surplus p(C \ {i, j}). If all coalitions have size at most 2, then there is a player
i that forms a singleton coalition (and hence pi = 0). There also exists another player j
such that pj < 1 (otherwise p(I) ≥ 4). But then S = {i, j} satisfies w(S) ≥ T , p(S) < 1, so
it is a successful deviation.

5 Non-emptiness of the CS-core: hardness results

In the rest of the paper, we deal with computational questions related to the notion of
the CS-core. This topic is important since in practical applications agents have limited
computational resources, and may not be able to find a stable outcome if this requires
excessive computation. To provide a formal treatment of complexity issues in our setting,
we assume that all weights and the threshold are integers given in binary. As any rational
weights can be scaled up to integers, this can be done without loss of generality.

In the previous section, we explained how to verify whether the core is non-empty or
whether a given outcome is in the core. It is not hard to see that this verification can be
done in polynomial time: e.g., to check the non-emptiness of the core, we simply check
if w(I \ {i}) ≥ T for all i ∈ I. In WVGs with coalition structures, the situation is very
different. Namely, we will show that it is NP-hard to decide whether a given WVG has
a non-empty CS-core. Moreover, even if we are given an imputation, it is coNP-complete
to decide whether it is in the CS-core of a given WVG. We now state these computational
problems more formally.

Name: NonEmptyCsCore.

Instance: Weighted voting game G = (I;w;T ).

Question: Does G have a non-empty CS-core?

Name: InCsCore.
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Instance: Weighted voting game G = (I;w;T ), a coalition structure CS ∈ CS(G) and an
imputation p ∈ I(CS ).

Question: Is (CS ,p) in the CS-core of G?

Both of our reductions rely on the well-known NP-complete Partition problem. An
input to this problem is a pair (A;K), where A is a list of positive integers A = {a1, . . . , an}
such that

∑n
i=1 ai = 2K. It is a “yes”-instance if there is a subset of indices J such that∑

i∈J ai = K and a “no”-instance otherwise [7, p.223].

Theorem 2. The problem NonEmptyCsCore is NP-hard.

Proof. We will describe a polynomial-time procedure that maps a “yes”-instance of Par-
tition to a “yes”-instance of NonEmptyCsCore and a “no”-instance of Partition
to a “no”-instance of NonEmptyCsCore. Suppose that we are given an instance
(a1, . . . , an;K) of Partition. If there is an i such that ai > K, then obviously it is a
“no”-instance of Partition, so we map it to a fixed “no”-instance of NonEmptyCsCore,
e.g., by setting G = ({1, 2, 3, 4, 5}; (1, 1, 1, 1, 1); 2) as in Example 2. Otherwise, we construct
a game G = (I;w;T ) by setting I = {1, . . . , n}, wi = ai for i = 1, . . . , n, T = K. Note that
in this case we have w(I \ {i}) ≥ T for any i, so there are no veto players in G.

Suppose that we have started with a “yes”-instance of Partition, and let J be such
that

∑
i∈J ai = K. Consider the coalition structure CS = {J, I \ J} and an imputation p

given by pi = wi/K for i = 1, . . . , n. Note that w(J) = w(I \J) = K, so p(J) = p(I \J) = 1,
i.e., p is a valid imputation. It is easy to see that (CS ,p) is in the CS-core of G. Indeed,
for any winning coalition S we have w(S) ≥ K, so p(S) ≥ 1, i.e., the members of S would
not want to deviate.

On the other hand, suppose that we have started with a “no”-instance of Partition.
Consider any outcome (CS ,p) in the resulting game. Clearly, CS can contain at most one
winning coalition: if there are two disjoint winning coalitions, each of them has weight K,
i.e., it can be used as a “yes”-certificate for Partition. If CS contains no winning coalitions,
then it is clearly unstable, as w(I) ≥ T , p(I) = 0. Now, suppose that CS contains exactly
one winning coalition S. In this case we have p(S) = p(I) = 1 and pi = 0 for all i 6∈ S. We
have pi > 0 for some i ∈ S, so p(I \ {i}) < 1. Moreover, by construction, w(I \ {i}) ≥ T .
Hence, I \ {i} can deviate, so (CS ,p) is not in the CS-core of G.

Theorem 3. The problem InCsCore is coNP-complete.

Proof. We will show that the complementary problem on checking that a given outcome is
not in the core is NP-complete.

First, it is easy to see that this problem is in NP: we can guess a coalition S such that
w(S) ≥ T , but p(S) < 1; this coalition can successfully deviate from (CS ,p).

To show that this problem is NP-hard, we construct a reduction from Partition as
follows. Given an instance (a1, . . . , an;K) of Partition, we set I = {1, . . . , n, n + 1, n + 2}
and wi = 2ai for i = 1, . . . , n. Define also I ′ = {1, . . . , n}. The weights wn+1 and wn+2

and the quota T are determined as follows. We construct a coalition S by adding agents
1, 2, . . . to it one by one until the weight of S is at least 2K. If the weight of S is exactly
2K, this means that we have started with a “yes”-instance of Partition. In this case, we
set wn+1 = wn+2 = 0, T = 2K, CS = {I}, and pi = wi/T for all i ∈ I. It is easy to see
that the outcome (CS ,p) is not stable: the agents in S can deviate and increase their total
payoff from 1/2 to 1. Hence, in this case we have mapped a “yes”-instance of Partition
to a “no”-instance of InCsCore.

Now, suppose that w(S) > 2K. As all weights are even, we have w(S) = 2Q for some
integer Q > K. Also, we have w(I ′ \ S) = 4K − 2Q. Set T = 2Q, and let wn+1 = wn+2 =
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2Q − 2K. Now we have w(I \ S) = 4K − 2Q + 4Q − 4K = 2Q, i.e., both S and I \ S
are winning coalitions. Set CS = {S, I \ S}. Now, p is defined as follows: for all i ∈ I ′

set pi = wi/T , set pn+1 = wn+1/(T + 1), and set pn+2 = 1 − p(I ′ \ S) − pn+1. We have
p(S) = w(S)/T = 1, p(I \S) = p(I ′ \S)+pn+1 +pn+2 = 1, so p is an imputation. Note also
that we have pn+1 + pn+2 = 1− p(I ′ \S) = 1−w(I ′ \S)/T = (wn+1 + wn+2)/T . Moreover,
we have pn+1 < wn+1/T , p(I ′ \ S) = w(I ′ \ S)/T , and hence pn+2 > wn+2/T .

We now show that if (a1, . . . , an;K) is a “yes”-instance of Partition, then
〈(I;w;T ),CS ,p〉 is a “no”-instance of InCsCore. Indeed, suppose there is a set J such that∑

i∈J ai = K. Consider the coalition J ′ = J∪{n+1}. We have w(J ′) = 2K+2Q−2K, so it
is a winning coalition. On the other hand, p(J ′) = p(J)+pn+1 = w(J)/T +wn+1/(T +1) <
w(J ′)/T = 1. Hence, J ′ can benefit from deviating, i.e., (CS ,p) is not in the core.

On the other hand, suppose that 〈(I;w;T ),CS ,p〉 is a “no”-instance of InCsCore,
i.e., there is a set J ′′ such that w(J ′′) ≥ T , p(J ′′) < 1. Suppose that w(J ′′) > T , i.e.,
w(J ′′) ≥ T + 1. We have pi ≥ wi/(T + 1) for all i ∈ I (indeed, we have pi ≥ wi/T
for i 6= n + 1 and pi = wi/(T + 1) for i = n + 1), so p(J ′′) ≥ w(J ′′)/(T + 1) ≥ 1, a
contradiction. Hence, we have w(J ′′) = T . Moreover, if n + 1 6∈ J ′′, we have p(J ′′) ≥
w(J ′′)/T = 1, a contradiction again. Therefore, n + 1 ∈ J ′′. Finally, if n + 2 ∈ J ′′, we have
p(J ′′) = p(J ′′ ∩ I ′) + pn+1 + pn+2 = w(J ′′ ∩ I ′)/T + (wn+1 + wn+2)/T = w(J ′′)/T = 1,
also a contradiction. We conclude that w(J ′′) = T , n + 1 ∈ J ′′, n + 2 6∈ J ′′, and hence
w(J ′′ ∩ I ′) = 2Q− (2K − 2Q) = 2K, which means that

∑
i∈J′′∩I′ ai = K, i.e., J ′′ ∩ I ′ is a

witness that we have a “yes”-instance of Partition.

6 Algorithms for the CS-core

The hardness results presented in the previous section rely on all weights being given in
binary. However, in practical applications it is often the case that the weights are not too
large, or can be rounded down so that the weights of all agents are drawn from a small range
of values. In such cases, we can assume that the weights are given in unary, or, alternatively,
are at most polynomial in n. It is therefore natural to ask if our problems can be solved
efficiently in such settings. It turns out that for InCsCore this is indeed the case.

Theorem 4. There exists a pseudopolynomial1 algorithm AInCsCore for InCsCore, i.e.,
an algorithm that correctly decides whether a given outcome (CS ,p) is in the CS-core of a
weighted voting game (I;w;T ) and runs in time poly(n, w(I), |p|), where |p| is the number
of bits in the binary representation of p.

Proof. The input to our algorithm is an instance of InCsCore, i.e., a weighted voting
game G = (I;w;T ), a coalition structure CS ∈ CS(G) and an imputation p ∈ I(CS ). The
outcome (CS ,p) is not stable if and only if there exists a set S such that w(S) ≥ T , but
p(S) < 1. This means that our problem is essentially reducible to the classic Knapsack
problem [7], which is known to have a pseudopolynomial time algorithm based on dynamic
programming. In what follows, we present this algorithm for completeness.

Let W = w(I). For j = 1, . . . , n and w = 1, . . . ,W , let P (j, w) be the smallest total
payoff of a coalition with total weight w all of whose members appear in {1, . . . j}: P (j, w) =
min{p(J) | J ⊆ {1, . . . , j}, w(J) = w}. Now, if minw=T,...,W P (n, w) < 1, it means that
there is a winning coalition whose total payoff is less than 1. Obviously, this coalition would
like to deviate from (CS ,p), i.e., in this case (CS ,p) is not in the CS-core. Otherwise, the
payoff to any winning coalition (not necessarily in CS ) is at least 1, so no group of agents
wants to deviate from CS , and thus (CS ,p) is in the CS-core.

1An algorithm whose running time is polynomial if all numbers in the input are given in unary is called
pseudopolynomial.
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It remains to show how to compute P (j, w) for all j = 1, . . . , n, w = 1, . . . ,W . For
j = 1, we have P (1, w) = p1 if w = w1 and P (1, w) = +∞ otherwise. Now, suppose
we have computed P (j, w) for all w = 1, . . . ,W . Then we can compute P (j + 1, w) as
min{P (j, w), pj+1 + P (j, w − wj)}. The running time of this algorithm is polynomial in n,
W and |p|, i.e., in the size of the input.

We now show how to use the algorithm AInCsCore to check whether for a given coalition
structure CS there exists an imputation p such that the outcome (CS ,p) is in the CS-core.
Our algorithm for this problem also runs in pseudopolynomial time.

Theorem 5. There exists a pseudopolynomial algorithm Ap that given a weighted voting
game G = (I;w;T ) and a coalition structure CS ∈ CS(G), correctly decides whether there
exists an imputation p ∈ I(CS ) such that the outcome (CS ,p) is in the CS-core of G and
runs in time poly(n, w(I)).

Proof. Suppose CS = {C1, . . . , Ck}. Consider the following linear feasibility program (LFP)
with variables p1, . . . , pn:

pi ≥ 0 for all i = 1, . . . , n∑
i∈Cj

pi = 1 for all j such that w(Cj) ≥ T

∑
i∈Cj

pi = 0 for all j such that w(Cj) < T

∑
i∈J

pi ≥ 1 for all J ⊆ I such that w(J) ≥ T (1)

The first three groups of equations require that p is an imputation for CS : all payments
are non-negative, the sum of payments to members of each winning coalition in CS is 1,
and the sum of payments to members of each losing coalition in CS is 0. The last group of
equations states that there is no profitable deviation: the payoff to each winning coalition
(not necessarily in CS ) is at least 1. Clearly, we can implement the algorithm Ap by solving
this LFP, as follows:

The size of this LFP may be exponential in n, as there is a constraint for each winning
coalition. Nevertheless, it is well-known that such LFPs can be solved in polynomial time
by the ellipsoid method provided that they have a polynomial-time separation oracle. A
separation oracle is an algorithm that, given an alleged feasible solution, checks whether it
is indeed feasible, and if not, outputs a violated constraint [10]. In our case, such an oracle
will have to verify whether a given vector p violates one of the constraints in (1):

It is straightforward to verify whether all pi are non-negative, and whether the payment
to each winning coalition in CS is 1 and the payment to each losing coalition in CS is 0. If
any of these constraints is violated, our separation oracle outputs the violated constraint. If
this is not the case, we can use the algorithm AInCsCore described in the proof of Theorem 4
to decide whether there exists a winning coalition J such that w(J) ≥ T , p(J) < 1; this
algorithm can be easily adapted to return such coalition if one exists. If AInCsCore produces
such a coalition, our separation oracle outputs the corresponding violated constraint. If
AInCsCore reports that no such coalition exists, then (CS ,p) is in the CS-core of G, so we
can output p and stop.

The algorithm Ap described in the proof of Theorem 5 allows us to check whether a
given weighted voting game G has a non-empty CS-core: we can enumerate all coalitional
structures in CS(G), and for each of them check whether there is an imputation p, which,
combined with the coalition structure under consideration, results in a stable outcome.
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However, the number of coalition structures in CS(G) is exponential in n, and solving
a linear feasibility problem for each of them using the ellipsoid method is prohibitively
expensive. We now describe heuristics that can be used to speed up this process.

First, observe that we can exclude from consideration coalition structures that contain
more than one losing coalition. Indeed, if any such coalition structure is stable, the coalition
structure obtained from it by merging all losing coalitions will also be stable. Moreover,
we can assume that each winning coalition C in our coalition structure is minimal, i.e., if
we delete any element from C, it becomes a losing coalition. The argument is similar to
the previous case: if any coalition structure with a non-minimal coalition C is stable, the
coalition structure obtained by moving the extraneous element from C to the (unique) losing
coalition is also stable.

Now, suppose that we have a coalition structure CS = {C0, C1, . . . , Ck} such that
v(C0) = 0 (C0 can be empty), v(Ci) = 1 for i = 1, . . . , k, and all Ci, i > 0, are mini-
mal. Consider an agent j ∈ Ci, i > 0. If pj > 0 and w(C0) ≥ wj , then CS is not stable:
the players in C0 ∪ Ci \ {j} can deviate by forming a winning coalition and redistributing
the extra payoff of pj between themselves. Set C ′

i = {j ∈ Ci | wj ≤ w(C0)}. The argument
above shows that the members of the sets C ′

i get paid 0 under any imputation p such that
(CS ,p) is stable. Now, set C ′ = ∪i>0C

′
i. If w(C ′) + w(C0) ≥ T , there is no imputation p

such that (CS ,p) is stable: any such imputation would have to pay 0 to players in C0 and
each C ′

i, but then the players in these sets can jointly deviate and form a winning coalition.
Therefore, we can speed up the algorithm in the proof of Theorem 5 as follows: given

a coalition structure CS = {C0, C1, . . . , Ck}, compute the sets C ′
i, i = 1, . . . , k, and check

whether w(C ′) + w(C0) ≥ T . If this is indeed the case, there is no imputation p such that
(CS ,p) is stable. Otherwise, run the algorithm Ap. Clearly, this preprocessing step is very
fast (in particular, unlike Ap, it runs in polynomial time even if the weights are large, i.e.,
given in binary), and in many cases we will be able to reject a candidate coalition structure
without having to solve the LFP (which is computationally expensive).

7 Conclusions

In this paper, we extended the model of weighted voting games (WVGs) to allow for the for-
mation of coalition structures, thus permitting more than one coalition to be winning at the
same time. We then studied the problem of stability of the resulting structure in such games.
Specifically, we introduced CS-core (the core with coalition structures), and discussed its
properties by relating it to the traditional concept of the core for WVGs and proving suf-
ficient conditions for its non-emptiness. Following that, we showed that deciding CS-core
non-emptiness or checking whether an outcome is in the CS-core are computationally hard
problems (unlike what holds in the traditional WVGs setting). However, for specific classes
of games, we presented polynomial-time algorithms for checking if a given outcome is in the
CS-core, and discovering a CS-core element given a coalition structure. We then suggested
heuristics that, combined with these algorithms, can be used to generate an outcome in the
CS-core. We believe that the line of work presented here is important: Weighted voting
games are well understood, and the addition of coalition structures increases the usability of
this intuitive framework in multiagent settings (where weights can represent resources and
thresholds do not necessarily exceed 50%).

In terms of future work, we intend, first of all, to come up with new heuristics to speed
up our algorithms. In addition, notice that the algorithms and heuristics of Sec. 6 provide
essentially centralized solutions to their respective problems. Therefore, we are interested in
studying decentralized approaches; to begin, we intend to speed up, in the WVGs context,
the exponential decentralized coalition formation algorithm of [5]. Finally, studying other
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solution concepts in this context, such as the Shapley value [8], is also within our intentions.
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Compiling the votes of a subelectorate

Yann Chevaleyre, Jérôme Lang, Nicolas Maudet & Guillaume Ravilly-Abadie

Abstract

In many practical contexts where a number agents have so as to find a common
decision, the votes do not come all together at the same time (for instance, when
voting about a date for a meeting, it often happens that one or two participants
express their preferences later than others). In such situations, we might want to
preprocess the information given by the subelectorate (consisting of those voters who
have expressed their votes) so as to “compile” the known votes for the time when the
latecomers will have expressed their votes. We study the amount of space necessary
to such a compilation, in function of the voting rule used, the number of candidates,
the number of voters who have already expressed their votes and the number of
remaining voters. We position our results with respect to existing work, especially
on vote elicitation and communication complexity.

1 Introduction

In many practical contexts where a number agents have so as to find a common decision, the
votes do not come all together at the same time. For instance, in some political elections, the
votes of the citizens living abroad is known only a few days after the rest of the votes. Or,
when voting about a date for a meeting, it often happens that one or two participants express
their preferences later than the others. In such situations, we might want to preprocess the
information given by the subelectorate (consisting of those voters who have expressed their
votes) so as to prepare the ground for the time when the latecomers will have expressed their
votes. What does “preparing the ground” exactly mean? We may think of two different
criteria:

• space: synthesize the information contained in the votes of the subelectorate, using as
less space as possible, while keeping enough information so as to be able to compute
the outcome once the newcomers hace expressed their votes;

• on-line time: compile the information, using as much off-line time and space as needed,
in such a way that once the newcomers hace expressed their vote, the outcome can be
computed as fast as possible.

These two criteria not only differ, but are, to some extent, opposed.
The research area of knowledge compilation (see for instance [3, 6]) lay the focus on on-

line space and typically looks for worst-case exponentially large rewritings of the “fixed part”
of the input, enabling on-line time complexity to fall down. While knowledge compilation
is definitely relevant to voting (the fixed part being the known votes, and the varying part
the votes of the latecomers), and would surely deserve a paper on its own, in this paper,
however, we focus on minimizing space (and do not care about on-line time).

While should we care about synthesizing the votes of a subelectorate in as less space as
possible? After all, one may think, the current cost of storage is so low that one should
not care about storing millions of votes. There are two possible objections to this line of
argumentation. The first one has to do with the size of the candidate set. In one-seat
political elections, the number of candidates is typically no more than a dozen; however,
in “profane” votes, such as multiple elections [2], the set of candidates has a combinatorial
structure and can be extremely large (possibly much more than a few millions – while it is

169



difficult to imagine an election with more than a few million voters). The second objection
has to do with the practical acceptance of the voting rule. Suppose the electorate is split
into different districts (generally, corresponding to geographical entities). Each district can
count its ballots separately and communicate the partial outcome to the central authority
(e.g. the Ministry of Innner Affairs), which, after gathering the outcomes from all districts,
will determine the final outcome. The space needed to synthesize the votes of a district (with
respect to a given voting rule) is precisely the amount of information that the district has to
send to the central authority. Now, it is important that the voters should be able to check as
easily as possible the outcome of the election. Take a simple rule, such as plurality or Borda.
Obviously, it is enough (and almost necessary, as we see later) for each district to send only
its “local” plurality or Borda scores to the central authority. If the district is small enough,
it is not difficult for the voters of this district to check that the local results are sound
(for instance, each political party may delegate someone for checking the ballots); provided
these local results are made public (which is usually the case – in most countries, they are
published in newspapers), every voter can check the final outcome from these local outcomes
(in the case of plurality or Borda, simply by summing up the local scores). Clearly, if the
information about the votes of a district being necessary for computing the final outcome is
large (e.g., if one needs to know how many voters have expressed every possible linear order
on the candidate set), it will be impractical to publish the results locally, and therefore,
difficult to check the final outcome, and voters may then be reluctant to accept the voting
rule. Although the compilation of the votes of a subelectorate has not been considered
before (as far as we know), several related problems have been investigated:

• the complexity of vote elicitation [4]: given a voting rule r, a set of known votes S,
and a set of t new voters, is the outcome of the vote already determined from S?

• the computation of possible and necessary winners [7, 11, 9, 10]: given a voting rule
r, a set of incomplete votes (that is, partial orders on the set of candidates), who are
the candidates who can still possibly win the election, and is there a candidate who
surely wins it?

• the communication complexity of voting rules [5]: given a voting rule r and a set of
voters, what is the worst-case cost (measured in terms of number of bits transmitted)
of the best protocol allowing to compute the outcome of the election?

In the first two cases, the connection is clear. In the extremely favourable case where
the outcome of the vote is already determined from S (corresponding to the existence of a
necessary winner, or to a positive answer to the vote elicitation problem), the space needed
to synthesize the input is just the binary encoding of the winner. The connection with
communication complexity [8] will be discussed more explicitly in Section 2, after the notion
of compilation is introduced formally. Then in Section 3 we determine the compilatioon
complexity of some of the most common voting rules.

2 Compilation complexity as one-round communication
complexity

Let X be a finite set of candidates and N a finite set of voters. Let p = |X| and n = |N |. A
vote is a linear order over X. We sometimes denote votes in the following way: a � b � c
is denoted by abc, etc. For m ≤ n, a (p, m)-profile is a tuple P = 〈V1, . . . , Vm〉 where each
Vi is a vote. When m < n (resp. m = n), we call such profiles partial (resp. complete). Let
Pm

X be the set of all m-voters profiles over X. A voting rule is a function r from Pn
X to X.
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As the usual definition of most common voting rules does not exclude the possibility of ties,
we assume these ties are broken by a fixed priority order on candidates.

We now consider situations where only some of the voters (the “subelectorate”) have
expressed their votes. Let m ≤ n number of voters who have expressed their vote, and
P ∈ Pm

X the partial profile obtained from these m voters. We say that two partial profiles are
r-equivalent if no matter the remaining unknown votes, they will lead to the same outcome.
We distinguish between two cases, depending on whether the number of remaining voters is
fixed or not.

Definition 1 Let P,Q ∈ Pm
X be two m-voters X-profiles and r a voting rule. We say that

• given k ≥ 0, P and Q are (r, k)-equivalent if for every R ∈ Pk
X we have r(P ∪ R) =

r(Q ∪R).

• P and Q are r-equivalent if they are (r, k)-equivalent for every k ≥ 0.

Example 1 Let rP be the plurality rule and rB the Borda rule, X = {a, b, c} and m = 4.
Let P1 = 〈abc, abc, abc, abc〉, P2 = 〈abc, abc, acb, acb〉, P3 = 〈acb, acb, abc, abc〉 and P4 =
〈abc, abc, abc, bca〉. Then we have the following:

• P2 and P3 are rP -equivalent and rB-equivalent. More generally, they are r-equivalent
for every anonymous voting rule r.

• P1 and P2 are rP equivalent. They are also (rB , k)-equivalent for every k ≤ 2. However
they are not (rB , k)-equivalent for k ≥ 2. For k = 3, this can be seen by considering
R = 〈bca, bca, bca〉. We have rB(P1 ∪ R) = b but rB(P2 ∪ R) = a; therefore, P1 and
P2 are not rB-equivalent.

• P1 and P4 are (rP , k)-equivalent for every k ≤ 2, but not for k ≥ 2, therefore they are
not rP -equivalent (nor rB-equivalent).

We denote (r, k)-equivalence and r-equivalence by, respectively, ∼r,k and ∼r. Obviously,
∼r,k and ∼r are transitive, therefore they are indeed equivalence relations. We now define
the compilation complexity of a voting rule. We have two notions, depending on whether
the number of remaining candidates (i.e. the size of R) is fixed or not.

Definition 2 Given a voting rule r, we say that a function σ from Pm
X to {0, 1}∗ is a

compilation function for (r, k) if there exists a function ρ : {0, 1}∗ × Pk
X → X such that

for every P ∈ Pm
X and every R ∈ Pk

X , ρ(σ(P ), R) = r(P ∪ R). The size of σ is defined by
Size(σ) = max{σ(P ) | P ∈ Pm

X }. The compilation complexity of (r, k) is then defined by

C(r, k) = min{Size(σ) | σ is a compilation function for (r, k)}

Informally, the compilation complexity of (r, k) is the minimum space needed to compile
the m-voter partial profile P without knowing the remaining k-voter profile R. This notion
does not take into account the off-line time needed to compute σ, nor the off-line time
needed to compute ρ. The usual knowledge compilation view would focus on minimizing
the time needed to compute ρ,regardless of the size of σ (and the time needed to compute
it). The definitions when k is not fixed are similar:

Definition 3 Given a voting rule r, we say that a function σ from Pm
X to {0, 1}∗ is a

compilation function for r if there exists a function ρ : {0, 1}∗ × P∗X → X, where P∗X =
∪k≥0Pk

X , such that for every P ∈ Pm
X , every k ≥ 0 and every R ∈ Pk

X , ρ(σ(P ), R) =
r(P ∪R). The compilation complexity of r is defined by

C(r) = min{Size(σ) | σ is a compilation function for r}
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An equivalent way of seeing compilation complexity is related to multiparty communi-
cation complexity. When n agents have to compute a function f , while each of them only
knows a part of the input, the deterministic communication complexity (see [8]) of f is the
worst-case number of bits that the agents have to exchange so as to be able to know the
outcome. The communication complexity of common voting rules is identified in [5].

While standard communication complexity does not impose any restriction on the
protocol that the agents may use to compute f , imposing such restrictions leads to variants
of communication complexity; especially, a one-round protocol for two agents A and B is
a protocol where A sends only one message to B, and then B sends the output to A (see
Section 4.2 of [8]). The one-round communication complexity of f is the worst-case number
of bits of the best one-round protocol for f . This is exactly the same as the compilation
complexity of f , up to a minor difference: we do not care about B sending back the
output to A. Here, A represents the set of voters having already expressed their votes, and
B the remaining voters; the space needed to synthesize the votes of A is the amount of
information that A must send to B so that B can be able to compute the final outcome1.

We have this following general characterization of compilation complexity. Up to minor
details, this is a reformulation of Exercise 4.18 in [8]. For the sake of the exposition, we
reformulate it in our own terms and include its proof.

Proposition 1 Let r be a voting rule. Let m be the number of initial voters and p the
number of candidates.

• given k ≥ 0, if the number of equivalence classes for ∼r,k is f(m, p, k) then the com-
pilation complexity of (r, k) is exactly dlog f(m, p, k)e.

• if the number of equivalence classes for the r-equivalence relation ∼r is g(m, p) then
the compilation complexity of r is exactly dlog g(m, p)e.

Proof: We give the proof only for the case of (r, k); the proof with unbounded k is similar.
We first show that C(r, k) ≥ dlog f(m, p, k)e. Suppose ∼k,r has f(m, p, k) equivalence
classes. Assume there is a number θ < dlog f(m, p, k)e, a function σ : Pm

X → {0, 1}θ and a
mapping ρ : {0, 1}∗ → X such that for every P ∈ Pm

X and R ∈ Pk
X , ρ(σ(P ), R) = r(P ∪R).

We first note that θ < dlog f(m, p, k)e implies θ < log f(m, p, k). Let ≈σ be the equivalence
relation on Pm

X defined by P ≈σ Q if σ(P ) = σ(Q). Because for every P , |σ(P )| ≤ θ, ≈σ

has at most 2θ equivalence classes. Since 2θ < f(m, p, k), ≈σ has strictly less equivalence
classes than ∼k,r. Hence there exists a pair (P,Q) such that σ(P ) = σ(Q) but P 6∼k,r Q.
P 6∼k,r Q means that there exists a profile R ∈ Pk

X such that r(P ∪ R) 6= r(Q ∪ R). Now,
r(P ∪R) = ρ(σ(P ), R) = ρ(σ(Q), R) = r(Q∪R), hence a contradiction. We now show that
C(r, k) ≤ dlog f(m, p, k)e. Let us enumerate and number all f(m, p, k) equivalence classes
for ∼k,r. For every P , let i(P ) be the index of its equivalence class for ∼k,r. Define the
translation σ(P ) = i(P ). We note that the size of σ is exactly dlog f(m, p, k)e. Now, define

1Since one-round communication complexity is never smaller than standard communication complexity,
we expect the lower communication complexity bounds communication in [5] to be lower bounds of compi-
lation complexity. However, making this more precise is not so simple, because in [5] there is no partition
between two subelectorates: their results mention only the total number of candidates, whereas ours men-
tion the number of candidates who have already expressed their votes. Let D(r, n, p) the (deterministic)
communication complexity of r for n voters and p candidates as in [5]. Let us now introduce this variant of
communication complexity: if m ≤ n, define D(r, n, m, p) as the cost of the optimal protocol for computing
r, where only the bits sent by the m first voters count for the cost of a protocol (the remaining n−m can
communicate for free). Obviously, we have D(r, n, m, p) ≤ D(r, n, p). Moreover, if C(r, m, p) is the compila-
tion complexity of r for m voters and p candidates then for every n ≥ m we have C(r, m, p) ≥ D(r, n, m, p).
In order to conclude C(r, m, p) ≥ D(r, m, p), we would have to show that for all voting rules considered
here, we have D(r, n, m, p) = D(r, m, p) (which we conjecture).
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ρ by ρ(j, R) = r(P ∪R) for an arbitrary P such that i(P ) = j. The result follows. �

Here are now a few simple results about voting rules in general.

Proposition 2 Let r be a voting rule, and r′ an anonymous voting rule.

• C(r) ≤ m log(p!);

• C(r′) ≤ min(m log(p!), p! log m).

The proof is easy. For any r, the number of equivalence classes cannot be larger than the
number of profiles, and there are (p!)m possible profiles. For any anonymous r, the bound
p! log m comes from the fact that linear orders on X can be enumerated, together with the
number of voters who choose it. p! log m can be smaller than m. log(p!) when m becomes
large enough and p small enough. At the other extremity of the spectrum, we have:

Proposition 3

• the compilation complexity of a dictatorship is log p;

• the compilation complexity of r is 0 if and only if r is constant.

In these limit cases, whether we know or not the number of remaining voters is irrelevant.

3 Some case studies

We now consider a few specific families of voting rules. For each of these we adopt the
following methodology: we first seek a characterization of the equivalence classes for the
given rule, then we use this characterization to count the number of equivalence classes. In
simple cases, it will be easy to enumerate exactly these classes and Proposition 1 will give
us the exact compilation complexity of the rule. In more complex cases, we will exhibit a
simple upper bound and provide a lower bound of the same order.

3.1 Plurality and Borda

Let ~s = 〈s1, . . . , sn〉 be a vector of integers such that s1 ≥ s2 ≥ . . . ≥ sn = 0. The scoring
rule induced by ~s is defined by: for every candidate x, score~s(x, P ) =

∑n
i=1 si.n(P, i, x),

where n(P, i, x) is the number of votes in P that rank x in position i; and r~s(P ) is the
candidate maximizing score~s(x, P ) (in case of a tie, a priority relation on candidates is
applied). The plurality (resp. Borda) rule rP (resp. rB) is the scoring rule corresponding
to the vector 〈1, 0, . . . , 0〉 (resp. 〈p− 1, p− 2, . . . , 0〉).

Plurality. We begin with the compilation complexity of plurality (antiplurality is similar).

Lemma 1 For P ∈ Pm
X and x ∈ X, let ntop(P, x) be the number of votes in P ranking x

first. P ∼rP
P ′ holds if and only if for every x, ntop(P, x) = ntop(P ′, x).

Proof: The (⇐) direction is obvious. For the (⇒) direction, suppose there is an x ∈ X such
that ntop(P, x) 6= ntop(P ′, x). Without loss of generality, assume ntop(P, x) > ntop(P ′, x).
Now, we have

∑
x∈P ntop(P, x) =

∑
x∈P ′ ntop(P ′, x) = m, therefore there must be

an y such that ntop(P, y) < ntop(P ′, y). Note that we necessarily have y 6= x.
Now, let Q be the following profile with 2m − ntop(P, x) − ntop(P, y) + 1 voters:
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m − ntop(P, x) + 1 voters have x on top (and whatever below), and m − ntop(P, y)
voters have y on top (and whatever below). We have ntop(P ∪ Q, x) = m + 1,
ntop(P ∪ Q, y) = m, and for every z 6= x, y, ntop(P ∪ Q, z) ≤ m. Therefore,
rP (P ∪ Q) = x. Now, we have ntop(P ′ ∪ Q, x) = ntop(P ′, x) − ntop(P, x) + m + 1 ≤ m,
ntop(P ′ ∪ Q, y) = ntop(P ′, y) − ntop(P, y) + m ≥ m + 1, and for every z 6= x, y,
ntop(P ′ ∪Q, z) ≤ m. Therefore, rP (P ∪Q) = y. This shows that P 6∼rP

P ′. �

This characterization together with Proposition 1 tells us that the compilation complex-
ity of rP is exactly dlog L(m, p)e, where L(m, p) be the number of vectors of positive integers
〈α1, . . . , αp〉 such that

∑p
i=1 αp = m. The number of such vectors is known, in fact it is

equivalent to the number of ways to choose m elements from a set of size p when repetition
is allowed, that is

(
p+m−1

m

)
—see e.g. [1]. A more explicit expression can be obtained at the

price of a very tight approximation, by using Stirling’s formula for factorials. The following
result is then obtained after a few algebraic rewritings.

Corollary 1 The compilation complexity of rP is Θ
(
p log(1 + m

p ) + m log(1 + p
m )

)
It can observed that the previous result yields an upper bound in O(m + p), which can

be compared with the “naive” upper bound that may be derived from the fact that it is
sufficient to record the plurality scores of each candidate, which needs O(p log m) bits.

Borda. We get this intuitive characterization of ∼ for the Borda rule, in a similar way as
Proposition 1 for plurality. More generally, a similar result holds for any scoring rule.

Lemma 2 For P ∈ Pm
X and x ∈ X, let scoreB(x, P ) be the Borda score of x obtained

from the partial profile P . P ∼rB
P ′ holds if and only if for every x, scoreB(x, P ) =

scoreB(x, P ′).

Let us denote by B(m, p) the number of vectors of positive integers 〈α1, . . . , αp〉 corre-
sponding to Borda scores once m votes have been expressed. Observe that we necessarily
have that

∑p
i=1 αp = mp(p−1)

2 , since each voter distributes p(p−1)
2 points among the candi-

dates. However, this alone does not suffice to characterize the set of realizable Borda scores
(for instance, if a candidate gets a score of 0, then no other candidate can get less than m).
An upper bound is easily obtained by observing that is possible to simply record the scores
of p− 1 candidates, and that this score can be at most m(p− 1).

Proposition 4 The compilation complexity of Borda is at most (p− 1) log m(p− 1).

Now we try to exhibit a lower bound that will approach this upper bound. The general
idea is to restrict our attention to a subset of vectors of Borda scores. For example, for those
vectors where the candidate with the lowest score gets between 0 and m, the second between
m and 2m, and so on until the penultimate voter, the score of the last candidate can be
chosen on purpose so as to make a realizable vector of Borda scores. (Observe that by taking
these intervals, the scores of the p− 1 first candidates can really be chosen independently).

In what follows, we show how to construct profiles that result in the desired vectors of
Borda scores, albeit for the sake of readability we shall confine ourselves to a slightly more
restricted case than the one discussed above. Technically, the bound obtained is slightly
less tight, but the proof is easier to follow. Let us call basic score the vector of Borda scores
obtained when all voters cast their vote similarly 〈0, 1, . . . , p − 1〉. The following Lemma
shows that two voters can produce a vector where any candidate can obtain one more vote
than the basic score, while the last candidate obtains one vote less.
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Lemma 3 For any i < p, the vector of Borda scores 〈α1, α2, . . . , αi + 1, . . . , αp − 1〉 where
∀j ≤ p, αj = 2(j − 1) can result from a two-voter profile.

Proof: We denote by 〈αv
1, α

v
2, . . . , α

v
n〉 the vector corresponding to the ballot of voter v.

We initially assign to voter 1 and 2 the basic vectors 〈0, 1, . . . , p − 1〉. Now we construct
the modified vectors of the two voters as follows: take the scores α1

i and α1
i+1 of voter

1 and swap them; then take the scores α2
i+1 and α2

i+2 of voter 2 and swap them; then
move back to voter 1 and swap the scores α1

i+2 and α1
i+3, and so on until the last score of

voter 1 or voter 2 is reached, in which case no more swap is possible. Observe now that
∀j ∈ [i + 1, p− 1], α1

j + α2
j = α′1j + α′2j because the swaps of voter 1 and 2 compensate each

other, so the scores of these candidates remain unaffected. On the other hand, the Borda
scores of candidate i and p are modified as required (resp. +1 and −1). �

But the same principle can be applied with m voters: in short, it is possible to distribute
up to m/2 points among the first p−2 candidates to improve over their basic score (with the
last candidate compensating by seeing its score decreased by the same amount of points):

Proposition 5 Let {δ1, . . . , δp−1} be any set of non-negative integers such that
∑p−1

i=1 δi ≤
m
2 . The vector of Borda scores 〈δ1,m+δ2, 2m+δ3, . . . , 2(p−1)+δp〉, where δp = −

∑p−1
i=1 δi,

can result from a m-voter profile.

Proof: Let m′ = m−
∑p−1

i=1 2δi. In the following, we will consider sums of profiles and multi-
plications by constants. In particular, a× 〈x1, x2 . . .〉 will refer to the profile 〈ax1, ax2, . . .〉.
The above profile can be decomposed as follows as a sum of scores

~α1 = 2δ1 × 〈0, 1, 2 . . .〉+ 〈δ1, 0, 0, 0, . . .− δ1〉
~α2 = 2δ2 × 〈0, 1, 2 . . .〉+ 〈0, δ2, 0, 0, . . .− δ2〉
~α3 = 2δ3 × 〈0, 1, 2 . . .〉+ 〈0, 0, δ3, 0, 0, . . .− δ3〉

. . .

~αp = m′ × 〈0, 1, 2 . . .〉

The last score can be realized by simply summing m′ scores 〈0, 1, 2, . . .〉. As according to
Lemma 3 the scores αi can be obtained by summing 2δi scores, the result follows. �

Corollary 2 The compilation complexity of the Borda rule is Θ(p log mp).

Proof: Let 1C be the indicator function valued 1 if condition C is true and 0 otherwise. In
Proposition 5, we showed that the number of profiles in which candidates 0 . . . p − 2 have
increasing scores is at least

∣∣∣{〈α0 . . . αp−2〉 ∈ Np−1 |
∑p−2

i=0 αi ≤ m
2

}∣∣∣. More generally, the
question amounts to enumerating V s

t , the set of vectors of s non-negative integers, whose
sum is lower or equal to t. This value can be written as

∫∞
α0..αs−1=0

1∑
bαic≤tdα0 . . . dαs−1.

Clearly, this can be lower bounded by
∫∞
0

1∑
αi≤tdα0 . . . dαs−1. But this is equal to half

of the volume of the hypercube of dimension s whose side has length t. (For example,
with s = 2, this value becomes half the area of a square t2

2 ). More generally, we then have
V s

t ≥ ts

2 . In our case, this gives us 1
2 ×

(
m
2

)p−1. Note that this lower bounds the number of
profiles with increasing scores. Thus, the total number of profiles is at least (p−1)!mp−12−p.
Using the fact that log n! ≥ n log n, we get the lower bound (p−1)(log2(p−1)+ log2 m−2).
Together with the upper bound, the result holds. �
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3.2 Rules based on the weighted majority graph

We now consider tournament-based rules. Let P be a profile. NP (x, y) denotes the number
voters in P preferring x to y. The majority graph MP is the directed graph whose set
of vertices is X and containing an edge from x to y if and only if NP (x, y) > NP (y, x).
The weighted majority graph MP is the same as MP , where each edge from x to y is
weighted by N(x, y) (note that there is no edge in MP between x and y if and only if
NP (x, y) = NP (y, x).) A voting rule r is based on the majority graph (abridged into “MG-
rule” ) if for any profile P , r(P ) can be computed from MP , and based on the weighted
majority graph (abridged into “WMG-rule” ) if for any profile P , r(P ) can be computed
from MP . Obviously, a MG-rule is a fortiori a WMG-rule. A candidate x is the Condorcet
winner for a profile P if it dominates every other candidate in MP . A voting rule r is
Condorcet-consistent if it elects the Condorcet winner whenever there exists one.

Lemma 4 Let r be a WMG-rule rule. If MP = MP ′ then P ∼r P ′.

Proof: For any Q, MP∪Q is fully determined from MP and MQ, because
NP∪Q(x, y) = NP (x, y) + NQ(x, y). If r is a WMG-rule then r(P ∪ Q) is fully de-
termined from MP∪Q, therefore from MP and MQ, and a fortiori, from MP and Q. �

Note that for rules based on the (non-weighted) majority graph, we still need the weighted
majority graph of P and P ′ to coincide – having only the majority graph coinciding is not
sufficient for P ∼r P ′, since MP∪Q is generally not fully determined from MP and MQ.

Lemma 4 gives an upper bound on the compilation complexity of a WMG-rule. Let
T (m, p) be the set of all weighted tournaments on X that can be obtained as the weighted
majority graph of some m-voter profile.

Proposition 6 If r is a WMG-rule then C(r) ≤ log T (m, p).

Getting a lower bound is not possible without a further assumption on r. After all,
constant rules are based on the majority graph, yet they have a compilation complexity of
0. We say that a WMG-rule r is proper if P ∼r P ′ implies MP = MP ′2. It is easy to find
a natural sufficient condition for a WMG-rule to be proper:

Lemma 5 If r is a Condorcet-consistent rule then P ∼r P ′ implies MP = MP ′ .

Proof: Let r be a Condorcet-consistent rule. Assume MP 6= MP ′ , i.e., there exists
(x, y) ∈ X with NP (x, y) 6= NP ′(x, y). W.l.o.g., NP (x, y) = NP ′(x, y) + k (hence
NP (y, x) = NP ′(y, x) − k), with k > 0. Let Q be a set of m + 1 voters where:
m + 1 − NP (x, y) voters prefer x to y and y to anyone else; NP (x, y) voters prefer y
to x and x to anyone else. As we have NP∪Q(x, y) = NP (x, y) + NQ(x, y) = m + 1;
for any z 6= x, y, NP∪Q(x, z) = NP (x, z) + m + 1 ≥ m + 1, x is Condorcet
winner in P ∪ Q (which contains 2m + 1 voters) and r(P ∪ Q) = x. But
NP ′∪Q(y, x) = NP ′(y, x) + NQ(y, x) = NP (y, x) + k + NP (x, y) = m + k, and for
any z 6= x, y, NP ′∪Q(y, z) = NP ′(y, z) + m + 1 ≥ m + 1, so y is Condorcet winner in P ′ ∪Q
and r(P ′ ∪Q) = y. Hence P 6∼r P ′. �

This gives us the following lower bound.
2Examples of WMG-rules that are not proper: constant rules; dictatorial rules; strange rules such as

r(P ) = first xi (wrt a fixed ordering x1 > ... > xp on candidates) such that for all xj 6= xi there is at least
one voter who prefers xi to xj , and xp if there is no such xi; “restricted” rules such as r(P ) being defined
as the candidate maximizing the Copeland score among a fixed subset of candidates; etc.
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Proposition 7 If r is a Condorcet-consistent rule then C(r) ≥ log T (m, p).

From Propositions 6 and 7 we get

Proposition 8 If r is a Condorcet-consistent WMG-rule, then C(r) = log T (m, p).

Corollary 3 The compilation complexity of the following rules is exactly log T (m, p):
Copeland, Simpson (maximin), Slater, Banks, uncovered set, Schwartz.

We now have to compute T (m, p). We easily get the following upper bound.

Proposition 9 log T (m, p) ≤ p(p−1)
2 log(m + 2).

Proof: From Lemma 4 we know that it is enough to store MP . Let > be a fixed ordering
on the candidates. Storing MP can be done by storing, for every pair (x, y) of distinct
candidates such that x > y, (a) a single bit indicating whether NP (x, y) > NP (y, x) or
NP (x, y) ≤ NP (y, x) and (b) min(NP (x, y), NP (y, x)). Since the latter number can vary
between 0 and m

2 if m is even, and between 0 and m−1
2 is m is odd, storing this number

requires at most log
(

m
2 + 1

)
bits. This makes a total of 1 + log

(
m
2 + 1

)
bits, that is,

log(m + 2) bits. We have p(p−1)
2 pairs of distinct candidates, hence the result. �

This bound is not necessarily reached: for any x, y, z ∈ X and any profile P we have
NP (x, z) ≥ NP (x, y) + NP (y, z) − m (e.g, if m = 3 and NP (x, y) = NP (y, z) = 2, then
NP (x, z) cannot be 0).

Lemma 6 Consider V s
t the set of vectors of s non-negative integers whose sum is lower or

equal to t. Then T (m, p) ≥| V
p(p−1)

2
m
2

|.

Proof: Assume m is even. Let {ci,j | 1 ≤ i < j ≤ p} be any set non-negative integers
such that

∑
i<j ci,j ≤ m

2 . We will show how to build a profile such that N(i, j) = 2ci,j ,

where N(i, j) indicates how many voters prefer i to j. Let us divide voters into p(p−1)
2

groups gi,j with 1 ≤ i < j ≤ p and a final group g0, such that each group gi,j is assumed
to contain exactly 2ci,j voters and g0 contains the rest of the voters (i.e. m −

∑
i<j 2ci,j).

In each group gi,j , set the profile of half of the voters to i � j � x1 � x2 � . . . � xp−2,
and the other half to xp−2 � xp−1 � . . . � x1 � i � j, where x1 . . . xp−2 refer to the
candidates other than i and j in an arbitrary order. In group g0 set half of the voters to
x1 � x2 � . . . � xp and the other half to xp � . . . � x1. Let Ng(x, y) denote the number of
voters in group g preferring x to y. Clearly, Ngij (x, y) = N(x, y) if x = i and y = j; and 0
otherwise; and Ng0(x, y) = 0. Thus, N(x, y) =

∑
Ngi,j (x, y) = 2ci,j . �

From the previous Lemma, and using a technique similar to the one used in Corollary 2
to enumerate V s

t , we obtain the compilation complexity of this family of rules:

Corollary 4 If r is a Condorcet-consistent WMG-rule then C(r) = Θ(p2 log m).

3.3 Plurality with runoff

Plurality with runoff is the voting rule (denoted by r2) consisting of two rounds: the first
round keeps only the two candidates with maximum plurality scores (with some tie-breaking
mechanism), and the second round is simply the majority rule.
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Proposition 10 Let r2 be the plurality-with-runoff rule. P ∼r2 Q holds if and only if for
every x, ntop(P, x) = ntop(Q, x) and for every x, y, NP (x, y) = NQ(x, y).

Lemma 7 If for every x, ntop(P, x) = ntop(Q, x) and for every x, y, NP (x, y) = NQ(x, y),
then P ∼r2 Q.

Proof: For every x ∈ X, since ntop(P, x) = ntop(Q, x), we also have ntop(P ∪ R, x) =
ntop(Q∪R, x): the two plurality winners are the same in P ∪R and Q∪R. Let x and y be
these two plurality winners. Since NP (x, y) = NQ(x, y), we have NP∪R(x, y) = NQ∪R(x, y),
therefore, MP∪R(x, y) if and only if MQ∪R(x, y) and hence r2(P ∪R) = r2(Q ∪R). �

Lemma 8 If for some x ntop(P, x) 6= ntop(Q, x), then P 6∼r2 Q.

Proof: If p = 2, this is a corollary of Lemma 1. Assume p ≥ 3, and w.l.o.g., assume
ntop(P, x) > ntop(Q, x). Because

∑
c∈X ntop(P, c) =

∑
c∈X ntop(Q, c)(= m), there exists

an y 6= x such that ntop(P, y) < ntop(Q, y). Almost w.l.o.g., assume x has priority over y
for tie-breaking3. Let z 6= x, y (which is possible because p ≥ 3). We now construct an R
such that in P ∪ R, the two finalists are x and z, and the winner is x, and in Q ∪ R, the
two finalists are y and z (therefore the winner cannot be x). Let R be the following partial
profile containing 14m + ntop(P, y)− ntop(P, x) new votes:

ntop(P, y)− ntop(P, x) + 4m votes: x � . . .
4m votes: y � x � z � . . .
6m votes: z � . . .

The plurality scores in P ∪R are:

• sP∪R(x) = ntop(P, x) + ntop(P, y)− ntop(P, x) + 4m = ntop(P, y) + 4m;

• sP∪R(y) = ntop(P, y) + 4m;

• sP∪R(z) = ntop(P, z) + 6m.

• for every other candidate c, sP∪R(c) = ntop(P, c).

Since ntop(P, c) ≤ m holds for every c 6= x, y, z, we have sP∪R(z) > sP∪R(x) =
sP∪R(y) > sP∪R(c) for every c 6= x, y, z. Because x has priority over y, the two candi-
dates remaining for the second round are z and x. Now, the number of voters in P ∪ R
preferring x to z is N(P ∪R, x, z) = N(P, x, z)+ntop(P, y)−ntop(P, x)+8m ≥ 8m (because
N(P, x, z) ≥ ntop(P, x)); and N(P ∪R, z, x) = N(P, z, x)+6m ≤ 7m. Hence r2(P ∪R) = x.
The plurality scores in Q ∪R are:

• sQ∪R(x) = ntop(Q, x) + ntop(P, y)− ntop(P, x) + 4m > ntop(P, y) + 4m;

• sQ∪R(y) = ntop(Q, y) + 4m;

• sQ∪R(z) = ntop(Q, z) + 6m.

• for every other candidate c, sQ∪R(c) = ntop(Q, c).

3The proof in the opposite case is very similar and we omit it.
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sQ∪R(y) − sQ∪R(x) = ntop(Q, y) − ntop(P, y) + ntop(P, x) − ntop(Q, x). Now, by
assumption we have ntop(Q, y) > ntop(P, y) and ntop(P, x) > ntop(Q, x), therefore
sQ∪R(y) > sQ∪R(x).

sQ∪R(z) − sQ∪R(x) = ntop(Q, z) − ntop(Q, x) − ntop(P, y) + ntop(P, x) + 2m. Now,
ntop(P, x) > ntop(Q, x), therefore sQ∪R(z)− sQ∪R(x) > ntop(Q, z)− ntop(P, y) + 2m > 0,
that is, sQ∪R(y) > sQ∪R(x).

Because the plurality scores of both y and z in Q∪R are larger than the plurality score
of x, x does not pass the first round, therefore r2(P ∪R) 6= x. �

Lemma 9 If for some x, y ∈ X, N(P, x, y) 6= N(Q, x, y) then P 6∼r2 Q.

Proof: Assume w.l.o.g. that N(P, x, y) > N(Q, x, y). We are going to complete P and Q
such that in both P ∪R and Q ∪R, the finalists are x and y, with x winning in P ∪R and
y in Q ∪R. Let R be composed of the following 2N(P, y, x) + 3m + 1 votes:

2N(P, y, x) + m + 1 votes: x � y � . . .
2m votes: y � x � . . .

Obviously, the plurality scores in P ∪R verify sP∪R(x) > m, sP∪R(y) > m, and for any
c 6= x, y, sP∪R(c) ≤ m, therefore, the finalists are x and y. Things are the same for Q ∪R.

Now, N(P ∪ R, x, y) = N(P, x, y) + 2N(P, y, x) + m + 1 = m + N(P, y, x) + m + 1 =
N(P, y, x)+2m+1; and N(P∪R, x, y) = 2N(P, y, x)+4m+1−N(P∪R, x, y) = N(P, y, x)+
2m. Therefore, r2(P ∪R) = x.

Lastly, N(Q∪R, x, y) = N(Q, x, y)+2N(P, y, x)+m+1, and N(Q∪R, x, y) = N(Q, y, x)+
2m. We have now N(Q∪R, y, x)−N(Q∪R, x, y) = N(Q, y, x)+m−N(Q, x, y)−2N(P, y, x)−
m−1 = N(Q, y, x)+m−N(Q, x, y)−2N(P, x, y)−1 = 2(N(Q, y, x)−N(P, y, x))−1. Now,
N(Q, y, x) > N(P, y, x), therefore, N(Q∪R, y, x) > N(Q∪R, x, y), that is, r2(Q∪R) = y. �

Proposition 10 is now a corollary from Lemmas 7, 8 and 9, and it follows that:

Proposition 11 The compilation complexity of plurality with runoff is log L(m, p) +
log T (m, p).

4 Conclusion

This paper has introduced a notion that we believe to be of primary importance in many
practical situations: the compilation of incomplete profiles. In particular, the amount of
information that a given polling station needs to transmit to the central authority is a good
indicator of the difficulty of the verification process. We have established a general technique
which allows us to derive the compilation complexity of a voting rule, and have related it to
other issues in communication complexity. We have derived a number of results for specific
classes of voting rules. A question that we have only sketched in this paper and that we
plan to consider more carefully concerns the situations where the number k of remaining
voters is fixed. In this case, a different approach can be taken: instead of compiling the
partial profiles as provided by the m voters, it may be more efficient to compile the possible
completion of this partial profile together with the associated outcome, or, in other words,
to compile the function that takes the remaining k profiles as input (there are (p!)k such
inputs) and return the outcome. As there are (p!)k possible profiles, the number of such
functions is p(p!)k

. This tells us that a general upper bound for C(r, k) is ≤ (p!)k. log p.
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Hence, overall we have C(r, k) ≤ min(m. log(p!), (p!)k. log p) (note that the second term
becomes interesting only when m is big enough, and p and k small enough).

The general problem of dealing with incomplete profiles opens a host of related questions,
for instance the probability that a voting process could be stopped after only m voters have
expressed their opinions, or (a closely related question), the probability that the central
authority would make a mistake were it forced to commit on a winner in situations where
no candidate is yet guaranteed to prevail. Another interesting issue for further research
would consist in designing new ways of computing NP-hard voting rules using an off-line
compilation step so that their on-line computation time becomes polynomial in the size of
the initial profile. This, of course, implies that the size of σ(P ) may be much larger (possibly
exponentially) than the size of the input, which means that the computation of ρ may be
logarithmic in the size of the compilation σ(P ).
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Preference Functions That Score Rankings and
Maximum Likelihood Estimation

Vincent Conitzer Matthew Rognlie Lirong Xia

Abstract

A preference function (PF) takes a set of votes (linear orders over aset of alternatives) as input,
and produces one or more rankings (also linear orders over the alternatives) as output. Such
functions have many applications, for example, aggregating the preferences of multiple agents,
or merging rankings (of, say, webpages) into a single ranking. The key issue is choosing a PF
to use. One natural and previously studied approach is to assume that there is an unobserved
“correct” ranking, and the votes are noisy estimates of this. Then, we can use the PF that
always chooses the maximum likelihood estimate (MLE) of the correct ranking. In this paper,
we define simple ranking scoring functions (SRSFs) and show that the class of neutral SRSFs
is exactly the class of neutral PFs that are MLEs for some noise model. Wealso define ex-
tended ranking scoring functions (ERSFs) and show a condition under which these coincide
with SRSFs. We study key properties such as consistency and continuity, and consider some
example PFs. In particular, we study Single Transferable Vote (STV), acommonly used PF,
showing that it is an ERSF but not an SRSF, thereby clarifying the extent towhich it is an MLE
function. This also gives a new perspective on how ties should be broken under STV. We leave
some open questions.

1 Introduction

In a typical social choice setting, there is some set of alternatives, and multiple rankings of these
alternatives are provided. These input rankings are calledthevotes. Based on these votes, the goal
is either to choose one alternative, or to create an aggregate ranking of all the alternatives. In this
paper, we will be interested in the latter goal; if it is desired to choose one alternative, then we can
simply choose the top-ranked alternative in the aggregate ranking. Formally, apreference function
(PF)1 takes a set of votes (linear orders over the alternatives) asinput, and produces one or more
aggregate rankings (also linear orders over the alternatives) as output. (The only reason for allowing
multiple aggregate rankings is to account for the possibility of ties.)

The key issue is to choose a rule for determining the aggregate ranking, that is, a preference
function. So, we may ask the following (vague) question:What is the optimal preference function?
This has been (and will likely continue to be) a topic of debate for centuries among social choice
theorists. Many different PFs have been proposed, each withits own desirable properties; some
of them have elegant axiomatizations. Presumably, which PFis optimal depends on the setting at
hand. For example, in some settings, the voters are agents that each have their own idiosyncratic
preferences over the alternatives, and the only purpose of voting is to reach a compromise. In such
a setting, no alternative can be said to be better than another alternative in anyabsolutesense: an
alternative’s quality is defined relative to the votes. In such a setting, it makes sense to pay close
attention to issues such as the manipulability of the PF.

In other settings, however, there is more of an absolute sense in which some alternatives are
better than others. For example, when we wish to aggregate rankings of webpages, provided by
multiple search engines in response to the same query, it is reasonable to believe that some of these
pages are in fact more relevant than others. The reason that not all of the search engines agree on

1We use “preference function” rather than “social welfare function” because the resulting set of strict rankings need not
correspond to a weak ranking (where a set of strict rankings “corresponds” to a weak ranking if it consists of all the strict
rankings that can be obtained by breaking the ties in the weakranking). The term “preference function” has previously been
used in this context [14].
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the ranking is that the search engines are unable to directlyperceive this absolute relevance of the
pages. Here, it makes sense to think of each vote as anoisy estimateof the correct, absolute ranking.
Our goal is to find an aggregate ranking that is as close as possible to the correct ranking, based on
these noisy estimates. This is the type of setting that we will study in this paper.

In a 2005 paper, Conitzer and Sandholm considered the following way of making this precise [3].
There is a correct rankingr of the alternatives; givenr, for every rankingv, there is a conditional
probabilityP (v|r) that a given voter will cast votev. (In this paper, we do not consider the possibil-
ity that different voters’ votes are drawn according to different conditional distributions.) Votes are
conditionally independent givenr. Put another way, the noise that each voter experiences is i.i.d.
The Bayesian network in Figure 1 illustrates this setup.

vote 1

"correct" outcome

vote 2 vote n...

Figure 1: A Bayesian network representation.

The votes are the observed variables, and the noise that a voter experiences is represented by the
conditional probability table of that vote. Under this setup, a natural goal is to find the maximum
likelihood estimate (MLE) of the correct ranking. (Ifr is drawn uniformly at random, this maximum
likelihood estimate also maximizes the posterior probability.) The function that takes the votes as
input and produces the MLE ranking(s) as output is a preference function; in a sense, it is the optimal
one for the particular noise model at hand.

As pointed out by Conitzer and Sandholm, they were not the first to consider this type of setup.
In fact, the basic idea dates back over two centuries to Condorcet [4], who studied one particular
noise model. He solved for the MLE PF for two and three alternatives under this model; the general
solution was given two centuries later by Young [13], who showed that the MLE PF for Condorcet’s
model coincides with a function proposed by Kemeny [7]. Thishas frequently been used as an
argument in favor of using Kemeny’s PF; however, different noise models will in general result in
different MLE PFs. Several generalizations of this basic noise model have been studied [6, 5, 8, 9].
Conitzer and Sandholm considered the opposite direction: they studied a number of specific well-
known PFs and they showed that for some of them, there exists anoise model such that this PF
becomes the MLE, whereas for others, no such noise model can be constructed. This shows that the
former PFs are in a sense more natural than the latter. Also, when a noise model can be constructed,
it gives insight into the PF; moreover, if the noise model is unreasonable in a certain way, it can be
modified, resulting in an improved PF.

In this paper, we continue this line of work. We provide an exact characterization of the class
of (neutral) PFs for which a noise model can be constructed: we show that this class is equal to the
class of (neutral)simple ranking scoring functions (SRSFs), which, for every vote, assign a score to
every potential aggregate ranking, and the ranking(s) withthe highest total score win(s). We show
that several common PFs are SRSFs (these proofs resemble thecorresponding proofs by Conitzer
and Sandholm that these PFs are MLEs, but the proofs are significantly simpler in the language of
SRSFs). We also considerextended ranking scoring functions (ERSFs), which coincide with SRSFs
except they can break ties according to another SRSF, and remaining ties according to another SRSF,
etc. We show that if there is a bound on the number of votes, then thetwo classes (SRSFs and
ERSFs) coincide. We study some basic properties of SRSFs andERSFs, some of them closely
related to Conitzer and Sandholm’s proof techniques. Finally, we study one PF, Single Transferable
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Vote (STV), also known as Instant Runoff Voting, in detail. STV is used in many elections around
the world; additionally, it illustrates a number of key points about our results. A noise model for
STV was given by Conitzer and Sandholm. However, this noise model involves probabilities that are
infinitesimally smaller than other probabilities. We show that such infinitesimally small probabilities
are in a sense necessary, by showing that STV is in fact not an SRSF (when there is no bound on the
number of votes). Still, we do show that STV is an ERSF (in a waythat resembles the noise model
with infinitesimally small probabilities). Hence, STV is infact an MLE PF if there is an upper bound
on the number of votes. Along the way, some interesting questions arise about how ties should be
broken under STV. We propose two ways of breaking ties that webelieve are perhaps more sensible
than the common way, although at least one of the ways leads tocomputational difficulties. We also
leave some open questions.

2 Definitions

In the below, we letA be the set of alternatives,|A| = m, and L(A) the set of linear or-
ders over (that is, strict rankings of) these alternatives.A preference function (PF)is a function
f :

⋃
i=0,1,2,... L(A)i → 2L(A) − ∅. That is,f takes as input a vector (of any length)V of linear

orders (votes) over the alternatives, and as output produces one or more linear orders over (aggregate
rankings of) the alternatives. (On many inputs, only a single ranking is produced, but it is possible
that there are ties.) Input vectors are also calledprofiles. We restrict our attention to PFs that are
anonymous, that is, they treat all votes equally; hence, a profile can bethought of as a multiset of
votes. Below are the PFs that we will study in this paper.

• Positional scoring functions. A positional scoring function is defined by a vector
(s1, . . . , sm) ∈ Rm, with s1 ≥ s2 ≥ . . . ≥ sm. An alternative receivessi points every
time it is rankedith. Alternatives are ranked by how many points they receive;if some alter-
natives end up tied, then they can be ranked in any order (and all the complete rankings that
can result from this will be produced by the PF). Examples include plurality (s1 = 1, s2 =
s3 = . . . = sm = 0), vetoor anti-plurality (s1 = s2 = . . . = sm−1 = 1, sm = 0), andBorda
(s1 = m− 1, s2 = m− 2, . . . , sm = 0).

• Kemeny.Given a votev, a possible rankingr, and two alternativesa, b, let δ(v, r, a, b) =
1 if a ≻v b and a ≻r b, and δ(v, r, a, b) = 0 otherwise. Then,f(V ) =
arg maxr∈L(A)

∑
a,b∈A

∑
v∈V δ(v, r, a, b). That is, we choose the ranking(s) that maxi-

mize(s) the total number of times that the ranking agrees with a vote on a pair of alternatives.

• Single Transferable Vote (STV).The alternative with the lowest plurality score (that is, the one
that is ranked first by the fewest votes) is ranked last, and isremoved from all the votes (so
that the plurality scores change). The remainder of the ranking is determined recursively. (We
will have more to say about how ties are broken later.)

A PF isneutral if treats all alternatives equally. To be precise, a PF is neutral if for any votesV
and any permutationπ on the alternatives,f(π(V )) = π(f(V )). Here, a permutation is applied to
a vector or set of rankings of the alternatives by applying itto each individual alternative in those
rankings. Naturally, neutrality is a common requirement. Another common requirement for an
anonymous PF ishomogeneity: if we multiply the profile by some natural numbern > 0 (that is,
replace each vote byn duplicates of it), then the outcome should not change. All ofthe above PFs
are anonymous, neutral, and homogenous.

We now define noise models and MLE PFs formally.

Definition 1 A noise modelν specifies a probabilityPν(v|r) for everyv, r ∈ L(A).

183



Definition 2 A noise modelν is neutralif for anyv, r, and permutationπ onA, we havePν(v|r) =
Pν(π(v)|π(r)).

Definition 3 A PF f is a maximum likelihood estimator (MLE)if there exists a noise modelν so
thatf(V ) = arg maxr∈L(A)

∏
v∈V Pν(v|r).

We now define simple ranking scoring functions. Effectively, every vote gives a number of points
to every possible aggregate ranking, and the ranking(s) with the most points win(s).

Definition 4 A PF f is a simple ranking scoring function (SRSF)if there exists a functions :
L(A)× L(A) → R such that for allV , f(V ) = arg maxr∈L(A)

∑
v∈V s(v, r).

Definition 5 A functions : L(A) × L(A) → R is neutralif for any v, r, and permutationπ on A,
s(v, r) = s(π(v), π(r)).

An SRSF can be run by explicitly computing each ranking’s score, but because there arem!
rankings this is impractical for all but the smallest numbers of alternatives. However, such explicit
computation is generally not necessary. For example, we will see that positional scoring functions
as well as the Kemeny function are SRSFs. Positional scoringfunctions are of course easy to run;
running the Kemeny function is in fact NP-hard [1], but can inpractice be done quite fast [2, 9].

3 Equivalence of neutral MLEs and SRSFs

We now show the equivalence of MLEs and SRSFs. We only show this for neutral PFs; in fact, it
is not true for PFs that are not neutral. For example, a PF thatalways chooses the same rankingr∗

regardless of the votes is an SRSF, simply by settings(v, r∗) = 1 for all v and settings(v, r) = 0
everywhere else. However, this PF is not an MLE: given a noisemodelν, if we take another ranking
r 6= r∗, we must have

∑
v∈L(A) Pν(v|r) = 1 =

∑
v∈L(A) Pν(v|r∗), hence there exists somev such

thatPν(v|r) ≥ Pν(v|r∗); it follows thatr∗ is not the (sole) winner ifv is the only vote.

Lemma 1 A neutral PFf is an MLE if and only if it is an MLE for a neutral noise model.

Proof: The “if” direction is immediate. For the “only if” direction, given a noise modelν for f ,
construct a new noise modelν′ as follows:Pν′(v|r) = (1/m!)

∑
π Pν(π(v)|π(r)). (Here,π ranges

over permutations ofA.) This is still a valid noise model because
∑

v∈L(A) Pν′(v|r) =∑
v∈L(A)(1/m!)

∑
π Pν(π(v)|π(r)) = (1/m!)

∑
π

∑
v∈L(A) Pν(π(v)|π(r)) = 1. ν′

is also neutral becausePν′(π(v)|π(r)) = (1/m!)
∑

π′ Pν(π′(π(v))|π′(π(r))) =
(1/m!)

∑
π′′ Pν(π′′(v)|π′′(r)) = Pν′(v|r). Also, if r∗ ∈ arg maxr∈L(A)

∏
v∈V Pν(v|r),

then by the neutrality off , for any π, π(r∗) ∈ arg maxr∈L(A)

∏
v∈V Pν(π(v)|r).

Hence, r∗ ∈ arg maxr∈L(A)(1/m!)
∑

π

∏
v∈V Pν(π(v)|π(r)) =

arg maxr∈L(A)

∏
v∈V (1/m!)

∑
π Pν(π(v)|π(r)) = arg maxr∈L(A)

∏
v∈V Pν′(v|r). Con-

versely, it can similarly be shown that ifr∗ /∈ arg maxr∈L(A)

∏
v∈V Pν(v|r), then

r∗ /∈ arg maxr∈L(A)

∏
v∈V Pν′(v|r). Hence,ν′ is a valid noise model forf .

Lemma 2 A neutral PFf is an SRSF if and only if it is an SRSF for a neutral functions′.

Proof: The “if” direction is immediate. For the “only if” direction, given a functions,
construct a new functions′ as follows: s′(v, r) =

∑
π s(π(v), π(r)). s′ is neutral because

s′(π(v), π(r)) =
∑

π′ s(π
′(π(v)), π′(π(r))) =

∑
π′′ s(π

′′(v), π′′(r)) = s′(v, r). Also,
if r∗ ∈ arg maxr∈L(A)

∑
v∈V s(v, r), then by the neutrality off , for any π, π(r∗) ∈

arg maxr∈L(A)

∑
v∈V s(π(v), r). Hence, r∗ ∈ arg maxr∈L(A)

∑
π

∑
v∈V s(π(v), π(r)) =
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arg maxr∈L(A)

∑
v∈V

∑
π s(π(v), π(r)) = arg maxr∈L(A)

∑
v∈V s′(v, r). Con-

versely, it can similarly be shown that ifr∗ /∈ arg maxr∈L(A)

∑
v∈V s(v, r), then

r∗ /∈ arg maxr∈L(A)

∑
v∈V s′(v, r). Hence,s′ is a valid function forf .

We can now prove the characterization result:

Theorem 1 A neutral PF is an MLE if and only if it is an SRSF.

Proof: If f is an MLE, then for some neutralν, f(V ) = arg maxr∈L(A)

∏
v∈V Pν(v|r) =

arg maxr∈L(A) log(
∏

v∈V Pν(v|r)) = arg maxr∈L(A)

∑
v∈V log(Pν(v|r)). Hence it is the SRSF

wheres(v, r) = log(Pν(v|r)) (here,s is neutral).
Conversely, iff is an SRSF, then for some neutrals, f(V ) = arg maxr∈L(A)

∑
v∈V s(v, r) =

arg maxr∈L(A) 2
P

v∈V
s(v,r) = arg maxr∈L(A)

∏
v∈V 2s(v,r). Becauses is neutral, we have that∑

v∈L(A) 2s(v,r) is the same for allr. (This is because for anyr1, r2, there exists a permutationπ

on A such thatπ(r1) = r2, so that we have
∑

v∈L(A) 2s(v,r1) =
∑

v∈L(A) 2s(π(v),r2) by neutrality,

which by changing the order of the summands is equal to
∑

v∈L(A) 2s(v,r2).) It follows thatf(V ) =

arg maxr∈L(A)

∏
v∈V (2s(v,r))/(

∑
v′∈L(A) 2s(v′,r)). Hencef is the maximum likelihood estimator

for the noise modelν defined byPν(v|r) = (2s(v,r))/(
∑

v′∈L(A) 2s(v′,r)).

4 Examples of SRSFs

We now show that some common PFs are SRSFs. These proofs resemble the corresponding proofs
by Conitzer and Sandholm that these functions are MLEs, but they are simpler. These propositions
also follow from the work of Zwicker [15].

Proposition 1 Every positional scoring function is an SRSF.

Proof: Given a positional scoring function, lett : L(A) × A → R be defined as follows:t(v, a)
is the number of points thata gets for votev. Then, lets(v, r) =

∑m
i=1(m − i)t(v, r(i)),

where r(i) is the alternative rankedith in r. Let us consider the SRSF defined by this func-
tion s; it selectsarg maxr∈L(A)

∑
v∈V s(v, r) = arg maxr∈L(A)

∑
v∈V

∑m

i=1(m − i)t(v, r(i)) =
arg maxr∈L(A)

∑m
i=1(m − i)

∑
v∈V t(v, r(i)). Here,

∑
v∈V t(v, r(i)) is the total score that alter-

native r(i) receives under the positional scoring function. Becausem − i is decreasing ini, to
maximize

∑m

i=1(m− i)
∑

v∈V t(v, r(i)), we should rank the alternative with the highest total score
first, the one with the next-highest total score second,etc. If some of the alternatives are tied, they
can be ranked in any order.

Not only positional scoring functions are SRSFs, however.

Proposition 2 The Kemeny PF is an SRSF.

Proof: This is almost immediate: we defined the Kemeny PF byf(V ) =
arg maxr∈L(A)

∑
a,b∈A

∑
v∈V δ(v, r, a, b), so we simply lets(v, r) =

∑
a,b∈A δ(v, r, a, b).

5 Extended ranking scoring functions

An extended ranking scoring function (ERSF)starts by running an SRSF, then (potentially) breaks
ties according to another SRSF, and (potentially) any remaining ties according to yet another SRSF,
etc.Formally:
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Definition 6 An ERSFf of depthk consists of an ERSFf ′ of depthk − 1 and a functionsd :
L(A) × L(A) → R. It choosesf(V ) = arg maxr∈f ′(V )

∑
v∈V sd(v, r). An ERSF of depth0

returns the set of all rankingsL(A).

So, an ERSF of (finite) depthd is defined by a sequencef1, . . . , fd of SRSFs. We can think of
the scores at each depth as being infinitesimally smaller than the ones at the previous depths. We can
multiply the scores at depthl by ǫl for some smallǫ and then add all the scores together to obtain
an SRSF; however, this SRSF will in general be different fromthe ERSF. Nevertheless, ifǫ is small
relative to the number of votes, then the two will coincide. This is the intuition behind the following
result:

Proposition 3 For any ERSF, for any natural numberN , there exists an SRSF that agrees with the
ERSF as long as there are at mostN votes.

Proof: Let the sequence of SRSFsf1, . . . , fd, defined by scoring functionss1, . . . , sd, define the
ERSFf ; we prove the claim by induction. The claim is trivial ford = 1. Let us assume that we
have proven the result ford = k − 1; we will show it ford = k. Let f ′ be the ERSF corresponding
to the firstd − 1 SRSFs, and, by the induction assumption, lets define the SRSF that agrees with
f ′ when there are at mostN votes. There are only finitely many profilesV of size at mostN ;
hence, there must be someǫ such that

∑
v∈V s(v, r) <

∑
v∈V s(v, r′) and |V | ≤ N implies that∑

v∈V s(v, r)+ ǫ <
∑

v∈V s(v, r′). Now let us considersd; there must exist someH ∈ R such that
|V | ≤ N implies

∑
v∈V sd(v, r) < H. Then, lets′ be defined bys′(v, r) = s(v, r)+(ǫ/H)sd(v, r).

On profiles of size at mostN , the second term will contribute at mostǫ to the total score of anyr,
so if r receives a strictly lower total score thanr′ unders, it will also receive a strictly lower score
unders′. Hence, the only effect of the second term is to break ties according tosd; so the SRSF
defined bys′ coincides with the original ERSFf when there are at mostN votes.

Thus, for all practical purposes, we can simulate an ERSF with an SRSF. (Of course, every SRSF
is also an ERSF.)

6 Properties of SRSFs and ERSFs

In this section, we study some important properties of SRSFsand ERSFs. Specifically, we study
consistencyandcontinuity. There are several related works that study similar properties and derive
related results, but there are significant differences in the setup. Smith [11] and Young [12] study
these properties insocial choice rules, which select one or more alternatives as the winner(s); we
will discuss their results in more detail in Section 8. However, consistency in the context of pref-
erence functions (studied previously by Young and Levenglick [14]) is significantly different from
consistency in the context of social choice rules. Other related work includes Myerson [10], who ex-
tends the Smith and Young result to settings where voters do not necessarily submit a ranking of the
alternatives, and Zwicker [15], who studies a general notion of scoring rules and shows these rules
are equivalent tomean proximity rules, which compute the mean location of the votes according to
some embedding in space, and then choose the closest outcome(s).

An anonymous PFf is consistentif for any pair of profilesV1 andV2, if f(V1) ∩ f(V2) 6= ∅,
thenf(V1 + V2) = f(V1) ∩ f(V2) (where addition is defined in the natural way). That is, if the
rankings thatf produces givenV1 overlap with those thatf produces givenV2, then whenV1 and
V2 are taken together,f must produce the rankings that were produced in both cases, and no others.

Proposition 4 Any ERSF is consistent.

Proof: Letf be an ERSF of depthk, defined by a sequence of SRSFsf1, . . . , fk with score functions
s1, . . . , sk. For anyi ≤ k, let Fi be the ERSF of depthi defined by the sequencef1, . . . , fi. Let V1,
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V2 be profiles such thatf(V1)∩ f(V2) 6= ∅; this also implies thatFi(V1)∩Fi(V2) 6= ∅ for all i ≤ k.
We use induction oni to prove that for anyi ≤ k, Fi(V1 + V2) = Fi(V1) ∩ Fi(V2). Wheni = 1,
F1(V1) = f1(V1) is the set of rankingsr that maximizes1(V1, l); F1(V2) = f1(V2) is the set of
rankingsr that maximizes1(V2, l). Therefore,F1(V1)∩F1(V2) (which we know is nonempty) is the
set of rankingsr that maximizes1(V1 + V2, r). Now, suppose that for somei ≤ k, Fi(V1 + V2) =
Fi(V1)∩Fi(V2). Fi+1(V1) (Fi+1(V2)) is the set of rankingsr ∈ Fi(V1) (r ∈ Fi(V2)) that maximize
si+1(V1, r) (si+1(V2, r)). Hence,Fi+1(V1) ∩ Fi+1(V2) (which we know is nonempty) is the set of
rankingsr ∈ Fi(V1)∩ Fi(V2) that maximizesi+1(V1, r) + si+1(V2, r) = si+1(V1 + V2, r). By the
induction assumption, we have thatFi(V1) ∩ Fi(V2) = Fi(V1 + V2), and we know that the set of
rankingsr ∈ Fi(V1 + V2) that maximizesi+1(V1 + V2, r) is equal toFi+1(V1 + V2). It follows
thatFi+1(V1) ∩ Fi+1(V2) = Fi+1(V1 + V2), completing the induction step. Wheni = k, Fk = f ,
which completes the proof.

The proofs by Conitzer and Sandholm [3] that several PFs are not MLEs effectively come down
to showing examples where these PFs are not consistent. By the above result, this implies that they
are not ERSFs (and hence not SRSFs, and hence not MLEs). Formally (we will not define these PFs
in this paper):

Proposition 5 The Bucklin, Copeland, maximin, and ranked pairs PFs are notERSFs.

Proof: None of these PFs are consistent: counterexamples can be found in the proofs of Conitzer
and Sandholm [3].

Let L(A) = {l1, . . . , lm!}. For any anonymous PFf , any profileV can be rewritten as a
linear combination of the linear orders inL(A). Let V =

∑m!
i=1 tili, where for anyi ≤ m!, ti

is a non-negative integer. Iff is also homogenous, then the domain off can be extended to the
set of all fractional profilesV =

∑m!
i=1 tili where eachti is a nonnegative rational number, as

follows. We chooseNV > 0, NV ∈ N such that for everyi ≤ m!, tiNV is a integer. Then, we let
f(V ) = f(NV V ). (This is well-defined because of the homogeneity.)

A fractional profileV can be viewed as a point in them!-dimensional space(Q≥0)m! where
the coefficientti is the component of theith dimension. Thus, in a slight abuse of notation, we can
applyf to vectors ofm! nonnegative rational numbers, under the interpretation thatf(t1, . . . , tm!) =

f(
∑m!

i=1 tili). The extension off to (Q≥0)m! allows us to define continuity. An anonymous PFf is
continuousif for any sequence of pointsp1, p2, . . . ∈ (Q≥0)m! with 1. limi→∞ pi = p, and 2. for
all i ∈ N, r ∈ f(pi), we haver ∈ f(p). That is, iff produces some rankingr on every point along
a sequence that converges to a limit point, thenf should also producer at the limit point.2

Proposition 6 Any SRSF is continuous.

Proof: For any sequence of pointsp1, p2, . . . ∈ (Q≥0)m! with limi→∞ pi = p, we have that for all
r ∈ L(A), limi→∞ s(pi, r) = s(p, r). If r ∈ f(pi) for all i, then for anyr′ ∈ L(A), s(pi, r) ≥
s(pi, r

′), hence we haves(p, r) = limi→∞ s(pi, r) ≥ limi→∞ s(pi, r
′) = s(p, r′). It follows that

r ∈ f(p).

In contrast, ERSFs are not necessarily continuous, as shownby the following example. Letf1 be
the SRSF defined by the score functions1, which is defined bys1(v, r) = 1 if v = r ands1(v, r) =
0 if v 6= r. Let f2 be the Borda function. Letf be the ERSF defined by the sequencef1, f2. Let
m = 3 with alternativesA,B, andC, and letp = {A ≻ B ≻ C,B ≻ C ≻ A,C ≻ B ≻ A}. We
havef(p) = {B ≻ C ≻ A}, but for anyǫ > 0, f(p + ǫ(A ≻ B ≻ C)) = f1(p + ǫ(A ≻ B ≻

2Our definition of continuity is equivalent to the correspondence beingupper hemicontinuous, or closed(the two are
equivalent in this context).
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C)) = {A ≻ B ≻ C}. Therefore, if we letpi = p+ 1
i
(A ≻ B ≻ C), it follows thatlimi→∞ pi = p

and for anyi, A ≻ B ≻ C ∈ f(pi), butA ≻ B ≻ C /∈ f(p).
As we have noted before, there is generally a possibility of ties for PFs, and sometimes a PF is

not defined for these cases (for example, we have not defined how they should be broken for STV).
We can use the continuity property to gain some insight into how ties should be broken. For any
S ⊆ (Q≥0)m!, let C(S) be theclosureof S, that is,C(S) is the smallest set such that for any
infinite sequencep1, p2, . . . in S, if limi→∞ pi = p, thenp ∈ C(S). Let fS be a PF that satisfies
anonymity and homogeneity, defined overS. That is,fS : S → 2L(A)−∅. Theminimal continuous
extensionof fS is the PFfC(S) : C(S) → 2L(A)−∅ such that for anyp ∈ C(S) and anyr ∈ L(A),
r ∈ fC(S)(p) if and only if there exists a sequencep1, p2, . . . in S such thatlimi→∞ pi = p and for
anyi, r ∈ fS(pi). The following lemma will be useful in our study of STV.

Lemma 3 Suppose we have two SRSFsf, fS that have the same score functions, butf is defined
over(Q≥0)m!, andfS over a setS ⊆ (Q≥0)m! such thatC(S) = (Q≥0)m!. If for any r ∈ L(A),
there exists a profilepr such thatf(pr) = {r}, thenf is the minimal continuous extension offS .

Proof: By Proposition 6,f is continuous. On the other hand, for anyp ∈ (Q≥0)m! with r ∈ f(p),
for any i ∈ N, f(p + 1

i
pr) = {r}. BecauseC(S) = (Q≥0)m!, for everyi ∈ N, there exists a point

pi ∈ S sufficiently close top + 1
i
pr such thatf(pi) = {r}, becauses is continuous and atp + 1

i
pr,

for anyr′ ∈ L(A) with r 6= r′, s(p + 1
i
pr, r)− s(p + 1

i
pr, r

′) > 0. So,p1, p2, . . . is a sequence of
points inS with for anyi, r ∈ fS(pi); therefore any continuous extension must haver ∈ f(p).

7 Single Transferable Vote (STV)

In this section, we study the Single Transferable Vote (STV)PF in detail, for two reasons. First, it
is a commonly used PF, so it is of interest in its own right. Second, it gives a good illustration of
a number of subtle technical phenomena, and a precise understanding of these phenomena is likely
to be helpful in the analysis of other PFs. We recall that under STV, in each round, the alternative
that is ranked first (among the remaining alternatives) the fewest times is removed from all the votes
and ranked the lowest among the remaining alternatives, that is, just above the previously removed
alternative. We note that when an alternative is removed, all the votes that ranked it firsttransfer
to the next remaining alternative in that vote. The number ofvotes ranking an alternative first is
that alternative’splurality scorein that round. One key issue is determining how ties in a round
should be broken, that is, what to do if multiple alternatives have the lowest plurality score in a
round. We will at first ignore this and show that STV is an ERSF.(This proof resembles the earlier
Conitzer-Sandholm noise model but is much clearer in the language of scoring functions.)

Theorem 2 When restricting attention to profiles without ties, STV is an ERSF.

Proof: For l ∈ L(A), let l(i) be theith-ranked alternative inl. Let s1(v, r) = 0 if r(m) = v(1),
ands1(v, r) = 1 otherwise. That is, a ranking receives a point for a vote if and only if the ranking
does not rank the alternative ranked first in the vote last. Consider the alternativea with the lowest
plurality score; the rankings that win unders1 are exactly the rankings that ranka last. Now, let
s2(v, r) = 0 if eitherr(m − 1) = v(1), or r(m) = v(1) andr(m − 1) = v(2); ands2(r, v) = 1
otherwise. That is, a ranking receives a point for a voteunlessthe ranking ranks the first alternative
in the vote second-to-last, or the ranking ranks the first alternative in the vote last and the second
alternative in the vote second-to-last. If we look at rankings that surviveds2—the rankings that
ranked the alternativea with the lowest plurality score last—a ranking that ranksb ( 6= a) second-to-
last will fail to receive a point for every vote that ranksb first, and for every vote that ranksa first
andb second. That is, it fails to receive a point for every vote that ranksb first in the second iteration
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of STV. Hence, the rankings that survives2 are the ones that rank the alternative that receives the
fewest votes in the second iteration of STV second-to-last.More generally, letsk(v, r) = 0 if,
letting b = r(m− k + 1), for everya such thatv−1(a) < v−1(b), r−1(a) > r−1(b) = m− k + 1;
andsk(v, r) = 0 otherwise. That is, a ranking receives a point for a voteunlessthe alternativeb
rankedkth-to last byr is preceded inv only by alternatives ranked afterb in r. Given thatr has not
yet been eliminated and is hence consistent with STV so far, the latter condition holds if and only if
b receivesv’s vote in thekth iteration of STV.

In fact, we can break ties in STV simply according to the scoring functions used in the proof of
Theorem 2. We will call the resulting PFERSF-STV. ERSF-STV is an ERSF and hence consistent.
By Theorem 1 and Proposition 3, this means that ERSF-STV is anMLE when there is an upper
bound on the number of votes. Does there exist a tiebreaking rule for STV such that it is an SRSF,
that is, so that it is an MLE without a bound on the number of votes? We will show that the answer
is negative. To do so, we consider one particular tiebreaking rule. Under this rule, when multiple
alternatives are tied to be eliminated, we have a choice of which one is eliminated. A ranking is
among the winning rankings if and only if there is some sequence of such choices that results in this
ranking. We call the resulting PFparallel-universes tiebreaking STV (PUT-STV). (Every choice can
be thought of as leading to a separate parallel universe in which STV is executed.)

Lemma 4 PUT-STV is the minimal continuous extension of STV defined onnon-tied profiles.

Proof: Let fSTV be the STV PF restricted to the setS of non-tied profiles, and letfPUT−STV be
PUT-STV. We first prove that for any tied profilep = (t1, . . . , tm!) and anyr ∈ fPUT−STV (p),
there exists a sequence of pointsp1, p2, . . . ∈ S such thatlimi→∞ pi = p and for anyi, r ∈
fSTV (pi). From this, it will follow that any continuous extension offSTV must include all of the
rankings that win underfPUT−STV among the winners. LetN be a positive integer such that for any
i ≤ m!, Nti ∈ Z. Letn = |Np|, that is,n =

∑m!
i=1 Nti. For anya ∈ A and anyr ∈ fPUT−STV (p)

such thatr = ai1 ≻ . . . ≻ aim
, where(i1, . . . , im) is a permutation of(1, . . . ,m), let va,r = a ≻

ai1 ≻ others if a 6= ai1 , andva,r = ai1 ≻ others if a = ai1 . (These are complete linear orders
in which the order of the others does not matter.) We letpr =

∑m−1
j=0 2j

∑
k<m−j vaik

,r. We now
show that for anyǫ > 0, p + ǫpr ∈ S andfSTV (p + ǫpr) = {r}.

For anyA′ ⊆ A and any profilep overA, let p|A′ be the profile overA′ obtained by removing
all alternatives inA − A′ from p. For anyj ≤ m, let Aj = {ai1 , . . . , aim−j

}. For any profilep∗,
subset of alternativesA′ ⊆ A, and any alternativea, let Pl(p∗|A′ , a) be the number of times thata
is ranked first in the votes inp∗|A′ . We note that becauser ∈ fPUT−STV (p), for anyj ≤ m − 1,
anyk < m− j, Pl(p|Aj

, aik
) ≥ Pl(p|Aj

, aim−j
). We have:

Pl((p + ǫpr)|Aj
, aik

) = Pl(p|Aj
, aik

) + ǫP l(pr|Aj
, aik

)

≥Pl(p|Aj
, aik

) + ǫ2j > Pl(p|Aj
, aik

) + ǫ

j−1∑

q=0

2q

=Pl(p|Aj
, aik

) + ǫP l(pr|Aj
, aim−j

)

≥Pl(p|Aj
, aim−j

) + ǫP l(pr|Aj
, aim−j

)

=Pl((p + ǫpr)|Aj
, aim−j

)

Hence, for anyj ≤ m− 1, in roundj, aim−j
is the alternative inAj that is ranked first in the votes

in (p + ǫpr)|Aj
(strictly) the fewest times. It follows thatfSTV (p + ǫpr) = {r}.

All that remains to show is thatfPUT−STV is continuous, that is, for any sequencep1, p2, . . . ∈
S for which limi→∞ pi = p and there exists anr ∈ L(A) such that for anyi, r ∈ fSTV (pi),
we have thatr ∈ fPUT−STV (p). Again, letr = ai1 ≻ . . . ≻ aim

andAj = {ai1 , . . . , aim−j
}.

Because for alli andk < m − j, Pl(pi|Aj
, aim−j

) < Pl(pi|Aj
, aik

), by the continuity ofPl, we
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havePl(p|Aj
, aim−j

) ≤ Pl(p|Aj
, aik

). Hence, under PUT-STV, it is possible to eliminateaim−j
in

thej + 1th round, completing the proof.

Lemma 5 PUT-STV is not consistent.

Proof: Consider the following profile of votes, whereA, B, andC are alternatives:2(A ≻ B ≻
C) + 0(A ≻ C ≻ B) + 1(B ≻ A ≻ C) + 1(B ≻ C ≻ A) + 1(C ≻ A ≻ B) + 1(C ≻ B ≻ A).
All alternatives are tied in the first round, and we split intothree parallel universes. In the universe
whereA is eliminated, theA ≻ B ≻ C votes transfer toB, andB is left as the only possible winner,
producing the rankingB ≻ C ≻ A. In the universe whereB is eliminated, theB ≻ A ≻ C and
B ≻ C ≻ A votes transfer evenly toA andC, leaving us with another tie betweenA andC, and
hence the rankingsA ≻ C ≻ B andC ≻ A ≻ B are produced. Similarly, in the universe where
C is eliminated first, the rankingsA ≻ B ≻ C andB ≻ A ≻ C are produced. Ultimately, every
rankingexceptC ≻ B ≻ A is in the set of winning rankings.

By symmetry, under the profile0(A ≻ B ≻ C) + 2(A ≻ C ≻ B) + 1(B ≻ A ≻ C) + 1(B ≻
C ≻ A) + 1(C ≻ A ≻ B) + 1(C ≻ B ≻ A), every ranking exceptB ≻ C ≻ A wins. If we add
the two profiles together, we obtain2(A ≻ B ≻ C) + 2(A ≻ C ≻ B) + 2(B ≻ A ≻ C) + 2(B ≻
C ≻ A) + 2(C ≻ A ≻ B) + 2(C ≻ B ≻ A), which has all rankings in its output. But this violates
consistency (which would require all rankings butC ≻ B ≻ A andB ≻ C ≻ A to win).

Corollary 1 PUT-STV is not an ERSF (and hence not an SRSF).

Proof: This follows immediately from Proposition 4 and Lemma 5.

This allows us to prove a property of STV in general:

Theorem 3 STV is not an SRSF, even when restricting attention to non-tied profiles.

Proof: Suppose thatfSTV (restricted to the setS of non-tied profiles) is an SRSF defined by the
score functions. By Lemma 4,fPUT−STV is the minimal continuous extension offSTV . Also,
for everyr ∈ L(A), it is easy to construct a (non-tied) profilepr such thatfSTV (pr) = {r}. So,
we can use Lemma 3 to conclude thatfPUT−STV is the SRSF that results from usings on all
profiles. However, by Corollary 1, we know that PUT-STV is notan SRSF, and we have the desired
contradiction.

Incidentally, PUT-STV is also computationally intractable (in a sense); we omit the proof due to
space constraint. (We do not know if an analogous result holds for ERSF-STV.)

Theorem 4 It is NP-complete to determine whether, given a profilep and an alternativea, one of
the winning rankings under PUT-STV ranksa first.

As it turns out, neither PUT-STV nor ERSF-STV corresponds tohow ties are commonly broken
under STV: rather, usually, if there is a tie, all of these alternatives are simultaneously eliminated.
Mathematically, this leads to bizarre discontinuities; weomit further discussion due to space con-
straint.

8 Axiomatic characterization of SRSFs and ERSFs

Examiningsocial choice rules (SCRs), that is, functions that output one or more alternatives as
the winner(s) (rather than one or more rankings), Young found the following axiomatic character-
ization of positional scoring functions [12]. (A similar characterization was given by Smith [11].)
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He showed that all SCRs satisfying consistency, continuity, and neutrality—SCR analogues of the
properties we considered—must be positional scoring functions, and all positional scoring functions
satisfy these properties. Further, dropping continuity, he found that any consistent and neutral SCR
must be equivalent to what in the language of this paper wouldbe called an “extended” positional
scoring function. These results lead to two natural analogous conjectures about PFs.

Conjecture 1 Any PF that is consistent, continuous, and neutral must be anSRSF (and therefore
an MLE).

Conjecture 2 Any PF that is consistent and neutral must be an ERSF (and therefore an MLE when
the number of votes is bounded).

It does not appear that these conjectures can be easily proven using Smith and Young’s tech-
niques.

9 Conclusions

The maximum likelihood approach provides a natural way for choosing a PF in settings where it
makes sense to think there is a “correct” ranking. In this paper, we gave a characterization of the
neutral MLE PFs, showing they coincide with the neutral SRSFs. We also considered ERSFs as a
slight generalization and showed that for bounded numbers of votes they coincide with SRSFs. We
considered key properties such as continuity and consistency, and gave several examples of SRSFs
and ERSFs. We studied STV in detail, showing that it is an ERSFbut not an SRSF, and discussed
the implications for breaking ties under STV. Finally, we left some open questions concerning the
complexity of ERSF tiebreaking for STV and whether consistency can be used to characterize the
class of SRSFs/ERSFs.

We believe that these results will greatly facilitate the use of the maximum likelihood approach
in (computational) social choice. Similar results can be obtained for social choice settings other than
PFs—for example, for social choice rules that only choose thewinning alternative(s), or for settings
in which the inputs are not linear orders (but rather, for example, labelings of the alternatives as
“approved” or “not approved”, or partial orders,etc.).
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Computing Spanning Trees in a

Social Choice Context

Andreas Darmann, Christian Klamler and Ulrich Pferschy

Abstract

This paper combines social choice theory with discrete optimization. We assume
that individuals have preferences over edges of a graph that need to be aggregated.
The goal is to �nd a socially �best� spanning tree in the graph. As ranking all
spanning trees is becoming infeasible even for small numbers of vertices and/or edges
of a graph, our interest lies in �nding algorithms that determine a socially "best"
spanning tree in a simple manner. This problem is closely related to the minimum (or
maximum) spanning tree problem in combinatorial optimization. Our main result
shows that for the various underlying ranking rules on the set of spanning trees
discussed in this paper the sets of �best� spanning trees coincide. Moreover, a greedy
algorithm based on a transitive group ranking on the set of edges will always provide
such a "best" spanning tree.

1 Introduction

In this paper we want to apply tools from social choice theory to topics from discrete opti-
mization. Although these topics are historically separated, in recent years there have started
attempts to combine these approaches. This is especially of interest whenever mathematical
concepts (such as graphs) are used in problems where group decisions need to be made.

As an actual example one could think of a small village that has to install a water network
or countries that need to agree on oil pipelines. Every homeowner in the village needs to
be connected, however, there are many di�erent ways to hook them up. A mathematical
representation of such a situation could be done by a spanning tree on a graph that connects
each pair of homeowners (i.e. vertices) in the village. However, di�erent homeowners might
have di�erent preferences over the possible connections between the homeowners (i.e. edges
of the graph). E.g. one homeowner might rather want to have it pass through his own
garden than through a nice park, whereas another one might think the other way round.

Such aggregations of individual preferences are the major focus in social choice theory
and many di�erent aggregation rules do exist and have been studied and compared in the
literature (see e.g. [8] or [10]). Our approach, however, will not analyse the aggregation of
such individual preferences, but start o� with a group ranking of the possible edges. This
ranking of the edges does not necessarily allocate numerical values to the edges. As each
spanning tree is a subset of the set of edges having a certain structure, we will - given the
group ranking - try to rank the di�erent spanning trees. This lies in the spirit of previous
results on ranking sets of objects (for an overview see [2]). Such rankings could be based on
Borda counts, on simple majority rule, be of lexicographic nature, etc; as for the edges, the
ranking of the spanning trees does not have to be based on numerical values of the edges
and does not need to assign a number to each tree. The goal for this type of problems is to
�nd the spanning tree which is "best" w.r.t. such a relation on spanning trees. Ranking all
spanning trees is, however, a di�cult problem even for small number of vertices and/or edges
given the quickly increasing number of feasible spanning trees. Our interest therefore lies in
�nding algorithms that determine a "best" spanning tree in a simple manner. This problem
is closely related to the minimum (or maximum) spanning tree problem, a classical problem
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in discrete optimization. The minimum spanning tree problem has numerous applications
in various �elds and can be solved e�ciently by greedy algorithms [1].

The main result in this paper shows that irrespective of the underlying ranking rules
discussed in this paper the set of �best� spanning trees coincide. What's more, using a
greedy algorithm to determine a maximal spanning tree based on a transitive group ranking
on the set of edges will always provide a "best" spanning tree.

2 Formal framework

2.1 Preliminaries

Let G = (V,E) be an undirected graph where V denotes the set of nodes and E denotes
the set of edges. Let n := |V | and m := |E|. A subset T ⊆ E is called spanning tree of G,
if the subgraph (V, T ) of G is acyclic and connected. Let τ denote the set of spanning trees
of G. Let I = {1, ..., k} denote a �nite set of individuals. For every individual i, 1 ≤ i ≤ k,
the preference order Pi on E is assumed to be a linear order on E (i.e. Pi is assumed to be
complete, transitive and asymmetric). A k-tuple π = (P1, P2, ..., Pk) is called a preference
pro�le and ℘ denotes the set of admissible preference pro�les. A complete order % consists
of an asymmetric part � and a symmetric part ∼ respectively. Given a complete order %κ
on τ , we call a tree T best tree with respect to %κ if there is no B ∈ τ with B �κ T .

Remark. Let T1, T2 ∈ τ . Having assigned a real number w(e) to each e ∈ E, the
minimum spanning tree problem is the problem of �nding a best tree with respect to the
relation T1 % T2 :⇐⇒

∑
e∈T1

w(e) ≤
∑
e∈T2

w(e). Analogously, a maximum spanning tree
is a best tree with respect to the relation T1 % T2 :⇐⇒

∑
e∈T1

w(e) ≥
∑
e∈T2

w(e).

We �rst present basic complete orders on the set E of edges from which orders on the
set τ of spanning trees of G are derived.

2.2 Basic orders on E

De�nition 2.1 Given Pi, individual i's Borda count of an edge e ∈ E is given by Bi(e) :=
|{f ∈ E : ePif}|. The total Borda count of edge e is de�ned by B(e) :=

∑
i∈I Bi(e). For

e, f ∈ E we de�ne e %b f :⇐⇒ B(e) ≥ B(f).

De�nition 2.2 Let e, f ∈ E. Then we de�ne the Simple Majority-order on E by e %sm
f :⇐⇒ |{i ∈ I : ePif}| ≥ |{i ∈ I : fPie}|.

For all i ∈ I we de�ne the singleton set Sti representing individual i's top choice by
Sti := {e ∈ E|ePif ∀f ∈ E \ {e}}. Furthermore let, for all i ∈ I, the set E be partitioned
into a set Si ⊂ E of edges individual i approves of and a set E \ Si individual i disapproves
of.

De�nition 2.3 Let e, f ∈ E. The Approval count of e is de�ned by A(e) := |{i ∈ I : e ∈
Si}|. The Approval-order %a is then de�ned by e %a f :⇐⇒ A(e) ≥ A(f).

De�nition 2.4 Let e, f ∈ E. The Plurality count of e is Pl(e) := |{i ∈ I : e ∈ Sti}|. The

Plurality-order %pl is de�ned by e %pl f :⇐⇒ Pl(e) ≥ Pl(f).

The relations %b, %a and %pl are weak orders on E, i.e. these relations are complete and
transitive. The relation %sm is a complete order as well, but in general %sm is not transitive
and hence not a weak order. Thus, in %sm preference cycles may occur. To overcome this
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inconvenience, one might be interested in procedures that transform a complete but not
transitive order into a weak order. We introduce Copeland's procedure [7], other possibilities
are e.g. Slater's procedure [11] or Black's procedure [5].

De�nition 2.5 Let %n be a complete order on E and let e, f ∈ E. Let

s(e, f) :=

 1 if e �n f
0 if e ∼n f
−1 if e ≺n f

be the score of e versus f . Let z(e) :=
∑
g∈E s(e, g). Then we de�ne e %cl f :⇐⇒ z(e) ≥

z(f) and call %cl Copeland's order on E.

Remark. Note that s(e, f) = −s(f, e) holds for all e, f ∈ E.

Obviously Copeland's order is a weak order on E. Thus setting %n:=%sm and deter-
mining the corresponding Copeland's order for example yields a weak order on E based on
the Simple Majority-order.

3 Some complete orders on τ

We �rst present three weak orders on τ that are based on weak orders on E presented in
Section 2.2. The Borda-order introduced in the following de�nition ranks T1 ∈ τ not lower
than T2 ∈ τ , if the sum of Borda counts of the edges contained in T1 is at least as high as
the sum of Borda counts of the edges of T2.

De�nition 3.1 For T ∈ τ we de�ne the Borda count of T by B(T ) :=
∑
e∈T B(e). Then

the Borda-order �B on τ is de�ned by letting, for all T1, T2 ∈ τ ,

T1 �B T2 :⇐⇒ B(T1) ≥ B(T2) .

Analogously, a best tree with respect to the Approval-order (Plurality-order) on τ is a
tree maximizing the edge-sum of Approval counts (Plurality counts).

De�nition 3.2 For T ∈ τ the Approval count of T is de�ned by A(T ) :=
∑
e∈T A(e). The

Approval-order �A on τ is de�ned by letting, for all T1, T2 ∈ τ ,

T1 �A T2 :⇐⇒ A(T1) ≥ A(T2) .

De�nition 3.3 For T ∈ τ the Plurality count of T is de�ned by Pl(T ) :=
∑
e∈T Pl(e).

Then we de�ne the Plurality-order �P on τ by letting, for all T1, T2 ∈ τ ,

T1 �P T2 :⇐⇒ Pl(T1) ≥ Pl(T2) .

Having assigned Borda counts (Approval counts, Plurality counts) to the edges e ∈ E,
a best tree with respect to the Borda-order (Approval-order, Plurality-order) is a tree with
maximum Borda count (Approval count, Plurality count). This approach can be generalized
as follows.

De�nition 3.4 Let τ be the set of spanning trees of G and let % be a weak order on E. A
tree M ∈ τ is called max-spanning tree if and only if for every edge f = {i, j}, f /∈M ,

f - e

holds for all e ∈M that are part of the unique simple path between i and j in M .
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Figure 1: An undirected graph G = (V,E) and a preference profile for three

voters.

Remark. The above de�nition of a max-spanning tree is a generalization of the path
optimality condition for the maximum spanning tree problem stated in [1]. Note that for
De�nition 3.4 % does not need to be based on numerical values; that is, there does not have
to be a number assigned to each edge.

A tree with maximum Borda count (Approval count, Plurality count) and, a max-
spanning tree in general, can be determined e�ciently by applying greedy algorithms �
such as Prim's or Kruskal's algorithm (for details see [1]) � for the maximum spanning tree
problem. For example, a �generalized� version of Kruskal's algorithm to compute a max-
spanning tree works as follows:
Arrange the edges e ∈ E in non-increasing order according to % and iteratively add an
edge to the solution set X (which is empty at the beginning) such that socially preferred
edges are taken �rst. I.e. �rst add to X an edge that no other edge is socially preferred to,
continue with the �next best� edge, etc. If adding an edge creates a cycle, the edge simply
is ignored and we go on with the next edge.

As mentioned above, the Simple Majority-order %sm on E however is not a weak order
because in general it is not transitive, and thus preference cycles may occur. Hence the
Simple Majority-order does not seem to immediately indicate an order on τ analogous to
the Borda, Approval or Plurality case. Nevertheless the complete order %sm on E can be
used to compare two trees. The idea of the following concept for comparing two trees based
on a given (not necessarily transitive) complete order % on E is to remove the edges the
trees have in common and to pairwise compare the remaining edges according to %.

De�nition 3.5 Let % be a complete order on E and let T1, T2 ∈ τ . Furthermore, let

T̃1 := T1 \ T2 and T̃2 := T2 \ T1. Then we de�ne

T1 %S T2 :⇐⇒
∑
a∈T̃1

∑
b∈T̃2

s(a, b) ≥ 0 ,

where, for a, b ∈ E, s(a, b) denotes the score of a versus b.

Remark. %S is a complete order on τ . Furthermore it is worth mentioning that in
De�nition 3.5, as well as in De�nition 3.4, % does not need to be of numerical nature, i.e.
% does not have to allocate numbers to the edges.

Example 1 Let %=%sm. For the graph displayed in Figure 1 there exist three spanning

trees: T1 := {a, b, d}, T2 := {b, c, d} and T3 := {a, c, d}. Given the preference pro�le in

Figure 1 we get a �sm b because we have aP1b and aP3b, whereas only voter 2 prefers b to
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Figure 2: On the left side an undirected graph G = (V,E) and on the right

side a corresponding preference profile for three voters are displayed.

a. Analogously we get b �sm c and c �sm a.
Because of T1 \ T2 = {a} and T2 \ T1 = {c} we get T2 �S T1 due to c �sm a. T1 \ T3 = {b}
and T3 \ T1 = {c} yield T1 �S T3 because of b �sm c. Finally, we get T3 �S T2 because

T2 \ T3 = {b} and T3 \ T2 = {a} hold and a �sm b is satis�ed. Thus we have T3 �S T2,

T2 �S T1 and T1 �S T3. Hence a best tree with respect to %S does not exist in this example.

As the previous example shows, if % is not transitive (e.g. if %=%sm) a best tree with
respect to %S in general does not exist because preference cycles may occur. Furthermore, as
the following example shows, a tree Tg output by a greedy algorithm (a �generalized� version
of Kruskal's algorithm) that is based on arranging edges e according to |{f ∈ E : e � f}|
in non-increasing order might be the worst tree according to %S , i.e. every other spanning
tree T satis�es T �S Tg.

Example 2 Given the graph and the preference pro�le shown in Figure 2, the Simple

Majority-order on E = {a, b, c, d, e, f} is of the following form:

a �sm b b �sm d c �sm a d �sm e f �sm c
a �sm d b �sm e c �sm b e �sm c f �sm d
a �sm e b �sm f d �sm c f �sm a f �sm e

Thus, the edge f is superior to four edges according to the Simple Majority-order, the edges

a and b are superior to three edges, c and d to two edges and e to one edge only. It is easy

to see that a generalized version of Kruskal's algorithm that arranges the edges according to

the Simple Majority-wins outputs the tree Tg = {f, a, b, d, e}. Altogether the graph contains

three spanning trees, the two others being T1 = {b, c, d, e, f} and T2 = {a, c, d, e, f}. We get

T1 \ Tg = {c} and Tg \ T1 = {a}, implying T1 �S Tg. Furthermore we have T2 \ Tg = {c}
and Tg \ T2 = {b} and hence T2 �S Tg. I.e. according to %S every other spanning tree of

the graph is strictly preferred to Tg.

In the next section however we show that a best tree with respect to %S always exists
and can be computed e�ciently if % is assumed to be a weak order on E. Thus it seems to
be a reasonable approach to use Copeland's order (Slater's order, Black's order) to establish
from %sm a weak order on the set E; Copeland's order (Slater's order, Black's order) then
might be used in order to determine %S .

4 Comparing trees

In the previous section we presented three weak orders on E that yield weak orders on τ in
an intuitive way. Further we presented a complete order %S on τ that consists of pairwise
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comparisons of edges based on a complete order % on E. If % is not transitive (e.g. relation
%sm), preference cycles may occur and a best tree with regard to %S might not exist. To
overcome this di�culty, we presented methods to transform a complete order on E that is
not transitive into a transitive order on E.

In this Section we will show that assuming % to be a weak order implies the existence
of a best tree with respect to %S . Moreover, we will show the equivalence of four orders on
τ that are based on a weak order % in the sense that a best tree with respect to one order
is always a best tree with respect to each of the other orders. This implies that, for all four
orders, a best tree with respect to the regarded order always exists and can be computed
e�ciently.

In what follows, % is assumed to be a given weak order on E. Note that % is not
necessarily based on numerical values assigned to the edges.

4.1 Three more complete orders on τ

Given T1, T2 ∈ τ , we use the notation T̃1 := T1 \ T2, T̃2 := T2 \ T1 and r := |T̃1| within
Section 4.1 for convenience.

Based on the weak order % on E the three complete orders %lex, %mxn, and %ps on the
set τ of spanning trees of G are de�ned. The following maxmin-order on τ is derived from
the maxmin-order on sets presented in [2]. According to the maxmin-order, a spanning tree
T1 is preferred to a spanning tree T2 if either a �best� edge in T1 \T2 is preferred to a socially
most attractive edge in T2 \ T1 or, in case of indi�erence between these two edges, if the
least accepted edge in T1 \ T2 is preferred to the socially worst edge in T2 \ T1.

De�nition 4.1 Let T1, T2 ∈ τ . Then we de�ne the maxmin-order %mxn on τ by

T1 %mxn T2 :⇐⇒ [T̃1 = ∅ or
max T̃1 � max T̃2 or

(max T̃1 ∼ max T̃2 and min T̃1 % min T̃2)]

Analogously we de�ne the leximax order on trees based on the leximax order on sets
presented in [2].

De�nition 4.2 Let T1, T2 ∈ τ . Further let T̃1 := {e1, e2, ..., er}, T̃2 := {f1, f2, ..., fr} such
that ei % ei+1 and fi % fi+1 holds for 1 ≤ i ≤ r − 1. Then the leximax order %lex on τ is

de�ned by

T1 %lex T2 :⇐⇒ [T̃1 = ∅ or
ei ∼ fi for all 1 ≤ i ≤ r or
(∃j ∈ {1, ..., r} such that

ei ∼ fi for all i < j and ej � fj)]

A third approach is to rank the edges of the disjoint union of the two trees according to %.
For the resulting ranking a positional scoring concept is used to compare the two regarded
trees. This approach adapts the concept of the positional scoring procedures presented
in [6].

De�nition 4.3 Let T1, T2 ∈ τ . Further let T̃1 ∪ T̃2 := {d1, d2, ...d2r} such that di % di+1

holds for 1 ≤ i ≤ 2r − 1. Let b : E → R be strictly increasing according to %, that is, for
1 ≤ i ≤ 2r − 1, b(di) = b(di+1) if di ∼ di+1 and b(di) > b(di+1) if di � di+1.

Let b(T̃1) :=
∑
e∈T̃1

b(e) and b(T̃2) :=
∑
f∈T̃2

b(f).
Then we de�ne

T1 %ps T2 :⇐⇒ b(T̃1) ≥ b(T̃2) .
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Remark. The edges being ranked as in the above de�nition, and having assigned b(dj)
scoring points to the edge in the j-th position as in De�nition 4.3, a best tree with respect
to %ps is a spanning tree that maximizes the sum of scoring points.

4.2 Results

This Section is organized as follows.
Theorem 4.1 states that a max-spanning tree can be computed in polynomial time1.

We afterwards show that a max-spanning tree (as de�ned in De�nition 3.4) corresponds
to a best tree with respect to %S and to a best tree with respect to each of the orderings
on τ de�ned in Section 4.1. Vice versa, a best tree with respect to one of these orderings
always corresponds to a max-spanning tree. We summarize these results in Theorem 4.4.
Together with Theorem 4.1, Theorem 4.4 implies that a best tree with respect to each of
these orderings can be determined in polynomial time.

Theorem 4.1 A max-spanning tree can be computed in O(m+ n log n) time.

Proof. The Theorem immediately follows from the fact that the maximum spanning
tree problem can be solved in O(m+ n log n) time [1]. �

Theorem 4.2 A tree M ∈ τ is a max-spanning tree if and only if there is no tree B ∈ τ
such that

B �lex M

holds.

Proof.

�⇒�: Assume there exists B ∈ τ with B �lex M . Let B \M := {f1, ..., fr} and M \ B :=
{e1, ..., er} for some r ≥ 1 such that

fi % fi+1 and ei % ei+1 for all 1 ≤ i ≤ r − 1 . (1)

Obviously B �lex M implies f1 % e1. We now show that f1 ∼ e1 must hold.

• Assume that f1 � e1 holds. Because M is a tree adding f1 to M yields a cycle K1.
Since B is a tree not all edges of K1 can be contained in B and hence K1 must contain
an edge ẽ ∈ {e1, e2, ..., er}. This means that there is an edge e in K1 that satis�es
f1 � ẽ because both f1 � e1 and e1 % ẽ hold. This is a contradiction to the fact that
M is a max-spanning tree.

Thus we have f1 ∼ e1 and by our assumption there exists an index 1 < j ≤ r such that

ei ∼ fi (2)

for all i < j and
ej ≺ fj (3)

hold. Note that because of (1) and (2)

fi % ei+1 (4)

1Note that, in case P 6=NP, this does not have to hold if the order % on E is not assumed to be given
but needs to be determined from the individual preferences. For example, computing % using Kemeny's or
Dodgson's rule is NP-hard [3]. Thus, the whole process of computing % according to Kemeny's rule and
determining a max-spanning tree thereafter would be NP-hard.
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holds for all i < j − 1.
Adding fj−1 to M creates a cycle K. Because M is a max-spanning tree inequality

e % fj−1 (5)

holds for all e ∈ K. Now add K to B. Removing fj−1 from B ∪K yields a connected graph
A := (B ∪K) \ {fj−1} because fj−1 is part of K. Because B is a tree, for every cycle C
contained in A an edge e ∈ K (recall that e ∈M holds) must be part of C. Hence removing
such edges e from A until we get an acyclic graph yields a tree A1 which must be of the
form A1 = B \ {fj−1} ∪ {e} for some e ∈ M . Note that due to (1) and (3) fj−1 % fj � ej
holds. Hence (5) implies that

e ∈ {e1, e2, ..., ej−1} (6)

must hold. Now we show that A1 �lex M must be satis�ed:

• Case (i): e = e1. Then M \ A1 = {e2, e3, ..., ej−1, ej , ..., er} and A1 \ M =
{f1, f2, ..., fj−2, fj , ..., fr}. (4) states fi % ei+1 for all i < j − 1 and (3) states fj � ej
which implies A1 �lex M .

• Case (ii): e = ej−1. Then we get M \ A1 = {e1, ..., ej−2, ej , ..., er} and A1 \M =
(f1, ..., fj−2, fj , ..., fr). Obviously A1 �lex M holds in this case since (2) and (3) hold.

• Case (iii): e = ek for some 1 < k < j − 1. In this case we have

M \A1 = {e1, ..., ek−1, ek+1, ..., ej−1, ej , ..., er}

and A1 \M = (f1, ..., fk−1, fk, ..., fj−2, fj , ..., fr). Again because of (2), (4) and (3)
we get A1 �lex M .

In all three cases we have A1 �lex M with A1 \M = {f1, f2, ..., fj−2, fj , ..., fr}. I.e. given
B �lex M we can create a tree A1 �lex M such that A1 \M equals B \M without edge
fj−1.
Repeating this procedure j−2 times yields a tree Aj−1 �lex M with Aj−1\M = {fj , ..., fr}.
Note that M \Aj−1 = {ej , ..., er} must hold due to (6). Now recall that fj � ej was stated
in (3). Furthermore recall that at the beginning of this proof we showed that f1 � e1
does not hold. Therewith it is proven that there cannot exist a tree C �lex M with
C \M = {c1, ..., cp}, M \ C = {d1, ..., dp} for some p ≥ 1, where ci % ci+1 and di % di+1

hold for all 1 ≤ i ≤ p − 1, such that c1 � d1 holds. This contradicts to the existence of
Aj−1.
�⇐�: Assume M is not a max-spanning tree. This assumption implies the existence of an
edge e ∈ E \M such that the unique cycle K in M ∪{e} contains an edge f such that f ≺ e
holds. Now consider the tree T := M ∪ {e} \ {f}. We get T \M = {e} and M \ T = {f}.
Thus we get T �lex M which is a contradiction. �

Remark. It should be mentioned that Bern and Eppstein [4] state without proof the
observation that a minimum spanning tree lexicographically minimizes the vector of edge
lengths. Assigning a real number w(e) to each e ∈ E and setting e % f :⇐⇒ w(e) ≤ w(f)
for e, f ∈ E, where ≤ denotes the common less-than-or-equal relation on R, this observation
immediately follows from Theorem 4.2.

Theorem 4.3 A tree M ∈ τ is a max-spanning tree if and only if there is no tree B ∈ τ
such that B �S M holds.
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Proof.

�⇒�: Assume the set β := {B ∈ τ : B �S M} is not empty and let EB := B ∩M for all
B ∈ β. Clearly, there exists a tree B1 ∈ β such that |EB1 | ≥ |EB | holds for all B ∈ β.
Since every spanning tree contains exactly n − 1 edges, |EB1 | = n − 1 means B1 = M in
contradiction to B1 ∈ β. Hence 0 ≤ |EB1 | ≤ n − 2 holds. This implies that, for some
l ∈ {1, 2, ..., n− 1} and some ei, fi ∈ E, 1 ≤ i ≤ l, we have

B̃1 := B1 \M = {f1, f2, ..., fl} with f1 � f2 � ... � fl (7)

and
M1 := M \B1 = {e1, e2, ..., el} with e1 � e2 � ... � el . (8)

Note that f1 � e1 must hold because of Theorem 4.2. Hence we get

fi � e1 for all 1 ≤ i ≤ l . (9)

Adding e1 to B1 yields a cycle K1. Obviously not all edges of K1 can be contained in M
and thus K1 contains at least one edge fj , 1 ≤ j ≤ l. This means that A := B1∪{e1}\{fj}
is a spanning tree of G. Now we show that A �S M :

• We have Ã := A \M = {f1, f2, ..., fj−1, fj+1, ..., fl} and M̃ := M \A = {e2, e3, ..., el}
for some 1 ≤ j ≤ l. Hence we get∑

f∈Ã

∑
e∈M̃

s(f, e) =
∑
f∈B̃1

∑
e∈M1

s(f, e)

−
∑

e∈M1\{e1}

s(fj , e) −
∑

f∈B̃1\{fj}

s(f, e1)− s(fj , e1) .

Note that
∑
f∈B̃1

∑
e∈M1

s(f, e) > 0 holds because of B1 �S M by de�nition of β.
What's more, we have s(fj , e1) ≤ 0 due to (9). It remains to show that∑

f∈B̃1\{fj}

s(e1, f)−
∑

e∈M1\{e1}

s(fj , e) ≥ 0 (10)

holds.
Theorem 4.2 yields B1 -lex M . Obviously B1 ∼lex M yields B1 ∼S M in contra-
diction to the de�nition of β and thus B1 ≺lex M must hold. Hence there exists a
1 ≤ k ≤ l such that ei ∼ fi holds for i < k and ek � fk is satis�ed.
If e1 � f1 then

∑
f∈B̃1\{fj} s(e1, f) = l − 1 and (10) is satis�ed since∑

e∈M1\{e1} s(fj , e) ≤ l−1. Hence we assume k ≥ 2 (note that l = 1 implies k = 1 and

thus w.l.o.g. we assume l ≥ 2 as well). Since k ≥ 2 there exists an index r, 1 ≤ r ≤ k−1,
such that both er ∼ fr and er � fr+1 is satis�ed, because e1 % e2 % ... % el holds
(see (8)). Let q, 1 ≤ q < k, denote the smallest index such that eq ∼ fq and eq � fq+1

holds. Note that eq+1 % fq+1 must hold because of B1 -lex M .
Now we distinguish two cases:

� j ≤ q. Clearly we have
∑
f∈B̃1\{fj} S(e1, f) ≥ l − 1 − (q − 1) = l − q due to

e1 � fq+1 and (9).
Recall that due to the choice of q and k we have ej ∼ fj , ej+1 ∼ fj+1, ...,
eq ∼ fq. Thus ej ∼ ej+1 ∼ ... ∼ eq holds (because et � et+1 for some j ≤
t ≤ q − 1 contradicts to the choice of q since then et � ft+1 holds as well).
But this implies fj ∼ eq and fj - e holds for all e ∈ {e2, e3, ..., eq}. Hence∑
e∈M1\{e1} S(fj , e) ≤ l− 1− (q − 1) = l− q is satis�ed as a consequence of (8).

Herewith (10) holds.
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� j > q. Because of eq+1 % fq+1 and (7) we get fj - eq+1. Thus fj - e holds for
all e ∈ {e2, e3, ..., eq+1} which implies

∑
e∈M1\{e1} S(fj , e) ≤ l−1−q. Recall that

we have eq � fq+1 because of the choice of q and thus e1 � f holds for all fx with
q + 1 ≤ x ≤ l. This observation and (9) imply

∑
f∈B̃1\{fj} S(e1, f) ≥ l − 1 − q

and so (10) is satis�ed.

Thus A �S M holds. But we have |EA| = |EB1 |+ 1, which is a contradiction to the choice
of B1.
�⇐�: Analogous to the proof of the corresponding direction of Theorem 4.2. �

Summarizing our results we state the following Theorem.

Theorem 4.4 Let M ∈ τ . Then the following statements are equivalent:

1. M is a max-spanning tree

2. @B ∈ τ : B �lex M

3. @B ∈ τ : B �S M

4. @B ∈ τ : B �mxn M

5. @B ∈ τ : B �ps M

Proof. �1.⇔2.� and �1.⇔3.� were stated in Theorem 4.2 and Theorem 4.3.
The proofs of �4.⇒1.� and �5.⇒1.� are analogous to the one for �2.⇒1.� (see proof of Theo-
rem 4.2). There the assumption that M is not a max-spanning tree is led to a contradiction
by creating a tree T that satis�es T �lex M . But T �mxn M and T �ps M hold as well
and thus an analogous contradiction can be created in either case.

�2.⇒4.�: This can be shown analogous to direction �⇒� in Theorem 4.2, because due
to that theorem a tree M that satis�es condition 2. is a max-spanning tree. However,
we now create cycle K by adding fr to M instead of fj−1, which �nally yields a tree
A1 = B \ {fr}∪ {e} for some e ∈M \B with e % fr. Recall that M �lex B holds, and thus
M �lex B holds because M ∼lex B contradicts to our assumption B �mxn M . M �lex
implies e1 % f1, and hence e1 ∼ f1 must hold as e1 � f1 contradicts to B �mxn M . B �mxn
M and f1 ∼ e1 imply fr � er. Hence we have e ∈ {e1, e2, ..., er−1} and fr−1 % fr � er.
Thus, if e 6= e1, we have A1 �mxn M because of f1 ∼ e1 and fr−1 � er. If e = e1 we have
f1 % e2 and fr−1 � er and so in either case we have A1 �mxn M . Repeating this procedure
r− 2 times yields a tree Ar−1 �mxn M with Ar−1 \M = {f1} and M \Ar−1 = {er}. Thus
Ar−1 �lex M holds which is a contradiction.

�2.⇒5.�: Analogous to �2.⇒4.�, but now K is created by adding f1 instead of fj−1. Thus
we get a tree A1 = B ∪ {e} \ {f1} with e % f1. Note that this implies b(e) ≥ b(f1). Recall
that b(B̃) > b(M̃) holds, where B̃ := B \M and M̃ := M \ B. Hence with Ã1 := A1 \M
and M1 := M \A1 we have b(Ã1) = b(B̃)− b(f1) > b(M̃)− b(e) ≥ b(M1). By repeating this
procedure r−2 times we get a tree Ar−1 �ps M with Ar−1 \M = {fr} andM \Ar−1 = {ẽ}
for some ẽ ∈M . This implies Ar−1 �lex M which is a contradiction. �

Remark 1. Note that equivalence �1.⇔5.� implies that the size of the numbers
assigned to the edges is not crucial for the determination of a best tree with respect to %ps.
I.e. for every assignment of numbers to edges according to De�nition 4.3 the set of best
trees w.r.t. %ps is the same.
In order to determine the group ranking on E often positional scoring methods [6] are used.
As a consequence of the above observation, every positional scoring method that yields
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the same ranking % on E yields the same set of best trees w.r.t. %ps, irrespective of the
numerical values assigned to the edges.

Remark 2. Due to the fact that a max-spanning tree can be determined e�ciently by
applying a greedy algorithm, for all orders regarded in Theorem 4.4 a socially best tree can
be computed in polynomial time.

5 Conclusion

In this paper we have presented di�erent ways to achieve orderings on the set of spanning
trees from a group ranking on the edge-set of a graph. Assuming that the given group
ranking is a weak order (which does not necessarily allocate a numerical value to each
edge), we have shown that the sets of socially best trees according to the concepts discussed
in this paper coincide.

In the related work of Perny and Spanjaard [9] a quite general framework for ranking
spanning trees on the basis of preference relations is presented. In [9] a main focus is laid on
establishing su�cient conditions for an order on the power set of the edge-set under which a
greedy algorithm is able to determine the set of best trees with respect to the corresponding
order. The orders %lex, %S , %mxn and %ps however2 do not belong to the class of orders
for which these conditions hold, even if the group ranking is assumed to be a partial order
on the set of edges. As a consequence of our paper, a socially best tree which respect to
each of these orders can be computed e�ciently by simply determining a max-spanning tree
using a greedy algorithm.

2if their de�nitions adequately are extended to the power set of the edge-set
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Majority voting on restricted domains: a summary

Franz Dietrich and Christian List

Abstract. In judgment aggregation, unlike preference aggregation, not much is known
about domain restrictions that guarantee consistent majority outcomes. We introduce sev-
eral conditions on individual judgments su¢ cient for consistent majority judgments. Some
are based on global orders of propositions or individuals, others on local orders, still oth-
ers not on orders at all. Some generalize classic social-choice-theoretic domain conditions,
others have no counterpart. Our most general condition generalizes Sen�s triplewise value-
restriction, itself the most general classic condition. Taken together, our results suggest that
majority inconsistencies can be avoided in practice, provided that disagreements are appro-
priately structured. This rehabilitates majority voting as a potential way to reach collective
judgments.

1 Introduction

In the theory of preference aggregation, it is well known that majority voting on pairs
of alternatives may generate inconsistent (i.e., cyclical) majority preferences even when
all individuals� preferences are consistent (i.e., acyclical). The most famous example is
Condorcet�s paradox. Here one individual prefers x to y to z, a second y to z to x, and
a third z to x to y, and thus there are majorities for x against y, for y against z, and
for z against x, a �cycle�. But it is equally well known that if individual preferences fall
into a suitably restricted domain, majority cycles can be avoided (for an excellent overview,
see Gaertner [16]). The most famous domain restriction with this e¤ect is Black�s single-
peakedness [1]. A pro�le of individual preferences is single-peaked if the alternatives can
be ordered from �left�to �right�such that each individual has a most preferred alternative
with decreasing preference for other alternatives as we move away from it in either direction.
Inada [18] showed that another condition called single-cavedness and interpretable as the
mirror image of single-peakedness also su¢ ces for avoiding majority cycles: a pro�le is
single-caved if, for some �left�-�right�order of the alternatives, each individual has a least
preferred alternative with increasing preference for other alternatives as we move away from
it in either direction. Sen [37] introduced a very general domain restriction, called triplewise
value-restriction, that garantees acyclical majority preferences and is implied by Black�s,
Inada�s and other conditions; it therefore uni�es several domain-restriction conditions, yet
has a technical �avour without straightforward interpretation.
The wealth of domain-restriction conditions for avoiding majority cycles was supple-

mented by another family of conditions based not on �left�-�right�orders of the alternatives,
but on �left�-�right�orders of the individuals. Important conditions in this family are Grand-
mont�s intermediateness [17] and Rothstein�s order restriction ([34], [35]) with its special
case of single-crossingness (e.g., Saporiti and Tohmé [36]). To illustrate, a pro�le of individ-
ual preferences is order-restricted if the individuals �rather than the alternatives �can be
ordered from �left�to �right�such that, for each pair of alternatives x and y, the individuals
preferring x to y are either all to the left, or all the right, of those preferring y to x.
Empirically, domain restrictions are important as many political and economic contexts

induce a natural structure in preferences. For example, domain restrictions based on a
�left�-�right�order �whether of the alternatives or of the individuals �can capture situations
in which preferences are structured by one normative or cognitive dimension, such as from
socialist to libertarian, from urban to rural, or from secular to religious.
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In the theory of judgment aggregation, by contrast, domain restrictions have received
much less attention (the only exception is the work on unidimensional alignment, e.g., List
[22]). This is an important gap in the literature since, here too, majority voting with
unrestricted but consistent individual inputs may generate inconsistent collective outputs,
while on a suitably restricted domain such inconsistencies can be avoided. As illustrated
by the much-discussed discursive paradox (e.g., Pettit [31]), if one individual judges that a,
a ! b and b, a second that a, but not a ! b and not b, and a third that a ! b, but not a
and not b, there are majorities for a, for a ! b and yet for not b, an inconsistency. But if
no individual rejects a! b, for example, this problem can never arise.
Surprisingly, however, despite the abundance of impossibility results generalizing the

discursive paradox as reviewed below, very little is known about the domains of individual
judgments on which discursive paradoxes can occur (as opposed to agendas of propositions
susceptible to such problems, which have been extensively characterized in the literature).
If we can �nd compelling domain restrictions to ensure majority consistency, this allows
us to re�ne and possibly amelioriate the lessons of the discursive paradox. Going beyond
the standard impossibility results, which all assume an unrestricted domain, we can then
ask: in what political and economic contexts do the identi�ed domain restrictions hold, so
that majority voting becomes safe, and in what contexts are they violated, so that majority
voting becomes problematic?
This paper introduces several conditions on pro�les of individual judgments that guar-

antee consistent majority judgments. As explained in a moment, these can be distinguished
in at least two respects: �rst, in terms of whether they are based on orders of propositions,
on orders of individuals, or not on orders at all; and second, if they are based on orders, in
terms of whether these are �global�or �local�. We also discuss parallels and disanalogies with
domain-restriction conditions on preferences.
Let us brie�y comment on the two distinctions underlying our discussion. First, our

conditions based on orders of the individuals are analogous to, and in fact generalize, some
of the conditions on preferences reviewed above, particularly intermediateness and order
restriction. By contrast, those conditions based on orders of the propositions are not ob-
viously analogous to any conditions on preferences. While an order of individuals can be
interpreted similarly in judgment and preference aggregation �namely in terms of the in-
dividuals� positions on a normative or cognitive dimension � an order of propositions in
judgment aggregation is conceptually distinct from an order of alternatives in preference
aggregation. Propositions, unlike alternatives, are not mutually exclusive. It is therefore
surprising that su¢ cient conditions for consistent majority judgments can be given even
based on orders of propositions. We also introduce a very general domain-restriction condi-
tion not based on orders at all: it generalizes Sen�s condition of triplewise value-restriction.
In concluding the paper, we characterize the maximal domain on which majority voting
yields consistent collective judgments.
Secondly, our domain-restriction conditions based on orders admit global and local vari-

ants. In the global case, the individuals�judgments on all propositions on the agenda are
constrained by the same �left�-�right�order of propositions or individuals, whereas in the lo-
cal case, that order may di¤er across subsets of the agenda. To give an illustration from the
more familiar context of preference aggregation, single-peakedness and single-cavedness are
global conditions, whereas the restriction of these conditions to triples of alternatives yields
local ones. But while in preference aggregation local conditions result from the restriction of
global conditions to triples of alternatives, the picture is more general in judgment aggrega-
tion. Here di¤erent �left�-�right�orders may apply to di¤erent subagendas, which correspond
to di¤erent semantic �elds. We give precise criteria for selecting appropriate subagendas.
An individual can be left-wing on a �social�subagenda and right-wing on an �economic�one,
for example.
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As already noted, some of our conditions generalize existing conditions in preference
aggregation, notably Grandmont�s intermediateness, Rothstein�s order restriction and Sen�s
triplewise value-restriction, and reduce to them when the agenda of propositions under con-
sideration contains binary ranking propositions suitable for representing preferences (such
as xPy, yPz, xPz etc.).1

We state our results for the general case in which individual and collective judgments are
only required to be consistent; they need not be complete (i.e., they need not be opinionated
on every proposition-negation pair). But whenever this is relevant, we also consider the im-
portant special case of full rationality, i.e., the conjunction of consistency and completeness.
A few remarks about the literature on judgment aggregation are due. The recent �eld of

judgment aggregation emerged from the areas of law and political philosophy (e.g., Korn-
hauser and Sager [20] and Pettit [31]) and was formalized social-choice-theoretically by List
and Pettit [24]. The literature contains several impossibility results generalizing the observa-
tion that on an unrestricted domain majority judgments can be logically inconsistent (e.g.,
List and Pettit [24] and [25], Pauly and van Hees [30], Dietrich [2], Gärdenfors [15], Nehring
and Puppe [29], van Hees [38], Mongin [26], Dietrich and List [7], and Dokow and Holzman
[13]). Other impossibility results follow from Nehring and Puppe�s [27] strategy-proofness
results on property spaces. Earlier precursors include works on abstract aggregation (Wil-
son [39], Rubinstein and Fishburn [33]). A liberal-paradox-type impossibility was derived
in Dietrich and List [12]. Giving up propositionwise aggregation, possibility results were
obtained, for example, by using sequential rules (List [23]) and fusion operators (Pigozzi
[32]). Voter manipulation in the judgment-aggregation model was analysed in Dietrich and
List [8]. But so far the only domain-restriction condition known to guarantee consistent ma-
jority judgments is List�s unidimensional alignment ([21], [22]), a global domain condition
based on orders of individuals. Here we use Dietrich�s generalized model [3], which allows
propositions to be expressed in rich logical languages.
This paper summarizes results from our working paper [6], in which we also give proofs;

these are omitted here for brevity. We are grateful to the ComSoc referees for comments
and suggestions.

2 The model

We consider a group of individuals N = f1; 2; : : : ; ng (n � 2) making judgments on some
propositions represented in logic (Dietrich [3], generalizing List and Pettit [24], [25]).

Logic. A logic is given by a language and a notion of consistency. The language is a
non-empty set L of sentences (called propositions) closed under negation (i.e., p 2 L implies
:p 2 L, where : is the negation symbol). For example, in standard propositional logic, L
contains propositions such as a, b, a ^ b, a _ b, :(a! b) (where ^, _, ! denote �and�, �or�,
�if-then�, respectively). In other logics, the language may involve additional connectives,
such as modal operators (�it is necessary/possible that�), deontic operators (�it is obliga-
tory/permissible that�), subjunctive conditionals (�if p were the case, then q would be the
case�), or quanti�ers (�for all/some�). The notion of consistency captures the logical connec-
tions between propositions by stipulating that some sets of propositions S � L are consistent
(and the others inconsistent), subject to some regularity axioms.2 A proposition p 2 L is
a contradiction if fpg is inconsistent and a tautology if f:pg is inconsistent. For example,

1The fact that these three existing conditions are already very general representatives of their respective
families underlines the generality of our new conditions here.

2Self-entailment: Any pair fp;:pg � L is inconsistent. Monotonicity: Subsets of consistent sets S � L
are consistent. Completability: ; is consistent, and each consistent set S � L has a consistent superset
T � L containing a member of each pair p;:p 2 L. See Dietrich [3].
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in standard logics, fa; a ! b; bg and fa ^ bg are consistent and fa;:ag and fa; a ! b;:bg
inconsistent; a ^ :a is a contradiction and a _ :a a tautology.

Agenda. The agenda is the set of propositions on which judgments are to be made. It is
a non-empty set X � L expressible as X = fp;:p : p 2 X+g for some set X+ of unnegated
propositions (this avoids double-negations in X). In our introductory example, the agenda
is X = fa;:a; a ! b;:(a ! b); b;:bg. For convenience, we assume that X is �nite.3 As a
notational convention, we cancel double-negations in front of propositions in X.4 Further,
for any Y � X, we write Y � = fp;:p : p 2 Y g to denote the (single-)negation closure of Y .

Judgment sets. An individual�s judgment set is the set A � X of propositions in the
agenda that he or she accepts (e.g., �believes�). A pro�le is an n-tuple (A1; : : : ; An) of
judgment sets across individuals. A judgment set is consistent if it is consistent in L; it
is complete if it contains at least one member of each proposition-negation pair p;:p 2
X; it is opinionated if it contains precisely one such member. Our results mostly do not
require completeness, in line with several works on the aggregation of incomplete judgments
(Gärdenfors [15]; Dietrich and List [9], [10], [11]; Dokow and Holzman [14]; List and Pettit
[24]). This strengthens our possibility results as the identi�ed possibilities hold on larger
domains of pro�les. But we also consider the complete case.

Aggregation functions. A domain is a set D of pro�les, interpreted as admissible in-
puts to the aggregation. An aggregation function is a function F that maps each pro�le
(A1; : : : ; An) in a given domain D to a collective judgment set F (A1; : : : ; An) = A � X.
While the literature focuses on the universal domain (which consists of all pro�les of consis-
tent and complete judgment sets), we here focus mainly on domains that are less restrictive
in that they allow for incomplete judgments, but more restrictive in that we impose some
structural conditions. We call an aggregation function consistent or complete, respectively,
if it generates a consistent or complete judgment set for each pro�le in its domain. The
majority outcome on a pro�le (A1; :::; An) is the judgment set fp 2 X : there are more
individuals i 2 N with p 2 Ai than with p =2 Aig. The aggregation function that generates
the majority outcome on each pro�le in its domain D is called majority voting on D.5

Preference aggregation as a special case. To relate our results to existing results
on preference aggregation, we must explain how preference aggregation can be represented
in our model.6 Since preference relations are binary relations on some set, they allow a
logical representation. Take a simple predicate logic L with a set of two or more constants
K = fx; y; :::g representing alternatives and a two-place predicate P representing (strict)
preference. For any x; y 2 K, xPy means �x is preferable to y�. De�ne any set S � L
to be consistent if S [ Z is consistent in the standard sense of predicate logic, where Z
is the set of rationality conditions on strict preferences.7 Now the preference agenda is
XK = fxPy 2 L : x; y 2 Kg�. Preference relations and opinionated judgment sets stand in
a bijective correspondence:

3For in�nite X, our results hold either as stated or under compactness of the logic.
4More precisely, if p 2 X is already of the form p = :q, we write :p to mean q rather than ::q. This

ensures that, whenever p 2 X, then :p 2 X.
5Other widely discussed aggregation functions include dictatorships, supermajority functions, and

premise-based or conclusion-based functions.
6For details of the construction, see Dietrich and List [7], extending List and Pettit [25].
7Z consists of (8v1)(8v2)(v1Pv2 ! :v2Pv1) (asymmetry), (8v1)(8v2)(8v3)((v1Pv2 ^ v2Pv3) ! v1Pv3)

(transitivity), (8v1)(8v2)(: v1 = v2 ! (v1Pv2 _ v2Pv1)) (connectedness) and, for each pair of distinct
constants x; y 2 K, :x = y (exclusiveness of alternatives).
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� to any preference relation (arbitrary binary relation) � on K corresponds the opin-
ionated judgment set A� � XK with A� = fxPy : x; y 2 K&x � yg [ f:xPy : x; y 2
K&x 6� yg;

� conversely, to any opinionated judgment set A � XK corresponds the preference rela-
tion �A on K with x �A y , xPy 2 A 8x; y 2 K.

A preference relation � is fully rational (i.e., asymmetric, transitive and connected) if
and only if A� is consistent, because we have built the rationality conditions on preferences
into the logic. Under this construction, a judgment aggregation function (for opinionated
judgment sets) represents a preference aggregation function, and majority voting as de�ned
above corresponds to pairwise majority voting in the standard Condorcetian sense.

3 Conditions for majority consistency based on global
orders

On which domains of pro�les is majority voting consistent? We already know from the dis-
cursive paradox that without any domain restriction it is not (unless the agenda is trivial).8

However, we now show that there exist many compelling domains on which majority voting
is consistent.

3.1 Conditions based on orders of propositions

We begin with two conditions based on �global�orders of the propositions. An order of the
propositions (in X) is a linear order � on X.9

Single-plateauedness. A judgment set A is single-plateaued relative to � if A = fp 2 X :
pleft � p � prightg for some pleft; pright 2 X, and a pro�le is (A1; :::; An) is single-plateaued
relative to � if every Ai is single-plateaued relative to �.

Single-canyonedness. A judgment set A is single-canyoned relative to � if A = Xnfp 2
X : pleft � p � prightg for some pleft; pright 2 X, and a pro�le is (A1; :::; An) is single-canyoned
relative to � if every Ai is single-canyoned relative to �.10

An order � that renders a pro�le single-plateaued or single-canyoned is called a structur-
ing order ; it need not be unique. If a pro�le is single-plateaued or single-canyoned relative
to some �, we also call it single-plateaued or single-canyoned simpliciter. Both conditions
are illustrated in Figure 1.
The order � may represent a normative or cognitive dimension on which propositions are

located. If the agenda contains scienti�c propositions about global warming, for example,
individuals may hold single-plateaued judgment sets relative to an order of the propositions
from �most pessimistic�to �most optimistic�, and the location of each individual�s plateau
may re�ect his or her scienti�c position. If the agenda contains propositions about the
e¤ects of various tax or budget policies, the propositions may be ordered from �socialist�to
�libertarian�. If the agenda contains propositions concerning biological issues, the order may

8Majority inconsistencies can arise whenever the agenda has a minimal inconsistent subset of three or
more propositions. For a proof of this fact under consistency alone, see Dietrich and List [9]; under full
rationality, see Nehring and Puppe [28].

9Thus � is re�exive (x � x 8x), transitive ([x � y and y � z] ) x � z 8x; y; z), connected (x 6= y )
[x � y or y � x] 8x; y) and antisymmetric ([x � y and y � x]) x = y 8x; y).
10 In the de�nitions of single-plateauedness and single-canyonedness, we do not require pleft � pright, i.e.,

fp : pleft � p � prightg may be empty.
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p1 p2 p3 p4 p5 p6

a single­plateaued profile
(for n = 2, |X| = 6)

A2
A1

p1 p2 p3 p4 p5 p6

a single­canyoned profile
(for n = 2, |X| = 6)

A2A1

Figure 1: Single-plateauedness and single-canyonedness

range from �closest to theory X�(e.g., evolutionary theory) to �closest to theory Y�(e.g.,
creationism).
We �rst observe that every single-canyoned pro�le is single-plateaued.

Proposition 1 Every single-canyoned pro�le (A1; :::; An) of consistent judgment sets is
single-plateaued.

As anticipated, majority voting preserves consistency on single-plateaued pro�les. On
single-canyoned pro�les, it does even more: it also preserves single-canyonedness.

Proposition 2 For any pro�le (A1; :::; An) of consistent judgment sets,
(a) if (A1; :::; An) is single-plateaued, the majority outcome is consistent;
(b) if (A1; :::; An) is single-canyoned, the majority outcome is consistent and single-canyoned

(relative to the same structuring order).

3.2 Conditions based on orders of individuals

Let us now turn to two conditions based on �global�orders of the individuals. An order of
the individuals (in N) is linear order 
 on N . For any sets of individuals N1; N2 � N; we
write N1
N2 if i
j for all i 2 N1 and j 2 N2.

Unidimensional orderedness.11 A pro�le (A1; :::; An) is unidimensionally ordered rela-
tive to 
 if, for all p 2 X, fi 2 N : p 2 Aig = fi 2 N : ileft
i
irightg for some ileft; iright 2 N .

Unidimensional alignment. (List [22]) A pro�le (A1; :::; An) is unidimensionally aligned
relative to 
 if, for all p 2 X, fi 2 N : p 2 Aig
fi 2 N : p =2 Aig or fi 2 N : p =2 Aig
fi 2
N : p 2 Aig.
In analogy to the earlier de�nition, an order 
 that renders a pro�le unidimensionally

ordered or unidimensionally aligned is called a structuring order ; again, it need not be
unique. If a pro�le is unidimensionally ordered or unidimensionally aligned relative to some

, we also call it unidimensionally ordered or unidimensionally aligned simpliciter. Both
conditions are illustrated in Figure 2.
Unidimensional alignment is a special case of unidimensional orderedness: it is the case in

which, for every p 2 X, at least one of ileft; iright is �extreme�, i.e., the left-most or right-most
individual in the structuring order 
.

Proposition 3 Every unidimensionally aligned pro�le (A1; :::; An) is unidimensionally or-
dered.

How can we interpret the two conditions? A pro�le is unidimensionally ordered if the
individuals can be ordered from �left�to �right�such that, for each proposition, the individ-
uals accepting it are all adjacent to each other; a pro�le is unidimensionally aligned if, in
11 In this de�nition, we do not require ileft
iright, i.e., fi : ileft
i
irightg may be empty.
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i1 i2 i3 i4 i5 i6

a unidimensionally ordered profile
(for n = 6, |X| = 4)

p1 p4 p3p2

i1 i2 i3 i4 i5 i6

a unidimensionally aligned profile
(for n = 6, |X| = 4)

p1 p4 p3 p2

Figure 2: Unidimensional orderedness and unidimensional alignment

addition, the individuals accepting each proposition are either all to the left or all to right of
those rejecting it. The order of the individuals can be interpreted as re�ecting their location
on some underlying normative or cognitive dimension. The idea underlying unidimensional
orderedness is that each proposition, like each individual, is located somewhere on the di-
mension and is accepted by those individuals whose location is �close�to it, hence by some
interval of individuals �around�it. In a decision problem about climate policies, for example,
the proposition �taxation on emissions should be moderately increased�might have a central
location and might therefore be accepted by a �central�interval of individuals. In the case
of unidimensional alignment, the extreme positions on the given dimension correspond to
either clear acceptance or clear rejection of each proposition, and, for each proposition, there
is a threshold between these extremes (which may vary across propositions) that divides the
�acceptance-region�from the �rejection-region�.12

On unidimensionally ordered pro�les, majority voting preserves consistency, and we can
say something about the nature of its outcome: it is a subset of the middle individual�s
judgment set (or, for even n, a subset of the intersection of the two middle individuals�
judgment sets). If the pro�le is unidimensionally aligned, the majority outcome is not just
included in that set but coincides with it.

Proposition 4 For any pro�le (A1; :::; An) of consistent judgment sets,
(a) if (A1; :::; An) is unidimensionally ordered, the majority outcome A is consistent and

A �
�
Am if n is odd,
Am1 \Am2 if n is even,

where m is the middle individual (if n is odd) and m1;m2 the middle pair of individuals
(if n is even) in any structuring order 
;

(b) (List [22]) if (A1; :::; An) is unidimensionally aligned, the majority outcome is as stated
in part (a) with � replaced by =.

3.3 The logical relationships between the four conditions

We have already seen that single-canyonedness implies single-plateauedness, and that unidi-
mensional alignment implies unidimensional orderedness. A natural question is how the �rst
two conditions, which are based on orders of the propositions, are related to the second two,
which are based on orders of the individuals. The following result answers this question.

Proposition 5 (a) Restricted to pro�les of consistent judgment sets,
� unidimensional alignment implies any of the other three conditions;
� single-canyonedness implies single-plateauedness;
� there are no other pairwise implications between the four conditions.

(b) Restricted to pro�les of consistent and complete (or just of opinionated) judgment sets,
the four conditions are equivalent.

12 In List [21], unidimensional alignment is interpreted in terms of �meta-agreement�.
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3.4 Applications to preference aggregation: order restriction and
intermediateness

As we explain precisely in Dietrich and List [6], the conditions based on orders of the
individuals reduce to classic conditions if applied to the preference agenda:

Remark 6 (a) A preference pro�le (�1; :::;�n) is order restricted (relative to some 
)
if and only if the corresponding judgment pro�le (A�1 ; :::; A�n) is unidimensionally
aligned (relative to the same 
).

(b) An opinionated preference pro�le (�1; :::;�n) is intermediate (relative to some 
)
if and only if the corresponding judgment pro�le (A�1

; :::; A�n
) is unidimensionally

ordered (relative to the same 
), where opinionation means that, for each i 2 N and
all distinct x; y 2 K, precisely one of x �i y or y �i x holds.

4 Conditions for majority consistency based on local
orders

For many agendas, the four domain-restriction conditions discussed so far are stronger than
necessary for achieving majority consistency. As developed in detail in our working paper
[6], it su¢ ces to apply our conditions to the judgments on various subagendas of X, thereby
allowing the relevant structuring order of individuals or propositions to vary across di¤erent
subagendas. This move parallels the move in preference aggregation from single-peakedness
to single-peakedness restricted to triples of alternatives.
Formally, a subagenda (of X) is a subset Y � X that is itself an agenda (i.e., non-

empty and closed under single negation). For each of our four global domain-restriction
conditions, we say that a pro�le (A1; :::; An) satis�es the given condition on a subagenda
Y � X if the restricted pro�le (A1 \ Y; :::; An \ Y ), viewed as a pro�le of judgment sets
on the agenda Y , satis�es it. The relevant structuring order is then called a structuring
order on Y and denoted �Y (if it is an order of propositions) or 
Y (if it is an order of
individuals). Whenever one of the conditions is satis�ed globally, then it is also satis�ed on
every Y � X. But we now de�ne a local counterpart of each global condition. Let Y be
some set of subagendas.

Local single-plateauedness / single-canyonedness / unidimensional
orderedness / unidimensional alignment. A pro�le (A1; :::; An) satis�es the local
counterpart of each global condition (with respect to a given set of subagendas Y) if it
satis�es the global condition on every Y 2 Y.

Provided the set of subagendas Y is suitably chosen, these local conditions are su¢ cient
to ensure consistent majority outcomes (if individuals hold consistent judgments). In our
working paper [6], we discuss two choices of subagendas; according to the �rst speci�cation,

Y = fY � : Y is a minimal inconsistent subset of Xg.

The second speci�cation uses so-called irreducible sets and generalizes the classic local condi-
tions of intermediateness on triples and order restriction on triples in preference aggregation.
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5 Conditions for majority consistency not
based on orders

Although our domain-restriction conditions based on local orders are already much less
restrictive than those based on global orders, it is possible to weaken them further. Just as
the various conditions based on orders in preference aggregation �single-peakedness, single-
cavedness etc. �can be generalized to a weaker, but less easily interpretable, condition �
namely Sen�s triplewise value-restriction [37] � so in judgment aggregation the conditions
based on orders can be weakened to a more abstract condition, to be called value-restriction.
When applied to the preference agenda, this condition becomes non-trivially equivalent to
Sen�s condition. But despite generalizing Sen�s condition, our condition is simpler to state;
we thus also hope to o¤er a new perspective on Sen�s condition.

5.1 Value-restriction

For any inconsistent set Y � X, we call another inconsistent set Z � X a reduction of Y if

jZj < jY j and each p 2 ZnY is entailed by some V � Y with jY nV j > 1,

and we call Y irreducible if it has no reduction. For instance, the inconsistent set fa; a !
b; b! c;:cg (where a; b; c are distinct atomic propositions) is reducible to Z = fb; b! c;:cg,
since b is entailed by fa; a! bg, whereas Z is irreducible.
We state two variants of our condition, one based on minimal inconsistent sets, the other

based on irreducible sets.

Value-restriction. A pro�le (A1; :::; An) is value-restricted if every (non-singleton13) min-
imal inconsistent set Y � X has a two-element subset Z � Y that is not a subset of any
Ai.

Weak value-restriction. A pro�le (A1; :::; An) is weakly value-restricted if every (non-
singleton) irreducible set Y � X has a two-element subset Z � Y that is not a subset of
any Ai.

Informally, value-restriction re�ects a particular kind of agreement: for every minimal
inconsistent (or irreducible in the weak case) subset of the agenda, there exists a partic-
ular conjunction of two propositions in this subset that no individual endorses. Like our
previous domain-restriction conditions, the two new conditions are each su¢ cient for con-
sistent majority outcomes (the weaker condition in the important special case of individual
completeness).

Proposition 7 For any pro�le (A1; :::; An) of consistent judgment sets,
(a) if (A1; :::; An) is value-restricted, the majority outcome is consistent;
(b) if (A1; :::; An) is weakly value-restricted and each Ai is complete, the majority outcome

is consistent.

How general are our two value-restriction conditions? The following proposition answers
this question.

Proposition 8 (a) Each of our four conditions based on global orders implies value-
restriction.

13The quali�cation �non-singleton� in this de�nition and the next is unnecessary if X contains only con-
tingent propositions, since this rules out singleton inconsistent sets.
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(b) Each of our four conditions based on local orders, with respect to Y de�ned in terms
of minimal inconsistent sets, implies value-restriction.

(c) Each of our four conditions based on local orders, with respect to Y de�ned in terms
of irreducible sets, implies weak value-restriction.

5.2 Applications to preference aggregation: triplewise value-restriction

When applied to the preference agenda, our two value-restriction conditions surprisingly
both collapse into Sen�s ([37]) triplewise value-restriction.

Proposition 9 For any pro�le (A1; :::; An) of consistent and complete judgment sets on the
preference agenda, the following are equivalent:
(a) (A1; :::; An) is value-restricted,
(b) (A1; :::; An) is weakly value-restricted,
(c) the associated preference pro�le (�A1

; :::;�An
) is triplewise value-restricted.

6 Conclusion

The following �gure summarizes the logical relationship between all the domain-restriction
conditions discussed in this paper, in each case applied to pro�les of consistent individual
judgment sets.

majority­consistency

value­restriction

single­plateauedness

single­canyonedness unidimensional orderedness

unidimensional alignment

local unidimensional alignment

local unidimensional orderedness

local single­canyonedness

local single­plateauedness
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Computing the nucleolus of weighted voting games

Edith Elkind and Dmitrii Pasechnik

Abstract

Weighted voting games (WVG) are coalitional games in which an agent’s contribution to a
coalition is given by his weight, and a coalition wins if its total weight meets or exceeds a
given quota. These games model decision-making in political bodies as well as collaboration
and surplus division in multiagent domains. The computational complexity of various solution
concepts for weighted voting games received a lot of attention in recent years. In particular,
Elkind et al.(2007) studied the complexity of stability-related solution concepts in WVGs,
namely, of the core, the least core, and the nucleolus. While they have completely characterized
the algorithmic complexity of the core and the least core, for the nucleolus they have only
provided an NP-hardness result. In this paper, we solve an open problem posed by Elkind et
al. by showing that the nucleolus of WVGs, and, more generally, k-vector weighted voting
games with fixed k, can be computed in pseudopolynomial time, i.e., there exists an algorithm
that correctly computes the nucleolus and runs in time polynomial in the number of players n
and the maximum weight W . In doing so, we propose a general framework for computing the
nucleolus, which may be applicable to a wider of class of games.

1 Introduction
Both in human societies and in multi-agent systems, there are many situations where individual
agents can achieve their goals more efficiently (or at all) by working together. This type of scenarios
is studied by coalitional game theory, which provides tools to decide which teams of agents will
form and how they will divide the resulting profit. In general, to describe a coalitional game, one
has to specify the payoff available to every team, i.e., every possible subset of agents. The size
of such representation is exponential in the number of agents, and therefore working with a game
given in such form is computationally intensive. For this reason, a lot of research effort has been
spent on identifying and studying classes of coalitional games that correspond to rich and practically
interesting classes of problems and yet have a compact representation.

One such class of coalitional games is weighted voting games, in which an agent’s contribution
to a coalition is given by his weight, and a coalition has value 1 if its total weight meets or exceeds a
given quota, and 0 otherwise. These games model decision-making in political bodies, where agents
correspond to political parties and the weight of each party is the number of its supporters, as well
as task allocation in multi-agent systems, where the weight of each agent is the amount of resources
it brings to the table and the quota is the total amount of resources needed to execute a task.

An important issue in coalitional games is surplus division, i.e., distributing the value of the
resulting coalition between its members in a manner that encourages cooperation. In particular, it
may be desirable that all agents work together, i.e., form the grand coalition. In this case, a natural
goal is to distribute the payoff of the grand coalition so that it remains stable, i.e., so as to minimize
the incentive for groups of agents to deviate and form coalitions of their own. Formally, this intuition
is captured by several related solution concepts, such as the core, the least core, and the nucleolus.
Without going into the technical details of their definitions (see Section 3), the nucleolus is, in some
sense, the most stable payoff allocation scheme, and as such it is particularly desirable when the
stability of the grand coalition is important.

The stability-related solution concepts for WVGs have been studied from computational per-
spective in [5]. There, the authors show that while computing the core is easy, finding the least core
and the nucleolus is NP-hard. These computational hardness results rely on all weights being given
in binary, which suggests that these problems may be easier for polynomially bounded weights. In-
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deed, paper [5] provides a pseudopolynomial time algorithm (i.e., an algorithm whose running time
is polynomial in the number of players n and the maximal weight W ) for the least core. However,
an analogous question for the nucleolus has been left open.

In this paper, we answer this question in affirmative by presenting a pseudopolynomial time
algorithm for computing the nucleolus.

Theorem 1. For a WVG specified by integer weights w1, . . . , wn and a quota q, there exists a
procedure that computes its nucleolus in time polynomial in n and W = maxi wi.

As in many practical scenarios (such as e.g., decision-making in political bodies) the weights
are likely to be not too large, this provides a viable algorithmic solution to the problem of find-
ing the nucleolus. Our approach relies on solving successive exponential-sized linear programs by
constructing dynamic-programming based separation oracles, a technique that may prove useful in
other applications.

A proof of Theorem 1 is presented in Section 4, after preliminaries in Section 3 and a discussion
of related work in Section 2. The text rounds up by Section 5 that discusses conclusions and future
work directions.

2 Related work
Another approach to payoff distribution in weighted voting games is based on fairness, i.e., dividing
the payoff in a manner that is proportional to the agent’s influence. The most popular solution
concepts used in this context are the Shapley–Shubik power index [16] and the Banzhaf power
index [1]. Both of these indices are known to be computationally hard for large weights [13, 4], yet
efficiently computable for polynomially bounded weights [10].

The concept of the nucleolus was introduced by Schmeidler [14] in 1969. Paper [14] explains
how the nucleolus arises naturally as “the most stable” payoff division scheme, and proves that the
nucleolus is well-defined for any coalitional game and is unique. Kopelowitz [9] proposes to com-
pute the nucleolus by solving a sequence of linear programs; we use this approach in our algorithm.

The computational complexity of the nucleolus has been studied for many classes of games, such
as flow games [3], cyclic permutation games [17], assignment games [12], matching games [8], and
neighbor games [7], as well as several others. While some of these papers provide polynomial-time
algorithms for computing the nucleolus, others contain NP-hardness results.

The work in this paper is inspired by [5], which shows that the least core and the nucleolus
of a weighted voting game are NP-hard to compute. It also proves that the nucleolus cannot be
approximated within any constant factor. On the positive side, it provides a pseudopolynomial time
algorithm for computing the least core, i.e., an algorithm whose running time is polynomial in n
and W (rather than in the game representation size O(n log W )), as well as a fully polynomial time
approximation scheme (FPTAS) for the least core. However, for the nucleolus, paper [5] contains
no algorithmic results.

3 Preliminaries and Notation
A coalitional game G = (I, ν) is given by a set of agents I = {1, . . . , n} and a function ν : 2I → R
that maps any subset (coalition) of the agents to a real value. This value is the total utility these
agents can guarantee to themselves when working together. A coalitional game is called simple if
ν(S) ∈ {0, 1} for any coalition S ⊆ I . In a simple game, a coalition S is called winning if ν(S) = 1
and losing otherwise.

A weighted voting game is a simple coalitional game G given by a set of agents I = {1, . . . , n},
their non-negative weights w = (w1, . . . , wn), and a quota q; we write G = (I;w; q). As the focus
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of this paper is computational complexity of such games, it is important to specify how the game is
represented. In what follows, we assume that the weights and the quota are integers given in binary.
This does not restrict the class of WVGs that we can work with, as any weighted voting game has
such a representation [11].

For a coalition S ⊆ I , its value ν(S) is 1 (i.e., S is winning) if
∑

i∈S wi ≥ q; otherwise,
ν(S) = 0. Without loss of generality, we assume that the value of the grand coalition I is 1, that is,∑

i∈I wi ≥ q. Also, we set W = maxi∈I wi.
For a coalitional game G = (I, ν), an imputation is a vector of non-negative numbers p =

(p1, . . . , pn), one for each agent in I , such that
∑

i∈I pi = ν(I). We refer to pi as the payoff of
agent i. We write p(S) to denote

∑
i∈S pi. Similarly, w(S) denotes

∑
i∈S wi.

An important notion in coalitional games is that of stability: intuitively, a payoff vector should
distribute the gains of the grand coalition in such a way that no group of agents has an incentive to
deviate and form a coalition of their own. This intuition is captured by the notion of the core: the
core of a game G is the set of all imputations p such that

p(S) ≥ ν(S) for all S ⊆ I. (1)

While the core is an appealing solution concept, it is very demanding: indeed, for many games of
interest, the core is empty. In particular, it is well known that in simple games the core is empty
unless there exists a veto player, i.e., a player that is present in all winning coalitions. Clearly, this
is not always the case in weighted voting games, and a weaker solution concept is needed.

We can relax the notion of the core by allowing a small error in the inequalities (1). This
leads to the notion of ε-core: the ε-core of a game G is the set of all imputations p such that
p(S) ≥ ν(S) − ε for all S ⊆ I . Under an imputation in the ε-core, the deficit of any coalition S,
i.e., the difference ν(S) − p(S) between its value and the payoff that it gets, is at most ε. Observe
that if ε is large enough, e.g., ε ≥ 1, then the ε-core is guaranteed to be non-empty. Therefore, a
natural goal is to identify the smallest value of ε such that the ε-core is non-empty, i.e., to minimize
the error introduced by relaxing the inequalities in (1). This is captured by the concept of the
least core, defined as the smallest non-empty ε-core of the game. More formally, consider the set
{ε | ε ≤ 1, ε-core of G is non-empty}. It is easy to see that this set is compact, so it has a minimal
element ε1. The least core of G is its ε1-core. The imputations in least core distribute the payoff in
a way that minimizes the incentive to deviate: under any p in the least core, no coalition can gain
more than ε1 by deviating, and for any ε′ < ε1, there is no way to distribute the payoffs so that
the deficit of every coalition is at most ε′. However, while the least core minimizes the worst-case
deficit, it does not attempt to minimize the number of coalitions that experience the worst deficit,
i.e., ε1, nor does it try to minimize the second-worst deficit, etc. The nucleolus is a refinement of the
least core that takes into account these higher-order effects.

Recall that the deficit of a coalition S under an imputation p is given by d(p, S) = ν(S)−p(S).
The deficit vector of p is the vector d(p) = (d(p, S1), . . . , d(p, S2n)), where S1, . . . , S2n is a list of
all subsets of I ordered so that d(p, S1) ≥ d(p, S2) ≥ · · · ≥ d(p, S2n). In other words, the deficit
vector lists the deficits of all coalitions from the largest to the smallest (which may be negative). The
nucleolus is an imputation η = (η1, . . . , ηn) that satisfies d(η) ≤lex d(x) for any other imputation
x, where ≤lex is the lexicographic order. It is known [14] that the nucleolus is well-defined (i.e., an
imputation with a lexicographically minimal deficit vector always exists) and is unique.

4 Algorithm
The description of our algorithm is structured as follows. We use the idea of [9], which explains
how to compute the nucleolus by solving a sequence of (exponential-size) linear programs. In
Section 4.1, we present the approach of [9], and argue that it correctly computes the nucleolus.
This material is not new, and is presented here for completeness. In Section 4.2, we show how
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to design separation oracles for the linear programs in this sequence so as to solve them by the
ellipsoid method. While a naive implementation of these separation oracles would require storing
exponentially many constraints, we show how to replace explicit enumeration of these constraints
with a counting subroutine, while preserving the correctness of the algorithm. The arguments in
Sections 4.1 and 4.2 apply to any coalitional game rather than just weighted voting games.

In Section 4.3, we show that for weighted voting games with polynomially-bounded weights the
counting subroutine used by the algorithm of Section 4.2 can be efficiently implemented. Finally,
in Section 4.4 we show how to modify this subroutine to efficiently identify a violated constraint if
a given candidate solution is infeasible. The results in Sections 4.3 and 4.4 are specific to weighted
voting games with polynomially bounded weights.

4.1 Computing the nucleolus by solving successive linear programs
As argued in [9], the nucleolus can be computed by solving at most n successive linear programs.
The first linear program LP1 contains the inequality p(S) ≥ ν(S) − ε for each coalition S ⊆ I ,
and attempts to minimize ε subject to these inequalities, i.e., it computes a payoff in the least core
as well as the value ε1 of the least core. Given a (relative) interior optimizer (p1, ε1) for LP1

(i.e., an optimal solution that minimizes the number of tight constraints), let Σ1 be the set of all
inequalities in LP1 that have been made tight by p1 (we will abuse notation and use Σ1 to refer
both to these inequalities and the corresponding coalitions). We construct the second linear program
LP2 by replacing all inequalities in Σ1 with equations of the form p(S) = ν(S) − ε1, and try to
minimize ε subject to this new set of constraints. This results in ε2 < ε1 and a payoff vector p2

that satisfies p2(S) = ν(S) − ε1 for all S ∈ Σ1, p2(S) ≥ ν(S) − ε2 for all S 6∈ Σ1. We repeat
this process until the payoffs to all coalitions are determined, i.e., the solution space of the current
linear program consists of a single point. It has been shown [9] that this will happen after at most n
iterations: indeed, each iteration reduces the dimension of the solution space by at least 1.

More formally, the sequence of linear programs (LP1, . . . ,LPn) is defined as follows. The first
linear program LP1 is given by

min
(p,ε)

ε subject to


∑
i∈I

pi = 1, pi ≥ 0 for all i = 1, . . . , n∑
i∈S

pi ≥ ν(S)− ε for all S ⊆ I.
(2)

Let (p1, ε1) be an interior optimizer to this linear program. Let Σ1 be the set of tight constraints
for (p1, ε1) (and, by a slight abuse of notation, the coalitions that correspond to them), i.e., for any
S ∈ Σ1 we have p1(S) = 1− ε1.

Now, suppose that we have defined the first j − 1 linear programs LP1, . . . ,LPj−1. For k =
1, . . . , j − 1, let (pk, εk) be an interior optimizer for LPk and let Σk = {S | pk(S) = ν(S)− εk}.
Then the jth linear program LPj is given by

min
(p,ε)

ε subject to



∑
i∈I

pi = 1, pi ≥ 0 for all i = 1, . . . , n∑
i∈S

pi = ν(S)− ε1 for all S ∈ Σ1

. . .∑
i∈S

pi = ν(S)− εj−1 for all S ∈ Σj−1

∑
i∈S

pi ≥ ν(S)− ε for all S 6∈ ∪j−1
k=1Σ

k.

(3)
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Fix the minimal value of t such that there is no interior solution to LPt. It is not hard to see that
the (unique) solution to LPt is indeed the nucleolus. Indeed, the nucleolus is a payoff vector that
produces the lexicographically maximal deficit vector. This means that it:

(i) minimizes ε1 such that all coalitions receive at least 1− ε1;

(ii) given (i), minimizes the number of coalitions that receive 1− ε1;

(iii) given (i) and (ii), minimizes ε2 such that all coalitions except for those receiving 1−ε1 receive
at least 1− ε2;

(iv) given (i), (ii) and (iii), minimizes the number of coalitions that receive 1− ε2, etc.

Our sequence of linear programs finds a payoff vector that satisfies all these conditions; in particular,
(ii) and (iv) (and analogous conditions at subsequent steps) are satisfied, since at each step we choose
an interior optimizer for the corresponding linear program. The only issue that we have to address
is that our procedure selects an arbitrary interior optimizer to the current linear program in order
to construct the set Σj . Conceivably, this may have an impact on the final solution: if two interior
optimizers to LPj lead to two different sets Σj , they may also result in different values of εj+1,
so one would have to worry about choosing the right interior optimizer. Fortunately, this is not the
case, as shown by the following lemma.

Lemma 2. Any two interior optimizers (p, ε) and (q, ε) for the linear program LPj have the same
set of tight constraints, i.e., the set Σj is independent of the choice of the interior optimizer.

Proof. First note that the set of all interior optimizers for LPj is convex. Now, suppose that p and q
are two interior optimizers for LPj , but have different sets of tight constraints. Then, by convexity,
any convex combination αp + (1− α)q of p and q is also an interior optimizer for LPj . However,
the set of constraints that are tight for αp + (1 − α)q is the intersection of the corresponding sets
for p and q, i.e., αp+ (1−α)q has strictly fewer tight constraints than p or q, a contradiction with
p and q being interior optimizers for LPj .

We conclude that when this algorithm terminates, the output is indeed the nucleolus. Next, we
discuss how to solve each of the linear programs LPj , j = 1, . . . , t.

4.2 Solving the linear programs LP1, . . . ,LP t

It is well-known (see e.g. [15, 6]) that a linear program can be solved in polynomial time by the
ellipsoid method as long as it has a polynomial-time separation oracle, i.e., an algorithm that, given
a candidate feasible solution, either confirms that it is feasible or outputs a violated constraint.
Moreover, the ellipsoid method can also be used to find an interior optimizer (rather than an arbitrary
optimal solution) in polynomial time [6, Thm. 6.5.5], as well as to decide whether one exists [6,
Thm. 6.5.6]. We will now construct a polynomial-time separation oracle for jth linear program LPj

in our sequence.
It is easy to construct the part responsible for checking equations of LPj in (3), assuming that

we already have an oracle for the (j − 1)st program LPj−1. Indeed, the latter oracle can be easily
modified to also check whether the equation ε = εj−1 holds, thus providing an oracle for the optimal
face of LPj−1. Then by [6, Thm. 6.5.5] we can compute a basis of the optimal face (which consists
of at most n equations) in polynomial time. The separation oracle can then reject a candidate solution
(p, ε) if p violates one of those basis equations.

Dealing with the inequalities of LPj is more complicated. A naive separation oracle would
have to explicitly list the sets Σ1, . . . ,Σj−1, which may be superpolynomial in size. Alternatively,
one can treat this part of the oracle as a 0-1 integer linear feasibility problem, with 0-1 variables
xi encoding a set S 6∈ ∪j−1

k=1Σ
k that provides a separating inequality for the oracle input (p, ε).
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Namely, suppose that we have verified that p satisfies all the equations in LPj (as described above).
Then, given an interior optimizer (pj−1, εj−1) for LPj−1, the values x1, . . . , xn can be obtained as
a solution to the following inequalities:∑

i

pj−1
i xi > 1− εj−1, (4)∑

i

pixi < 1− ε, (5)∑
i

wixi ≥ q. (6)

The problem with this approach is that for arbitrary rational p and pj−1 this system of inequali-
ties is at least as hard as KNAPSACK, which is NP-complete. Moreover, as p and pj−1 are pro-
duced by the ellipsoid method, there is no guarantee that their bitsizes are small enough to use a
(pseudo)polynomial-time algorithm for KNAPSACK. The only hope is to replace at least one of (4)
and (5) by something “tame”.

We will now present a more sophisticated approach to identifying a violated constraint. In a way,
it can be seen as replacing checking (4) with counting. Our construction proceeds by induction: to
construct a separation oracle for LPj , we assume that we have constructed an oracle for LPj−1,
and are given the sizes of sets Σ1, . . . ,Σj−1 as well as the sequence (ε1, . . . , εj−1).

By construction, any optimal solution (p, ε) to LPj satisfies ε < εj−1, so we can add the
constraint ε ≤ εj−1 to LPj without changing the set of solutions. From now on, we will assume
that LPj includes this constraint. Our separation oracle will first check whether a given candidate
solution (p, ε) satisfies ε ≤ εj−1, as well as constraints pi ≥ 0 for all i = 1, . . . , n and p(I) = 1,
and reject (p, ε) and output a violated constraint if this is not the case. Therefore, in what follows
we assume that (p, ε) satisfies all these easy-to-identify constraints.

Now, a candidate solution (p, ε) is feasible for LPj if p(S) = ν(S) − εt for S ∈ Σt, t =
1, . . . , j − 1, and p(S) ≥ ν(S)− ε for all S 6∈ ∪j−1

t=1Σt. Recall that the deficit of a coalition S ⊆ I
under a payoff vector p is given by ν(S) − p(S). Suppose that we have a procedure P(p, ε) that,
given a candidate solution (p, ε), can efficiently compute the top j distinct deficits under p, i.e.,

m1 = max{d(S) | S ⊆ I}
m2 = max{d(S) | S ⊆ I, d(S) 6= m1}

. . .

mj = max{d(S) | S ⊆ I, d(S) 6= m1, . . . ,mj−1}

as well as the numbers n1, . . . , nj of coalitions that have deficits of m1, . . . ,mj , respectively:

nk = |{S | S ⊆ I, d(S) = mk}|, k = 1, . . . , j.

Suppose also that we are given the values ε1, . . . , εj−1 and the sizes st of the sets Σt, t = 1, . . . , j−
1.

Now, our algorithm works as follows. Given a candidate solution (p, ε), it runs P(p, ε) to obtain
mt, nt, t = 1, . . . , j. If ε < εj−1, it then checks whether

(a) mt = εt and nt = st for all t = 1, . . . , j − 1

(b) mj ≤ ε.

If ε = εj−1, it simply checks whether mt = εt for t = 1, . . . , j − 1 and nt = st for all t =
1, . . . , j− 2 1. If these conditions are satisfied, the algorithm answers that (p, ε) is indeed a feasible

1Alternatively, if ε = εj , one can verify whether (p, ε) is a feasible solution to the previous linear program LPj−1.
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solution, and otherwise it identifies and outputs a violated constraint (for details of this step, see
Section 4.4). We will now show that this algorithm implements a separation oracle forLPj correctly
and efficiently.

Theorem 3. Given the values εt, st, t = 1, . . . , j − 1, and a procedure P(p, ε) that computes
mt, nt, t = 1, . . . , j, in polynomial time, our algorithm correctly decides whether a given pair
(p, ε) is feasible for LPj and runs in polynomial time.

Proof. We start by proving an auxiliary lemma.

Lemma 4. For any vector p and any t ≤ j − 1 such that ms = εs, ns = ss for all s ≤ t, the
coalitions with deficit εs under p are exactly the ones in Σs.

Proof. The proof is by induction on s. For s = 1, we have that the largest deficit of any coalition
under p is ε1, and there are exactly s1 coalitions with this deficit. Hence, (p, ε1) is an interior
optimizer for LP1, and therefore the lemma follows by Lemma 2. Now, suppose that the lemma has
been proven for s−1. By the induction hypothesis, p satisfies all constraints in Σ1, . . . ,Σs−1. Also,
under p there are at most s1 + · · · + ss−1 coalitions whose deficit exceeds εs, so for all coalitions
not in ∪s−1

r=1Σ
r their deficit is at most εs. Finally, there are exactly ss coalitions whose deficit is

exactly εs. Hence, (p, εs) is an interior optimizer for LPs, and therefore the lemma follows by
Lemma 2.

To prove the theorem, let us first consider the case ε < εj−1. Suppose that (p, ε) satisfies (a)
and (b). By using Lemma 4 with t = j − 1, we conclude that (p, ε) satisfies all equations in LPj .
Now, under p, mj is the largest deficit of a coalition not in ∪j−1

t=1Σt. If this deficit is at most ε, then
the pair (p, ε) is a feasible solution to LPj .

Conversely, suppose that (a) or (b) is violated. If (p, ε) satisfies (a) but violates (b), by us-
ing Lemma 4 with t = j − 1 we conclude that, under p the coalitions in Σt have deficit εt for
t = 1, . . . , j − 1, but the deficit of some coalition not in ∪j−1

t=1Σt exceeds ε. Hence, this coalition
corresponds to a violated constraint. Now, suppose that (a) does not hold, and let s be the smallest
index for which ms 6= εs or ns 6= ss. By using Lemma 4 with t = s − 1, we conclude that for
r = 1, . . . , s − 1 the coalitions in Σr have deficit εr. However, either the sth distinct deficit under
p is not εs, in which case p violates a constraint in 2I \ ∪s−1

r=1Σ
r, or under p there are more than ss

coalitions with deficit εs (note that by construction it cannot be the case that ns < ss). In the latter
case, there is a coalition in 2I \ ∪s

r=1Σ
r whose deficit exceeds εs, thus violating the corresponding

constraint. The case ε = εj−1 is similar. In this case for a candidate solution (p, ε) to be feasible,
it is not required that there are exactly sj−1 coalitions with deficit εj−1. Hence, the algorithm only
has to decide if for all t = 1, . . . , j − 2, the coalitions with deficit εt under p are exactly the ones in
Σt, and all other coalitions get at least εj−1. Showing that our algorithm checks this correctly can
be done similarly to the previous case.

The bound on the running time is obvious from the description of the algorithm.

To provide the value sj = |Σj | for the subsequent linear programs LPj+1, . . . ,LPn, we need
to find an interior optimizer for LPj . Thm. 6.5.5 in [6] explains how to do this given a separation
oracle for the optimal face, i.e., the set of all optimizers of LPj . Observe that such an oracle can
be obtained by a slight modification of the oracle described above. Indeed, the optimal face is the
set of solutions to the linear feasibility problem given by the constraints in LPj together with the
constraint ε = εj . The modified oracle first checks the latter constraint, reports the violation (and the
corresponding inequality) if it happens, and otherwise continues as the original oracle. Clearly, the
modified oracle runs in polynomial time whenever the original one does. Hence, we can compute
sj in polynomial time by computing an interior solution (p, ε) to LPj according to [6, Thm. 6.5.5],
running P(p, ε) to find nj , and setting sj = nj .
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4.3 Implementing the counting
We will now show how to implement the counting procedure P(p, ε) used in Section 4.2 for WVGs.
The running time of our procedure is polynomial in the number of players n and the maximum
weight W .

Our approach is based on dynamic programming. Fix a WVG (I;w; q), a payoff vector p, and
j ≤ n. For all k = 1, . . . , n, w = 1, . . . , nW , let X1

k,w, . . . , Xj
k,w be the bottom j distinct payoffs

to coalitions in {1, . . . , k} of weight w, i.e., define

X1
k,w = min{p(S) | S ⊆ {1, . . . , k}, w(S) = w}

X2
k,w = min{p(S) | S ⊆ {1, . . . , k}, w(S) = w, p(S) 6= X1

k,w}
. . .

Xj
k,w = min{p(S) | S ⊆ {1, . . . , k}, w(S) = w, p(S) 6= X1

k,w, . . . , Xj−1
k,w }

and let Y 1
k,w, . . . , Y j

k,w be the numbers of coalitions that get these payoffs, i.e. set

Y t
k,w = |{S | S ⊆ {1, . . . , k}, w(S) = w, p(S) = Xt

k,w}|, for t = 1, . . . , j.

These quantities can be computed inductively for k = 1, . . . , n as follows.
For k = 1, we have X1

1,w = p1 if w = w1 and +∞ otherwise, Y 1
1,w = 1 if w = w1 and 0

otherwise, and Xt
1,w = +∞, Y t

1,w = 0 for t = 2, . . . , j.
Now, suppose that we have computed X1

k−1,w, . . . , Xj
k−1,w, Y 1

k−1,w, . . . , Y j
k−1,w for all w =

1, . . . , nW . Consider S ⊆ {1, . . . , k} receiving one of the bottom j distinct payoffs to subsets of
{1, . . . , k} of weight w, i.e., p(S) ∈ {X1

k,w, . . . , Xj
k,w}. Then either

(1) S ⊆ {1, . . . , k − 1}, in which case S must be among the coalitions that receive one of the
bottom j distinct payoffs to subsets of {1, . . . , k − 1} of weight w, i.e., we have p(S) ∈
{X1

k−1,w, . . . , Xj
k−1,w}, or

(2) k ∈ S, in which case S \ {k} must be among the coalitions that receive one of the bottom j
distinct payoffs to subsets of {1, . . . , k − 1} of weight w − wk, i.e., we have p(S \ {k}) ∈
{X1

k−1,w−wk
, . . . , Xj

k−1,w−wk
}.

Consider the multi-set Sk,w = {X1
k−1,w, . . . , Xj

k−1,w, pk + X1
k−1,w−wk

, . . . , pk + Xj
k−1,w−wk

}.
By the argument above, we have

X1
k,w = min{x | x ∈ Sk,w}

X2
k,w = min{x | x ∈ Sk,w, x 6= X1

k,w}
. . .

Xj
k,w = min{x | x ∈ Sk,w, x 6= X1

k,w, . . . , Xj−1
k,w }.

The number of coalitions that receive the payoff Xt
k,w, i.e., Y t

k,w, t = 1, . . . , j, depends on how
many times Xt

k,w appears in Sk,w. If it only appears once, then there is only one source of sets
that receive a payoff of Xt

k,w, i.e., we set Y t
k,w = Y s

k−1,w if Xt
k,w appears as Xs

k−1,w for some
s = 1, . . . , j, and we set Y t

k,w = Y s
k−1,w−wk

if Xt
k,w appears as Xs

k−1,w−wk
+ pk for some s =

1, . . . , j. On the other hand, if Xt
k,w appears twice in Sk,w (first time as Xs

k−1,w and second time as
pk + Xs′

k−1,w−wk
for some s, s′ = 1, . . . , j), we have to add up the corresponding counts, i.e., we

set Y t
k,w = Y s

k−1,w + Y s′

k−1,w−wk
.

After all X1
n,w, . . . , Xj

n,w, Y 1
n,w, . . . , Y j

n,w have been evaluated, it is not hard to compute mt, nt,
t = 1, . . . , j. Indeed, the top j deficits appear in the multi-set

S = {Iw −X1
n,w, . . . , Iw −Xj

n,w | w = 1, . . . , nW},
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where Iw = 1 if w ≥ q and Iw = 0 if w < q (recall that q is the quota of the game, i.e., ν(S) = 1 if
and only if w(S) ≥ q). Hence, we can set

m1 = max{x | x ∈ S}
m2 = max{x | x ∈ S, x 6= m1}

. . .

mj = max{x | x ∈ S, x 6= m1, . . . ,mj−1}.

The procedure for computing nt, t = 1, . . . , j, is similar to that of computing Y s
k,w (see above): we

have to check how many times mt appears in S and add the corresponding counts.
In the next subsection, we will show how to find a violated inequality if (p, ε) is not a feasible

solution to LPj .

4.4 Identifying a violated constraint
Consider LPj and a candidate solution (p, ε). Suppose that the algorithm described in the previous
subsection has decided that (p, ε) is not a feasible solution toLPj . This can happen in three possible
ways.

(a) ms = εs, ns = ss for s = 1, . . . , `− 1, but m` 6= ε` for an ` < j.

(b) ms = εs, ns = ss for s = 1, . . . , `− 1, m` = ε`, but n` 6= s` for an ` < j.

(c) ms = εs, ns = ss for s = 1, . . . , j − 1, but mj > ε.

In cases (a) and (b), there is a violated equation in (3), while in (c) there are none (but there is a
violated inequality). Thus (a) and (b) can be handled using the ideas discussed in the beginning of
Section 4.2. Indeed, as argued there, we can efficiently compute the basis of the optimal face of the
feasible set of LPj−1 using the ellipsoid method. One can then easily check if a candidate solution
violates one of the equations in the basis (recall that there are at most n of them), and, if this is the
case, report one that is violated. Hence, we only need to show how to identify a violated constraint
in case (c). However, for completeness, we present here a purely counting-based algorithm for each
of the cases.

In case (a), let (p̂, ε`) be an interior optimizer for LP`. Under p̂, the deficit of any coalition
in 2I \ ∪`−1

s=1Σ
s is at most ε`. On the other hand, under p, there are n` coalitions in 2I \ ∪`−1

s=1Σ
s

whose deficit is m` > ε`. Each of these coalitions corresponds to a violated constraint: indeed, if
such a coalition is in Σs, s ≥ `, then LPj requires that its deficit is εs ≤ ε` < m`, and if it is in
2I \∪j−1

s=1Σ
s, then LPj requires that its deficit is at most ε ≤ ε` < m`, Hence, it suffices to identify

a coalition whose deficit under p is m`. To this end, we can modify the dynamic program for p as
follows. Together with every variable Xt

k,w, t = 1, . . . , j, k = 1, . . . , n, w = 1, . . . , nW , we will
use an auxiliary variable Zt

k,w which stores a coalition whose payoff under p is equal to Xt
k,w. The

values of Zt
k,w can be easily computed by induction: if Xt

k,w = Xs
k−1,w for some s = 1, . . . , j then

Zt
k,w = Zs

k−1,w, and if Xt
k,w = pk +Xs

k−1,w−wk
for some s = 1, . . . , j then Zt

k,w = Zs
k−1,w ∪{k}

(if Xt
k,w = Xs

k−1,w = pk +Xs′

k−1,w−wk
, we can set Zt

k,w to either of these values). Now, there exist
some t and w such that w ≥ q and 1 −Xt

n,w = m` or w < q and −Xt
n,w = m`; such t and w can

be found by scanning all Xt
n,w. The corresponding set Zt

n,w has deficit m` under p, and therefore
corresponds to a violated constraint.

In case (b), as before, let (p, ε) be an interior optimizer toLPj−1. There exists a coalition whose
deficit under p is ε`, but whose deficit under p̂ is strictly less than ε`. To find such a coalition, run
P(p̂, ε) in order to compute the corresponding values X̂t

k,w, Ŷ t
k,w t = 1, . . . , j − 1, k = 1, . . . , n,

w = 1, . . . , nW . Define Zw as follows: if there exists some t ∈ {1, . . . , j − 1} such that Xt
n,w =
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Iw − ε`, set Zw = Y t
n,w; otherwise, set Zw = 0. Ẑw is defined similarly: if there exists an

s ∈ {1, . . . , j−1} such that X̂s
n,w = Iw− ε`, set Ẑw = Ŷ s

n,w; otherwise, set Ẑw = 0. The variables
Zw and Ẑw count the number of coalitions that have total weight w and have deficit ε` under p
and p̂, respectively. We have n` =

∑
w=1,...,nW Zw, s` =

∑
w=1,...,nW Ẑw. As n` > s`, there

exists a weight w such that Zw > Ẑw. Set q = Iw − ε`, i.e., q is the total payment received by the
coalitions counted by Zw and Ẑw. Now, we have Zw = Zn

w + Z−n
w , where Zn

w is the number of
coalitions of weight w that include n, have weight w and receive total payment q, and Z−n

w is the
number of coalitions of weight w that do not include n, have weight w and receive total payment
ε`; Ẑn

w and Ẑ−n
w can be defined similarly. We can easily compute these quantities: for example,

Zn
w is the number of subsets of {1, . . . , n − 1} that have weight w − wn and receive total payment

q − pn, i.e. Zn
w = Y t

n−1,w−wn
if there exists a t ∈ {1, . . . , j − 1} such that Xt

n−1,w−wn
= q − pn,

and Z−n
w = 0 otherwise. It follows immediately that Zn

w > Ẑn
w or Z−n

w > Ẑ−n
w (or both), and we

can easily verify which of these cases holds. In the former case, we can conclude that the number
of coalitions in {1, . . . , n − 1} that have weight w − wn and are paid q − pn under p exceeds the
number of coalitions in {1, . . . , n − 1} that have weight w − wn and are paid q − p̂n under p̂. In
the latter case, we can conclude that the number of coalitions in {1, . . . , n− 1} that have weight w
and are paid q under p exceeds the number of coalitions in {1, . . . , n − 1} that have weight w and
are paid q under p̂. Continuing in the same manner for n− 1, . . . , 1, we can identify a coalition that
is paid q under p, but not under p̂.

Case (c), i.e. mj > ε, is similar to (a) and can be handled in the same manner.

5 Conclusions and future work
In this paper, we proposed a new technique for computing the nucleolus of coalitional games.
Namely, we have shown that, when constructing the separation oracle for the jth linear program
LPj , instead of storing the sets of tight constraints for the linear programs LPt, t = 1, . . . , j − 1,
it suffices to store the sizes of these sets as well as the top j − 1 deficits of an interior optimizer
(pj−1, ε) toLPj−1. A feasibility of a candidate solution (p, ε) toLPj can then be verified, roughly,
by computing the top j deficits for p as well as the number of coalitions that have these deficits, and
comparing these values to their pre-computed counterparts for (pj−1, ε).

We then demonstrated the usefulness of this technique by showing that for weighted voting
games with polynomially-bounded weights both the top j deficits and the number of coalitions that
have these deficits can be efficiently computed using dynamic programming. This allows us to
implement the separation oracles for our linear programs in pseudopolynomial time. Combining
this with the ellipsoid algorithm results in a pseudopolynomial time algorithm for the nucleolus
of weighted voting games, thus solving an open problem posed by [5]. Furthermore, the general
technique put forward in this paper effectively reduces the computation of the nucleolus to solving
a natural combinatorial problem for the underlying game. Namely, we can state the following meta-
theorem:

Theorem 5. Given a coalitional game G, suppose that we can, for any payoff vector p, identify
the top n distinct deficits under p as well as the number of coalitions that have these deficits in
polynomial time. Then we can compute the nucleolus of G in polynomial time.

We believe that this framework can be useful for computing the nucleolus in other classes of
games. Indeed, by stripping away most of the game-theoretic terminology, we may be able to find
the nucleolus by applying existing results in combinatorics and discrete mathematics in a black-box
fashion.

In the context of weighted voting games, our assumption that the weights are polynomially
bounded (or, equivalently, given in unary) is essential, as [5] shows that the nucleolus is NP-hard to

226



compute for WVGs with weights given in binary. Moreover, in many practical scenarios the agents’
weights cannot be too large (e.g., polynomial functions of n), in which case the running time of our
algorithm is polynomial.

By a slight modification of our algorithm, we can obtain a pseudopolynomial time algorithm for
computing the nucleolus in k-vector weighted voting games for constant k. Informally speaking,
these are games given by the intersection of k weighted voting games, i.e., a coalition is considered
to be winning if it wins in each of the underlying games. There are some interesting games that can
be represented as k-vector weighted voting games for small values of k (i.e., k = 2 or k = 3), but not
as weighted voting games, most notably, voting in the European Union [2]. Hence, this extension of
our algorithm enables us to compute the nucleolus in some real-life scenarios. The overall structure
of our algorithm remains the same. However, the dynamic program has to be modified to keep track
of several weight systems simultaneously.

Another natural way to address the problem of computing the nucleolus is by focusing on ap-
proximate solutions. Indeed, [5] proposes a fully polynomial time approximation scheme (FPTAS)
for several least-core related problems. It would be natural to expect a similar result to hold for
the nucleolus. Unfortunately, this approach is ruled out by [5], which shows that it is NP-hard to
decide whether the nucleolus payoff of any particular player is 0, and therefore approximating the
nucleolus payoffs up to any constant factor is NP-hard. Nevertheless, one can attempt to find an
additive approximation to the nucleolus, i.e., for a given error bound δ > 0, find a vector x such that
|ηi − xi| ≤ δ for i = 1, . . . , n. This can be useful in situations when the agents’ weights cannot
be assumed to be polynomially bounded with respect to n, e.g., in the multiagent settings where
the weights correspond to agents’ resources. We are currently investigating several approaches to
designing additive approximation algorithms for the nucleolus.

References
[1] J. F. Banzhaf. Weighted voting doesn’t work: a mathematical analysis. Rutgers Law Review,

19:317–343, 1965.
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�������� ������ ����� ������ ���� �� ������ ���������� ����� � ������� � �� ������� ����
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������� ��� � �� �� �� �� �� �� �� ��
��� � � � � � � � �
�� � � � � � � � �
�� � � � � � � � �
���§�� � � � � � � � �
���§�� � � � � � � � �
��§�� � � � � � � � �
��§�� � � � � � � � �
�� §�� � � � � � � � �

�� §�� � � � � � � � �
�� � � � � � � � �

�� � � � � � � � �

��� �� 	% ���������� �� ������� ������� ��� ��������G ��������� � ����� ; ���� = > ; > 	 �� �
�������� ������ � ��� ��� ���������§���� ��������� � � ����� ���������� �� � ���������� �������
���� ��� � ����� �������� ������ ��� ������� ��������� � �������� ��� ��� �� ��������� � ������
��� ����¥ �� 
 ��� ������������ � ��� ��������� � ��� ����� ���
 � ����� ���� ���� ���
���� ���������� ������� ��� ���������� ��� ������� �������� �� �� �� � ��
 � ������ �����������
���� ��� ���� ������ ����� ��� ����� ������� �¢

����� ��� ���¥ � ��� ����� � ����¥ � ��� ����� �	
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¢ ��� � ��� ��������� ����������� �����
�� ��� �������� �� � ���� �� ������� ������ � � ��� ������ �� ��� ���� 	��=� ��� ��� 	��=� �
� ������� ��� ���� ��� ����� � ���� ������� �� ���������� ������� ��������� ����� ��������
���� ��� � � ��� ��� ������� �� ��� ������� ����� �� ���� ����� ���� �� ��� ���� ���������
����� � ��� ���� ��� ����� ��� � � ����� ��� � � ���� ��� ����� �������� �� ��� � ����� � ��
���� �� � � @ A  BPM ���D  � � ���H��?�  �������������� �� ������ �� ��� ����� ���¢ �� ����� �� ��
��������� ��� ��� ���� ��� ����� ������� ��� � �� � �� ¢�� 	�
 �
� 5�2 
����� 262� "���6�� 5�56� � 2�� �6� 9 �� ����� ��� ���� ����� �� �� §���� � �����§
������ ������� ���� ��� � � ��������� � ������ ��� ����¥ ��
 ��������� ����������� ���� ��������
���� ��� � ��� ��� ����� �� � ������� ������ �� ���������� �� � ������� ������ �� ������ �
��� ���� �������� �� �����§��������� ������� ��� ���� ����� � ) ��� �� ��� ����� �� ��������� �
�� �� ��� � ��������� ���¥��� �� ����� ����§����� ���� ��������� �� ��� ���� ���� ���� � ���
������� � � ����� ��� ����� �� ���� ��� �	�
 �

)� ������ ��� ���������§��§������� ������� ���� ��� � � � ���� ����� �� �� ����� ��������� �
��� ��� ���� ���� ��� ������ �� ���������� �� ������ �� ������� � ��� ��������� � ���
��� � ����� ������� ��� ��� � � ������ � �� ���� ��������� � ���� ����� � ��� ������ �� ��� �
��� �� ����� ���� ��� ��� ����� � ���� ���� ����� ��� �������� ����� ������ �� �����
��� ������ ��� ����� ��� "�����������§���� � � �����§�������§��� ���§���������§��§����§����������§
����¢# ������ ��� ���� �� ��� ���� �� ���������� ������ � )� ������ ���� ��������� � ��� ���
��� �����§������� ����� � ���� ��� ������� ������� �� ���������� ��� ��� ������� ���� ���
�� ������ � ��� ��� ��� ��� ���������§������� ����� � ��� ������� ������� �� ���������� � ��
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��� ����� ���� � �� ���� ���� ��� ��� ���������§��§������� ����������§����� � ���������§�������
����� � ���������� ����� ����� ���� �� ��� ���� �� �� ������ �� ��� ���� �� � ���� �� ���� ��� �

��� �� �� ��� �������� � )� �������� ��� ����� ������������ % �������� ��� ���� �� ��
���������� ��� �������� ��� ���� �� �� ������ � )� ��� ��� ��� � ��������� ���� ����������
�� �� ����� �� ������� � ���� ��� � � ������ �� ����� ��� � "§�� � # �� � ���� ��� ���� �� �����
���� ��� ���� �� �� ������ � �� � � �� ���� � � ��� �� ����� ��� � "§��� # �� � ���� ��� ����
�� ����� ���� ��� ������ �� ���������� � �� � � �� ���� � � �� ���� ���� � ��� ����� ������� ��
��� ���� ������ �� ���� ���� � �������� �� ��� ���� ��� � ��� ������� � �� ��� ���� �� �������
�� ������ ������ � ��� � ���� ����� ��� ����� �� ��� ���� �� �� ������ �� ��� �������� �����
�������� � ��� ��� ���� �� �� ������ �� ��� ���� �� ������ ������� �� ��� ������ �

�� ����� ��� ����§����� ���� ������� ����� ������� ���������� �� ������ � ���������� ��§
������ ���� ��������� ������� ������� � ��� ��� ������ ����¥��� �� �� "����� ������ ������#
�������� � �� � ��� ������� � ��� ����� � ������� � � ����	��
�� �� � ��������� ��� ��� ���������� % �� ���� &
��� ���� & � � ���� & �� ���¥� & ��� ���¥� & ��� �� ���¥� � � �� ����� ���� �� ��� ������ "�#
����� � ���� �� ������� �� ���� � ����¥�� � � ���� ���� ���� ������� �� ������ � � ������ ��
�� ���� �� ��� � ��� ������� � " 
���� 	���� � �������� �� ���# ������� ���� "�������� ��������
�� ���# ��� "�������� �� ��� �#
"#27�2� � 9$ O¤�  �HI ����¤£�� ; < = > ; > 	< �£B  �HI HI ¤�H  N �¤D �I   �£B M  £B £ � HI ¤�H 
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��� ������ �� ������� � � �� ��� � �� � ����� �� ������� ��� ������ ������� �� ���
 ���������
��� �������§������ ��§����������� ������� �������� ��� � ��� �� ����� ���� �
��" �4 ��624 2 �746�7 � 9 )� ��� ��������� ��� ���¥ �� �������� ������� � ��
���� �� �� ��� � ��� �������� ��� ����� ������� ������� �� ����������������������������
����������������� � ������ � �� � ��� ������������ ���� ������ ���¥��� �� ��� ������������
�� �¥� � ������������� ��������� � � �����¢ ��� ��� ����������� �������� � �������������
��������� ���� � ���� � � �����¢ ����� � �� ������� ��� � �� ��� ���������� �� ������� ����� ���
���� ��� � � ��� ���� ��� �� �� �������� � ��� ������� ������� �� ��� ��������� ����� �� � ���
� � ���� ���� ����� �� ���� ����¢ � �� � ��� ����� �� ��� ���� ������ ��� ��������� ��� ����� ���
��� � ��� �§������� ����������¢ ��� ���������� �� "�������� ������ ��� ���# ��� ����������� ��
��� ������ ������� ���� ����§��§���� �������¢ �

� ���� ���� � �������� ������ ��� �� � �� ������� � ��� ��� ������� ; � ��� ��� ���� �¨ ���
��������G�����	
��� ������ �� ��� ���������� � ���� ����� � �� � ���� ������ ����� �� �����������
����� ����� �� �� ����� ��� ��� ������� ����� � � �� �� �� ��� �� ����� � ������ ����� ������� ��� ���
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���������� � ��� ������� �� ����� ��������G����� 	
��� ������ � �� ��� �� ����� � ������§�����§� ���§
���� ������� ��� ��� ���������� � ��� ���� ��� �� ����� ��������G�����	
��� ������ � �� ��� �� �����
��� ����� ������� ��������G�����	
��� ������ ��� ��� �� ���� ���������� � �� ��� �� ����� ���� ��
���� �� ������ ���� �� ��������� ���� � ������� �������� ��� � ��������G�����	
��� ����� ����
���� �� � ���� ��� ��������G�����	
��� ����� �� ��� ��������� ���� � ������� ����� �������� �
��� �

� �� ��� ��� ��������� � ����� �� ������� � � �� ��� � �� ������ � �� ����� ������� � ���
�������� ������� ���� ��� � ����� ����� ������� � ����� ��������� ��� � � ���� � � �����
������������� ����¢ �� ��� �� ��������� ���� � ���� � � ����� ������������ ����¢ � )� ����
���� ��� ������� ���������� ���� �� ����� ����� ������� �� ���� ����� ��� ����� �� ���� ���
��� ��� ���� ��� �� �� ������� �� ������� ���� �� ¦ ��� ��������� �
� 2�5�6�4�2 � 2�� �6� 9 �� �������� � ��� ��� ��� ������� �� ������� � � �� ��� � �� � �� ����
���� ��� ���� �������� ; � = > ; > 	 � ��� ��������G�����	
��� ��� ��� ���������§������� �����
���� �� ������ ������� �� ���� ����� �� �� �� � ������ ������ �� ��� ���� �� �� ������¢ �� � �
��������� ��� ��� ��������� ���� ��� ��� ���� �� ������� ������ � ���� ���������� ����� ����
���� ��� ����� �� ��� �� �������� ���� �� � ��� �� �� ��������� ���� ����� ���� ��� ����� �� ��
�������� ���� �� �

�� ������� ���� ������� ��� �� 	�� ��������� � ��������§����� � ���������§������� ����� ��§
� ��� ��������� ��� ��� �������§����� ���� �
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)� ���� ����� ���� ���� ��� ������������� ����� �� ���� ��� �������� ������ � �� � �� ��
��� �������� �� �� �� ��������
 �� ¢ ��� ������� ��������� �� � ������ ��� ��� ������� ������� �
���������� �� ������� ��� ������ ��� �������� �� ���� �������� ����������� � �� �� ������
����� ��� ���� � �� �� �� 
==§����§��� ������ ���� � ������� ���������� �� ���� ��� ��� ����
����������� �� �������������¢ ������� ���� ��� ����� ������� ������ ����� ��� ���� ������
����¢ � ��� �� ���� � �����§������ ������� ��� ������� ����� ���� ��������G � = � ; � 	�
�� ¥���� �� ������� � ��� ���� �� ���� ���� ��� ��¥�� �� ���� ��� ��������� ���� � �� �� ��
������ ��� ������ ���� ������ ������� �� ��������� ��� ���� ���������� ������� � ��������
������ � ������ � �� �� �� � ������ ���������� �� ������� ��� �� �������� ��� � ������ ���������� ��
�������������¢ ������� �
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�������� ������ � � ������� ����� ����������� ����� �� �� ���¥ �� ������ � ������� ������ ������ �
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On Voting Caterpillars:

Approximating Maximum Degree in a

Tournament by Binary Trees

Felix Fischer, Ariel D. Procaccia and Alex Samorodnitsky

Abstract

Voting trees describe an iterative procedure for selecting a single vertex from a tour-
nament. It has long been known that there is no voting tree that always singles out
a vertex with maximum degree. In this paper, we study the power of voting trees
in approximating the maximum degree. We give upper and lower bounds on the
worst-case ratio between the degree of the vertex chosen by a tree and the maximum
degree, both for the deterministic model concerned with a single fixed tree, and for
randomizations over arbitrary sets of trees. Our main positive result is a random-
ization over surjective trees of polynomial size that provides an approximation ratio
of at least 1/2. The proof is based on a connection between a randomization over
caterpillar trees and a rapidly mixing Markov chain.

1 Introduction

A problem that pervades the theory of social choice is the selection of “best” alternatives
from a tournament, i.e., a complete and asymmetric (dominance) relation over a set of
alternatives (see, e.g., Laslier, 1997). Such a relation for example arises from pairwise
majority voting with an odd number of voters and linear preferences. In graph theoretic
terms, a tournament is an orientation of a complete undirected graph, with a directed edge
from a dominating alternative to a dominated one. In the presence of cycles the concept
of maximality is not well-defined, and so-called tournament solutions have been devised to
take over the role of singling out good alternatives. A prominent such solution, known as
the Copeland solution, selects the alternatives with maximum (out-)degree, i.e., those that
beat the largest number of other alternatives in a direct comparison.

An interesting question concerns the implementation of a solution concept using a specific
procedure. We shall specifically be interested in the well-known class of procedures given by
voting trees. A voting tree over a set A of alternatives is a binary tree with leaves labeled by
elements of A. Given a tournament T , a labeling for the internal nodes is defined recursively
by labeling a node by the label of its child that beats the other child according to T (or by
the unique label of its children if both have the same label). The label at the root is then
deemed the winner of the voting tree given tournament T . This definition expressly allows
an alternative to appear multiple times at the leaves of a tree.

A voting tree over A is said to implement a particular solution concept if for every
tournament on A it selects an optimal alternative according to said solution concept. It has
long been known that there exists no voting tree implementing the Copeland solution, i.e.,
one that always selects a vertex with maximum degree (Moulin, 1986). In this paper, we
ask a natural question from a computer science point of view: Is there a voting tree that
approximates the maximum degree? More precisely, we would like to determine the largest
value of α, such that for any set A of alternatives, there exists a tree Γ, which for every
tournament on A selects an alternative with at least α times the maximum degree in the
tournament. We will address this question both in the deterministic model, where Γ is a
fixed voting tree, and in the randomized model, where voting trees are chosen randomly
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according to some distribution.

Results Our main negative results are upper bounds of 3/4 and 5/6, respectively, on the
approximation ratio achievable by deterministic trees and randomizations over trees. We
find it quite surprising that randomizations over trees cannot achieve a ratio arbitrarily close
to 1.

For most of the paper we concentrate on the randomized model. We study a class of
trees we call voting caterpillars, which are characterized by the fact that they have exactly
two nodes on each level below the root. We devise a randomization over “small” trees of
this type, which further satisfies an important property we call admissibility : its support
only contains trees where every alternative appears in some leaf. Our main positive result
is the following.

Theorem 4.1. Let A be a set of alternatives. Then there exists an admissible randomization
over voting trees on A of size polynomial in |A| with an approximation ratio of 1/2 −
O(1/|A|).
We prove this theorem by establishing a connection to a nonreversible, rapidly mixing ran-
dom walk on the tournament, and analyzing its stationary distribution. The proof of rapid
mixing involves reversibilizing the transition matrix, and then bounding its spectral gap via
its conductance. We further show that our analysis is tight, and that voting caterpillars
also provide a lower bound of 1/2 for the second order degree of an alternative, defined as
the sum of degrees of those alternatives it dominates.

The paper concludes with negative results about more complex tree structures, which
turn out to be rather surprising. In particular, we show that the approximation ratio
provided by randomized balanced trees can become arbitrarily bad with growing height. We
further show that “higher-order” caterpillars, with labels chosen by lower-order caterpillars
instead of uniformly at random, can also cause the approximation ratio to deteriorate.

Related Work In economics, the problem of implementation by voting trees was intro-
duced by Farquharson (1969), and further explored, for example, by McKelvey and Niemi
(1978), Miller (1980), Moulin (1986), Herrero and Srivastava (1992), Dutta and Sen (1993),
Srivastava and Trick (1996), and Coughlan and Le Breton (1999). In particular, Moulin
(1986) shows that the Copeland solution is not implementable by voting trees if there are
at least 8 alternatives, while Srivastava and Trick (1996) demonstrate that it can be imple-
mented for tournaments with up to 7 alternatives.

Laffond et al. (1994) compute the Copeland measure of several prominent choice cor-
respondences—functions mapping each tournament to a set of desirable alternatives. In
contrast to the (Copeland) approximation ratio considered in this paper, the Copeland
measure is computed with respect to the best alternative selected by the correspondence,
so strictly speaking it is not a worst-case measure. More importantly, however, Laffond
et al. study properties of given correspondences, whereas we investigate the possibility
of constructing voting trees with certain desirable properties. In this sense, our work is
algorithmic in nature, while theirs is descriptive.

In theoretical computer science, the problem studied in this paper is somewhat rem-
iniscent of the problem of determining query complexity of graph properties (see, e.g.,
Rosenberg, 1973; Rivest and Vuillemin, 1976; Kahn et al., 1984; King, 1988). In the general
model, one is given an unknown graph over a known set of vertices, and must determine
whether the graph satisfies a certain property by querying the edges. The complexity of a
property is then defined as the height of the smallest decision tree that checks the property.
Voting trees can be interpreted as querying the edges of the tournament in parallel, and in
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a way that severely limits the ways in which, and the extent up to which, information can
be transferred between different queries.

In the area of computational social choice, which lies at the boundary of computer sci-
ence and economics, several authors have looked at the computational properties of voting
trees and of various solution concepts. For example, Lang et al. (2007) characterize the
computational complexity of determining different types of winners in voting trees. Procac-
cia et al. (2007) investigate the learnability of voting trees, as functions from tournaments
to alternatives. In a slightly different context, Brandt et al. (2007) study the computational
complexity of different solution concepts, including the Copeland solution.

Organization We begin by introducing the necessary concepts and notation. In Section 3
we present upper bounds for the deterministic and the randomized setting. In Section 4, we
establish our main positive result using a randomization over voting caterpillars. Section 5
is devoted to balanced trees, and Section 6 concludes with some open questions. Proofs
of all results, as well as an analysis of “higher order” caterpillars, can be found in the full
version of this paper (Fischer et al., 2008).

2 Preliminaries

Let A = {1, . . . ,m} be a set of alternatives. A tournament T on A is an orientation of
the complete graph with vertex set A. We denote by T (A) the set of all tournaments
on A. For a tournament T ∈ T (A), we write iT j if the edge between a pair i, j ∈ A of
alternatives is directed from i to j, or i dominates j. For an alternative i ∈ A we denote
by si = si(T ) = |{j ∈ A : iT j}| the degree or (Copeland) score of i, i.e., the number of
outgoing edges from this alternative, omitting T when it is clear from the context.

We then consider computations performed by a specific type of tree on a tournament.
In the context of this paper, a (deterministic) voting tree on A is a structure Γ = (V,E, `)
where (V,E) is a binary tree with root r ∈ V , and ` : V → A is a mapping that assigns an
element of A to each leaf of (V,E). Given a tournament T , a unique function `T : V → A
exists such that

`T (v) =

{
`(v) if v is a leaf
`(u1) if v has children u1 and u2, and `(u1)T`(u2) or `(u1) = `(u2)

We will be interested in the label of the root r under this labeling, which we call the winner of
the tree and denote by Γ(T ) = `T (r). We call a tree Γ surjective if ` is surjective. Obviously,
surjectivity corresponds to a very basic fairness requirement on the solution implemented
by a tree. Other authors therefore view surjectivity as an inherent property of voting trees
and define them accordingly (see, e.g., Moulin, 1986). The sole reason we do not require
surjectivity by definition is that our analysis will use trees that are not necessarily surjective.

Finally, a voting tree Γ on A will be said to provide an approximation ratio of α (w.r.t.
the maximum degree) if

min
T∈T (A)

sΓ(T )

maxi∈A si(T )
≥ α.

The above model can be generalized by looking at randomizations over voting trees
according to some probability distribution. We will call a randomization admissible if its
support contains only surjective trees. A distribution ∆ over voting trees will then be said
to provide a (randomized) approximation ratio of α if

min
T∈T (A)

EΓ∼∆[sΓ(T )]
maxi∈A si(T )

≥ α.
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While we are of course interested in the approximation ratio achievable by admissible ran-
domizations, it will prove useful to consider a specific class of randomizations that are not
admissible, namely those that choose uniformly from the set of all voting trees with a given
structure. Equivalently, such a randomization is obtained by fixing a binary tree and as-
signing alternatives to the leaves independently and uniformly at random, and will thus be
called a randomized voting tree.

3 Upper Bounds

In this section we derive upper bounds on the approximation ratio achievable by voting
trees, both in the deterministic model and in the randomized model. We build on concepts
and techniques introduced by Moulin (1986), and begin by quickly familiarizing the reader
with these.

Given a tournament T on a set A of alternatives, we say that C ⊆ A is a component1

of T if for all i1, i2 ∈ C and j ∈ A \ C, i1Tj if and only if i2Tj. For a component C,
denote by TC the subset of tournaments that have C as a component. If T ∈ TC , we can
unambiguously define a tournament TC on (A \ C) ∪ {C} by replacing the component C
by a single alternative. The following lemma states that for two tournaments that differ
only inside a particular component, any tree chooses an alternative from that component
for one of the tournaments if and only if it does for the other. Furthermore, if an alternative
outside the component is chosen for one tournament, then the same alternative has to be
chosen for the other. Laslier (1997) calls a solution concept satisfying these properties weakly
composition-consistent.

Lemma 3.1 (Moulin 1986). Let A be a set of alternatives, Γ a voting tree on A. Then, for
all proper subsets C ( A, and for all T, T ′ ∈ TC ,

1. [TC = T ′C ] implies [Γ(T ) ∈ C if and only if Γ(T ′) ∈ C], and

2. [TC = T ′C and Γ(T ) ∈ A \ C] implies [Γ(T ) = Γ(T ′)].

We are now ready to strengthen the negative result concerning implementability of the
Copeland solution (Moulin, 1986) by showing that no deterministic tree can always choose
an alternative that has a degree significantly larger than 3/4 of the maximum degree.

Theorem 3.2. Let A be a set of alternatives, |A| = m, and let Γ be a deterministic voting
tree on A with approximation ratio α. Then, α ≤ 3/4 +O(1/m).

Proof. For ease of exposition, we assume |A| = m = 3k + 1 for some odd k, but the same
result (up to lower order terms) holds for all values of m. Define a tournament T comprised
of three components C1, C2, and C3, such that for r = 1, 2, 3, (i) |Cr| = k and the restriction
of T to Cr is regular, i.e., each i ∈ Cr dominates exactly (k− 1)/2 of the alternatives in Cr,
and (ii) for all i ∈ Cr and j ∈ C(r mod 3)+1, iT j. An illustration for k = 3 is given on the
left of Figure 1.

Now consider any deterministic voting tree Γ on A, and assume w.l.o.g. that Γ(T ) ∈ C1.
Define T ′ to be a tournament on A such that the restrictions of T and T ′ to B ⊆ A are
identical if |B ∩ C2| ≤ 1, and the restriction of T ′ to C2 is transitive; in particular, there is
i ∈ C2 such that for any i 6= j ∈ C2, iT ′j. An illustration for k = 3 is given on the right of
Figure 1. By Lemma 3.1, Γ(T ′) = Γ(T ). Furthermore, T ′ satisfies

sΓ(T ′) = k +
(k − 1)

2
=

3k
2
− 1

2
and max

i∈A
si = 2k − 1,

1Moulin (1986) uses the term “adjacent set”.
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C1

C2C3

C1

C2C3

tournament T (C2 regular) tournament T ′ (C2 transitive)

Figure 1: Tournaments used in the proof of Theorem 3.2, illustrated for k = 3. A voting
tree is assumed to select an alternative from C1.

and thus
sΓ(T ′)

maxi∈A si(T ′)
=

3k − 1
4k − 2

≤ 3(k − 1) + 2
4(k − 1)

=
3
4

+
1

2(k − 1)
.

We now turn to the randomized model. It turns out that one cannot obtain an approx-
imation ratio arbitrarily close to 1 by randomizing over large trees. We derive an upper
bound for the approximation ratio by using similar arguments as in the deterministic case
above, and combining them with the minimax principle of Yao (1977).

Theorem 3.3. Let A be a set of alternatives, |A| = m, and let ∆ be a probability distribution
over voting trees on A with an approximation ratio of α. Then, α ≤ 5/6 +O(1/m).

The proof of this theorem is given in the full version of the paper. We point out that
the theorem holds in particular for inadmissible randomizations.

4 A Randomized Lower Bound

A weak deterministic lower bound of Θ((logm)/m) can be obtained straightforwardly from a
balanced tree where every label appears exactly once. While balanced trees will be discussed
in more detail in Section 5, they become increasingly unwieldy with growing height, and an
improvement of this lower bound or of the deterministic upper bound given in the previous
section currently seems to be out of our reach. In the remainder of the paper, we therefore
concentrate on the randomized model.

In this section we put forward our main result, a lower bound of 1/2, up to lower order
terms, for admissible randomizations over voting trees. Let us state the result formally.

Theorem 4.1. Let A be a set of alternatives. Then there exists an admissible randomization
over voting trees on A of size polynomial in |A| with an approximation ratio of 1/2−O(1/m).

In addition to satisfying the basic admissibility requirement, the randomization also has
the desirable property of relying only on trees of polynomial size. This clearly facilitates its
use as a computational procedure. To prove Theorem 4.1, we make use of a specific binary
tree structure known as caterpillar trees.
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4.1 Randomized Voting Caterpillars

We begin by inductively defining a family of binary trees that we refer to as k-caterpillars.
The 1-caterpillar consists of a single leaf. A k-caterpillar is a binary tree, where one subtree
of the root is a (k−1)-caterpillar, and the other subtree is a leaf. Then, a voting k-caterpillar
on A is a k-caterpillar whose leaves are labeled by elements of A.

It is straightforward to see that an upper and lower bound of 1/2 holds for the randomized
1-caterpillar, i.e., the uniform distribution over the m possible voting 1-caterpillars. Indeed,
such a tree is equivalent to selecting an alternative uniformly at random. Since we have∑

i∈A si =
(
m
2

)
, the expected score of a random alternative is (m − 1)/2, whereas the

maximum possible score is m− 1. This randomization, however, like other randomizations
over small trees that conceivably provide a good approximation ratio, is not admissible and
actually puts probability one on trees that are not surjective.

To prove Theorem 4.1, we instead use the uniform randomization over surjective k-
caterpillars, henceforth denoted k-RSC, which is clearly admissible. Theorem 4.1 can then
be restated as a more explicit—and slightly stronger—result about the k-RSC.

Lemma 4.2. Let A be a set of alternatives, T ∈ T (A). For k ∈ N, denote by p
(k)
i the

probability that alternative i ∈ A is selected from T by the k-RSC. Then, for every ε > 0
there exists k = k(m, ε) polynomial in m and 1/ε such that∑

i∈A

p
(k)
i si ≥

m− 1
2
− ε.

To see that this directly implies Theorem 4.1, recall that the maximum score is m − 1
and choose, for example, ε = 1. The remainder of this section is devoted to the proof of
Lemma 4.2. For the sake of analysis, we will use the randomized k-caterpillar, or k-RC, as a
proxy to the k-RSC. We recall that the k-RC is equivalent to a k-caterpillar with labels for
the leaves chosen independently and uniformly at random. In other words, it corresponds to
the uniform distribution over all possible voting k-caterpillars, rather than just the surjective
ones.

Clearly the k-RC corresponds to a randomization that is not admissible. In contrast to
very small trees, however, like the one consisting only of a single leaf, it is straightforward
to show that the distribution over alternatives selected by the RC is very close to that of
the RSC.

Lemma 4.3. Let k ≥ m, and denote by p̄
(k)
i and p

(k)
i , respectively, the probability that

alternative i ∈ A is selected by the k-RC and by the k-RSC for some tournament T ∈ T (A).
Then, for all i ∈ A,

|p̄(k)
i − p(k)

i | ≤
m

ek/m
.

Proof. For all i ∈ A, |p̄(k)
i − p(k)

i | is at most the probability that the k-RC does not choose
a surjective tree. By the union bound, we can bound this probability by

∑
i∈A

Pr[i does not appear in the k-RC] ≤ m ·
(

1− 1
m

)k

≤ m

ek/m
.

With Lemma 4.3 at hand, we can temporarily restrict our attention to the k-RC. A direct
analysis of the k-RC, and in particular of the competition between the winner of the (k−1)-
RC and a random alternative, shows that for every k, the k-RC provides an approximation
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ratio of at least 1/3. It seems, however, that this analysis cannot be extended to obtain
an approximation ratio of 1/2. In order to reach a ratio of 1/2, we shall therefore proceed
by employing a second abstraction. Given a tournament T , we define a Markov chain
M = M(T ) as follows:2 The state space Ω of M is A, and its initial distribution π(0) is the
uniform distribution over Ω. The transition matrix P = P (T ) is given by

P (i, j) =


si+1

m if i = j
1
m if jT i
0 if iT j.

We claim that the distribution π(k) of M after k steps is exactly the probability distribu-
tion p̄(k+1) over alternatives selected by the (k + 1)-RC. In order to see this, note that the
1-RC chooses an alternative uniformly at random. Then, the winner of the k-RC is the win-
ner of the (k − 1)-RC if the latter dominates, or is identical to, the alternative assigned to
the other child of the root. This happens with probability (si +1)/m when i is the winner of
the k-RC. Otherwise the winner is some other alternative that dominates the winner of the
k-RC, and each such alternative is assigned to the other child of the root with probability
1/m.

We shall be interested in the performance guarantees given by the stationary distribu-
tion π of M. We first show that M is guaranteed to converge to a unique such distribution,
despite the fact that it is not necessarily irreducible.

Lemma 4.4. Let T be a tournament. Then M(T ) converges to a unique stationary distri-
bution.

The proof of the lemma appears in the full version of the paper. We are now ready
to show that an alternative drawn from the stationary distribution will have an expected
degree of at least half the maximum possible degree.

Lemma 4.5. Let T ∈ T (A) be a tournament, π the stationary distribution of M(T ). Then∑
i∈A

πisi ≥
m− 1

2
.

The proof is based on some algebraic manipulations and the Cauchy-Schwarz inequality,
and is delegated to the full version of the paper.

The last ingredient in the proof of Lemma 4.2 and Theorem 4.1 is to show that for some k
polynomial in m, the distribution over alternatives selected by the k-RC, which we recall to
be equal to the distribution of M after k− 1 steps, is close to the stationary distribution of
M. In other words, we want to show that for every tournament T , M(T ) is rapidly mixing.3

Lemma 4.6. Let T be a tournament. Then, for every ε > 0 there exists k = k(m, ε)
polynomial in m and 1/ε, such that for all k′ > k and all i ∈ A, |π(k′)

i − πi| ≤ ε, where π(k)

is the distribution of M(T ) after k steps and π is the stationary distribution of M(T ).

The proof of Lemma 4.6, which is given in the full version of the paper, works by reversibi-
lizing the transition matrix of M and then bounding the spectral gap of the reversibilized
matrix via its conductance.

We now have all the necessary ingredients in place.
2Curiously, this chain bears resemblance to one previously used to define a solution concept called the

Markov set (see, e.g., Laslier, 1997). However, only limited attention has been given to a formal analysis of
this chain, concerning properties which are different from the ones we are interested in.

3We might be slightly abusing terminology here, since the theory of rapidly mixing Markov chains usually
considers chains with an exponential state space, which converge in time poly-logarithmic in the size of the
state space. In our case the size of the state space is only m, and the mixing rate is polynomial in m.
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A′A′′

a

Figure 2: Tournament structure providing an upper bound for the randomized k-caterpillar,
example for m = 6 and ε = 1/5. A′ and A′′ contain (1− ε)(m−1) and ε(m−1) alternatives,
respectively.

Proof of Lemma 4.2 and Theorem 4.1. Let ε > 0. By Lemma 4.3 and Lemma 4.6, there
exists k polynomial in m and 1/ε such that for all i ∈ A, |p(k)

i − p̄
(k)
i | ≤ ε/(2

(
m
2

)
) and

|p̄(k)
i − πi| ≤ ε/(2

(
m
2

)
). By the triangle inequality, |p(k)

i − πi| ≤ ε/
(
m
2

)
. Now,∑

i

πisi −
∑

i

p
(k)
i si ≤

∑
i

|πi − p(k)
i |si ≤

ε(
m
2

) ∑
i

si = ε.

Lemma 4.2 and thus Theorem 4.1 follow directly by Lemma 4.5.

4.2 Tightness and Stability of the Caterpillar

It turns out that the analysis in the proof of Theorem 4.1 is tight. Indeed, since we have
seen that the stationary distribution π of M is very close to the distribution of alternatives
chosen by the k-RSC, it is sufficient to see that π cannot guarantee an approximation ratio
better than 1/2 in expectation. Consider a set A of alternatives, and a partition of A into
three sets A′, A′′, and {a} such that |A′| = (1 − ε)(m − 1) and |A′′| = ε(m − 1) for some
ε > 0. Further consider a tournament T ∈ T (A) in which a dominates every alternative
in A′ and is itself dominated by every alternative in A′′, and for which the restriction of T
to A′ ∪A′′ is regular. The structure of T is illustrated in Figure 2.

It is easily verified that the stationary distribution π of M(T ) satisfies

πa =

∑
j:aTj πj

m− sa − 1
≤ 1
m− sa − 1

≤ 1
ε(m− 1)

,

and therefore,∑
i

πisi ≤
1

ε(m− 1)
(m− 1) +

ε(m− 1)− 1
ε(m− 1)

·
(
m− 1

2
+ 1
)
≤ m− 1

2
+

1
ε

+ 1.

Furthermore, a has degree (1 − ε)(m − 1). If we choose, say, ε = 1/
√
m, then the approxi-

mation ratio tends to 1/2 as m tends to infinity.
We proceed to demonstrate that the above tournament is a generic bad example. Indeed,

Lemma 4.5 will be shown to possess the following stability property: in every tournament
where π achieves an approximation ratio only slightly better than 1/2, almost all alternatives
have degree close to m/2, as it is the case for the example above. In particular, this implies
that M either provides an expected approximation ratio better than 1/2, or selects an
alternative with score around m/2 with very high probability.
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Theorem 4.7. Let ε > 0, m ≥ 1/(2
√
ε). Let T be a tournament over a set of m alternatives,

π the stationary distribution of M(T ). If
∑

i πisi = (m− 1)/2 + εm, then∣∣∣∣∣
{
i ∈ A :

∣∣∣si −
m

2

∣∣∣ > 3 4
√

4ε
2

m

}∣∣∣∣∣ ≤ 4
√

4ε ·m.

The details of the proof appear in the full version of the paper.

4.3 Second Order Degrees

So far we have been concerned with the Copeland solution, which selects an alternative with
maximum degree. Recently, a related solution concept, sometimes referred to as second order
Copeland, has received attention in the social choice literature (see, e.g., Bartholdi et al.,
1989). Given a tournament T , this solution breaks ties with respect to the maximum degree
toward alternatives i with maximum second order degree

∑
j:iT j sj . Second order Copeland

is the first rule, and one of only two natural voting rules, known to be computationally easy
to compute but difficult to manipulate (Bartholdi et al., 1989).

Interestingly, the same randomization studied in Section 4.1 also achieves a 1/2-
approximation for the second order degree.

Theorem 4.8. Let A be a set of alternatives, T ∈ T (A). For k ∈ N, let p(k)
i denote the

probability that alternative i ∈ A is selected by the k-RSC for T . Then, there exists k = k(m)
polynomial in m such that ∑

p
(k)
i

∑
j:iT j sj

maxi∈A

∑
j:iT j sj

≥ 1
2

+ Ω(1/m).

Clearly, the sum of degrees of alternatives dominated by an alternative i is at most
(
m−1

2

)
.

The lower bound is then obtained from an explicit result about the second order degree of
alternatives chosen by the k-RSC. Along similar lines as in the proof of Theorem 4.1, it
suffices to prove that the stationary distribution of M(T ) provides an approximation. The
following lemma is the second order analog of Lemma 4.5.

Lemma 4.9. Let T be a tournament, π the stationary distribution of M(T ). Then,∑
i∈A

(
πi

∑
j:iT j

sj

)
≥ m2

4
− m

2
.

It turns out that the technique used in the proof of Lemma 4.5, namely directly manip-
ulating the stationary distribution equations and applying Cauchy-Schwarz, does not work
for the second order degree. We instead formulate a suitable LP and bound the primal by
a feasible solution to the dual. The proof of the lemma, which in turn implies Theorem 4.8,
is delegated to the full version of the paper.

We further point out that the analysis is tight. Indeed, the second order degree of
any alternative in a regular tournament, i.e., one where each alternative dominates exactly
(m − 1)/2 other alternatives, is (m − 1)/2 · (m − 1)/2 = m2/4 −m/2 + 1/4. Theorem 4.8
itself is also tight, by the example given in Section 4.2.

5 Balanced Trees

In the previous section we presented our main positive results, all of which were obtained
using randomizations over caterpillars. Since caterpillars are maximally unbalanced, one
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would hope to do much better by looking at balanced trees, i.e., trees where the depth of
any two leaves differs by at most one. We briefly explore this intuition. Consider a balanced
binary tree where each alternative in a set A appears exactly once at a leaf. We will call
such a tree a permutation tree on A. As we have already mentioned in the previous section,
permutations trees provide a very weak deterministic lower bound. Indeed, the winning
alternative must dominate the Θ(logm) alternatives it meets on the path to the root, all of
which are distinct. Since there always exists an alternative with score at least (m−1)/2, we
obtain an approximation ratio of Θ((logm)/m). On the other hand, no voting tree in which
every two leaves have distinct labels can guarantee to choose an alternative with degree
larger than the height of the tree, so the above bound is tight. More interestingly, it can be
shown that no composition of permutation trees, i.e., no tree obtained by replacing every
leaf of an arbitrary binary tree by a permutation tree, can provide a lower bound better
than 1/2. Unfortunately, larger balanced trees not built from permutation trees have so far
remained elusive.

Can we obtain a better bound by randomizing? Intuitively, a randomization over large
balanced trees should work well, because one would expect that the winning alternative
dominate a large number of randomly chosen alternatives on the way to the root. Sur-
prisingly, the complete opposite is the case. In the following, we call randomized perfect
voting tree of height k, or k-RPT, a voting tree where every leaf is at depth k and labels
are assigned uniformly at random. This tree obviously corresponds to a randomization that
is not admissible, but a similar result for admissible randomizations can easily be obtained
by using the same arguments as before.

Theorem 5.1. Let A be a set of alternatives, |A| ≥ 5. For every K ∈ N and ε > 0, there
exists K ′ ≥ K such that the K ′-RPT provides an approximation ratio of at most O(1/m).

The proof of this theorem, which is given in the full version of the paper, constructs
a tournament consisting of a 3-cycle of components and shows that the distribution over
alternatives chosen by the k-RPT oscillates between the different components as k grows.

We have analyzed higher order voting caterpillars obtained by replacing each leaf of
a caterpillar of sufficiently large height by higher order caterpillars of smaller order (in
particular, of order reduced by one). As in the case of the k-RPT, this construction does
not provide better bounds but instead causes the approximation ratio to deteriorate.

6 Open Problems

Many interesting questions arise from our work. Perhaps the most enigmatic open problem
in the context of this paper concerns tighter bounds for deterministic trees. Some results
for restricted classes of trees have been discussed in Section 5, but in general there remains
a large gap between the upper bound of 3/4 derived in Section 3 and the straightforward
lower bound of Θ((logm)/m).

In the randomized model our situation is somewhat better. Nevertheless, an intriguing
gap remains between our upper bound of 5/6, which holds even for inadmissible randomiza-
tions over arbitrarily large trees, and the lower bound of 1/2 obtained from an admissible
randomization over trees of polynomial size. It might be the case that the height of a k-RPT
could be chosen carefully to obtain some kind of approximation guarantee. For example,
one could investigate the uniform distribution over permutation trees. The analysis of this
type of randomization is closely related to the theory of dynamical systems, and we expect
it to be rather involved.
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From Preferences to Judgments and Back

Davide Grossi

Abstract

The paper studies the interrelationships of the Preference Aggregation and Judgment
Aggregation problems from the point of view of logical semantics. The result of the
paper is twofold. On the one hand, the Preference Aggregation problem is viewed as
a special case of the Judgment Aggregation one. On the other hand, the Judgment
Aggregation problem is viewed as a special case of the Preference Aggregation one.
It is shown how to import an impossibility result from each framework to the other.

1 Introduction

Recent results [5, 9] have shown how Preference Aggregation theorems, such as Arrow’s
impossibility [1], can be obtained as corollaries of impossibility theorems concerning the
aggregation of judgments. The idea behind this reduction consists in viewing preferences
between issues as special kind of judgments, i.e., formulae to which a truth-value is attached.
In [5, 9] the formulae used for representing preferences are first-order formulae of the type
xPy (“x is strictly preferred to y”) where x, y are variables for the elements in the set of
issues of the Preference Aggregation problem. Then, in order for the judgments concerning
such formulae to behave like a strict preference relation the three axioms of asymmetry,
transitivity and connectedness1 are added to the Judgment Aggregation framework.

The present paper proposes a different approach to obtain the same kind of reduction.
More precisely, preferences will be studied as implicative statements y → x (“y is at most
as preferred as x”) in a many-value logic setting [6,7]. The insights gained by this reduction
of preferences to judgments are then also used to obtain an inverse reduction of judgments
to special kind of preferences, namely those preferences definable in the Boolean algebra on
the support {0, 1}. To the best of our knowledge, this is the first work advancing a proposal
on how to reduce Judgment Aggregation problems to Preference Aggregation ones.

The paper is structured as follows. In Section 2 the frameworks of Preference and
Judgement Aggregation are briefly exposed, some basic terminology is introduced and some
relevant results from the literature are summarized. In Section 3 a reduction of preferences
to judgments is proposed which makes use of the semantics of many-valued logics. An
impossibility result from Judgment Aggregation is thereby imported into Preference Aggre-
gation. Section 4 explains how the framework of Preference Aggregation could be extended
in order to incorporate preferences between complex issues representable as logical formu-
lae. In Section 5 such idea is related to propositional logic and a reduction of judgments to
preferences is proposed. Also in this case, an impossibility result of Preference Aggregation
is imported into Judgment Aggregation. Section 6 briefly concludes.

2 Preliminaries

The present section is devoted to the introduction of the two frameworks of preference and
judgment aggregation, and of some results which will be of use later in the paper.

1Asymmetry: ∀x, y(xPy → ¬yPx); Transitivity: ∀x, y, z((xPy∧yPz)→ xPz); Connectedness: ∀x, y(x 6=
y → (xPy ∨ yPx))

265



2.1 Preference Aggregation

Preference Aggregation (PA) concerns the aggregation of the preferences of several agents
into one collective preference. A preference relation � on a set of issues IssP is a total
preorder, i.e., a binary relation which is reflexive, transitive, and total. T(IssP ) denotes
the set of all total preorders of a set IssP . As usual, on the ground of � we can define
its asymmetric and symmetric parts: x ≺ y iff (x, y) ∈� & (y, x) 6∈�; x ≈ y iff (x, y) ∈�
& (y, x) ∈�. We also define from � the following non-transitive relation: x ≶ y iff (x, y) ∈�
or (y, x) ∈� but not both. The notion of PA structure can now be defined.

Definition 1. (Preference aggregation structure) A PA structure is a quadruple SP =
〈AgnP , IssP , PrfP , AggP 〉 where: AgnP is a finite set of agents such that 1 ≤ |AgnP |; IssP

is a finite set of issues such that 3 ≤ |IssP |; PrfP is the set of all preference profiles, i.e.,
|AgnP |-tuples p = (�i)i∈AgnP where each �i is a total preorder over Iss; AggP is a function
taking each p ∈ PrfP to a total preorder over Iss, i.e., AggP : PrfP −→ T(IssP ). The
value of AggP is denoted by �.

The aggregation function AggP is then studied under the assumption that it satisfies
some of the following typical conditions:

Unanimity (U): ∀x, y ∈ IssP and ∀p = (�i)i∈AgnP if ∀i ∈ AgnP , y ≺i x then y ≺ x.

Independence (I): ∀x, y ∈ IssP and ∀p = (�i)i∈AgnP , p′ = (�′i)i∈AgnP , if ∀i ∈ AgnP y �i x
iff y �′i x, then y � x iff y �′ x.

Systematicity (Sys) ∀x, y, x′, y′ ∈ IssP and ∀p = (�i)i∈AgnP , p′ = (�′i)i∈AgnP , if ∀i ∈
AgnP y �i x iff y′ �′i x′, then y � x iff y′ �′ x′.

Non-dictatorship (NoDict): @i ∈ AgnP such that ∀x, y ∈ IssP and ∀p = (�i)i∈AgnP , if
y ≺i x then y ≺ x.

Notice that Definition 1 incorporates also the aggregation conditions usually referred to as
universal domain and collective rationality.

2.2 Judgment Aggregation

Judgment aggregation (JA) concerns the aggregation of sets of interrelated formulae into one
collective set of formulae. This section introduces the framework for judgment aggregation
based on the language of propositional logic [9].

A central notion in Judgment Aggregation is the notion of agenda. Intuitively, an agenda
consists of all the possible positions that agents can assume about the truth and falsity of
some issue.

Definition 2. (JA agenda) The language of propositional logic is denoted by L. Given a
finite set of formulae IssJ ⊆ L, the set ag(IssJ) = {|= φ |φ ∈ IssJ} ∪ {6|= φ |φ ∈ IssJ}
denotes the agenda of IssJ .

A JA agenda consists therefore of a set of pairs (|= φ, 6|= φ), each member in the pairs
meaning that φ is assigned value 1 and, respectively, a different value from 1, which is in
the propositional case 0. It might be worth noticing that we assume a slightly different
perspective on agendas than the literature on JA. Normally, an agenda is viewed as a
set of position/negation pairs (φ,¬φ). In this view, the judgment themselves can be seen
as formulae of the language from which the issues are drawn. Instead, we prefer to see
judgments as meta-formulae stating whether a given issue is accepted (true) or rejected
(not true). In propositional logic, however, the two perspectives are equivalent.
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A judgment set picks one element out of each such pairs keeping propositional consis-
tency. More formally, a judgment set for the agenda ag(IssJ) is a set J ⊆ ag(IssJ) which
is consistent and complete (∀φ ∈ IssJ : either |= φ ∈ J or 6|= φ ∈ J but not both) and
closed under propositional logic consequence (∀φ, ψ ∈ IssJ : if φ |= ψ and |= φ ∈ J then
|= ψ ∈ J). The set of all judgment sets for the agenda built on IssJ is denoted by J(IssJ).
The set IssJ

0 denotes the set of propositional atoms in IssJ .

Definition 3. (Judgment aggregation structure) A judgment aggregation structure is a
quadruple SJ = 〈AgnJ , IssJ , PrfJ , AggJ〉 where: AgnJ is a finite set of agents such that
1 ≤ |AgnJ |; IssJ is a finite set of issues consisting of propositional formulae and con-
taining at least two atoms: IssJ ⊆ L s.t. 2 ≤ |IssJ

0 |; PrfJ is the set of all judgment
profiles, i.e., |AgnJ |-tuples j = {Ji}i∈AgnJ where each Ji is a judgment set for the agenda
ja(IssJ); AggJ is a function taking each j ∈ PrfJ to a judgment set for ag(IssJ), i.e.,
AggJ : PrfJ −→ J(IssJ). The value of AggJ is denoted by J .

Like in PA, in JA aggregation functions are studied under specific conditions. The
following conditions reformulate the ones proper of PA:

Unanimity (U): ∀x ∈ IssJ and ∀j = (Ji)i∈AgnJ if ∀i ∈ AgnJ , |= x ∈ Ji then |= x ∈ J and if
6|= x ∈ Ji then 6|= x ∈ J .

Independence (I): ∀x ∈ IssJ and ∀j = (Ji)i∈AgnJ , j′ = (J ′i)i∈AgnJ , if ∀i ∈ AgnJ |= x ∈ Ji iff
|= x ∈ J ′i then |= x ∈ J iff |= x ∈ J ′.

Systematicity (Sys): ∀x, y ∈ IssJ and ∀j = (Ji)i∈AgnJ , j′ = (J ′i)i∈AgnJ , if ∀i ∈ AgnJ |= x ∈
Ji iff |= y ∈ J ′i , then |= x ∈ J iff |= y ∈ J ′, and if |= x ∈ Ji iff 6|= y ∈ J ′i then |= x ∈ J
iff 6|= y ∈ J ′.

Non-dictatorship (NoDict): @i ∈ AgnJ such that ∀x ∈ IssJ and ∀j = (Ji)i∈AgnJ , if
|= x ∈ Ji then |= x ∈ J and if 6|= x ∈ Ji then 6|= x ∈ J .

Notice that Definition 3 incorporates the aggregation conditions usually referred to as uni-
versal domain and collective rationality. In the remainder of the paper we will refer to the
conditions of unanimity, independence, systematicity and non-dictatorship as U, I, Sys, re-
spectively, NoDict. It will be clear from the context whether the condition at issue should
be interpreted in its PA or in its JA formulation.

2.3 Some relevant results on JA and PA

We now briefly sketch two results which are of importance for the development of the work
presented in this paper: Propositions 1 and 2.

JA agendas can be studied from the point of view of their structural properties, that
is, how strictly connected are the issues with which the agenda is concerned. In [5] the
following structural property —among others— is studied.

Definition 4. (Minimal connectedness of the agenda) An agenda ag(IssJ) is minimally
connected if: i) it has a minimal inconsistent subset S ⊆ ag(IssJ) such that 3 ≤ |S|; ii) it
has a minimal inconsistent subset S ⊆ ag(IssJ) such that (S\Z) ∪ {6|= x | |= x ∈ Z} is
consistent for some Z ⊆ ag(IssJ) of even size.

A typical JA impossibility result making use of this property is the following [5, 10]. In
Section 3 this result will then be imported, as an example, from JA to PA.

Proposition 1. (Impossibility for minimally connected agendas) For any JA structure SJ

there exists no aggregation function for a minimally connected agenda ag(IssJ) which sat-
isfies U, Sys and NoDict.
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{x, y} {y, z} {x, z}
y ≺ x z ≺ y z ≺ x
y ≺ x y ≺ z x ≺ z
x ≺ y z ≺ y x ≺ z
y ≺ x z ≺ y x ≺ z

{x, y} {y, z} {x, z}
u(y) < u(x) u(z) < u(y) u(z) < u(x)
u(y) < u(x) u(y) < u(z) u(x) < u(z)
u(x) < u(y) u(z) < u(y) u(x) < u(z)
u(y) < u(x) u(z) < u(y) u(x) < u(z)

Table 1: Condorcet’s paradox.

Proof. We refer the reader to [5].

A ranking function attributes a ranking (or value, or utility, or payoff) to all the issues
of a preference aggregation problem. In this paper we will make use of ranking functions
with the real interval [0, 1] as codomain. For such functions the following result holds which
is the special case of a theorem first proven in [4]. This result will play a central role in the
next section.

Proposition 2. (Representation of �) Let � be a total preorder on a finite set X. There
exists a ranking function u : X −→ [0, 1] such that ∀x, y ∈ X: x � y iff u(x) ≤ u(y). Such
a function is unique up to ordinal transformations2.

Proof. The reader is referred to [4].

3 Preferences as judgments

This section is devoted to show how the aggregation of preferences can be studied in terms
of the aggregation of judgments. As anticipated in Section 1 we get to the very same
conclusions presented in [5]. Nevertheless, to obtain such result we will follow a different
approach based on logical semantics rather than logical axiomatics. Such approach will
offer, in Section 5, also a method for viewing judgments as forms of preferences.

3.1 Condorcet’s paradox as a judgment aggregation paradox

In Condorcet’s paradox, pairwise majority voting on issues generates a collective preference
which is not transitive. From Proposition 2 we know that any preference relation which is
a total preorder can be represented by an appropriate ranking function u with codomain
[0, 1]. Table 1 depicts the standard version of the paradox in relational notation, and the
version using ranking functions u. To obtain the paradox strict preferences are not necessary.
The paradox arises also in weaker forms like the one depicted in Table 2. Again, both the
relational and the ranking function-based versions are provided.

The basic intuition underlying this section consists in reading the right-hand sides of
Tables 1 and 2 as if u was an interpretation function of propositions x, y, z on the real
interval [0, 1]. In many-valued logic [6, 7], a semantic clause such as u(y) ≤ u(x) typically
defines the satisfaction by u of the implication y → x:

u |= y → x iff u(y) ≤ u(x). (1)

Intuitively, implication y → x is true (or accepted, or satisfied) iff the rank of y is at most
as high as the rank of x. Since we know by Proposition 2 that any total preorder � can

2We recall that an ordinal transformation t is a function such that for all utilities m and n, t(m) ≤ t(n)
iff m ≤ n.
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{x, y} {y, z} {x, z}
y � x z � y z � x
y � x y ≺ z x ≺ z
x ≺ y z � y x ≺ z
y � x z � y x ≺ z

{x, y} {y, z} {x, z}
u(y) ≤ u(x) u(z) ≤ u(y) u(z) ≤ u(x)
u(y) ≤ u(x) u(y) < u(z) u(x) < u(z)
u(x) < u(y) u(z) ≤ u(y) u(x) < u(z)
u(y) ≤ u(x) u(z) ≤ u(y) u(x) < u(z)

Table 2: Weak Condorcet’s paradox.

be represented by a ranking function, the bridge between the notion of preference and an
equivalent notion of judgment is thereby readily available: given a total preorder �, there
always exists a ranking function u, unique up to order-preserving transformations such that:
y � x iff u(y) ≤ u(x). We thus obtain a direct bridge between preferences and judgments.
In fact, by exploiting Formula 1 the right-hand side of Table 2 can be rewritten as in Table
3. Notice that x is substituted by p, y by q and z by r. The same could obviously be done
for Table 1.

In other words, by first reading the weak Condorcet’s paradox in terms of ranking func-
tion (Proposition 2), and then interpreting such functions from the point of view of logical
semantics (Formula 1), we can show the equivalence between a preference aggregation prob-
lem and a judgment aggregation one. The following result generalizes this observation.

Proposition 3. (From preferences to judgments) The set of all PA structures can be mapped
into the set of all JA structures in such a way that each of them corresponds exactly to one
JA structure whose set of issues IssJ consists of only implications.

Proof. We show how to construct a structure SJ from any structure SP . Let SP =
〈AgnP , IssP , PrfP , AggP 〉. The set of agents AgnJ of SJ is the same: AgnP = AgnJ . The
set of issues IssJ is such that: IssJ

0 = IssP , that is, IssP provides the propositional
atoms of IssJ ; and it contains all implications built from IssJ

0 . The set PrfJ is the set
of all judgment profiles obtained by translating any total order �i into a judgment set Ji

as follows: |= x → y ∈ Ji iff (x, y) ∈�i. Notice that, as a consequence, we can define a
bijection bi between PrfP and PrfJ . Finally, the aggregation function AggJ can be defined
as follows: AggJ(bi(p)) = bi(AggP (p)). This completes the construction.

The JA structures SJ resulting from the construction in the proof are such that their
set of issues IssJ consist of all implications obtained from a set of atoms IssJ

0 such that
3 ≤ |IssJ

0 |. We call an agenda ag(IssJ) built on such a set IssJ an implicative agenda.

{p, q} {q, r} {p, r}
|= q → p |= r → q |= r → p
|= q → p 6|= r → q 6|= r → p
6|= q → p |= r → q 6|= r → p
|= q → p |= r → q |= r → p

q → p r → q r → p

|= |= |=
|= 6|= 6|=
6|= |= 6|=
|= |= 6|=

Table 3: Weak Condorcet’s paradox as a judgment aggregation paradox.
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3.2 Doing PA in JA

We know how to translate a PA structure into a JA one with implicative agendas. As an
example of how to import impossibility results of JA to PA we apply Proposition 1 to JA
structures with implicative agendas. In order to do so, we first need to show that implicative
agendas enjoy the property of minimal connectedness.

Proposition 4. Implicative agendas are minimally connected.

Proof. Suppose {p, q, r} ⊆ IssJ
0 . We prove that the implicative agenda built on IssJ

0 is
minimally connected. The desired minimal inconsistent subset of the agenda with size
higher than or equal to 3, and such that by negating two of its judgments consistency is
restored, is: {|= q → p, |= r → q, 6|= r → p}.

Everything is in place now to prove an impossibility result concerning the set of JA
structures in which PA can be mapped, i.e., those with implicative agendas.

Theorem 1. (A JA theorem for PA) For any PA structure SP , there exists no aggregation
function which satisfies U, Sys and NoDict.

Proof. The theorem follows from Propositions 1, 3 and 4.

The theorem itself is, of course, not surprising. It is just an illustration of the embedding
advanced in this section. More interesting results can be obtained along the very same lines
by studying different structural properties of the agenda, e.g., strong connectedness [5].

Before closing the present section it is worth spending a few words on the relation between
the approach presented here and the one presented in [5] where Arrow’s theorem is proven
as a corollary of a JA theorem analogous to Proposition 1 and a “bridging” proposition
analogous to Proposition 4. Both approaches somehow reduce PA to JA, but while [5]
does it axiomatically by imposing further constraints on a first-order logic agenda (i.e., the
axioms of strict total orders), we do it semantically, by ranking the issues in IssP on the
[0, 1] interval and interpreting preferences as implications. A more in-depth comparison
of the two approaches deserves further investigation. However, the semantic view has the
advantage of hinting also a “way back” from judgments to preferences. Such “way back” is
the topic of the next two sections.

4 Intermezzo: Rankings as Truth Values

The essential difference between JA and PA is that, in JA, issues display logical form. Is
there a consistent way to talk about compound issues in PA obtained by performing logical
operations on atomic ones? In other words, is there a way to define preferences which display
the logical complexity of judgments? Aim of the present section is to shows how to answer
these questions by generalizing Formula 1 to any logical connective.

Once we consider the set of issues IssP of a preference aggregation problem SP to be
the finite set of propositional atoms L0 of a propositional language L, any ranking function
u can be viewed as an interpretation function of the atoms in L0 on the real interval [0, 1].
The natural question follows: how to inductively extend a function u in order to interpret
issues in IssP which consist of propositional formulae, and not just atoms? This question
takes us into the realm of many-valued logics, and many possibilities are available. However,
given Formula 1, we are looking for something in particular. We want an implication to be
satisfied exactly when the antecedent is ranked at most as high as the consequent. More
precisely, let us denote with ŭ the inductive extension of the ranking function u. What we
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are looking for is a multi-valued logic such that the following holds for any ranking function
u and formulae φ, ψ:

u |= φ→ ψ iff ŭ(φ) ≤ ŭ(ψ) iff ŭ(φ→ ψ) = 1. (2)

That is to say, the desired logic should be able to encode in the language the total order
≤ of rankings, so that ŭ assigns the maximum ranking 1 to φ → ψ (i.e., φ → ψ is satisfied
by u) iff the value assigned by ŭ to φ is at most the same value assigned by ŭ to ψ. The
intuition behind Formula 2 consists in viewing the maximum ranking as the designated value
for expressing the truth of compound formulae, and in particular of those formulae which
express preferences between other formulae.

The property expressed in Formula 2 turns out to be a typical property of the family
of t-norm multi-valued logics, or logics based on triangular norms [7]. In such logics the
connective → denotes the algebraic residuum operation on truth degrees (i.e., rankings).
Residua come always in pairs with t-norm operations, so what is going to characterize the
logic we are looking for is the t-norm we choose to be paired with the residuum denoted by
→. The most straightforward candidate is the algebraic infimum, denoted by the standard
logic conjunction ∧. To sum up, we want that the following holds for any ranking function
u and formulae φ, ψ, ξ:

ŭ(φ ∧ ξ) ≤ ŭ(ψ) iff ŭ(ξ) ≤ ŭ(φ→ ψ). (3)

If we then take the rest of the connectives ¬ and ∨ to denote, as usual, the algebraic com-
plementation and, respectively, the algebraic supremum, the many-valued logic satisfying
Formulae 2 and 3 is the logic known as Gödel-Dummett logic (GD in short).

By using the semantics of GD (i.e., Gödel algebra) it is possible to extend the PA
framework in order to incorporate preferences between compound issues represented as
logical formulae. What kind of new insights this extension provides in the study of the
aggregation of preferences deserves further research, but it falls outside the scope of the
present study. In fact, what we are interested in now is to show that the insights provided
by GD on the representation of preferences between logical formulae can be used, after a
slight modification, in order to view judgments as preferences, thereby providing a reduction
of the JA problem to the PA problem. To this aim is devoted the next section.

5 Judgments as Preferences

In its original form, JA is based on propositional logic. The considerations of the last section
about how to interpret compound issues in a PA structure can be directly used for repre-
senting judgments as preferences. The key step consists in considering that propositional
logic is the extension of GD with the bivalence principle. Like an interpretation function
of GD (i.e., a ranking function u) determines a total preorder on the set of issues of a
PA structure, so does a propositional interpretation function on the set of issues of a JA
structure. Obviously, the type of total preorder yielded by a propositional interpretation
function is of a specific kind.

5.1 Boolean preference profiles

Like GD is sound and complete w.r.t. Gödel algebra [7], propositional logic is sound and
complete w.r.t. 2 = 〈{0, 1},u,t,−, 0, 1〉, i.e., the Boolean algebra on the support {1, 0},
where u and t are the min, respectively, max operations, − is the involution defined as
−x = 1 − x, and 0 and 1 are the designated elements. The total preorders generated by a
propositional interpretation function are called Boolean preferences.
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Definition 5. (Boolean preferences) A Boolean preference is a total preorder on a set of
formulae Φ closed under atoms which can be mapped to 〈{1, 0},≤〉 by a function v̆ : Φ −→
{1, 0} such that: ∀φ, ψ ∈ IssJ , φ � ψ iff v̆(φ) ≤ v̆(ψ); and v̆ preserves the meaning of
propositional connectives, that is:

v̆(>) = 1, v̆(¬φ) = 1− v̆(φ), v̆(φ ∧ ψ) = min(v̆(φ), v̆(ψ)), v̆(φ ∨ ψ) = max(v̆(φ), v̆(ψ)).

A few considerations are in order. Notice that, within a Boolean preference, ≺-paths
have maximum length 1. In fact, stating that y ≺ x is equivalent to assign value 1 to x
and value 0 to y. Notice also that a total preorder containing x ≺ y, y ≺ x ∧ y cannot
be a Boolean preference since there exists no function assigning 1 and 0 to x and y, which
preserves � on ≤ and, at the same time, ∧ on min. Notice also that Boolean preferences gen-
eralize dichotomous preferences3 allowing issues to be compounded following the standard
algebraic semantics of logical connectives, and allowing issues to be all ranked as maximal or
minimal. In fact, dichotomous preferences are nothing but Boolean preferences over atoms,
i.e., logically unrelated issues, s.t. the sets of maximal and minimal elements always contain
at least one atom (i.e., the preferences are never “unconcerned” [3]). In addition, Boolean
preferences feature the constants > and ⊥. These denote trivial issues which every voter
places in the sets of �-maximal and, respectively, �-minimal elements. The following holds.

Proposition 5. (From judgment sets to Boolean preferences) Every judgment set J on the
set of issues IssJ can be translated to a Boolean preference � over IssJ such that |= φ ∈ J
iff φ ≈ >.

Proof. Since each judgment set J is closed under atoms, it univocally determines a proposi-
tional evaluation v̆ : IssJ −→ {1, 0}. The evaluation is an homomorphism from the formula
algebra built on the set of atoms in IssJ and 2. In 2 the partial order ≤ can be defined
in the usual way: x ≤ y := min(x, y) = x. It is easy to see that ≤ is then a total preorder.
Function v̆ of J can therefore be used to univocally define a total preorder � on IssJ as
follows: ∀φ, ψ ∈ IssJ , φ � ψ iff v̆(φ) ≤ v̆(ψ). It follows that � is a Boolean preference
by construction. From left to right. If |= φ ∈ J then v̆(φ) = 1, therefore, by construction
φ ≈ >. From right to left. If φ ≈ > then v̆(φ) = v̆(>), hence v̆(φ) = 1

Intuitively, Proposition 5 guarantees the analogue of Proposition 3 to hold. In other
words, every JA structure SJ can be translated to an equivalent PA structure4 by just
stating IssP = IssJ and letting PrfP be the set of Boolean preference profiles on IssP .
We thus obtain a way to view judgments as preferences. As an example, in the next section,
we will consider the Discursive paradox from a PA point of view.

5.2 The Discursive paradox as a PA paradox

In the Discursive paradox propositionwise majority voting leads to the definition of an
impossible evaluation of the propositions at issue, as showed in the left-hand side of Table
4. The middle of Table 4 depicts the Discursive paradox by means of the two truth-values.
Finally, if we consider these truth values as rankings of the propositions at issue, we get to
the right-hand side of the table. There a PA version of the paradox is depicted. Recall that
x ≈ y iff (x, y) ∈� & (y, x) ∈�, and x ≶ y iff (x, y) ∈� or (y, x) ∈� but not both. In this
case the aggregated preference violates the transitivity of ≈.

As such, the Discursive paradox can fruitfully be viewed as yet another variant of Con-
dorcet’s paradox.5 In fact, in Condorcet’s paradox the collective preference violates the

3Dichotomous preferences are such that ∀x, y, z ∈ IssP , either x ≈ y or y ≈ z or x ≈ z but not all [8].
4Notice that the same does not hold for dichotomous preferences where we cannot distinguish between

preferences ranking all issues equal to > or all equal to ⊥ (see also Proposition 7).
5Other representations are possible by making use of the constants > or ⊥, and indifference ≈.
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p p→ q q

|= |= |=
|= 6|= 6|=
6|= |= 6|=
|= |= 6|=

p p→ q q

1 1 1
1 0 0
0 1 0
1 1 0

{p, p→ q} {p, q} {q, p→ q}
p ≈ p→ q p ≈ q q ≈ p→ q
p ≶ p→ q q ≶ p q ≈ p→ q
p ≶ p→ q p ≈ q q ≶ p→ q
p ≶ p→ q p ≈ q q ≈ p→ q

Table 4: Discursive paradox as a PA paradox.

transitivity of ≺, in the weak Condorcet analyzed in Section 3 what is violated is instead
the transitivity of �, here it is the transitivity of ≈.

5.3 Arrow’s conditions and Boolean preferences

We can now represent judgments as special kinds of preferences. Can we also import PA
impossibility results to JA? A first natural step in this direction is to study how Boolean
preferences behave under the standard Arrow’s conditions: U, I and NoDict. Under these
conditions, and assuming the domain and codomain of the aggregation function to be drawn
from the set of Boolean preferences, yields an impossibility. However, the source of the
impossibility does not rest upon the logical connectives, as is typically the case in JA.

Proposition 6. (Arrow’s theorem holds for dichotomous domains and codomains) Let SP

contain a set of issues IssP s.t. 3 ≤ |IssP |, and PrfP is the set of dichotomous preference
profiles on IssP . There exists no aggregation function which satisfies U, I and NoDict.

Proof. See Appendix.

Limiting the domain and codomain of the aggregation function to dichotomous pref-
erences does not resolve the impossibility. Since dichotomous preferences are a subset of
Boolean preferences the result carries over. Conditions U, I and NoDict seem therefore
to be too strong to yield JA-like impossibilities. This is not surprising because, unlike in
the translation from PA to JA (Section 3), the JA formulation of the conditions cannot be
directly obtained from their PA formulation. The translation of the standard JA conditions
in a Boolean preferences format look instead like this:

(U>): ∀x ∈ IssP and ∀p = (�i)i∈AgnP if ∀i ∈ AgnP , x ≈i > then x ≈ > and if x ≈i ⊥ then
x ≈ ⊥.

(I>): ∀x ∈ IssP and ∀p = (�i)i∈AgnP , p′ = (�′i)i∈AgnP , if ∀i ∈ AgnPx ≈i > iff x ≈′i > then
x ≈ > iff x ≈′ >.

(Sys>): ∀x, y ∈ IssP and ∀p = (�i)i∈AgnP , p′ = (�′i)i∈AgnP , if ∀i ∈ AgnJx ≈i > iff y ≈′i >,
then x ≈ > iff y ≈′ >, and if x ≈i > iff y ≈′i ⊥, then x ≈ > iff y ≈′ ⊥.

(NoDict>): @i ∈ AgnP such that ∀x ∈ IssP and ∀p = (�i)i∈AgnP , if x ≈i > then x ≈ >
and if x ≈i ⊥ then x ≈ ⊥.

It is straightforward to see that these conditions exactly correspond to the standard JA
conditions exposed in Section 2. The following proposition compares the relative strength
of these JA-like formulations w.r.t. the standard PA-like ones.

Proposition 7. (JA vs. PA conditions) The following relations hold under Boolean pref-
erences: U> implies U; I> implies I; Sys> implies Sys; NoDict implies NoDict>. The
converses do not hold.
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Proof. The direction from left to right is trivial. The failure of the converses is due to the
fact that for profiles in which all agents are indifferent w.r.t. all issues, it cannot be inferred
whether they are all ranked equal to ⊥ or equal to >.

Notice that in the case of non-dictatorship the implication has a contrapositive form.
In fact, NoDict is stronger than NoDict>. That is, the non-existence of a dictator in
the standard Arrowian sense implies the non-existence of a dictator in the JA sense. This
observation suggests that results such as Proposition 6 set out to prove impossibilities on
the ground of a notion of non-dictatorship which is stronger than the one typically used in
JA. The next section fine-tunes Proposition 6 obtaining an appropriate JA impossibility in
the framework of Boolean preferences.

5.4 Doing JA in PA

In order to obtain an impossibility for Boolean preferences under NoDict>, the conditions
U> and I> do not suffice and, perhaps not surprisingly, I> needs to be substituted by Sys>.
We are thus in the position to prove a JA theorem within PA.

Theorem 2. (Impossibility for Boolean Preferences) Let SP contain a set of issues IssP

s.t. {p, q, p ∧ q} (where ∧ can be substituted by ∨ or →) and PrfP is the set of Boolean
preference profiles on IssP . There exists no aggregation function which satisfies U>, Sys>

and NoDict>.

Proof. See Appendix.

Now, Proposition 5 guarantees that each JA structure SJ can be translated to an equiva-
lent PA structure SP over Boolean preferences, and the standard JA aggregation conditions
can be directly translated to conditions conditions U>, Sys> and NoDict>. It follows that
Theorem 2 provides an impossibility result for the aggregation of judgments. Notice also
that such result is reminiscent of several JA theorems available in the literature (e.g. in [9]).
To conclude, the basic argument of the section runs as follows: judgment sets univocally de-
termine Boolean preferences, a peculiar form of Arrow’s impossibility holds also for Boolean
preference domains, hence it can be imported into JA.

6 Conclusions

By borrowing ideas from logical semantics, the paper has shown that, on the one hand, PA
can be viewed as a special case of JA [5, 9] and that, on the other hand, the converse also
holds. This suggests that PA and JA could be studied as the two faces of a same coin. It is
our claim that the study of such interrelationship can be fruitfully pushed further by cross
importing more (im)possibility results, which we plan to do in future researches.
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A Proofs of Proposition 6 and Theorem 2

A proof can be obtained along the same lines of Arrow’s original proof [2]. Let us first
introduce some terminology. A set V ⊆ AgnP is almost decisive for issue x over issue y (in
symbols, ADV (x, y)) iff: if ∀i ∈ V, y ≺i x and ∀i 6∈ V, x ≺i y then y ≺ x. A set V ⊆ AgnP

is decisive for issue x over issue y (in symbols, DV (x, y)) iff: if ∀i ∈ V, y ≺i x then y ≺ x.
Obviously, for any x, y ∈ IssP : DV (x, y) implies ADV (x, y). We first need two following
lemmata.

Lemma 1. Let SP be such that IssP is a set of issues s.t. 3 ≤ |IssP |, and PrfP is the
set of dichotomous preferences on IssP . If there exists an individual i ∈ AgnP such that
ADV (x, y) for some pair (x, y) then, under the conditions U and I, i is decisive for any
pair of issues, that is, i is a dictator.

Proof. There are 6 pairs of issues with respect to which i can be almost decisive for the
first element in the pair over the second one. For each of these pairs (x, y) we show that if
ADi(x, y) then i is decisive for at least one of the remaining pairs (x, z), (z, x), (y, z), (z, y)
where z is the third issue in IssP . Let I denote AgnP −{i}. [ADi(x, y)⇒ D(x, z)] Assume
ADi(x, y) and suppose the following holds: y ≺i x, z ≈i y, z ≺i x and x ≺I y. In the
collective preference, which is dichotomous, one of the following must hold: A) y ≺ x, y ≺ z;
or B) y ≺ x, z ≈ y However, A) violates U and I. To prove this latter claim, consider a
profile which is identical to the given one w.r.t. the preferences of i and I over y, z, but such
that x ≺i y in the preference profile we assumed. By U, in the collective preference for this
new profile x ≺ y holds. By I, y ≺ z should also hold, which is impossible since the collective
preference should be dichotomous. Therefore, B) is the only possible collective preference.
Since B) is dichotomous, it holds that z ≺ x, hence ADi(x, y) implies D(x, z). We can
argue symmetrically to prove that ADi(x, y) ⇒ D(z, y). Hence, ADi(x, y) implies D(x, z)
and D(z, y). It is then sufficient to argue via permutations of the possible alternatives,
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e.g., by interchanging y with z we obtain that ADi(x, z) implies D(x, y) and D(y, z). As a
consequence, if ADi(x, y) agent i results to be decisive for any pair of alternatives drawn
from the set {x, y, z}. This completes the proof of the lemma.

Lemma 2. Let SP be such that IssP is a set of issues s.t. 3 ≤ |IssP |, and PrfP is the
set of dichotomous preference profiles on IssP . There exists an agent i ∈ AgnP such that i
is almost decisive for some pair of issues.

Proof. Let us proceed per absurdum assuming that there is no almost decisive agent. For
condition U, there always exists for each pair of issues a set which is decisive for that pair,
that is, AgnP . As a consequence, there always exists an almost decisive set for that pair.
Let us take the smallest (possibly not unique) decisive set and call such set V . Given our
hypothesis, such set cannot be a singleton. Let us divide V in three parts: a singleton {i}, a
set J = V −{i}, and a set K = IssP−V . Suppose the following holds: y ≺i x, z ≈i y, z ≺i x;
y ≺J x, y ≺J z, z ≈J x; and x ≺K y, z ≈K y, z ≺K x. As to the collective preference, since
V is almost decisive one of the following must hold A) y ≺ x, y ≺ z; or B) y ≺ x, z ≈ y.
However, if A) holds then J would be almost decisive contradicting the assumption that
V was the smallest such set. It follows that B) is the only option. However, since B) is
dichotomous it would also hold that z ≺ x which would make i almost decisive for x over
z, against our assumption. We can argue symmetrically in the other cases.

Proposition 6 follows directly from Lemmata 1 and 2.
As to Theorem 2 we just sketch the proof for lack of space. The same technique of the

previous proof can be used by just redefining the notions of decisive and almost decisive
sets of agents w.r.t. to single issues. A set V ⊆ AgnP is almost decisive for formula φ (in
symbols, ADV (φ)) iff: if ∀i ∈ V, φ ≈i ⊥ (respectively, >) and ∀i 6∈ V, φ ≈i > (respectively,
⊥) then φ ≈ > (respectively, ⊥). A set V ⊆ AgnP is decisive for φ (in symbols, DV (φ))
iff: if ∀i ∈ V, φ ≈i > (respectively, ⊥) then φ ≈i > (respectively, ⊥). Obviously, for any
φ ∈ IssP : DV (φ) implies ADV (φ). We need again two lemmata.

Lemma 3. Let SP contain a set of issues IssP s.t. {p, q, p ∧ q}, and PrfP is the set of
Boolean preferences on IssP . If there exists an individual i ∈ AgnP such that ADV (φ) for
some pair φ then, under the conditions U> and Sys>, i is decisive for any formula, that
is, i is a dictator.

Proof. We show that if i is almost decisive for any of the propositions in {p, q, p∧ q} then it
is decisive for all of them. Let I denote AgnP − {i}. [ADi(p) ⇒ D(p ∧ q), D(q)] The proof
proceeds like for Lemma 1 but makes use of systematicity. Assume ADi(p) and suppose the
following holds: p ≈i >, q ≈i >, p ∧ q ≈i > and p ≈I ⊥. In the collective preference, which
must be Boolean, one of the following must hold: A) p ≈ >, q ≈ >; or B) p ≈ >, q ≈ ⊥.
However, B cannot be the case because of U> and Sys>. In fact, if q ≈ ⊥ then q ≈I ⊥
otherwise, for U>, we should have q ≈ >. Consider a profile identical w.r.t. to q and p ∧ q
but s.t. p ≈i ⊥. Then by U> it follows that p ≈ ⊥, and by Sys> it follows that q ≈ >
since the two profiles are such that p is ranked > in the first iff q is ranked > in the second,
which is impossible. Hence, A) is the only option, which proves the claim. We can then
argue symmetrically for the other cases.

The analogous of Lemma 2 can easily be proven, which completes the proof of the theorem.
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ICR, University of Luxembourg
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1359 Luxembourg-Kirchberg, Luxembourg
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Aggregating Referee Scores: an

Algebraic Approach

Rolf Haenni

Abstract

This paper presents a quantitative solution to the problem of aggregating referee
scores for manuscripts submitted to peer-reviewed conferences or scientific journals.
The proposed approach is a particular application of the Dempster-Shafer theory
to a restricted setting, from which an interesting algebraic framework results. The
paper investigates the algebraic properties of this framework and shows how to apply
it to the score aggregation and document ranking problems. Our scheme is intended
to support the paper selection process of a conference or journal, not to replace it.

1 Introduction

This paper addresses a real-world problem of quantitative judgement aggregation, one that
is omnipresent in the academic world and thus of great importance to all of us. We consider
the typical situation of an editor or program committee, who is in charge of evaluating
the manuscripts that have been submitted to a journal or conference for publication. In a
competitive setting of a scientific conference, where the maximal number of accepted papers
is limited, the problem then is to select the best papers from those submitted. For this,
each submission is typically sent to 3 or 4 referees, who are asked to comment and score
the paper in their report. This is the core of the so-called peer review process, which is a
well-established academic procedure to guarantee high scientific standards and to prevent
the dissemination of unwarranted claims or unacceptable interpretations.

Many journals and conferences ask the referees to quantitatively score the papers by
a pair of values from respective scales, one that reflects the overall1 quality of the paper
and one that indicates the referee’s own level of expertise or confidence. For the selection
of the best papers, the editor or program committee faces then the problem of combin-
ing those scores to establish an overall ranking, from which the highest-ranked papers are
accepted. The combination of such referee scores is a simple real-world judgement aggrega-
tion problem. Most of the existing convenient on-line conference management systems (e.g.
ConfMaster, ConfTool, EasyChair, Linklings, OpenConf, Paperdyne, Start
V2, WebChairing, etc.) are very rich in all kind of features for effortlessly accomplishing
many complicated tasks of the peer review process, but they are usually very poor in pro-
viding automated decision support tools for the aggregation and ranking of referee scores.
As a consequence, the score aggregation and paper ranking problems are still being solved
manually today, and due to the many aspects and parameters to be taken into account, the
resulting time-consuming procedure risks at producing bad quality results in form of unfair
decisions. But what would be a reasonable procedure of combining the referee scores and
establishing a ranking of peer-reviewed papers automatically?

1.1 Related Work

By describing a set of so-called process patterns, Nierstrasz gives an informal answer to
the above question [26]. Examples of such patterns are “Group papers according to their

1Some journals and conferences ask to score various quality criteria independently of each other. The
method presented in this paper is compatible with such multi-criteria scores, but we not treat them explicitly.
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highest and lowest score ” or “Take care to identify papers with both extreme high and low
scores ”. For the scores, Nierstrasz proposes four quality categories A=“Good paper ” to
D=“Serious problems ” and three levels of expertise X=“I am an expert ” to Z=“I am not
an expert ”.2 Notice that Nierstrasz’ pattern language has become something like the de
facto standard for conferences in many computer science areas, and it is implemented in the
conference management systems CyberChair [33] and Continue [23], and rudimentally in
Confious [27], HotCRP [22], and MyReview [28]. The success of Nierstrasz’ patterns is
perfectly comprehensible from the pragmatic point of view of experienced program commit-
tee members, but from the more formal perspective of an expert in quantitative judgement
aggregation or reasoning and decision making under uncertainty, they give the impression
of being constituted on an ad hoc basis and may therefore seem a bit rudimentary.

A partial answer to the above question can be found in the early literature on probability
from the late 17th and early 18th centuries [20, 30]. At that time, studying probability was
often motivated by judicial applications, such as the reliability of witnesses in the courtroom,
or more generally by the credibility of testimonies on past events or miracles. The first two
combination rules for testimonies were published in an anonymous article [1]. One of them
considers two independent witnesses with respective credibilities (frequencies of saying the
truth) p1 and p2. If we suppose that they deliver the same report, they are either both telling
the truth with probability p1 · p2, or they are both lying with probability (1− p1) · (1− p2).
Every other configuration is obviously impossible. The ratio of truth saying cases to the
total number of cases,

p1 · p2

p1 · p2 + (1− p1) · (1− p2)
, (1)

represents then the combined credibility of both witnesses. The more general formula for n
independent witnesses of equal credibility p,

pn

pn + (1− p)n
, (2)

has been mentioned by Laplace [24]. This formula is closely related to the Condorcet Jury
Theorem discussed in social choice theory [2, 25]. Boole mentioned in [3] a similar formula
that includes a prior probability of the hypothesis in question.

A recent article picks up these ancient ideas and turns them into a very general and
flexible model of combining reports from partially reliable sources [15]. The generality of
the model allows it to be applied to situations of incompetent or even dishonest witnesses,
who may deliver highly contradictory testimonies. At its core, the model presupposes a
non-additive measure of belief [13] in form of Dempster-Shafer belief functions [9, 29], but
Laplace’s and Boole’s formulae are included as additive special cases. The model also
includes various Bayesian approaches, which require a prior probability of the hypothesis in
question to turn it into a corresponding posterior probability. The method discussed in this
paper is another very particular case of the general model from [15].

1.2 Problem Formulation

The formal problem setting in this paper is the following. Let D be a set of submitted
manuscripts (documents) and R a set of referees. We assume that the referees are anony-
mous and independent. The set of assigned referees for document D ∈ D is denoted by

2It should be emphasized here that Nierstrasz’ categorization includes an explicit operational meaning,
e.g. “I will champion the paper ” for the category A=“Good paper ” and ditto for the other categories. The
whole point of the pattern language is about how people will behave during a program committee meeting,
which is why it is not directly applicable to a non-interactive setting such as journal paper reviewing. During
PC meetings, however, the notion of championing can help to keep discussions focussed.
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referees(D) ⊆ R, that is referees : D → P(R) is a mapping from D to the power set of
R. Similarly, documents(R) = referees−1(R) ⊆ D denotes the set of documents assigned to
referee R ∈ R. If referees(D) = {R1, . . . , Rk} is the set of referees assigned to a particular
document D, then we assume to obtain a set of respective scores, scores(D) = {s1, . . . , sk},
each of which being a pair si = (qi, ei) ∈ [0, 1]× [0, 1] of values between 0 and 1.3 The value
qi ∈ [0, 1] is interpreted as the referee’s estimate of the paper’s overall quality and ei ∈ [0, 1]
as the referee’s estimate of its own level of expertise, with the usual convention that higher
values represent higher quality and expertise levels.

Given the above formal setting, this paper addresses the following interlinked problems
of aggregating and ranking the given referee scores.

Aggregation. For each D ∈ D, derive from scores(D) the document’s combined overall
score sD = (qD, eD) ∈ [0, 1]× [0, 1].

Ranking. For a given set of combined overall scores, S = {sD : D ∈ D}, determine a total
preorder � according to which the documents in D are ranked (that is D1 is preferred
to D2 iff sD1 � sD2).

The proposed process is thus a two-step procedure, in which the papers’ overall scores
appear as an intermediate result before the final ranking is established. Note that the
ranking problem includes the decision problem of accepting/rejecting papers as a borderline
case. For a single document, i.e. for |D| = 1, we obtain another borderline case, one that
corresponds to the situation of a single paper submitted to a journal.

As an alternative, it could also be assumed that each referee’s set of assigned papers,
documents(R) ⊆ D, is first turned into a local ranking (or decision), from which the global
ranking (or decision) is then established in a second step. Such a procedure is suggested
in [11]. Its main advantage is the fact that scoring, with all its inherent problems such as
the referees’ diverging standards with judging the merits and weaknesses of each paper on
a common scale, is no longer required. The whole problem of evaluating papers according
to their overall quality is thus reduced to a ranking problem. Note that aggregating local
rankings into a global ranking may become very difficult or even impossible if the average
number of referees per paper is low. This is a consequence of the fact that rankings are
usually less informative than corresponding sets of scores.

Another important advantage of the proposed two-step procedure is the possibility to
repeat Step 1 with an updated set of scores. This may be necessary for papers with an
unsatisfactory overall expertise level eD. The ability to make such a distinction between
papers reviewed by a group of experts from a paper reviewed by a group of non-experts is
one of the main reason for the proposed 2-dimensional scores.

1.3 Overview

This paper proposes a solution to the two problems stated above. First we suggest a formal
method for combining referee scores, and then we discuss a solution for projecting combined
referee scores into a total order, from which the final document ranking results. The core of
the suggested method is a particular application of what is known in the literature of un-
certain reasoning as Dempster’s rule of combination, a key concepts in the Dempster-Shafer
theory (DST) of belief functions [9, 29]. Here we adopt Dempster’s original interpretation
of his theory as a generalization of classical probabilistic inference [10]. For this, we look
at a single score si = (qi, ei) of a peer-reviewed paper as a pair of respective probabilities.

3In practice, typical scales for referee scores are discrete sets such as {1, 2, . . . , 10} or {very poor, poor,
medium, good, very good}. To make such cases compatible with our formal setting, we assume a mapping
σ from the respective set into the unit interval [0, 1], e.g. σ(very poor) = 0.1, σ(poor) = 0.3, etc.
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Formally, this allows us to consider each score as a particular representation of the referee’s
opinion about the paper. Opinions are the key elements in Jøsang’s theory of subjective
logic [18, 19], a particular interpretation of DST. To deal with such opinions mathematically,
we follow the algebraic setting proposed in [7, 17], in which the set of all possible opinions
is considered as a commutative monoid with respect to Dempster’s rule of combination.

In Section 2, we first give a short introduction to the Dempster-Shafer theory, and
then we present the algebraic structure of the above-mentioned opinion calculus. This is
the mathematical and computational foundation of the proposed score aggregation method
presented in Section 3, where scores are interpreted as respective probabilities in a restricted
Dempster-Shafer model. The conclusions in Section 4 close the paper.

2 The Opinion Calculus

In its original form [9, 10], the Dempster-Shafer theory proposes a particular application of
probabilistic reasoning. Its main components are two sample spaces Ω and Θ, which are
interlinked by a multi-valued mapping Γ : Ω → P(Θ). A set Γ(ω) ⊆ Θ is thus assigned to
every element ω ∈ Ω. For a given probability space (Ω,F , P ), Dempster’s theory shows how
to carry the probability measure P : F → [0, 1] defined over a σ-algebra F of subsets of Ω
into a system of lower and upper probabilities over subsets A ⊆ Θ,

P∗(A) = P ({ω ∈ Ω : Γ(ω) ⊆ A} | {ω ∈ Ω : Γ(ω) 6= ∅})

=
P ({ω ∈ Ω : ∅ 6= Γ(ω) ⊆ A})
1− P ({ω ∈ Ω : Γ(ω) = ∅})

(3)

and

P ∗(A) = 1− P∗(Ac) =
P ({ω ∈ Ω : Γ(ω) ∩A 6= ∅})
1− P ({ω ∈ Ω : Γ(ω) = ∅})

, (4)

for which P∗(A) ≤ P ∗(A) holds for all A ⊆ Θ. A quadruple (Ω, P,Γ,Θ) is sometimes called
hint [21] or Dempster space [16].

Later, Shafer introduced a non-probabilistic interpretation of the Dempster’s theory and
suggested belief and plausibility, denoted by Bel(A) and Pl(A), as replacements for lower
and upper probability [29]. Shafer’s viewpoint and terminology has been adopted by many
other authors, e.g. by Smets in his Transferable Belief Model [32]. They all depart from
Dempster’s original model by considering belief and plausibility functions over the so-called
frame of discernment Θ that are not necessarily induced by an underlying probability space
(Ω,F , P ) and its link over the multi-valued mapping Γ. There is an axiomatic system for
such belief and plausibility functions [31], similar to Kolmogorov’s system of axioms for
probabilities. If Θ is finite, belief and plausibility functions are often expressed in terms of
their underlying mass function,

m(A) = P ({ω ∈ Ω : Γ(ω) = A}), (5)

which is additive with respect to P(Θ) and thus sums up to one over all A ⊆ Θ. It is
obvious that m : P(Θ) → [0, 1] is a true generalization of a classical probability mass
function p : Θ → [0, 1], and that Bel , Pl , and m are connected as follows:

Bel(A) =
1

1−m(∅)
∑

∅6=B⊆A

m(B), Pl(A) =
1

1−m(∅)
∑

A∩B 6=∅

m(B). (6)

Many variations of this general scheme have been proposed in the literature, but here
we prefer to strictly follow Dempster’s and Shafer’s original views.
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2.1 Opinions

To solve the particular problem of this paper, we restrict Dempster’s original probabilistic
model to a very particular case. First of all, we only consider finite sample spaces Ω,
which allows us to replace the σ-algebra F by the power set P(Ω) of Ω. Second, we only
consider frames of discernment Θ of size two, e.g. Θ = {H,¬H}, where H and ¬H denote
complementary outcomes. This implies that {∅, {H}, {¬H},Θ} is the codomain of the multi-
valued mapping Γ. The essence of the whole structure (Ω, P,Γ,Θ) can then be reduced to
a simple pair (b, d) ∈ [0, 1] × [0, 1] with b = Bel({H}), d = Bel({¬H}) = 1−Pl({H}),
and therefore b + d ≤ 1. In [7, 16, 17], such pairs are called Dempster pairs and the set
of all such pairs is called Dempster domain. Corresponding additive triplets ϕH = (b, d, i)
with i = 1 − b − d are sometimes called opinions about H [14, 18, 19].4 As shown in
Figure 1, opinons can be depicted as respective points in an equilateral triangle (2-simplex)
called opinion triangle [18].5 The three coordinates represent respective degrees of belief
(probability assigned to “H is true ”), degrees of disbelief (probability assigned to “H is
false ”), and degrees of ignorance6 (probability assigned to “I don’t know ”). The correct
mathematical term for the geometry of this picture is barycentric coordinates [4].
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The three corners of the opinion triangle represent particular extreme cases. We adopt
the terminology of [7, 17], i.e. p = (1, 0, 0) and n = (0, 1, 0) are called extremal and e =
(0, 0, 1) is called neutral. A general opinion (b, d, i) is called positive if b > d, and it is called
negative if b < d. Positive opinions are located on the left hand side and negative opinions
on the right hand side of the opinion triangle. (b, d, i) and (d, b, i) are regarded as opposite
opinions, i.e. the opposite of a positive opinion is negative, and vice versa.

In the opinion triangle, the two regions of positive and negative opinions are separated
by the central vertical line of indifferent opinions with b = d. Note that the neutral opinion
e is indifferent. Other particular indifferent opinions are the points u = ( 1

2 ,
1
2 , 0) at the

bottom and c = ( 1
3 ,

1
3 ,

1
3 ) in the center of the triangle. Indifferent opinions are their own

opposite.
Opinions are called simple (or pure) if either b = 0 or d = 0, i.e. (b, 0, 1− b) is simple

positive for b > 0 and (0, d, 1− d) is simple negative for d > 0. Simple opinions are located
on the left and the right edge of the triangle. Note that e, n, and p are simple. The opinions

4Later in [19], opinions are defined as quadruples (b, d, i, a) with an additional component a, the so-called
relative atomicity (we do not need this in this paper).

5Sometimes, isosceles instead of equilateral triangles are used to visualize the Dempster domain [7, 16].
6In [19], Jøsang calls i degree of uncertainty rather than degree of ignorance, but the latter seems to be

more appropriate and in better accordance with the literature.
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(b, 1− b, 0) at the bottom line of the triangle are called Bayesian (or probabilistic). Note that
the extremal simple opinions p and n are also Bayesian, as well as the particular indifferent
opinion u. All those particular types of opinions are shown in Figure 2.

2.2 Combining Opinions

One of the key components of the Demster-Shafer theory is a rule to combine two Dempster
spaces (Ω1, P1,Γ1,Θ) and (Ω2, P2,Γ2,Θ) for a common frame of discernment Θ. Such a
combination is usually denoted by symbols like ⊗ or ⊕ (here we prefer to use ⊗). If we
assume P1 and P2 as being stochastically independent, then we naturally obtain

(Ω1, P1,Γ1,Θ)⊗ (Ω2, P2,Γ2,Θ) = (Ω1×Ω2, P1·P2,Γ1∩Γ2,Θ) (7)

for the combined structure [9, 21]. Translated into Shafer’s terminology for two mass func-
tions m1 and m2, we get what is known today as (unnormalized) Dempster’s rule of com-
bination or simply Dempster’s rule:

m1⊗m2(A) =
∑

B1∩B2=A

m1(B1) ·m2(B2). (8)

It is easy to see that Dempster’s rule is commutative and associative, which means that the
order in which opinions are combined is irrelevant. In the particular case of Θ = {H,¬H}
with two opinions ϕ1 = (b1, d1, i1) and ϕ2 = (b2, d2, i2), we know from [7, 12, 17] that
Dempster’s rule can be rewritten more compactly as

ϕ1⊗ϕ2 =
(
b1b2 + b1i2 + i1b2
1− b1d2 − d1b2

,
d1d2 + d1i2 + i1d2

1− b1d2 − d1b2
,

i1i2
1− b1d2 − d1b2

)
, (9)

and it includes (1) as special cases for i1, i2 = 0. This equation is the mathematical and
computational basis for the proposed solution of the score aggregation problem in Section 3.
Note that the combination of opposite extremal opinions, p⊗ n or n⊗ p, is undefined.

2.3 The Opinion Monoid

The space of all possible opinions, Φ = {(b, d, i) ∈ [0, 1]3 : b+ d+ i = 1}, together with the
particular form of Dempster’s rule given in (9) forms an interesting algebraic structure. A
thorough analysis of this structure is presented in [7, 17], where the set of all non-extremal
opinions together with Dempster’s rule is called Dempster semigroup. The extremal opinions
are excluded to avoid the above-mentioned undefined combination. Here we pick up these
ideas, but instead of excluding extremal opinions, we include z = (1, 1,−1) as an additional
opinion and call it inconsistent. The set of all such opinions, including the inconsistent one,
is denoted by Φz = Φ ∪ {z}, and ⊗ is extended by p ⊗ n = n ⊗ p = z. Note that z is
absorbing with respect to ⊗, i.e. z ⊗ ϕ = ϕ⊗ z = z for all ϕ ∈ Φz.

With this extension, the structure (Φz,⊗) is closed under the operator ⊗ : Φz×Φz → Φz.
From the commutativity and associativity of ⊗, it follows that (Φz,⊗) is a commutative
semigroup. Note that for e = (0, 0, 1) we get e ⊗ ϕ = ϕ ⊗ e = ϕ for all ϕ ∈ Φz, i.e.
e = (0, 0, 1) is the (neutral) identity element of the combination. The structure (Φz,⊗, e)
is thus a commutative monoid with an absorbing zero element z. Since ⊗ is generally not
invertible, (Φz,⊗, e) is not a group. As is it a common practice in abstract algebra, we will
refer to (Φz,⊗, e) simply as Φz and call it the opinion monoid. Note that Φz has exactly
three idempotent elements e, u, and z, i.e. ϕ⊗ ϕ = ϕ only holds for ϕ ∈ {e, u, z}.

As pointed out in the classification of the previous subsection, Φz contains a number
of interesting subsets. Some of them are again closed under combination andpreserve the
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above-mentioned algebraic properties. Table 1 gives an overview of those sub-monoids with
their respective identity and zero elements. Note that a non-extremal Bayesian opinion is
invertible by combining it with its own opposite, i.e. (b, 1− b, 0)⊗(1− b, b, 0) = u holds for all
b 6∈ {0, 1}. Mathematically speaking, the set of consistent non-extremal Bayesian opinions,
Φ0 \ {p, n, z}, forms an commutative (abelian) group. Note further that the set Φ0 \ {z}
possesses a natural total order �0 defined by (b1, 1− b1, 0) �0 (b2, 1− b2, 0) iff b1 ≥ b2. This
order is important in Section 3 to establish the document ranking.

Name Notation Definition Identity Zero

general (extended with z) Φz Φ ∪ {z} e z
non-negative Φ≥ {(b, d, i) ∈ Φ : b ≥ d} e p
simple non-negative Φ+ {(b, d, i) ∈ Φ : d = 0} e p
non-positive Φ≤ {(b, d, i) ∈ Φ : b ≤ d} e n
simple non-positive Φ− {(b, d, i) ∈ Φ : b = 0} e n
indifferent Φ= {(b, d, i) ∈ Φ : b = d} e u
Bayesian (extended with z) Φ0 {(b, d, i) ∈ Φ : i = 0} ∪ {z} u z

Table 1: Different algebraic sub-structures of the opinion monoid Φz with their respective
identity and zero elements.

2.4 Transformations

As pointed out in [7, 17], the combination of a general opinion ϕ ∈ Φz with the uniform
Bayesian opinion u defines a homomorphism h : Φz → Φ0, i.e. h(ϕ1⊗ϕ2) = h(ϕ1) ⊗ h(ϕ2)
holds for all ϕ1, ϕ2 ∈ Φz. We can thus use h to transform a general opinion ϕ ∈ Φz into a
Bayesian opinion h(ϕ) = ϕ⊗ u ∈ Φ0. For ϕ = (b, d, i) ∈ Φ we can simplify (9) into

h(ϕ) =
(

1− d

(1− b) + (1− d)
,

1− b

(1− b) + (1− d)
, 0

)
=

(
1− d

1 + i
,
1− b

1 + i
, 0

)
, (10)

whereas h(z) = z holds as usual. A more general version of this mapping is called plausibility
transformation and h(ϕ) is called relative plausibility [5, 6, 8]. Note that indifferent opinions
always map into u, i.e. h(ϕ) = u holds for all ϕ ∈ Φ=. This includes h(e) = u as a special
case. In the opinion triangle, applying h to a general opinion ϕ ∈ Φ means to intersect the
straight line through ϕ and z with the bottom line of the opinion triangle [7, 17]. In other
words, the intersection of the opinion triangle with the straight line through ϕ0 ∈ Φ0 \ {z}
and z corresponds to the preimage h−1(ϕ0) = {ϕ ∈ Φ : h(ϕ) = ϕ0} of ϕ0. This geometric
interpretation of h is illustrated in Figure 3.

A similar, but non-homomorphic transformation g : Φz → Φ0 results from applying a
scheme similar to the one in (10). Instead of replacing the components b and d of a general
opinion ϕ = (b, d, i) by respective normalized plausibilities, the idea of

g(ϕ) =
(

b

b+ d
,

d

b+ d
, 0

)
(11)

is to normalize b and d directly.7 A general form of this mapping is called belief transfor-
mation and g(ϕ) is called relative belief [6, 8]. Note that g(e) is undefined in (11), but we
can set g(e) = u by default. As shown in Figure 4, applying g to ϕ ∈ Φz \ {e} means to
intersect the straight line through the points ϕ and e with the bottom line of the opinion
triangle. This geometric interpretation also holds for the special case g(z) = u.

7This transformation is a homomorphism with respect to the disjunctive rule of combination [7].
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ϕ

ψ

h(ψ)h(ϕ)

e = (0, 0, 1)

z = (1, 1,−1)

Figure 3: The homomorphic plausibility
transformation h.

ϕ

ψ

g(ψ)g(ϕ)

Figure 4: The belief transformation g.

ϕ

ψ

p(ϕ) p(ψ)

Figure 5: The pignistic transformation p.

Another interesting non-homomorphic transformation p : Φz → Φ0 redistributes the
component i from a general opinion ϕ = (b, d, i) ∈ Φz equally among b and d,

p(ϕ) =
(
b+

i

2
, d+

i

2
, 0

)
, (12)

which includes p(z) = u as a special case. In the opinion triangle, applying p to ϕ ∈ Φ
means to project ϕ vertically onto the bottom line of Bayesian opinions. This is illustrated
in Figure 5.8 Note that p is a special case of what Smets calls pignistic transformation [32].

We prefer not to give any recommendation with regard to the question of which trans-
formation to use, all of them have their respective advantages and disadvantages [5, 32].
In general, one can say that g tends to enforce existing degrees of belief and disbelief less
cautiously than h, and that p lies somewhere in between.

3 Combining and Ranking Referee Scores

In this section, we use the algebraic investigation of the previous section as the mathematical
and computational foundation for solving the problems of combining and ranking referee
scores. First we show how to interpret the scores of a given document as respective opinions,
one for each referee to which the document has been assigned. The independence assumption
allows us then to apply the combination operator ⊗ defined in (9) to obtain the combined
group opinion of all referees, from which the documents overall score is derived. Finally, we

8It is interesting to observe in Figure 3–5 that g, h, and p are special cases of a whole class of symmetric
transformations obtained by intersecting the bottom line of the opinion triangle with a straight line through
ϕ and ϕi = ( 1−i

2
, 1−i

2
, i) with i ∈ R \ [0, 1) ∪ {−∞, +∞}. In particular, we have i = 1 for g, i = −1 for h,

and i = ±∞ for p.
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explain how to use the proposed transformations g, h, or p to establish the final ranking,
from which the highest-ranked documents are accepted.

3.1 Combining Referee Scores

As stated in Subsection 1.2, we first need to consider the problem of deriving from the
set of scores(D) the document’s combined overall score sD. The general idea for this is
to apply Dempster’s rule to corresponding opinions. Recall that a score is a point s =
(q, e) ∈ [0, 1]× [0, 1] in the unit square. The obvious question now is how to map such
scores into opinions. Mathematically speaking, we are looking for a meaningful mapping
∆ : [0, 1]× [0, 1] → Φ, which assigns a unique opinion ∆(s) ∈ Φ to each score s ∈ [0, 1]× [0, 1].
We can thus look at ∆ as a transformation of the unit square into the opinion triangle.

To define such a transformation, we consider each referee as a partially reliable informa-
tion source. Inspired by the general model of partially reliable information source in [15], we
assume that reports of unreliable sources are entirely neglected. Intuitively, this is the case
whenever a referee is not an expert for reviewing a particular paper. Note that s = (q, e)
delivers an estimate e ∈ [0, 1] of the referee’s expertise level, i.e. if we assume the referee as
being trustworthy with respect to giving such an estimate, then we may interpret e as the
probability P ({E}) = e of the referee being an expert for the document’s topic. Similarly, we
may interpret the quality estimate q as the conditional probability P ({Q}|{E}) = q of the
paper being a high-quality paper, given that the referee is an expert. With ΩE = {E,¬E}
and ΩQ = {Q,¬Q} we denote respective sets of outcomes. This implies a probability space
(Ω,P(Ω), P ) with Ω = ΩE × ΩQ = {(E,Q), (E,¬Q), (¬E,Q), (¬E,¬Q)} and

P ({E,Q}) = e · q, P ({¬E,Q}) = (1− e) · q,
P ({E,¬Q}) = e · (1− q), P ({¬E,¬Q}) = (1− e) · (1− q).

Consider now another space Θ = {H,¬H} and let Γ : Ω → P(Θ) be defined by Γ(E,Q) =
{H}, Γ(E,¬Q) = {¬H}, and Γ(¬E,Q) = Γ(¬E,¬Q) = Θ. The idea is to adopt the
referee’s judgment with respectQ and ¬Q whenever the referee is an expert, and to discard it
otherwise. This defines a Dempster space (Ω, P,Γ,Θ), from which we derive Bel({H}) = e·q
and Bel({¬H}) = e · (1− q). Finally, this leads to the requested transformation,

∆(s) = (e · q, e · (1− q), 1− e), (13)

which maps points from the unit square into the opinion triangle, as illustrated in Figure 6.
Note that all scores (q, 0) are mapped into the neutral opinion (0, 0, 1), whereas all scores
(q, 1) are mapped into Bayesian opinions (q, 1− q, 0).

q = 0 q = 1

e = 0

e = 1

Figure 6: Transforming referee scores into
opinions.

q = 0 q = 1
e = 1

e = 0

s1

s2

s3

⊗

sD

0.37

0.86

ω1

ω2

ω3

ωD

Figure 7: Combining three referee scores
s1, s2, and s3.
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Let scores(D) = {s1, . . . , sk} be the set of scores for document D. Using the proposed
transformation ∆, we can now compute the document’s combined score sD by

sD = ∆−1(∆(s1)⊗ · · · ⊗∆(sk)), (14)

where ∆−1 denotes the inverse of ∆. Note that ∆−1(ϕ) = ( b
1−i , 1− i) is unique for all ϕ =

(b, d, i) ∈ Φ, except for the neutral opinion (0, 0, 1). This is a mathematical imperfection,
but it is of no importance for our particular application. Figure 7 shows three scores
s1 = (0.8, 0.5), s2 = (0.4, 0.25), s3 = (0.2, 0.75), their combination sD = (0.37, 0.86), and
corresponding opinions ωi = ∆(si) and ωD = ω1 ⊗ ω2 ⊗ ω3 = ∆(sD).

3.2 Ranking Combined Referee Scores

Given the above solution for the score aggregation problem, we are now in possession of a
set S = {sD : D ∈ D} of combined referee scores sD = (qD, eD), one for each document.
The first thing to note here is the problem of documents with an unsatisfactory combined
expertise level eD. This means that the program committee or the editor was unable to
assign the document to an appropriate referee. The usual procedure in such a case is to
assign the paper to one or two additional referees. In our model, we may use a threshold
γ ∈ [0, 1] to define the set Dγ = {D ∈ D : eD ≤ γ} of documents to be reassigned. The
new referee scores are then combined with the existing ones to obtain an updated set of
scores. This is a really important point when it comes to improve the quality of the review
process, but time constraints usually do not allow more than one such iteration. Nierstrasz
talks about the problem of low overall expertise levels in a pattern called Identify Missing
Champions [26].

When all the updates are done and S is finally fixed, we reach the final stage of the
review process, in which the decision about the accepted papers needs to be taken. An
ideal basis for this decision would a be a ranking of the submitted documents, from which
the highest-ranked submissions are accepted. We have seen in Section 3 that the set of
Bayesian opinions is totally ordered, and that general opinions can be transformed into
Bayesian opinions. The idea thus is to use the total order �0 of Bayesian opinions together
with one of the proposed transformations to define an order with respect to Φz. More
formally, we may consider three different orders �g, �h, and �p for Φ, which are defined
similarly by

ϕ �g ψ, iff g(ϕ) �0 g(ψ), ϕ �h ψ, iff h(ϕ) �0 h(ψ), and ϕ �p ψ, iff p(ϕ) �0 p(ψ),

for all ϕ,ψ ∈ Φz.9 Note that �g, �h, and �p are all total preorders, i.e. the antisymmetry
property which is necessary for a total order does not hold. Nevertheless, we can use them
to order the elements of S, e.g. by

sD1 �g sD2 , iff ∆(sD1) �g ∆(sD2), respectively g(∆(sD1)) �0 g(∆(sD2)),

for g, and similarly for h and p. This is again a total preorder, which we can use to establish
a document ranking for D. Note that if sD1 �h sD2 and sD2 �h sD1 hold for two documents
D1 6= D2, which means that they have the same g-image in Φ0, they are indistinguishable
for �g and thus receive the same rank. If necessary, such ties between equally ranked
documents are broken at random.

9In the case of h, the order is only defined for Φ, i.e. it excludes the inconsistent opinion z obtained for
two extreme opposite scores (1, 1) and (0, 1). To avoid this problem, either q should be restricted to [0, 1),
(0, 1], or (0, 1), or e should be restricted to [0, 1). Another solution is to impose h(z) = u.
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4 Conclusion

We have seen in this paper a solution for the score aggregation and document ranking prob-
lems. The key idea is to transform scores (q, e) into opinions (b, d, i), and to combine them
by Dempster’s rule. We have analyzed the underlying algebraic structures and properties.
From various ways of projecting general opinions into the totally ordered set of Bayesian
opinions, we can inherit the order and finally apply it to establish the final document rank-
ing. The systematic formal analysis of this problem is the main contribution of this paper.

What is still missing today is the implementation of the proposed method in one of the
existing conference management systems. A prototype implementation is available and can
be tested at http://www.iam.unibe.ch/∼run/referee, but it includes only the core of the
proposed method with a very simple visualization. Nevertheless, it is interesting to observe
that it almost perfectly reproduces some of Nierstrasz’ classification patterns.

Another open issue is to apply and compare the recommended scheme empirically to real
conference review data. It will certainly be interesting to observe whether real PC decisions
are matched and to what extent. Note that we do not want to promote our method as a
replacement for PC meetings or the discussions in editorial boards, but we think it could
serve as a valuable decision support tool.
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A Qualitative Vickrey Auction

Paul Harrenstein, Tamás Máhr, and Mathijs de Weerdt

Abstract

The negative conclusions of the Gibbard-Satterthwaite theorem—that only dictato-
rial social choice functions on three or more alternatives are non-manipulable—can
be overcome by restricting the class of admissible preference profiles. A common
approach is to assume that the preferences of the agents can be represented by
quasilinear utility functions. This restriction allows for the positive results of the
Vickrey auction and the Vickrey-Clarke-Groves mechanism. Quasilinear preferences,
however, involve the controversial assumption that there is some commonly desired
commodity or numeraire—money, shells, beads, etcetera—the utility of which is
commensurable with the utility of the other alternatives in question. We propose a
generalization of the Vickrey auction, which does not assume the agents’ preferences
being quasilinear but still has some of its desirable properties. In this auction a
bid can be any alternative, rather than just a monetary offer. Such an auction
is also applicable to situations where no numeraire is available, when there is a
fixed budget, or when money is no issue. In the presence of quasilinear preferences,
however, the traditional Vickrey auction turns out to be a special case. In order
to sidestep the Gibbard-Satterthwaite theorem, we restrict the preferences of the
agents. We show that this qualitative Vickrey auction always has a dominant
strategy equilibrium, which moreover invariably yields a weakly Pareto efficient
outcome, provided there are more than two agents.

The work in this paper is an improved presentation of the idea introduced by Máhr
and de Weerdt (2007) on auctions with arbitrary deals.

1 Introduction

Although it may often seem otherwise, even nowadays money is not always the primary
issue in a negotiation. Consider, for instance, a buyer with a fixed budget, such as a
government issuing a request for proposals for a specific public project, a scientist selecting
a new computer using a fixed budget earmarked for this purpose, or an employee organizing
a grand day out for her colleagues. In such settings, the buyer has preferences over all
possible offers that can be made to him. A similar situation, in which the roles of buyers
and sellers are reversed, occurs when a freelancer offers his services at a fixed hourly fee. If
he is lucky, several clients may wish to engage him to do different assignments, only one of
which he can carry out. Needless to say, the freelancer might like some assignments better
than others. In the sequel we consider the general setting which covers all of the examples
above and in which we distinguish between an issuer of a commission—the government, the
scientist, the employee, or the freelancer in the examples above—and a number of bidders.

In order to get the best deal, the issuer could ask for offers and engage in a bargaining
process with each of the bidders separately. Another option would be to start a (reverse)
auction. In this paper, we show that even without money, it is possible to obtain a reasonable
outcome in this manner. We propose an auction protocol in which the dominant strategy
for each bidder is to make the offer that, among the ones that are acceptable to her, is most
liked by the issuer. We also show that if all bidders adhere to this dominant strategy a
weakly Pareto optimal outcome results, provided there are three or more bidders.

To run such an auction without money the preferences of the issuer are made public.
Observe that if a single good is sold in an auction with monetary bids it can be assumed to
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be common knowledge that bidders prefer low prices to higher ones, and sellers higher to
lower ones. Our protocol closely follows the protocol of a Vickrey, or closed-bid second-price,
auction (Vickrey, 1961). First each bidder submits an offer. The winner is the bidder who
has submitted the offer that ranks highest in the issuer’s preference order. Subsequently the
winner has the opportunity to select any other alternative as long as it is ranked at least as
high as the second-highest offer in the issuer’s preference order. This alternative is then the
outcome of the auction.

In the next section some general notations and definitions from implementation theory
are introduced, and in Section 3 we formally define the qualitative auction sketched above for
the setting in which the bidders are indifferent between all outcomes where they do not win
the auction. This makes that we can sidestep the negative conclusions of the impossibility
result by Gibbard (1973) and Satterthwaite (1975). We prove that a dominant strategy
equilibrium exists in the qualitative Vickrey auction, which moreover yields a weakly Pareto
efficient outcome for all preference profiles with three or more bidders. The rest of that
section concerns several other properties like weak monotonicity and incentive compatibility.
We conclude the paper by relating our work to other general auction types such as multi-
attribute auctions.

2 Definitions

In this section we review some of the usual terminology of mechanism design and fix some
notations. For more extensive expositions the reader be referred to Moore (1992), Mas-Colell
et al. (1995), and Shoham and Leyton-Brown (forthcoming).

Let N be a finite set of agents and Ω a set of alternatives or outcomes. The agents
are commonly denoted by natural numbers. By a preference relation %i of agent i we
understand a transitive and total binary relation (that is, a weak order or a total preorder)
on Ω, with �i and ∼i denoting its strict and indifferent part, respectively. We use infix
notation and write a %i b to indicate that agent i values alternative a at least as much
as alternative b. It is not uncommon to restrict one’s attention to particular subsets of
preference relations on Ω, for instance, the sets of quasilinear preferences or single-peaked
preferences on Ω. Be Θi such a class for each i ∈ N , we have Θ denote Θ1 × · · · × Θn.
A preference profile % in Θ (over Ω and N) is a sequence (%1, . . . ,%n) in Θ1 × · · · × Θn

associating each agent with a preference relation over Ω.
Given a preference profile Θ on Ω, an outcome ω in Ω is said to be weakly Pareto

efficient whenever there is no outcome ω′ in Ω such that all agents i strictly prefer ω′ to ω.
Outcome ω said to be Pareto efficient if there is no outcome ω′ in Ω such that that ω′ is
weakly preferred to ω by all agents and strictly preferred by some.

A social choice function (on Θ) is a map f : Θ → Ω associating each preference profile
with an outcome in Ω. A social choice function on Θ is said to be (weakly) Pareto efficient
whenever f(%) is (weakly) Pareto efficient for all preference profiles % in Θ.

A mechanism (or game form) M on a set Ω of outcomes is a tuple (N,S1, . . . , Sn, g),
where N is a set of n agents, for each agent i in N , Si is a set of strategies available to i,
and g : S1 × · · · × Sn → Ω is a function mapping each strategy profile s in S1 × · · · × Sn on
an outcome in Ω. A mechanism (N,S1, . . . , Sn, g) is said to be direct (on Θ) if each agent’s
strategies are given by her possible preferences, that is, if Si = Θi for each agent i in N .
For Ω a set of outcomes, a pair (M,%) consisting of a mechanism M on Ω and a preference
profile % on Ω we refer to as a game (on Ω). With a slight abuse of terminology, we will also
refer to functions si : Θ → Si as strategies and sequences s = (s1, . . . , sn) of such functions,
one for each agent, as strategy profiles.

An equilibrium concept (or solution concept) associates each game with a subset of its
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strategy profiles; the set of strategy profiles thus associated may depend on the preference
profile. A mechanism M is said to implement a social choice function f on Θ in an equilib-
rium concept C whenever for all preference profiles % in Θ there is some s∗(%) ∈ C(M,%)
with f(%) = g(s∗(%)).

A direct mechanism M = (N,Θ1, . . . , Θn, g) is said to be truthful (or incentive compati-
ble) in an equilibrium concept C whenever for each preference profile % each agent i revealing
her true preferences %i is an equilibrium in C(M,%), that is, if % itself is in C(M,%).

If for a mechanism M = (N,S1, . . . , Sn, g) and an equilibrium concept C, C(M,%) is
nonempty for all preference profiles %, we can associate with M a direct mechanism M∗ =
(N,Θ1, . . . , Θn, g∗) where for each % in Θ we have g∗(%) = g(s∗(%)) for some selected
equilibrium s∗(%) in C(M,%). Intuitively, M∗ mimicks M by asking the agents to reveal
their preferences, be it truthfully or untruthfully, calculating equilibrium strategies s∗i in M
for them given the revealed preferences % and returning the outcome g(s∗1(%), . . . , s∗n(%)).
Thus we find that a social choice function f being implementable in C implies it being
truthfully implementable in C, a fact better known as the revelation principle.

In this paper we will be primarily concerned with dominant strategy equilibrium, which
is extensively studied in the context of mechanism design (Dasgupta et al., 1979; Green and
Laffont, 1979) and in terms of which also the infamous Gibbard-Satterthwaite theorem is
formulated. For the purposes of this paper we say that s∗i is a dominant strategy for an
agent i in a game (M,%), whenever no matter which strategies the other agents adopt, i
is not worse off playing s∗i than any other of her strategies, that is, if for all strategy
profiles s ∈ S and all ti ∈ Si we have

g(s1, . . . , si−1, s
∗
i , si+1, . . . , sn) %i g(s1, . . . , si−1, ti, si+1, . . . , sn).

A strategy profile s∗ = (s∗1, . . . , s
∗
n) is then said to be a dominant strategy equilibrium if s∗i is

a dominant strategy for all agents i in N . The advantage of dominant strategy equilibrium
is that it is very robust. The dominant strategies of an agent i do not depend on the
preferences of the other agents, they can be calculated on the basis of i’s preferences alone.
Moreover, there seems to be no reason why agents would play a strategy that fails to be
dominant if a dominant one is available. On the downside is the Gibbard-Satterthwaite
theorem, which says that implementation in dominant strategy equilibrium allows only for
social choice functions in which one of the players is a dictator if one does not impose
restrictions on the agents’ preference relations.

3 A Qualitative Vickrey Auction

In the setting we consider, a commission is issued and auctioned among a set N of n agents,
henceforth called bidders. The commission can get a number of alternative implementations
denoted by A, which for presentational purposes we assume to be finite.1 The commission
is then assigned to a bidder who commits herself to implement it in a particular way. Thus
the outcomes of the auction are given by pairs (a, i) of alternatives a ∈ A and bidders i
in N , that is, Ω = A × N . Intuitively, (a, i) is the outcome in which i wins the auction
and implements alternative a. For each bidder i in N we have Ωi denote A×{i}, the set of
offers i can make. Obviously, each offer is also an outcome, rather, we have Ω =

⋃
i∈N Ωi.

We assume each bidder to be indifferent between outcomes in which the commission is
assigned to another bidder, that is, ω ∼i ω′ for all bidders i in N and all outcomes ω and ω′

1The definitions and results of this paper can be extended so as to hold for infinite sets of outcomes as
well, provided appropriate restrictions on the bidders’ preferences are imposed. We believe, however, that
doing so would technically complicate things while contributing only little to the conceptual content of this
paper.
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in Ω \Ωi. In what follows we have Θi denote the set of i’s preference profiles over Ω which
comply with this restriction.

If (a, i) %i (x, j) for some alternative x and some bidder j distinct from i, outcome (a, i)
is said to be acceptable to i, and unacceptable to i, otherwise. That is, an outcome ω is
acceptable to bidder i if i values at least as much as any outcome in which she does not win
the auction. Observe that if i 6= j, any outcome (a, j) ∈ Ωj is acceptable to i. Finally, a
preference profile % is said to be positive if each for each bidder i the set Ωi contains at least
one outcome (a, i) which i strictly prefers to losing the auction, that is, to any outcome not
in Ωi. Positive preference profiles could be argued for in contexts where a bidder is assumed
not to partake in the auction if she is at best indifferent between winning and losing.2

Let ≥ be a linear (that is, a transitive, total and anti-symmetric) order over the out-
comes Ω. The qualitative Vickrey auction on ≥ is defined then by the following protocol.
First, the order ≥ is publicly announced. For ω ≥ ω′ we say that outcome ω is ranked at
least as high as outcome ω′ in ≥. Then, each bidder i submits a secret offer (a, i) ∈ Ωi

to the auctioneer. The bidder i∗ who submitted the offer ranked highest in ≥ is declared
the winner of the auction. Observe that ties are precluded because of the linearity of ≥.
Finally, i∗ may choose from among her own offers in Ωi∗ any outcome that is ranked at
least as high as the offer that ranks second highest in ≥ among all the ones submitted. The
outcome she chooses is then the outcome of the auction. The winner’s initial offer is witness
to the fact that such an outcome always exists.

Example 1 Let N = {1, 2, 3} and A = {a, b, c, d}. Let us further suppose that the order ≥
on the alternatives is lexicographic, that is,

(a, 1) > (a, 2) > (a, 3) > (b, 1) > · · · > (c, 3) > (d, 1) > (d, 2) > (d, 3).

Suppose the three bidders 1, 2, and 3 submit the offers (c, 1), (a, 2) and (d, 3), respectively.
Bidder 2 then emerges as the winner, as (a, 2) > (c, 1) > (d, 3). Since (c, 1) is the second-
highest offer, bidder 2 may now choose from the outcomes (a, 2) and (b, 2), these being the
only outcomes in Ω2 that rank higher than (c, 1). In case bidder 2 prefers (b, 2) to (a, 2) she
would only do well selecting (b, 2), which would then also be the outcome of the auction.

For different orders ≥ on the outcomes, the qualitative Vickrey auction can obviously
yield different outcomes. So, actually, we have defined a class of auctions. With a slight
abuse of terminology we will nevertheless speak of the qualitative Vickrey auction if the
respective order ≥ can be taken as fixed. At first we will consider ≥ an extraneous feature
of the auction. Later we will come to consider the case in which ≥ represents the preferences
of the issuer of the commission.

The traditional second-price or Vickrey auction, in which a single item is allocated,
is a special case of the above protocol, when the alternatives are taken to be monetary
bids for a single good, the bidders have quasilinear preferences over the outcomes and ≥
represents the natural order over monetary bids—ranking higher bids higher than lower
ones—together with a deterministic tie-breaking rule.3 Since from each offer the bidder’s
entire preference relation can be derived, the traditional Vickrey auction could be considered
a direct mechanism. Moreover, being a special case of the VCG mechanism, it is incentive
compatible in dominant strategies.

2In a similar vein, one could introduce a zero outcome 0, which represents the possibility of no transaction
taking place. A bidder i could also offer 0, which would intuitively mean that i refrains from participating
in the auction. Such a zero outcome, however, brings along a number of intricacies, which lie beyond the
scope of this paper.

3Not all tie-breaking rules τ : 2Ω → Ω, however, can be represented by ≥. E.g., if τ is such that
τ(ω1, ω2) = ω1, τ(ω2, ω3) = ω2 and τ(ω1, ω3) = ω3, it cannot be represented by an order ≥. Moreover, we
also assume the number of possible offers in the Vickrey auction to be arbitrarily large but finite.
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The qualitative Vickrey auction, however, is not a direct mechanism, as from an offer
the full preference relation of a bidder cannot be derived in general. As such incentive
compatibility is not a concept that directly applies to it. Instead we prove the existence
of a dominant strategy equilibrium s∗(%) for each preference profile % in Θ. Thus, the
qualitative Vickrey auction implements a social choice function f∗, which is defined such
that for all preference profiles % in Θ, f∗(%) is the outcome of the equilibrium s∗(%). We
will then study the formal properties of this social choice function.

Intuitively, the classic Vickrey auction is truthful because an bidder’s monetary offer
only determines whether she turns out to be the winner, but not what price she has to
pay if she does. Things are much similar in the qualitative Vickrey auction. Again, the
bidder’s offer determines whether she emerges as the winner, but the range of alternatives
from among which she may choose is decided by the second-highest offer.

A strategy for a bidder i in the qualitative Vickrey auction consists of an offer (a, i) in Ωi

along with a contingency plan which outcome to choose from among the outcomes in Ωi

that are ranked higher than the second-highest offer submitted in case i happens to win the
auction. Any such strategy may depend on a preference profile % in Θ. We call a strategy
for i adequate if it satisfies the following properties:

(i) the offer i submits is the outcome in Ωi that is ranked highest in ≥, and that is still
acceptable to i,

(ii) in case Ωi contains no outcomes acceptable to her, i submits the outcome in Ωi that
is ranked lowest in ≥,

(iii) in case i wins the auction, she selects one of the outcomes in Ωi she values most among
those that are ranked higher than the second-highest offer submitted.

Given a preference profile % items (i) and (ii) completely determine the offer i is to submit,
but (iii) leaves some room for flexibility when i’s preferences over Ωi contain indifferences.
Also observe that whether an offer is acceptable to a bidder i can be read off immediately
from i’s preference relation and does not depend on the preferences of the other bidders or
other extraneous features.

Example 1 (continued) Let the preferences of the three bidders 1, 2 and 3 be given by
the following table, where higher placed outcomes are more preferred.

1 2 3
(c, 1) (d, 2) (x, i) /∈ Ω3

(d, 1) (b, 2) (a, 3)
(x, i) /∈ Ω1 (a, 2) (d, 3)
(b, 1) (x, i) /∈ Ω2 (c, 3)
(a, 1) (c, 2) (b, 3)

If the bidders 1, 2 and 3 were all to play an adequate strategy, they would offer (c, 1), (a, 2)
and (d, 3), respectively, since these are for 1 and 2 their highest-ranking acceptable offer and
for 3 the lowest-ranking offer overall. In this case (b, 2) would be the outcome of the auction,
because bidder 2 is the winner and may select any alternative ranked above (c, 1). It might
be worth observing that it can happen that, if all of her offers are unacceptable to her, a
bidder adhering to the strategy offers her least preferred outcome. Bidder 3, for instance,
would do so if the outcomes (b, 3) and (d, 3) had been interchanged in her preference order.

We are now in a position to prove that the bidders’ adequate strategies are dominant in
the qualitative Vickrey auction.
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Proposition 1 In the qualitative Vickrey auction and given a preference profile % in Θ,
all adequate strategies for a bidder i are dominant.

Proof: Let i be an arbitrary bidder and s(%) an arbitrary adequate strategy for i. First
assume that there are no outcomes in Ωi that are acceptable to i and that i adheres to si(%)
submitting the lowest ranked offer in Ωi, denoted by (ai

0, i). If i loses the auction, some other
bidder i∗ ends up winning the auction and chooses some offer (a∗, i∗) in Ωi∗ as the eventual
outcome. Observe that (a∗, i∗) is acceptable to i and among her most preferred outcomes.
If i wins the auction, she may choose among all outcomes in Ωi and, following si(%) she
will select one that she likes best. Any other offer she could make would still make her win
the auction and leaving her the same range of outcomes to choose from. So, obviously, in
both cases, si(%) is a dominant strategy.

For the remainder of the proof we may assume that there are outcomes in Ωi which are
acceptable to i. Let (ai, i) denote the highest-ranked offer in Ωi that is still acceptable to i,
that is, the offer i would make if she follows the adequate strategy si(%). First assume that
submitting (ai, i) would make i lose the auction, that is, that some other bidder i∗ would
win the auction by offering (a, i∗) and choose (a∗, i∗) as the eventual outcome. Now consider
any other offer (a′, i∗) in Ωi which i could submit. Obviously, if (a′, i∗) were also a losing
offer, i∗ would still win the auction and i would be indifferent between the outcome i∗ would
then choose and (a∗, i∗). On the other hand, if (a′, i) would make i win the auction, we
have (a′, i) ≥ (a, i∗), rendering (a, i∗) the second-highest offer. Then, i has to choose from
among the outcomes in Ωi ranked higher than (a, i∗). All of these outcomes, however, are
unacceptable to i, that is, (a∗, i∗) �i ω for all ω ∈ Ωi with ω ≥ (a, i∗). Thus, also in this
case we may conclude that si(%) is a dominant strategy for i.

Finally, assume that i wins the auction by offering (ai, i) and that (b, j) is the second-
highest offer. Let (a∗, i) be the outcome she chooses as her most preferred outcome among
the outcomes in Ωi that are ranked higher than (b, j). Then, (ai, i) ≥ (a∗, i) > (b, j), because
any outcome in Ωi ranked higher than (ai, i) is unacceptable to i. Obviously, (a∗, i) %i ω
for any outcome ω /∈ Ωi. For any other winning offer, the second-highest offer would remain
the same and so does the set of outcomes from which i may choose. Thus, i would do no
better than by offering (ai, i) as prescribed by si(%). On the other hand, if i were to submit
a losing offer, some outcome ω /∈ Ωi would result. Since (a∗, i) %i ω, again i would have
done better by offering (ai, i). Hence, si(%) is a dominant strategy for i. �

Among the adequate strategies of a bidder i one stands out, namely, the one in which
she selects from her most preferred outcomes that ranked higher than the second highest,
the one that is ranked highest. For each preference profile % in Θ we denote this strategy
by s∗i (%). Let further s∗ be the strategy profile such that s∗(%) = (s∗1(%), . . . , s∗(%)) for
each preference profile %. Then, in virtue of Proposition 1, s∗(%) is a dominant strategy
equilibrium for each % in Θ. Accordingly, the qualitative Vickrey auction on ≥ implements
the social choice function f∗≥, which is such that for all preference profiles % in Θ, f∗≥(%)
equals the outcome the strategy profile s∗(%) gives rise to. If ≥ is clear from the context
we omit the subscript ≥ in f∗≥.

We are now in a position to define a direct mechanism M∗ = (N,Θ1, . . . , Θn, g∗) such
that N are the bidders participating in the qualitative Vickrey auction we are considering, Θi

the possible preference relations over Ω (restricted as in the beginning of this section), and
g∗ such that for all % in Θ1 × · · · ×Θn we have g∗(%) = f∗(%).

Proposition 2 The direct mechanism M∗ truthfully implements the social choice func-
tion f∗.

Proof: That M∗ truthfully implements f∗ is an almost immediate consequence of Proposi-
tion 1 by an argument much similar to that for the revelation principle. �
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It is quite possible that, given a preference profile %, if all bidders play an adequate
(and hence dominant) strategy, the outcome (a∗, i∗) of the qualitative Vickrey auction is
unacceptable to i∗ although some submitted offers (a, i) were acceptable to the respective
bidder i. To appreciate this consider once more Example 1 but now suppose that the
bidders’ preferences are such that all offers are unacceptable to them, apart from (d, 2),
which is acceptable to bidder 2. Then, bidder 1 would win the auction and be forced to
select some outcome (x, 1) that is unacceptable to her. This could, and probably should, be
considered a serious weakness. Fortunately, this defect can easily be remedied in the direct
mechanism M∗ by selecting the winner from the bidders i with acceptable outcomes among
their set Ωi of possible offers, if such bidders exist. The problem can obviously also be
sidestepped by assuming all preferences to be positive, that is, if for each bidder i the set Ωi

contains at least one acceptable outcome which i strictly prefers to losing the auction.

3.1 Pareto efficiency

The generalized Vickrey auction fails to be (strongly) Pareto efficient among the bidders,
in the sense that for some preference profiles there could be an outcome (a∗∗, j) that is
weakly preferred by all bidders over the dominant equilibrium outcome (a∗, i∗), and strictly
preferred by some.

Proposition 3 For any order ≥ on the outcomes, there is a preference profile for which the
outcome of the qualitative Vickrey auction on ≥ is not Pareto efficient among the bidders.

Proof: Let ≥ be any order on the outcomes and let (a, i) be the lowest ranked outcome
therein. Now define the preference profile % such that for all bidders j distinct from i all
outcomes in Ωj are unacceptable to j and that (a, i) is the only outcome in Ωi that i strictly
prefers to losing the auction. Obviously, there is no way in which (a, i) can be the outcome of
the auction. Still, (a, i) Pareto dominates any other outcome (a∗, i∗) with i∗ 6= i: bidder i∗

strictly prefers (a, i) to (a∗, i∗) whereas all other bidders are at least indifferent. �

In contrast to strong Pareto efficiency, weak Pareto efficiency among the bidders is sat-
isfied almost trivially. A mechanism is weakly Pareto efficient if there are no preference
profiles and orders ≥ such that some outcome is strictly preferred over the dominant equi-
librium outcome by all bidders. If there are three or more bidders, for any two outcomes
(a, i) and (b, j) there is some bidder k distinct from both i and j and thus (a, i) ∼k (b, j). In
words, bidder k will never strictly prefer any outcome where she is not a winner. In the case
with only two (distinct) bidders, say i and j, we have (a, i) ∼j (b, i) and (a, j) ∼i (b, j) for
all a, b ∈ A. The only way, moreover, in which it can happen that both (a, i) �i (b, j) and
(a, i) �j (b, j) is that (a, i) is acceptable to i and (b, j) unacceptable to j. However, (b, j)
can turn out the dominant strategy equilibrium outcome only if j has no acceptable offers
at all, which is a rather uninteresting borderline case.

Thus far, we have assumed the order ≥ to have been given externally. The order ≥ could
of course also be construed as the preference relation of an additional bidder with a interest
in the outcome of the auction, for instance, the issuer of the commission. Extending the
concepts of Pareto efficiency so as to include the preferences of this new party, we find that
the qualitative Vickrey auction is both weakly and strongly Pareto efficient provided that
the preferences of each bidder i are positive and linear over Ωi. Linearity can be dropped if
we consider the direct mechanism M∗.

Proposition 4 The qualitative Vickrey auction is strongly Pareto efficient among the bid-
ders and ≥, if the preferences of each bidder i are positive and linear over Ωi.
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Proof: Let (a∗, i∗) be a dominant strategy equilibrium outcome of the qualitative Vick-
rey auction. Having assumed the preferences to be positive, (a∗, i∗) is acceptable to i∗.
We now show that (a∗, i∗) is not dominated by any other outcome. Consider an arbi-
trary outcome (a, i) in Ω distinct from (a∗, i∗). Without loss of generality we may assume
that (a, i) > (a∗, i∗). If i = i∗, then (a∗, i∗) �i∗ (a, i) by linearity and the observation
that otherwise, i∗ would have not have selected (a∗, i∗). On the other hand, if i 6= i∗, the
outcome (a, i) is ranked higher in ≥ than the second-highest offer. As such (a, i) is not
acceptable to i, whereas (a∗, i∗) is. Hence, (a∗, i∗) �i (a, i). In either case, (a, i) does not
Pareto dominate (a∗, i∗) strongly. �

3.2 Monotonicity

Another property of the social choice function implemented by the qualitative Vickrey auc-
tion is that of mononicity. A social choice function f on Ω is said to be (weakly) monotonic
on Θ if f(%) = f(%′) for any preference profiles % and %′ in Ω that only differ in that the
social choice f(%) under % is possibly moved up in the individual preference orders %′

i. In
other words, is for all bidders i in N and all outcomes ω and ω′ distinct from f(%), ω %i ω′

if and only if ω %′
i ω′ and f(%) %i ω implies f(%) %′

i ω, then f(%) = f(%′). Intuitively,
weak monotonicity captures the desirable property that if the social choice ω∗ becomes more
preferred by some or more bidders while the bidders’ preferences over the other outcomes
stay the same, ω∗ remains the social choice. A mechanism is said to be weakly monotonic
if the social choice functions it implements are weakly monotonic.

For the qualitative Vickrey auction we have imposed the restriction on the individual
preferences that a bidder is indifferent between any outcome in which she does not win. In
case there are two or more alternatives or more than two bidders, this makes that a loser i
of the auction cannot move the outcome (a∗, i∗) up in his preference order, keeping all her
other preferences intact, without violating this restriction. Hence, for weak monotonicity
on Θ we only have to consider preference profiles that only differ in that the outcome (a∗, i∗)
moves up in the preferences of the winner. We then find that the qualitative Vickrey auction
is indeed weakly monotonic.

Proposition 5 The qualitative Vickrey auction is weakly monotonic.

Proof: If there is only one alternative and no more than two players the proof is trivial.
For any other case consider two preference profiles % and %′ in Θ and let (a∗, i∗) be the
outcome of the auction if the bidders’ preferences are given by %. Without loss of generality
we may assume that %i and %′

i are identical for all bidders i distinct from i∗. Also assume
that %i∗ and %′

i∗ only differ in that (a∗, i∗) is moved up in %′
i∗ . We now show that (a∗, i∗)

is also the outcome of the auction if the bidders’ preferences are given by %′. Observe that
for all bidders distinct from i∗ the sets of acceptable outcomes given %i and %′

i remain
the same. Hence, the highest-ranked offer (a, i) submitted by any bidder distinct from i∗

will be identical given either % or %′. Now either (a∗, i∗) is acceptable in % if and only
if (a∗, i∗) is in %′, or (a∗, i∗) is unacceptable in % but acceptable in %′. In the former case,
the offer by i∗ given %′ will be identical to her offer given %. In the latter case i∗ will
offer (a∗, i∗) when the preferences are given by %′. In either case i∗ also wins the auction
for %′. Morever, (a∗, i∗) is one of the outcomes among those ranked higher in ≥ than (a, i)
that i∗ prefers most. By moving (a∗, i∗) up in i∗’s preference order, this remains the case
and (a∗, i∗) will also be the outcome of the auction if the preferences are given by %′. �

A social choice function f is said to be strongly monotonic on Θ if f(%) = f(%′) for all
preference profiles % and %′ in Θ such that f(%) %i ω implies f(%) %′

i ω for all bidders i
and all outcomes ω. This is a very strong property that is satisfied by hardly any reasonable
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social choice function. It is therefore not very surprising that the qualitative Vickrey auction
fails to be strongly monotonic as well, as witness the following example involving two bidders
and three outcomes.

Example 2 Let ≥ be given by (a, 1) > (a, 2) > (b, 1) > (b, 2) > (c, 1) > (c, 2) and the
preference profiles (%1,%2) and (%′

1,%2) as follows.

1 1′ 2
(c, 1) (c, 1) (b, 2)
(b, 1) (x, i) /∈ Ω1 (a, 2)
(x, i) /∈ Ω1 (b, 1) (c, 2)
(a, 1) (a, 1) (x, i) /∈ Ω2

Bidder 1 and bidder 2 then offer (b, 1) and (a, 2), respectively, so that bidder 2 wins the
auction and the outcome is (a, 2). However, moving (a, 2) up in bidder 1’s preference order,
together with (b, 2) and (c, 2) so as to comply with the restriction set on preference profiles,
and leaving bidder 2’s preferences intact results in the profile (%′

1,%2). Now, however,
bidder 1 submits the losing offer (c, 1), leaving bidder 2 in a position to choose her most
preferred outcome (b, 2).

3.3 Incentive compatibility for the issuer

So far we have assumed that the preference order of the issuer is publicly known, like the
fact that a seller likes to get a higher price. In some settings however, this order ≥ may
not be common knowledge. Therefore, we should also investigate whether the proposed
mechanism is incentive compatible for the issuer as well. Unfortunately, we can show that
this is not the case, leaving an open problem for future work to investigate how much the
issuer can profit by lying.

Consider the following case where the mechanism is not incentive compatible for the
issuer. As always, the winner can select an alternative that is equally or more preferred
than the second-highest offer in the publicly known ordering. Suppose that there is an
alternative in this set she strictly prefers to her own offer. By definition, this alternative is
less preferred by the issuer than the highest offer. Had the issuer manipulated its order by
moving the second highest offer up and position it right under the winner’s offer, the winner
would not have had any other choice than to accept her original offer.

For example, take the preferences and the offers from Example 1. Suppose the issuer
moves the alternative (c, 1) up in its order to the spot between (a, 2) and (a, 3). In that case
the dominant strategies for the bidders would still lead to the same offers, and the winner
would still be bidder 2 with her offer (a, 2), but now she is only allowed to choose among the
offers higher than or equal to (c, 1), which leaves (a, 2) as the only acceptable alternative.
This outcome is better for the issuer than (b, 2), which was the outcome based on his true
preference order.

4 Extensions and variants

In this section we consider a number of extensions and variants of the ideas underlying the
qualitative Vickrey auction.

4.1 Other auction types

To start with, similar results on incentive compatibility and Pareto-efficiency can be obtained
for the English auction in a straightforward manner. In this setting the auctioneer accepts
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only bids in increasing order of the global ordering until no bidder is interested anymore.
The dominant strategy for a bidder i is then to offer the highest acceptable alternative in
her preference order that is higher in ≥ than the current accepted bid. The effect of this
strategy is equivalent to the dominant strategy described earlier for the qualitative Vickrey
auction: the winner is the bidder that has an acceptable offer that is highest in ≥ and the
winning alternative is not dominated by any acceptable offer by any other bidder.

The qualitative auction protocol can also be rephrased for Dutch auctions, or first-price
sealed bid auctions, but those are not incentive compatible. But then, neither are traditional
variants of these auctions, when preferences are assumed to be quasilinear.

4.2 Multi-attribute auctions

The qualitative Vickrey auction does not assume that preferences of bidders can be expressed
as quasilinear utility functions. This can be a feature for applications where preferences
cannot easily be expressed in terms of money. Similar considerations play an important
role in the related field of multi-attribute auctions. In a multi-attribute auction the good is
defined by a set of attributes which can take different values. A bid consist of a value for each
attribute and a price. Che (1993) analyzed situations where a bid consists of a price and a
quality attribute, and proposed first-price and second-price sealed-bid auction mechanisms.
His work was extended by David et al. (2002) for situations where the good is described by
two attributes and a price. They analyzed the first-price sealed-bid, and English auction,
and derived strategies for bids in a Bayesian-Nash equilibrium. In addition, they studied a
setting where the issuer can also strategize, and they showed when and how much the issuer
can profit from lying about his valuations of the different attributes. The main difference
from our work is that in their approach the preferences of the auctioneer (issuer) and the
bidders are related: better for the bidder means generally worse for the auctioneer.

Parkes and Kalagnanam (2005) concentrated on iterative multi-attribute reverse English
auctions. Here prices of attribute-value combinations (a full specification of the good) are
initially set high, and bidders submit bids on some attribute-value combinations to lower
the prices. The auction finishes when there are no more bids. Such auctions allow the
bidders to have any (non-linear) cost structure, and the authors claim that myopic best-
response bidding—that is, the strategy always to bid a little bit below the current ask
price—results in an ex-post Nash equilibrium for bidders, and that the auction then yields
an efficient outcome. One of the main differences with our approach, besides theirs proposing
an iterative protocol and using an ex-post Nash equilibrium as solution concept, is that they
use quasilinear utility functions. To the best of our knowledge, such a restriction on the
preferences of the issuer and the bidders being weakly inverse is essential to all of the existing
work on (multi-attribute) auction mechanisms.

5 Discussion

In this paper we showed that there is another way of dealing with the impossibility theorem
by Gibbard (1973) and Satterthwaite (1975) besides requiring quasilinear utility functions.
For settings where there is only one winner, all that is required is that all bidders are
indifferent between all outcomes where they are not the winner. We proposed a protocol
for settings where the preference order of the issuer is publicly known, in a way similar to
the public knowledge that sellers prefer high prices and buyers low prices. This protocol is
called the qualitative Vickrey auction since it can be seen as a generalization of the Vickrey
auction to a setting without quasilinear utility functions.

We defined a class of dominant strategies for this qualitative auction and saw that it
is weakly Pareto efficient in the resulting equilibrium, provided there are more than three
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bidders. We also found that the social choice function implemented by the qualitative
Vickrey auction is weakly, but not strongly, monotonic. Furthermore, we showed that the
mechanism is not incentive compatible for the issuer. We also briefly discussed the relation
of the qualitative Vickrey auction to other auction types. Still, there are a number of
interesting questions left unanswered regarding the properties of qualitative mechanisms
such as the one presented here.

We would like to show how much worse off the bidders can be if the issuer turns out to be
malicious. Another direction stems from the observation that we defined qualitative Vickrey
auctions as a class of mechanisms, some of which are dictatorships, for instance when all
outcomes with a particular winner are ranked above all outcomes where another bidder wins.
It would be interesting to see precisely under which conditions on the issuer’s order ≥ the
qualitative Vickrey auction is not dictatorial. Also, we are interested in the properties of the
qualitative Vickrey auction if additional restrictions on ≥ and the class of preference orders
are imposed, for instance, if the preference orders of the bidders are assumed to be the weak
inverse of ≥. Finally, we are interested in other qualitative generalizations of quasilinear
mechanisms, for example of online auctions (Hajiaghayi et al., 2005).
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How to Rig Elections and Competitions

Noam Hazon and Paul E. Dunne and Sarit Kraus and Michael Wooldridge

Abstract

We investigate the extent to which it is possible to rig the agenda of an election

or competition so as to favor a particular candidate in the presence of imperfect

information about the preferences of the electorate. We assume that what is known

about an electorate is the probability that any given candidate will beat another.

As well as presenting some analytical results relating to the complexity of finding

and verifying agenda, we develop heuristics for agenda rigging, and investigate the

performance of these heuristics for both randomly generated data and real-world

data from tennis and basketball competitions.

1 Introduction

The impossibility theorems of Arrow and Gibbard-Satterthwaite are perhaps the most fa-
mous results of social choice theory [1]. At first sight, these results seem to tell us that the
design of social choice mechanisms is a quixotic enterprise, since any mechanism we care
to define will fail to satisfy a basic “reasonableness” axiom, or will be prone to strategic
manipulation. However, in a seminal 1989 paper, Bartholdi, Tovey, and Trick argued that
the fact that a voting rule in susceptible to manipulation in theory does not mean that is
manipulable in practice, since it may be computationally infeasible (np-complete or worse)
to determine how to manipulate an election optimally [3]. Since the work of Bartholdi et al,
many researchers have investigated the extent to which voting mechanisms can be manipu-
lated (see, e.g., [6] for a recent collection of papers on this and related topics). Most work
on the manipulation of voting procedures has considered the manipulation of elections by
voters ; specifically, the strategic misrepresentation of preferences in order to bring about a
more favored outcome. However, manipulation is also possible by election officers – those
responsible for organising an election, in which context it is sometimes called “control” [4].

In this paper, we consider election control by rigging the ballot agenda in order to favor a
particular candidate. It is well-known that some sequential pairwise majority elections may
be rigged in this way – see, e.g., [5, p.177] and [9]. In such an election, we fix an ordering of
the candidates (the voting agenda), so that the first two candidates in the ordering will be in
a simple majority ballot against each other, with the winner then going on to face a ballot
against the third candidate, and so on, until the winner of the final ballot is the overall
winner. If we know the preferences of the electorate – or more specifically, who would win
in every possible ballot – then it may be possible to fix the election agenda to the benefit
of a favored candidate [8].

However, the assumption that we know exactly how a voter would vote in any given ballot
is very strong, and ultimately unrealistic. It ignores the possibility of strategic voting, for
one thing, but more generally, the preferences of voters will not be public – we will have at
best only partial information about them. In light of this, the present paper considers the
extent to which it is possible to rig an election agenda (and, more generally, running orders
for competitions) in the manner described above in the presence of imperfect information.
We assume that an election officer knows the probability that a given candidate will beat
another in a pairwise ballot. This probability may be obtained from opinion polls, in
the case of governmental elections or similar; or it may be from form tables, in the case
of sporting competitions. Given this, we investigate the problem of rigging an election
agenda in the more realistic setting of imperfect information. We study the complexity of
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Figure 1: Organising a series of pairwise majority ballots into trees (a) and linear orders
(b).

finding and verifying agendas, and present heuristics for agenda rigging. We investigate the
performance of these heuristics for both randomly generated data sets and real-world data
sets from tennis and basketball competitions. Finally, it is worth clarifying the motivation
for this work. We are, of course, not advocating election manipulation, or trying to develop
techniques to make it easier! If we can identify cases where election manipulation is easy in
practice (even if it is hard in theory), then we can use this information to design elections
so as to avoid the possibility of manipulation.

2 Preliminary Definitions

Although our problem is closely related to voting procedures, the way we choose to model the
imperfect information here places it on a wider scope which includes also sports tournament.
We assume we have a set Ω = {ω1, . . . , ωn} of outcomes or candidates – the things the voters
are trying to decide over. We are concerned with settings in which we simply want to select
one outcome from Ω; more specifically, we are concerned with procedures to select such an
outcome through a sequence of pairwise simple majority ballots. Such selection procedures
are used in both political elections and sporting competitions. We often summarise voter
preferences in a majority graph, G ⊆ Ω×Ω, where (ω, ω′) ∈ G means that ω would beat ω′ in
a pairwise simple majority ballot. An election officer will not usually know the preferences of
individual voters, but they may know the probability that one candidate will beat another.
If all probabilities are 0 or 1 then we say the scenario is one of perfect information, otherwise
it is one of imperfect information. An imperfect information ballot matrix M is an |Ω| × |Ω|
matrix of probabilities, such that if M [ωi, ωj ] = p, then in a ballot between ωi and ωj ,
candidate ωi will win with probability p. We require that M [ωi, ωj ] +M [ωj , ωi] = 1.

The most obvious way to organise a series of pairwise majority elections is in a voting

tree In Figure 1(a), we see how ballots between candidates A,B,C and D may be organised
into such a tree. The idea is that candidates A and B face each other in a ballot, while
candidates C and D face each other in a ballot. The winner of the first ballot (A in this
case) then faces the winner of the second (C), and the winner of this third ballot (C) is
declared the overall winner. The voting tree in Figure 1 is said to be fair because it is
balanced, and as a consequence every possible overall winner would have to win the same
number of ballots. The task of the election officer may thus be seen as generating such
a binary tree, with candidates Ω allocated to leaves of the tree. More formally, a ballot
tree for an n candidate election is an n leaf tree, T (V,E), having a distinguished root r(T )
and in which every node with the exception of the leaves has exactly two children. An
instantiated agenda for a binary ballot tree is a bijective mapping α : Ω ↔ leaves(T ), which
associates a candidate with each leaf node in T . Given 〈T, α,M〉 the outcome evaluation
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of T with respect to α and M is a mapping η : V → [0, 1]n such that for any v ∈ V ,
η(v) = 〈v1, . . . , vn〉 if and only Pr[ ωi is the winner at v ] = vi. Thus η(r(T )) will contain
at index i the probability that ωi will be the overall winner of T .

The opportunity for manipulation arises in such a setting because the election officer
can, for example, place a favored candidate against candidates it is likely to beat. If we
relax the fairness constraint, then the possibilities for an election officer to manipulate the
election increase. Figure 1(b) shows a rather unfair voting tree; in fact, it defines a linear

order (C,D,B,A) for the candidates, with the first ballot taking place between C and D,
the winner facing B, and so on, until the winner of the final ballot (A in this case) is the
overall winner. The unfairness arises because it is possible for a candidate to win overall
despite only participating in one ballot (as is the case in Figure 1). We will denote linear
voting orders (i.e., permutations of Ω) by π, π′, . . ..

A different model of imperfect information was studied in [8], where it was assumed
that for each voter we have a correct but incomplete model of their preference relation.
For this incomplete information setting, they considered questions such as whether there
was some completion of the incompletely known preferences and some voting tree for the
candidates that would make a desired candidate a winner. Roughly, our aim in this paper is
to study election manipulation in much the same way as [8], but with the probability model
of imperfect information described above, rather than the incomplete profile model.

3 Voting with a Linear Order of Ballots

We start by considering linear voting orders. Given such an order π = (ω1, . . . , ωn) and
outcome ω∗ ∈ Ω, the probability of ω∗ being the overall winner of π is denoted by Pr[w(π) =
ω∗ | M ], and is given as follows. For a voting order π = (ωi1 , ωi2 , . . . , ωin

) with ω∗ = ωik
,

(i.e., the preferred winner occurs k’th in the order π),

P [w(π) = ω∗ |M ] = ϕ× ψ

where

ϕ =





n
∏

j=k+1

M [ωik
, ωij

]





ψ =





k−1
∑

j=1

P [w(ωi1ωi2 . . . ωik−1
) = ωij

|M ]×M [ωik
, ωij

]





That is, in order for ω∗ to emerge as the winning candidate, ω∗ must defeat every candidate
put forward later in the voting order, and succeed against the eventual winner of the voting
order formed by the earlier candidates. We will show in the next section that the probability
of a candidate being a winner in any given voting tree can be computed in time O(n3); for
linear orders, we can improve this to O(n2); we omit the proof.

What else can we say about voting with linear orders? First, we can make precise, and
prove correct, the intuition that there is no benefit to going early; a candidate can only
benefit by going late in a voting order. While this seems intuitive, the proof of the following
lemma, which we omit, is surprisingly involved.

Lemma 1 Given 〈M,Ω〉 let ωi, ωj be distinct members of Ω. For every voting order π1π2

of Ω \ {ωi, ωj}, it holds that Pr[w(π1ωjωiπ2) = ωi] ≥ Pr[w(π1ωiωjπ2) = ωi].

The immediate corollary is as follows.
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Corollary 1 For any candidate ω∗ ∈ Ω, if there is a voting order, π such that Pr[w(π) =
ω∗] ≥ p], then there is a voting order π′ such that Pr[w(π′) = ω∗] ≥ p] and in which ω∗ is

the final candidate to run.

Proof: Given π with Pr[w(π) = ω] ≥ p, apply Lemma 1 repeatedly to move ω later in the
voting order until it is the final candidate. 2

Note that the equivalent result does not hold for trees. It is possible to construct an
example in which a candidate wins with probability 1 in a fair tree, but loses with probability
1 if we convert the tree to a linear order with the same candidates order and place the
candidate last. Even though it faces fewer ballots the candidate has a strictly smaller
probability of winning.

It is also natural to ask what the probability is that a particular candidate is a possible

winner, that is, if there is some permutation of Ω which would make ω∗ the winner with non-
zero probability. The decision problem poss-win takes as its instance a triple 〈M,Ω, ω∗〉,
which is accepted iff ω∗ is a possible winner of 〈M,Ω〉.

Theorem 1 poss-win is polynomial time decidable.

Proof: (Outline) Convert all the non-zero probabilities to one, and apply the techniques
of [8] to check whether ω∗ is a possible winner. 2

The general problem of determining whether there exists any agenda which gives a named
candidate at least a certain probability of winning is hard to classify, and so we will analyse
a restricted version of the problem, as follows. When we think informally about rigging an
agenda, we tend not to think just in terms of the agenda, but also in terms of the specific

outcomes that we want the agenda to lead to. So, we might think in terms of “if I put A up
against B, then B wins and goes up against C, and C wins. . . ” and so on. Here, we have not
just the agenda (ABC) but also the outcomes of the ballots (B wins the first; C the second;
. . . ). Here, we call these structures – which include the agenda for the ballots together with

the intended outcomes – a run. A run has the form r : ω1, ω2
ω2−→ ω3

ω3−→ · · ·
ωk−1
−→ ω∗

ω∗

−→
where ω1 and ω2 are the candidates up against each other in the first ballot, ω2 is the
intended winner of this ballot, and so on, until the final ballot is between ωk−1 and ω∗,
in which we intend the winner – and hence overall winner – to be ω∗. Computing the
probability that this run will result in our desired candidate ω∗ winning is simple – it is the
value: Pr[w(ω1, ω2) = ω2]× Pr[w(ω2, ω3) = ω3]× · · · × Pr[w(ωk−1, ω∗) = ω∗]. We denote
this value for a run r by Pr[r | M ]. So, in the weak imperfect information rigged agenda

(wiira) problem, we are given a set of candidates Ω, an imperfect information ballot matrix
M , a favored candidate ω∗ ∈ Ω, and a probability p. We are asked whether there exists a
run r, in which the overall winner is ω∗, such that Pr[r |M ] ≥ p.

Theorem 2 wiira is np-complete.

Proof: (Summary) A standard “guess and check” algorithm gives membership in np. For
hardness, we reduce the k-hca problem on tournaments [2, p.46]: we are given a tournament
G = (V,E) (i.e., a complete digraph such that (ω, ω′) ∈ E iff (ω′, ω) 6∈ E) and a subset
E′ ⊆ E, and we are asked whether G contains a Hamiltonian cycle containing all edges E ′.
We create an instance of wiira as follows. The outcomes will be the vertices of G together
with a new vertex, v⊥. Given a tournament G = (V,E) and required edge set E ′, we create
a probability matrix so that G contains a cycle with E ′ iff we can create an ordering of
vertices satisfying the property given above. For each (u, v) ∈ E ′ we set M [u, v] = 1. For
each (u, v) ∈ E \ E′ we set M [u, v] = 1 − 1

10|V | . We then set the target probability to be

(1− 1
10|V | )

|V |−|E′|. We are after a cycle, so we need to select a vertex (call it v>) to act as
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the source of the cycle and our new vertex, v⊥, will act as the sink in the cycle; if we have
an arc (u, v>) ∈ E′ then we define M [u, v⊥] = 1, while if (u, v>) ∈ E \ E′ then we define
M [u, v⊥] = 1− 1

10|V | ; if for any vertex u ∈ V we have not yet defined a value for M [u, v⊥]

then define M [u, v⊥] = 0.5. We then ask whether we can rig the agenda for v> to win with
probability greater than the target. 2

4 Voting with a Tree of Ballots

We now focus on a more realistic setting, in which ballots are organised into a binary tree.
There are several obvious questions to ask here. For example, the most obvious decision
problem with respect to rigging an election as follows: Given a set of outcomes Ω, an
imperfect information ballot matrix M , a favored candidate ω∗ ∈ Ω and a probability p,
does there exist a voting tree T with labeling α : Ω ↔ leaves(T ) such that ω∗ wins in this
setting with probability at least p? It is not obvious even that this problem is in NP, since
to compute the probability that a given candidate wins overall, we must consider every
possible ordering of wins arising from a given tree structure: in any given ballot, there are
two outcomes, in contrast to the perfect information case. However, the following result
implies the problem is in np.

Theorem 3 Let T (V,E) be any binary ballot tree, α a labeling of the leaves of T by candi-

dates Ω, and M a ballot matrix for Ω. The outcome evaluation of T with respect to α and

M is computable in O(n3) arithmetic operations.

Proof: Consider the following algorithm.

1. η(x) = unlabelled for each x ∈ V (T )

2. For each leaf, x, of T , η(x) = 〈x1, . . . , xn〉 with xi = 1 if α(x) = ωi and xi = 0
otherwise.

3. repeat

a. Let z be any node of T with children x and y such that η(x) 6= unlabelled

and η(y) 6= unlabelled. Let 〈x1, . . . , xn〉 denote η(x) and, similarly, 〈y1, . . . , yn〉
denote η(y). Compute η(z) = 〈z1, . . . , zn〉 using

zi :=







xi

∑n

j=1 yj M [ωi, ωj ] if xi > 0

yi

∑n

j=1 xj M [ωi, ωj ] if yi > 0

0 if xi = yi = 0

4. until every v has η(v) 6= unlabelled

This algorithm can be improved in some cases; e.g., if we know that the graph is fair, then
we can use an optimised version to take account of this, reducing the overall time complexity
to O(n2). 2

Whether this result is matched by np-hardness remains open, but we can obtain a related
hardness result, as follows. Given a set of candidates Ω and an imperfect information ballot
matrix M , a fair tree run rT is a balanced tree, T , a labeling α of the leaves of T by
candidates Ω, and a labeling of every other node of T by the candidate that has the higher
probability to win the ballot between the node’s children (If a node’s children have equal
probability, we select one arbitrarily). The motivation for this is just as in the linear order
case; we tend to think on the agenda in terms of the specific outcomes that we want the
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agenda to lead to. The probability that a fair tree run will result in our favored candidate
ω∗ winning is simply the multiplication of the winning probabilities of the candidates in all
the ballots induced by T . We denote this value by Pr[rT | M ]. So, in the weak imperfect

information rigged agenda for balanced trees (wiira-bt) problem, we are given a set of
candidates Ω, an imperfect information ballot matrix M , a favored candidate ω∗ ∈ Ω, and
a probability p. We are asked whether there exists a fair tree run rT , in which the overall
winner is ω∗, such that Pr[rT |M ] ≥ p.

Theorem 4 wiira-bt is np-complete.

Proof: (Summary) Membership of np is immediate. As proved by [8], given a complete and
weighted majority graph (also called a weighted tournament) G, every balanced voting tree
with candidate ω∗ at its root has a corresponding binomial tree with root ω∗ which covers all
the nodes in G – this binomial tree describes all the ballots between the candidates. We will
prove our hardness result with respect to the following problem, a variation of the problem
from [8, Th. 4], which is easily shown to be np-complete: Given a weighted tournament

G = (V,E), a candidate ω∗ and a cost bound k, check whether there exist a balanced voting

tree in which ω∗ wins, such that the sum of the edges of the corresponding binomial tree is

at least k. Let denote minE(maxE) as the minimum (maximum) weight of the edges in E.
Given an instance of the previous problem we create an instance of wiira-bt with a graph
G′ = (V,E′) such that for every edge (u, v) ∈ E with a weight w(u, v), we create the same
edge in E′ with the weight

2
w(uv)−|maxE |

|minE −|maxE || .

This conversion ensures that 0.5 ≤ w(u, v) ≤ 1 in E ′. For every edge (u, v) ∈ E ′, we create
an opposite edge (v, u) with the weight 1− w(u, v). The candidate for our problem is also
ω∗, and the winning probability p is

2
k−(n−1)×|maxE |

|minE −|maxE || .

The overall number of ballots in a balanced voting tree is n − 1 so k ≤ (n − 1) × |maxE |
and 0 ≤ p ≤ 1 as required. If we denote the edges of a binomial tree for ω∗ in G with a cost
bound k as x1, x2, . . . , xn−1, then:

x1 + x2 + · · ·+ xn−1 ≥ k

(x1 − |maxE |) + · · ·+ (xn−1 − |maxE |) ≥ k − (n− 1)× |maxE |

x1−|maxE |
|minE −|maxE || + · · ·+ xn−1−|maxE |

|minE −|maxE || ≥
k−(n−1)×|maxE |
|minE −|maxE ||

2
x1−|maxE |

|minE −|maxE || × . . .× 2
xn−1−|maxE |

|minE −|maxE || ≥ 2
k−(n−1)×|maxE |

|minE −|maxE ||

that is the wining probability in a fair tree run for ω∗ in G′
2

5 Heuristics and Experimental Evaluation

Our hardness results lead us to conjuncture that the general problem of rigging an election
agenda with incomplete information is NP-Hard to compute; but we also think that a worst-
case analysis is not enough. The situation is similar to that in cryptography, where a secure
protocol is not one that is hard to break in the worst case, but one that can be broken
only with negligible probability. Bartholdi et al., who were in many ways pioneers of the
complexity-theoretic approach to understanding election manipulation [3] first voiced the
concern that NP-Hardness results are not enough:
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Concern: It might be that there are effective heuristics to manipulate an election
even though manipulation is NP-complete.
Discussion: True. The existence of effective heuristics would weaken any prac-
tical import of our idea. It would be very interesting to find such heuristics.

This motivates us to consider heuristics for this problem, and to test their performance in
different scenarios. We used a simulation program (written in C) to evaluate the heuristics.
Our experiments are in two categories: first, randomly generated data, and second, public
domain form data from sports competitions. For each of these settings, we evaluated the
heuristics for both fair trees and linear orders. For the randomly generated data sets, we
first generated random values for the probability matrix from a uniform distribution in the
range [0, 1], and completed the matrix to preserve probability constraints. We then ran
100 iterations, and during each iteration a winner candidate, ω∗, was randomly chosen and
each heuristic was used in an attempt to generate an optimal order for this candidate. The
second scenario was the same, except that the random values for the matrix were taken
from a normal distribution with an average of 0.5 and a standard deviation of 0.2. (If
a value of more than 1 (less than 0) was generated it was changed to 1 (0) to preserve
probability constraints.) For the real-world data sets, we based our experiments on data
from basketball and tennis competitions. For the basketball experiments, we took the 29
teams in the NBA, and computed the ballot matrix from public domain form data. Here,
there were no iterations, but for every team we used each heuristic to generate a playing
order that would give this team the best chance of winning. For the tennis experiments, we
used the 13 players at the top of the ATP ranking, again computing the ballot matrix from
public domain form tables.

5.1 Heuristics for Linear Voting Orders

The heuristics we developed are as follows.

• Optimal : In those cases where it was computationally feasible to do so, we exhaustively
evaluated every permutation in order to find the real optimal solution as a comparison.

• Far adversary : The idea here is to put candidates who are likely to beat you as far
away from you as possible. Thus, the candidate who has the highest probability to
beat ω∗ was selected to be the first, and so on; ω∗ was chosen to be the last (cf.
Corollary 1).

• Best win: ω∗ was chosen to be the last, and the candidate that ω∗ has the best chance
of beating was chosen to be before it, the next being the one that this candidate was
most likely to beat, and so on.

• Simple convert : The idea here is to convert the imperfect information ballot matrix
into one of perfect information, and then simply apply an algorithm which is known to
work in polynomial time for such cases [8]. To create the perfect information matrix,
every probability which was greater than or equal to 0.5 was converted to 1, and others
were converted to 0. If no order could be found, (which is sometimes the case where
the number of candidates is small) a random order was generated.

• Threshold convert : This is a more sophisticated attempt to make a perfect information
ballot matrix. We searched for the maximum threshold above which, if we convert all
the probabilities above this to 1 and below it to 0, we still have an order that enable
ω∗ to win (on the converted tournament matrix). We used a binary search, stopping
when the difference between the low/high limit and the threshold was less than 0.005.
As before, if no order could be found a random order was generated.
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• Local search: ω∗ was chosen to be last. For the other places, in every iteration a
random permutation was chosen. Then 0.5 ∗ num-of -candidates random swaps were
tested to find an order with maximum winning probability. (num-of -candidates iter-
ations were done.)

• Random order : As a control, a random order was also generated.

The results for heuristics on linear orders are shown in Figure 2.
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(b)
linear order - 13 tennis players
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linear order - 29 basketball teams
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Figure 2: Performance of heuristics for linear order ballots. (a) Shows the performance of the
heuristics for randomly generated ballot matrices using a uniform and normal probability
distributions; and (b) Shows performance for real-world data from the domain of professional
tennis and basketball.

First, note that the overall performance of the heuristics does not vary significantly be-
tween uniform and normal distributions (Figure 2(a) left and right columns, respectively).
In these graphs, the x-axis is the number of candidates and the y-axis is the winning proba-
bility that was found using our heuristics. Every point in the graph represents the winning
probability that was averaged over 100 iterations.
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In the uniform distribution experiments, it seems that best-win and far adversary seem to
perform similarly well, (marginally better than local search), while for a normal distribution
they are slightly differentiated, but again perform better than local search. In the graph
for linear order with normal distribution (Figure 2(a) left column), again, we find the first
two heuristics – far adversary and best win – gave about the same results, while local
search lies a little behind; all reach a very high winning probability, almost 0.9, and they
performed better as the number of candidates increased. These heuristics also perform well
when comparing them to the optimal solution – they gave a winning probability which is on
average only 98% from the optimal solution. Note that the “convert” heuristics perform very
poorly, both for uniform and normal distributions, and so we omitted them in subsequent
experiments.

In the graph for linear order with 13 tennis players (Figure 2(b), left column), the x-axis
is the player number that was chosen to be the winning candidate and the y-axis as before.
Here, there was no heuristic that performed significantly better than the others in general,
but when choosing from the heuristics, the best solution for each candidate performs very
well when compared to the optimal solution. They gave a winning probability which is only
96% from the optimal solution on average. The winning probability is on average more
than twice as high as the random order. Player number 0, (Roger Federer, currently the
world’s number one player), even succeeded in obtaining a winning probability of 1 from
local search.

We conclude that there is no one heuristic that performs significantly better than the
others for all cases. We suggest the best thing to do here is to run all the heuristics and
order the candidates according the heuristic which gives the best results for this candidate
because they all run quite fast. Note that local search takes much more time than other
heuristics, but still has acceptable time performance.

5.2 Heuristics for Fair Voting Trees

For this voting agenda type we investigated the following heuristics.

• Optimal, Far adversary, Local search: We organized the leaves of the binary tree as a
linear order from left to right and applied these heuristics as above. (Note that when
the number of candidates is not a power of 2, some of the rightmost candidates may
face one less ballot than other candidates.)

• Best win: Because of the tree structure, we had to use a modified version of the best
win heuristic, but the principle remains the same. We try to maximize the probability
that ω∗ will face candidates that he has a high probability of beating, and to maximize
the probability that they will reach the point when they compete against him. So we
first assign ω∗ at the rightmost leaf of the voting tree, and for each ballot along its
path to the root we assign candidates that ω∗ has a high probability to beat. In this
way we define for each one of them a sub-tree that we want him to be its overall winner
(unless this candidate has been assigned to a leaf) so we can repeat this assignment
procedure recursively.

The results of our experiments with balanced tree ballots are shown in Figure 3.
In the tree order with random uniform and normal distribution (Figure 3(a) left and right

columns, respectively) the axes are as in the linear order case. Generally, the wining proba-
bility is much lower than the linear order voting protocol, which seems a direct consequence
of the relative fairness of the procedure. Nevertheless, if we compare the best heuristic for
each case to the random order, we get a winning probability which is on average 4.31 times
higher than the random order winning probability and which is on average only 96% from
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(b)
balanced tree order - 13 tennis players
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balanced tree order - 29 basketball teams
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Figure 3: Performance of heuristics for balanced tree ballots. (a) Shows the performance of
the heuristics for randomly generated ballot matrices using a uniform and normal probability
distributions; and (b) Shows performance for real-world data from the domain of professional
tennis and basketball.
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the optimal solution. We also note that the graphs have a wave-like shape: the lowest points
in these waves are when the number of candidates is exactly a power of 2. This is simply
because when the number of candidates is a power of 2, every candidate must compete in
exactly the same number of ballots. In all other cases, there are some of the candidates
(including our favorite, ω∗) which face one less ballot. This effect can help ω∗, by forcing
strong competitors to undergo one more ballot. It can also be seen that in contrast to the
linear order with random normal distribution, the best win heuristic performs better than
the others: 1.25 times better than far adversary, and 1.66 times better than local search on
average.

In the tree order with 29 NBA basketball teams graph, (Figure 3(b), right column), the
far adversary method performed better than others with a winning probability that is on
average 1.24 times better than local search and 1.08 times better than best win. The highest
winning probability was generated for team 11, the LA Lakers. It was not computationally
feasible to calculate the optimal solution for 29 teams, so we ran another scenario with only
the first 13 teams to check the performance of our heuristics against the optimal solution.
The best heuristic in each case gave a winning probability which in on average only 99%
from the optimal solution!

In the tree order with 13 tennis players graph ((Figure 3(b), left column) there was
no heuristic that performed significantly better than the others, just as in the linear order
case. But here, when we choose from the heuristics the best solution for each case they
gave a winning probability which is on average 61% from the optimal solution. Perhaps
the performance difference between this case and the basketball case emerges from the type
of the distribution. The basketball scenario has a distribution which is much closer to a
normal distribution than in the tennis scenario, in which the probability matrix contains
many high probabilities. Another indicator for this is the performance of our best heuristic
in each case against the random order. In the tennis scenario it was almost 5 times better,
while in the basketball scenario it was only about 1.5 times better.

6 Related Work and Conclusions

A closely related stream of work is the problem of optimal seeding for tournaments. This
problem considers how to determine an agenda for a voting tree that will result in an
“interesting” sporting competition. [10] for example, assumes an imperfect information
ballot matrix as we do, and uses it to produce an interesting competition agenda that
still satisfies some fairness criterions. [7] investigates a 4-player scenario with an auction-
like analysis; instead of knowing the probability of winning, each player exerts some effort
according to its private valuation. Early work by [11] analyzes voting trees for 8 players,
among 3 other tournament types. It uses an imperfect information matrix and investigates
the effect of the initial agenda on the probability that the best player will win the game.
Note that none of these papers analyzed the complexity of finding the optimal agenda for a
specific candidate, however.

By understanding when the manipulation of elections is possible, and those cases where it
is computationally easy to manipulate an election, we can engineer voting protocols to avoid
such cases. We have demonstrated that, while it seems hard to control an election under
incomplete information in theory, there are heuristics that perform well on this problem in
practice. This research can hence usefully inform the design of future voting protocols in
multi-agent systems.
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A geometric approach to judgment

aggregation

Christian Klamler and Daniel Eckert

Abstract

Don Saari has developed a geometric approach to the analysis of paradoxes of pref-

erence aggregation such as the Condorcet paradox or Arrow’s general possibility

theorem. In this paper we extend this approach to judgment aggregation. In par-

ticular we use Saari’s representation cubes to provide a geometric representation of

profiles and majority rule outcomes. We then show how profile decompositions can

be used to derive restrictions on profiles that guarantee logically consistent majority

outcomes. Moreover, we use our framework to determine the likelihood of incon-

sistencies. Finally, current distance-based approaches in judgment aggregation are

discussed within our framework.

1 Introduction

The problem of judgment aggregation consists in aggregating individual judgments on an
agenda of logically interconnected propositions into a collective set of judgments on these
propositions. This relatively new literature (see List and Puppe [6] for a survey) is centred
on problems like the discursive dilemma which are structurally similar to paradoxes and
problems in social choice theory like the Condorcet paradox and Arrow’s general possibility
theorem. For the analysis of such paradoxes Saari [9] has successfully introduced a geometric
approach, the extension of which to judgment aggregation seems promising.

A major difference of judgment aggregation to social choice theory lies in the represen-
tation of the information involved. While binary relations over a set of alternatives are
a canonical representation of preferences, a natural representation of judgments are binary
valuations over a set of propositions, where the logical interconnections between these propo-
sitions determine the set of admissible valuations. E.g. the agenda of the famous discursive
dilemma {p, q, p ∧ q} is associated the set of admissible, i.e. logically consistent valuations
{(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 1)}.

In this paper we want to use Saari’s tools to derive and analyse results in judgment
aggregation. In section 2 we introduce the formal framework. Section 3 uses Saari’s repre-
sentation cubes to provide a unified geometric representation of profiles and majority rule
outcomes. This will clarify which problems can occur in judgment aggregation using ma-
jority rule on certain domains. Applying Saari’s idea of a profile decomposition, we also
show how majority inconsistencies can be avoided with the help of restrictions on the dis-
tribution of individual valuations, i.e. a kind of generalized domain restriction. This leads
us to the determination of the likelihood of inconsistencies under majority rule for different
agendas in section 4. In section 5, we apply our approach to illuminate current results on
distance-based judgment aggregation. Finally, section 6 concludes the paper.

2 Formal Framework

Let J be the set of propositions on which judgments have to be made. Most problems in
the literature on judgment aggregation can be formulated with the help of vectors of binary
valuations x = (x1, x2, ..., x|J|) ∈ X ⊆ {0, 1}|J|, where xj = 1 means that proposition j is
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believed and X denotes the set of all admissible (logically consistent) valuations (see Dokow
and Holzman [2]).

A profile of individual valuations is represented by a vector p = (p1, p2, ..., p|X|) which
associates with every binary valuation xk ∈ X the fraction pk of individuals with this
valuation. This is an anonymous representation of voters’ valuations as only the distribution
of the valuations matters.

A judgment aggregation rule is a mapping f that associates with every profile p =
(p1, p2, ..., p|X|) a valuation f(p) ∈ {0, 1}|J|. If f(p) ∈ X for all p we will call its domain
f -consistent.

Saari [9] analyses preference aggregation using a geometric approach. For the simplest
setting consider three alternatives a, b, c. This gives rise to three issues, i.e. pairwise com-
parisons, namely between a and b, b and c and c and a. A ”1” for the first issue (i.e. the
comparison between a and b) means that a is preferred to b, written a ≻ b. On the other
hand, a ”0” indicates the opposite preference, i.e. b ≻ a. Defining the average support for

issue j by xj =
∑

i∈N
xi

j

n
, where N denotes the set of individuals, a preference profile maps

into a point x ∈ [0, 1]
|J|

in the hypercube with dimension |J | = 3 (the number of issues, i.e.
pairwise comparisons). See figure 1.

Figure 1: Saari’s representation cube

In figure 1, the vertex (0, 0, 1) thus represents the preference where b ≻ a, c ≻ b and
c ≻ a or - for simplicity - the ranking cba. As there are eight vertices but only six transitive
rankings of the three alternatives, there are two vertices representing irrational voters with
cyclic preferences, namely (0, 0, 0) and (1, 1, 1). If we exclude those vertices, we see that the
convex hull of the remaining six vertices is the representation polytope, i.e. every preference
profile maps into a point in this polytope.

3 Majority (In)consistency and Domain Restrictions

The same 3-dimensional hypercube can be used for a simple judgment aggregation problem
with 3 propositions (issues), i.e. |J | = 3. For simple majority voting on the issues, every
profile p of individual judgments on J is mapped into a point x(p) in the hypercube. Its
Euclidean distance to the respective vertices determines the majority outcome. This means
that the hypercube can be partitioned into 8 equally sized subcubes each determining the
majority outcome for profiles mapped into those subcubes. E.g. in figure 2 the shaded
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subcube, determined by the diagonal
[

( 1

2
, 1

2
, 1

2
), (1, 0, 1)

]

consists of all points that are of
closest Euclidean distance to the vertex (1, 0, 1) and hence any x(p) in that subcube leads
to a majority outcome of (1, 0, 1). For dE(x, y) denoting the Euclidean distance between
x, y ∈ {0, 1}|J|, we can also think of the majority valuation xM as the

argminx∈{0,1}|J|

|X|
∑

k=1

pkdE(xk, x)

.

Figure 2: Majority subcube

Consider the agenda {p, q, p ∧ q} of the discursive dilemma with associated domain of
admissible valuations X = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 1)}. The four admissible vertices
in the hypercube determine the representation polytope as seen in figure 3.

Figure 3: representation polytope

Given X, consider the profile p = (0, 1

3
, 1

3
, 1

3
), i.e. no voter has valuation (0, 0, 0), one

third of the voters has valuation (1, 0, 0), and so on. As this maps into the point x = (2

3
, 2

3
, 1

3
)

- a point whose closest vertex is (1, 1, 0) - the representation polytope obviously passes

315



through one subcube representing a majority outcome not in the domain. That such an
inconsistency can easily occur in general is seen from the following lemma:

Lemma 1 Given any vertex x ∈ {0, 1}|J|, there exist 3 vertices a, b, c such that for some
linear combinations of those vertices there is a point in the x-subcube.

For |J | = 3, these 3 vertices necessarily need to be the neigbors of that vertex, i.e. they
are only allowed to differ from it in one issue. Given that, we can now provide a simple
result for the occurrence of majority consistency, i.e. what X needs to look like to guarantee
that the majority outcomes are themselves in X.

Proposition 1 For |J | = 3, the set of valuations X is majority consistent iff for any triple
of vertices in the domain with a common neighbor, this common neighbor is also contained
in the domain.

To analyse those paradoxical outcomes and suggest restrictions to overcome those, we
will use a profile decomposition technique developed by Saari [9]. Consider two indviduals
with the respective valations (1, 0, 0) and (0, 1, 1). They are exact opposites, so from a
majority rule point of view those two valuations cancel out. Hence this implies that for any
two opposite admissible valuations in X, we can cancel the valuation held by the smaller
number of individuals. This leads to a reduced profile, the majority outcome of which is
identical to the majority outcome of the original profile.

E.g. given X = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 1)}}, with (p1, p2, p3, p4) being the shares
of individuals holding each of the respective valuations where

∑

i pi = 1. As (0, 0, 0) and
(1, 1, 1) are exact opposites, the reduced profile will have a share of 0 for the valuation held
by the smaller number of individuals. In the case of p1 > p4 such a reduced profile will be
p′ = ( p1−p4

p1+p2+p3−p4

, p2

p1+p2+p3−p4

, p3

p1+p2+p3−p4

, 0), in the case of p1 ≤ p4 we can create the
reduced profile accordingly. Hence the reduced profile maps into one of the following two
planes represented in figure 4, namely either into the one determined by the vertices (0, 0, 0),
(1, 0, 0) and (0, 1, 0) or the one determined by the vertices (1, 0, 0), (0, 1, 0) and (1, 1, 1).

Figure 4: planes

Now we want to determine whether there are consistency conditions, i.e. what sort of
profiles do guarantee majority consistency in the sense of a majority outcome being one of
the valuations in X. Let ai = pi

∑

4

i=2
pi

, for i = 2, 3, 4. Then α = (a2 + a4, a3 + a4, a4) ∈ T .

By definition, p = (1 − p1)(0, a2, a3, a4) + p1(1, 0, 0, 0). By linearity, x(p) = (1 − p1)α +
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p1(0, 0, 0) = (1− p1)α, where x(p) ∈ [0, 1]3 is a vector summarizing the average support for
each issue.

So, geometrically any profile can be plotted via a point in the plane T , its connection to
the (0, 0, 0) vertex and a weight p1. The following figure 5 shows plane T , the shaded area
of which indicates the cut with the (1, 1, 0)-subcube and hence those points where a profile
leads to an inadmissible majority outcome.

Figure 5: plane T

Now, we can state the following proposition:

Proposition 2 Given X = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 1)}} and p = (p1, p2, p3, p4)

with
∑4

i=1
= 1, satisfying one of the following restrictions on the distribution of p is neces-

sary and sufficient for admissible majority outcomes:

(a) p1 ≥ p4

(b) p2
∑

4

i=2
pi

> 1

2

(c) p3
∑

4

i=2
pi

> 1

2

(d) p4
∑

4

i=2
pi

> 1

2

Proof. If p1 ≥ p4, the reduced profile is mapped into the plane indicated on the left
of figure 4 which is closed under majority rule. Otherwise p1 < p4 and the reduced profile
is mapped into plane T. As we see on the right side of figure 4, majority consistency is
guaranteed in the white triangles, and a profile maps into one of them whenever one of
restrictions (b) − (d) is satisfied. On the other hand, given that for |X| = 4 and |J | =
3, elementary algebra shows that every profile maps into one and only one point in the
representation polytope. Hence, majority consistency is satisfied only if one of the above
restrictions is fulfilled.

One interesting feature of those restrictions is that they are based on the space of profiles
which is more general than restrictions on the space of valuations which is usually used in
classical domain restrictions. E.g. List [5] introduces the unidimensional alignment domain
which has a certain resemblence to Black’s single peakedness condition in social choice
theory. It requires individuals to be ordered from left to right such that on each issue there
occurs only one switch from acceptance to non-acceptance (or vice versa). For |J | = 3 a
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unidimensional alignment domain does satisfy one of the above conditions for admissible
majority outcomes.1

Moreover, this framework also opens the analysis of various paradoxical situations, e.g.
strong support for one particular issue but still inadmissible majority outcomes. This is
stated in the following proposition:

Proposition 3 There exist profiles such that there is almost unanimous agreement on one
issue and still an inadmissible majority outcome is obtained.

Proof. Looking at figure 5 one observes, that points close to the edge connecting the
vertices (1, 0, 0) and (1, 1, 1) have almost unanimous agreement on issue 1. However, at the
midpoint of this edge, the shaded triangle comes arbitrarily close to the edge. Hence, there
exist profiles which lie in the shaded triangle but imply almost unanimous agreement on
one issue. The same argument applies to points close to the edge conncecting the vertices
(0, 1, 0) and (1, 1, 1).

4 Likelihood of Inconsistency

The geometric framework can also be used to analyze the likelihood of inadmissible out-
comes. The approach is based on the fact that only 4 vertices are admissible individual
valuations, and hence any majority outcome in the representation cube is determined by a
unique profile. Consider again the situation X = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 1)}}. Then
for any vector of shares of individual valuations p = (p1, p2, p3, p4) we get the following for
the average support on each issue: x1 = p2 +p4, x2 = p3 +p4, x3 = p4, 1 = p1 +p2 +p3 +p4.
As those are 4 equations with 4 unknowns there exists a unique solution. Thus, assuming
every profile being equally likely - i.e. taking an impartial anonymous culture2 - the volume
of certain subspaces now indiciates the likelihood of occurrence of certain outcomes. Con-
sider first the volume of the representation cube: V = 1

2
· 1 · 1

3
= 1

6
. On the other hand,

points leading to inadmissible majority outcomes are located in the tetraeder determined
by the points

[

( 1

2
, 1

2
, 0), (1, 1

2
, 1

2
), ( 1

2
, 1, 1

2
), ( 1

2
, 1

2
, 1

2
)
]

. The volume of this tetraeder is 1

48
(see

figure 6).
So its volume relative to the volume of the whole representation polytope is 1

8
and hence

we can say that the probability of an outcome being inadmissible is 12,5 percent. This
provides a different approach to derive the expected probability of paradoxical situations
under the impartial anonymous culture compared to the non-geometric approach by List
[5], leading to the same results.

Of course, different domains allow for different probabilities. E.g. consider the agenda
{p, q, p ↔ q} with X = {(0, 0, 1), (1, 0, 0), (0, 1, 0), (1, 1, 1)}}. Then, for any point x =
(x1, x2, x3) in the representation polytope we get x1 = p2 + p4, x2 = p3 + p4, x3 = p1 + p4

and p1+p2+p3+p4 = 1. Again, every profile maps into a unique point in the representation
polytope. Making the same volume calculations as before, we get - under the impartial
anonymous culture - a probability of inadmissible outcomes of 25 percent.

5 Codomain Restrictions and Distance-Based Aggrega-
tion

Besides restrictions on the space of profiles, there is an alternative way to guarantee logical
consistency at the collective level, namely via restricting the set of collective outcomes

1For a more elaborated discussion on majority voting on restricted domains see also Dietrich and List
[1].

2See Gehrlein [3] for a general discussion of the impartial anonymous culture.
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Figure 6: Distances

to admissible valuations. One way to work with such codomain restrictions is by using
distance-based aggregation rules. In analogy to a well-known procedure in social choice
theory (Kemeny [4]), Pigozzi [8] introduced such an approach to judgment aggregation.
In principle a distance-based aggregation rule determines the collective valuation as the
valuation that minimizes the sum of distances to the individual valuations. Formally, given
the profile of individual valuations (x1, x2, ..., xn), the collective valuation is the admissible
valuation x ∈ X that minimizes the sum of distances to the individual valuations, i.e.

f(p) = argminx∈X

n
∑

i=1

d(x, xi)

The most commonly used distance function is the Hamming distance, which counts the
number of issues on which two valuations disagree, i.e. for x = (1, 0, 0) and x′ = (1, 1, 1),
d(x, x′) = 2.

It is easily seen that on a majority consistent domain this distance-based aggregation
rule coincides with majority voting on issues, thus providing a metric rationalization of
majority voting.

Now given our geometric approach, there is a simple geometric explanation of this
distance-based aggregation rule. As could be seen in figure 5, all problematic profiles lead
to a point in the shaded triangle. However, one option is to divide the triangle into three
sub-triangles as in figure 7.

The point in the middle is exactly the barycenter point of the triangle (1

3
, 1

3
, 1

3
). Using

these additional lines, we now have divided the triangle into three areas, points in which are
characterized by being of smallest Euclidean distance to the vertex of the proper triangle
w.r.t. the points within the shaded triangle. So points in the south-western part of the
shaded triangle will be closest to the (1, 0, 0) vertex. This, however, is identical to saying
that for any point in the shaded triangle, switch the majority valuation on the issue which
is closest to the 50-50 threshold (see Merlin and Saari [7]).

Example 1 Let X = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 1)} and p = (0.1, 0.35, 0.3, 0.25). This
leads to x(p) = (0.6, 0.55, 0.25) and hence an inadmissible majority outcome (1, 1, 0). Look-
ing at figure 5 we see that α ∈ T lies in the south-western shaded triangle. Thus, according
to our distance-based aggregation rule, the outcome will be the admissible valuation (1, 0, 0)
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Figure 7: Distances

as α is closest to the (1, 0, 0) vertex. However, this can also be seen as switching the valua-
tion on the issue which is closest to the 50-50 threshold, which - in x(p) - is obviously issue
2.

6 Conclusion

In this paper we have shown how geometry can be used to analyse results in judgment
aggregation, such as majority inconsistencies and distance based aggregation rules, and to
determine new results such as guaranteeing majority consistency via restrictions on distri-
butions of individual valuations and determining the likelihood of inconsistencies.

Most of the stated results do not easily extend to more than three issues because of
problems of dimensionality. E.g. an agenda with three propositions and their conjunction,
like {p, q, r, p ∧ q ∧ r}, leads to eight admissible valuations, i.e. eight vertices out of the 16
vertices in the four-dimensional hypercube. The extensions of our (domain) restrictions and
calculations of the likelihood of the occurrence of paradoxes to those higher dimensions are
not obvious and need further work.
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Judgment Aggregation as Maximization of

Epistemic and Social Utility

Szymon Klarman

Abstract

We restate the problem of judgment aggregation and approach it using the decision-
theoretic framework applied by I. Levi to modeling acts of rational acceptance in
science. We propose a method of aggregation built on the concepts of epistemic and
social utility of accepting a collective judgment, which accounts for such parameters
as the factual truth of the propositions, reliability of agents, information content
(completeness) of possible collective judgments and the level of agreement between
the agents. We argue that the expected utility of accepting a judgment depends
on the degree to which all those objectives are satisfied and that groups of rational
agents aim at maximizing it while solving judgment aggregation problems.

1 Introduction

The problem of judgment aggregation, concerning the issue of building up collective judg-
ments by groups of agents, lies at the intersection of social choice theory and epistemology.
On the one hand it deals with the question of what is a good procedure by which indi-
vidual viewpoints should contribute to the collective one — a central matter of concern of
social choice theory. On the other, since the objects between which the choice is made are
judgments, any proposed method of aggregation has to be verified against logical, or even
broader, epistemological criteria, guaranteeing soundness of the outcomes. For that reason
the problem falls also in the scope of some essentially philosophical considerations, of which
the most important regards the rationality of acceptance of propositions in general.

Due to the twofold character of the problem an aggregation procedure is expected to be
socially fair and epistemologically reliable at the same time. It might be the case, as C. List
and P. Pettit show in [12], that these two requirements cannot be satisfied simultaneously
and one has to prioritize between them. Nonetheless, even if this state of affairs is inevitable,
it is still worth asking where exactly the trade-off takes place and whether it is possible to
capture it formally and gain substantial control over it.

An interesting framework for such an analysis has been proposed by I. Levi [9, 10], who
applied the notion and a simple measure of epistemic utility of accepting a proposition in
order to deal with the problem of underdetermination of inductive inferences in science.1 As
a result, induction has been formally reinterpreted in terms of the trade-off between rival
epistemic goals that drive scientific inquiry. This approach has been recently recalled in the
context of judgment aggregation by Levi himself [11] and also by D. Fallis in [3]. In this paper
we propose and discuss a possible aggregation procedure based on those grounds, which
explicitly parameterizes the trade-offs underlying the problem of aggregating judgments,
accounting for the relevant epistemological and social-theoretical aspects.

The reminder of the paper is organized as follows. First, we outline the formal frames
for the judgment aggregation problem together with the discursive dilemma. Then we point
out a correspondence between the dilemma and the lottery paradox and recall the work of
I. Levi used for circumventing the latter. In Section 3 we introduce the utilitarian judgment
aggregation model, followed by sample aggregation results and the discussion of the method.

1The idea was first brought about by R. Jeffrey [6] and C. G. Hempel [5], however the approach was not
formally elaborated and introduced as a self-standing proposal until Levi’s work.
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2 Discursive Dilemma and Lottery Paradox

The judgment aggregation problem can be shortly characterized as follows (cf. [12, 1]). Let
A = {1, . . . , n} be a set of n agents and Φ an agenda, i.e. a set of well-formed propositional
formulas. It is assumed that for every ϕ ∈ Φ there is also ¬ϕ ∈ Φ. Each agent has
an individual set of judgments with respect to Φ. A judgment regarding a proposition is
understood here as an unequivocal act of acceptance or rejection of that proposition. An
individual set of judgments of agent i can be represented as a subset Φi ⊆ Φ of exactly
those propositions that are accepted by i. All the propositions that are not in Φi are the
ones that i rejects. Further, we require every individual set of judgments Φi to satisfy three
rationality constraints: 1) completeness: for every ϕ ∈ Φ, either ϕ ∈ Φi or ¬ϕ ∈ Φi; 2)
consistency : there is no ϕ such that ϕ ∈ Φi and ¬ϕ ∈ Φi; 3) deductive closure with respect
to the agenda: Cn(Φi) ∩ Φ ⊆ Φi.

A collective judgment is a subset Ψ ⊆ Φ such that Ψ also satisfies the rationality con-
straints and (in some sense) it is a response to the individual judgments of all and only
the agents from A. The desired properties of responsiveness are characterized by three
requirements imposed on the judgment aggregation function (JAF), i.e. a function that,
given a profile of all individual judgments {Φi}i∈A, should uniquely determine the collective
judgment. These are: 1) universal domain: a JAF should yield a collective judgment for
any possible profile of individual judgments; 2) anonymity : the individual judgments of
agents should have equal importance in determining the outcome; 3) independence:2 for
every proposition ϕ and any two profiles of individual judgments, if for every i ∈ A it holds
that ϕ ∈ Φi iff ϕ ∈ Φ′i then ϕ ∈ JAF({Φi}i∈A) iff ϕ ∈ JAF({Φ′i}i∈A).

A seemingly natural choice for a JAF is the propositionwise majority voting rule, which
advises accepting collectively all and only those propositions from Φ that are accepted
individually by the majority of agents. As it turns out, however, if Φ contains at least two
different propositions and their conjunction, the majority procedure may lead to obtaining
inconsistent collective judgments. This effect is known as the discursive dilemma or doctrinal
paradox and has recently attracted much attention in the field of computational social choice,
e.g. [12, 1, 2, 14]. The dilemma, as List and Pettit [12] have proved, is unavoidable under the
six previously listed constraints. Nevertheless, there is a number of ways of escaping it by
relaxing some of the requirements. In the same paper the authors present a comprehensive
discussion of different solutions, of which we shall mention two.

The first one avoids the paradox by dropping the completeness requirement on the col-
lective judgment. Under specific provisions a group might simply suspended its judgment on
particular propositions. This way the outcome is deductively weaker and does not provide
a full solution to the given aggregation task, but inconsistency does not occur. The other
method resolves the paradox by relaxing the independence assumption through conditioning
acceptance of certain propositions on the judgment on some others. Two typically invoked
strategies include the premise- and the conclusion-driven aggregation, according to which
the priority is given to those propositions that serve respectively as the premises or the
conclusion in the agenda. The judgment on the remaining ones is then suitably adjusted in
order to avoid inconsistency.

The basic shortcoming of both approaches is their inability of resolving the paradox in
an unambiguous and nonarbitrary manner. For instance, for the same input the premise-
and the conclusion-driven procedures can easily yield incompatible outcomes, while none of
them is more intuitive than the other.

Recently, an argument-driven approach, inspired by an operation of merging belief bases
in AI [7, 8], has been also investigated as a strategy of relaxing independence [14, 15]. The

2The independence condition is weaker than the original systematicity requirement used in [12] and so,
as slightly less controversial, tends to replace the former constraint in more recent literature, e.g. [1].
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method is considerably better justified and well-behaved than the aforementioned proce-
dures. It employs a simple distance measure of individual judgments from possible consistent
collective judgments, and chooses the one (or those) that minimize it. Thus the preference
is given not to the premises or the conclusion but to the argument as a whole. Our proposal
rests upon similar principles, but instead builds on certain results from philosophy of science
and significantly generalizes the approach.

The problem of judgment aggregation, interpreted as a specific case of propositional
acceptance, can be related to a similar question of how to aggregate logically connected
hypotheses about the world into a coherent body of scientific knowledge. Interestingly, a
direct analogue of the discursive dilemma occurs also in that context [11, 2] and has been
a recurrent subject of debates and analyses in the XXth century philosophy of science, e.g.
[5, 9]. Essentially, the lottery paradox shows that propositionwise acceptance over logically
connected statements fails in general in yielding a consistent set of formulas. According to I.
Levi [9], the problem stems from a too narrow perspective on acceptance in science. Scientific
inquiry is a goal-oriented activity, driven by (at least) two rival goals of a purely epistemic
nature: obtaining true and highly informative statements. Any plausible conclusion of an
inference may satisfy them to different extent, and so be relatively better or worse with
respect to other candidate answers. If the scientist is able to assess the degree to which the
goals are met by particular conclusions and possesses some probabilistic knowledge about
the possible states of the world, then he should evaluate the expected epistemic utility of
the conclusions and simply accept the one that maximizes it. The cognitive decision model,
proposed by Levi, aims to give a formal account of such a mechanism of acceptance.

The aggregation method presented in the following section is an extension of Levi’s
model. It borrows its all basic assumptions and the chief part of its formal apparatus. The
novel share involves defining a measure of the social agreement, a method of generating
probability distributions from profiles of individual judgments, and restating the judgment
aggregation problem as a task of satisfying (often rival) epistemic and social goals. Some
limited experimental results are presented in Section 4.

3 The Utilitarian Model of Judgment Aggregation

A group of agents striving to construct a collective judgment on some issue wants the
judgment to have certain good properties. Namely, it has to reflect individual judgments of
the group’s members and moreover it has to be a rational statement by itself. The former
requirement, to which discussions on judgment aggregation have been mainly confined,
involves applying some measure of responsiveness of the collective judgment to individual
beliefs of agents. The latter rests upon the assumption that a collective judgment quite
often conveys a particular claim about the world, which can be evaluated with respect to
the epistemic objectives mentioned above.

To start with, the utilitarian model of aggregation requires recognition of the set of all
possible states of the world associated, for instance, with the logical models of the agenda.
Consider Φ = {p,¬p, q,¬q, r,¬r} and the background knowledge3 b = {p ∧ q ↔ r}. Under
the given constraints there are four distinct truth valuation functions over the formulas from
Φ, corresponding to four complete, consistent and deductively closed sets of judgments on
Φ: {p, q, r}, {¬p, q,¬r}, {p,¬q,¬r}, {¬p,¬q,¬r}. We shall interpret the collection of these
functions MΦ,b = {v1, ..., v4} as the set of all possible and mutually exclusive ways the world
might be with respect to Φ and b. By convention we posit that judgment Ψ is satisfied by
state vi, i.e. vi � Ψ, whenever vi makes all formulas in Ψ true.

3The assumption of background knowledge is used only to abbreviate the notation, and can be dropped
at any time by replacing atomic formulas in Φ by respective compound ones, defined as in b.
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Further, it is necessary to specify the answer set, i.e. the set of all collective judgments
whose acceptance could present certain value to the voting group. Typically, the judgments
satisfying the rationality constraints should be permitted in the first order as possible out-
comes of the aggregation procedure. Also, in many cases, a group might want to relax
some of the requirements — predominantly completeness — to extend the range of possi-
ble outcomes. The following partial, though still consistent and deductively closed judg-
ments on Φ could be often seen as interesting in a variety of contexts: {{p}, {q}, {¬p,¬r},
{¬q,¬r}, {¬r}}. For instance, if r is a legal verdict based upon two premises p and q, it
could be enough for the jury to agree on the negation of only one of the premises, since this
alone allows for determining the conclusion ¬r. Even if the jury cannot decide on the truth
value of the second premise, it can still make a final judgment and justify it.

Partial judgments can be evaluated with respect to the amount of information they
convey. By analogy to the cognitive decision model, this can be defined in terms of the
proportion of possible states of the world that are excluded by the given judgment:4

cont(Ψ) =
|vi ∈MΦ,b : vi 2 Ψ|

|MΦ,b|

In the example under discussion we obtain:

cont({p, q, r}) = 0.75 cont({p}) = 0.5 cont({¬r}) = 0.25

Measure cont, based on purely structural properties of the problem, can be suitably param-
eterized to account also for additional pragmatic value that a judgment offers to the group.
Figure 1 shows three sample ways of evaluating information relative to the proportion of
possible states that are excluded by the judgment. Notice, that whereas the linear plot
represents the standard measure, the two others may be adopted by a group revealing a
weaker (top) or a stronger (bottom) bias for completeness of the outcome.

�

���

���

���

���

�

� ���� ��� ��	� �

������������	���

������

�
�����
�

��
	�
��
�
��
�
�
��
�
��



�

Figure 1: The value of information with respect to information content.

Another possibility of extending the range of permissible judgments regards dropping
the consistency requirement. According to D. Fallis [3] inconsistent judgments do not have
to be always worthless. The information content of an inconsistent judgment should by
definition of cont be equal 1, which neatly harmonizes with the property of inferential
explosion. However, a group might want to assign other values, according to its particular
understanding of informativeness of an inconsistent statement. Also judgments that are not
deductively closed can be formally incorporated into the model, if only the group can assess

4Other interesting measures of information content are discussed in e.g. D. Fallis [4] and P. Maher [13].
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their information value in a meaningful sense. Finally, ∅ with cont(∅) = 0 is worth including
in the answer set as an option for suspending the judgment, which often might be the only
reasonable decision.

Let then CJ = {Ψ1, . . . ,Ψm} be a set of possible collective judgments, preselected
and evaluated with respect to information content by the group. Following the model of
cognitive decision we will assess the value of truth — the second epistemic objective traded
off against the information content — relatively to the state of the world, using a simple
binary measure:

T(Ψ, vi) =
{

1 iff vi � Ψ
0 iff vi 2 Ψ

The measure takes value 1 in state vi, whenever a judgment is true in it, and 0 otherwise.
The overall utility of accepting a collective judgment, provided that state vi holds, is given
by the following function, which assigns numerical values to potential judgments according
to the degree to which they satisfy the two epistemic goals:

uε(Ψ, vi) = α cont(Ψ) + (1− α) T(Ψ, vi)

Coefficient α ∈ [0, 1] serves here as an epistemic preference indicator, with 0 standing for
the full preference for truth, and 1 for the information content of a judgment.

In order to complete the framework one has to employ knowledge about the probability
of the possible states. Although in a typical judgment aggregation problem no such infor-
mation is explicitly provided, there is a way of inducing a probability distribution using the
profile of individual judgments. Notice, that every individual judgment, as satisfying the
rationality constraints, corresponds to exactly one model from MΦ,b. Assuming that agents
are characterized by a certain degree of reliability, it is justified to regard their judgments as
good indicators of the truth of the states (cf. [15]). Formally, this information can determine
the probability distribution over MΦ,b by means of Bayes’ Theorem.

First, a uniform prior distribution is posed over the states, i.e. P (vi) = 1
|MΦ,b| for every

vi ∈ MΦ,b. Let r, such that 0.5 > r > 1, be the degree of reliability of agents, meaning
that given state vi is true, the probability P (Φ|vi) that an agent makes a correct judgment
(vi � Φ) is r, whereas the probability of the opposite is 1 − r. Starting with the prior
probabilities every individual judgment is used to update the distribution over MΦ,b, so
that posterior probability of a state, given an individual judgment Φ, equals to:

P (vi|Φ) = P (Φ|vi)P (vi)P
j P (Φ|vj)P (vj)

It can be shown that the resulting distribution after n consecutive updates, i.e. for n indi-
vidual judgments, is given by the equation:

P ?(vi) = rni (1−r)n−niP
i rni (1−r)n−ni

where
∑

i ni = n and each ni is the number of supporters of state vi. A distribution
generated in this way has two interesting properties. First, it reflects the beliefs of agents to
the degree that these beliefs can be deemed correct, thus complying to the principles of the
Bayesian epistemology. Judgments of unreliable agents (for r approaching 0.5) do not have a
strong influence on the distribution, as opposed to those of highly reliable judges (for r being
close to 1), which are given maximal weight. Second, for a finite number of agents none of
the possible states is ever completely excluded, i.e. P ?(vi) > 0 for all vi ∈MΦ,b, hence the
fundamental uncertainty, which often motivates the need for judgment aggregation, is not
eliminated totally.

Up to this point the model roughly mimics the design of Levi’s framework, giving account
of the epistemic aspects of acceptance that, as we argue, play essential role in the problem
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of aggregating judgments. The central claim of this paper, however, is that an aggrega-
tion procedure is driven by the endeavor to maximize both epistemic and social benefits
following from acceptance of a collective judgment. Epistemically good judgments are not
fully satisfactory unless they also justly reflect opinions of the agents involved. Intuitively,
socially the fairest collective judgment is the one selected by propositionwise majoritarian
rule. Nevertheless, as already pointed out, this strategy cannot be reliably employed. In-
stead, we should allow the choice to be made only from the answer set CJ . For this purpose
we will use a measure of social agreement interpreted as a form of distance of a judgment
from the majoritarian choice. Let SA be a function whose values are assigned as follows:

• for any ϕ ∈ Φ: SA(ϕ) = |Aϕ|
|A| , i.e. the social agreement on a proposition is the ratio of

the number of agents who accept it to the total number of agents;

• for any Ψ ∈ CJ : SA(Ψ) = 1
|Ψ|

∑
ϕ∈Ψ SA(ϕ), i.e. the social agreement on a collec-

tive judgment is equal to the arithmetic mean of the degrees of social agreement on
propositions accepted in the judgment.

SA expresses what proportion of propositions from a judgment is on average accepted by an
agent. We thus stay very close to the notion of Hamming distance proposed as the basis for
the argument-driven approach to judgment aggregation [14].5 The suspension of judgment
can be assigned value 0, as it is in no way responsive to individual judgments.

SA, as considered independently from the rest of the model, shares interesting similarities
with the afformentioned aggregation procedures that rest on the relaxation of the indepen-
dence constraint. If we restrict CJ to contain all and only complete sets of judgments,
including the inconsistent ones, then the judgment Ψ such that SA(Ψ) = maxi SA(Ψi) is
equivalent to the choice of the propositionwise majority voting rule. This is due to the fact,
that out of all complete judgments, the one with maximum value of SA is the one whose
every accepted proposition has SA(ϕ) ≥ 0.5. If inconsistent judgments are left out, then
the one that maximizes the degree of social agreement can be seen as socially the closest in
CJ to the majoritarian choice. This resolves the dilemma of arbitrary selection between the
premise- and the conclusion-driven strategy. The measure SA alone points at the judgment
that violates the majoritarian vote to the smallest degree, no matter whether violation oc-
curs on the side of premises or conclusions. Consider again the example with Φ = {p,¬p,
q,¬q, r,¬r} and b = {p ∧ q ↔ r}. If the profile of individual judgments is such that the
following degrees of social agreement are assigned to the propositions:

SA(p) = 0.8 SA(q) = 0.7 SA(r) = 0.4

then the socially best, complete and consistent judgment is {p, q, r}, since the value of r is
the closest to 0.5, and so accepting r, even though it is against the majoritarian vote, brings
the least disagreement amongst agents. The choice is therefore equivalent to the outcome
of the premise-driven majoritarian procedure. In case of another distribution of agreement,
for instance:

SA(p) = 0.7 SA(q) = 0.6 SA(r) = 0.3

the judgment {p,¬q,¬r} would be the most preferable, which is compatible with the
conclusion-driven strategy.

Finally, the epistemic and social factors can be embraced within a single utility function
defined for any Ψ ∈ CJ and vi ∈MΦ as:

u(Ψ, vi) = β (α cont(Ψ) + (1− α) T(Ψ, vi))︸ ︷︷ ︸ + (1− β) SA(Ψ)

= β uε(Ψ, vi) + (1− β) SA(Ψ)

5In fact SA is a normalized form of the measure adopted by G. Pigozzi in [14].
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While α controls the trade-off on the purely epistemic level, coefficient β ∈ [0, 1] is sup-
posed to reflect the upper-level preferences of a group, balancing the trade-off between the
epistemic and social perspective. For β approaching 1, the epistemic criteria take over and
an act of judgment aggregation becomes an act of rational acceptance, analogous to the
typical cases modeled in Levi’s framework. When it is close to 0, the social agreement
measure becomes a decisive factor, rendering the procedure majoritarian, but still free of
paradoxes. If the group is able to correctly diagnose its preferences and set the values of α
and β accordingly, then the judgment maximizing the expected utility, i.e.:

EU(Ψ) =
∑

vi∈MΦ
P ?(vi)u(Ψ, vi)

should be the one to be rationally accepted, as satisfying to the greatest extent the collective
preferences of the group. For a complete picture, the procedure requires a tie-breaking rule.
The prescription proposed by Levi [9], namely to accept the disjunction of all the answers
with maximum expected utility, could be interpreted in this context as acceptance of the
common information included in the judgments maximizing the expected utility. If we
provisionally accept such a rule,6 we can conclude the presentation with the utilitarian
judgment aggregation function, formulated as follows:

(UJAM) JAF({Φi}i∈A) =
⋂

Ψ such that Ψ ∈ arg maxΨ∈CJ EU(Ψ)

?

Before concluding the presentation we will summarize the model’s ingredients introduced
in this section. Given a judgment aggregation problem specified by a set of agents A, a set
of propositional formulas Φ and a profile of individual judgments {Φi}i∈A, where each
judgment has to be a complete, consistent, and deductively closed subset of Φ, the group
can define utilitarian aggregation model consisting of the following elements:

CJ = {Ψ1, ...,Ψm} ⊆ 2Φ the answer set: a set of potential collective judgments pre-
selected by the group as presenting certain value,

MΦ = {v1, ..., vl}
the set of all possible, mutually exclusive states of the world
(models) with respect to Φ,

vi ∈MΦ : Φ → {0, 1} a truth valuation function on the propositions from Φ,

P ? : MΦ → [0, 1] a probability function over possible states, whose values are
derived from the profile of individual judgments,

r ∈ (0.5, 1) the degree of reliability of individual judgments / agents,

α, β ∈ [0, 1] the coefficients controlling the information-truth and
epistemic-social trade-offs,

cont : CJ → [0, 1] the valuation measure of information contained in the col-
lective judgments,

T : CJ ×MΦ → {0, 1} the valuation measure of truth with respect to the collective
judgments and possible states of the world,

SA : CJ ∪ Φ → [0, 1] the measure of social agreement on the propositions and
collective judgments.

6Clearly, the outcome of such a rule does not have to necessarily maximize the expected utility. Note also,
that alternative interpretations of Levi’s proposal, though less appealing, are possible. Yet other options of
establishing a tie-breaking rule include typical decision-theoretic escape routes, for instance: 1) providing
an a priori preference ranking over the goals, so that the judgment which satisfies the most preferred goal
better is picked; 2) employing another decision criterion (e.g. Hurwicz, Laplace), which have chances to yield
a unique outcome. Both solutions suffer, however, from the same arbitrariness as was previously pointed
out in the standard aggregation methods.
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4 Experimentation

In this section we will present sample aggregation results obtained with the utilitarian
judgment aggregation model for set of propositions Φ = {p,¬p, q,¬q, r,¬r} and background
knowledge b = {p ∧ q ↔ r}. In the scenario there are four possible states of the world
(models): MΦ,b = {v1, v2, v3, v4}, defined by the following truth valuations:

v1 : v1(p) = 1, v1(q) = 1, v1(r) = 1
v2 : v2(p) = 0, v2(q) = 1, v2(r) = 0
v3 : v3(p) = 1, v3(q) = 0, v3(r) = 0
v4 : v4(p) = 0, v4(q) = 0, v4(r) = 0

The value of information content for all collective judgments Ψ is assigned according to
the standard measure cont(Ψ). The shaded rows in the tables below mark the collective
judgments selected by the model.

Information content vs. truth: Tables 1 - 2. For a constant profile of individual judgments
and a fixed value of the epistemic-social coefficient β = 0.8, we change the value of the
information-truth coefficient α. For α = 0.7 (Table 1) {p,¬q,¬r} is chosen as the most
informative judgment among those which are still sufficiently probable and agreeable. De-
creasing the value of α results gradually in selection of less informative (more incomplete)
collective judgments. For α = 0.5 we get {¬q,¬r}, whereas for α = 0.1, {¬r} (Table 2).
When fixed to α = 0.01 the aggregation becomes so truth-oriented that only the suspension
of judgment is a plausible choice.

Information content vs. social agreement : Tables 3 - 4. For a constant profile of individual
judgments we fix the value of the information-truth coefficient at α = 1, meaning that
truth is completely excluded from considerations. Shifting the value of the epistemic-social
coefficient from β = 0.5 (Table 3) to β = 0.3 (Table 4), leads to the change in the accepted
collective judgment from {p,¬q,¬r} to more agreeable though incomplete {p}.

Truth vs. social agreement : Tables 5 - 6. For a constant profile of individual judgments
we fix the value of the information-truth coefficient at α = 0, thus discarding information
content. Setting β = 0.6 (Table 5) we reveal a higher preference for a conclusion more likely
to be true, which in this case is {¬r}. Notice, that {¬r} has the same degree of agreement
as {¬q} and even lower than {p}, but {¬r} is true in three out of four possible states with

Total Number of
Agents:

10 Individual
Judgments:

2 1 4 3

Reliability of
Agents:

0.55 Probability: 0.22 0.18 0.33 0.27

Collective
Judgments:

Inform.
Value:

Degree of
Agreement:

v1 v2 v3 v4
Expected
Utility:

{p, q, r} 0.75 0.367 0.733 0.493 0.493 0.493 0.546
{¬p, q,¬r} 0.75 0.500 0.520 0.760 0.520 0.520 0.563
{p,¬q,¬r} 0.75 0.700 0.560 0.560 0.800 0.560 0.639
{¬p,¬q,¬r} 0.75 0.633 0.547 0.547 0.547 0.787 0.611
{¬p,¬r} 0.50 0.600 0.400 0.640 0.400 0.640 0.508
{¬q,¬r} 0.50 0.750 0.430 0.430 0.670 0.670 0.574

{p} 0.50 0.600 0.640 0.400 0.640 0.400 0.532
{q} 0.50 0.300 0.580 0.580 0.340 0.340 0.436
{¬r} 0.25 0.800 0.300 0.540 0.540 0.540 0.487

suspend 0 0 0.240 0.240 0.240 0.240 0.240

Degrees p 0.6 Trade-offs:
of Agreement q 0.3 Information vs. Truth 0.7

on Atoms: r 0.2 Epistemic vs. Social 0.8

Table 1.
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Total Number of
Agents:

10
Individual
Judgments:

2 1 4 3

Reliability of
Agents:

0.55 Probability: 0.22 0.18 0.33 0.27

Collective
Judgments:

Inform.
Value:

Degree of
Agreement:

v1 v2 v3 v4
Expected
Utility:

{p, q, r} 0.75 0.367 0.853 0.133 0.133 0.133 0.292
{¬p, q,¬r} 0.75 0.500 0.160 0.880 0.160 0.160 0.290
{p,¬q,¬r} 0.75 0.700 0.200 0.200 0.920 0.200 0.437
{¬p,¬q,¬r} 0.75 0.633 0.187 0.187 0.187 0.907 0.381
{¬p,¬r} 0.50 0.600 0.160 0.880 0.160 0.880 0.484
{¬q,¬r} 0.50 0.750 0.190 0.190 0.910 0.910 0.621

{p} 0.50 0.600 0.880 0.160 0.880 0.160 0.556
{q} 0.50 0.300 0.820 0.820 0.100 0.100 0.389
{¬r} 0.25 0.800 0.180 0.900 0.900 0.900 0.741

suspend 0 0 0.720 0.720 0.720 0.720 0.720

Degrees p 0.6 Trade-offs:
of Agreement q 0.3 Information vs. Truth 0.1

on Atoms: r 0.2 Epistemic vs. Social 0.8

Table 2.

Total Number of
Agents:

10 Individual
Judgments:

4 1 4 1

Reliability of
Agents:

0.6 Probability: 0.39 0.11 0.39 0.11

Collective
Judgments:

Inform.
Value:

Degree of
Agreement:

v1 v2 v3 v4
Expected
Utility:

{p, q, r} 0.75 0.567 0.658 0.658 0.658 0.658 0.658
{¬p, q,¬r} 0.75 0.433 0.592 0.592 0.592 0.592 0.592
{p,¬q,¬r} 0.75 0.633 0.692 0.692 0.692 0.692 0.692
{¬p,¬q,¬r} 0.75 0.433 0.592 0.592 0.592 0.592 0.592
{¬p,¬r} 0.50 0.400 0.450 0.450 0.450 0.450 0.450
{¬q,¬r} 0.50 0.550 0.525 0.525 0.525 0.525 0.525

{p} 0.50 0.800 0.650 0.650 0.650 0.650 0.650
{q} 0.50 0.500 0.500 0.500 0.500 0.500 0.500
{¬r} 0.25 0.600 0.425 0.425 0.425 0.425 0.425

suspend 0 0 0.000 0.000 0.000 0.000 0.000

Degrees p 0.8 Trade-offs:
of Agreement q 0.5 Information vs. Truth 1

on Atoms: r 0.4 Epistemic vs. Social 0.5

Table 3.

Total Number of
Agents:

10 Individual
Judgments:

4 1 4 1

Reliability of
Agents:

0.6 Probability: 0.39 0.11 0.39 0.11

Collective
Judgments:

Inform.
Value:

Degree of
Agreement:

v1 v2 v3 v4
Expected
Utility:

{p, q, r} 0.75 0.567 0.622 0.622 0.622 0.622 0.622
{¬p, q,¬r} 0.75 0.433 0.528 0.528 0.528 0.528 0.528
{p,¬q,¬r} 0.75 0.633 0.668 0.668 0.668 0.668 0.668
{¬p,¬q,¬r} 0.75 0.433 0.528 0.528 0.528 0.528 0.528
{¬p,¬r} 0.50 0.400 0.430 0.430 0.430 0.430 0.430
{¬q,¬r} 0.50 0.550 0.535 0.535 0.535 0.535 0.535

{p} 0.50 0.800 0.710 0.710 0.710 0.710 0.710
{q} 0.50 0.500 0.500 0.500 0.500 0.500 0.500
{¬r} 0.25 0.600 0.495 0.495 0.495 0.495 0.495

suspend 0 0 0.000 0.000 0.000 0.000 0.000

Degrees p 0.8 Trade-offs:
of Agreement q 0.5 Information vs. Truth 1

on Atoms: r 0.4 Epistemic vs. Social 0.3

Table 4.
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almost uniform probability, and so it is more probable than the other two. When we fix
β = 0.4 (Table 6) the accepted judgment is {p} as more agreeable. The same outcome
would be yielded for β = 0.6 were the agents more reliable, say for r = 0.7. In that case the
probability distribution would be strongly influenced by individual judgments and the two
states where {p} is true would become much more probable than the others.

Total Number of
Agents:

10
Individual
Judgments:

4 0 4 2

Reliability of
Agents:

0.51 Probability: 0.26 0.23 0.26 0.24

Collective
Judgments:

Inform.
Value:

Degree of
Agreement:

v1 v2 v3 v4
Expected
Utility:

{p, q, r} 0.75 0.533 0.813 0.213 0.213 0.213 0.372
{¬p, q,¬r} 0.75 0.400 0.160 0.760 0.160 0.160 0.295
{p,¬q,¬r} 0.75 0.667 0.267 0.267 0.867 0.267 0.426
{¬p,¬q,¬r} 0.75 0.467 0.187 0.187 0.187 0.787 0.333
{¬p,¬r} 0.50 0.400 0.160 0.760 0.160 0.760 0.442
{¬q,¬r} 0.50 0.600 0.240 0.240 0.840 0.840 0.546

{p} 0.50 0.800 0.920 0.320 0.920 0.320 0.638
{q} 0.50 0.400 0.760 0.760 0.160 0.160 0.454
{¬r} 0.25 0.600 0.240 0.840 0.840 0.840 0.681

suspend 0 0 0.600 0.600 0.600 0.600 0.600

Degrees p 0.8 Trade-offs:
of Agreement q 0.4 Information vs. Truth 0

on Atoms: r 0.4 Epistemic vs. Social 0.6

Table 5.

Total Number of
Agents:

10 Individual
Judgments:

4 0 4 2

Reliability of
Agents:

0.51 Probability: 0.26 0.23 0.26 0.24

Collective
Judgments:

Inform.
Value:

Degree of
Agreement:

v1 v2 v3 v4
Expected
Utility:

{p, q, r} 0.75 0.533 0.720 0.320 0.320 0.320 0.426
{¬p, q,¬r} 0.75 0.400 0.240 0.640 0.240 0.240 0.330
{p,¬q,¬r} 0.75 0.667 0.400 0.400 0.800 0.400 0.506
{¬p,¬q,¬r} 0.75 0.467 0.280 0.280 0.280 0.680 0.378
{¬p,¬r} 0.50 0.400 0.240 0.640 0.240 0.640 0.428
{¬q,¬r} 0.50 0.600 0.360 0.360 0.760 0.760 0.564

{p} 0.50 0.800 0.880 0.480 0.880 0.480 0.692
{q} 0.50 0.400 0.640 0.640 0.240 0.240 0.436
{¬r} 0.25 0.600 0.360 0.760 0.760 0.760 0.654

suspend 0 0 0.400 0.400 0.400 0.400 0.400

Degrees p 0.8 Trade-offs:
of Agreement q 0.4 Information vs. Truth 0

on Atoms: r 0.4 Epistemic vs. Social 0.4

Table 6.

5 Conclusions and Discussion

The judgment aggregation model introduced in this paper aims at capturing the concept of
the utility that an act of acceptance of a collective judgment can offer to a group of rational
agents. For this purpose we have reinterpreted the problem of aggregation as a goal-oriented
task with (possibly rival) goals of an epistemic and social character involved. Following
Levi’s cognitive decision model [9, 10], we have identified the epistemic goals as truth and
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information content and adopted the respective measures of the degrees to which these goals
are satisfied by potential collective judgments. Further, we have defined a measure of the
agreement on a judgment, which reflects the social objective of the procedure. Finally, an
utility function defined as a weighted sum of the three measures has been proposed, together
with an acceptance rule based on the criterion of maximizing the expected utility.

As a method of aggregation the model imposes two requirements on a group: designating
the answer set and expressing numerically its preferences with respect to the goals involved.
Assuming that this is done correctly, the collective judgment that is selected by the model
is guaranteed to be the best one among all candidate judgments.

Clearly, the model might not satisfy the six requirements normally imposed on judgment
aggregation function and the resulting collective judgments. However, any violation of these
receives here a strong justification.

Completeness, consistency, deductive closure: As long as only complete, consistent and
deductively closed collective judgments are considered, none of the requirements will be
violated by the outcome (provided that tie does not occur). If, on the contrary, the answer
set contains other judgments as well, then there is no good reason to defend the constraints.
The doctrinal paradox obtains, therefore, a straightforward solution. If the group finds
an inconsistent collective judgment undesirable, it should not designate it as a potential
outcome; otherwise its occurrence is apparently not troublesome.

Universal domain, anonymity : For any profile of judgments the model designates a unique
outcome (assuming the tie-breaking rule is employed) and assigns the same weight to every
individual judgment in determining it.

Independence: This constraint can often be not satisfied by the model. Still, the central
rationale behind the presented framework is a conviction that independence is a too strong
requirement. Investigations into the discursive dilemma and the lottery paradox show that
propositionwise acceptance rules — the type of rules enforced by the independence constraint
— inevitably lead to inconsistencies when applied to sets of logically connected propositions.
Following Levi, we argue that only statements considered in the context of the entire logical
structure to which they belong can be rationally accepted or rejected. As a consequence a
proposition obtaining the support of exactly the same agents can be once accepted, while
rejected another time. This, however, happens only because the judgments containing this
proposition are evaluated differently in the two cases, and therefore, in a broader perspective
it is clearly a desired effect.

As a theoretical framework the model is universal enough to be amenable to many inter-
esting adjustments and extensions, thus providing a large space of possible applications. Its
most important advantage is that it offers a good control over the trade-offs involved in the
aggregation task. Predominantly, it gives a clear formal account of how the responsiveness
of the procedure — the fundamental social choice postulate — can be weighted against
other expectations regarding collective judgments.

From the practical perspective a serious deficiency of the method, which should be
a subject to further analysis, concerns its computational tractability. Depending on the
structure of the problem it might be necessary to consider up to 2|Φ| possible states and
the same number of candidate collective judgments. In any case, significant savings on
the computational expense can be achieved at the cost of dropping one or two measures
involved. Two scenarios seem especially appealing in this respect: 1) dropping truth (and
consequently probabilities), which dramatically reduces the computational effort, while still
allows for tracing the trade-off between social agreement and completeness of collective
judgments; 2) dropping epistemic utility, which turns the method into a robust majoritarian
procedure, selecting the permissible judgment that is closest to the majoritarian choice (an
approach investigated by G. Pigozzi in [14]).
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Abstract

In the logic based framework of knowledge representation and reasoning many operators have
been defined in order to capture different kinds of change: revision, update, merging and many
others. There are close links between revision, update, andmerging. Merging operators can be
considered as extensions of revision operators to multiplebelief bases. And update operators
can be considered as pointwise revision, looking at each model of the base, instead of taking the
base as a whole. Thus, a natural question is the following one: Are there natural operators that
are pointwise merging, just as update are pointwise revision? The goal of this work is to give a
positive answer to this question. In order to do that, we introduce a new class of operators: the
confluence operators. These new operators can be useful in modelling negotiation processes.

1 Introduction

Belief change theory has produced a lot of different operators that models the different ways the
beliefs of one (or some) agent(s) evolve over time. Among these operators, one can quote revision
[1, 5, 10, 6], update [9, 8], merging [23, 14], abduction [20], extrapolation [4], etc.

In this paper we will focus on revision, update and merging. Let us first briefly describe these
operators informally:

Revision Belief revision is the process of accomodating a new piece ofevidence that is more reli-
able than the current beliefs of the agent. In belief revision the world is static, it is the beliefs
of the agents that evolve.

Update In belief update the new piece of evidence denotes a change inthe world. The world is
dynamic, and these (observed) changes modify the beliefs ofthe agent.

Merging Belief merging is the process of defining the beliefs of a group of agents. So the question
is: Given a set of agents that have their own beliefs, what canbe considered as the beliefs of
the group?

Apart from these intuitive differences between these operators, there are also close links between
them. This is particularly clear when looking at the technical definitions. There are close relationship
between revision [1, 5, 10] and KM update operators [9]. The first ones looking at the beliefs of the
agents globally, the second ones looking at them locally (this sentence will be made formally clear
later in the paper)2. There is also a close connection between revision and merging operators. In
fact revision operators can be seen as particular cases of merging operators. From these two facts
a very natural question arises: What is the family of operators that are a generalization of update
operators in the same way merging operators generalize revision operators? Or, equivalently, what
are the operators that can be considered as pointwise merging, just as KM update operators can be
considered as pointwise belief revision. This can be outlined in the figure below. The aim of this

1This paper is a revised version of a paper that will be published in the Proceedings of the 11th European Conference on
Logics in Artificial Intelligence (JELIA’08).

2See [8, 4, 15] for more discussions on update and its links with revision.
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Revision Update

Merging ?

Figure 1: Revision - Update - Merging - Confluence

paper is to introduce and study the operators correspondingto the question mark. We will call these
new operators confluence operators.

these new operators are more cautious than merging operators. This suggest that they can be used
to define negotiation operators (see [2, 24, 22, 21, 12]), or as a first step of a negotiation process, in
order to find all the possible negotiation results.

In order to illustrate the need for these new operators and also the difference of behaviour be-
tween merging and confluence we present the following small example.

Example 1 Mary and Peter are planning to buy a car. Mary does not like a German car nor an
expensive car. She likes small cars. Peter hesitates between a German, expensive but small car or
a car which is not German, nor expensive and is a big car. Taking three propositional variables
German car, Expensive car andSmall car in this order, Mary’s desires are represented
bymod(A) = {001} and Peter’s desires bymod(B) = {111, 000}. Most of the merging operators3

give as solution (in semantical terms) the set{001, 000}. That is the same solution obtained when
we suppose that Peter’s desires are only a car which is not German nor expensive but a big car
(mod(B′) = {000}). The confluence operators will take into account the disjunctive nature of
Peter’s desires in a better manner and they will incorporatealso the interpretations that are a trade-
off between001 and111. For instance, the worlds011 and101 will be also in the solution if one
use the confluence operator3

dH ,Gmax (defined in Section 7).

This kind of operators is particularly adequate when the base describes a situation that is not per-
fectly known, or that can evolve in the future. For instance Peter’s desires can either be imperfectly
known (he wants one of the two situations but we do not know which one), or can evolve in the
future (he will choose later between the two situations). Inthese situations the solutions proposed
by confluence operators will be more adequate than the one proposed by merging operators. The so-
lutions proposed by the confluence operators can be seen as all possible agreements in a negotiation
process.

Belief merging is closely related to judgment aggregation as studied in political science and so-
cial choice theory (see e.g. [17, 18, 19]). An important difference is that in judgment aggregation
there is an agenda on which the agents give their judgments. There is no such agenda in belief merg-
ing. The aim is to find the beliefs of the group. So this can be considered as a judgment aggregation
problem where the agenda is the full set of formulae of the language (that are consistent with the
integrity constraints). So, in a sense, judgment aggregation is an aggregation in a partial (incom-
plete) information framework (the only available information is about the formulae of the agenda),
whereas belief merging is an aggregation in a complete (total/ideal) information framework.

Abstract negotiation processes have been studied both frombelief merging [2, 24, 22, 21, 12]
and judgment aggregation [16] perspectives. The definitionof conciliation operators in this paper
can be related to these works.

In the next section we will give the required definitions and notations. In Section 3 we will re-
call the postulates and representation theorems for revision, update, and merging, and state the links

3Such as△dH ,Σ and△dH ,Gmax [14].

336



between these operators. In Section 4 we define confluence operators. We provide a representation
theorem for these operators in Section 5. In Section 6 we study the links between confluence op-
erators and update and merging. In Section 7 we give examplesof confluence operators. And we
conclude in Section 8.

2 Preliminaries

We consider a propositional languageL defined from a finite set of propositional variablesP and
the standard connectives, including⊤ and⊥.

An interpretationω is a total function fromP to {0, 1}. The set of all interpretations is denoted
byW . An interpretationω is a model of a formulaφ ∈ L if and only if it makes it true in the usual
truth functional way.mod(ϕ) denotes the set of models of the formulaϕ, i.e.,mod(ϕ) = {ω ∈
W | ω |= ϕ}. WhenM is a set of models we denote byϕM a formula such thatmod(ϕM ) = M .

A baseK is a finite set of propositional formulae. In order to simplify the notations, in this work
we will identify the baseK with the formulaϕ which is the conjunction of the formulae ofK4.

A profileΨ is a non-empty multi-set (bag) of basesΨ = {ϕ1, . . . , ϕn} (hence different agents
are allowed to exhibit identical bases), and represents a group ofn agents.

We denote by
∧

Ψ the conjunction of bases ofΨ = {ϕ1, . . . , ϕn}, i.e.,
∧

Ψ = ϕ1 ∧ . . . ∧ ϕn.
A profile Ψ is said to be consistent if and only if

∧
Ψ is consistent. The multi-set union is denoted

by⊔.
A formulaϕ is complete if it has only one model. A profileΨ is complete if all the bases ofΨ

are complete formulae.
If ≤ denotes a pre-order onW (i.e., a reflexive and transitive relation), then< denotes the

associated strict order defined byω < ω′ if and only if ω ≤ ω′ andω′ 6≤ ω, and≃ denotes the
associated equivalence relation defined byω ≃ ω′ if and only if ω ≤ ω′ andω′ ≤ ω. A pre-order
is total if ∀ω, ω′ ∈ W , ω ≤ ω′ or ω′ ≤ ω. A pre-order that is not total is calledpartial. Let≤ be a
pre-order onA, andB ⊆ A, thenmin(B,≤) = {b ∈ B | ∄a ∈ B a < b}.

3 Revision, Update and Merging

Let us now recall in this section some background on revision, update and merging, and their repre-
sentation theorems in terms of pre-orders on interpretations. This will allow us to give the relation-
ships between these operators.

3.1 Revision

Definition 1 (Katsuno-Mendelzon [10]) An operator◦ is an AGM belief revision operator if it
satisfies the following properties:

(R1) ϕ ◦ µ ⊢ µ

(R2) If ϕ ∧ µ 0 ⊥ thenϕ ◦ µ ≡ ϕ ∧ µ

(R3) If µ 0 ⊥ thenϕ ◦ µ 0 ⊥

(R4) If ϕ1 ≡ ϕ2 andµ1 ≡ µ2 thenϕ1 ◦ µ1 ≡ ϕ2 ◦ µ2

(R5) (ϕ ◦ µ) ∧ φ ⊢ ϕ ◦ (µ ∧ φ)

(R6) If (ϕ ◦ µ) ∧ φ 0 ⊥ thenϕ ◦ (µ ∧ φ) ⊢ (ϕ ◦ µ) ∧ φ

4Some approaches are sensitive to syntactical representation. In that case it is important to distinguish betweenK and
the conjonction of its formulae (see e.g. [13]). But operators of this work are all syntax independant.
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When one works with a finite propositional language the previous postulates, proposed by Kat-
suno and Mendelzon, are equivalent to AGM ones [1, 5]. In [10]Katsuno and Mendelzon give also
a representation theorem for revision operators, showing that each revision operator corresponds to
a faithful assignment, that associates to each base a plausibility preorder on interpretations (this idea
can be traced back to Grove systems of spheres [7] ).

Definition 2 A faithful assignment is a function mapping each baseϕ to a pre-order≤ϕ over inter-
pretations such that:

1. If ω |= ϕ andω′ |= ϕ, thenω ≃ϕ ω′

2. If ω |= ϕ andω′ 6|= ϕ, thenω <ϕ ω′

3. If ϕ ≡ ϕ′, then≤ϕ=≤ϕ′

Theorem 1 (Katsuno-Mendelzon [10])An operator◦ is a revision operator (ie. it satisfies (R1)-
(R6)) if and only if there exists a faithful assignment that maps each baseϕ to a total pre-order≤ϕ

such that
mod(ϕ ◦ µ) = min(mod(µ),≤ϕ).

This representation theorem is important because it provides a way to easily define revision
operators by defining faithful assignments. But also because their are similar such theorems for
update and merging (we will also show a similar result for confluence), and that these representations
in term of assignments allow to more easily find links betweenthese operators.

3.2 Update

Definition 3 (Katsuno-Mendelzon [9, 11]) An operator⋄ is a (partial) update operator if it satis-
fies the properties(U1)-(U8). It is a total update operator if it satisfies the properties(U1)-(U5),
(U8), (U9).

(U1) ϕ ⋄ µ ⊢ µ

(U2) If ϕ ⊢ µ, thenϕ ⋄ µ ≡ ϕ

(U3) If ϕ 0 ⊥ andµ 0 ⊥ thenϕ ⋄ µ 0 ⊥

(U4) If ϕ1 ≡ ϕ2 andµ1 ≡ µ2 thenϕ1 ⋄ µ1 ≡ ϕ2 ⋄ µ2

(U5) (ϕ ⋄ µ) ∧ φ ⊢ ϕ ⋄ (µ ∧ φ)

(U6) If ϕ ⋄ µ1 ⊢ µ2 andϕ ⋄ µ2 ⊢ µ1, thenϕ ⋄ µ1 ≡ ϕ ⋄ µ2

(U7) If ϕ is a complete formula, then(ϕ ⋄ µ1) ∧ (ϕ ⋄ µ2) ⊢ ϕ ⋄ (µ1 ∨ µ2)

(U8) (ϕ1 ∨ ϕ2) ⋄ µ ≡ (ϕ1 ⋄ µ) ∨ (ϕ2 ⋄ µ)

(U9) If ϕ is a complete formula and(ϕ ⋄ µ) ∧ φ 0 ⊥, thenϕ ⋄ (µ ∧ φ) ⊢ (ϕ ⋄ µ) ∧ φ

As for revision, there is a representation theorem in terms of faithful assignment.

Definition 4 A faithful assignment is a function mapping each interpretation ω to a pre-order≤ω

over interpretations such that ifω 6= ω′, thenω <ω ω′.
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One can easily check that this faithful assignment on interpretations is just a special case of the
faithful assignment on bases defined in the previous sectionon the complete base corresponding to
the interpretation.

Katsuno and Mendelzon give two representation theorems forupdate operators. The first repre-
sentation theorem corresponds to partial pre-orders.

Theorem 2 (Katsuno-Mendelzon [9, 11])An update operator⋄ satisfies (U1)-(U8) if and only if
there exists a faithful assignment that maps each interpretation ω to a partial pre-order≤ω such
that

mod(ϕ ⋄ µ) =
⋃

ω|=ϕ

min(mod(µ),≤ϕ{ω}
)

And the second one corresponds to total pre-orders.

Theorem 3 (Katsuno-Mendelzon [9, 11])An update operator⋄ satisfies (U1)-(U5), (U8) and
(U9) if and only if there exists a faithful assignment that maps each interpretationω to a total
pre-order≤ω such that

mod(ϕ ⋄ µ) =
⋃

ω|=ϕ

min(mod(µ),≤ϕ{ω}
)

3.3 Merging

Definition 5 (Konieczny-Pino Ṕerez [14]) An operator△ mapping a pairΨ, µ (profile, formula)
into a formula denoted△µ(Ψ) is an IC merging operator if it satisfies the following properties:

(IC0) △µ(Ψ) ⊢ µ

(IC1) If µ is consistent, then△µ(Ψ) is consistent

(IC2) If
∧

Ψ is consistent withµ, then△µ(Ψ) ≡
∧

Ψ ∧ µ

(IC3) If Ψ1 ≡ Ψ2 andµ1 ≡ µ2, then△µ1
(Ψ1) ≡ △µ2

(Ψ2)

(IC4) If ϕ1 ⊢ µ andϕ2 ⊢ µ, then△µ({ϕ1, ϕ2})∧ϕ1 is consistent if and only if△µ({ϕ1, ϕ2})∧ϕ2

is consistent

(IC5) △µ(Ψ1) ∧△µ(Ψ2) ⊢ △µ(Ψ1 ⊔Ψ2)

(IC6) If △µ(Ψ1) ∧△µ(Ψ2) is consistent, then△µ(Ψ1 ⊔Ψ2) ⊢ △µ(Ψ1) ∧△µ(Ψ2)

(IC7) △µ1
(Ψ) ∧ µ2 ⊢ △µ1∧µ2

(Ψ)

(IC8) If △µ1
(Ψ) ∧ µ2 is consistent, then△µ1∧µ2

(Ψ) ⊢ △µ1
(Ψ)

There is also a representation theorem for merging operators in terms of pre-orders on interpre-
tations [14].

Definition 6 A syncretic assignmentis a function mapping each profileΨ to a total pre-order≤Ψ

over interpretations such that:

1. If ω |= Ψ andω′ |= Ψ, thenω ≃Ψ ω′

2. If ω |= Ψ andω′ 6|= Ψ, thenω <Ψ ω′

3. If Ψ1 ≡ Ψ2, then≤Ψ1
=≤Ψ2

4. ∀ω |= ϕ ∃ω′ |= ϕ′ ω′ ≤{ϕ}⊔{ϕ}′ ω
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5. If ω ≤Ψ1
ω′ andω ≤Ψ2

ω′, thenω ≤Ψ1⊔Ψ2
ω′

6. If ω <Ψ1
ω′ andω ≤Ψ2

ω′, thenω <Ψ1⊔Ψ2
ω′

Theorem 4 (Konieczny-Pino Ṕerez [14]) An operator△ is an IC merging operator if and only if
there exists a syncretic assignment that maps each profileΨ to a total pre-order≤Ψ such that

mod(△µ(Ψ)) = min(mod(µ),≤Ψ)

3.4 Revision vs Update

Intuitively revision operators bring a minimal change to the base by selecting the most plausible
models among the models of the new information. Whereas update operators bring a minimal
change to each possible world (model) of the base in order to take into account the change described
by the new infomation whatever the possible world. So, if we look closely to the two representation
theorems (propositions 1, 2 and 3), we easily find the following result:

Theorem 5 If ◦ is a revision operator (i.e. it satisfies (R1)-(R6)), then the operator⋄ defined by:

ϕ ⋄ µ =
∨

ω|=ϕ

ϕ{ω} ◦ µ

is an update operator that satisfies (U1)-(U9).
Moreover, for each update operator⋄, there exists a revision operator◦ such that the previous

equation holds.

As explained above this proposition states that update can be viewed as a kind of pointwise
revision.

3.5 Revision vs Merging

Intuitively revision operators select in a formula (the newevidence) the closest information to a
ground information (the old base). And, identically, IC merging operators select in a formula (the
integrity constraints) the closest information to a groundinformation (a profile of bases).

So following this idea it is easy to make a correspondence between IC merging operators and
belief revision operators [14]:

Theorem 6 (Konieczny-Pino Ṕerez [14]) If △ is an IC merging operator (it satisfies (IC0-IC8)),
then the operator◦, defined asϕ ◦ µ = △µ(ϕ), is an AGM revision operator (it satisfies (R1-R6)).

See [14] for more links between belief revision and merging.

4 Confluence operators

So now that we have made clear the connections sketched in figure 1 between revision, update
and merging, let us turn now to the definition of confluence operators, that aim to be a pointwise
merging, similarly as update is a pointwise revision, as explained in Section 3.4. Let us first define
p-consistency for profiles.

Definition 7 A profileΨ = {ϕ1, . . . ϕn} is p-consistentif all its bases are consistent, i.e∀ϕi ∈ Ψ,
ϕi is consistent.

Note that p-consistency is much weaker than consistency, the former just asks that all the bases
of the profile are consistent, while the later asks that the conjunction of all the bases is consistent.
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Definition 8 An operator3 is a confluence operator if it satisfies the following properties:

(UC0) 3µ(Ψ) ⊢ µ

(UC1) If µ is consistent andΨ is p-consistent, then3µ(Ψ) is consistent

(UC2) If Ψ is complete,Ψ is consistent and
∧

Ψ ⊢ µ, then3µ(Ψ) ≡
∧

Ψ

(UC3) If Ψ1 ≡ Ψ2 andµ1 ≡ µ2, then3µ1
(Ψ1) ≡ 3µ2

(Ψ2)

(UC4) If ϕ1 andϕ2 are complete formulae andϕ1 ⊢ µ, ϕ2 ⊢ µ,
then3µ({ϕ1, ϕ2}) ∧ ϕ1 is consistent if and only3µ({ϕ1, ϕ2}) ∧ ϕ2 is consistent

(UC5) 3µ(Ψ1) ∧3µ(Ψ2) ⊢ 3µ(Ψ1 ⊔Ψ2)

(UC6) If Ψ1 andΨ2 are complete profiles and3µ(Ψ1) ∧3µ(Ψ2) is consistent,
then3µ(Ψ1 ⊔Ψ2) ⊢ 3µ(Ψ1) ∧3µ(Ψ2)

(UC7) 3µ1
(Ψ) ∧ µ2 ⊢ 3µ1∧µ2

(Ψ)

(UC8) If Ψ is a complete profile and if3µ1
(Ψ) ∧ µ2 is consistent

then3µ1∧µ2
(Ψ) ⊢ 3µ1

(Ψ) ∧ µ2

(UC9) 3µ(Ψ ⊔ {ϕ ∨ ϕ′}) ≡ 3µ(Ψ ⊔ {ϕ}) ∨3µ(Ψ ⊔ {ϕ′})

Some of the (UC) postulates are exactly the same as (IC) ones,just like some (U) postulates for
update are exactly the same as (R) ones for revision.

In fact, (UC0), (UC3), (UC5) and (UC7) are exactly the same asthe corresponding (IC) pos-
tulates. So the specificity of confluence operators lies in postulates (UC1), (UC2), (UC6), (UC8)
and (UC9). (UC2), (UC4), (UC6) and (UC8) are close to the corresponding (IC) postulates, but
hold for complete profiles only. The present formulation of (UC2) is quite similar to formulation
of (U2) for update. Note that in the case of a complete profile the hypothesis of (UC2) is equivalent
to ask coherence with the constraints,i.e. the hypothesis of (IC2). Postulates (UC8) and (UC9) are
the main difference with merging postulates, and correspond also to the main difference between
revision and KM update operators. (UC9) is the most important postulate, that defines confluence
operators as pointwise agregation, just like (U8) defines update operators as pointwise revision. This
will be expressed more formally in the next Section (Lemma 1).

5 Representation theorem for confluence operators

In order to state the representation theorem for confluence operators, we first have to be able to
“localize” the problem. For update this is done by looking toeach model of the base, instead of
looking at the base (set of models) as a whole. So for “localizing” the aggregation process, we have
to find what is the local view of a profile. That is what we call a state.

Definition 9 A multi-set of interpretations will be called astate. We use the lettere, possibly with
subscripts, for denoting states. IfΨ = {ϕ1, . . . , ϕn} is a profile ande = {ω1, . . . , ωn} is a state
such thatωi |= ϕi for eachi, we say thate is a state of the profileΨ, or that the statee models the
profileΨ, that will be denoted bye |= Ψ. If e = {ω1, . . . , ωn} is a state, we define the profileΨe by
puttingΨe = {ϕ{ω1}, . . . , ϕ{ωn}}.

State is an interesting notion. If we consider each base as the current point of view (goals) of
the corresponding agent (that can be possibly strengthenedin the future) then states are all possible
negotiation starting points.

States are the points of interest for confluence operators (like interpretations are for update), as
stated in the following Lemma:
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Lemma 1 If 3 satisfies (UC3) and (UC9) then3 satisfies the following

3µ(Ψ) ≡
∨

e|=Ψ

3µ(Ψe)

Defining profile entailment by puttingΨ ⊢ Ψ′ iff every state ofΨ is a state ofΨ′, the previous
Lemma has as a corollary the following:

Corollary 1 If 3 is a confluence operator then it is monotonic in the profiles, that means that if
Ψ ⊢ Ψ′ then3µ(Ψ) ⊢ 3µ(Ψ′)

This monotony property, that is not true in the case of merging operators, shows one of the
big differences between merging and confluence operators. Remark that there is a corresponding
monotony property for update.

Like revision’s faithful assignments that have to be “localized” to interpretations for update,
merging’s syncretic assignments have to be localized to states for confluence.

Definition 10 A distributed assignmentis a function mapping each statee to a total pre-order≤e

over interpretations such that:

1. ω <{ω,...,ω} ω′ if ω′ 6= ω

2. ω ≃{ω,ω′} ω′

3. If ω ≤e1
ω′ andω ≤e2

ω′, thenω ≤e1⊔e2
ω′

4. If ω <e1
ω′ andω ≤e2

ω′, thenω <e1⊔e2
ω′

Now we can state the main result of this paper, that is the representation theorem for confluence
operators.

Theorem 7 An operator3 is a confluence operator if and only if there exists a distributed assign-
ment that maps each statee to a total pre-order≤e such that

mod(3µ(Ψ)) =
⋃

e|=Ψ

min(mod(µ),≤e) (1)

Unfortunately, we have to omit the proof for space reasons. Nevertheless, we indicate the most
important ideas therein. As it is usual, theif condition is done by checking each property without
any major difficulty. In order to verify theonly if condition we have to define a distributed assigment.
This is done in the following way: for each statee we define a total pre-order≤e by putting∀ω, ω′ ∈
W ω ≤e ω′ if and only if ω |= 3ϕ{ω,ω′}

(Ψe). Then, the main difficulties are to prove that this is
indeed a distributed assigment and that the equation (1) holds. In particular, Lema 1 is very helpful
for proving this last equation.

Note that this theorem is still true if we remove respectively the postulate (UC4) from the re-
quired postulates for confluence operators and the condition 2 from distributed assignments.

6 Confluence vs Update and Merging

So now we are able to state the proposition that shows that update is a special case of confluence,
just as revision is a special case of merging.

Theorem 8 If 3 is a confluence operator (i.e. it satisfies (UC0-UC9)), then the operator⋄, defined
asϕ ⋄ µ = 3µ(ϕ), is an update operator (i.e. it satisfies (U1-U9)).
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Concerning merging operators, one can see easily that the restriction of a syncretic assignment
to a complete profile is a distributed assignment. From that we obtain the following result (the one
corresponding to Theorem 5):

Theorem 9 If △ is an IC merging operator (i.e. it satisfies (IC0-IC8)) then the operator3 defined
by

3µ(Ψ) =
∨

e|=Ψ

△µ(Ψe)

is a confluence operator (i.e. it satisfies (UC0-UC9)).
Moreover, for each confluence operator3, there exists a merging operator△ such that the

previous equation holds.

It is interesting to note that this theorem shows that every merging operator can be used to define
a confluence operator, and explains why we can consider confluence as a pointwise merging.

Unlike Theorem 5, the second part of the previous theorem doesn’t follow straightforwardly
from the representation theorems. We need to build a syncretic assignment extending the distributed
assignment representing the confluence operator. In order to do that we can use the following con-
struction: Each pre-order≤e defines naturally a rank functionre on natural numbers. Then we
put

ω ≤Ψ ω′ if and only if
∑

e|=Ψ

re(ω) ≤
∑

e|=Ψ

re(ω
′)

As a corollary of the representation theorem we obtain the following

Corollary 2 If 3 is a confluence operator then the following property holds:

If
∧

Ψ ⊢ µ andΨ is consistent then
∧

Ψ ∧ µ ⊢ 3µ(Ψ)

But unlike merging operators, we don’t have generally3µ(Ψ) ⊢
∧

Ψ ∧ µ.

Note that this “half of (IC2)” property is similar to the “half of (R2)” satisfied by update opera-
tors.

This corollary is interesting since it underlines an important difference between merging and
confluence operators. If all the bases agree (i.e. if their conjunction is consistent), then a merging
operator gives as result exactly the conjunction, whereas aconfluence operator will give this con-
junction plus additional results. This is useful if the bases do not represent interpretations that are
considered equivalent by the agent, but uncertain information about the agent’s current or future
state of mind.

7 Example

In this section we will illustrate the behaviour of confluence operators on an example. We can define
confluence operators very similarly to merging operators, by using a distance and an aggregation
function.

Definition 11 A pseudo-distancebetween interpretations is a total functiond : W×W 7→ R+ s.t.
for anyω, ω′ ∈ W : d(ω, ω′) = d(ω′, ω), andd(ω, ω′) = 0 if and only ifω = ω′.

A widely used distance between interpretations is the Dalaldistance [3], denoteddH , that is the
Hamming distance between interpretations (the number of propositional atoms on which the two
interpretations differ).
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Definition 12 An aggregation functionf is a total function associating a nonnegative real number
to every finite tuple of nonnegative real numbers s.t. for anyx1, . . . , xn, x, y ∈ R+:

• if x ≤ y, thenf(x1, . . . , x, . . . , xn) ≤ f(x1, . . . , y, . . . , xn) (non-decreasingness)

• f(x1, . . . , xn) = 0 if and only ifx1 = . . . = xn = 0 (minimality)

• f(x) = x (identity)

Sensible aggregation functions are for instancemax, sum, or leximax (Gmax) 5 [14].

Definition 13 (distance-based confluence operators)Let d be a pseudo-distance between inter-
pretations andf be an aggregation function. The result3

d,f
µ (Ψ) of the confluence ofΨ given

the integrity constraintsµ is defined by: mod(3d,f
µ (Ψ)) =

⋃
e|=Ψ

min(mod(µ),≤e), where the
pre-order≤e onW induced bye is defined by:

• ω ≤e ω′ if and only ifd(ω, e) ≤ d(ω′, e), where

• d(ω, e) = f(d(ω, ω1) . . . , d(ω, ωn)) with e = {ω1, . . . , ωn}.

It is easy to check that by using usual aggregation functionswe obtain confluence operators.

Proposition 1 Letd be any distance,3d,Σ
µ (Ψ) and3

d,Gmax
µ (Ψ) are confluence operators (i.e. they

satisfy (UC0)-(UC9)).

Example 2 Let us consider a profileΨ = {ϕ1, ϕ2, ϕ3, ϕ4} and an integrity constraintµ defined on
a propositional language built over four symbols, as follows: mod(µ) = W \ {0110, 1010, 1100,

1110}, mod(ϕ1) = mod(ϕ2) = {1111, 1110}, mod(ϕ3) = {0000}, and mod(ϕ4) =
{1110, 0110}.

W 1111 1110 0000 0110 e1 e2 e3 e4 e5 e6 3
d,Σ
µ 3

d,Gmax
µ

Σ Gmax Σ Gmax Σ Gmax Σ Gmax Σ Gmax Σ Gmax

0000 4 3 0 2 11 4430 10 4420 10 4330 9 4320 9 3330 8 3320
0001 3 4 1 3 11 4331 10 3331 12 4431 11 4331 13 4441 12 4431
0010 3 2 1 1 9 3321 8 3311 8 3221 7 3211 7 2221 6 2211 × ×
0011 2 3 2 2 9 3222 8 2222 10 3322 9 3222 11 3332 10 3322 ×
0100 3 2 1 1 9 3321 8 3311 8 3221 7 3211 7 2221 6 2211 × ×
0101 2 3 2 2 9 3222 8 2222 10 3322 9 3222 11 3332 10 3322 ×
0110 2 1 2 0 7 2221 6 2220 6 2211 5 2210 5 2111 4 2110
0111 1 2 3 1 7 3211 6 3111 8 3221 7 3211 9 3222 8 3221 × ×
1000 3 2 1 3 9 3321 10 3331 8 3221 9 3321 7 2221 8 3221 × ×
1001 2 3 2 4 9 3222 10 4222 10 3322 11 4322 11 3332 12 4332
1010 2 1 2 2 7 2221 8 2222 6 2211 7 2221 5 2111 6 2211
1011 1 2 3 3 7 3211 8 3311 8 3221 9 3321 9 3222 10 3322 ×
1100 2 1 2 2 7 2221 8 2222 6 2211 7 2221 5 2111 6 2211
1101 1 2 3 3 7 3211 8 3311 8 3221 9 3321 9 3222 10 3322 ×
1110 1 0 3 1 5 3110 6 3111 4 3100 5 3110 3 3000 4 3100
1111 0 1 4 2 5 4100 6 4200 6 4110 7 4210 7 4111 8 4211 ×

Table 1: Computations ofmod(3d,Σ
µ (Ψ)) andmod(3d,Gmax

µ (Ψ))

The computations are reported in Table 1. The shadowed linescorrespond to the interpretations
rejected by the integrity constraints. Thus the result has to be taken among the interpretations that
are not shadowed. The states that model the profile are the following ones:
e1 = {1111, 1111, 0000, 1110}, e2 = {1111, 1111, 0000, 0110},
e3 = {1111, 1110, 0000, 1110}, e4 = {1110, 1111, 0000, 0110},
e5 = {1110, 1110, 0000, 1110}, e6 = {1110, 1110, 0000, 0110}.

5leximax (Gmax) is usually defined using lexicographic sequences, but it can be easily represented by reals to fit the
above definition (see e.g. [13]).
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For each state, the Table gives the distance between the interpretation and this state for theΣ
aggregation function, and for theGmax one. So one can then look at the best interpretations for
each state.

So for instance for3d,Σ
µ (Ψ), e1 selects the interpretation1111, e2 selects0111 and 1111,

etc. So, taking the union of the interpretations selected byeach state, givesmod(3d,Σ
µ (Ψ)) =

{0010, 0100, 0111, 1000, 1111}.
Similarly we obtainmod(3d,Gmax

µ (Ψ)) = {0100, 0011, 0010, 0101, 0111, 1000, 1011, 1101}.

8 Conclusion

We have proposed in this paper a new family of change operators. Confluence operators are point-
wise merging, just as update can be seen as a pointwise revision. We provide an axiomatic definition
of this family, a representation theorem in terms of pre-orders on interpretations, and provide exam-
ples of these operators.

In this paper we define confluence operators as generalization to multiple bases of total update
operators (i.e. which semantical counterpart are total pre-orders). A perspective of this work is to
try to extend the result to partial update operators.

As Example 1 suggests, these operator can prove meaningful to aggregate the goals of a group of
agents. They seem to be less adequate for aggregating beliefs, where the global minimization done
by merging operators is more appropriate for finding the mostplausible worlds. This distinction
between goal and belief aggregation is a very interesting perspective, since, as far as we know, no
such axiomatic distinction as been ever discussed.
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Welfare properties of argumentation-based
semantics1

Kate Larson and Iyad Rahwan

Abstract

Since its introduction in the mid-nineties, Dung’s theory of abstract argumentation frameworks
has been influential in artificial intelligence. Dung viewed arguments as abstract entities with
a binary defeat relation among them. This enabled extensive analysis of different (seman-
tic) argument acceptance criteria. However, little attention has been given to comparing such
criteria in relation to the preferences of self-interested agents who may have conflicting prefer-
ences over the final status of arguments. In this paper, we define a number of agent preference
relations over argumentation outcomes. We then analyse different argument evaluation rules
taking into account the preferences of individual agents.

1 Introduction
Negotiation is at the core of multiagent systems since it provides procedures so that agents can
find beneficial agreements. While approaches based on game-theory have proved to be highly in-
fluential [9], an alternative approach for conducting negotiations is through argumentation [8]. In
argumentation, the focus is on how assertions or statements are proposed and resolved in settings
where agents may have different opinions and goals. Dung presented one of the most influential
computational models of argument [6]. Arguments are viewed as abstract entities, with a binary
defeat relation among them. This view of argumentation enables high-level analysis while abstract-
ing away from the internal structure of individual arguments. In Dung’s approach, given a set of
arguments and a binary defeat relation, a rule specifies which arguments should be accepted. A
variety of such rules have been analysed using intuitive objective logical criteria such as consistency
or self-defence [2].

Most research that employs Dung’s approach discounts the fact that argumentation takes place
among self-interested agents, who may have conflicting preferences over which arguments end up
being accepted, rejected, or undecided. As such, argumentation can (and arguably should) be studied
as an economic mechanism in which determining the acceptability status of arguments is akin to
allocating resources.

In any allocation mechanism involving multiple agents (be it resource allocation or argument
status assignment), two complementary issues are usually studied. On one hand, we may analyse
the agents’ incentives in order to predict the equilibrium outcome of rational strategies. On the
other hand, we may analyse the properties of the outcomes themselves in order to compare different
allocation mechanisms. The above issues are the subject of study of the field of game theory and
welfare economics, respectively.

The study of incentives in abstract argumentation has commenced recently [7]. To complement
this work, in this paper we initiate the study of preference and welfare in abstract argumentation
mechanisms. To this end, we define several new classes of agent preferences over the outcomes of
an argumentation process. We then analyse different existing rules for argument status assignment
in terms of how they satisfy the preferences of the agents involved. Our focus in this paper is on the
property of Pareto optimality, which measures whether an outcome can be improved for one agent
without harming other agents. We also discuss more refined social welfare measures.

The paper makes two distinct contributions to the state-of-the-art in computational models of
argument. First, the paper extends Rahwan and Larson’s definition of argumentation outcomes [7]

1A preliminary version of this paper appeared in AAAI 2008, with the title Pareto optimality in abstract argumentation.
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to account for complete labellings of arguments (as opposed to accepted arguments only). This
allows us to define a number of novel preference criteria that arguing agents may have.

The second contribution of this paper is the comparison of different argumentation semantics
using a well-known social welfare measure, namely Pareto optimality. To our knowledge, this is
the first attempt to evaluate Dung semantics in terms of the social desirability of its outcomes. In
particular, we show that in many cases, these semantics fail to fully characterise Pareto optimal
outcomes. Thus, when the semantics provides multiple possible argument status assignments, our
analysis presents a new criterion for selecting among those.

2 Background
In this section, we briefly outline key elements of abstract argumentation frameworks. We begin
with Dung’s abstract characterisation of an argumentation system [6]:

Definition 1 (Argumentation framework). An argumentation framework is a pair AF = 〈A,⇀〉
where A is a set of arguments and ⇀⊆ A × A is a defeat relation. We say that an argument α
defeats an argument β if (α, β) ∈⇀ (sometimes written α ⇀ β).2

α3 α2

α4

α1

α5

Figure 1: A simple argument graph

An argumentation framework can be represented as a directed graph in which vertices are ar-
guments and directed arcs characterise defeat among arguments. An example argument graph is
shown in Figure 1. Argument α1 has two defeaters (i.e. counter-arguments) α2 and α4, which are
themselves defeated by arguments α3 and α5 respectively.

Let S+ = {β ∈ A | α ⇀ β for some α ∈ S}. Also let α− = {β ∈ A | β ⇀ α}. We first
characterise the fundamental notions of conflict-free and defence.

Definition 2 (Conflict-free, Defence). Let 〈A,⇀〉 be an argumentation framework and let S ⊆ A
and let α ∈ A.

• S is conflict-free if S ∩ S+ = ∅.

• S defends argument α if α− ⊆ S+. We also say that argument α is acceptable with respect
to S.

Intuitively, a set of arguments is conflict free if no argument in that set defeats another. A set of
arguments defends a given argument if it defeats all its defeaters. In Figure 1, for example, {α3, α5}
defends α1. We now look at different semantics that characterise the collective acceptability of a set
of arguments.

Definition 3 (Characteristic function). Let AF = 〈A,⇀〉 be an argumentation framework. The
characteristic function of AF is FAF : 2A → 2A such that, given S ⊆ A, we have FAF (S) =
{α ∈ A | S defends α}.

When there is no ambiguity about the argumentation framework in question, we will use F
instead of FAF .

2We restrict ourselves to finite sets of arguments.
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Definition 4 (Acceptability semantics). Let S be a conflict-free set of arguments in framework
〈A,⇀〉.

• S is admissible if it is conflict-free and defends every element in S (i.e. if S ⊆ F(S)).

• S is a complete extension if S = F(S).

• S is a grounded extension if it is the minimal (w.r.t. set-inclusion) complete extension (or,
alternatively, if S is the least fixed-point of F(.)).

• S is a preferred extension if it is a maximal (w.r.t. set-inclusion) complete extension (or,
alternatively, if S is a maximal admissible set).

• S is a stable extension if S+ = A\S.

• S is a semi-stable extension if S is a complete extension of which S ∪ S+ is maximal.

Intuitively, a set of arguments is admissible if it is a conflict-free set that defends itself against
any defeater – in other words, if it is a conflict free set in which each argument is acceptable with
respect to the set itself.

An admissible set S is a complete extension if and only if all arguments defended by S are also in
S (that is, if S is a fixed point of the operator F). There may be more than one complete extension,
each corresponding to a particular consistent and self-defending viewpoint.

A grounded extension contains all the arguments which are not defeated, as well as the argu-
ments which are defended directly or indirectly by non-defeated arguments. This can be seen as a
non-committal view (characterised by the least fixed point of F). As such, there always exists a
unique grounded extension. Dung [6] showed that in finite argumentation systems, the grounded ex-
tension can be obtained by an iterative application of the characteristic function to the empty set. For
example, in Figure 1 the grounded extension is {α1, α3, α5}, which is the only complete extension.

A preferred extension is a bolder, more committed position that cannot be extended – by accept-
ing more arguments – without causing inconsistency. Thus a preferred extension can be thought
of as a maximal consistent set of hypotheses. There may be multiple preferred extensions, and the
grounded extension is included in all of them.

Finally, a set of arguments is a stable extension if it is a preferred extension that defeats every
argument which does not belong to it. A semi-stable extension requires the weaker condition that
the set of arguments defeated is maximal.

Crucial to our subsequent analysis is the notion of argument labelling [3], which specifies a
particular outcome of argumentation. It specifies which arguments are accepted (labelled in), which
ones are rejected (labelled out), and which ones whose acceptance or rejection could not be decided
(labelled undec). Labellings must satisfy the condition that an argument is in if and only if all of
its defeaters are out. An argument is out if and only if at least one of its defeaters is in.

Definition 5 (Argument Labelling). Let 〈A,⇀〉 be an argumentation framework. An argument
labelling is a total function L : A → {in, out, undec} such that:

• ∀α ∈ A : (L(α) = out ≡ ∃β ∈ A such that (β ⇀ α and L(β) = in)); and

• ∀α ∈ A : (L(α) = in ≡ ∀β ∈ A : ( if β ⇀ α then L(β) = out))

We will make use of the following notation.

Definition 6. Let AF = 〈A,⇀〉 be an argumentation framework, and L a labelling over AF . We
define:

• in(L) = {α ∈ A | L(α) = in}
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• out(L) = {α ∈ A | L(α) = out}

• undec(L) = {α ∈ A | L(α) = undec}
In the rest of the paper, by slight abuse of notation, when we refer to a labelling L as an extension,

we will be referring to the set of accepted arguments in(L).
Caminada [3] established a correspondence between properties of labellings and the different

extensions. These are summarised in Table 1.

Extensions Restrictions on Labellings
complete all labellings
grounded minimal in

minimal out
maximal undec

preferred maximal in
maximal out

semi-stable minimal undec
stable empty undec

Table 1: The relationships between extensions and labellings.

3 Agent Preferences
Abstract argumentation frameworks have typically been analysed without taking into account the
agents involved. This is because the focus has mostly been on studying the logically intuitive prop-
erties of argument acceptance criteria [2]. Recently research has commenced on evaluating argument
acceptance criteria taking into account agents’ strategic behaviour [7]. In this paper, we focus on
developing an understanding of the underlying preferences of the agents and how these can be used
in refining outcomes of the argumentation process. While we assume that agents are non-strategic,
this paper complements our earlier work in that strategic behaviour is often motivated by underlying
preferences.

In this paper we view an outcome as an argument labelling, specifying not only which arguments
are accepted, but also which ones are rejected or undecided. Thus the set L of possible outcomes is
exactly the set of all possible labellings of all arguments.

We let θi ∈ Θi denote the type of agent i ∈ I which is drawn from some set of possible types
Θi. The type represents the private information and preferences of the agent. More precisely, θi

determines the set Ai of arguments available to agent i, as well as the preference criterion used to
evaluate outcomes. We place no restrictions on the argument sets of agents, and for i 6= j it is
possible that Ai ∩ Aj 6= ∅. An agent’s preferences are over outcomes L ∈ L. By L1 �i L2 we
denote that agent i weakly prefers (or simply prefers) outcome L1 to L2. We say that agent i strictly
prefers outcome L1 to L2, written L1 �i L2, if and only if L1 �i L2 but not L2 �i L1. Finally, we
say that agent i is indifferent between outcomes L1 and L2, written L1 ∼i L2, if and only if both
L1 �i L2 and L2 �i L1.

We define agents’ preferences with respect to restricted sets of arguments in order to model
situations where agents have potentially different domains of knowledge. As a motivating example,
consider a court case where a medical expert is called as an expert witness. This expert can put
forward arguments related to medical forensics, but would be unable to comment on legal issues.
Similarly, an agent’s arguments can be limited by their position of knowledge. For example, a friend
may be in a position to comment on someone’s character, while a stranger’s comments would not be
of interest.

While many classes of preferences are possible, in this paper we focus on self-interested pref-
erences. By this we mean that we are interested in preference structures where each agent i is only
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interested in the status (i.e. labelling) of its own arguments and not on the particular status of other
agents’ arguments. We also emphasize that we assume that all agents understand and share the un-
derlying argumentation system. Thus, the question of merging argumentation systems is outside the
scope of this paper [5].

We start with individual acceptability maximising preferences [7]. Under these preferences, each
agent wants to maximise the number of arguments in Ai that end up being accepted.

Definition 7 (Acceptability maximising preferences). An agent i has individual acceptability max-
imising preferences if ∀L1, L2 ∈ L such that |in(L1) ∩ Ai| ≥ |in(L2) ∩ Ai|, we have L1 �i L2.

An agent may, instead, aim to minimise the number of arguments in Ai that end up rejected.

Definition 8 (Rejection minimising preferences). An agent i has individual rejection minimising
preferences if ∀L1, L2 ∈ L such that |out(L1) ∩ Ai| ≤ |out(L2) ∩ Ai|, we have L1 �i L2.

An agent may prefer outcomes which minimise uncertainty by having as few undecided argu-
ments as possible.

Definition 9 (Decisive preferences). An agent i has decisive preferences if ∀L1, L2 ∈ L if
|undec(L1) ∩ Ai| ≤ |undec(L2) ∩ Ai| then L1 �i L2.

An agent may only be interested in getting all of its arguments collectively accepted.

Definition 10 (All-or-nothing preferences). An agent i has all-or-nothing preferences if and only if
∀L1, L2 ∈ L, if Ai ⊆ in(L1) and Ai * in(L2), then L1 �i L2, otherwise L1 ∼i L2.

Instead of having all of its arguments collectively accepted, an agent may be interested in having
one particular focal argument accepted.

Definition 11 (Focal-argument preferences). An agent i has focal-argument preferences if and only
if there exists some argument α∗i ∈ Ai such that ∀L1, L2 ∈ L if α∗i ∈ in(L1) and α∗i 6∈ in(L2)
then L1 �i L2, otherwise, L1 ∼i L2.

Finally, we analyse a preference structure which is not strictly self-interested. In aggressive
preferences an agent is interested in defeating as many arguments of other all agents’ as possible,
and thus does care about the labelling of arguments of others.

Definition 12 (Aggressive preferences). An agent i has aggressive preferences if ∀L1, L2 ∈ L, if
|out(L1) \ Ai| ≥ |out(L2) \ Ai| then L1 �i L2.

4 Pareto Optimality
Welfare economics provides a formal tool for assessing outcomes in terms of how they affect the
well-being of society as a whole [1]. Often these outcomes are allocations of goods or resources. In
the context of argumentation, however, an outcome specifies a particular labelling. In this section,
we analyse the Pareto optimality of the different argumentation outcomes. Since labellings coincide
exactly with all complete extensions, in the subsequent analysis, all in arguments in our outcomes
are conflict-free, self-defending, and contain all arguments they defend.

A key property of an outcome is whether it is Pareto optimal. This relies on the notion of Pareto
dominance.

Definition 13 (Pareto Dominance). An outcome o1 ∈ O Pareto dominates outcome o2 if ∀i ∈ I ,
o1 �i o2 and ∃j ∈ I , o1 �j o2.

An outcome is Pareto optimal if it is not Pareto dominated by any other outcome – or, equiv-
alently, if it cannot be improved upon from one agent’s perspective without making another agent
worse off. Formally:
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Definition 14 (Pareto Optimality). An outcome o1 ∈ O is Pareto optimal (or Pareto efficient) if
there is no other outcome o2 6= o1 such that ∀i ∈ I , o2 �i o1 and ∃j ∈ I , o2 �j o1.

It is interesting to see that the grounded extension is not Pareto optimal for a population of
individual acceptability maximising agents. Consider the following example.

Example 1. Consider the graph below with three outcomes.

α2 α1

α3

in out

L1

α2 α1

α3L2

α2 α1

α3LG

undec

Suppose we have two agents with types A1 = {α1, α3} and A2 = {α2}. The grounded extension is
the labelling LG, which is not Pareto optimal. Agent 1 strictly prefers L1 and is indifferent between
LG and L2, while agent 2 strictly prefers outcome L2 and is indifferent between LG and L1.

The above observation is caused by the fact that the grounded extension is the minimal com-
plete extension with respect to set inclusion. Thus, it is possible to accept more arguments without
violating the fundamental requirement that the outcome is a complete extension (i.e. conflict-free,
admissible, and includes everything it defends).

One might expect that all preferred extensions are Pareto optimal outcomes, since they are max-
imal with respect to set inclusion. However, as the following example demonstrates, this is not
necessarily the case.

Example 2. Consider the graph below, in which the graph has two preferred extensions.

in

out

α1 α2

L1α4

α3

α5

α1 α2

L2α4

α3

α5

Suppose we have three individual acceptability maximising agents with typesA1 = {α3, α4}, A2 =
{α1} and A3 = {α2, α5}. Agents A1 and A3 are indifferent between the two extensions (they get a
single argument accepted in either) but agent A2 strictly prefers outcome L1. Thus L2 is not Pareto
optimal.

However, it is possible to prove that every Pareto optimal outcome is a preferred extension (i.e.
all non-preferred extensions are Pareto dominated by some preferred extension).

Theorem 1. If agents have acceptability-maximising preferences and if an outcome is Pareto opti-
mal then it is a preferred extension.

Proof. Let L ∈ L be a Pareto optimal outcome. Assume that L is not a preferred extension. Since L
is not a preferred extension, then there must exist a preferred extension LP ∈ L such that in(L) ⊂
in(LP ). Thus, for all i, in(L) ∩ Ai ⊆ in(LP ) ∩ Ai and |in(L) ∩ Ai| ≤ |in(LP ) ∩ Ai| which
implies that LP �i L. Additionally, there exists an argument α′ ∈ Aj for some agent j such that
α′ /∈ L and α′ ∈ LP . Therefore, |in(L) ∩ Aj | < |in(LP ) ∩ Aj | and so LP �j L. That is, LP

Pareto dominates L. Contradiction.

The grounded extension turns out to be Pareto optimal for a different population of agents.
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Theorem 2. If agents have rejection-minimising preferences then the grounded extension is Pareto
optimal.

Proof. This follows from the fact that the grounded extension coincides with labellings with minimal
out labellings [3]. Thus any other outcome would have strictly more out labels, resulting in at least
one agent being made worse-off.

It is also possible to prove the following.

Theorem 3. If agents have rejection-minimising preferences, then for any outcome L ∈ L, either L
is the grounded extension, or L is Pareto dominated by the grounded extension.

Proof. Let LG denote the grounded extension, and let L ∈ L be any outcome. If L = LG then
we are done. Assume that L 6= LG. Since LG has minimal out among all outcomes in L, then
out(LG) ⊂ out(L). Thus, for each agent i, if argument α ∈ Ai and α ∈ out(LG) then α ∈
out(L). Therefore, out(LG) ∩ Ai ⊂ out(L) ∩ Ai, and so |out(LG) ∩ Ai| ≤ |out(L) ∩ Ai|
which implies that LG �i L. In addition, there also exists some agent j and argument α′ such that
α′ ∈ Aj , α′ 6∈ out(LG) and α′ ∈ out(L). Therefore, |out(LG) ∩ Ai| < |out(L) ∩ Ai| which
implies that LG �j L. That is, LG Pareto dominates L.

The two previous theorems lead to a corollary.

Corollary 1. The grounded extension characterises exactly the Pareto optimal outcome among a
rejection minimising population.

The following result relates to decisive agents.

Theorem 4. If agents have decisive preferences, then all Pareto optimal outcomes are semi-stable
extensions.

Proof. This follows from the fact that any semi-stable extension coincides with a labelling in which
undec is minimal with respect to set inclusion [3]. The actual proof is similar in style to Theorem 1
and so due to space constraints we do not include the details.

Note that any finite argumentation framework must have at least one semi-stable extension [4].
Moreover, when at least one stable extension exists, the semi-stable extensions are equal to the stable
extensions, which themselves coincide with an empty undec [4], which is ideal for decisive agents.

Corollary 2. For agents with decisive preferences, if there exists a stable extension, then the stable
extensions fully characterise the Pareto optimal outcomes for agents with decisive preferences.

If a population of agents have all-or-nothing preferences then we can provide a partial charac-
terisation of the Pareto optimal outcomes.

Theorem 5. If agents have all-or-nothing preferences, then there exists a Pareto optimal preferred
extension.

Proof. We can prove this theorem by studying the possible cases. Let L be the set of all labellings.
Case 1: If for all L ∈ L, it is the case that for all i ∈ I , Ai 6⊆ in(L), then all agents are indifferent
between all labellings, and thus all are Pareto optimal, including all preferred extensions.
Case 2: Assume there exists labelling L such that there exists an agent i with Ai ⊆ in(L) and
which is Pareto optimal. If L is also a preferred extension then we are done. If L is not a preferred
extension, then there must exist a preferred extension L′ such that in(L) ⊆ in(L′). Since L was
Pareto optimal, then for all agents j, it must be the case that L ∼j L′ and so L′ is Pareto optimal.
Case 3: Assume there exists a labelling L such that there exists an agent i with Ai ⊆ in(L) and
which is not Pareto optimal. Thus, L is Pareto dominated by some labelling L∗ and so there must
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exist an agent j such that Aj 6⊆ in(L) and Ai,Aj ⊆ in(L∗). If L∗ is not Pareto optimal then there
must exist an agent k and a labelling L∗∗ such that Ak 6⊆ L∗ and Ai,Aj ,Ak ⊆ L∗∗. Continue this
process until the final labelling is Pareto optimal. This is guaranteed to terminate since we have a
finite set of agents and labellings. Apply Case 2.

If agents have all-or-nothing preferences, then it is possible that a preferred extension can Pareto
dominate another preferred extension.

Example 3. Consider the graph below, in which there are two preferred extensions.

α2 α1

α3α4

α2 α1

α3α4

L1 L2

in out

Suppose we have two agents with all-or-nothing preferences and with A1 = {α2, α3} and A2 =
{α1, α4}. Outcome L2 Pareto dominates outcome L1.

If agents have focal-argument preferences, then we can also provide a partial characterization of
the Pareto optimal outcomes.

Theorem 6. If agents have focal-argument preferences, then there exists a Pareto optimal preferred
extension.

The proof is similar to Theorem 5 and so due to space constraints we do not include the details.
Theorem 7 says that if the population of agents have aggressive preferences, then every Pareto

optimal outcome is a preferred extension.

Theorem 7. If agents have aggressive preferences then all Pareto optimal outcomes are preferred
extensions.

Proof. Let L be a Pareto optimal outcome. Assume that L is not a preferred extension. Since L
is not a preferred extension, then there must exist a preferred extension L′ such that out(L) ⊂
out(L′). Thus, there must exist an agent i with Ai and |out(L′)∩Ai| > |out(L)∩Ai|, and for all
agents j such that Aj ∈ out(L), |out(L′) ∩ Aj | ≥ |out(L) ∩ Aj | and so L′ Pareto dominates L.
Contradiction.

However, not all preferred extensions are Pareto optimal, as is demonstrated in the following
example.

Example 4. Consider the graph below, in which there are two preferred extensions.

α1 α2

L1 L2

α5 α3

α4

α1 α2

α5 α3

α4

in out undec
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Population Type Pareto Optimality
Individual acceptance
maximisers

Pareto optimal outcomes ⊆ preferred extensions
(Theorem 1)

Individual rejection
minimisers

Pareto optimal outcome = grounded extension
(Theorem 2, 3, and Corollary 3)

Decisive Pareto optimal outcomes ⊆ semi-stable extensions
(Theorem 4); if a stable extension exists, then Pareto
optimal outcomes = stable extensions (Corollary 2)

All-or-nothing Some preferred extension (Theorem 5) and possibly
other complete extensions

Focal argument Some preferred extension (Theorem 6) and possibly
other complete extensions

Aggressive Pareto optimal outcomes ⊆ preferred extensions
(Theorem 7)

Table 2: Classical extensions & Pareto optimality

Suppose we have three agents with aggressive preferences such thatA1 = {α2, α4},A2 = {α1, α3}
and A3 = {α5}. Then L1 �1 L2, L1 �3 L2 and L1 ∼2 L2. That is, L1 Pareto dominates L2.

We summarise the results from this section in Table 2. These results are important since they
highlight a limitation in the definitions of extensions in classical argumentation. In some cases,
Pareto optimal outcomes are fully characterised by an extension (e.g. grounded extension and re-
jection minimising agents). In other cases, however, classical extensions do not provide a full char-
acterisation (e.g. for acceptance maximising agents, every Pareto optimal outcome is a preferred
extension but not vice versa). In such cases, we need to explicitly refine the set of extensions in
order to select the Pareto optimal outcomes (e.g. generate all preferred extensions, then iteratively
eliminate dominated ones).

5 Restrictions on the Argumentation Framework
In Section 4 we placed no restrictions on the topological structure of the argumentation framework,
nor on the structure of the argument sets of agents. In this section we impose a restriction on
the argumentation framework which induces coherency in the framework, and then show that this
provides refined characterizations of the Pareto optimal outcomes.

Definition 15 (Coherent [6]). An argumentation framework, AF , is coherent if each preferred ex-
tension of AF is stable.

We introduce an extended definition of defeat.

Definition 16 (Indirect defeat [6]). Let α, β ∈ A. We say that α indirectly defeats β if and only if
there is an odd length path from α to β in the argument graph.

Dung introduced the notion of an argumentation framework being limited-controversial, which is
equivalent to there being no odd-length cycles in the argumentation graph. That is, an argumentation
framework is limited-controversial if no argument indirectly defeats itself. Given this restriction on
the argumentation framework, the following result is obtained.

Theorem 8. Every limited-controversial argumentation framework is coherent [6].

Theorem 8 and Definition 15 together imply Corollary 3.

Corollary 3. If an argumentation framework, AF , contains no odd-length cycles, then all of its
preferred extensions are stable. That is, if LP is a preferred extension of AF then undec(LP ) = ∅.

We now introduce a restriction on the sets of arguments that agents can maintain. In particular,
we assume that for each agent i, the set of arguments, Ai, contains no arguments which indirectly
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defeat each other, given the argumentation framework, AF . For example, referring to the figure in
Example 2, argument α4 indirectly defeats α1, α3 and α5. Thus, we assume that no agent’s argument
set contains both α4 and either α1, α3 or α5. Intuitively, this property implies that each agent’s
arguments must be conflict-free (i.e. consistent), both explicitly and implicitly. Explicit consistency
implies that no argument defeats another. Implicit consistency implies that other agents cannot
possibly present a set of arguments that reveal an indirect defeat among one’s own arguments. More
concretely, exposing an indirect defeat chain can be seen as exposing a fallacy in one’s arguments.

If the argument sets of the agents contain no indirect defeats with respect to the argumentation
framework, then there are no odd-length cycles in the entire argument graph since, otherwise, at
least one agent would have an argument that indirectly defeats itself. This allows us to provide a
further characterization of the Pareto optimal outcomes for certain classes of agents’ preferences.

Theorem 9. Assume that agents have decisive preferences and that no agent has an argument set
that contains indirect defeats. Then the set of stable extensions completely characterises the Pareto
optimal outcomes.

Proof. From Corollary 3 any labelling LP that corresponds to a preferred extension must be a stable
extension. From Corollary 2 if stable extensions exists then they fully characterise the set of Pareto
optimal outcomes for decisive agents.

Theorem 10. Assume that agents have acceptability-maximising preferences, and that no agent has
an argument set that contains indirect defeats. Then,

• there exists at least one stable extension, and

• every Pareto optimal outcome is a stable extension.

Proof. Dung proved that every argumentation framework has at least one preferred extension
(Corollary 12 [6]). Given the restriction on the agents’ argument sets, there are no odd-length cy-
cles and so all preferred extensions are stable (Corollary 3). By Theorem 1 if an outcome is Pareto
optimal then it must be a preferred extension, and, thus, a stable extension.

Finally, Theorems 9 and 10 allow us to characterize the Pareto optimal outcomes even when the
agent population contains different preferences.

Corollary 4. For agent populations consisting of both acceptability-maximising and decisive prefer-
ences, if agents’ argument sets contain no indirect defeats with respect to the argumentation frame-
work, then every Pareto optimal outcome is a stable extension.

6 Further Refinement using Social Welfare
While Pareto optimality is an important way of evaluating outcomes, it does have some limitations.
First, as highlighted above, there may be many Pareto optimal outcomes, and it can be unclear why
one should be chosen over another. Second, sometimes Pareto optimal outcomes may be undesirable
for some agents. For example, in a population of individual acceptability maximising agents, a
preferred extension which accepts all arguments of one agent while rejecting all other arguments is
Pareto optimal.

Social welfare functions provide a way of combining agents’ preferences in a systematic way
in which to compare different outcomes, and in particular, allow us to compare Pareto optimal
extensions. We assume that an agent’s preferences can be expressed by a utility function in the
standard way and that it is possible to compare utility functions of the agents in a meaningful way.
A social welfare function is an increasing function of individual agents’ utilities and is related to the
notion of Pareto optimality in that any outcome that maximises social welfare is also Pareto optimal.
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Thus by searching for social-welfare maximising outcomes we select outcomes from among the set
of Pareto optimal ones.

While there are many types of social welfare functions, two important ones are the utilitarian
and egalitarian social welfare functions.3 Example 5 illustrates how these functions can be used to
compare different Pareto optimal outcomes.

Example 5. Consider the graph below with four preferred extensions.

α1 α2 α3 α4L2

in out

α5

α1 α2 α3 α4L3 α5

α1 α2 α3 α4L4 α5

α1 α2 α3 α4L1 α5

Assume that there are two agents withA1 = {α1, α3, α5} andA2 = {α2, α4}, and that these agents
have acceptability maximising preferences with utility functions ui(L,Ai) = |in(L) ∩ Ai|. L1, L3

and L4 are all Pareto optimal. L1 and L3 both maximise the utilitarian social welfare, while L3

also maximises the egalitarian social welfare function.

The above analysis shows that by taking into account welfare properties, it is possible to provide
more fine grained criteria for selecting among classical extensions (or labellings) in argumentation
frameworks. Such refined criteria can be seen as a sort of welfare semantics for argumentation.

7 Discussion and Conclusion
Until recently, argumentation-based semantics have been compared mainly on the basis of how they
deal with specific benchmark problems (argument graph structures with odd-cycles etc.). Recently,
it has been argued that argumentation semantics must be evaluated based on more general intuitive
principles [2]. Our work can be seen to be a contribution in this direction. We introduced a new
perspective on analysing and designing argument acceptability criteria in abstract argumentation
frameworks. Acceptability criteria can now be evaluated not only based on their logically intuitive
properties, but also based on their welfare properties in relation to a society of agents.

Our framework and results can be used to decide which argument evaluation rule to use given the
type of agent population involved. While we formulated the problem as being multiagent in nature,
our findings can also be extended to single-agent settings. In situations where there are several
extensions, the agent can be consulted as to its preferences, in order to select the extension that the
agent prefers.

The results are also of key importance to argumentation mechanism design (ArgMD) [7] where
agents may argue strategically – e.g. possibly hiding arguments. ArgMD aims to design rules
of interaction such that self-interested agents produce, in equilibrium, a particular desirable social
outcome (i.e. the rules implement a particular social choice function). Understanding what social

3Given some outcome o, the utilitarian social welfare function returns the sum of the agents’ utilities for o, while the
egalitarian social welfare function returns mini ui(o, θi).
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outcomes are desirable (in this case, Pareto optimal) for different kinds of agents is an important
step in the ArgMD process. Indeed, a major future research direction, opened by this paper, is the
design of argumentation mechanisms that implement Pareto optimal social choice functions under
different agent populations.
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Approval-rating systems that never reward

insincerity

Rob LeGrand and Ron K. Cytron

Abstract

Electronic communities are relying increasingly on the results of continuous polls

to rate the effectiveness of their members and offerings. Sites such as eBay and

Amazon solicit feedback about merchants and products, with prior feedback and

results-to-date available to participants before they register their approval ratings.

In such a setting, participants are understandably prone to exaggerate their approval

or disapproval, so as to move the average rating in a favored direction.

We explore several protocols that solicit approval ratings and report a consensus

outcome without rewarding insincerity. One such system is rationally optimal while

still reporting an outcome based on the the usual notion of averaging. That system

allows all participants to manipulate the outcome in turn. Although multiple equi-

libria exist for that system, they all report the same average approval rating as their

outcome. We generalize our results to obtain a range of declared-strategy voting

systems suitable for approval-rating polls.

1 Approval ratings and their aggregation

Approval ratings are one mechanism that communities can use to offer incentive and reward
for good behavior or service. The prospect of feedback following a given interaction presum-
ably increases the accountability of that interaction for all parties involved. Publication of
approval ratings then enables appropriate consequences to follow from positive or negative
experiences. In this paper we consider several forms of aggregation and we show that some
methods can reward insincerity while others cannot. We next provide several examples of
approval rating systems and formulate a general form of an approval rating poll.

1.1 Examples of approval rating polls

Subscribers and observers of media frequently learn of the results of approval rating polls that
attempt to discern how strongly a participating electorate endorses a person or a position
of interest. As an example, several web sites post varous forms of approval ratings for films
and games. Specifically, Rotten Tomatoes [2] posts the results of two polls for each film:

• In effect, each review is turned into a 0 or 1 value, and the Tomatometer is the
average of those values expressed as a percentage. Putative viewers might consult a
film’s Tomatometer value to determine whether they should see that film.

• Each critic can also rate a film’s overall quality on a 1–10 scale. Rotten Tomatoes
then publishes the average of all such ratings.

Finally, consider the electronic marketplace, in which participants are asked to rate the
honesty and effectiveness of merchants and customers. Sites such as eBay poll their partic-
ipants concerning how strongly they approve of the behavior of the marketplace members
they encounter in transactions. Upon completion of a transaction, the involved parties are
asked to rate each other. An aggregation of an indvidual’s approval ratings is posted for
public view, so that members can consider such information before engaging that individual
in a transaction.
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1.2 Formulation

We next define a general instance of an approval rating poll to facilitate presentation of our
results.

• An electorate of n participants is polled. Based on the participants’ response and the
aggregation protocol at hand, the result of the poll will be published as a rational
number in the interval [0, 1].

• Each participant i has in mind a sincere preference rating ri, where 0 ≤ ri ≤ 1, that can
be construed as that participant’s dictatorial preference. The tuple of all participants’
sincere ratings is denoted by the vector ~r. We further make the reasonable assumption
that voter i’s preferences are single-peaked and non-plateauing.1

• Finally, voter i participates in the poll by expressing a rating preference of vi, which
may or may not be the same as ri. In fact, we are particularly interested in situations
where vi 6= ri. For example, consider an eBay customer who undertakes a transaction
with a highly approved merchant. If the customer becomes disgruntled with the mer-
chant, then the customer’s resulting rating of the merchant might be overly negative,
precisely because of the merchant’s otherwise high rating.

The tuple of all expressed approval ratings is denoted by the vector ~v.

This paper considers an approach that can account for, mitigate, or prevent the use of
insincerity to increase a participant’s effectiveness in an approval rating poll.

1.3 Aggregating approval ratings

The results of an approval rating poll are typically reported by an aggregation procedure
that is disclosed a priori. In this section, we consider two popular aggregation schemes:
average and median.

Average aggregation Here, the result of the approval rating poll is computed as the

average of the participants’ expressed approval ratings: v̄ =
�

n
j=1

vj

n . While the Average
aggregation function is sensitive to each voter’s input, it has an important disadvantage:
Voters can often gain by voting insincerely. For example, the 1983 film Videodrome has
five critics’ ratings on Metacritic [1]. If we assume that these critics rated the film sincerely
(that each would prefer that the average rating of the film be his or her rating), we have
~r = [0.4, 0.7, 0.8, 0.8, 0.88]. If these preferences are actually expressed sincerely in an Average
aggregation context, then we have ~v = ~r and the Average outcome is 0.716.

Consider voter 5, whose ideal outcome is r5 = 0.88. That voter could achive a better
outcome by not expressing the sincere preference v5 = 0.88 and instead voting v5 = 1.
The resulting Average aggregation yields the outcome 0.74, which, being closer to 0.88, is
preferred by voter 5 to 0.716.

Median aggregation (n odd) Another possible aggregation function computes a median

of ~v: ṽ is a value that satisfies |{i : ṽ < vi}| ≤
n
2
≤ |{i : ṽ ≤ vi}|.

2 According to the median

1For the applications we describe, it is reasonable to assume that each voter i would prefer that the
outcome be as near to the ideal ri as possible. This single-peaked assumption makes possible the optimal
strategy we describe in section 2.

2The above definition does not necessarily prescribe a unique outcome when n is even; we address this
issue below.
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voter theorem [4, 10], when n is odd, Median aggregation becomes the unique, Condorcet-
compliant [13] rating system, yielding a result that is preferred by some majority of voters
to every other outcome.

Unfortunately, Median aggregation can effectively ignore almost half of the voters—
majority rule can mean majority tyranny. Given the tuple of votes ~v = [0, 0, 0, 1, 1], the 1-
voters are effectively ignored when the median, 0, is chosen as the outcome. Majority tyranny
could be quite undesirable for polls of this type, especially when the goal of aggregating
ratings is to represent a satisfactory consensus for all voters. The Average outcome of the
above tuple, 0.4, arguably provides such a much better consensus.

In contrast with Average aggregation, Median aggregation is nonmanipulable by insin-
cere voters—at least when n is odd: a voter i can never improve the outcome from his or her
point of view by voting vi 6= ri. (The treatment for an even number of voters and the proofs
here and below are omitted for space; this material can be found in LeGrand [12, ch. 3].)
Thus, Median aggregation does not reward insincerity for an odd number of participants.

Without losing nonmanipulability, the Median function can be generalized to give the
outcome bṽ where |{i : bṽ < vi}| ≤ bn ≤ |{i : bṽ ≤ vi}| for any 0 ≤ b ≤ 1 (in this notation,
the b is intended as a parameter modifying the tilde symbol). If bn is an integer, there may
be more than one 0 ≤ φ ≤ 1 that satisfies |{i : φ < vi}| ≤ bn ≤ |{i : φ ≤ vi}|. In that case,
define Φ as the set of all such φ. Then

bṽ ≡







min(Φ) if b < min(Φ)
b if min(Φ) ≤ b ≤ max(Φ)

max(Φ) if max(Φ) < b

This order-statistic outcome equals max(~v) when b = 0, the third quartile when b = 1

4
, the

Median outcome when b = 1

2
, the first quartile when b = 3

4
and min(~v) when b = 1.

2 Rationally optimal strategy for Average aggregation

As shown in section 1, Average aggregation can reward insincerity. In this section, we
develop a rationally optimal strategy: a computation by which a voter can achieve a result
as close as possible to that voter’s preferred outcome. As before, we assume an electorate in
which n voters will express preferences. We begin by considering a rationally optimal (“best
response”) strategy from the perspective of a final, omniscient voter. We then consider the
behavior of a system in which all voters use a rationally optimal strategy.

To facilitate exposition and analysis of our results, we begin by generalizing the scale on
which preferences are expressed as follows. In an [m, M ]-Average poll, voters are allowed to
express preference ratings in the interval [m, M ], where m ≤ 0 and 1 ≤M . We continue to
assume that sincere preference ratings are in the interval [0, 1]; the expanded range is there-
fore intended to allow voters more room to manipulate the outcome. We also assume that
preferences are aggregated by computing the average of the voters’ expressed preferences.

2.1 Strategy for a final, omniscient voter

Consider a (−∞, +∞)-Average poll in which voter vn is the last voter to express an approval
rating, and in which all other voters vote their sincere preference ratings: (∀i 6= n) vi = ri.
If voter n can see the expressed approval ratings of all voters, then the ideal outcome for
voter n (v̄ = rn) can be realized by voting vn = rnn−

∑

j 6=n rj .
More generally, in an [m, M ]-Average poll, voter n should express vn to move the outcome
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as close to rn as possible:

vn = min



max



rnn−
∑

j 6=n

rj , m



 , M



 (1)

The above is the rationally optimal strategy for voter n in an [m, M ]-Average approval rating
poll.

As an example, consider the [0, 1]-Average system with sincere preferences from the
Videodrome example above: ~r = [0.4, 0.7, 0.8, 0.8, 0.88]. After all other voters express their
sincere preferences, v5’s rationally optimal preference rating is given by

v5 = min



max



r5n−
∑

j 6=5

rj , 0



 , 1





= min (max (0.88 · 5− (0.4 + 0.7 + 0.8 + 0.8), 0) , 1) = 1 (2)

achieving an outcome v̄ of 0.74. No other choice for v5 would achieve an outcome v̄ closer
to r5 = 0.88.

After voter n has voted using Equation 1, either voter n’s ideal outcome rn has been
realized or voter n has moved the outcome as close to rn as is immediately possible. Note
also that v̄ ∈ [0, 1] even though vn ∈ [m, M ].

2.2 Equilibrium for n strategic voters

We have thus far allowed only voter n to use a rationally optimal strategy, requiring all
other voters to express their sincere approval ratings. We now consider the properties of
the more practical [m, M ]-Average system in which each voter i uses a rationally optimal
strategy to compute an expressed approval rating, based on i’s sincere approval rating ri

and on the expressed votes of all other voters. When each voter i establishes vi, other voters
may wish to update their expressed approval ratings.

While there are many possible schemes that could accommodate iterative changes in
expressed preferences, we examine the more general issue of reaching an equilibrium: each
voter i has arrived at an expressed preference vi such that the rationally optimal strategy
recommends no change in vi:

(∀i) vi = min



max



rin−
∑

j 6=i

vj , m



 , M



 (3)

So, at equilibrium, (∀i) (v̄ < ri ∧ vi = M) ∨ (v̄ = ri) ∨ (v̄ > ri ∧ vi = m), and it follows
that

(∀i) v̄ < ri −→ vi = M (4)

and
(∀i) v̄ > ri −→ vi = m (5)

Equation 4 says that for every i such that v̄ < ri, vi = M . So we can place a lower
bound on the sum of all vis by assuming all other vis are at the minimum:

m · |{i : v̄ ≥ ri}|+ M · |{i : v̄ < ri}| ≤

n
∑

i=1

vi = v̄n
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Similarly, Equation 5 says that for every i such that v̄ > ri, vi = m. So we can place an
upper bound on the sum of all vis by assuming all other vis are at the maximum:

v̄n =

n
∑

i=1

vi ≤ m · |{i : v̄ > ri}|+ M · |{i : v̄ ≤ ri}|

So we have

m · |{i : v̄ ≥ ri}|+ M · |{i : v̄ < ri}| ≤ v̄n ≤ m · |{i : v̄ > ri}|+ M · |{i : v̄ ≤ ri}|

which implies [12, ch. 3]

|{i : v̄ < ri}| ≤
v̄ −m

M −m
n ≤ |{i : v̄ ≤ ri}|

Thus any average at equilibrium must satisfy the two equations

|{i : v̄ < ri}| ≤
v̄ −m

M −m
n (6)

and
v̄ −m

M −m
n ≤ |{i : v̄ ≤ ri}| (7)

3 Multiple equilibria can exist

For some sincere-ratings vectors ~r, multiple equilibria exist: there exist more than one
~v satisfying Equation 3. For example, if minimum vote m = 0, maximum vote M = 1
and ~r = [0.4, 0.7, 0.7, 0.8, 0.88] (a slight tweak to the Videodrome example), then any ~v =
[0, v2, v3, 1, 1], where v2 + v3 = 1.5, satisfies Equation 3 and thus represents an equilibrium
from which the optimal strategy would change no voter’s vote.

In this case, at each possible equilibrium the outcome is v̄ = 0.7 (the ideal outcome of
the two voters “conspiring” to keep it there). This is no coincidence; in general, it turns out
that, even when multiple equilibria exist, the average at equilibrium is unique.

4 At most one equilibrium average rating can exist

We have seen that, given a length-n vector ~r of sincere ratings where 0 ≤ ri ≤ 1 for
1 ≤ i ≤ n, any equilibrium ~v that results from every voter’s using the optimal strategy will
have a φ = v̄ that satisfies the inequalities

|{i : φ < ri}| ≤
φ−m

M −m
n (8)

and
φ−m

M −m
n ≤ |{i : φ ≤ ri}| (9)

It turns out that at most one such φ exists for a given ~r:

Theorem 4.1. Given a vector ~r of length n where 0 ≤ ri ≤ 1 for 1 ≤ i ≤ n,

|{i : φ1 < ri}| ≤
φ1−m
M−m n ≤ |{i : φ1 ≤ ri}| ∧

|{i : φ2 < ri}| ≤
φ2−m
M−m n ≤ |{i : φ2 ≤ ri}| −→ φ1 = φ2

(The proof considers two symmetric cases, φ1 < φ2 and φ2 < φ1, and shows by contra-
diction that each is impossible.)
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5 At least one equilibrium always exists

It does little good to show that all equilibria will have equal averages if an equilibrium does
not always exist. Fortunately, for any set of sincere preferred outcomes ~r, there will always
be at least one equilibrium ~v such that no voter i would choose to change vi according to
the optimal Average strategy defined above.

We can show that a particular procedure will always find an equilibrium. We use the
Videodrome example (~r = [0.4, 0.7, 0.8, 0.8, 0.88] with m = 0, M = 1) again for demon-
stration. This time, let us say initial votes are assumed to be, not sincere, but zero (the
minimum allowed vote): ~v = [0, 0, 0, 0, 0]. Then we again allow voters to revise their votes
in order, from voter 5 down to voter 1. (This particular order will prove significant.) First,
voter 5 deliberates:

v5 = min



max



r5n−
∑

j 6=5

rj , 0



 , 1



 = min (max (0.8 · 5− (0 + 0 + 0 + 0), 0) , 1) = 1

and changes v5 to 1. The voters then in turn reason similarly and change v4 to 1, v3 to
1, v2 to 0.5 and v1 to 0. The resulting vote vector, ~v = [0, 0.5, 1, 1, 1], is indeed the same
equilibrium found above in section 2.2, this time going through the voters only once.

This procedure inspires the following straightforward algorithm, which takes a ~r as input
and outputs an equilibrium ~v, assigning to each vi exactly once. It orders the voters by
decreasing ri values, then uses the optimal strategy for each voter i in order, implicitly
making the assumption that vj = m for j > i.

Algorithm 5.1. FindEquilibrium(~r, m, M):
sort ~r so that (∀i ≤ j) ri ≥ rj

for i = 1 to n do
vi ← min

(

max
(

rin−
∑

k<i vk − (n− i)m, m
)

, M
)

return ~v

Note that the algorithm assigns a value between m and M , inclusive, to each vi exactly
once, and that the assignment to vi does not depend on the values of vj where j > i.
Therefore, after Algorithm 5.1 completes, it must be true that

(∀i) vi = min

(

max

(

rin−
∑

k<i

vk − (n− i)m, m

)

, M

)

but this is not quite enough to see that the resulting ~v is an equilibrium. To see that, we
must show that an intermediate voter would not change his or her vote even after later
voters have voted:

Theorem 5.2. For any ~r, where 0 ≤ ri ≤ 1 for 1 ≤ i ≤ n, the vote vector ~v returned by

Algorithm 5.1 satisfies

(∀i) vi = min



max



rin−
∑

k 6=i

vk, m



 , M





(The proof essentially shows that, because of the way that Algorithm 5.1 orders the
voters, a certain kind of “partial” equilibrium is satisfied after each step of the algorithm,
which implies that an equilibrium is found after the last step.)

So an equilibrium ~v must always exist for any input ~r and any m ≤ 0 and M ≥ 1.
We now know that, given some sincere-preference vector ~r,
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• at most one value φ satisfies Equations 8 and 9 (Theorem 4.1),

• any equilibrium ~v has average vote v̄ satisfying Equations 6 and 7 (section 2.2), and

• at least one equilibrium ~v must exist (Theorem 5.2)

and so we can conclude that any φ that satisfies Equations 8 and 9 must equal the average
vote v̄ at all possible equilibria ~v.

6 Average-Approval-Rating DSV

We have seen that Algorithm 5.1, FindEquilibrium, always finds an equilibrium for any
sincere-preference vector ~r. We also know that any equilibrium ~v will have the same average
v̄ (and that 0 ≤ v̄ ≤ 1). It follows that the average at equilibrium is unique and can be
defined as a function:

Algorithm 6.1. AverageAtEquilibrium(~r, m, M):
~v ← FindEquilibrium(~r, m, M)

return v̄ =
� n

i=1
vi

n

Even when m < 0 and/or M > 1, AverageAtEquilibrium will return an outcome between
0 and 1. In fact, the outcome returned will be within the range defined by the input vector
of cardinal preferences:

Theorem 6.2. (∀m ≤ 0, M ≥ 1) min(~r) ≤ AverageAtEquilibrium(~r, m, M) ≤ max(~r).

6.1 Declared-Strategy Voting

In 1996, Lorrie Cranor and Ron K. Cytron [9] described a hypothetical voting system they
called Declared-Strategy Voting (DSV). DSV can be seen as a meta-voting system, in that
it uses voters’ expressed preferences among alternatives to vote rationally in their stead
in repeated simulated elections. The repeated simulated elections are run according to the
rules of some underlying voting protocol, which can be any protocol that accepts any kind of
ballots and uses them to choose one outcome. Cranor [8] explored using DSV with plurality,
but DSV, as a meta-voting system, could conceivably work with any voting protocol for
which a rationally optimal strategy can be described, such as Average aggregation.

6.2 A new class of rating systems

The Average and Median protocols necessarily take a vote vector ~v as input—voters’ sincere
preference information cannot be directly and reliably elicited, so ~r is not generally available.
If the Average system is used and voters are rationally strategic (and are allowed to keep
changing their votes until all decide to stop), the outcome can reasonably be expected to
equal AverageAtEquilibrium(~r, 0, 1). But instead of using Average on the vote vector ~v and
relying on the voters to use optimally rational strategy when deciding on their votes vi,
AverageAtEquilibrium(~v, 0, 1) can be calculated and taken as the outcome, implicitly and
effectively using the DSV framework with Average as the underlying voting protocol. In
fact, we are not limited to AverageAtEquilibrium(~v, 0, 1); AverageAtEquilibrium(~v, m, M)
lies between 0 and 1 for any m ≤ 0 and M ≥ 1 and so can serve as a rating system as well.

For illustration, we reuse the Videodrome example and assume sincere voters: ~v =
[0.4, 0.7, 0.8, 0.8, 0.88]. Suppose we want to take as the outcome of this election not the
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average vote v̄ or the median vote ṽ but AverageAtEquilibrium(~v, 0, 1). First we calculate
FindEquilibrium(~v, 0, 1), which we have seen in section 2.2 to be

~w = FindEquilibrium(~v, 0, 1) = [0, 0.5, 1, 1, 1]

Then we see that

w̄ =

∑

5

i=1
wi

5
=

0 + 0.5 + 1 + 1 + 1

5
= 0.7

giving the outcome as 0.7, which equals neither the Average outcome (v̄ = 0.716) nor the
Median outcome (ṽ = 0.8).

Alternatively, we can let m = −99 and M = 100. Then the equilibrium we find turns
out to be

~w = FindEquilibrium(~v,−99, 100) = [−99,−99, 2, 100, 100]

And then

w̄ =

∑

5

i=1
wi

5
=
−99 + (−99) + 2 + 100 + 100

5
= 0.8

This time the effective power to determine the outcome fell to voter 3 rather than voter 2,
giving the Median outcome of 0.8. (We will see that if m + M = 1 and M −m is allowed
to become large enough, the resultant outcome will equal the Median outcome.)

It turns out that in neither of these cases will any voter be able to gain from voting
insincerely. This is no coincidence.

This Average-Approval-Rating (AAR) DSV system has three intuitively desirable prop-
erties: a kind of monotonicity (Theorem 6.3), immunity to Average-like strategy (Theorem
6.4) and a general nonmanipulability (Theorem 6.5). The first two will imply the third.

6.3 Monotonicity of AAR DSV

First, the monotonicity property: When some input votes are increased and none is de-
creased, the outcome never decreases.

Theorem 6.3. If ~v = [v1, v2, . . . vn] and ~v′ = [v′
1
, v′

2
, . . . v′n] where (∀i) vi ≤ v′i, then

AverageAtEquilibrium(~v, m, M) ≤ AverageAtEquilibrium(~v′, m, M).

(The proof is by contradiction.)

6.4 AAR DSV is immune to Average-style strategy

Another desirable property of AAR DSV is that its outcome is unaffected by voters’ using
Average-style strategy, trying to move the outcome in the desired direction by moving their
votes in that direction.

Theorem 6.4. If ~v = [v1, v2, . . . vn] and ~v′ = [v′
1
, v′

2
, . . . v′n] where, for all 1 ≤ i ≤ n,

• v′i ≤ vi if AverageAtEquilibrium(~v, m, M) > vi

• v′i = vi if AverageAtEquilibrium(~v, m, M) = vi

• v′i ≥ vi if AverageAtEquilibrium(~v, m, M) < vi

then AverageAtEquilibrium(~v′, m, M) = AverageAtEquilibrium(~v, m, M).

(The proof relies on Theorem 4.1.)
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6.5 AAR DSV never rewards insincerity

For any voting system, it is desirable to show that a voter can never gain a better outcome
by voting insincerely than by voting sincerely, however sincerity is defined. It turns out
that, when AverageAtEquilibrium(~v, m, M) is selected as the outcome, no voter i can gain
an outcome closer to the ideal ri by voting vi 6= ri instead of vi = ri, guaranteeing a strong
nonmanipulability property to AAR DSV:

Theorem 6.5. If ~v = [v1, v2, . . . vn] where v1 = r1 and ~v′ = [v′
1
, v′

2
, . . . v′n] where

v′
1
6= r1 and (∀i > 1) v′i = vi, then |AverageAtEquilibrium(~v, m, M) − r1| ≤

|AverageAtEquilibrium(~v′, m, M)− r1|.

(The proof consists of four cases and relies on Theorems 6.3 and 6.4.)

7 Evaluation of AAR DSV systems

To simplify the evaluation of AAR DSV systems, we re-parameterize them by defining

Φa,b(~v) ≡ lim
x→a+

AverageAtEquilibrium

(

~v, b−
b

x
, b +

1− b

x

)

(The limit is needed for the a = 0 case; as a approaches 0, Φa,b(~v) approaches the bṽ outcome
defined in section 1.3.)

Any system that uses the outcome function Φa,b(~v) where 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1 has
the property that no voter can gain by voting insincerely. But it does not follow that any
values of a and b give equally desirable outcomes.

One approach to evaluating this continuous range of nonmanipulable systems is to take
the Average system as a benchmark and determine which Φa,b function comes nearest,
on average, to giving the Average outcome. Given a vote vector ~v, we can calculate the
Average outcome v̄ and the outcome Φa,b(~v) for many a, b combinations. For any particular
a and b, we can calculate the squared error from v̄: SEa,b(~v) = (Φa,b(~v) − v̄)2. If V =
{~v1, ~v2, ~v3 . . . ~vN} is a vector of N vote vectors, then we can find the root-mean-squared
error from Average, weighted by the number of ratings in each vote vector ~vi:

RMSEa,b(V) =

√

√

√

√

∑N
i=1
|~vi| · SEa,b(~vi)
∑N

i=1
|~vi|

Given some “training” vector V of vote vectors, we would like to choose a and b to minimize
RMSEa,b(V).

This approach requires a concrete source of vote-vector data or a distribution for gener-
ating such. The website Metacritic [1] offers ideal data for our purposes: Reviews for over
4000 films are summarized into ratings between 0 and 100. For example, one film3 has the
seven ratings 70, 70, 80, 80, 88, 88 and 100, which are easily converted into the vote vector
~v = [0.7, 0.7, 0.8, 0.8, 0.88, 0.88, 1]. Converting all films on Metacritic the same way gives us
a large vector V of vote vectors.4

Since there are two parameters, a and b, it is somewhat impractical to try all combina-
tions. But it may be desired to fix b = 0.5 to ensure a kind of symmetry: If (∀i) v′i = 1− vi,

3The 1978 film Animal House.
4We use the data for the 4581 films mined from Metacritic on Thursday, 3 April 2008, that had at least

three critics rate them. Note that we are implicitly assuming that the rating data are sincere; unfortunately,
we know of no large data set gathered using a nonmanipulable rating protocol such as ours, so we must
hope that most critics are more interested in maintaining their professional reputations than in optimizing
a film’s Metacritic rating.
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then (∀a) Φa,0.5(~v
′) = 1 − Φa,0.5(~v), so electorates that prefer low and high outcomes are

treated symmetrically. Fixing b = 0.5 and trying all 10001 evenly spaced values of a, we
find that a = 0.3240 (Figure 1) gives the minimum RMSE for the Metacritic data.

Figure 1: RMSE, varying a and fixing b = 0.5000
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Having fixed b = 0.5 and found the value of a that minimizes RMSE (0.3240), we can now
fix a = 0.3240 and find the value of b that minimizes RMSE, then fix b again accordingly
and continue in a hill-climbing fashion until we find a stable minimum. In practice, the
procedure is guaranteed to halt because the RMSE decreases at each step for which either
a or b changes.

Using this procedure on the Metacritic data and testing 10001 evenly spaced values of a or
b at each step, whether we start with a ∈ {0, 0.25, 0.5, 0.75} or with b ∈ {0, 0.25, 0.5, 0.75},5

we find a local RMSE minimum (approximately 0.03242) at a = 0.3647, b = 0.4820; such
a system is equivalent to running an Average election with rationally optimal voters and
allowing votes between m ≈ −0.8396 and M ≈ 1.9023.

Other preference domains may have very different properties and thus different ideal
values for a and b.

8 Related and future work

In this paper we have applied the DSV framework of Cranor and Cytron [9] to create a
large class of nonmanipulable rating systems, assuming only that each voter has a single-
peaked preference function over the bounded, one-dimensional outcome space. The single-
peaked assumption allows us to avoid the negative implications of the Gibbard-Satterthwaite
theorem [11, 15], making it possible to find nonmanipulable protocols that have no dictator.

Most relevant to our work is Moulin’s [14] result. He characterized the set of all non-
manipulable protocols that resolve a vector of real inputs into one real outcome, showing
that any such protocol is equivalent to adding some fixed set of n− 1 points to the n input
points and taking as the outcome the median of the combined set. It turns out that our
AverageAtEquilibrium(~v, m, M) is equivalent to adding the (evenly spaced) points

m +
1

n
(M −m), m +

2

n
(M −m), . . . m +

i

n
(M −m), . . . m +

n− 1

n
(M −m)

5Note that when a = 1, the outcome is simply AverageAtEquilibrium(~v, 0, 1) and does not depend on
the the b parameter, so different values of b cannot be compared. When b is set to 1, RMSE turns out to be
minimized at a = 1.
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to the input points (which fall between 0 and 1) and taking the median of that set as the out-
come, so our set of AAR DSV systems is indeed a subset of Moulin’s set of nonmanipulable
protocols.

In future work we plan to explore higher-dimensional outcome spaces. The Median
system can be perhaps most naturally generalized to d > 1 dimensions by finding the point

t that minimizes
∑n

i=1
dist(t, vi), where dist(t, vi) =

(

∑d
j=1

(tj − vij)
2

)1/2

, the Euclidean

distance between t and vi. t is known as the Fermat–Weber point [18, 7]. When d > 1,
unlike in the one-dimensional case, it usually has a single optimum point even when n is
even (the only exception is an even number of collinear points). Unfortunately, there is no
computationally feasible exact algorithm to calculate the Fermat–Weber point in general [3],
but numerical approximation is quite easy [17, 6].

The Fermat–Weber point does not change when a point vi is moved farther away from t in
the direction of the vector from t to vi [16], so, in a sense, direction matters but not distance.
Because of this property, a näıve Average-style strategy for manipulating this Fermat–Weber
system fails, and any successful manipulation would have to move a sincere vote in some
other direction. Unfortunately, an insincere voter can indeed manipulate the Fermat–Weber
point to move closer to his or her ideal outcome [12, ch. 3]. In fact, Zhou [19] showed that
no protocol with effective outcome space of dimension d > 1 is generally nonmanipulable
when voters can have any single-peaked (concave) preference function.

The Average system is easily generalized to higher-dimension hypercubes by taking the
average of each coordinate, effectively calculating the centroid, the center of mass given
a set of unit masses. This generalization is equivalent to finding the point t that mini-
mizes

∑n
i=1

dist(t, vi)
2. The resulting system is equivalent to conducting d separate and

independent Average elections, and the results above for strategic behavior under the one-
dimensional Average system apply to the “election” for each coordinate. In particular,
if each voter has separable preferences [5] (preferences in one dimension are independent
of preferences in all other dimensions), conducting a d-dimensional AAR DSV election is
equivalent to conducting d parallel one-dimensional AAR DSV elections, and so gives a non-
manipulable system. Such a preference-function space is not abundant by Zhou’s definition.

The one-dimensional space between 0 and 1 can be generalized in other ways than
into hypercubes. For example, the outcome space could be the d-dimensional simplex (for
example, {(x, y, z) ∈ � 3 : x + y + z = 1}), which could describe the division of a limited
resource among several uses (such as a committee allocating a fixed sum among budget
items). Unfortunately, even when all voters’ preferences are separable, AAR DSV systems
may be manipulable—in a sense, dimensions are interdependent for the outcome space itself.
It may be, however, that no voter can move the outcome to one which is closer to ideal on
one dimension without moving it further on some other dimension. We plan to investigate
this “dominance”-nonmanipulability.

We would like to thank Steven Brams and the anonymous reviewers for their valuable
comments and suggestions on this work.
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Dodgson’s Rule

Approximations and Absurdity

John C. McCabe-Dansted1

Abstract

With the Dodgson rule, cloning the electorate can change the winner, which Young

(1977) considers an “absurdity”. Removing this absurdity results in a new rule

(Fishburn, 1977) for which we can compute the winner in polynomial time (Rothe

et al., 2003), unlike the traditional Dodgson rule. We call this rule DC and intro-

duce two new related rules (DR and D&). Dodgson did not explicitly propose the

“Dodgson rule” (Tideman, 1987); we argue that DC and DR are better realizations

of the principle behind the Dodgson rule than the traditional Dodgson rule. These

rules, especially D&, are also effective approximations to the traditional Dodgson’s

rule. We show that, unlike the rules we have considered previously, the DC, DR and

D& scores differ from the Dodgson score by no more than a fixed amount given a

fixed number of alternatives, and thus these new rules converge to Dodgson under

any reasonable assumption on voter behaviour, including the Impartial Anonymous

Culture assumption.

1 Introduction

Finding the Dodgson winner to an election can be very difficult, Bartholdi et al. (1989)
proved that determining whether an alternative is the Dodgson winner is an NP-hard prob-
lem. Later Hemaspaandra et al. (1997) refined this result by showing that the Dodgson
winner problem was complete for parallel access to NP, and hence not in NP unless the
polynomial hierarchy collapses. This result was of interest to computer science as the pre-
viously known problems in this complexity class were obscure by comparison.

For real world elections we do not want intractable problems. Tideman (1987) proposed
a simple rule to approximate the Dodgson rule. The impartial culture assumption states
that all votes are independent and equally likely. Under this assumption, it has been proven
that the probability that Tideman’s rule picks the Dodgson winner converges to one as the
number of voters goes to infinity (McCabe-Dansted et al., 2007). Our paper also showed
that this growth was not exponentially fast. Two rules have been independently proposed
for which this convergence is exponentially fast, our Dodgson Quick (DQ) rule and the
GreedyWinner algorithm proposed by Homan and Hemaspaandra (2005). It is usually easy
to verify that the DQ winner and GreedyWinner are the same as the Dodgson winner,
a property that Homan and Hemaspaandra formalise as being “frequently self-knowingly
correct”. However the proofs of convergence depended heavily on the unrealistic impartial
culture assumption. We shall show that under the Impartial Anonymous Culture (IAC)
these rules do not converge.

The importance of ensuring that statistical results hold on reasonable assumptions on
voter behaviour is considered by Procaccia and Rosenschein (2007). They define “determin-
istic heuristic polynomial time algorithm” in terms of both the problem to be solved and a
probability distribution over inputs. However they do not consider the issue of whether a
heuristic is self-knowingly correct. Thus we extend the concept of an algorithm being “fre-
quently self-knowingly correct” to allow particular probability distributions to be specified.

1The author would like to thank Arkadii Slinko for his many valuable suggestions and references.
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Procaccia and Rosenschein (2007) also propose “Junta” distributions; these distributions
are intended to produce problems that are harder than would be produced under reasonable
assumptions on voter behaviour. Hence if it is easy to solve a problem when input is gen-
erated according to a Junta distribution it is safe to assume that it will be easy under any
reasonable assumption of voter behaviour. We will not use Junta distributions, but instead
simply use that fact that even “neck-and-neck” national elections are won by thousands of
votes. We will also show that the rules we have considered previously, Tideman, Dodgson
Quick etc., do not converge to Dodgson’s rule under IAC.

However, the reason that the Dodgson rule is so hard to compute is because cloning
the electorate can change the winner. That is, if we replace each vote with two (or more)
identical votes, this may change the winner. When discussing majority voting Young (1977)
described this property as an “absurdity”. Young suggested that such absurdities be fixed
in majority voting by allowing fractions of a vote to be deleted. Fishburn (1977) proposed
a similar modification to the traditional Dodgson rule, which we call Dodgson Clone. The
Dodgson Clone scores can be computed by relaxing the integer constraints on the Integer
Linear Program that Bartholdi et al. (1989) proposed to calculate the Dodgson score; normal
(rational) Linear Programs can be solved in polynomial time, we can compute the Dodgson
Clone score in polynomial time (Rothe et al., 2003).

The Dodgson Clone rule is also an effective approximation to the Dodgson rule. In
computer science, an approximation typically refers to an algorithm that selects a value
that is always accurate to within some error. This form of approximation is not meaningful
when selecting a winner, although these rules can be used to approximate the frequency
that Dodgson winner has some property. For example, Shah (2003) used Tideman’s rule
to approximate the frequency that the Dodgson winner matched the winners according to
other rules, and so such Tideman, DQ etc. can be considered approximations of Dodgson’s
rule in a loose sense. However we can approximate the Dodgson score. We will show that for
a fixed number of alternatives, the Dodgson Clone score approximates the Dodgson score to
within a constant error. As it is implausible that the margin by which the winner wins the
election will not grow with the size of the electorate, the Dodgson winner will converge to the
Dodgson Clone winner under any reasonable assumption of voter behaviour. In particular
we will show that they will converge under the Impartial Anonymous Culture assumption.

We propose two closer approximations Dodgson Relaxed (DR) and Dodgson Relaxed and
Rounded (D&). These approximations, like the traditional Dodgson rule, are not resistant
to cloning the electorate. This allows them to be closer to the Dodgson rule than Dodgson
Clone, both rules converge to the Dodgson rule exponentially quickly under the Impartial
Culture assumption. The DR rule is superior to the Dodgson rule in the sense that it can
split ties in favour of alternatives that are fractionally better. The D& scores are rounded
up, so the D& rule does not have this advantage. However it is exceptionally close to
Dodgson. In 43 million elections randomly generated according to various assumptions on
voter behaviour, the D& winner differed from the Dodgson winner in only one election.

The approximation proposed by Procaccia et al. (2007) is similar to these approxima-
tions in the sense that it involves a relaxation of the integer constraints. However their
approximation is randomised, and thus quite different from our deterministic approxima-
tions. Using a randomised approximation as a voting rule would be unusual, and they do
not discuss the merits of such a rule. Thus the focus of their paper is quite different, as
we present rules that we argue are superior to the traditional formalisation of the Dodgson
rule. Additionally, they do not discuss the issue of frequently self-knowing correctness.

Another approach to computing the Dodgson score has been to limit some parameter.
Bartholdi et al. (1989) showed that computing the Dodgson scores and winner is polynomial
when either the number of voters or alternatives is limited. It was shown that computing
these from a voting situation is logarithmic with respect to the number of voters when the
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number of alternatives is fixed (McCabe-Dansted, 2006), and hence Dodgson winner is Fixed
Parameter Tractable (FPT) with number of alternatives as the fixed parameter. It is now
also known that the Dodgson winner is FPT when the Dodgson score is taken as the fixed
parameter (Betzleri et al., 2008).

Thus we will define the Dodgson based rules in terms of Condorcet-tie winners, rather
than Condorcet winners. As we will discuss briefly, this does not affect convergence.

2 Preliminaries

In our results we use the term agent in place of voter and alternative in place of candidate,
as not all elections are humans voting other humans into office. For example, in direct
democracy, the citizens vote for laws rather than candidates.

We assume that agents’ preferences are transitive, i.e. if they prefer a to b and prefer b
to c they also prefer a to c. We also assume that agents’ preferences are strict, if a and b are
distinct they either prefer a to b or b to a. Thus we may consider each agent’s preferences
to be a ranking of each alternative from best to worst.

Let A and N be two finite sets of cardinality m and n respectively. The elements of A
will be called alternatives, the elements of N agents. We represent a vote by a linear order
of the m alternatives. We define a profile to be an array of n votes, one for each agent. Let
P = (P1, P2, . . . , Pn) be our profile. If a linear order Pi ∈ L(A) represents the preferences
of the ithagent, then by aPib, where a, b ∈ A, we denote that this agent prefers a to b.

A multi-set of linear orders ofA is called a voting situation. A voting situation specifies
which linear orders were submitted and how many times they were submitted but not who
submitted them.

The Impartial Culture (IC) assumption is that each profile is equally likely. The Impar-
tial Anonymous Culture (IAC) assumption is that each voting situation is equally likely. To
understand the difference, consider a two alternative election with billions of agents; under
IC it is almost certain that each alternative will get 50% (±0.5%) of the vote; under IAC,
50.0% is no more likely than any other value.

Let P = (P1, P2, . . . , Pn) be our profile. We define nxy to be the number of linear orders
in P that rank x above y, i.e. nxy ≡ #{i | xPiy}.

Definition 2.1. The advantage of a over b is defined as follows:

adv(a, b) = max(0, nab − nba)

A Condorcet winner is an alternative a for which adv(a, b) > 0 for all other alternatives
b. We define a Condorcet-tie winner, to be an alternative a such adv(b, a) = 0 for all
other alternatives a. A Condorcet winner or Condorcet-tie winner does not always exist.

It is traditional to define the Dodgson score of an alternative as the terms of the minimum
number of swaps of neighbouring alternatives required to make that alternative defeat all
others in pairwise elections, i.e. make the alternative a Condorcet winner. When not
requiring solutions to be integer this becomes undefined, as if we defeat an alternative by
ε > 0 then there exists a better solution where we defeat the alternative by only ε/2.

For this reason, when defining the Dodgson scores we only require that the alternative
defeat or tie other alternatives, i.e. make the alternative a Condorcet-tie winner. For better
consistency with the more traditional Dodgson rule we could define the Condorcet winner
as an alternative a for which adv(a, b) ≥ 1. However this would mean that the Dodgson
Clone rule would not be resistant to cloning of the electorate.

This difference in definition does not affect convergence. Our proof of convergence re-
lies only on fact that Dodgson, D&, DR and DC scores differ by at most a fixed amount
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(O(m!)) when the number of alternatives is fixed. To convert a Condorcet-tie winner c into
a Condorcet winner c we need to swap c over at most (m − 1) alternatives, each requiring
at most (m− 1) swaps of neighbouring alternatives. Hence the difference between the score
according to these different definitions of Dodgson is at most (m− 1)2.

We will now define a number of rules in terms of scores. The winner of each rule below
is the alternative with the lowest score.

The Dodgson score (Dodgson 1876, see e.g. Black 1958; Tideman 1987), which we
denote as ScD(a), of an alternative a is defined as the minimum number of swaps of neigh-
boring alternatives required to make a a Condorcet-tie winner. We call the alternative(s)
with the lowest Dodgson score(s) the Dodgson winner(s). (Bartholdi et al., 1989)

The Tideman score ScT(a) of an alternative a is:

ScQ(a) =
∑
b 6=a

adv(b, a).

The Dodgson Quick (DQ) score ScQ(a), of an alternative a is

ScQ(a) =
∑
b 6=a

F (b, a), where F (b, a) =
⌈

adv(b, a)
2

⌉
.

Although the definitions of ScQ and ScT are very similar, the Dodgson Quick rule con-
verges exponentially fast to Dodgson’s rule under the Impartial Culture assumption, where
as Tideman’s rule does not (McCabe-Dansted et al., 2007). This is because Dodgson and
DQ are more sensitive to a large number of alternatives defeating a by a small odd margin
(e.g. 1) than Tideman is.

We define the k-Dodgson score Sck
D(d) of a as being the Dodgson score of a in a profile

where each agent has been replaced with k clones, divided by k. That is, where P is our
fixed profile, Pk is the profile with each agent replaced with k clones, and ScD[P](a) is the
Dodgson score of a in the profile P, then

Sck
D(a) = Sck

D[P](a) =
ScD[Pk](a)

k

We define the Dodgson Clone (DC) score ScC(a) of an alternative a as mink Sck
D(a).

The DC score can be equivalently defined by modifying the Dodgson rule to allow votes to
be split into rational fractions and allowing swaps to be made on those fractions of a vote.
Note that like the Tideman approximation, the DC score is less sensitive than Dodgson to
a large number of alternatives defeating a by a margin of 1, so the DC score is unlikely to
converge to Dodgson as quickly as DQ under the Impartial Culture assumption.

We define the Dodgson Relaxed (DR) score ScR as with the Dodgson score, but
allow votes to be split into rational fractions. However we require that a be swapped over b
at least F (b, a) times. Thus ScR(d) ≥ ScQ(d) and the Dodgson Relaxed rule will converge at
least as quickly as DQ. The DR rules thus sacrifices independence to cloning of the electorate
to be closer to the Dodgson rule than DC.

The Dodgson Relaxed and Rounded (D&) score Sc& is the DR score rounded up,
i.e. Sc&(d) = dScR(d)e.

3 Dodgson Linear Programmes

The Dodgson Clone scores can be computed by relaxing the integer constraints on the Integer
Linear Programme (ILP) for Dodgson’s rule (Rothe et al., 2003). In this section we will
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show that the difference between the solutions of the ILP and LP are O(m!). Bartholdi
et al. (1989) note that there are only m! orderings of the alternatives and thus no more
than m! vote types. However, since we never swap d down the profile (McCabe-Dansted,
2006), the ordering of the candidates below d are irrelevant. We will formalise this notion
as d-equivalence:

Definition 3.1. Where v is a linear order on m alternatives, let vi represent the ithhighest
ranked alternative and v≤i represent the sequence of ithhighest ranked alternatives. Where
d is an alternative, we say v and w are d-equivalent (v ≡d w) iff there exists i such that
vi = d and v≤i = w≤i.

Lemma 3.2. Let Sd be the set of d-equivalence classes. Then |Sd| is less than (m− 1)!e
where e = 2.71 . . . is the exponential constant.

Proof. We see that there is one equivalence class where d is ranked in the top position,
m − 1 equivalence classes where d is ranked in the second highest position, and in general∏m−1

k=m−i+1 k when d is ranked ith from the top. We note that:

m−1∏
k=m−i+1

k =
(m− 1)!
(m− i)!

We see that

|Sd| =
(m− 1)!
(m−m)!

+
(m− 1)!

(m− (m− 1))!
+ · · ·+ (m− 1)!

(m− 1)!

< (m− 1)!
(

1
0!

+
1
1!

+ · · ·
)

= (m− 1)!e

Corollary 3.3. If we categorise votes into type based on d-equivalence classes (instead of
linear orders), the ILP below has less than m (m− 1)!e = m!e variables.

Note that there are less than (m− 1)!e choices for i, no more than m choices for j and
thus less than m (m− 1)!e = m!e variables (each of the form yij).

Lemma 3.4. We can transform the ILP of Bartholdi et al. (1989) into the following form
(McCabe-Dansted, 2008, 2006):
min

∑
i

∑
j>0 yij subject to

yi0 = Ni (for each type of vote i)∑
ij(eijk − ei(j−1)k)yij ≥ Dk (for each alternative k)

yij ≤ yi(j−1) (for each i and j > 0)
yij ≥ 0, and each yij must be integer.

Proof. For each i and j variable yij represents the number of times that the candidate d is
swapped up at least j positions. In the LP Dk may be defined as adv(k, d)/2 to compute the
DC score or dadv(k, d)/2e to compute the DR score (under the ILP these are equivalent).

Theorem 3.5. The DR (ScR), DC (ScC) and D& (Sc&) scores are bounded as follows:

ScD(d)− (m− 1)!(m− 1)e < ScC(d) ≤ ScR(d) ≤ Sc& ≤ ScD(d)

Proof. Every solution to the Integer Linear Program for the Dodgson score is a solution
to the Linear Program for the DR score. Every solution to the LP for the DR score is a
solution to the LP for the DC score. Thus the DC score cannot be greater than the DR
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score, which cannot be greater than the Dodgson score (ScC(d) ≤ ScR(d) ≤ ScD(d)). Since
ScD is integer, it follows that ScR(d) ≤ dScR(d)e = Sc&(d) ≤ ScD(d). Also note that given
a solution y to either LP, we can produce a solution y′ to the ILP simply by rounding up
each variable (y′ij = dyije), hence

ScD(d)− ScC(d) ≤
∑

i

∑
j>0

dyije − yij <
∑

i

∑
j>0

1 ≤ (m− 1)!e

Since i can take less than (m− 1)!e values, and j can vary from 1 to (m− 1), it follows
that

ScD(d)− (m− 1)!(m− 1)e < ScC(d) ≤ ScR(d) ≤ Sc& ≤ ScD(d)

These results can also be used to find tighter bounds on the complexity of solving the
ILP and LPs (McCabe-Dansted, 2006, 2008).

4 Counting Proof of Convergence under IAC

For a voting situation U and linear order v, we represent the number of linear orders of
type v in U by #U (v).

Where X ∈ {D,T}, let ∆X (a, z) be equivalent to ScX(a)− ScX(z). Given an arbitrary
pair of alternatives (a, z) we pick an arbitrary linear order ab . . . z with a ranked first and z
ranked last and call it v. We also define the reverse linear order ṽ = z . . . ba.

Lemma 4.1. Replacing a vote of type ṽ with a vote of type v will increase ∆T(a, z) by at
least one.

Proof. We see that replacing a vote of type ṽ with a vote of type v will increase adv(a, z)
by one, or decrease adv(z, a) by one.

Lemma 4.2. Replacing a vote of type ṽ with a vote of type v will increase ∆D(a, z) by at
least one.

Proof. Say a is not a Condorcet-tie winner, but is a Condorcet-tie winner after some minimal
set S of swaps is applied to the profile P . Let P ′ be the profile P after one vote of type
ṽ has been replaced with a vote of type v. If any swaps were applied to the vote those
swaps are no longer required, and ScD[P ′](a) < ScD[P ](a). Otherwise we can apply the set
of swaps S to P ′ resulting in adv(a, k) being at least 2 for all other alternatives k. Hence
we can remove one of the swaps, and still result in a being a Condorcet-tie winner after the
swaps have been applied to P ′.

Say a is a Condorcet-tie winner in P . Then z is not a Condorcet-tie winner in P ′. As
in the previous paragraph we can conclude that ScD[P ](z) < ScD[P ′](z).

Lemma 4.3. For a fixed integer k, and a fixed ordered pair of alternatives (a, z) the pro-
portion of voting situations, with n agents and m alternatives, for which ∆X(a, z) = k is no
more than:

(m!− 2)
(n + m!− 2)

Proof. Say v = ab . . . z is some fixed linear order and ṽ = z . . . ba is the reverse order. We
define an equivalence relation ∼ on the set of voting situations, as follows: say U, V are two
voting situations, then

U ∼ V ⇐⇒ ∀w 6=v, w 6=ṽ#V (w) = #U (w).
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From Lemma 4.1 and 4.2 we see that in each equivalence class, there can be at most one
voting situation for which ∆X(a, z) = k . Also note that whereas there are

|Sn(A)| =
(

n + m!− 1
n

)
distinct voting situations there are at most(

n + (m!− 1)− 1
n

)
equivalence classes under ∼. Hence the proportion of voting situations for which ∆X(a, z) =
k is no more than:

(n + m!− 1)!
n!(m!− 1)!

n!(m!− 2)!
(n + m!− 2)!

=
(n + m!− 1)!
(n + m!− 2)!

(m!− 2)!
(m!− 1)!

=
(m!− 2)

(n + m!− 2)

Lemma 4.4. If ∆T(a, z) = k and a is a Tideman winner and z is a DQ winner, then
0 ≤ k < m.

Proof. As a is a Tideman winner and z is a DQ winner, then

ScT(a) ≤ ScT(z), ScQ(z) ≤ ScQ(a)

Recall that

ScQ(x) =
∑
y 6=x

⌈
adv(y, x)

2

⌉
, ScT(x) =

∑
y 6=x

adv(y, x).

We see that adv(y, x) ≤ 2 dadv(y, x)/2e ≤ adv(y, x) + 1 and so ScT(x) ≤ 2ScQ(x) <
ScT(x) + m for all alternatives x. Thus

ScT(z) ≤ 2ScQ(z) ≤ 2ScQ(a) < ScT(a) + m.

And so ScT(a) ≤ ScT(z) < ScT(a) + m. Let k = ScT(a)− ScT(z). Then 0 ≤ k < m, and so
there are no more than m ways of choosing k if we wish the DQ and Tideman winners to
differ.

Recall that Theorem 3.5 states:

ScD(d)− (m− 1)!(m− 1)e < ScC(d) ≤ ScR(d) ≤ Sc& ≤ ScD(d)

where e = 2.71 . . . is the exponential constant. Given that there are only m ways of choosing
k such that the Tideman and DQ winners differ, and less than (m − 1)!(m − 1)e ways of
choosing k such that the Dodgson, DC, DR and/or D& winners differ, we get the following
theorem.

Theorem 4.5. The proportion of voting situations, with n agents and m alternatives, for
which a is a Tideman winner and z is a DQ winner is no more than:

(m!− 2)
(n + m!− 2)

m.

The proportion for which a is Dodgson winner and z is a DC, DR and/or D& winner is
less than

(m!− 2)
(n + m!− 2)

(m− 1)!(m− 1)e.
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As there are only m(m − 1) ways of choosing a and z from the set of alternatives, we
get the following corollary

Corollary 4.6. The probability that the DQ and Tideman rule pick the same winners
converges to 1 as n → ∞, under the Impartial Anonymous Culture assumption. Likewise
the probability that the DR, DC, D& and Dodgson rules pick the same winner converges to
1 as n →∞.

In other words the DR, DC and D& winners (and scores) provide “deterministic heuristic
polynomial time” (Procaccia and Rosenschein, 2007) algorithms for the Dodgson winner
(and score) with the IAC distribution.We can use the same technique to show that the
Greedy Algorithm proposed by Homan and Hemaspaandra (2005) converges to the DQ
and Tideman rules under IAC, as the GreedyScore differs from the DQ score by less than
m.By setting k to 0 we may likewise prove that the probability of a non-unique Tideman or
Dodgson winner converges to 0 under IAC.

We extend the concept of a “frequently self-knowingly correct algorithm” (Homan and
Hemaspaandra, 2005) such that we can specify a distribution over which the algorithm is
frequently self-knowingly correct.

Definition 4.7. A self-knowingly correct (Homan and Hemaspaandra, 2005) algorithm A
is a “frequently self-knowingly correct algorithm over a distribution µ” for g : Σ∗ → T iff

lim
n→∞

∑
x∈Σn, A(x)∈T×{maybe}

Pµ(x) = 0

where Pµ(x) is the probability that X = x when X is chosen from Σn under the µ distribution
and for all x we have (A(x))1 = g(x) or (A(x))2 = “maybe”.

Using the set of linear orders L(A) as Σ we may construct a frequently self-knowingly
correct algorithm from DC (or DR, or D&) as the algorithm can output “definitely” when-
ever the DC winner has DC score that is at least (m − 1)!(m − 1)e less than any other
alternative.

5 Non-convergence of Tideman Based rules

Definition 5.1. A “voting ratio” is a function f : L(A) → [0, 1] such that∑
v∈L(A)

f(v) = 1.

We say that a profile P reduces to a voting ratio f if

∀v∈L(A)#{i : Pi = v} =nf(v)

Note 5.2. A voting ratio is similar to a voting situation, but unlike a voting situation does
not contain any information about the total number of agents.

Definition 5.3. We say that a voting ratio f is “bad” if for every profile P that reduces to
f and has an even number of agents, the DQ winner of P differs from the Dodgson winner.

Example 5.4. The following voting ratio is bad.

h(v) =


16/39 if v = abcx
12/39 if v = cxab
10/39 if v = bcxa
1/39 if v = cbax

0 otherwise
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We see that for a profile that reduces to the above voting ratio, we have the following advan-
tages and scores per 78 agents:

a

3014

c

b

x

34

26

10

78

a b c x

DQ score 12 17 13 54
Dodgson score 14 17 13 54

The Dodgson score of a is higher than the DQ score of a as to swap a over c we must
first swap a over b or a over x. We have to swap a over c at least 7 times. Hence we must
use a total of at least 14 swaps to make a a Condorcet-tie winner. We see that a is the DQ
winner, but c is the Dodgson winner.

We will now show that there exists a neighbourhood around the voting ratios g and h
that is bad.

Lemma 5.5. Altering a single vote will change the Dodgson scores and DQ scores by at
most m− 1.

Proof. Recall that

ScQ(a) =
∑
b 6=a

F (b, a), where F (b, a) =
⌈

adv(b, a)
2

⌉
.

We see that for each other alternative b changing a single vote can change F (b, a) by at
most one, and there are m− 1 such alternatives.

Say that P and R are two profiles that differ only in a single vote. Let P ′ and R′ be
P and R respectively after some arbitrary d has been swapped to the top of the vote that
differs, which requires no more than m− 1 swaps. We see that

ScD[P ](d) ≤ ScD[P ′](d) + m− 1 ≤ ScD[R](d) + m− 1
ScD[R](d) ≤ ScD[R′](d) + m− 1 ≤ ScD[P ](d) + m− 1 .

Corollary 5.6. For any positive integer k, alternative d, profile P and rule X ∈ {D,Q}
(i.e. Dodgson or DQ), if ScX(d) < ScX(a)− 2k(m− 1) for all other alternatives a, then d
will remain the unique X winner in any profile that results from changing k or less votes.

Lemma 5.7. There is a neighbourhood of bad voting ratios around the voting ratio h from
Example 5.4.

Proof. We see that in a profile with n agents that reduces to the voting ratio h the Dodgson
and DQ winners have scores that are at least n

78 lower than the other alternatives. Thus
if we alter less than n

78
1

2(1)(4−1) = n
468 votes, the DQ winner will remain different from the

Dodgson winner.

Thus we may now state the following theorem:

Theorem 5.8. If we generate profiles randomly according to the IAC distribution, with
m ≥ 4, the DQ, Greedy and Tideman winners do not converge to the Dodgson winner as
the number of agents tends to infinity.
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It is easy to generalise this result to non-trivial Pólya-Eggenberger distributions. See
(McCabe-Dansted, 2006) for details.

Under the IAC, the Tideman rule (McCabe-Dansted et al., 2007) and the greedy algo-
rithm proposed by Homan and Hemaspaandra (2005) converges to the DQ rule, which does
not converge to Dodgson’s rule. It follows that the Tideman rule and greedy algorithm do
not converge to Dodgson’s rule under the IAC.

As the difference between the DQ scores and the GreedyScores (Homan and Hemas-
paandra, 2005) is less than m, the DQ winner and GreedyWinner will converge under the
IAC.

6 Conclusion

We have previously (McCabe-Dansted et al., 2007) proved that Tideman’s rule does converge
under IC, and presented a refined rule (DQ) which converged exponentially quickly. Another
approximation with exponentially fast convergence was independently proposed by Homan
and Hemaspaandra (2005).

Unfortunately, real voters are not independent, and so the Impartial Culture assumption
is not realistic. This paper investigates the asymptotic behaviour of approximations to
the Dodgson rule under other assumptions of voting behaviour, particularly the Impartial
Anonymous Culture (IAC) assumption, that each multiset of votes is equally likely.

We found that the approximations converge to each other under IAC, but they do not
converge to Dodgson. Hence the DQ rule is not asymptotically closer to the Dodgson rule
than the Tideman rule is, although DQ converges faster under the IC.

It is not realistic to assume that voters’ behaviour will precisely follow any mathematical
model, including IAC. Fortunately the proof that our new approximations converge to
Dodgson does not depend on the details of the IAC. Indeed, the DC, DR, D& and Dodgson
winners will all be the same if the scores of the two leading alternatives differ by less than
(m−1)!(m−1)e. This assumption is realistic for a sufficiently large number of voters. Even
in the neck and neck 2000 US presidential elections, the popular vote for the leading two
alternatives differed by half a percent — over half a million votes. If we used the Dodgson
rule to choose between the top five alternatives, the difference between the Dodgson scores
of the leading two alternatives would have to be less than 261 for the winners to differ. Even
if the entire electorate conspired to cause the winners to differ, minor inaccuracies such as
hanging chads could frustrate their attempt. Even in cases where the Dodgson Relaxed does
differ from the Dodgson, the difference seems to be primarily that the Dodgson Relaxed rule
picks a smaller set of tied winners as it is able to split ties in favour of alternatives that
have fractionally better DR scores. This is in some sense more democratic than tie breaking
procedures such as breaking ties in favour of the preferences of the first voter.

Thus determining that an algorithm is “frequently self-knowingly correct”, as defined
by Homan and Hemaspaandra (2005), is insufficient to conclude that the algorithm will
converge in practice. The DQ and GreedyWinner provide frequently self-knowingly correct
algorithms, but do not converge under other assumptions of voter behaviour such as IAC. We
have extended the definition to allow a distribution to be specified. So, in other words, DQ
and GreedyWinner provide algorithms that are “frequently self-knowingly correct over IC”,
but unlike DC, DR, and D&, do not provide algorithms that are “frequently self-knowingly
correct algorithms over IAC”.

We have previously shown that the Dodgson scores and winners of a voting situa-
tion can be computed from a voting situation with O(f1(m) ln n) arithmetic operations
of O(f2(m) ln n) bits of precision (McCabe-Dansted, 2006) for some pair of functions f1 and
f2. However we did not find a good upper bound on f1 or f2, even f1(4) may be unreason-
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ably large. This suggests that it may be important to use a variant of Dodgson’s rule that
is truely polynomial, such as DC, DR or D&. See (McCabe-Dansted, 2006) for a discussion
of the complexity of these rules.

We have found that the scores of the most of the approximations we have studied form
a hierarchy of increasingly tight lower bounds on the Dodgson score:

ScS(x)
2

≤ ScT(x)
2

≤ ScQ ≤ ScR ≤ Sc& ≤ ScD ≤ ScR + (m− 1)!(m− 1)e

The Dodgson Clone rule does not fit in that hierarchy, although it is the case that

ScT(x)
2

≤ ScC ≤ ScR ≤ ScD ≤ ScC + (m− 1)!(m− 1)e .

Despite the great accuracy of the D& approximation, there are good reasons to pick other
approximations. The difference between the DR rule and the D& rule is that the DR rule
can split ties based on fractional scores, so the DR rule may be considered superior to D&
and Dodgson’s rule. The DC rule is resistant to cloning of the electorate. The DQ rule
is very simple to compute, and very easy to write in any programming language. As the
DQ rule is known to converge exponentially fast under IC, this makes the DQ rule very
appropriate for cases where the data is known to distributed according to IC. This is the
case for studies that have randomly generated data according to the IC (see e.g. McCabe-
Dansted and Slinko, 2006; Shah, 2003; Nurmi, 1983). The Tideman rule is no more easy to
compute than the DQ rule. However, the mathematical definition of the Tideman rule is
simpler than the DQ rule. This makes the Tideman rule useful for theoretical studies of the
Dodgson rule where the speed of convergence is not important. Also, like the DC rule, the
Tideman rule is resistant to cloning the electorate.

We conclude that the DC and DR rules are superior, for social choice, to the traditional
definition of the Dodgson rule. DC provies resistance to cloning the electorate, and both
are better at splitting ties than the traditional definition of Dodgson rule. We know of
no advantage of the traditional definition over these rules. Even if the traditional Dodgson
winner is preferred, it may be hard to justify the computational complexity of the traditional
Dodgson rule, especially since it is almost certain that these rules would pick the same result.
If, despite all this, the traditional Dodgson rule is still chosen, these new rules provide
frequently self-knowingly correct algorithms for the Dodgson winner for any reasonable
assumption of voter behaviour, including IAC.
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The Cost and Windfall of Manipulability

Abraham Othman and Tuomas Sandholm

Abstract

A mechanism is manipulable if it is in agents’ best interest to misrepresent their
private information (lie) to the center. We provide the first formal treatment of the
windfall of manipulability, the seemingly paradoxical quality by which the failure of
any agent to play their best manipulation yields a strictly better result than an opti-
mal truthful mechanism. We dub such mechanisms manipulation optimal. We prove
that any manipulation-optimal mechanism can have at most one manipulable type
per agent. We show the existence of manipulation-optimal multiagent mechanisms
with the goal of social welfare maximization, but not in dominant strategies when
agents are anonymous and the mechanism is symmetric, the most common setting.
For this setting, we show the existence of manipulation-optimal mechanisms when
the goal is affine welfare maximization.

1 Introduction

Mechanism design is the science of generating rules of interaction—such as auctions and vot-
ing protocols—so that desirable outcomes result despite the participation of self-interested
agents. A mechanism receives a set of preferences (i.e. type revelations) from the agents, and
based on that information imposes an outcome (such as a choice of president, an allocation
of items, and potentially also payments).

A central concept in mechanism design is truthfulness, which means that an agent’s
best strategy is to reveal its type (private information) truthfully to the mechanism. The
revelation principle, a foundational result in mechanism design, proves that any social choice
function that can be implemented in some equilibrium form, can also be implemented using
a mechanism where all the agents are motivated to tell the truth. The proof is based
on the idea of supplementing the manipulable mechanism with a strategy formulator for
each agent that acts strategically on the agent’s behalf (see, e.g., Mas-Colell et al. (1995)).
Since truthfulness is certainly worth something—with real people, fairness and simplicity,
with virtual agents, the elimination of the need to strategically compute—the revelation
principle produces something for nothing, a free lunch. As a result, contemporary research
into mechanism design has focused almost exclusively on truthful mechanisms.

But manipulable mechanisms protected by the “shield” of computational hardness are
intuitively appealing. Computational complexity could be used to sever the symmetry
between manipulable and truthful mechanisms, opening up exciting new possibilities in the
outcome space. One notable caveat in this agenda is that an agent’s inability to find its
optimal manipulation does not imply that the agent will act truthfully. Unable to solve the
hard problem of finding their optimal manipulation, an agent may submit their true private
type but they could also submit their best guess for what their optimal manipulation might
be or, by similar logic, give an arbitrary revelation. A challenge in manipulable mechanisms
is that it is difficult to predict in which specific ways agents, particularly human agents, will
behave if they do not play according to game-theoretic rationality.

In manipulable mechanisms, there are several reasons why agents may fail to play their
optimal manipulations. Humans may play suboptimally due to cognitive limitations and
other forms of incompetence. The field of behavioral game theory studies the gap be-
tween theoretical optimality and human actions (see Camerer (2003) for a survey). Vir-
tual agents may be unable to find their optimal manipulations due to computational lim-
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its: finding an optimal strategy is NP-hard in many settings (e.g., Bartholdi et al. (1989);
Conitzer and Sandholm (2003, 2004); Procaccia and Rosenschein (2007)), and can be #P-
hard (Conitzer and Sandholm, 2003), PSPACE-hard (Conitzer and Sandholm, 2003), or
even uncomputable (Nachbar and Zame, 1996). The idea of using complexity as a shield
against manipulations has been most prominent in the field of voting theory (e.g., Bartholdi
et al. (1989); Conitzer and Sandholm (2003); Procaccia and Rosenschein (2007)).

In this paper, we explore mechanism design beyond the realm of truthful mechanisms
using a concept we call manipulation optimality, where a mechanism benefits—and does
better than any truthful mechanism—if agents fail to play their optimal manipulations in
any way. This enables the mechanism designer to do better than the revelation principle
would suggest, and obviates the need for predicting agents’ irrational behavior. Conitzer
and Sandholm (2004) show the existence of such a mechanism in an artificial setting, but
leave open the question of how broadly this paradigm applies and whether it applies to any
practical settings. These are the questions that we answer in this paper.

We prove an impossibility result that curtails the windfall of manipulability significantly.
Specifically, we show impossibility if any agent has more than one manipulable type. Cur-
tailed by this first impossibility result, we proceed to study settings where each agent has
at most one manipulable type. For single-agent settings, we show impossibility under the
social welfare maximization objective and possibility under affine welfare maximization. In
contrast, in the multiagent setting we get possibility under both of those objectives, but
only under the affine version if agents are symmetric.

2 The general setting

Each agent i has type θi and a utility function uθi

i (o), which depends on the outcome o that
the mechanism selects. An agent’s type captures all of the agent’s private information. For
brevity, we sometimes write ui(o).

The mechanism designer has an objective (which can be thought of as mechanism utility)
that he tries to maximize:

M(o) =

n∑

i=1

γiui(o) + m(o),

where m(·) captures the designer’s desires unrelated to the agents’ utilities. This formalism
has three widely-explored objectives as special cases:

• Social welfare: γi = 1 and m(·) = 0.

• Affine welfare: γi > 0 and m(·) ≥ 0.

• Revenue: Let outcome o correspond to agent payments to the mechanism of
π1(o), . . . , πn(o). Fix γi = 0 and m(o) =

∑n

i=1
πi(o).

An agent’s type is manipulable if reporting some other type yields higher utility for the
agent. That report is the agents’ best response and is generally conditional on the reports
of the other agents. If a certain report is a best response for every possible report of the
other agents, it is known as a dominant strategy. A mechanism implements a social choice
function, a function from agent reports to outcomes.

Two manipulable types are distinct if, for some revelation of the other agents, the types
have different optimal manipulations which lead to different outcomes.

A mechanism M is truthful if each agent’s dominant strategy in the mechanism is to
reveal her true type. A mechanism M is an optimal truthful mechanism if it is not (weakly)
Pareto-dominated by any other truthful mechanism.
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Now we are ready to introduce the main notion of this paper. We say a mechanism is
manipulation optimal if, when agents play their optimal strategies, the mechanism utility
equals that of the best truthful mechanism, and any failure of agents to perform their
optimal manipulations yields greater mechanism utility.

We assume that, if an agent’s optimal play is to reveal her true type, then she will do so.
The mechanism, for instance, can publish which types are truthful, and it can be expected
that those agents will behave rationally. With software agents, such behavior can be hard-
coded in. On the other hand, agents with manipulable types may not behave optimally;
for instance, finding an optimal manipulation can be computationally intractable. It is
important to note that we do not assume that an agent necessarily tells the truth if it fails
to find its optimal manipulation.

We now proceed to formalize this. Let o be the outcome that would arise from all agents
playing strategically optimally in some manipulable mechanism M̂ . We will denote by ô an
outcome in M̂ that arises if one or more agents fail to perform their optimal manipulations.
Now (using the revelation principle), transform M̂ into the truthful mechanism M which,
given the true types of agents, yields outcome o.

Definition 1 We call M̂ manipulation-optimal if it meets the following characteristics:

1. M is an optimal truthful mechanism.

2. ∀ô 6= o, M(ô) > M(o).

2.1 A general impossibility result

While Conitzer and Sandholm (2004) showed that manipulation-optimal mechanisms do
exist, the following result strongly curtails their existence generally.

Proposition 1 No mechanism satisfies Characteristic 2 of Definition 1 if any agent has
more than one distinct manipulable type.

Proof. Suppose, for contradiction, that f is a social choice function satisfying Character-
istic 2. Let agent i with type a have a best-response revelation a′, and let agent i with
type b have a best-response revelation b′. Fix the plays of the other agents as x, such that
f(a′,x) 6= f(b′,x). Since a and b are distinct, there must exist such an x.

We first define the following shorthand notation:
∑

(a′) ≡
∑

j 6=i

γjuj(f(a′,x)) + m(f(a′,x))

∑
(b′) ≡

∑

j 6=i

γjuj(f(b′,x)) + m(f(b′,x))

Because f satisfies Characteristic 2, we get the following two inequalities on mechanism
utilities—for agent i of type b and agent i of type a, respectively.

γiu
b
i(f(b′,x)) +

∑
(b′) < γiu

b
i(f(a′,x)) +

∑
(a′)

γiu
a
i (f(a′,x)) +

∑
(a′) < γiu

a
i (f(b′,x)) +

∑
(b′)

Because a′ and b′ are best-response plays for agents of their respective types, ua
i (f(a′,x)) ≥

ua
i (f(b′,x)) and ub

i(f(b′,x)) ≥ ub
i(f(a′,x)). Thus since γi ≥ 0 we have

γiu
b
i(f(a′,x)) +

∑
(a′) ≤ γiu

b
i(f(b′,x)) +

∑
(a′)

γiu
a
i (f(b′,x)) +

∑
(b′) ≤ γiu

a
i (f(a′,x)) +

∑
(b′)
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Combining the first lines of the above two equation blocks yields
∑

(b′) <
∑

(a′), while
combining the second lines yields

∑
(a′) <

∑
(b′), a contradiction. �

Note that this impossibility result is driven by the strict inequality in Characteristic 2 of
Definition 1. Weakening the strict inequality to loose inequality results in a very different
conclusion: that the mechanism should have identical utilities for reports of both a′ and b′.
Taken more generally, replacing the strict inequality with loose inequality yields the result
that the outcome from reporting any type which is an optimal manipulation must deliver
to the mechanism exactly the same utility.

We argue that strict inequality, and the impossibility it implies, is more appropriate for
this setting. When we talk about the “windfall of manipulability”, what we are talking about
are beneficial results beyond the scope of what truthful mechanisms can reach. That is, we
want the mechanism to do better when agents make mistakes, not to be so indifferent to
agent inputs that it does not matter agents are making mistakes! Moreover, strict inequality
was used by Conitzer and Sandholm (2004), so our results are in keeping with that work.

In the rest of this section we explore mechanisms where each agent can have at most one
manipulable type; the above impossibility result precludes the existence of manipulation-
optimal mechanisms if the other types are not dominant-strategy truthful.

2.2 Single-agent settings

In this subsection we study settings where there is only one agent reporting their private
information. (If there are other agents, their types are assumed to be known.)

Proposition 2 There exist no single-agent manipulation-optimal mechanisms with the ob-
jective of social welfare maximization.

Proof. In the single-agent context, social welfare maximization means maximizing the util-
ity of the single agent. For contradiction, let f be a manipulation-optimal mechanism. Let
the agent of type a have optimal play a′ such that u(f(a′)) ≥ u(f(x)) ∀x ∈ Θi. But by
Characteristic 2, u(f(a′)) < u(f(x)) ∀x ∈ Θi \ a′. �

Proposition 3 There exist single-agent manipulation-optimal mechanisms with the objec-
tive of affine welfare maximization.

Proof. We can derive this result from the constructive proof of Conitzer and Sandholm
(2004). Because the transformation is non-trivial, we restate that result here.

There exists a manager with three possible true types for a team of workers that needs
to be assembled:

1. “Team with no friends”, which we abbreviate TNF.

2. “Team with friends”, which we abbreviate TF.

3. “No team preference”, which we abbreviate NT.

The mechanism implements one of two outcomes: picking a team with friends (TF),
or picking a team without friends (TNF). The manager gets a base utility 1 if TNF is
chosen, and 0 if TF is chosen. If a manager has a team preference, implementing that team
preference (either with or without friends) gives the manager an additional utility of 3.

In addition to the manager, the other agent in the game is the HR director, who has
utility 2 if a team with friends is chosen. Even though there are two agents in the game,
because the HR director does not report a type, this is not a multiagent setting. In fact, the
HR director’s utilities are equivalent to the payoffs from the outcome-specific mechanism
utility map m.
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The optimal truthful mechanism maps reports of NT and TNF to TNF and TF to TF.
Now consider the manipulable mechanism which maps reports of TNF to TNF and NT and
TF to TF. Note that in this mechanism there is only one manipulable type, NT, and that
its optimal strategic play is to report TNF. This mechanism is manipulation-optimal: if
the manager has type NT and reports NT or TF instead of TNF, the mechanism generates
affine welfare of 2, whereas the optimal truthful mechanism generates affine welfare of 1. �

Conitzer and Sandholm (2004) showed that, for an NT agent, reporting TNF is NP-
hard because actually constructing a team of size k without friends requires solving the
independent set problem in a graph of people where the edges are friend relationships.
Computational complexity is a strong justification for why an agent may not be able to find
its optimal manipulation.

2.3 Multi-agent settings

Though we proved above that there do not exist single-agent social welfare maximizing
manipulation-optimal mechanisms, they do exist in multi-agent settings.

Proposition 4 There exist multi-agent manipulation-optimal mechanisms with the objec-
tive of social welfare maximization.

Proof. Consider a game in which two agents, the row agent and the column agent, can have
one of two types, a or a′. Our mechanism maps reports to one of four different outcomes:

Report a′ a

a′ o1 o2

a o3 o4

The following two payoff matrices over the four outcomes constitute a manipulation-
optimal mechanism. Payoffs for type a are on the left and for type a′ on the right:

Report a′ a

a′ 1,1 4,0
a 0,3 3,0

Report a′ a

a′ 3,4 5,0
a 0,6 0,0

Here, playing a′ is a strictly dominant strategy for agents of both types. By the revelation
principle, we can “box” this mechanism into a truthful mechanism, M1, that always chooses
o1. However, when an agent of type a plays a rather than a′, social welfare is strictly
higher than with o1. (This holds regardless of how others play.) We have now proven
Characteristic 2.

What remains to be proven is Characteristic 1; we must demonstrate that M1 is optimal
among truthful mechanisms. We begin by examining the following table, which lists the
payoffs for agents over outcomes given the four possible true type combinations:

True types o1 o2 o3 o4

a, a 2 4 3 3
a, a′ 5 4 6 3
a′, a 4 5 3 0
a′, a′ 7 5 6 0

Now, for contradiction, let MD be a truthful mechanism that Pareto dominates M1. Note
that M1 delivers the highest payoff when both agents are of type a′. Thus, MD(a′, a′) =
o1. But this implies MD(a, a′) and MD(a′, a) must also equal o1: mapping them to the
outcome that gives higher social welfare (in the former case, o3 and in the latter, o2) is
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not truthful because the agent of type a has incentive to report a′ and force o1. At the
same time, mapping to an outcome that is not o1 delivers less social welfare than M1. So,
MD(a′, a′) = MD(a′, a) = MD(a, a′) = o1. But if these three inputs map to o1, MD cannot
truthfully map revelations of (a, a) to any outcome other than o1, because some agent will
always want to deviate, report type a′, and force outcome o1. Thus, our construction of
MD fails because MD = M1. �

The result above uses dominant strategy equilibrium as the solution concept. Therefore,
the result implies possibility for weaker equilibrium notions as well.

The agents in our construction are not symmetric. (Symmetry means that all agents
have the same payoffs for their reports relative to the reports of the other agents.) We
may ask whether manipulation-optimal mechanisms exist for what can be considered the
most common setting: where agents are symmetric, the mechanism is anonymous, and the
objective is welfare maximization. (By anonymous we mean that the mechanism selects
an outcome based only on the distribution of reported types, rather than the agents who
reported those types.)

Proposition 5 There exist no dominant-strategy anonymous multi-agent manipulation-
optimal mechanisms with the objective of social welfare maximization for symmetric agents.

While the impossibility results earlier in this paper were based on a violation of Charac-
teristic 2 of manipulation-optimal mechanisms alone, here the impossibility comes from not
being able to satisfy Characteristics 1 and 2 together.
Proof. By Proposition 1, we can focus on mechanisms with a single manipulable type. Call
the type a, with dominant strategy a′. Suppose mechanism M̂ satisfies Characteristic 2.
By the revelation principle it has a corresponding truthful mechanism M . We show that we
can construct a truthful mechanism M that Pareto dominates M ′.

First, if a set of reports includes a type other than a or a′, we set MD to simply mirror the
action taken by M . Strategic implications for agents other than types a and a′ are unaffected
because for agents of those types revealing their true type was a dominant strategy under
M̂ .

Let o be the outcome implemented by M when all agents reveal a, and let o′ be the
outcome implemented by M when all agents reveal a′. Denote by ã any combination of
revelations a and a′; note that M ′(ã) = o′.

By Characteristic 2 we know that we get higher social welfare if agents of type a—whose
best manipulation is to report a′—cannot find the manipulation and report a instead. Since
agents are symmetric, this implies ua(o′) < ua(o). This is akin to the Prisoner’s Dilemma:
the dominant strategy of type a is to report a′ , but the outcome is worse for agents if they
all report a′ rather than a.

Now we construct MD based on the payoff structure of agents of type a′.

• Case I: ua′

(o′) < ua′

(o). In this case we let MD map each ã to o. MD Pareto
dominates M .

• Case II: ua′

(o′) ≥ ua′

(o). In this case we let MD select o if all agents report a and
o′ for any other ã. MD Pareto dominates M . Note that MD is identical to M for all
reports except the one where all agents report a. �

Note that both our possibility results and this impossibility result have used the dom-
inant strategy solution concept. This implies the strongest possibility, but the weakest
impossibility. Here, our requirement for dominant strategy manipulability avoids issues
with degenerate special cases.

We can get around this impossibility by moving to the affine welfare objective. Note
that for an anonymous mechanism, the outcome-specific mechanism utility function m(·)
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can depend only on the distribution of types, rather than the identities associated with those
types.

Proposition 6 There exist dominant-strategy anonymous multi-agent manipulation-
optimal mechanisms with the objective of affine welfare maximization for symmetric agents.

Proof. We provide a constructive proof with the same framework as Proposition 4. But
now let the payoff matrices be as follows (left matrix for type a and right matrix for type
a′).

Report a′ a

a′ 2,2 1,1
a 1,1 0,0

Report a′ a

a′ 4,4 1,3
a 3,1 0,0

Let γi = 1 for all i, and let the mechanism’s additional payoff, m(·), be {0, 3, 3, 5} for
outcomes o1 through o4, respectively. Note that the row and column agents are symmetric
(the payoff matrices are symmetric) and that m(o2) = m(o3). The dominant strategy
equilibrium for this mechanism is for every agent to report type a′. Therefore this mechanism
has truthful analogue M1, the mechanism that always chooses o1.

We now show that M1 is an optimal truthful mechanism. First, note that M1 maximizes
the objective when both agents have type a′. It can be shown that (using a construction
akin to the last table in the proof of Proposition 4) that due to agent incentives to deviate,
any truthful mechanism that would dominate M1 must map all reports to o1. Therefore M1

is an optimal truthful mechanism.
The manipulation-optimality of the mechanism defined by the payoff matrices above

comes from noting that whenever agents of type a fail to report a′, affine welfare is strictly
higher. �

3 Conclusions and Future Directions

The strategic equivalence of manipulable and truthful mechanisms—captured by the reve-
lation principle—does not mean that any manipulable mechanism is automatically flawed.
The failure of agents to perform their best response (or play a particular equilibrium among
many), either due to computational constraints or any flavor of incompetence, can actually
increase mechanism utility. When the equivalent truthful mechanism to such a manipulable
mechanism is optimal among truthful mechanisms, then the manipulable mechanism is truly
a better solution. We call such a mechanism manipulation optimal.

For a completely general setting, we show that manipulation optimality is limited to
mechanisms that have at most one manipulable type per agent. Thus there is a “cost of
manipulability” — implementing a manipulable mechanism inherently exposes the designer
to achieving an unnecessarily poor result when agents do not perform optimally. This result
is, in large part, in line with the revelation principle, although here the considerations
are more subtle and the impossibility not universal. This is an inauspicious finding for
the concept of using computational complexity as a “trick” to get around the revelation
principle: if our mechanism utility function is sufficiently non-trivial (i.e. so that agents’
reports with manipulable types can affect it), then the mechanism designer is exposed to
the risk of bad outcomes.

It is worth noting how our results apply to the now-copious literature on the complexity
of voting schemes. Here they are less disheartening, because non-trivial voting schemes are
inherently manipulable by the Gibbard-Satterthwaite impossibility result. So in the voting
setting, there is no “truthful analogue” that our manipulable mechanism is performing worse
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than. Note also that most voting schemes use cardinal utility (ranked preference lists) as
opposed to the ordinal utilities employed here.

It would be interesting to study manipulation optimality under other objectives, such
as notions of fairness. As another direction, we plan to explore whether automated mech-
anism design (Conitzer and Sandholm, 2002) can be used to design manipulation-optimal
mechanisms. Given priors over types (and perhaps also over behaviors), it may be possible
to ignore incentive compatibility constraints and design manipulable mechanisms that yield
higher mechanism utility.
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Informational requirements of social choice rules

Shin Sato1

Abstract

The needed amount of information to make a social choice is the cost of information process-
ing, and it is a practically important feature of social choice rules. We introduce informational
aspects into the analysis of social choice rules and prove that (i) if an anonymous, neutral,
and monotonic social choice rule operates on minimal informational requirements, then it is a
supercorrespondence of either the plurality rule or the antiplurality rule, and (ii) if the social
choice rule is furthermore Pareto efficient, then it is a supercorrespondence of the plurality
rule.
Keywords: antiplurality rule, minimal informational requirement, plurality rule, social choice
rule.

1 Introduction

Each social choice rule utilizes information on the agents’ preferences at different levels. For exam-
ple, it is intuitively clear that dictatorship needs much less information than the Borda rule; under
dictatorship, we need to know only the most preferred alternative of a dictator, while under the Borda
rule, we need to know the whole preferences of all agents. Without some electronic device (this is
the case in most situations where collective choice is to be made)2, processing a large amount of
information is not an easy task. The required amount of information can be considered as the cost of
information processing; the larger the amount of information to process, the more time and human
resources are needed and the more risk of making errors is involved.

Therefore, the informational requirement is a practically important feature of each social choice
rule. That is, when the information processing cost is high, informational requirements should be
one of the most important criteria of social choice rules in evaluating them. Therefore, in this paper,
we incorporate the informational aspects into social choice. The fundamental problem we are to deal
with is the following, “Given a group of social choice rules satisfying some “reasonable” properties,
which of them operates on the smallest amount of information?” In other words, we incorporate
minimal informational requirements into the axiomatic analysis of social choice rules.

Our main results are (i) if an anonymous, neutral, and monotonic social choice rule operates on
minimal informational requirements, then it utilizes only information about either the top ranked
alternatives or the bottom ranked alternatives by the agents and it is a supercorrespondence of either
the plurality rule or the antiplurality rule, and (ii) if the social choice rule is furthermore efficient,
then it utilizes only information about the top ranked alternatives by the agents and it is a supercorre-
spondence of the plurality rule. Thus, the plurality rule and the antiplurality rule are characterized as
the most selective social choice rules among anonymous, neutral, and monotonic social choice rules
which operate on minimal informational requirements, and the plurality rule can be characterized
as the most selective social choice rule among anonymous, neutral, monotonic, and efficient social
choice rules which operate on minimal informational requirements.

This last result is the easiest one to interpret. The plurality rule is widely used in our daily lives,
and many people would agree that, compared with other “reasonable” social choice rules, the main

1I am grateful to three anonymous referees of this conference for helpful comments, especially, for letting me notice the
literature on communication complexity.

2In some area of the world, electronic voting systems are adopted in some “big” elections. However, it is very unlikely
that all social choices ranging from national elections to the choice of restaurant for a dinner are made with a electronic
device, at least in the near future. Major obstacles for electronic voting systems are the cost of introducing the system and the
reliability of hardware and software. Actually, in Japan, the result of the election in Kani city in 2003 was cancelled due to a
hardware problem, and in Aki ward of Hiroshima city, electronic voting is abandoned in 2006 due to the financial constraint.
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advantage of the plurality rule lies in its simplicity and selectivity (i.e., the set of “winners” is small).
Our last result theoretically supports this common sense.

Let us mention some related literature. Conitzer and Sandholm (2005) presentcommunication
complexitiesof eleven major voting rules.3 (See Kushilevitz and Nisan (1997) for a survey on the
literature on communication complexity. A seminal work is Yao (1979).) In their model, each agent
sends a bit of his private information necessary to make a social choice to the others sequentially.
That is, the agents “communicate” to compute the value of a voting rule. Communication complexity
of a voting rule is defined as the worst-case number of bits in the best protocol to compute the value
of the voting rule. Communication complexity can be considered as a kind of informational size of a
voting rule. Among many differences, the most significant and essential one between my approach
and Kushilevitz and Nisan (1997) is that I introduce a minimal informational requirement as an
“axiom” and hence measuring the informational size of some specific social choice rules is not my
objective while it is in Kushilevitz and Nisan (1997).

Many social choice rules are proposed and axiomatically characterized in the theory of social
choice.4 Being prevalent in the real world, the plurality rule is axiomatically characterized by Richel-
son (1978); Roberts (1991); Ching (1996); Yeh (2008), among others. Our contribution to this liter-
ature is to characterize the plurality rule (and the antiplurality rule) based on minimal informational
requirements and selectivity.

Some researchers consider social choice rules which rely on limited information on preferences.
(For example, Moulin (1980); Roberts (1991); Yeh (2008), among others.) However, in their anal-
yses, such restrictions are put as assumptions and do not intend to study the amount of necessary
information to make a social choice under each social choice rule.

In sum, analyses in this paper such as investigation of the minimal informational size needed to
be a “reasonable” social choice rule and characterizations based on minimal informational require-
ments seem to be novel in the literature, and would give useful insights in the evaluation of social
choice rules.

In Section 2, we give basic notation and definitions. In Section 3, a series of results are presented.
Proofs are collected in Section 4.

2 Basic notation and definitions

Let N = {1, . . . , n} be a finite set of agents and letX be a finite set of alternatives with|X| = m ≥
2. LetL denote the set of all linear orders (complete, transitive, and antisymmetric binary relations)
on X. An elementRN = (R1, . . . , Rn) of LN is called a preference profile. A linear orderRi in
a preference profileRN is agenti’s preference, andPi is the strict part ofRi. For each preference
R ∈ L and for each integerk with 1 ≤ k ≤ m, let rk(R) denote thekth ranked alternative with
respect toR. For eachi ∈ N , a functionφi of L onto a finite setKi is called amessage function
and a setKi is called amessage space. A triple (φN ,KN , f) is called arule, whereφN is a profile
of message functions(φ1, . . . , φn), KN is the Cartesian product of message spacesKi, andf is
a correspondence ofKN into X. When the agents have a preference profileRN , then they report
a message profileφN (RN ) = (φ1(R1), . . . , φn(Rn)) ∈ KN andf makes a choice based on the
received messageφN (RN ).

For our purpose, the labels or the names of messages are inessential and we restrict the form of
message spaces (and message functions) to a specific form without loss of generality. This can be
done as follows; let(φN ,KN , f) be a rule with a general form.

3More precisely, Conitzer and Sandholm (2005) present the asymptotic lower and upper bounds of communication com-
plexities of voting rules. (For example, the plurality rule belongs toΘ(n log2 m).) This is a standard way to measure
efficiency of an algorithm in computer science.

4See Sen (1986) and Moulin (1988), among others, for surveys of the literature.
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• (Message spaces) For eachi ∈ N , we can define the partitionMi of L induced byφ−1
i .

Formally,Mi = {φ−1
i (ki) | ki ∈ Ki}. Then, we can regard thisMi as a message space

equivalent toKi in the sense that there exists a natural bijection betweenKi andMi; let τi be
the bijection betweenKi andMi defined byτi(ki) = φ−1

i (ki).

• (Message functions) For eachi ∈ N and for eachRi ∈ L, let φ′
i(Ri) be the element ofMi

such thatRi ∈ φ′
i(Ri). Note that ifφi(Ri) = k, thenτi(k) = φ′

i(Ri). Thus, underφ′
i, agent

i reportsφ′
i(Ri), which is a message corresponding toφ(Ri). Formally,φ′

i = τi ◦ φi.

• (Social choice rule) For eachMN ∈
∏

i∈N Mi = MN , let f ′(MN ) be f(kN ), where
kN ∈ KN is the message profile corresponding toMN in the sense thatτN (kN ) =
(τ1(k1), . . . , τn(kn)) = MN . Formally,f ′ = f ◦ τ−1

N .

Now, we have a new rule(φ′
N ,MN , f ′) which is equivalent to(φN ,KN , f) in the sense that the

only difference is the labels or the names of messages. In(φN ,KN , f), agenti reportsφi(Ri).
When we just relabel this messageφi(Ri) asτi(φi(Ri)), then we have a rule(φ′

N ,MN , f ′).
Thus, without loss of generality, we can restrict our attention to the rules such that message

spaces are partitions ofL and message functions assign each preference the set in the partition to
which that preference belongs. In the following, unless otherwise stated, we assume that every rule
takes this restricted form.

In the restricted form of rules, a profile of message functionsφN is uniquely determined by
a profileMN of message spaces (partitions ofL). Thus, in the following, we drop the message
functions and write(MN , f) for a rule. Given a rule(MN , f), when we speak ofφN , then it
should be always understood to be the profile of message functions such thatφi(Ri) = Mi ∈ Mi

with Ri ∈ Mi. In sum, given a rule(MN , f), agents are required to report a profile of sets of linear
ordersMN ∈ MN such that the profile of their preferencesRN belongs toMN , andf makes a
choice based onMN .

It is worth noting that a profile of message spacesMN (and hence a profile of message functions
φN ) as well asf is set by the social choice rule designer, and not the variable determined by the
agents. We introduce message spaces to clarify what information a social decision requires and to
define the informational size of each social choice rule.

Next, we define the informational size of a rule, which is a core concept of this paper.

Definition 2.1 For each rule(MN , f), the sum of the numbers of possible messages
∑

i∈N |Mi|
is called theinformational size of(MN , f).

Definition 2.2 (The plurality rule) The plurality rule chooses the alternatives ranked as the top by
the largest number of agents. In our model, this rule can be written as follows. For eachx ∈ X,
let M(x) = {R ∈ L | r1(R) = x}. (The set of preferences which rankx at the top.) For each
i ∈ N , let Mp

i = {M(x) | x ∈ X}. Then,Mp
i is a partition ofL. For each message profile

MN ∈
∏

i∈N Mp
i = Mp

N and for eachx ∈ X, let Nx(MN ) = |{i ∈ N | Mi = M(x)}|. (The
number of agents whose message isM(x).) Finally, for each message profileMN , let fp(MN ) =
{x ∈ X | Nx(MN ) ≥ Ny(MN ) ∀y ∈ X}. Then,(Mp

N , fp) is called theplurality rule. Its
informational size isnm. (Remember thatn is the number of the agents andm is the number of
alternatives.)

In the plurality rule,fp makes choice based on information contained in a message profileMN in
Mp

N . From the viewpoint offp, it is known that the agenti’s preference is in a reported message
Mi, but it is not known which is the agenti’s preference inMi. However, the plurality rule can be
defined based on this restricted information, because eachMi ∈ Mp

i tells what is the alternative
ranked as the top.

Thus, in our model, by introducing message spaces between a choice rule and preferences, we
can measure the amount of needed information to make a social choice.
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Definition 2.3 (The antiplurality rule) The antiplurality rule chooses the alternatives ranked as the
bottom by the smallest number of agents. For eachx ∈ X, let M(x) = {R ∈ L | rm(R) = x}.
(The set of preferences which rankx at the bottom.) For eachi ∈ N , letMa

i = {M(x) | x ∈ X}.
Then,Ma

i is a partition ofL. For each message profileMN ∈
∏

i∈N Ma
i = Ma

N and for each
x ∈ X, let Nx(MN ) = |{i ∈ N | Mi = M(x)}|. (The number of agents whose message isM(x).)
Finally, for each message profileMN , let fa(MN ) = {x ∈ X | Nx(MN ) ≤ Ny(MN ) ∀y ∈ X}.
Then,(Ma

N , fa) is called theantiplurality rule. Its informational size isnm.

At this point, several remarks are in order. First, the reader would notice that to define the in-
formational size and to describe the procedure of making a social choice, it suffices to consider a
correspondence which assigns a social outcome to each message profile. For example, in defining
the plurality rule, we could definegp as a correspondence ofXN to X such that for each message
profilexN = (x1, . . . , xn) ∈ XN , gp(xN ) is the set of alternatives which are reported by the largest
number of agents. If we defined thisgp as the plurality rule, then there would be no agents’ “pref-
erences” in the model. The reason to incorporate preferences into our model is that our objective is
to find the rules which operate on the minimal information requirements among the rules satisfying
some plausible properties such as (weak) monotonicity and efficiency, and these properties refer to
agents’ preferences. (If our objective were to find the social choice rule which operates on minimal
informational requirements without any restriction, then the answer would be constant social choice
rules, or “custom”, which needs no information to make a social choice.)

Next, although we callφi (derived fromMi) a message function and use the word “report”, we
do not need to interpret them literally. The only role ofφi is to specify what kind of information
is necessary to make a social choice. Thus, we could consider the following model; agents report
a preference profileRN and the central institution which is responsible to make a social decision
would take two steps to make a decision. At the first stage, pick up necessary information according
to φN from RN , and at the second stage, process informationφN (RN ) = MN ∈ MN and make a
social decision.

Thirdly, we modelf as a correspondence and not a function. There are two reasons for this.
First, we do not exclude the cases where the society is to choose a set of “satisfactory” alternatives
(not necessarily the “best” alternatives). In this case, the social outcome is naturally formulated
as sets of alternatives. Second, even when the society is to choose the “best” alternatives, almost
all practically important rules such as the plurality rule, the Borda rule, the Copeland rule, and the
Simpson rule (See Moulin, 1988), are formulated as correspondences. When we ultimately need
to choose a single outcome whereasf can choose multiple alternatives, then it is done by some
tie-breaking rule, but this is outside the scope of our analysis.

We define several properties of a rule.

Definition 2.4 A rule (MN , f) is said to satisfy

• anonymityif for every permutationσ of N and for everyRN ∈ LN , (f ◦ φN )(RN ) =
(f ◦ φN )(Rσ

N ), whereRσ
N is defined by for eachi ∈ N , Rσ

i = Rσ(i).

• neutrality if for every permutationρ of X and for everyRN ∈ LN , ρ[(f ◦ φN )(RN )] = (f ◦
φN )[ρ(RN )], whereρ(RN ) = (ρ(R1), . . . , ρ(RN )) is defined by for eachi ∈ N , ρ(Ri) =
{(x, y) ∈ X2 | (ρ−1(x), ρ−1(y)) ∈ Ri}.

• (weak) monotonicityif for any RN andR′
N such thatx ∈ f(φN (RN )), RN andR′

N coincide
on (X \ {x})2 and x = rk(Ri) = rk′(R′

i) with k′ ≤ k for all i ∈ N , we havex ∈
f(φN (R′

N )).

• (Pareto) efficiencyif for any distinctx, y ∈ X with xPiy for all i ∈ N , y ̸∈ f(φN (RN )).
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Anonymity requires symmetric treatment of the agents and neutrality requires symmetric treatment
of alternatives. Monotonicity requires that whenx is chosen atRN and the position ofx (weakly)
improves through the change fromRN to R′

N while the relative comparison of any other pair of
alternatives is unchanged, thenx is still chosen atR′

N . In the literature, it is often called weak
monotonicity to distinguish from the so called Maskin monotonicity which does not appear in this
paper. Note that monotonicity (in the sense of this paper) is much weaker than the Maskin mono-
tonicity because the relative rankings exceptx are fixed from the change fromRN to R′

N . Efficiency
requires that when an alternativey is dominated by some alternativex, theny cannot belong to the
social outcome. Although efficiency is one of the most standard axioms in social choice theory and
in economic theory, its relevance depends on the context under consideration. For example, in this
paper, as mentioned earlier, we do not exclude cases where the society is to choose a set of “sat-
isfactory” alternatives. In such a case, the fact thaty is dominated byx does not imply thaty is
not satisfactory, and hencey can belong to the social outcome. Based on this observation, we give
results with and without efficiency in the next section.

Next, we define formally the minimality of informational requirements.

Definition 2.5 Given a set of rulesF , a rule(MN , f) is said tooperate on minimal informational
requirements inF if the informational size of(MN , f) is not larger than the informational size
of any other rules inF . In this case, the informational size of(MN , f) is called theminimal
informational size inF .

3 Results

In this section, we give a series of results. LetAN denote the set of nonconstant5 rules satisfying
anonymity and neutrality, letANM denote the set of nonconstant rules satisfying anonymity, neu-
trality, and monotonicity, and letANMP denote the set of rules satisfying anonymity, neutrality,
monotonicity, and efficiency. Throughout this section, assumem ≥ 2. (Whenm = 1, then there is
no room for “choice”.)

Theorem 3.1 If a rule (MN , f) operates on minimal informational requirements inAN , then

(i) its informational size isnm, and more specifically,

(ii) there existsh ∈ {1, . . . ,m} such that for anyi ∈ N , Mi = {Mi(x) | x ∈ X}, where
Mi(x) = {Ri ∈ L | rh(Ri) = x}.

The second statement of the theorem implies that we can associate each message with one alter-
native inX and that this relation is a bijection. Moreover, the statement explicitly specifies what
information a rule(MN , f) depends on; it relies on information what are thehth ranked alternatives
in RN . Consider that agenti with a preferenceRi changes his preference toR′

i. Then, agenti sends
the same message iffrh(Ri) = rh(R′

i).
For example, the plurality rule and the antiplurality rule operate on minimal informational re-

quirements inAN with h = 1 andh = m, respectively. Also, the rule(MN , f) such that eachMi

is the one defined in the second statement of the theorem withh = 2 andf chooses the alternatives
second ranked by the largest number of agents also operates on minimal informational requirements
in AN .

Before the next theorem, we prepare the following terminology.

Definition 3.1 A rule (MN , f) is said to be asupercorrespondenceof a rule(M′
N , f ′) is for every

preference profileRN , f(φN (RN )) ⊃ f ′(φ′
N (RN )) holds.

5A rule (MN , f) is said to benonconstantif the correspondencef ◦ φN is nonconstant onLN .
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When a rule(MN , f) is a supercorrespondence of a rule(M′
N , f ′), then, a rule(MN , f) is less

selective than(M′
N , f ′). Of course, selectivity is not always a plausible axiom. For example,

when you want to chooses a set ofsatisfactory(and not necessarily the best) alternatives, then
selectivity is not an appealing condition for rules. However, in many cases, we want to choose the
socially best alternatives, and in such situations, we usually do not want to rely on a tie-breaking rule
(usually, some random device) as much as possible. We want to determine a final social outcome
by preferencesas much as possible. For instance, in elections where we want to choose one winner,
it is absurd to use a rule(MN , f) such that each voter reports his most preferred candidate andf
chooses the candidates who receive at least one vote. (The final outcome is determined by some
random device, which is outside our model.)

Theorem 3.2 If a rule (MN , f) operates on minimal informational requirements inANM, then

(i) h in Theorem 3.1 is either1 or m, and

(ii) If h = 1, then(MN , f) is a supercorrespondence of the plurality rule and ifh = m, then
(MN , f) is a supercorrespondence of the antiplurality rule.

This theorem shows that if monotonicity is additionally required, then necessary information to
make a social choice is either the top ranked alternatives or the bottom ranked alternatives by the
agents. If the rule relies on information on the top ranked alternatives, then, the alternatives chosen
by the plurality rule are contained in the value of the rule. If the rule relies on information on the
bottom ranked alternatives, then the alternatives chosen by the antiplurality rule are contained in the
value of the rule.

Because the antiplurality rule is not efficient6 whenm ≥ 3 and it is equal to the plurality rule
whenm = 2, Theorem 3.2 readily implies the following theorem.

Theorem 3.3 If a rule (MN , f) operates on minimal informational requirements inANMP, then
it is a supercorrespondence of the plurality rule.

This theorem gives a new characterization of the plurality rule; it is the most selective rule among
the rules operating on minimal informational requirements inANMP. When you want to choose
the socially best alternatives, then it is natural to adopt a rule inANMP. Theorem 3.3 shows that
if you care for the informational processing cost and selectivity, then the answer is the plurality rule.

We conclude this section with the following remark. We defined the informational size of
(MN , f) simply by

∑
i∈N |Mi|. Our results do not depend on this specific way of defining the

informational size. Letg be any strictly increasing function on the positive orthant ofRn, then-
dimensional Euclidean space, and let us defineg(|M1|, . . . , |Mn|) to be the informational size of
(MN , f). Then, we can obtain the same results with this definition of the informational size.

4 Proofs

In this section, we introduce many permutations ofN andX. For simplicity, when we describe a
permutation, we do not specify the part on which the permutation is the identity function. For ex-
ample, when we say thatσ is the permutation ofN exchangingi andj, then it should be understood
thatσ is the identity function onN \ {i, j}.

6For example, letX = {x, y, z} and letRN be a preference profile such thatxRiyRiz for all i ∈ N . Then, the
antiplurality rule chooses{x, y} while y is dominated byx.
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4.1 Proof of Theorem 3.1

We proceed to establish Theorem 3.1 through a series of lemmas. Let(MN , f) be a rule which
operates on minimal informational requirements inAN . Because the plurality rule is inAN , the
informational size of(MN , f) is not greater thannm.

Lemma 4.1 Mi = Mj for all i, j ∈ N .

Proof. Suppose to the contrary thatMi ̸= Mj for somei, j ∈ N .
CLAIM 1: At least one of the following two statements holds:

(i) There existM∗
i ∈Mi andM1

j ,M2
j ∈Mj such thatM∗

i ∩M1
j ̸= ∅ andM∗

i ∩M2
j ̸= ∅.

(ii) There existM1
i ,M2

i ∈Mi andM∗
j ∈Mj such thatM1

i ∩M∗
j ̸= ∅ andM2

i ∩M∗
j ̸= ∅.

Proof of Claim 1. Suppose that neither of the statements holds. Because (i) does not hold, for any
Mi ∈ Mi, there existsMj such thatMi ⊂ Mj . Because (ii) does not hold, for anyMj ∈ Mj ,
there existsMi ∈ Mi such thatMj ⊂ Mi. Thus, for anyMi ∈ Mi, there existMj ∈ Mj and
M ′

i ∈ Mi such thatMi ⊂ Mj ⊂ M ′
i . BecauseMi is a partition ofL, this implies thatMi = Mj .

Therefore,Mi = Mj , which is a contradiction. ¤
Without loss of generality, assume that statement (i) of Claim 1 holds.

CLAIM 2: f(M1
j , M−j) = f(M2

j , M−j) for all M−j ∈M−j .
Proof of Claim 2. Suppose to the contrary thatf(M1

j ,M−j) ̸= f(M2
j ,M−j) for someM−j ∈

M−j . Let Rj and R′
j be such thatRj ∈ M∗

i ∩ M1
j and R′

j ∈ M∗
i ∩ M2

j . Let R−j be
an element ofM−j . f(φN (Rj , R−j)) ̸= f(φN (R′

j , R−j)). Now, interchange the preferences
of agentsi and j. (Let σ denote the permutation interchanging agentsi and j.) Then, by
anonymity,f(φN ([(Rj , R−j)σ])) ̸= f(φN ([(R′

j , R−j)σ])). However, becauseRj , R
′
j ∈ M∗

i ,
φN ([(Rj , R−j)σ]) = φN ([(R′

j , R−j)σ]), which is a contradiction. ¤
Claim 2 implies that distinct messagesM1

j andM2
j can be integrated into one message without

any essential change. Formally, letM′
j = {Mj | Mj ∈ Mj \ {M1

j ,M2
j } or Mj = M1

j ∪M2
j }.

For i ∈ N \ {j}, letM′
i = Mi. LetM′

N =
∏

i∈N M′
i. For each message profileMN ∈ M′

N ,
let f ′(MN ) = f(MN ) if Mj ̸= M1

j ∪ M2
j andf ′(MN ) = f(M1

j ,M−j) if Mj = M1
j ∪ M2

j .
We claim thatf ′(φ′

N (RN )) = f(φN (RN )) for every preference profileRN . If Rj ̸∈ M1
j ∪ M2

j ,
thenf ′(φ′

N (RN )) = f ′(MN ) = f(MN ) = f(φN (RN )). If Rj ∈ M1
j , thenf ′(φ′

N (RN )) =
f ′(M1

j ∪M2
j ,M−j) = f(M1

j ,M−j) = f(φN (RN )). If Rj ∈ M2
j , thenf ′(φ′

N (RN )) = f ′(M1
j ∪

M2
j ,M−j) = f(M1

j ,M−j) = f(M2
j ,M−j) = f(φN (RN )). (φ′

N is a profile of message functions
associated withM′

N .) Therefore,(M′
N , f ′) is inAN whereas the informational size of(M′

N , f ′)
is less than that of(f,MN ), which is a contradiction to the fact that(MN , f) attains the minimal
informational size inAN . ¥

Consider the casem = 2. Let X = {x, y}, let Ri be the linear order such thatr1(Ri) = x and
r2(Ri) = y and letR′

i be the linear order such thatr1(R′
i) = y andr2(R′

i) = x. Then, by Lemma
4.1, eitherMi = {{Ri, R

′
i}} for all i ∈ N or Mi = {{Ri}, {R′

i}} for all i ∈ N . In the former
case holds, because there is only one possible message profile,f ◦ φN should be constant onLN ,
which is a contradiction. Thus, the latter case holds. Therefore, we complete the proof of Theorem
3.1 for the casem = 2. (h can be either1 or 2.) In the following, we assumem ≥ 3.

Lemma 4.2 For anyi ∈ N , for any permutationρ of X, and for anyM ∈Mi, ρ(M) ∈Mi.

Proof. Supposeρ(M) ̸∈ Mi for someM ∈Mi. There are two cases to consider.
CASE 1: ρ(M) ( M ′ for someM ′ ∈ Mi. BecauseM ( ρ−1(M ′), there existsM∗ ∈ Mi such
thatM∗ ̸= M andM∗ ∩ ρ−1(M ′) ̸= ∅.
CLAIM : f(M,M−i) = f(M∗,M−i) for all M−i ∈M−i.
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Proof of Claim. Suppose to the contrary thatf(M,M−i) ̸= f(M∗,M−i) for someM−i ∈
M−i. Let Ri be any element ofM , let R−i be any element ofM−i, and let R̂i be any el-
ement ofρ−1(M ′) ∩ M∗. Then, (f ◦ φN )(Ri, R−i) ̸= (f ◦ φN )(R̂i, R−i). By neutrality,
(f ◦ φN )[ρ(Ri), ρ(R−i)] ̸= (f ◦ φN )[ρ(R̂i), ρ(R−i)]. However, becauseρ(Ri), ρ(R̂i) ∈ M ′,
φN [ρ(Ri), ρ(R−i)] = φN [ρ(R̂i), ρ(R−i)], which is a contradiction. ¤

This claim shows that we can integrate distinct messagesM andM∗ into one message without
any substantial change. See the argument following Claim 2 in the proof of Lemma 4.1. The same
reasoning applies here, and we have a contradiction.

CASE 2: ρ(M) ∩ M1 ̸= ∅ and ρ(M) ∩ M2 ̸= ∅ for someM1,M2 ∈ Mi. In this case,
we claim f(M1,M−i) = f(M2,M−i) for all M−i ∈ M−i. Suppose not. Then, for any
R1

i ∈ ρ(M) ∩M1 and for anyR2
i ∈ ρ(M) ∩M2, (f ◦ φN )(R1

i , R−i) ̸= (f ◦ φN )(R2
i , R−i). By

neutrality,(f ◦ φN )(ρ−1(R1
i ), ρ

−1(R−i)) ̸= (f ◦ φN )(ρ−1(R2
i ), ρ

−1(R−i)). However, because
ρ−1(R1

i ), ρ
−1(R2

i ) ∈ M , we haveφN (ρ−1(R1
i ), ρ

−1(R−i)) = φN (ρ−1(R2
i ), ρ

−1(R−i)), which is
a contradiction.

Thus,f(M1,M−i) = f(M2,M−i) for all M−i ∈M−i. This implies that we can integrateM1

andM2 into one message without affecting any essential aspects of a rule(MN , f). By the same
argument as in the proof of Lemma 4.1, we have a contradiction. ¥

Lemma 4.3 For any i ∈ N , there existsh ∈ {1, . . . ,m} such that for anyM ∈ Mi, rh(M) =
{x ∈ X | rh(Ri) = x for someRi ∈ M} is a singleton.

Proof. Suppose to the contrary that for anyh ∈ {1, . . . ,m}, there existsM ∈Mi such thatrh(M)
is not a singleton. LetM ′ be any element ofMi and letRi andR′

i be any elements ofM andM ′,
respectively. Letρ be the permutation ofX such thatρ(Ri) = R′

i. Then,ρ(M) ∩ M ′ ̸= ∅. By
Lemma 4.2,ρ(M) ∈ Mi. BecauseMi is a partition ofL, ρ(M) = M ′. This implies thatrh(M ′)
is not a singleton. This argument shows that for anyh ∈ {1, . . . ,m} and for anyM ∈ Mi, there
existR,R′ ∈ M such thatrh(R) ̸= rh(R′).
CLAIM 1: For anyh ∈ {1, . . . ,m}, for anyM ∈Mi, and for anyx ∈ X, there existsR ∈ M such
thatrh(R) = x. In other words,rh(M) = X for all h ∈ {1, . . . ,m} andM ∈Mi.
Proof of Claim 1. Suppose not. Then, there existh ∈ {1, . . . ,m} andM ∈Mi such thatrh(M) ̸=
X. We claim that|rh(M)| = m− 1.

Suppose|rh(M)| ≤ m− 2. Let X \ rh(M) = {y1, . . . , yh1} and letrh(M) = {x1, . . . , xh2}.
Because|rh(M)| ≤ m − 2, h1 ≥ 2. Becauserh(M) is not a singleton,h2 ≥ 2. For each pair
(ℓ1, ℓ2) such that1 ≤ ℓ1 ≤ h1 and1 ≤ ℓ2 ≤ h2, let ρℓ2

ℓ1
be the permutation exchangingyℓ1 and

xℓ2 . Then,M ̸= ρℓ2
ℓ1

(M) ̸= ρ
ℓ′
2

ℓ′
1
(M) for anyℓ1, ℓ

′
1, ℓ2, ℓ

′
2 with (ℓ1, ℓ2) ̸= (ℓ′1, ℓ

′
2). By Lemma 4.2,

ρℓ2
ℓ1

(M) ∈Mi for all ℓ1, ℓ2. Thus,|Mi| ≥ h1 ·h2 +1 ≥ 2 ·max{h1, h2}+1 ≥ m+1 > m. Then,
by Lemma 4.1, the informational size of(MN , f) is greater thannm, which is a contradiction.
Thus,|rh(M)| = m− 1.

Let {x} = X \ rh(M). LetR be any element ofM and leth′ be such thatrh′(R) = x. Because
rh′(M) is not a singleton (see the statement right above Claim 1), there existsR′ ∈ M such that
rh′(R′) ̸= x. Let h′′ be such thatrh′′(R′) = x. Note thath′ ̸= h′′ andh′, h′′ ̸= h. Let y denote
rh′′(R) and letρ be the permutation ofX such thatρ(R) = R′. Then, becauseρ(M) ∩M ̸= ∅ and
Mi is a partition ofL, ρ(M) = M . Note thatρ(y) = x. Becausey ∈ rh(M), there existsR′′ ∈ M
such thatrh(R′′) = y. For suchR′′, rh(ρ(R′′)) = x, which is a contradiction toρ(R′′) ∈ M . ¤
CLAIM 2: f(MN ) = X for all MN ∈MN .
Proof of Claim 2. Suppose to the contrary thatf(MN ) ̸= X for someMN ∈ MN . Let RN be
any element ofMN . Then,(f ◦ φN )(RN ) ̸= X. Let x be an element ofX \ (f ◦ φN )(RN ). By
neutrality, there existsR′

N such thatx ∈ (f ◦ φN )(R′
N ). Let M ′

N be the element ofMN such that
R′

N ∈ M ′
N .
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rh(R0i) rh(Ri) Operation on Ri Operation on R00ix x Do not change Do not change

Not x Interchange rh+1(Ri) and x Lift x to hth positiony Do not change Do not change

Not x x Interchange rh�1(Ri) and y Lift x to the top

(Let y = rh(R0i)) Others First, interchange x and rm(Ri) and Lift x to the top

next, interchange y and rh�1(Ri)
Table 1: The profilesR′′

N andR∗
N in the proof of Theorem 3.2

Let i be any agent and leth be such thatrh(Ri) = x. By Claim 1,rh(M ′
i) = X. Thus, inM ′

i ,
we can findR′′

i such thatrh(R′′
i ) = x. Let R′′

N be a profile of suchR′′
i . Note that the positions of

x in R′′
N are the same as inRN . Also, becauseR′′

N belongs toM ′
N , φ′

N (R′
N ) = φ′

N (R′′
N ). Thus,

x ∈ (f ◦φN )(R′′
N ). LetρN be a profile of permutations such thatρi(R′′

i ) = Ri. Note thatρi(x) = x
for all i ∈ N . By neutrality,x ∈ (f ◦ φN )(ρ(R′′

N )) = (f ◦ φN )(RN ), which is a contradiction.¤
Claim 2 implies that a rule(f, φN ) is constant, which is a contradiction. ¥

Lemma 4.3 shows that eachMi ∈Mi is contained in{Ri ∈ L | rh(Ri) = x} for somex ∈ X.
Thus, if thehth ranked alternatives in two preferencesR andR′ are different, thenR andR′ belong
to distinctMi andM ′

i in Mi. This implies that there are at leastm elements inMi. If |Mi| > m,
then by Lemma 4.1, the informational size of(MN , f) is greater thannm, which is a contradiction.
Thus,|Mi| = m for all i ∈ N , and the informational size of(MN , f) is nm.

For eachMi ∈ Mi, let C(Mi) denote the element ofX such thatMi ⊂ {Ri ∈ L | rh(Ri) =
C(Mi)}. We show that thisC is a bijection. Because|Mi| = m = |X|, it suffices to show thatC
is onto. Letx be any element ofX. Then, because{Ri ∈ L | rh(Ri) = x} is not the empty set and
Mi is a partition ofL, there existsMi ∈ Mi such thatMi ⊂ {Ri ∈ L | rh(Ri) = x}, and hence
C(Mi) = x. Thus,C is a bijection. This implies that for anyMi ∈Mi, for anyM ′

i ∈Mi \ {Mi},
and for anyRi ∈ M ′

i , rh(Ri) is notC(Mi). Thus,Mi ( {Ri ∈ L | rh(Ri) = C(Mi)} leads to a
contradiction to the fact thatMi is a partition ofL. Therefore, for eachMi ∈ Mi, Mi = {Ri ∈
L | rh(Ri) = C(Mi)}. That is, eachMi ∈ Mi is associated with an alternativeC(Mi) in X and
Mi consists of all preferences which rankC(Mi) at thehth position. BecauseC is a bijection, we
complete the proof of the Theorem 3.1.

4.2 Proof of Theorem 3.2

Let (MN , f) be a rule which operates on minimal informational requirements inANM.
First, we prove the statement (i). Ifm = 2, then this statement is a direct consequence of

Theorem 3.1. Thus, letm ≥ 3. Suppose to the contrary that1 < h < m, and we claim that(MN , f)
is constant. LetRN andR′

N be any preference profiles. We prove(f ◦φN )(RN ) = (f ◦φN )(R′
N ).

First, we show(f ◦φN )(RN ) ⊂ (f ◦φN )(R′
N ). Let x be any element of(f ◦φN )(RN ). Now,

make a new preference profileR′′
N from RN according to the third column of Table 7.1. (At this

stage, see only the first three columns.) Depending onrh(R′
i) andrh(Ri), there are five possible
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cases as described in the first two columns of Table 7.1. The third column specifies the operation on
Ri in each case. Note that these operations are feasible because neitherh = 1 norh = m.

Let R′′
N denote the resulting preference profile. It can be seen thatrh(Ri) = rh(R′′

i ) for all
i ∈ N . Thus, (f ◦ φN )(RN ) = (f ◦ φN )(R′′

N ) andx is also in(f ◦ φN )(R′′
N ). Now, apply

the operation onR′′
N described in the forth column of Table 7.1, and letR∗

N denote the resulting
preference profile. Then, by monotonicity,x ∈ (f ◦φN )(R∗

N ). It can be seen thatrh(R′
i) = rh(R∗

i )
for all i ∈ N , and hence(f ◦ φN )(R′

N ) = (f ◦ φN )(R∗
N ). Therefore,x ∈ (f ◦ φN )(R′

N ), and we
complete the proof of the relation(f ◦ φN )(RN ) ⊂ (f ◦ φN )(R′

N ).
By the symmetric argument, we can prove(f ◦ φN )(RN ) ⊃ (f ◦ φN )(R′

N ).
BecauseRN andR′

N was arbitrary, we can conclude(MN , f) is a constant rule, which is a
contradiction. Thus,h should be either1 or m.

Next, we prove the second statement of the theorem.
CASE 1: h = 1. By Theorem 3.1,MN is equal to the domain offp. In this case, we prove
fp(MN ) ⊂ f(MN ) for all MN ∈ MN . Supposefp(MN ) ̸⊂ f(MN ) for someMN ∈ MN . Let x
be an element offp(MN ) \ f(MN ), and letRN be such thatRi ∈ Mi for all i ∈ N .

We claim thatfp(MN )∩ f(MN ) = ∅. Suppose to the contrary that there existsy ∈ fp(MN )∩
f(MN ). Then,y ∈ (fp ◦φp

N )(RN )∩(f ◦φN )(RN ). (Note thatφp
N = φN .) Letσ be a permutation

of N such thatσ({i ∈ N | r1(Ri) = x}) = {i ∈ N | r1(Ri) = y} andσ({i ∈ N | r1(Ri) =
y}) = {i ∈ N | r1(Ri) = x}. By anonymity,y ∈ (f ◦ φN )(Rσ

N ). Let ρ be the permutation ofX
exchangingx andy. By neutrality,x ∈ (f ◦ φN )(ρ(Rσ

N )). Note that the twon-tuples of top ranked
alternatives inRN andρ(Rσ

N )) are the same. Becauseh = 1, (f ◦ φN )(RN ) = (f ◦ φN )(ρ(Rσ
N )).

Thus,x ∈ (f ◦ φN )(RN ) = f(MN ), which is a contradiction.
Let z be any element of(f ◦ φN )(RN ). By the above argument,z ̸∈ (fp ◦ φp

N )(RN ). Let Nx

be a subset of{i ∈ N | r1(Ri) = x} such that|Nx| = |{i ∈ N | r1(Ri) = z}|. Then, letσ′ be
the permutation such thatσ′(Nx) = {i ∈ N | r1(Ri) = z} andσ′({i ∈ N | r1(Ri) = z}) = Nx.
By anonymity,z ∈ (f ◦ φN )(Rσ′

N ). Let ρ′ be the permutation exchangingx andz. By neutrality,
x ∈ (f ◦ φN )(ρ′(Rσ′

N )). For eachi ∈ {j ∈ N | r1(Rj) = x} \ Nx, lift x to the top inρ′(Rσ′

i ).
Let R′′

N denote the resulting preference profile. By monotonicity,x ∈ (f ◦ φN )(R′′
N ). It can

be seen that the twon-tuples of top ranked alternatives inRN andR′′
N are the same, and hence

x ∈ (f ◦ φN )(RN ) = f(MN ), which is a contradiction. Therefore,fp(MN ) ⊂ f(MN ) for all
MN ∈MN .

CASE 2: h = m. Supposefa(MN ) ̸⊂ f(MN ) for someMN ∈ MN . Let x be an ele-
ment offa(MN ) \ f(MN ), and letRN be such thatRi ∈ Mi for all i ∈ N .

We claim thatfa(MN )∩ f(MN ) = ∅. Suppose to the contrary that there existsy ∈ fa(MN )∩
f(MN ). Then,y ∈ (fa ◦ φa

N )(RN ) ∩ (f ◦ φN )(RN ). There are two cases to consider.
First, assume{i ∈ N | rm(Ri) = y} = ∅. Then,{i ∈ N | rm(Ri) = x} is also the empty

set. Letρ be the permutation ofX exchangingx andy. By neutrality,x ∈ (f ◦ φN )(ρ(RN )).
Note that the twon-tuples of the bottom ranked alternatives inRN andρ(RN ) are the same. Thus,
x ∈ (f ◦ φN )(RN ) = f(MN ), which is a contradiction.

Next, assume{i ∈ N | rm(Ri) = y} ̸= ∅. Then,|{i ∈ N | rm(Ri) = y}| = |{i ∈ N |
rm(Ri) = x}| > 0. Let σ be a permutation ofN such thatσ({i ∈ N | rm(Ri) = y}) =
{i ∈ N | rm(Ri) = x} and σ({i ∈ N | rm(Ri) = x}) = {i ∈ N | rm(Ri) = y}. By
anonymity,y ∈ (f ◦ φN )(Rσ

N ). Let ρ be the permutation ofX exchangingx andy. By neutrality,
x ∈ (f ◦ φN )(ρ(Rσ

N )). Note that the twon-tuples of the bottom ranked alternatives inRN and
ρ(Rσ

N ) are the same. Thus,x ∈ (f ◦ φN )(RN ), which is a contradiction. Therefore, in any case,
fa(MN ) ∩ f(MN ) = ∅.

Let z be any element of(f ◦ φN )(RN ). By the above argument,z ̸∈ (fa ◦ φa
N )(RN ), that is,

|{i ∈ N | rm(Ri) = z}| > |{i ∈ N | rm(Ri) = x}|. Let Nz be a subset of{i ∈ N | rm(Ri) = z}
such that|Nz| = |{i ∈ N | rm(Ri) = x}|. Let σ′ be a permutation ofN such thatσ′(Nz) = {i ∈
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N | rm(Ri) = x} andσ′({i ∈ N | rm(Ri) = x}) = Nz. By anonymity,z ∈ (f ◦φN )(Rσ′

N ). Letρ′

be the permutation ofX exchangingx andz. By neutrality,x ∈ (f ◦ φN )(ρ(Rσ′

N )). Now, for each
i ∈ {j ∈ N | rm(Rj) = z} \Nz, takez to the second place from the bottom atρ(Rσ′

i ). Let R′
N be

the resulting preference profile. Note that the twon-tuples of bottom ranked alternatives inρ(Rσ
N )

andR′
N are the same, and hencex ∈ (f ◦φN )(R′

N ). Now, for eachi ∈ {j ∈ N | rm(Rj) = z}\Nz,
lift x to the top of his preference. LetR′′

N denote resulting preference profile. By monotonicity,
x ∈ (f ◦ φN )(R′′

N ). Then, it can be seen that the twon-tuples of bottom ranked alternatives
in R′′

N andRN are the same. Thus,x ∈ (f ◦ φN )(RN ), which is a contradiction. Therefore,
fa(MN ) ⊂ f(MN ) for all MN ∈MN .
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Non-dictatorial Social Choice Rules Are Safely

Manipulable

Arkadii Slinko and Shaun White

Abstract

When a number of like-minded voters vote strategically and have limited abilities

to communicate the under and overshooting may occur when too few or too many

of them vote insincerely. In this paper we discuss this phenomenon and define the

concept of a safe strategic vote. We prove that for any onto and non-dictatorial

social choice rule there exist a profile at which a voter can make a safe strategic

vote. This means that on occasion a voter will have an incentive to make a strategic

vote and know that he will not be worse off regardless of how other voters with similar

preferences would vote, sincerely or not. We also extend the Gibbard-Satterthwaite

theorem. We prove that an onto, non-dictatorial social choice rule which is employed

to choose one of at least three alternatives is safely manipulable by a single voter.

We discuss new problems related to computational complexity that appear in this

new framework.

1 Introduction

The classical Gibbard-Satterthwaite theorem (1973–75) claims that for any non-dictatorial

social choice rule which has at least three alternatives in its range, a voter, on occasion,

will have an opportunity to vote strategically. This opportunity allows her to change the

result and get a better outcome than the one that she would get if voted sincerely, ceteris

paribus. However such occasions become rare when the number of voters is large. This

statement, known as Pattanaik’s conjecture ([13], p.102) was made rigorous — see, for

example, [15, 16, 17, 18], — where, in particular, it was proved that under the Impartial

Culture (IC) assumption, the probability of obtaining a manipulable profile is bounded

from above by a scalar multiple of 1/
√

n, where n is the number of voters. So, in large scale

elections individual manipulability is not really an issue, as Pattanaik suspected.

However the issue of group manipulability, which is sometimes called coalitional ma-

nipulability, remains an issue since the probability of having a group of voters that can

successfully manipulate does not go to zero when n grows [11]. It was shown [17] that,

under the IC, to be able to manipulate with non-zero probability, a group of voters must

include a scalar multiple of
√

n voters. Moreover, in [12] it was shown that the average size

of minimal manipulating coalition also contain a scalar multiple of
√

n voters. Thus any

group that wants to have a chance to manipulate must be large.

In practice there are several significant barriers for group manipulation happening.

Firstly, this manipulating coalition must be somehow formed. If it has to be formed endoge-

nously its formation, given its size, must be complex with a lot of private communication.
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Secondly, even if it is exogenously defined, this group must include a coordinator who cal-

culates who should submit which linear order and then privately communicates those to

coalition members. Thirdly, all the coalition members must obey the instructions of the

coordinator and there does not seem to be obvious ways to reinforce the discipline. In any

case it is extremely unlikely that such a coalition can be formed in the absence of means of

private voter-to-voter communication.

Here we would like to suggest a new model for a group formation of a manipulating

coalition. We assume that it is possible for a voter to send a single message to the whole

electorate (say through the media) but it is not possible to send a large number of “indi-

vidualised” messages. The example of such a communication would be an important public

figure calling upon her supporters to vote in a certain way. Obviously that only voters who

share their views with this public figure might respond and change their vote accordingly.

However, not all of them will respond; some of them might consider voting strategically

unethical.

We make the classical social choice assumption that voters know sincere preferences of

others but do not know their voting intentions. Therefore issuing a call to supporters the

public figure will not know exactly how many supporters will follow her example and vote

as she recommends. If the value of the social choice function may not drop below the status

quo, then we say that such call is safe.

Due to the uncertainty in the number of like-minded voters attempting to vote strategi-

cally, sometimes an overshooting may occur when too many like-minded voters act strate-

gically, and as a result the value of the social choice function drops below of what it would

be if everybody voted sincerely. The same thing may happen if too few like-minded voters

act on the incentive to manipulate; in such a case we talk about undershooting. If one of

these situations (or both) is possible we classify such a strategic vote as unsafe. Making a

safe strategic vote is safe in the sense that the value of the social choice function would not

drop below the status quo no matter how many like-minded voter would respond and join

in the manipulation attempt.

The main result of this paper states that if there are at least three alternatives, then for

any non-dictatorial and onto social choice function a profile can be found at which one (or

more) voter can make a safe strategic vote.

The issue of overshooting can also appear in the context of the Gibbard-Satterthwaithe

theorem. Suppose that we have a profile which is manipulable by a single voter. Then it

will be most likely manipulable by many voters (at least if the function is anonymous, then

any voter with the same preferences will have the same incentive to manipulate). It might

be the case that the value of the social choice function gets initially better, when one voter

votes insincerely but then gradually drops even below the status quo as more and more

like-minded voters join in a manipulating attempt. We call such individual manipulation

unsafe and possible overshooting will be a significant deterrent to such manipulation.

Unfortunately such deterrent does not always exist. As a corollary to our main result we

extend the Gibbard-Satterthwaithe theorem by showing that any onto non-dictatorial social
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choice rule is, on occasion, safely manipulable if more than three alternatives are involved.

There is an extensive research into the computational complexity of strategic voting.

Computational complexity of manipulating classical voting procedures has been studied,

for example, in Bartholdi et al [2], Bartholdi and Orlin [3] and, more recently, Conitzer

and Sandholm [4, 6], Faliszewski [9] and Conitzer [7]. Some artificial protocols for which

manipulation is hard (in worst case scenario) have been also designed by Conitzer and

Sandholm [5] and Elkind and Lipmaa [8]. At the same time it has been shown that no voting

protocol is hard to manipulate in the average case scenario [6]. It would be interesting to

extend the complexity analysis to the new type of manipulation introduced in this paper.

To the best of our knowledge, the distinction between safe and unsafe strategic votes, as

we define them, was first made (albeit in the context of parliament choosing rules) in Slinko

and White [19].

2 Strategic overshooting and undershooting

For the remainder of this section let us fix the set of alternatives A, a set of voters [n] =

{1, 2, . . . , n}, and a social choice rule F . Preferences of each voter i are represented by a

linear order Ri on A and the sequence R = (R1, . . . , Rn) is called a profile. We will say that

two voters i and j are of the same type if they have identical preferences, i.e. Ri = Rj . The

type of the voter i is denoted as <i>. It is identified with Ri. Voters of the same type will

be also called like-minded.

As usual, if V ⊆ [n], by R−V (L) we will denote the profile obtained from R when all

voters from V vote L and all other voters retain their original linear orders. For V ⊆ [n] we

will write a ≻V b if all voters from V strictly prefer a to b.

Definition 1 (An incentive to vote strategically). Fix a voter i, and define V to be the

set of all voters with preferences identical to those of i at R. If there exists a linear order

L 6= Ri over A, and a subset V1 ⊆ V containing i such that

F (R−V1
(L)) ≻V F (R)

then we will say that, at R, voter i has an incentive to vote strategically L.

This is the key concept of the paper. We note that to have incentive to vote strategically

does not mean that the voter is pivotal. What this voter can hope for is that there will be

a sufficient number of like-minded voters with preferences identical to hers who will make a

strategic move. She can call upon them to do so.

In some circumstances (we will present an example in the next section) a voter may

hesitate to act on an incentive to vote strategically or to issue a call. One reason for

hesitation would be this: in attempting to vote strategically, the voter could realise a gain

or could realise a loss depending on which other voters with the same preferences also vote

strategically. We now describe such circumstances formally.
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Definition 2 (Strategic overshooting). Fix a voter i, and define V to be the set of all voters

of type <i> at R. Suppose that there exist two sets V1 and V2 such that i ∈ V1 ⊂ V2 ⊆ V ,and

a linear order L 6= Ri such that:

• every voter in V2 has an incentive to strategically vote L, and

• F (R−V1
(L)) ≻V F (R) ≻V F (R−V2

(L)).

Then voter i (together with other voters of type <i>) can strategically overshoot at R voting

L.

If we reverse the roles of the sets V1 and V2 we will obtain a definition of strategic

undershooting. These two concepts are not mutually exclusive. Theoretically it is possible

that a voter can both strategically overshoot and strategically undershoot at R with a vote

of L.

Definition 3 (Safe and unsafe strategic votes). Fix a voter i, and a profile R. Suppose that

there exists a linear order L 6= Ri such that

• at R, voter i has an incentive to strategically vote L; and

• voter i cannot strategically overshoot or strategically undershoot at R with a vote of L.

Then voter i can make a safe strategic vote at R. If the first condition is satisfied but the

second is not, we will say that voter i can make an unsafe strategic vote at R.

It is important to note that the fact that the fact that a voter can make a safe strategic

vote does not mean that she is pivotal. But, even if she is not pivotal, she has a strong

incentive to vote strategically and try to rally supporters to vote likewise. If a strategic vote

is unsafe, a voter has an incentive to vote strategically but she also has a disincentive, namely

the prospect of making the outcome worse rather than better. In a similar circumstances,

with respect to parliament choosing rules, Slinko and White [19] suggested that in this case

voters will act in accord with their attitude towards uncertainty.

The main theorem of this paper is:

Theorem 1 (Slinko & White, 2008). Suppose an onto, non-dictatorial social choice rule is

employed to choose one of at least three alternatives. Then there exist a profile at which a

voter can make a safe strategic vote.

Proof. The proof is rather technical and can be found in a preprint [20].

It has proved useful to classify a certain kind of strategic moves as an escape. Suppose

preferences are such that voter i ranks no element of A lower than X . Further suppose that

R is the profile of sincere preferences (over A), and F (R) = X . If, at R, voter i has an

incentive to vote strategically then voter i (together with other voters of type <i>) will be

said to be able to escape at R. Notice that an escape is more than an ordinary safe strategic

vote. Indeed, voter i cannot get worse no matter how all other voters vote (not only voters

of type <i>). The concept of escaping appears often during the proofs.
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3 Examples and Their Geometric Interpretation

Given any scoring social choice rule other than plurality, and a set of voters which is suffi-

ciently large (more than 50, say), it is easy to create examples of strategic overshooting. In

this section we will deal only with anonymous rules so we will use the so-called “succinct

input” [9] which in Social Choice is known as voting situation [1]. Passing from a profile

to a voting situation we forget the order of linear orders in the profile which makes votes

anonymous. This is especially convenient when we have only three alternatives A, B, and

C. In particular, the table

Preference Number

order of voters

ABC n1

ACB n2

BAC n3

BCA n4

CAB n5

CBA n6

denotes the voting situation when n1 voters prefer A to B to C, n2 voters prefer A to C to

B, etc. This voting situation is denoted as (n1, n2, n3, n4, n5, n6).

Example 1 (Strategic overshooting, escaping under the Borda rule). Suppose 94 voters are

using the Borda rule to choose one of three alternatives and that the corresponding voting

situation of sincere preferences is (17, 15, 18, 16, 14, 14). If all voters vote sincerely then A

would score 96, B 99, and C 87; B would win. If between four and eight ABC types vote

ACB, ceteris paribus, then A would win. If 10 or more ABC types vote ACB, ceteris

paribus, then C would win. So the given voting situation of sincere preferences is prone

to unsafe manipulation. This voting situation is also prone to safe manipulation: if 13 or

more ACB voters vote CAB, ceteris paribus, then C will win, and the manipulators will

have made an escape.

To explain Example 1 geometrically we need a graphical representation of the scores and

strategic moves. Firstly we normalise the scores. Given weights w1 ≥ w2 ≥ . . . ≥ wm = 0

we define the corresponding score function sc : A → R. For a profile R = (R1, . . . , Rn) we

set

sc(a) =

n∑

i=1

wpos(a,Ri),

where pos(a, Ri) is the position of a in Ri, i.e. the number of alternatives which are no

worse than a relative to Ri. Then the normalised positional score of a candidate a is given

by:

scn(a) =
sc(a)

sc(a1) + . . . + sc(am)
.
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After this normalisation we have

scn(a1) + scn(a2) + . . . + scn(am) = 1.

A normalised vector of scores scn(a) can be represented as a point X of the m-

dimensional simplex Sm−1:

x = (x1, . . . , xm), x1 + . . . + xm = 1,

where xi = scn(ai) is the normalised score of the ith alternative. We treat x1, . . . , xn as the

homogeneous barycentric coordinates of X .
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Figure 1: Geometric representation of a normalised score

Irrespective of the positional scoring rule, by voting insincerely a voter who prefers A

to B to C cannot improve the score of A, nor can she worsen the score of C. If she votes

insincerely, she will expect the vector of scores to fall in the shaded area.
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Figure 2: Possible directions of change under a manipulation attempt

By insincerely reporting her preferences to be BAC, she will move the vector of scores

horizontally east. This she can do so long as the score function is not antiplurality. By
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insincerely reporting ACB, she moves the vector of scores north west, parallel to BC, and

this is possible except in the event the score function is plurality.

Now the geometry of Example 1 can be represented as follows: The simplex S2 is split

into four quadrilaterals AKOM , BMOL, CLOK, where the winners will be A, B and

C, respectively. For the sincere profile we are in the quadrilateral BMOL where B wins.

When ABC types report ACB they move the vector of normalised scores in north-western

direction parallel to BC. Overshooting occurs, when the normalised vector of scores crosses

the quadrilateral AKOM , where A wins and penetrates CLOK, where the winner is C. If

ACB voters vote CAB they move the vector of normalised scores from BMOL to CLOK

without crossing AKOM . This precludes over and undershooting.
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Figure 3: Geometric representation of the two moves from Example 1

The arrow parallel to BC graphically represents the unsafe manipulation that overshoots;

it crosses the area where A wins and ends up in the area where the winner is C. The arrow

parallel to AC represents the safe strategic move that is successful.

Here is yet another example for a multistage elimination rule..

Example 2 (Strategic overshooting under plurality with a run-off). Suppose 23 voters are

using a plurality with a run-off social choice rule to choose one of three alternatives and

suppose the corresponding voting situation is (4, 6, 7, 0, 0, 6). If all voters vote sincerely then

B beats A 13-10 in the run-off. If 2 voters of type ABC vote for C in the first round, ceteris

paribus, then A beats C 17-6 in the run-off. If 4 or more voters of type ABC vote for C

in the first round, ceteris paribus, then C beats B 12-11 in the run-off. Thus the profile of

sincere preferences described is unsafely manipulable.

We continue our series of examples with an example of a profile where only unsafe

strategic vote can be made.

Example 3 (A profile that is unsafely but not safely manipulable). Suppose 80 voters are

using a scoring social choice rule to choose one of three alternatives. Suppose that a first
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place ranking on a ballot is worth three points, while a second place ranking is worth one

point, i.e. w1 = 3, w2 = 1, w3 = 0. Let the sincere voting situation be (30, 0, 20, 0, 0, 30). If

all voters are honest then A scores 110, B 120, and C 90; B wins. Those that rank B or C

highest have no incentive to act strategically. Consider the voters of type ABC. If between

11 and 19 of them state they are of type ACB, ceteris paribus, then A will win. If more

than 21 of them state they are of type ACB, ceteris paribus, then C will win. Voters of

type ABC have no other way to manipulate the vote. Thus the profile of sincere preferences

described is ’completely’ unsafe to manipulate.

From geometric consideration it is easy to understand that for three alternatives no

strategic undershooting for scoring rules is possible. Example below presents an example of

strategic undershooting for Borda with five alternatives.

Example 4 (Strategic undershooting under the Borda rule). Suppose 41 voters are using

the Borda rule to select one of five alternatives. Let the number of different voter types

present at the profile of sincere preferences be given by the following table:

Preference Number

order of voters

BCADE 15

CABED 14

CEDBA 2

DABEC 10

When all voters vote honestly, A scores 102, B 110, C 109, D 59, and E 30; B wins. If

between two and six DABEC types vote ADEBC, ceteris paribus, then C wins. If eight or

more DABEC types vote ADEBC, ceteris paribus, then A wins. So DABEC voters can

strategically undershoot at the profile of sincere preferences.

Strategic undershooting and overshooting are also possible under plurality. The examples

that we have do, however, rely upon the tie-breaking procedure adopted.

4 Implications for the Gibbard and Satterthwaite the-

orem.

Proposition 1. Suppose, at a profile R, a voter i can make a safe strategic vote L.

Then there exists another profile Q, where the voter can make a safe strategic vote L and

F (Q−i(L) ≻i F (Q).

Proof. Let i be a voter, and define V to be the set of all voters with preferences identical

to those of i at R. Suppose that there exists a subset U ⊆ V such that i ∈ U , and a linear

order L 6= Ri such that:

• every voter in U has an incentive to strategically vote L, and
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• F (R−U (L)) ≻V F (R),

• for every subset W ⊆ V such that W ⊃ U we have F (R−W (L)) �V F (R).

Without loss of generality we may assume that U is the smallest subset withe above prop-

erties relative to the set-theoretic inclusion. Then F (R) = F (RU ′(L)) for every subset

U ′ ⊂ U . Let U1 = U − {i}. Then voter i can make a safe strategic vote and is pivotal at

Q = R−U1
(L). Indeed,

F (Q−i(L) = F (R−U (L)) ≻V F (R) = F (Q).

since U1 ⊂ U .

From This and Theorem 1 we immediately deduce:

Theorem 2 (Extention of the GS Theorem). Suppose that the number of alternatives is at

least three. Then any onto and non-dictatorial social choice rule is safely manipulable by a

single voter.

5 Conclusion and Further Research

This paper has formally distinguished between safe and unsafe manipulation of voting rules.

Examples of unsafe manipulations were presented. The Gibbard-Satterthwaite theorem was

extended to show that all onto, non-dictatorial social choice rules are safely manipulable.

The main two questions that stem from this research.

1. Under a reasonable probability distribution of votes (say, IC or IAC) what is the

probability that someone can make a safe strategic vote?

Conitzer and Sandholm [4] observed that, for every election system for which the winner

problem is in P , if the voters are unweighted and there are a fixed number m of candidates

then the manipulation problem is in P . This result holds because a manipulator can easily

evaluate all possible m! manipulations. It is more difficult for her to decide whether or not

she can make a safe strategic vote since she has to examine an exponential number (in the

number of voters n) of subsets of like-minded voters who may join her.

2. Let the number of alternatives be fixed. For various social choice rules is the safe

strategic vote problem in P?

We focused on social choice rules for two reasons. Firstly, it allowed us to formally

introduce and illustrate the concepts of over and undershooting relatively simply. Secondly,

our main result applies only to social choice rules. But the difference between safe and unsafe

strategic votes is applicable to a much wider class of choice rules. For example, Slinko and

White (2006) identified that strategic over and undershooting can occur under systems of

proportional representation. Future research might consider the over and undershooting

phenomena in other settings.
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On the Agenda Control Problem for Knockout
Tournaments

Thuc Vu, Alon Altman, Yoav Shoham

Abstract

Knockout tournaments are very common in practice for various settings such as sport events
and sequential pairwise elimination elections. In this paper, we investigate the computational
aspect of tournament agenda control, i.e., finding the agenda that maximizes the chances of a
target player winning the tournament. We consider several modelings of the problem based on
different constraints that can be placed on the structure of the tournament or the model of the
players. In each setting, we analyze the complexity of finding the solution and show how it
varies depending on the modelings of the problem. In general, constraints on the tournament
structure make the problem become harder.

1 Introduction

Tournaments constitute a very common social institution. Their best known use is in sporting events,
which attract millions of viewers and billions of dollars annually. But tournaments also play a key
role in other social and commercial settings, ranging from the employment interview process to
patent races and rent-seeking contests (see [12, 15, 9] for details).

Tournaments constitute a strict subclass of all competition formats, and yet they still allow for
many different variations. All tournaments consist ofstagesduring which severalmatchestake
place, matches whose outcome determines the set of matches in the next stage, and so on, until
some final outcome of the tournament is reached. But tournaments vary in how many stages take
place, which matches are played in each stage, and how the outcome is determined.

In this paper we focus on a narrower class of tournaments:knockouttournaments. In this very
familiar format the players are placed at the leaf nodes of a binary tree. Players at sibling nodes
compete against each other in a pairwise match, and the winner of the match moves up the tree. The
player who reaches the root node is the winner of the tournament. We show an example in Figure 1.

The knockout tournament is not only a very popular tournament type used in practice for sporting
events, but it is also a very common voting procedure. In the voting literature, it is referred to as
sequential elimination voting with pairwise comparison [3, 8]. In this setting, each candidate is a
player in the tournament, and the result of a match is based on the result of the pairwise comparison
between the candidates as manifested in the electorate’s votes. The result of the comparison can be
either deterministic (as in [7]) or probabilistic (as in [11]).

1 2

1

3 4

4

5 6

5

4

1

1 2

3 4 5 6

Figure 1: An example of a tournament agenda for 6 players and one possible outcome
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In this paper we investigate the computational aspect of controlling the tournament agenda by
the tournament designer. Specifically, we study the problem of how to find a tournament agenda
to maximize the chance of a given target player winning the tournament. This seemingly simple
question turns out to be surprisingly subtle and some of the answers are counter-intuitive. To begin
with, note that the number of possible agenda grows extremely quickly with the number of players.
Moreover, there are several variations of the problem modeling which lead to very different charac-
teristics of the solutions. In particular, when there are no constraints on the modeling of the problem,
it is unknown whether there exists an efficient algorithm to find the optimal agenda. However, when
we place certain natural constraints on the structure of the tournament and the match results between
the players, the problem becomes either easy or provably hard.

In Section 2 we summarize the existing results from the literature. After that we first discuss the
general model for tournament design in Section 3. We then describe in Section 4 and 5 different
constraints that can be placed on the model and our results for these settings. We conclude in
Section 6 and suggest possible directions for future work.

2 Related Works

There are two approaches to determining the quality of a tournament design. The first one is ax-
iomatic. For example, in [14], three axioms are proposed to specify what a “good” seeding should
satisfy, called “Delayed Confrontation”, “Sincerity Rewarded”, and “Favoritism Minimized”. Alter-
natively, in [6], a “Monotonicity” property is put forward.

In the second approach, rather than placing axiomatic constraints on the design, the goal is to
optimize a certain quantity. The most common objective function is to find the design that maximizes
the winning probability of the best player. This probability is also called the predictive power of
the tournament. This has been the focus of much work (see, e.g., [5, 1, 13]). They all make
the assumption that there is an ordering of the players based on their intrinsic abilities. In their
models, the probability of one player winning against another is also known and is monotonic with
regard to the abilities of the players, i.e., any player will have a higher chance of winning against
a weaker player than winning against a stronger player. Nevertheless, they focus on only one type
of tournament - balanced knockout tournaments, and only with small cases ofn. In our work, we
generalize the objective function to maximizing the winning probability of any given player, and we
also consider various other modelings of the problem.

Tournament design problems are also addressed under the context of voting. In [7], the candi-
dates are competing in an election based on sequential majority comparisons along a binary voting
tree. In each comparison, the candidate with more votes wins and moves on; the candidate with less
votes is eliminated. Essentially, the candidates are competing in a knockout tournament in which
the result of each match is deterministic. The probability of winning a match is either 0 or 1. In
this setting, without any constraints on the structure of the voting tree, there is a polynomial time
algorithm to decide whether there exists a voting tree that will allow a particular candidate to win the
election. The problem of finding the right voting tree (referred to as the “control” problem) is also
addressed in [11] but with probabilistic comparison results instead. Here, the objective becomes
finding a voting tree that allows a candidate to win the election with probability at least a certain
value. In both [7, 11], the authors show that when the voting tree has to be balanced, some modified
versions of the control problem are NP-complete.

The computational aspects of other methods of controlling an election are also considered in
[2, 4]. Here, the organizer of the election is trying to change the result of the election through
controls (such as adding or deleting) of the voters or candidates. It has been shown that for certain
voting protocols, some methods of control are computationally hard to perform.
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3 The general model and problem

We start out with the most general model of a knockout tournament. In this setting, there is no
constraint on the structure of the tournament, as long as it only allows pairwise matches between
players. We also assume that for any pairwise match, the probability of one player winning against
the other is known. This probability can be obtained from past statistics or from some learning mod-
els. Here we do not place any constraints on the probabilities besides the fundamental properties.
Thus there might be no transitivity between the winning probabilities, e.g., playeri has more than
50% chance of beating playerj, playerj has more than50% chance of beating playerk, but player
k also has more than50% chance of beating playeri.

We define a knockout tournament as the following:

Definition 1 (General Knockout Tournament). Given a setN of players and a matrixP such that
Pi,j denotes the probability that playeri will win against playerj in a pairwise elimination match
and0 ≤ Pi,j = 1− Pj,i ≤ 1 (∀i, j ∈ N ), a knockout tournamentKTN = (T, S) is defined by:

• A tournament structureT which is a binary tree with|N | leaf nodes

• A seedingS which is a one-to-one mapping between the players inN and the leaf nodes ofT

We writeKTN asKT when the context is clear.

To carry out the tournament, each pair of players that are assigned to sibling leaf nodes with the
same parent compete against each other in a pairwise elimination match. The winner of the match
then ”moves up” the tree and then competes against the winner of the other branch. The player who
reaches the root of the tournament tree wins the tournament.

Intuitively the probability of a player winning the tournament depends on the probability that it
will face a certain opponent and win against that opponent. We formally define this quantity below:

Definition 2 (Probability of Winning Tournament). Given a setN of players, a winning probability
matrix P , and a knockout tournamentKTN = (T, S), the probability of playerk winning the
tournamentKTN , denotedq(k,KTN ) is defined by the following recursive formula:

1. If N = {j}, thenq(k,KTN ) =
{

1 if k = j
0 if k 6= j

2. If |N | ≥ 2, let KTN1 = (T1, S1) andKTN2 = (T2, S2) be the two sub-tournaments ofKT such
that T1 andT2 are the two subtrees connected to the root node ofT , andN1 andN2 are the set of
players assigned to the leaf nodes ofT1 andT2 byS1 andS2 respectively. Ifk ∈ N1 then

q(k,KTN ) =
∑

i∈N2

q(k,KTN1) ∗ q(i,KTN2) ∗ Pk,i

and symmetrically fork ∈ N2.

This recursive formula also gives us an efficient way to calculateq(k,KT ):

Proposition 1. Given a setN of players, a winning probability matrixP , and a knockout tourna-
mentKTN = (T, S), the complexity of calculatingq(k, KT ) with k ∈ N is O(|N |2).
Proof. First note that the number of operations is linear in the number of pairs(i, j) with i, j ∈ N
we consider. Moreover, for a giveni, j ∈ N we match upi andj only once. Thus the complexity is
O(|N |2).

Given a set of playersN and the winning probabilitiesP between the players, the goal of the
tournament designer is to come up with the tournament structureT and the seedingS that will
maximize the probability of a given playerk ∈ N winning the tournament. This optimization
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Figure 2: Biased knockout tournamentKT ′ that
maximizes the winning chance ofk

k
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1
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Figure 3: Knockout tournamentKT

problem has a decision version which asks if there existT andS such that the probability ofk
winning the tournament is greater than a given valueθ.

The first intuition for the optimization problem is that the later any player plays in the tourna-
ment, the better chance she has of winning the tournament. We state and prove this intuition in the
following proposition.

Proposition 2. Given a set of playersN and the winning probability matrixP , the tournament
agenda that maximizes the probability of playerk ∈ N has the biased structure as in Figure 2 in
whichk has to play only the final match.

Proof. We will prove this theorem by induction.
Base case:When|N | = 2, there is only one possible binary tree with 2 leaf nodes.
Inductive step:Assume that the theorem holds forN with |N | ≤ n − 1. For any givenk ∈ N ,

we will show that it also holds forN with |N | = n by converting any tournament agenda that
does not have a biased structure to one with the same structure as in Figure 2 such that in this new
tournament,k has at least the same chance of winning.

Let’s consider any given tournament agendaKT that does not have the biased structure. Let
KT1 andKT ′2 be the two disjoint sub-tournaments that make upKT , and letN1, N ′

2 be the set
of players assigned toKT1, KT ′2 respectively. Assume wlog thatk ∈ N ′

2. Since|N ′
2| < |N |, the

chance ofk winning the tournament is maximized whenKT ′2 has the biased structure. Therefore
we just need to compare the chance ofk winning in KT (as shown in Figure 3) with its chance in
KT ′ as shown in Figure 2:

q(k, KT ) =
∑

i∈N ′
2

[pk,i ∗ q(i,KT2)] ∗
∑

j∈N1

[pk,j ∗ q(j, KT1)]

q(k,KT ′) =
∑

j∈N1,i∈N2

pk,i ∗ q(i,KT2) ∗ pi,j ∗ q(j, KT1)

+
∑

j∈N1,i∈N2

pk,j ∗ q(j,KT1) ∗ pj,i ∗ q(i, KT2)

q(k, KT ′)− q(k, KT ) =
∑

j∈N1,i∈N2

q(j, KT1)q(i, KT2) [pk,j ∗ pj,i + pk,i ∗ pi,j − pk,i ∗ pk,j ]

pi,j + pj,i = 1 ⇒ pk,j ∗ pj,i + pk,i ∗ pi,j ≥ min{pk,i, pk,j} ≥ pk,i ∗ pk,j

Therefore we haveq(k, KT ′) ≥ q(k, KT ).

Even though we know something about the shape of the optimal tournament structure, it is still
an open problem whether there exists an efficient algorithm to find the exact optimal structure. How-
ever, when there are certain natural constraints on the structures of the tournament or the winning
probabilities of the players, we manage to get a better analysis of the problem. In the next sections
we will discuss the constraints and the results in the new settings.
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4 A constraint on the structure of the tournament

In the previous section, we have shown that the optimal tournament structure is very unbalanced
with the target player on one side and the rest of the players on the other side of the tree. One might
say that this structure is unfair since the target player will have to compete only in the final match.
One particular way to enforce fairness is to require the tournament structure to be a balanced binary
tree (for simplicity, we assume that the number of players is a power of 2). This way, every player
has to play the same number of matches in order to win the tournament.

Definition 3 (Balanced Knockout Tournament). Given a setN of players such that|N | = 2k, a
knockout tournamentKT = (T, S) is called balanced whenT is a balanced binary tree.

The balanced knockout tournament is in fact the most commonly used knockout tournament
format in practice. In this setting, since the structure of the tournament is fixed, the remaining
control of the tournament designer is in the seeding of the tournament, i.e., the assignment of players
to the leaf nodes of the tree. Thus our previous problem is reduced to finding the seeding that will
maximize the winning probability of a particular player. We have the following hardness result for
the decision version of this problem:

Theorem 3. Given a setN of players such that|N | = 2k, and a winning probability matrixP ,
it is NP-complete to decide whether there exists a balanced knockout tournamentKT such that
q(k, KT ) ≥ δ for a givenδ andk ∈ N .

This theorem follows from Theorem 5. Therefore we will defer the discussion of the proof of
this theorem to the next section. Note that the same result holds when the number of players is not
a power of 2. In this case, when there is an odd number of players at any round, the tournament
designer can let any player advance to the next round without competing. This allows certain bias,
e.g., if the number of players is2k + 1, then the target player can actually advance straight to the
final match. Nevertheless, it is still NP-hard to find the optimal agenda for the target player.

5 Constraints on the player model

Besides placing a constraint on the structure of the tournament, we can also enforce certain con-
straints on the winning probabilities between the players. One such constraint can be on the possible
values that the probabilities can take. Another constraint is a certain overall structure that the prob-
abilities need to satisfy. We will discuss both types of constraints below.

5.1 Win-Lose Match Results

The first constraint we consider is requiring the result of each match to be deterministic, i.e., winning
probabilities can only be either 0 or 1. As mentioned in Section 2, a knockout tournament in this
setting is analogous to a sequential pairwise elimination election. Given a tournament agenda, a
player in the tournament will either win the tournament for certain (winning with probability 1) or
will lose for certain (winning with probability 0). Note that the winning probability matrix can be
any arbitrary binary matrix.

When there is no constraint on the structure of the tournament, as shown in [7], there exists a
polynomial time algorithm to find the tournament agenda that allows a given playerk to win the
tournament or decide that it is impossible fork to win. When the tournament has to be balanced, it
is still an open problem.

We shall now discuss another problem model that we believe will be helpful for the understand-
ing of the proof of Theorem 5. In this model, there is no constraint to the tournament tree, except
that each player has to start from a pre-specified round. In other words, the tournament can take the
shape of any binary tree, but each player has to start at certain depth of the tree.
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Definition 4 (Knockout Tournament with Round Placements). Given a setN of players and a
winning probability matrixP , a vectorR ∈ N|N |, if there exists a knockout tournamentKT such
that in KT , player i starts from roundRi (the leaf nodes with the maximum depth in the tree are
considered to be at round 0), thenR is called afeasibleround placement and such tournamentKT
is called a knockout tournament with round placementR. When there is an odd number of players
at any given round, one player playing at that round can automatically advance to the next round.

Note that when all players have round placement 0, the tournament is balanced. We have the
following hardness result:

Theorem 4. Given a set of playersN , the winning probability matrixP such that∀i 6= j ∈ N ,
Pi,j ∈ {0, 1}, and a feasible round placementR, it is NP-complete to decide whether there exists a
tournament agendaKT with round placementsR such thatq(k, KT ) ≥ δ for a givenδ andk ∈ N .

Proof. It is easy to show that the problem is in NP. We will show the problem is NP-complete using
a reduction from the Vertex Cover problem.

Vertex Cover: Given a graphG = {V, E} and an integerk, is there a subsetC ∈ V such that
|C| ≤ k andC coversE?

Reduction method:
We construct a tournamentKT = (T, S) with a special playero such thato wins KT with
probability 1 if and only if there exists a vertex cover of size at mostk.

KT contains the following players1:

1. Objective player:o which starts at round 0.

2. Vertex players:{vi ∈ V } which start at round 0. There aren = |V | such players.

3. Edge players:{ei ∈ E}. There arem = |E| such players.ei starts at round(n− k + i− 1).

4. Filler players: For each roundr such that(n−k+m) > r ≥ (n−k), there is one filler player
fr that starts at roundr. Thus there are a total ofm of them. They are meant for playero.

5. Holder players: For each roundr, there are a set of holder playershr
i (i.e., multiple copies of

hr) that start at roundr. These players are meant for the vertex players. The number of copies
of hr depends on the value ofr:

- If 0 ≤ r < (n− k), there are(n− r − 1) of them

- If (n− k) ≤ r < (n− k + m), there are(k − 1) of them

- If (n− k + m) ≤ r < (n + m), there are(m + n− r − 1) of them

The winning probabilities between the players are assigned as in Table 5.1. In a nutshell:

1. o only wins againstvi andf with probability 1 (always wins) and loses against all others with
probability 1 (always loses).

2. vi always wins againsthr, ej that it covers, andvi′ with i′ > i. It always loses against all
other players.

3. ej always wins againsthr, f , ej′ with j′ > j.

4. Between twofr players, the winner can be either one of them.

5. Between twohr players, the winner can be either one of them.
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o vj ej fr hr
i

o - 1 0 1 0
vi - 1 if i ≤ j, 0 otherwise 1 if vi coversej , 0 otherwise 0 1
ei - - 1 if i ≤ j, 0 otherwise 1 1
fr - - - arbitrary 1
hr

i - - - - arbitrary

Table 1: The winning probabilities of row players against column players inKT

The reduction is polynomial since the numbers of players in the tournament is polynomial.
We first need to show how to construct an agendaKT that letso win with probability 1 if there

exists a vertex coverC of size at mostk. The desiredKT is composed of three phases:
Phase 1:Phase 1 is the first(n − k) rounds. In this phase, we eliminate all vertex players that

are not inC while keeping the remaining vertex players, ando. At each roundr, match upo with
v′ /∈ C and let each of the(n − r) holder playershr match up with the remainingvi. Notice that
after each round, one vertex player gets eliminated and there is one lesshr. After (n − k) rounds,
there arek vertex players left. Each of them corresponds to a vertex inC.

Phase 2:Phase 2 is the followingm rounds. In this phase, we eliminate all edge players. For
each round, we match upo with fr. At each roundr, there will be one edge playere starting at that
round. We matche againstvi ∈ C that covers it. For the remaining vertex players, we match them
up with (k − 1) holder playershr. After m rounds, all of the edge players will be eliminated (since
thek vertex players left form a vertex cover). The remaining players at the end of this phase arek
vertex players ando.

Phase 3:Phase 3 is the finalk rounds after Phase 2. In this phase, we eliminate the remaining
vertex players. At each round, the number of new holder players starting at that round is one less
than the number of remaining vertex players. We match up the vertex players withhr, ando with
the remainingv. At the end of this phase, onlyo remains.

For the other direction, we need to prove thato can win the tournament with probability 1 only
if there is a vertex coverC of sizek. First note that during Phase 1, foro not to get eliminated, it
has to play against a vertex playerv. Thus after the first(n − k) rounds, there are at mostk vertex
players remaining (there can be less if two vertex players play against each other).

During Phase 2, the only ways that an edge playere can be eliminated is to play againstv that
covers it or play against another edge playere′ which started at an earlier round. Ife is eliminated
by e′, there must be either onehr or onev that was eliminated earlier by an edge playere′′ (which
can possibly bee′). Since there is only(k − 1) holder players at each round, ifhr was eliminated
by e′′, two vertex players must have played against each other and one of them must have been
eliminated. Thus for both cases, there is at least onev that got eliminated. Note that in this phase, at
any round, there are only(k + 1) new players. Therefore, at the end of this phase, there are exactly
(k + 1) players remaining includingo. If all edge players get eliminated by vertex players, there are
k vertex players remaining. If there is at least onee which did not get eliminated or got eliminated
by anothere′, there are less thank vertex players remaining.

Now during Phase 3, foro to win the tournament,o can only play against a vertex player. Thus
the number of vertex players is reduced each round by 1. Moreover, since there are(k − 1) holder
playershr starting at the first round of the phase, and one less for each round after that, if there are
less thank vertex players at the beginning of Phase 3, there will be at least one non-vertex player
remaining. If that is the case, at the last round of Phase 3, there must be at least one edge or holder
player remaining ando will lose the tournament.

Therefore, foro to win the tournament, there must bek vertex players at the beginning of Phase
3. This implies all edge players must have been eliminated by vertex players during Phase 2. So

1We overload some notations here but the given the context, it should be clear
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each edge player must be covered by at least one of the remaining vertex players after Phase 1. Since
there are at mostk of them after Phase 1, these remaining vertex players form a vertex cover of size
at mostk.

After placing this constraint on the structure of the tournament tree, the tournament design prob-
lem has changed from easy to hard. This gives an indication that the design problem for balanced
knockout tournament with deterministic match results is probably also hard.

5.2 Win-Lose-Tie Match Results

When the match results are deterministic, it is an open problem whether there exists an efficient
algorithm to find the optimal balanced knockout tournament for a given player. Surprisingly, when
we allow there to be a tie between two players (each has equal chance of winning), the problem
becomes provably hard.

Theorem 5. Given a set of playersN , a winning probability matrixP such thatPi,j ∈ {0, 1, 0.5},
it is NP-complete to decide whether there exists a balanced knockout tournamentKT such that
q(k, KT ) ≥ δ for a givenδ andk ∈ N .

The proof of Theorem 5 is similar to the proof of Theorem 4 with two modifications to the
reduction:
1. We need to construct some gadgets that simulate the round placements, i.e., if playeri starts from
roundr, playeri will not be eliminated until roundr. In order to achieve this, we will introduce
(2r − 1) filler players that only playeri can beat. This will keep playeri busy until at least roundr
2. We need to make sure that the round placement for any player is at mostO(log(n)) with n equal
to the size of the Vertex Cover Problem so that the size of the tournament is still polynomial.

Proof of Theorem 5.Similar to the Proof of Theorem 4, we show here a reduction from the Vertex
Cover problem.

Reduction method:
We construct a tournamentKT = (T, S) with a special playero such thato wins KT with
probability 1 if and only if there exists a vertex cover of size at mostk.

KT contains the following players:

1. Objective player:o

2. Vertex players:{vi ∈ V } and an extra special vertexv0 which does not cover any edge. If we
let n = |V | then there aren + 1 vertex players.

3. Edge players:{ei ∈ E}. There arem = |E| edge players.

4. Filler players: For each roundr such that0 < r ≤ dlog(n − k)e, there arek filler players
fr

v,i, i.e., there arek copies offr
v . These players are meant to keep at leastk vertex players

advancing to the next round. For each roundr such thatdlog(n− k)e < r ≤ dlog(n− k)e+
dlog(m)e, there arek filler playersfr

e,i. These are meant for the edge players. We might refer
to both types of filler players asfr

i or just simplyfr.

5. Holder players: For each edge playerei, there are2dlog(n−k)e − 1 edge holder play-
ers hl

ei
. These will make sure no edge player will be eliminated before reaching round

dlog(n − k)e + 1. For each filler playerfr
i , there are2r − 1 holder playershl

fr
i

that
will make sure no filler player will be eliminated before reaching roundr. There are also
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K = 2dlog(n−k)e+dlog(m)e+dlog(k+1)e+1 − 1 special holder playershl
o that will allow player

o to advance to the final match.

The winning probabilities between the players are assigned as in Table 5.2. In a nutshell:

1. o only wins againstvi andho with probability 1 (always wins) and loses against all others
with probability 1 (always loses).

2. vi always wins againstfr (bothfr
v andfr

e ), ej that it covers, andvi′ with i′ > i. It always
loses against all other players. The special vertex playerv0 does not win against any edge
player but wins against any other vertex player.

3. ej always wins againsthej , fr, and wins with probability 0.5 against anotherej′ .

4. For the holder players, each of them only loses to the player it is meant for. For example, edge
holder playerhl

ej
only loses to the edge playerej . Holder players tie when playing against

each other or against an edge player (except for the edge holder players they are meant for).
They always win againsto and vertex players.

vj ej fr′
j hl′

ej
hl′

fr′
j

hl′
o

o 1 0 0 0 0 1
vi 1 if i < j, 1 if vi coversej , 1 0 0 0

0 otherwise 0 otherwise
ei - 0.5 0.5 1 if i = j, 1 1

0.5 otherwise
fr

i - - 0.5 0.5 1 if fr
i = fr′

j , 1
0.5 otherwise

hl
ei

- - - 0.5 0.5 1
hl

fr
i

- - - - 0.5 1

hl
o - - - - - 0.5

Table 2: The winning probabilities of row players against column players inKT

The reduction is polynomial since the number of players in the tournament isO(K). Without
loss of generality, we assume that the number of total players is a power of 2 because we can always
add moreho players and this will not affect the reduction shown below. Note that we consider the
first round as round 1.

First we need to show how to construct an agendaKT that leto win with probability 1 if there
exists a vertex coverC of size at mostk. The desiredKT is composed of two phases:

Phase 1:Phase 1 is the firstdlog(n − k)e rounds. In this phase, we eliminate allv /∈ C except
the special vertex playerv0 while keepingo and all edge players. During this phase, for each player
that has corresponding holder players, we will match them together. This will help each edge player
e to get to rounddlog(n− k)e+ 1, and each filler playerfr to get to roundr. We also matcho with
the holder playerho to helpo advancing to the final round. At round1 ≤ r ≤ dlog(n − k)e, if the
vertexvi is in C, we match the vertex playervi with the filler playerfr. Otherwise we match it with
another vertex player that is not inC. At the end of this phase , there are onlyk + 1 vertex players
remaining. One of them is the special vertex playerv0.

Phase 2:Phase 2 is the followingdlog(m)e+dlog(k+1)e+1 rounds. In this phase, we eliminate
all the edge players by repeatedly matching each vertex player with the edge players that it covers.
If there are more edge players than vertex players, we will match the remaining edge players who
are covered by the same vertex player with each other. If there is any edge player that does not have
a match, we will match it with the edge filler playerfr

e . Note that there are at mostk edge players
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that do not have a match. After each round, at least half of the edge players will be eliminated. Thus
after at mostdlog(m)e rounds, all the edge players will be eliminated. There will be only vertex
playersv, o andho remaining. We just need to match them up untilo is the only player left sinceo
wins againstv andho with probability 1.

For the other direction, we need to prove thato can win the tournament with probability 1 only if
there is a vertex coverC of sizek. We need to show that ifo wins with probability 1, after Phase 1,
there will be onlyk + 1 vertex players remaining including the special vertexv0, and during Phase
2, all edge players will be eliminated by one of those remaining vertex players, i.e., no edge players
gets eliminated during phase 1.

First note that foro to win with probability 1, no holder players exceptho can get to the fi-
nal. Thus during the firstdlog(n − k)e rounds, no edge player can get eliminated since there are
(2dlog(n−k)e − 1) holder players for each edge player. Also no filler playerfr can get eliminated
before roundr. At roundr such thatr ≤ dlog(n−k)e, the only way for a vertex player to advance to
the next round is either playing against a filler playerfr or another vertex player. It cannot advance
by playing against an edge player that it covers, since that would eliminate that edge player too early.
It cannot advance by playing a filler playerfr′ with r′ > r either, since that would eliminatefr′ too
early. Therefore, besidesk vertex players playing againstfr, at least half of the remaining vertex
players will be eliminated after each round. At the end of rounddlog(n − k)e, there can be only at
mostk + 1 vertex players remaining. Note that since vertex playerv0 wins against any other vertex
players, it must still remain.

For o to win the tournament with probability of 1,o must not play against any edge players
either. Moreover, note that when two edge players play against each other, each of them has a50%
chance moving on to the next round. Thus the only way that an edge player gets eliminated is to play
against a vertex player that covers it. So, each edge player must be covered by at least one of the
remainingk vertex players (sincev0 does not cover any edge). Thus the set ofk remaining vertex
players forms a vertex cover of sizek.

The problem of finding the optimal balanced knockout tournament with Win-Lose-Tie match
results is reducible to our general balanced knockout tournament. This constitutes the proof for
Theorem 3.

When there is no constraint on the structure of the tournament, there exists a polynomial time
algorithm to find an agenda that will allow a target player to win with probability 1 or decide that
such an agenda does not exist. This algorithm is a modification the algorithm introduced in [7] to
compute possible winners. In this algorithm, when there is a tie between 2 players, we remove all
the edges between them in the tournament graph. We will then proceed to finding all the winning
paths from the target player to other players in the tournament. If there is a winning path to each of
the other players, there exists an agenda to make the target player win, and that agenda is the binary
tree formed by combining the winning paths.

5.3 Monotonic Winning Probabilities

Another natural constraint is to require a certain overall structure of the winning probability matrix
P . One of the most common models in the literature is the monotonic model (see for example [5,
10, 6, 14]). In this model, the players are numbered from 1 ton in descending order of unknown
intrinsic abilities. We only know the probability of one player winning against another. These
winning probabilities are also correlated to the intrinsic abilities.

Definition 5 (Knockout Tournament with Monotonic Winning Probabilities). A knockout tourna-
mentKT = {N,T, S, P} has monotonic winning probabilities whenP satisfies the following con-
straints:

1. pij + pji = 1
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2. pij ≥ pji ∀(i, j) : i ≤ j

3. pij ≥ pi(j+1) ∀(i, j)
As in the case of deterministic match results, when we require the tournament to be balanced, the

complexity of finding the optimal tournament is unknown. Unlike the case of balanced tournaments
with win-lose-tie, the monotonicity condition is too restrictive. Yet, when we relax this condition to
allow small violations, we can obtain a hardness result. We call the new conditionε-monotonicity.

Definition 6 (ε-monotonicity). A winning probability matrixP is ε-monotonic withε > 0 whenP
satisfies the following constraints:

1. pij + pji = 1

2. pij ≥ pji ∀(i, j) : i ≤ j

3. pij ≥ pi(j′) − ε ∀(i, j, j′) : j′ > j

As ε goes to 0, the winning probability matrixP will gets closer to being monotonic. Note that
we only relax the second requirement of monotonicity. In this setting, the problem of finding the
optimal balanced agenda is provably hard:

Theorem 6. Given a set of playersN , a ε-monotonic winning probability matrixP with ε > 0, it is
NP-complete to decide if there exists a balanced knockout tournamentKT such thatq(k, KT ) ≥ δ
for a givenδ andk ∈ N .

Proof. To prove this theorem, we show a reduction from the Vertex Cover Problem to the tournament
design problem in this setting. The reduction is similar to the proof of Theorem 3 with the same
set of players but with slightly different winning probabilities (shown in Table 5.3). Essentially, we
convert the probabilities of a vertex player winning against edge players that it does not cover from
0 to (1 − ε). Similarly for o, it now either wins with probabilities1 as before or with probabilities
(1− ε). The new winning probabilities areε-monotonic with this ordering of players in descending
strengths:o, v0... vn, e1... em, fr, he, hfr , ho. Note that foro to win the tournament with
probability 1, she can only play againstv andho. Thus all players of other types must be eliminated
with probability 1. This allows the proof of Theorem 3 to hold in this setting.

vj ej fr′
j hl′

ej
hl′

fr′
j

hl′
o

o 1 1− ε 1− ε 1− ε 1− ε 1
vi 1 if i < j, 1 if vi coversej , 1 1− ε 1− ε 1− ε

0 ow. (1− ε) ow.
ei - 0.5 1 1 if i = j, 1 1

(1− ε) ow.
fr

i - - 0.5 0.5 1 if fr
i = fr′

j , 1
0.5 otherwise

hl
ei

- - - 0.5 0.5 1
hl

fr
i

- - - - 0.5 1

hl
o - - - - - 0.5

Table 3: Theε-monotonic winning probabilities of row players against column players inKT
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6 Conclusion and future work

In this paper we have investigated the computational aspect of agenda control for knockout tour-
naments. We have considered several modelings of the problem based on different constraints that
can be placed on the structure of the tournament or the model of the players. In particular, we have
shown that when the tournament has to be balanced, the agenda control problem is NP-hard, even
when the match results can only be win, lose, or tie, or when the winning probabilities between the
players have to beε-monotonic. This suggests that it is hard to design a knockout tournament with
maximum predictive power. When the match results are deterministic, the complexity of the control
problem remains an open problem for future work. Other directions include finding optimal agenda
for other objective functions such as fairness or “interestingness” of the tournament, or considering
other constraints on the tournament structure and player models.
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Complexity of unweighted coalitional manipulation
under some common voting rules

Lirong Xia, Vincent Conitzer, Ariel D. Procaccia, and Jeffrey S. Rosenschein

Abstract

In this paper, we study the computational complexity of the unweighted coalitional manipu-
lation (UCM) problem under some common voting rules. We showthat the UCM problem
under maximin is NP-complete. We also show that the UCM problem under ranked pairs is
NP-complete, even if there is only one manipulator. Finally, we present a polynomial-time
algorithm for the UCM problem under Bucklin.

1 Introduction

Voting is a methodology for a group of agents (or voters) to make a joint choice from a set of
alternatives. Each agent reports his or her preferences over the alternatives; then, avoting rule is
applied to aggregate the preferences of the agents—that is,to select a winning alternative. However,
sometimes a subset of the agents can report their preferences insincerely to make the outcome more
favorable to them. This phenomenon is known asmanipulation. A rule for which no group of
agents can ever beneficially manipulate is said to begroup strategy-proof; if no single agent can ever
beneficially manipulate, the rule is said to bestrategy-proof(a weaker requirement).

Unfortunately, any strategy-proof voting rule will fail tosatisfy some natural property. The cele-
brated Gibbard-Satterthwaite theorem [10, 16] states thatwhen there are three or more alternatives,
there is no strategy-proof voting rule that satisfies non-imposition (for every alternative, there exist
votes that would make that alternative win) and non-dictatorship (the rule does not simply always
choose the most-preferred alternative of a single fixed voter). However, the mere existence of ben-
eficial manipulations does not imply that voters will use them: in order to do so, voters must also
be able todiscoverthe manipulation, and this may be computationally hard. Recently, the approach
of using computational complexity to prevent manipulationhas attracted more and more attention.
In early work [2, 1], it was shown that when the number of alternatives is not bounded, the second-
order Copeland and STV rules are hard to manipulate, even by asingle voter. More recent research
has studied how to modify other existing rules to make them hard to manipulate [3, 7].

Some attention has been given to a problem known asweighted coalitional manipulation(WCM)
in elections. In this setting, there is a coalition of manipulative voters trying to coordinate their ac-
tions in a way that makes a specific alternative win the election. In addition, the voters are weighted;
a voter with weightk counts ask voters voting identically. Previous work has established that this
problem is computationally hard under a variety of prominent voting rules, even when the number
of candidates is constant [6, 11].

However, and quite surprisingly, the current literature contains few results regarding theun-
weightedversion of the coalitional manipulation problem (UCM), which is in fact more natural in
most settings. Recently, it has been shown that UCM is NP-complete under a family of voting
rules derived from the Copeland rule, even with only two manipulators [8]. Zuckerman et al. [20]
have established, as corollaries of their main theorems, that unweighted coalitional manipulation is
tractable under the Veto and Plurality with Runoff voting rules.

In this paper, we study the computational complexity of the unweighted coalitional manipu-
lation problem under the maximin, ranked pairs, and Bucklinrules. After briefly recalling basic
notations and definitions, we show that the UCM problem undermaximin is NP-complete for any
fixed number of manipulators (at least two). We then show thatthe UCM problem under ranked
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pairs is NP-complete, even when there is only one manipulator (just as this is hard for second-order
Copeland and STV). Finally, we present a polynomial-time algorithm for the UCM problem under
Bucklin.

2 Preliminaries

Let C be the set ofalternatives(or candidates). A linear order onC is a transitive, antisymmetric,
and total relation onC. The set of all linear orders onC is denoted byL(C). An n-voter profileP on
C consists ofn linear orders onC. That is,P = (R1, . . . , Rn), where for everyi ≤ n, Ri ∈ L(C).
The set of all profiles onC is denoted byP (C). In the remainder of the paper, we letm denote the
number of alternatives (that is,|C|).

A voting ruler is a function from the set of all profiles onC to C, that is,r : P (C) → C. The
following are some common voting rules studied in this paper.

1. (Positional) scoring rules: Given ascoring vector~v = (v(1), . . . , v(m)), for any voteV ∈
L(C) and anyc ∈ C, let s(V, c) = v(j), wherej is the rank ofc in V . For any profile

P = (V1, . . . , Vn), let s(P, c) =
n
∑

i=1

s(Vi, c). The rule will selectc ∈ C so thats(P, c)

is maximized. Two examples of scoring rules areBorda, for which the scoring vector is
(m− 1, m− 2, . . . , 0), andplurality, for which the scoring vector is(1, 0, . . . , 0).

2. Maximin: Let NP (ci, cj) denote the number of votes that rankci ahead ofcj . The winner is
the alternativec that maximizesmin{NP (c, c′) : c′ ∈ C, c′ 6= c}.

3. Bucklin: An alternativec’s Bucklin score is the smallest numberk such that more than half of
the votes rankc among the topk alternatives. The winner is the alternative that has the smallest
Bucklin score. (Sometimes, ties are broken by the number of votes that rank an alternative
among the topk, but for simplicity we will not consider this tie-breaking rule here.)

4. Ranked pairs[17]: This rule first creates an entire ranking of all the alternatives.NP (ci, cj)
is defined as for the maximin rule. In each step, we consider a pair of alternativesci, cj that
we have not previously considered (as a pair): specifically,we choose the remaining pair with
the highestNP (ci, cj). We then fix the orderci > cj , unless this contradicts previous orders
that we fixed (that is, it violates transitivity). We continue until we have considered all pairs
of alternatives (hence, in the end, we have a full ranking). The alternative at the top of the
ranking wins.

All of these rules allow for the possibility that multiple alternatives end up tied for the win. Techni-
cally, therefore, they are reallyvoting correspondences; a correspondence can select more than one
winner. In the remainder of this paper, we will sometimes somewhat inaccurately refer to the above
correspondences as rules. We will consider two variants of the manipulation problem: one in which
the goal is to make the preferred alternative the unique winner, and one in which the goal is to make
sure that the preferred alternative is among the winners. Westudy theconstructivemanipulation
problem, in which the goal is to make a given alternative win.

Definition 1 An unweighted coalitional manipulation (UCM)instance is a tuple(r, PNM , c, M),
wherer is a voting rule,PNM is the non-manipulators’ profile,c is the alternative preferred by the
manipulators, andM is the set of manipulators.

Definition 2 The UCM unique winner (UCMU) problem is: Given a UCM instance
(r, PNM , c, M), we are asked whether there exists a profileP M for the manipulators such that
r(PNM ∪ PM ) = {c}.

Definition 3 TheUCM co-winner (UCMC)problem is: Given a UCM instance(r, PNM , c, M),
we are asked whether there exists a profilePM for the manipulators such thatc ∈ rPNM ∪ PM .
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3 Maximin

In this section, we show that the UCMU and UCMC problems undermaximin are NP-complete, by
giving a reduction from thetwo vertex disjoint paths in directed graphproblem, which is known to
be NP-complete [12].

Definition 4 The two vertex disjoint paths in directed graphproblem is: We are given a directed
graphG and two disjoint pairs of vertices(u, u′) and(v, v′), whereu, u′, v, v′ are all different from
each other. We are asked whether there exist two directed pathsu → u1 → . . . → uk1

→ u′ and
v → v1 → . . .→ vk2

→ v′ such thatu, u′, u1, . . . , uk1
, v, v′, v1, . . . , vk2

are all different from each
other.

For any profileP and any pair of alternativesc1, c2, let DP (c1, c2) denote the number of times
thatc1 is ranked higher thanc2 in P minus the number of times thatc2 is ranked higher thanc1 in
P . That is,

DP (c1, c2) = |{R ∈ P : c1 �R c2}| − |{R ∈ P : c2 �R c1}|

The next lemma has previously been used by others [13, 4].

Lemma 1 Given a profileP andF : C × C → Z such that

1. for all c1, c2 ∈ C, c1 6= c2, F (c1, c2) = −F (c2, c1), and

2. either for all pairs of alternativesc1, c2 ∈ C (with c1 6= c2), F (c1, c2) is even, or for all pairs
of alternativesc1, c2 ∈ C (with c1 6= c2), F (c1, c2) is odd,

there exists a profileP such that for allc1, c2 ∈ C, c1 6= c2, DP (c1, c2) = F (c1, c2) and |P | ≤
1

2

∑

c1,c2:c1 6=c2
|F (c1, c2)− F (c2, c1)|.

Theorem 1 The UCMU and UCMC problems under maximin are NP-complete forany fixed num-
ber of manipulators (as long as it is at least 2).

Proof of Theorem 1: It is easy to verify that the UCMU and UCMC problems under maximin
are in NP. We first show that UCMU is NP-hard, by giving a reduction from the two vertex disjoint
paths in directed graph problem. Let the instance of the two vertex disjoint paths in directed graph
problem be denoted byG = (V, E), (u, u′) and (v, v′) whereV = {u, u′, v, v′, c1, . . . , cm−5}.
Without loss of generality, we assume that every vertex is reachable fromu or v (otherwise, we can
remove the vertex from the instance). We also assume that(u, v′) 6∈ E and(v, u′) 6∈ E (since such
edges cannot be used in a solution). LetG′ = (V, E ∪ {(v′, u), (u′, v)}), that is,G′ is the graph
obtained fromG by adding(v′, u) and(u′, v). We construct a UCMU instance as follows.
Set of alternatives:C = {c, u, u′, v, v′, c1, . . . , cm−5}.
Alternative preferred by the manipulators : c.
Number of unweighted manipulators: |M | (for some|M | ≥ 2).
Non-manipulators’ profile: PNM satisfying the following conditions:

1. For anyc′ 6= c, DP NM (c, c′) = −4|M |.

2. DP NM (u, v′) = DP NM (v, u′) = −4|M |.

3. For any(s, t) ∈ E such thatDP NM (t, s) is not defined above, we letDP NM (t, s) = −2|M |−
2.

4. For anys, t ∈ C such thatDP NM (t, s) is not defined above, we let|DP NM (t, s)| = 0.
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The existence of such aPNM , whose size is polynomial inm, is guaranteed by Lemma 1.
We can assume without loss of generality that each manipulator ranksc first. Therefore, for any

c′ 6= c, DP NM∪P M (c, c′) = −3|M |.
We are now ready to show thatMaximin(PNM ∪ PM ) = {c} if and only if there exist two

vertex disjoint paths fromu to u′ and fromv to v′ in G. First, we prove that if there exist such paths
in G, then there exists a profilePM for the manipulators such thatMaximin(PNM ∪PM ) = {c}.
Let u → u1 → . . . → uk1

→ u′, v → v1 → . . . → vk2
→ v′ be two vertex disjoint paths.

Let V ′ = {u, u′, v, v′, u1, . . . , uk1
, v1, . . . , vk2

}. Then, because any vertex is reachable fromu or
v in G, there exists a connected subgraphG∗ of G′ (which still includes all the vertices) in which
u→ u1 → . . .→ uk1

→ u′ → v → v1 → . . .→ vk2
→ v′ → u is the only cycle. Therefore, there

exists a linear orderO overV \ V ′ such that for anyt ∈ V \ V ′, either 1. there existss ∈ V \ V ′

such thats �O t and(s, t) ∈ E, or 2. there existss ∈ V ′ such that(s, t) ∈ E. We let

PM ={(|M | − 1)(c � u � u1 � . . . � uk1
� u′ � v � v1 � . . . � vk2

� v′ � O)}

∪ {c � v � v1 � . . . � vk2
� v′ � u � u1 � . . . � uk1

� u′ � O}

Then, we have the following calculation

dmin = minc′ 6=c DP NM∪P M (c, c′) = −4|M |+ |M | = −3|M |.

DP NM∪P M (u, v′) = −4|M |+ (|M | − 1)− 1 = −3|M | − 2 < −3|M | = dmin.

DP NM∪P M (v, u′) = −4|M |+ 1− (|M |+ 1) = −5|M |+ 2 < −3|M | = dmin.

For anyt ∈ C\{c, u, v}, there existss ∈ C\{c} such that(s, t) ∈ E andDP M (t, s) = −|M |,
which means thatDP NM∪P M (t, s) = −2|M | − 2− |M | = −3|M | − 2 < −3|M | = dmin.

HenceMaximin(PNM ∪ PM ) = {c}.
Next, we prove that if there exists a profilePM for the manipulators such that

Maximin(PNM ∪ PM ) = {c}, then there exist two vertex disjoint paths fromu to u′ and
from v to v′. We define a functionf : V → V such thatDP NM∪P M (t, f(t)) < −3|M |. We
note that sinceMaximin(PNM ∪ PM ) = {c}, for any t 6= c, there must exists such that
DP NM∪P M (t, s) < −3|M |, ands must be a parent oft in G′. If there exists more than one
suchs, definef(t) to be any one of them. It follows that if(t, f(t)) is neither(u, v′) or (v, u′),
then(f(t), t) ∈ E andDP M (t, f(t)) = −|M |, which means thatf(t) � t in each vote ofP M ;
otherwise, if(t, f(t)) is (u, v′) or (v, u′), thenDP M (t, f(t)) ≤ |M |−2, which means thatf(t) � t

in at least one vote ofPM . There must existl1 < l2 ≤ m such thatf l1(u) = f l2(u). That is,
f l1(u), f l1+1(u), . . . , f l2−1(u), f l2(u) is a cycle inG′. We assume that for anyl1 ≤ l′1 < l′2 < l2,
f l′

1(u) 6= f l′
2(u). Now we claim that(v′, u) and(u′, v) must be both in the cycle, because

1. if neither of them is in the cycle, then in each vote ofPM , we must havef l2(u) � f l2−1(u) �
f l1(u) = f l2(u), which contradicts the assumption that each vote is a linearorder;

2. if exactly one of them is in the cycle—without loss of generality,f l1(u) = v, f l1+1(u) = u′—
then in at least one of the votes ofPM , we must havef l2(u) � f l2−1(u) � . . . � f l1(u) =
f l2(u), which contradicts the assumption that each vote is a linearorder.

Now, without loss of generality, let us assume thatf l1(u) = u, f l1+1(u) = v′, f l3(u) =
v, f l3+1(u) = u′, wherel3 ≤ l2−2. We immediately obtain two vertex disjoint pathsu = f l1(u) =
f l2(u) → f l2−1(u) → . . . → f l3+1(u) = u′ andv = f l3(u) → f l3−1(u) → . . . → f l1+1(u) =
v′. Therefore, UCMU under maximin is NP-complete.

For UCMC, we use almost the same reduction, except we modify it as follows:

2’. Let DP NM (u, v′) = DP NM (v, u′) = −4|M |+ 2.

3’. For any(s, t) ∈ E such thatDP NM (t, s) is not defined above, we letDP NM (t, s) = −2|M |.

�
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4 Ranked pairs

In this section, we prove that the UCMU and UCMC problems under ranked pairs are NP-complete
(even for a single manipulator) by giving a reduction from 3SAT.

Definition 5 The 3SAT problem is: Given a set of variablesX = {x1, . . . , xq} and a formula
Q = Q1 ∧ . . . ∧Qt such that

1. for all 1 ≤ i ≤ t, Qi = li,1 ∨ li,2 ∨ li,3, and

2. for all 1 ≤ i ≤ t and1 ≤ j ≤ 3, li,j is either a variablexk, or the negation of a variable
¬xk,

we are asked whether the variables can be set to true or false so thatQ is true.

Theorem 2 The UCMU and UCMC problems under ranked pairs are NP-complete, even when
there is only one manipulator.

Proof of Theorem 2: It is easy to verify that the UCMU and UCMC problems under ranked pairs
are in NP. We first prove that UCMU is NP-complete. Given an instance of 3SAT, we construct a
UCMU instance as follows. Without loss of generality, we assume that for any variablex, x and¬x
appears in at least one clause, and none of the clauses contain bothx and¬x.
Set of alternatives:C = {c, Q1, . . . , Qt, Q

′
1, . . . , Q

′
t}

⋃

{x1, . . . , xq,¬x1, . . . ,¬xq}
⋃

{Ql1,1
, Ql1,2

, Ql1,3
, . . . , Qlt,1

, Qlt,2
, Qlt,3

}
⋃

{Q¬l1,1
, Q¬l1,2

, Q¬l1,3
, . . . , Q¬lt,1

, Q¬lt,2
, Q¬lt,3

}.
Alternative preferred by the manipulator : c.
Number of unweighted manipulators: |M | = 1.
Non-manipulators’ profile: PNM satisfying the following conditions.

1. For anyi ≤ t, DP NM (c, Qi) = 30,DP NM (Q′
i, c) = 20; for anyx ∈ C \{Qi, Q

′
i : 1 ≤ i ≤ t},

DP NM (c, x) = 10.

2. For anyj ≤ q, DP NM (xj ,¬xj) = 20.

3. For anyi ≤ t, j ≤ 3, if li,j = xk, thenDP NM (Qi, Q
i
xk

) = 30, DP NM (Qi
xk

, xk) = 30,
DP NM (¬xk, Qi

¬xk
) = 30, DP NM (Qi

¬xk
, Q′

i) = 30; if li,j = ¬xk, thenDP NM (Qi, Q
i
¬xk

) =
30, DP NM (Qi

xk
, xk) = 30, DP NM (¬xk, Qi

¬xk
) = 30, DP NM (Qi

xk
, Q′

i) = 30,
DP NM (Qi

¬xk
, Qi

xk
) = 20.

4. For anyx, y ∈ C, if DP NM (x, y) is not defined in the above steps, thenDP NM (x, y) = 0.

For example, whenQ1 = x1 ∨ ¬x2 ∨ x3, DP NM is illustrated in Figure 1.
The existence of such aPNM is guaranteed by Lemma 1, and the size ofPNM is in polynomial

in t andq.
First, we prove that if there exists an assignmentv of truth values toX so thatQ is satisfied,

then there exists a voteRM for the manipulator such thatRP (PNM ∪{RM}) = {c}. We construct
RM as follows.

• Let c be on the top ofRM .

• For anyk ≤ q, if v(xk) = > (that is,xk is true), thenxk �RM
¬xk, and for anyi ≤ t, j ≤ 3

such thatli,j = ¬xk, let Qi
xk
�RM

Qi
¬xk

.

• For anyk ≤ q, if v(xk) = ⊥ (that is,xk is false), then¬xk �RM
xk, and for anyi ≤ t, j ≤ 3

such thatli,j = ¬xk, let Qi
¬xk
�RM

Qi
xk

.

• The remaining pairs of alternatives are ranked arbitrarily.
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Q1

Q′
1

x1

¬x1

Q1
x1

Q1
¬x1

x2

¬x2

Q1
x2

Q1
¬x2

x3

¬x3

Q1
x3

Q1
¬x3

c

Figure 1: For any verticesv1, v2, if there is a solid edge fromv1 to v2, thenDP NM (v1, v2) = 30; if
there is a dashed edge fromv1 to v2, thenDP NM (v1, v2) = 20; if there is no edge betweenv1 and
v2 andv1 6= c, v2 6= c, thenDP NM (v1, v2) = 0; for anyx such that there is no edge betweenc and
x, DP NM (c, x) = 10.

If xk = >, thenDP NM∪{RM}(xk,¬xk) = 21, and for anyi ≤ t, j ≤ 3 such thatli,j = ¬xk,
DP NM∪{RM}(Q

i
¬xk

, Qi
xk

) = 19. It follows that no matter how ties are broken when applying
ranked pairs toPNM ∪ {RM}, if xk = >, thenxk � ¬xk in the final ranking. This is because for
any li,j = ¬xk, DP NM∪{RM}(Q

i
¬xk

, Qi
xk

) = 19 < 21 = DP NM∪{RM}(xk,¬xk), which means
that before trying to fixxk � ¬xk, there is no directed path from¬xk to xk.

Similarly if xk = ⊥, thenDP NM∪{RM}(xk,¬xk) = 19, and for anyi ≤ t, j ≤ 3 such that
li,j = ¬xk, DP NM∪{RM}(Q

i
¬xk

, Qi
xk

) = 21. It follows that ifxk = ⊥, then¬xk � xk, and for any
i ≤ t, j ≤ 3 such thatli,j = ¬xk, Qi

¬xk
� Qi

xk
in the final ranking. This is becauseQi

¬xk
� Qi

xk

will be fixed beforexk � ¬xk.
BecauseQ is satisfied underv, for each clauseQi, at least one of its three literals is true underv.

Without loss of generality, we assumev(li,1) = >. If li,1 = xk, then before trying to addQ′
i � c, the

directed pathc→ Qi → Qxk
→ xk → ¬xk → Q¬xk

→ Q′
i has already been fixed. Therefore,c �

Q′
i in the final ranking, which means that for any alternativesx in C \ {c, Q1, . . . , Qt, Q

′
1, . . . , Q

′
t},

c � x in the final ranking becauseDP NM∪{RM}(c, x) > 0. Hence,c is the unique winner of
PNM ∪ {RM} under ranked pairs.

Next, we prove that if there exists a voteRM for the manipulator such thatRP (PNM∪{RM}) =
{c}, then there exists an assignmentv of truth values toX such thatQ is satisfied. We construct
the assignmentv so thatv(xk) = > if and only if xk �RM

¬xk, andv(xk) = ⊥ if and only
if ¬xk �RM

xk. We claim thatv(Q) = >. If, on the contrary,v(Q) = ⊥, then there exists a
clause (Q1, without loss of generality) such thatv(Q1) = ⊥. We now construct a way to fix the
pairwise rankings such thatc is not the winner under ranked pairs, as follows. For anyj ≤ 3,
if there existsk ≤ q such thatli,j = ¬xk, thenxk �RM

¬xk becausev(¬xk) = ⊥. Therefore,
DP NM∪RM

(xk,¬xk) = 21. Then, after trying to add all pairsx � x′ such thatDP NM∪RM
(x, x′) >

21 (that is, all solid directed edges in Figure 1), it follows that xk � ¬xk can be added to the final
ranking. We choose to addxk � ¬xk first, which means thatQ1

xk
� Q1

¬xk
in the final ranking

(otherwise, we haveQ1
¬xk
� Q1

xk
� xk � ¬xk � Q1

¬xk
, which is a contradiction).

For anyj ≤ 3, if there existsk ≤ q such thatli,j = xk, then¬xk �RM
xk becausev(xk) = ⊥.

Therefore,DP NM∪RM
(xk,¬xk) = 19. We note that after trying to add all pairsx � x′ such that

DP NM∪RM
(x, x′) > 19, Q1

xk
6� Q1

¬xk
. We recall that for anyj ≤ 3, if there existsk ≤ q such that

li,j = ¬xk, thenQ1
¬xk
6� Q1

xk
. Hence, it follows thatQ′

1 � c is consistent with all pairwise rankings
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added so far. Then, sinceDP NM∪RM
(Q′

1, c) ≥ 19, if Q′
1 � c has not been added, we choose to add

it first of all pairwise rankings of alternativesx � x′ such thatDP NM∪RM
(x, x′) = 19, which means

thatQ′
1 � c in the final ranking—in other words,c is not at the top in the final ranking. Therefore,

c is not the unique winner, which contradicts the assumption thatRP (P NM ∪ {RM}) = {c}.
For UCMC, we modify the reduction as follows: we letPNM be such that for anyi ≤ t,

DP NM (Q′
i, c) = 22, and for anyj ≤ q, DP NM (xj ,¬xj) = 22. �

Similarly, we can prove that when|M | is a constant greater than one, UCMU and UCMC under
ranked pairs remain NP-complete.

Theorem 3 The UCMU and UCMC problems under ranked pairs are NP-complete, even when the
number of manipulators is fixed to some constant|M | > 1.

Proof of Theorem 3: We prove UCMU is NP-complete. The proof is similar to that of Theorem 2.
We letPNM satisfy the following conditions.

1. For anyi ≤ t, DP NM (c, Qi) = 30|M |,DP NM (Q′
i, c) = 22|M |−2; for anyx ∈ C \{Qi, Q

′
i :

1 ≤ i ≤ t}, DP NM (c, x) = 10|M |.

2. For anyj ≤ q, DP NM (xj ,¬xj) = 22|M | − 2.

3. For anyi ≤ t, j ≤ 3, if li,j = xk, thenDP NM (Qi, Q
i
xk

) = 30|M |, DP NM (Qi
xk

, xk) =
30|M |, DP NM (¬xk, Qi

¬xk
) = 30|M |, DP NM (Qi

¬xk
, Q′

i) = 30|M |; if li,j = ¬xk, then
DP NM (Qi, Q

i
¬xk

) = 30|M |, DP NM (Qi
xk

, xk) = 30|M |, DP NM (¬xk, Qi
¬xk

) = 30|M |,
DP NM (Qi

xk
, Q′

i) = 30|M |, DP NM (Qi
¬xk

, Qi
xk

) = 20|M |.

4. For anyx, y ∈ C, if DP NM (x, y) is not defined in the above steps, thenDP NM (x, y) = 0.

First, if there exists an assignmentv of truth values toX so thatQ is satisfied, then we letRM

be defined as in the proof for Theorem 2. It follows thatRP (P NM ∪ {|M |RM}) = {c} (all the
manipulators can voteRM ).

Next, if there exists a profilePM for the manipulators such thatRP (PNM ∪ PM ) = {c}, then
we construct the assignmentv so thatv(xk) = > if xk �V ¬xk for all V ∈ PM , andv(xk) = ⊥ if
¬xk �V xk for all V ∈ PM ; the values of all the other variables are assigned arbitrarily. Then by
similar reasoning as in the proof for Theorem 2, we know thatQ is satisfied underv.

For UCMC, the proof is similar (by slightly modifying theDP NM as we did in the proof of
Theorem 2). �

5 Bucklin

In this section, we present a polynomial-time algorithm forthe UCMU problem under Bucklin (a
polynomial-time algorithm for the UCMC problem under Bucklin can be obtained similarly). For
any alternativex, any natural numberd, and any profileP , letB(x, d, P ) denote the number of times
thatx is ranked among the topd alternatives inP . The idea behind the algorithm is as follows. Let
dmin be the minimal depth so thatc is ranked among the topdmin alternatives in more than half of
the votes (when all of the manipulators rankc first). Then, we check if there is a way to assign the
manipulators’ votes so that none of the other alternatives is ranked among the topdmin alternatives
in more than half of the votes.

Algorithm 1
Input: A UCM instance(Bucklin, PNM , c, M), C = {c, c1, . . . , cm−1}.

1. Calculate the minimal depthdmin such thatB(c, dmin, PNM ) + |M | > 1
2 (|NM |+ |M |).
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2. If there existsc′ ∈ C, c′ 6= c such thatB(c′, dmin, PNM ) > 1
2 (|NM | + |M |), then output

that there is no successful manipulation. Otherwise, for any c′ ∈ C, c′ 6= c, let dc′ =

b 12 (|NM |+ |M |)c −B(c′, dmin, PNM ), kc′ =

{

|M | if dc′ ≥ |M |
dc′ otherwise

.

3. If
∑

c′ 6=c kc′ < (dmin − 1)|M |, then output that there is no successful manipulation.

4. Letj = 1, t = 1, and for anyl ≤ |M |, let Rl rankc at the top. Repeat Step 4am− 1 times:

4a. If kct
> 0, then ct is ranked in the next position (lower than

the candidates that have already been ranked in previous steps) in
R mod (j−1,|M|)+1, R mod (j,|M|)+1, . . . , R mod (j+kct

−2,|M|)+1, respectively, where
for any natural numbera, b, mod (a, b) is the common residue ofa( mod b). Let j ←
mod (j + kct

− 1, |M |) + 1, t← t + 1.

5. For anys ≤ |M |, completeRs arbitrarily. OutputPM = (R1, . . . , R|M|).

Claim 1 Algorithm 1 correctly solves the UCMU problem. It runs in timeO(m|NM |+|NM ||M |+
|M |m).

Proof of Claim 1: Let us first consider the case where Algorithm 1 outputs that there is no success-
ful manipulation. There are two cases.

1. There existsc′ ∈ C, c′ 6= c such thatB(c′, dmin, PNM ) > 1
2 (|NM |+ |M |).

2.
∑

c′ 6=c kc′ < (dmin − 1)|M |. In this case, for anyPM , there existsc′ 6= c such that|M | ≥
B(c′, dmin, PM ) > kc′ , which means thatB(c′, dmin, PNM ∪ PM ) > 1

2 (|NM |+ |M |).

In both cases, more than half of the voters rankc′ among the topdmin alternatives. Therefore,c
cannot be the unique winner.

Now let us consider the case where Algorithm 1 outputs somePM . In this case, for anyt ≤
m − 1, B(ct, dmin, PM ) ≤ kct

. Therefore, for anyt ≤ m − 1, B(ct, dmin, PNM ∪ PM ) ≤
B(ct, dmin, PNM ) + kct

≤ 1
2 (|NM |+ |M |), which means thatBucklin(P NM ∪ PM ) = {c}.

Step 1 runs in timeO(m|NM |), Step 2 runs in timeO(|M ||NM |), Step 3 runs in timeO(|M |),
and Step 4 and Step 5 run in timeO(m|M |). Therefore, Algorithm 1 runs in timeO(m|NM | +
|NM ||M |+ |M |m). �

6 Discussion

Number of manipulators 1 constant

Copeland (specific tie-breaking) P [2] NP-hard [8]
STV NP-hard [1] NP-hard [1]
Veto P [20] P [20]

Plurality with Runoff P [20] P [20]
Cup P [6] P [6]

Maximin P [2] NP-hard
Ranked pairs NP-hard NP-hard

Bucklin P P
Borda P [2] ?

Table 1: Complexity of UCM under prominent voting rules. Boldface results appear in this paper.

434



In this paper, we studied the computational complexity of unweighted coalitional manipulation
under the maximin, ranked pairs, and Bucklin rules. The UCM problem is NP-complete under the
maximin rule for any fixed number (at least two) of manipulators. The UCM problem is also NP-
complete under the ranked pairs rule; in this case, the hardness holds even if there is only a single
manipulator, similarly to the second-order Copeland and STV rules. We gave a polynomial-time
algorithm for the UCM problem under the Bucklin rule. Table 1summarizes our results, and puts
them in the context of previous results on the UCM problem.

It should be noted that all of these hardness results, as wellas the ones mentioned in the introduc-
tion, areworst-caseresults. Hence, there may still be an efficient algorithm that can find a beneficial
manipulation formostinstances. Indeed, several recent results suggest that finding manipulations
is usually easy. Procaccia and Rosenschein have shown that,when the number of alternatives is a
constant, manipulation of positional scoring rules is easyeven with respect to “junta” distributions,
which arguably focus on hard instances [15]. Conitzer and Sandholm have given some sufficient
conditions under which manipulation is easy and argue that these conditions are usually satisfied in
practice [5]. Zuckerman et al. have given manipulation algorithms with the property that if they
fail to find a manipulation when one exists, then, if the manipulators are given some additional vote
weights, the algorithm will succeed [20]. The asymptotic probability of manipulability has also been
characterized (except for knife-edge cases) for a very general class of voting rules [18] (building on
earlier work [14]). In a similar spirit, several quantitative versions of the Gibbard-Satterthwaite the-
orem have recently been proved [9, 19]. One weakness of all ofthese results (except [20]) is that
they make assumptions about the distribution of instances.In this paper, we have focused on the
worst-case framework, which does not suffer from this weakness. This does mean that when we
show that manipulation is hard, it may still be the case that it is usually easy.

There are many interesting problems left for future research. For example, settling the complex-
ity of UCM under positional scoring rules such as Borda is a challenging open problem.
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