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Preface

Computational social choice is an interdisciplinary field of study bringing together ideas from
social choice theory and computer science. It is concerned with the application of techniques
developed in computer science, such as complexity analysis or algorithm design, to the study
of social choice mechanisms, such as voting procedures or fair division algorithms. It also
seeks to import concepts from social choice theory into computing, for instance for the
analysis of computer networks or multiagent systems.

These are the proceedings of COMSOC-2008, the 2nd International Workshop on Compu-
tational Social Choice, hosted by the Department of Computer Science at the University
of Liverpool on 3-5 September 2008. The first COMSOC workshop has been held in 2006
in Amsterdam. The aim of the workshop series is to bring together different communities:
computer scientists interested in computational issues in social choice; people working in ar-
tificial intelligence and multiagent systems who are using ideas from social choice to organise
societies of artificial software agents; logicians interested in the logic-based specification and
analysis of social procedures; and last but not least people coming from social choice theory
itself. COMSOC is intended to continue as a regular biannual event.

While COMSOC has started as an initiative of people with a background in computer science
(and logic and AI), we hope to continue to strengthen ties with the social choice theory
community. We are therefore particularly pleased about the significant level of participation
of prominent members of this community in the workshop, be it as Programme Committee
members, reviewers, invited speakers, or contributing authors.

We received 55 submissions (not including a handful of off-topic submissions that were
deleted at the outset). This represents a 15% increase over 2006. Each submission has been
reviewed by three members of the Programme Committee, supported by a large number
of additional reviewers. We eventually accepted 36 papers out of the 55 submissions for
presentation at the workshop.

This volume collects revised versions of these accepted papers, taking the comments of our
reviewers into account. It also includes abstracts of the talks by our five invited speakers:
Salvador Barbera (Barcelona), Rohit Parikh (CUNY), Tuomas Sandholm (Carnegie Mellon),
Moshe Tennenholtz (Technion), and William Thomson (Rochester). As for the first edition
of the workshop, the Call for Papers explicitly solicited submissions of both original papers
and of papers describing recently published work, so some of the papers have recently
appeared also in other publication venues. The reason for this policy has been to try to
accommodate the varying publishing traditions of different disciplines and to ensure that
COMSOC-2008 would attract a representative sample of the best work in the field. The
copyright for the articles in this volume lies with the individual authors.

The programme covers a wide range of topics, ranging from complexity questions in election
manipulation, over ranking systems, coalitional voting games and mechanism design, to
judgment aggregation. Important topics that have been missing from the 2006 programme
and that are included in the present volume are the analysis of tournaments, matching
theory, and belief merging. On the other hand, not all of the topics covered in 2006 are
again represented in this year’s programme. To name just one example, COMSOC-2006
included two sessions on fair division and resource allocation problems. Unfortunately, this
year we do not have contributed papers in this area (but the topic still does get some
coverage, thanks to the invited talk by William Thomson). We hope that all of these
subfields of computational social choice will continue to flourish over the coming years and
be well represented at future editions of COMSOC.

iii



We would like to thank all authors for submitting their papers, the invited speakers, pre-
senters and other workshop participants for attending, and the members of the Programme
Committee and all additional reviewers for their invaluable help in putting together an ex-
citing scientific programme. Special thanks are also due to Christian List (LSE) and to Jorg
Rothe (Diisseldorf) for having agreed to deliver tutorials on the day before the workshop.

Finally, we are grateful for the sponsorship received from the UK Engineering and Phys-
ical Sciences Research Council (EPSRC), through the Market-Based Control of Complex
Computational Systems (MBC) project (GR/T10657/01).

Amsterdam & Liverpool U.E. & PW.G.
August 2008

iv



Invited Talks

Individual and Group Strategy Proofness of Voting Rules: The Case for Restricted
Domains . . . . . . .. e
Salvador Barbera

Talk, Cheap Talk, and States of Knowledge . . . . . . . .. .. ... ... ......
Rohit Parikh

Expressiveness in Mechanisms and its Relation to Efficiency . . . . . ... . ... ...
Tuomas Sandholm

Ranking, Trust, and Recommendation Systems: An Axiomatic Approach . . . .. ..
Moshe Tennenholtz

Lorenz Rankings of Rules for the Adjudication of Conflicting Claims . . . . . . . . ..
William Thomson



Contributed Papers

A Fair Payoff Distribution for Myopic Rational Agents. . . . . . . .. ... ... ... 15
Stéphane Airiau and Sandip Sen

Computing the Degree of Manipulability in the Case of Multiple Choice . . . . . . . . 27
Fuad Aleskerov, Daniel Karabekyan, Remzi Sanver, and Vyacheslav Yakuba

On the Complexity of Rationalizing Behavior . . . . . . .. . ... ... .. ... ... 39
Jose Apestequia and Miguel A. Ballester

Alternatives to Truthfulness are Hard to Recognize . . . . . . . . . ... .. ... ... 49
Vincenzo Auletta, Paolo Penna, Giuseppe Persiano, and Carmine Ventre

Complexity of Comparison of Influence of Players in Simple Games . . . . . . . . .. 61
Haris Aziz

Divide and Conquer: False-Name Manipulations in Weighted Voting Games . . . . . . 73

Yoram Bachrach and Edith Elkind

Computing Kemeny Rankings, Parameterized by the Average KT-Distance . . . . . . 85
Nadja Betzler, Michael R. Fellows, Jiong Guo, Rolf Niedermeier, and Frances A. Rosamond

Three-sided Stable Matchings with Cyclic Preferences and the Kidney Exchange
Problem . . . . . . . e e 97
Péter Biré and Eric McDermid

Equilibria in Social Belief Removal . . . . . . . .. .. ... .. ... ... ....... 109
Richard Booth and Thomas Meyer

A Computational Analysis of the Tournament Equilibrium Set . . . . . ... ... .. 121
Felix Brandt, Felix Fischer, Paul Harrenstein, and Mazximilian Mair

Approximability of Manipulating Elections . . . . . . .. .. .. .. ... ... ... 133
Eric Brelsford, Piotr Faliszewski, Edith Hemaspaandra, Henning Schnoor, and Ilka Schnoor
A Deontic Logic for Socially Optimal Norms . . . . . ... ... ... ... ...... 145
Jan Broersen, Rosja Mastop, John-Jules Ch. Meyer, and Paolo Turrini

Coalition Structures in Weighted Voting Games . . . . . . .. ... .. .. ... ... 157
Georgios Chalkiadakis, Edith Elkind, and Nicholas R. Jennings

Compiling the Votes of a Subelectorate . . . . . . ... .. ... ... ... ...... 169

Yann Chevaleyre, Jéréme Lang, Nicolas Maudet, and Guillaume Ravilly-Abadie

Preference Functions That Score Rankings and Maximum Likelihood Estimation . . . 181
Vincent Conitzer, Matthew Rognlie, and Lirong Xia

Computing Spanning Trees in a Social Choice Context . . . . . . . .. ... ... ... 193
Andreas Darmann, Christian Klamler, and Ulrich Pferschy

Majority Voting on Restricted Domains: A Summary . . ... ... .. ... ..... 205
Franz Dietrich and Christian List

Computing the Nucleolus of Weighted Voting Games . . . . . . . .. .. .. ... ... 217

FEdith Elkind and Dmitrii Pasechnik

Sincere-Strategy Preference-Based Approval Voting Fully Resists Constructive
Control and Broadly Resists Destructive Control . . . . . . .. .. ... .. ... ... 229
Gabor Erdélyi, Markus Nowak, and Jorg Rothe

vi



Llull and Copeland Voting Computationally Resist Bribery and Control . . . . . . . . 241
Piotr Faliszewski, Edith Hemaspaandra, Lane A. Hemaspaandra, and Jorg Rothe

On Voting Caterpillars: Approximating Maximum Degree in a Tournament by Binary
Trees . . . . o e 253
Feliz Fischer, Ariel D. Procaccia, and Alex Samorodnitsky

From Preferences to Judgments and Back . . . . . ... .. ... ... ... .. 265
Davide Grossi

Aggregating Referee Scores: An Algebraic Approach . . . . . .. .. ... ... ... 277
Rolf Haenni
A Qualitative Vickrey Auction . . . . . . . . . ... L 289

Paul Harrenstein, Tamds Mdhr, and Mathijs de Weerdt

How to Rig Elections and Competitions . . . . . . . .. .. .. ... ... ....... 301
Noam Hazon, Paul E. Dunne, Sarit Kraus, and Michael Wooldridge

A Geometric Approach to Judgment Aggregation. . . . . . . .. .. ... L. 313
Christian Klamler and Daniel Eckert

Judgment Aggregation as Maximization of Epistemic and Social Utility . . . . .. .. 323
Szymon Klarman

Confluence Operators: Negotiation as Pointwise Merging . . . . . ... .. ... ... 335
Sébastien Konieczny and Ramon Pino Pérez

Welfare Properties of Argumentation-based Semantics . . . . . . . . .. .. ... ... 347
Kate Larson and Iyad Rahwan

Approval-rating Systems that never Reward Insincerity . . . . .. ... .. ... ... 359
Rob LeGrand and Ron K. Cytron

Dodgson’s Rule: Approximations and Absurdity . . . . . .. ... ... ... ..... 371
John C. McCabe-Dansted

The Cost and Windfall of Manipulability . . . . ... ... ... ... ... ... 383
Abraham Othman and Tuomas Sandholm

Informational Requirements of Social Choice Rules . . . . . . ... ... .. ... ... 391
Shin Sato

Non-dictatorial Social Choice Rules are Safely Manipulable . . . . . .. .. ... ... 403

Arkadii Slinko and Shaun White

On the Agenda Control Problem for Knockout Tournaments . . . . . ... .. .. .. 415
Thuc Vu, Alon Altman, and Yoav Shoham

Complexity of Unweighted Coalitional Manipulation under Some Common Voting
Rules . . . o e 427
Lirong Xia, Vincent Conitzer, Ariel D. Procaccia, and Jeffrey S. Rosenschein

vii






Individual and Group Strategy Proofness of
Voting Rules: The Case for Restricted
Domains

Salvador Barbera

All nontrivial voting rules are manipulable at some preference profiles when defined on a
universal domain. This manipulation is possible even by single individuals, and “a fortiori”,
by coalitions of voters. This negative result may be reversed if the functions are defined in
appropriately restricted domains of preferences, and only preferences in that same domain
can be used to manipulate.

In the first part of the talk I will exemplify the type of results regarding non-
manipulability by individuals (or strategy-proofness) that one can obtain under domain
restrictions. I will pay special attention to the domain of separable preferences on grids.
I will present a characterization of all strategy-proof rules in that context, consider the
complications that arise in the presence of feasibility constraints and discuss the relevance
of that paradigmatic case. I will also briefly touch upon the case of voting rules whose
outcomes are lotteries.

In the second part of the talk I will consider the added difficulties that arise if one
wants to guarantee that a rule is non-manipulable by coalitions of voters, in addition to
being individually strategy-proof. I will also consider intermediate cases, where only “large
enough” groups may manipulate. I will also show that, in spite of these difficulties, some
domains of preferences have the nice property that all strategy-proof rules that one can
define on them are also necessarily group strategy-proof (or at least strategy-proof in front
of coalitions that are not “too large”). I will provide a characterization of those nice domains
of preferences for which both types of requirements become equivalent.

Salvador Barbera

Departament d’Economia i d’Historia Economica and CODE
Universitat Autonoma de Barcelona

08193 Bellaterra (Barcelona), Spain

Email: salvador.barbera@uab.es






Talk, Cheap Talk, and States of Knowledge

Rohit Parikh

Applications of Epistemic Logic have by now become a major industry and an area once
dominated by philosophers has now attracted large followings among both AI people and
economists. We will discuss some of our own work in this area, including applications to
various social issues, like consensus, common knowledge, elections, the sorts of things which
candidates running for office are apt to say, and why.

Very important issues in conversation and in the working of other interactions are the
ways in which states of knowledge and belief change when things happen or when someone
says something. There is a great deal of material on this topic where issues like Kripke struc-
ture tranformation [3], and history based models [10] enter. In sophisticated applications,
Gricean implicature [5], or cheap talk [2, 11] may also enter.

Gricean implicature assumes a co-operative stance, whereas cheap talk is a notion which
also makes sense when the interests of the speaker and listener are only partially aligned.
Game theoretic considerations become relevant.

States of knowledge and changes in them have social and economic consequences, and
there have been developments starting with Aumann’s seminal paper [1], followed by work
by [4, 9] and others. Milgrom and Stokey’s no trade theorem [6] is also an important
consequence.

We will give an overview of representations of states of knowledge, of changes in them,
and the social consequences.
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Expressiveness in Mechanisms and its
Relation to Efficiency: Our Experience from
$40 Billion of Combinatorial Multi-attribute

Auctions, and Recent Theory

Tuomas Sandholm

Abstract

A recent trend (especially in electronic commerce) is higher levels of expressiveness
in the mechanisms that mediate interactions such as auctions, exchanges, catalog
offers, voting systems, matching of peers, and so on. Participants can express their
preferences in drastically greater detail than ever before. In many cases this trend
is fueled by modern algorithms for winner determination that can handle the richer
inputs. But is more expressiveness always a good thing? What forms of expressive-
ness should be offered? In this talk I will first report on our experience from over $40
billion of combinatorial multi-attribute sourcing auctions. Then, I will present recent
theory that ties the expressiveness of a mechanism to an upper bound on efficiency
in a domain-independent way in private-information settings. Time permitting, I
will also discuss theory and experiments on applying expressiveness to ad auctions,
such as sponsored search and real-time banner ad auctions with temporal span and
complex preferences.

1 Introduction

By carefully crafting mechanisms it is possible to design better auctions, exchanges, catalog
offers, voting systems, and so on. A recent trend in the world—especially in electronic
commerce—is a demand for higher levels of expressiveness in the mechanisms that mediate
interactions such as the allocation of resources, matching of peers, or elicitation of privacy
and security preferences.

The most famous expressive mechanism is a combinatorial auction (CA), which allows
participants to express valuations over packages of items. CAs have the recognized benefit of
removing the exposure problems that bidders face when they have preferences over packages
but in traditional auctions are allowed to submit bids on individual items only. CAs also
have other acknowledged benefits.

Expressiveness also plays a key role in multi-attribute settings where the participants
can express preferences over vectors of attributes of the item—or, more generally, of the
outcome.

The trend toward expressiveness is also reflected in the richness of preference expression
offered by businesses as diverse as matchmaking sites, sites like Amazon and Netflix, and
services like Google’s AdSense. In Web 2.0 parlance, this demand for increasingly diverse
offerings is called the Long Tail [1].

2  Our real-world experiences with expressive mecha-
nisms in sourcing

In the first part of the talk, I will share some of my experiences from using expressiveness
in practice. I started building winner determination algorithms for combinatorial auctions



in 1997, and founded a company, CombineNet, Inc., in 2000 to field expressive mechanisms.
Since then we have fielded over 500 expressive auctions. These auctions have been in the area
of strategic sourcing, that is, the process by which large companies buy materials, products,
services, and transportation from their suppliers, striking long-term contracts based on each
auction.

Our auction designs, which we now call ezpressive commerce, hybridize and generalize
both combinatorial and multi-attribute auctions [7, 9]. Expressive commerce combines the
advantages of highly expressive human negotiation with the advantages of electronic reverse
auctions. The idea is that supply and demand are expressed in drastically greater detail
than in traditional electronic auctions, and are algorithmically cleared. This creates an
efficiency improvement in the allocation (a win-win between the buyer and the sellers), but
the market clearing problem is a highly complex combinatorial optimization problem. We
developed the fastest custom tree search algorithms for solving it. We have hosted over $40
billion of sourcing using the technology, and created over $5 billion of hard-dollar savings
plus numerous harder-to-quantify benefits. The suppliers also benefited by being able to
express production efficiencies and creativity, and through exposure problem removal.

We found that the traditional form of expressive bidding in CAs, package bidding (possi-
bly with different forms of exclusivity constraints between bids), is a much too impoverished
a bidding language to be usable in practice. In contrast, we found that there are a host
of more compact and natural expressiveness constructs, and they are all used in concert in
our auctions. These include various flexible forms of package bids, rich forms of conditional
discount offers, various forms of discount schedules, side constraints, expressions of cost
drivers, and multiattribute bidding [7].

In our events the bid taker can also express various forms of preferences and constraints.
By conducting what-if analysis by changing these, the bid taker can form a quantitative
understanding of the tradeoffs available in the supply chain, such as cost versus multiple
measures of practical implementability of the allocation, cost versus multiple measures of
quality of the allocation, and cost versus multiple measures of long-term risk entailed by
the allocation [7].

Furthermore, by allowing expressive offers over different combinations of the items to be
sourced, the winner determination, as a side effect, ends up redesigning the supply chain.
For example, in a sourcing event where Procter & Gamble sourced in-store displays using
our hosting service and technology, we sourced items from different levels of the supply
chain in one event: buying colorants and cardboard of different types, buying the service of
printing, buying the transportation, buying the installation service, etc. [8]. Some suppliers
made offers for some of those individual items while others offered complete ready-made
displays (which are, in effect, packages of the lower-level items), and some bid for partial
combinations. The market clearing determined the lowest-cost (adjusted for the Procter
& Gamble’s constraints and preferences) solution and thus, in effect, configured the supply
chain multiple levels upstream.

An additional interesting aspect of bidding with cost drivers and alternates (e.g., using
attributes) is that the winner determination algorithm not only decides who wins, but also
ends up optimizing the configuration (setting of attributes) for each item, and the process
by which each item is made.

3 Theory

Intuitively, one would think that increases in expressiveness would lead to more efficient
mechanisms. That is also what the CombineNet experiences suggest. However, until now
we have lacked a general theory that ties expressiveness and efficiency.



We developed a theory that ties the expressiveness of mechanisms to their efficiency in
a domain-independent manner [3]. We introduce two new expressiveness measures, 1) maz-
imum impact dimension, which captures the number of ways that an agent can impact the
outcome, and 2) shatterable outcome dimension, which is based on the concept of shattering
from computational learning theory. We derive an upper bound on the expected efficiency
of any mechanism under its most efficient Nash equilibrium. Remarkably, it depends only
on the mechanism’s expressiveness. We prove that the bound increases strictly as we allow
more expressiveness. We also show that in some cases a small increase in expressiveness
yields an arbitrarily large increase in the bound.

Finally, we study channel-based mechanisms. The restriction is that these mechanisms
take expressions of value through channels from agents to outcomes, and select the outcome
with the largest sum. (Channel-based mechanisms subsume most combinatorial and multi-
attribute auctions, the Vickrey-Clarke-Groves mechanism, etc.) In this class, a natural
measure of expressiveness is the number of channels allowed (this generalizes the k-wise
dependence measure of expressiveness used in the combinatorial auction literature). We
show that our domain-independent measures of expressiveness appropriately relate to the
natural measure of expressiveness of channel-based mechanisms: the number of channels
allowed. Using this bridge, our general results yield interesting implications. For example,
any (channel-based) multi-item auction that does not allow rich combinatorial bids can be
arbitrarily inefficient—unless agents have no private information.

4 Applications to ad auctions and exchanges

Advertisement auctions and exchanges are relatively new forms of buying and selling ad
space. They are an opportune next area of application for expressive mechanisms.

4.1 The case of an isolated sponsored search auction

Sponsored search auctions (the dispatch of typically textual ads in response to keyword-
based web searches) account for tens of billions of dollars in revenue annually (e.g., to
Google, Yahoo!, and Microsoft) and are some of the fastest growing mechanisms on the
Internet. However, the most frequent variant of these mechanisms does not allow bidders
to offer a separate bid for each ad position, and is thus inexpressive on a fundamental
level. Here we attempt to characterize the cost of this inexpressiveness [2]. We adapt the
theoretical framework discussed in the previous section to show that the commonly used
generalized second price (GSP) mechanism is arbitrarily inefficient for some distributions
over agent preferences. We then describe a search technique that computes an upper bound
on the expected efficiency of the GSP mechanism for any given distribution over agent
preferences. We report the results of running our search technique on synthetic preference
distributions. Our results demonstrate that the cost of inexpressiveness is most severe when
agents have diverse preferences (such as having both brand advertisers and value advertisers
in the auction) and relatively low profit margins. Our results also show that designating one
or more positions as “premium” and soliciting an extra bid for these positions eliminates
almost all of the inefficiency.

4.2 Highly expressive real-time ad auctions that span time

The prevalence and variety of online advertising in recent years has led to the development
of an array of services for both advertisers and purveyors of media. Because matching an
advertiser’s needs (demand) with a content provider’s properties (e.g., locations on displayed



web pages) is a complex enterprise, often automated matching is used to match ad channels!
with advertisers. One famous example is sponsored search. Internet auctions of traditional
advertising (TV, radio, print) are also emerging (e.g., via companies like Google and Spot
Runner). Auctions and exchanges for banner ads have also been established—e.g., Right
Media (now part of Yahoo!) and DoubleClick (now part of Google)—although many banner
ad bulk contracts are still manually negotiated.

There has been considerable research on developing auction mechanisms for allocating ad
channels, with a focus on issues like auction design, charging schemes (e.g., per impression or
per click-through (CT)), bidder strategies, and so on. However, attention has focused almost
exclusively on improving single-period expressiveness, still with per-impression or per-CT
prices. As has been well-documented in other auction domains like sourcing, requiring
bidders and bid takers to shoehorn their preferences into the impoverished language of
per-item bids is usually undesirably restrictive.

Here we explore the use of expressive bidding for online banner ad auctions. For ease of
presentation, we discuss banner ads, but the general principles and specific techniques we
propose can be applied to other forms of online advertising (electronic auctions of TV and
radio ads, sponsored search, etc.) as well.

In many domains, the value of a set of ads may not be an additive function of value of its
individual elements. For instance, in an advertising campaign, campaign-level expressiveness
is important. Advertisers may value particular sequences of ads, rather than individual ads
per se. Efficiency (and revenue) maximization in such an environment demand that we
allow bidders to express bids (propose contracts) on complex allocations, and that bid
takers optimize over sequences of allocations to best match bidder preferences, in a way
that cannot be accommodated using per-item bidding.

The key technical challenge for expressive ad auctions is optimization: determining the
optimal allocation of ad channels to very large numbers of complex bids in real-time. This
is further complicated by the stochastic nature of the domain—both supply (number of
impressions or CTs) and demand (future bids) are uncertain—which suggests the need for
online allocation.

To address these issues, we introduced the idea of an optimize-and-dispatch architec-
ture [6] where an optimizer is run only every so often and it parameterizes a dispatcher that
operates in real time. The optimizer can be run at fixed intervals, or based on any other
trigger conditions, such as supply or demand significantly deviating from their projections.
The framework can, in principle, handle any forms of expressive preferences as inputs, and
we discuss several forms of expressiveness that are important in ad auctions, but which prior
ad auction mechanisms inherently cannot support.

We recently implemented these ideas [4]. We model the problem as a Markov deci-
sion process (MDP), whose solution is approximated in several ways. First we perform
optimization only periodically. Following the general optimize-and-dispatch framework, our
optimization generates an on-line dispatch policy that assigns ad channels to advertisers
in real-time. Our dispatch policies use the fractional assignment of (dynamically defined)
channels to specific contracts. To approximate the optimization itself, we consider two
approaches. The first is deterministic optimization using expectations of all random vari-
ables and exploiting our combinatorial optimization technology for winner determination
in expressive markets [7]. We propose a second, sample-based approach derived from van
Hentenryck and Bent’s [5] online model for stochastic optimization—but with novel adap-
tations to a continuous decision space. This approach leverages the deterministic winner
determination technology, applying it to multiple possible future scenarios in order to form a

1Here we use the word “channel” totally differently than in the “channel-based” mechanisms discussed
earlier in this abstract. Here, each “channel” is a subset of supply such that no bid distinguishes between
different forms of supply within the channel.



dispatch policy. In both cases, periodic reoptimization is used to overcome the approximate
nature of the methods. Our experiments demonstrate the benefits of expressive bidding for
ad auctions over various per-item strategies, and the value of our stochastic optimization
techniques.
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Ranking, Trust, and Recommendation
Systems: An Axiomatic Approach

Moshe Tennenholtz

In the classical theory of social choice, a theory developed by game-theorists and theoretical
economists, we consider a set of agents (voters) and a set of alternatives. Each agent
ranks the alternatives, and the major aim is to find a good way to aggregate the individual
preferences into a social preference. The major tool offered in this theory is the axiomatic
approach: study properties (termed axioms) that characterize particular aggregation rules,
and analyze whether particular desired properties can be simultaneously satisfied. In a
ranking system [1] the set of voters and the set of alternatives coincide, e.g. they are both
the pages in the web; in this case the links among pages are interpreted as votes: pages that
page p links to are preferable by page p to pages it does not link to; the problem of preference
aggregation becomes the problem of page ranking. Trust systems are personalized ranking
systems [3] where the ranking is done for (and from the perspective of) each individual agent.
Here the idea is to see how to rank agents from the perspective of a particular agent/user,
based on the trust network generated by the votes. In a trust-based recommendation system
the agents also express opinions about external topics, and a user who has not expressed an
opinion should be recommended one based on the opinions of others and the trust network
[6]. Hence, we get a sequence of very interesting settings, extending upon classical social
choice, where the axiomatic approach can be used.

On the practical side, ranking, reputation, recommendation, and trust systems have
become essential ingredients of web-based multi-agent systems (e.g. [9, 13, 7, 14, 8]). These
systems aggregate agents’ reviews of products and services, and of each other, into valuable
information. Notable commercial examples include Amazon and E-Bay’s recommendation
and reputation systems (e.g. [12]), Google’s page ranking system [11], and the Epinions
web of trust/reputation system (e.g. [10]). Our work shows that an extremely powerful way
for the study and design of such systems is the axiomatic approach, extending upon the
classical theory of social choice. In this talk we discuss some representative results of our
work [14, 1, 2, 4, 5, 3, 6].
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Lorenz Rankings of Rules for the Adjudication
of Conflicting Claims

William Thomson

For the problem of adjudicating conflicting claims (O’Neill, 1982; for a survey, see Thomson,
2003), we offer simple criteria to compare rules on the basis of the Lorenz order. They exploit
several recently developed techniques to structure the space of rules.

The first results concern the family of “ICI rules” (Thomson, 2008, forthcoming). This
family contains the constrained equal awards (Maimonides, 12th Century), constrained equal
losses (Maimonides, 12th Century), Talmud (Aumann and Maschler, 1985), and minimal
overlap (Ibn Ezra, 12th Centrury; O’Neill, 1982) rules. We obtain a condition relating the
parameters associated with two rules in the family guaranteeing that one Lorenz dominates
the other. We prove parallel results for a second family (CIC family, Thomson, 2008,
forthcoming), which is obtained from the first one by exchanging, for each problem, how well
agents with relatively larger claims are treated as compared to agents with relatively smaller
claims. This second family also contains the constrained equal awards and constrained equal
losses rules.

The next results concern the family of “consistent” rules (Young, 1987). A rule is
consistent if the recommendation it makes for each problem is never contradicted by the
recommendation it makes for each reduced problem obtained by imagining some claimants
leaving the scene with their awards and reassessing the situation at that point. The main
result here is the identification of circumstances under which the Lorenz order is “lifted by
consistency” from the two-claimant case to arbitrarily many claimants. (The concept of
lifting is adapted from one developed for properties of rules by Hokari and Thomson, 2008,
forthcoming.) This means that if two rules are consistent and one of them Lorenz dominates
the other in the two-claimant case, this domination extends to arbitrarily many claimants.

Finally, we exploit the notion of an operator on the space of rules (Thomson and Yeh,
2008, forthcoming). An operator is a mapping that associates with each rule another one.
The operators we consider are the duality operator, the claims truncation operator, and the
attribution of minimal right operator. We also consider the operator that associates with
each rule and each list of non-negative weights for them adding up to one, their weighted
average. An operator “preserves an order” if whenever a rule Lorenz dominates another one,
this domination extends to the two rules obtained by subjecting them to the operator. We
identify circumstances under which certain operators preserve the Lorenz order (or reverse
it), and circumstances under which a rule can be Lorenz compared to the rule obtained by
subjecting it to the operator.

William Thomson

Department of Economics
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Email: wth2@troi.cc.rochester.edu
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A fair payoff distribution for myopic rational
agents

Stéphane Airiau and Sandip Sen

Abstract

We consider the case of self-interested agents that are willing to form coalitions for
increasing their individual rewards. We assume that each agent gets an individual
payoff which depends on the coalition structure (CS) formed. We consider a CS to
be stable if no individual agent has an incentive to change coalition from this CS.
Stability is a desirable property of a CS: if agents form a stable CS, they do not
spend further time and effort in selecting or changing CSs. When no stable CSs
exist, rational agents will be changing coalitions forever unless some agents accept
suboptimal results. When stable CSs exist, they may not be unique, and choosing
one over the other will give an unfair advantage to some agents. In addition, it may
not be possible to reach a stable CS from any CS using a sequence of myopic rational
actions. We provide a payoff distribution scheme that is based on the expected utility
of a rational myopic agent (an agent that changes coalitions to maximize immediate
reward) given a probability distribution over the initial CS. To compute this expected
utility, we model the coalition formation problem with a Markov chain. Agents share
the utility from a social welfare maximizing CS proportionally to the expected utility
of the agents, which guarantees that agents receive at least as much as their expected
utility from myopic behavior. This ensures sufficient incentives for the agents to use
our protocol.

1 Introduction

In the literature on coalition formation, valuation functions are typically defined only over a
coalition, and the agents need to decide or negotiate a payoff distribution. We are interested
in cases where the payoff distribution is defined for each partition of the agents into coalition
structures (CS): each agent knows its payoff for any CS. This model corresponds to the
hedonic aspect of coalition formation [1, 2, 4, 7] where the payoff of an agent, not the value
of a coalition, depends only on the members of its coalition. We can view this assumption
from two perspectives. The first perspective is that the environment provides a payoff to
each agent. This can happen when the agents’ individual goals are different but correlated
and the CSs have different effects on different agents’ performance. This formulation can
model a community of agents that help each other improve their respective private utilities:
each agent obtains a private utility which can be boosted with the help of other agents
in the community. Another example is that of firms forming coalitions in a supply chain
domain: each firm in a coalition provides preferred rates or discounts for its services to
other members of its coalition. The benefit of each member of the coalition depends on
the behaviors of other firms. Each firm in the coalition is autonomous: each sells and
buys goods, and makes its own profit or loss. Note that firms still benefit from being in a
coalition but the benefit varies from firm to firm in any given CS. The second perspective is
to consider that the payoff distribution has already been computed using a stability criteria,
e.g., the Kernel [5]. Given a CS and a valuation function, it is always possible to compute a
Kernel-stable payoff distribution. Let us consider two different CSs with associated Kernel-
stable payoff distributions. In both cases, the payoff distribution is stable, but an agent may
prefer to form the first CS when another agent would prefer the second: even if agents are
using a stable payoff distribution, agents may still have incentive to change CS.
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In the papers related to hedonic coalition formation [1, 2, 4, 7], one assumption is that
there is no transfer of utility. Under these assumptions it is known that the core or the set
of Nash-stable equilibria may be empty. In particular, the personal goals of the agents may
be conflicting, there may not be any CS that satisfies all the agents at the same time: for
each CS, at least one agent may have an incentive to change coalitions. Some research deals
with the search of conditions for the existence of stable coalition structures [1, 2, 4], but we
want to provide a solution even when no stable CSs exist. The compromise we propose is
based on allowing transfer of utility to make a CS stable.

From a societal point of view, we also want the society to perform well as a whole,
hence our mechanism selects a social welfare maximizing CS. The computation of the side-
payments to stabilize the CS is based on the expected utility of myopic and rational agents
(i.e., agents that change coalition to maximize their immediate payoff). The computation
of the expected utility uses the analysis of a Markov chain where a state of the chain
corresponds to a CS and a transition corresponds to the will of an agent to change coalition.
The analysis of the chain differentiate the transient states from the ergodic states®, the
latest corresponds to the Sink equilibria in [9] for games in normal forms: myopic rational
agents are bound to be trapped in a set of ergodic states. The expected utility of the agent
is a weighted average of the utility over the ergodic states. We view the expected utility as
a means to weight the importance of an agent in the coalition formation process. We share
the utility of a social welfare maximizing CS proportionally to this expected utility. Under
the assumption that the initial CS is chosen at random, we show that each agent is better
off following our protocol.

Most current studies on coalition formation in the multiagent community assume known
valuation functions that estimate the worth of a coalition and where the valuation of any
coalition is independent of the other coalitions present in the population [10, 14, 15]. How-
ever, this may not always be appropriate. In situations when the population of agents is
competing for a resource or a niche, e.g., in electronic supply chains, the valuation of a
coalition depends on the organization of the other agents. More generally, the presence
of shared resources (if a coalition uses some resource, they will not be available to other
coalitions) or conflicting goals (non-members can move the world farther from a coalition’s
goal state) [13] makes a valuation function depend on CS. We are especially interested in
studying those situations where the worth of a coalition depends on the other coalitions
that are present in the population [6, 12]. Our approach can also be used in that context
as shown by our empirical example.

The paper is organized as follows. In Section 2, we present the coalition framework and
the existing stability concepts for coalition formation when in the non transferable utility
case. In Section 3, we show how to build a Markov chain that models the coalition formation
process, how to use it to compute the expected utility. Finally in Section 4, we present and
discuss our proposed solution. We conclude and discuss future work in Section 5.

2 Coalition Framework

2.1 Problem Description

We consider a set N of n agents; N is also known as the grand coalition. A coalition
structure (CS) s = {S1,- -+, Sy} is a partition of N, where S; is the i*" coalition of agents
with Ujep.mSi = N and i # j = §;NS; = 0. .7 is the set of all CSs. The coalition of
agent 7 in s is noted as s(i). We consider that an agent ¢ has a preference order Z; over .

IErgodic states are states that the chain will keep coming back to, whereas transient states are states
that the chain will eventually leave to never visit again.
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and for a CS s, an agent ¢ has a valuation v;(s). These assumptions have two consequences:

e Each agent has a private utility which depends on the other agents present in the
coalition, as for hedonic coalition formation [1, 4, 2, 7]. Coalitions do not always
receive a reward as a whole: each agent has a private cost and benefit which depends
on the organization of the agents. Members of a coalition help each other, which
can globally reduce the cost or increase the private benefit of each member. For
example, soccer players have a private utility, or satisfaction, which depends on the
other members of the team.

e Unlike in the hedonic coalition formation case, we are working in the more general
case where the valuation of a coalition depends on the other coalitions present in the
population. For an agent ¢ such that ¢ € C and two CSs s; and s, such that C € s; and
C € sq, it is possible that u;(s1) # u;(s2). In our soccer example, the satisfaction of a
player in a team playing a league may also depend on how the remaining players are
dispatched in the other team, for example, he may prefer that the best players are put
in different teams than put altogether in a “dream team”. A more generic example
involves agents competing for an environmental niche. The payoff of a coalition may
be higher when the competitors work alone than when the competitors also decide to
team together to form a more competitive group. Ray and Vohra [12] consider this
problem and propose a protocol where agents propose a coalition and a distribution
of the coalitions’ worth. Other agents can accept or reject the proposition. One issue
is that, when proposing a coalition, an agent does not know which CS will ultimately
form. Hence, the payoff distribution proposed by an agent is conditioned on the CS
that is finally selected. Ray and Vohra consider that the agents’ offer contains a payoff
distribution for each possible CS, which is not realistic for large populations. But such
elaborate offers allow them to show the existence of an equilibrium.

We further assume that there is no coordinated change of coalitions; one agent at a time
can change coalition. This assumption prevents uncertainties about the state of the CS.
For example, let agents i, j and k form singleton coalitions. At this point, agent i would
like to join agent k, and agent j would like to join agent i, but neither ¢ or j would like
to form the grand coalition. If we allowed simultaneous moves, the resulting state would
be unclear. The grand coalition may be formed though it was not the intent of agent i or
j. The resultant CS could also be {{i, k}, {j}} where agent ¢ joined agent k, and agent j
tried to join the coalition of agent ¢, but ended up joining an empty coalition. It could also
be {{i, j}, {k}} where agent j joined agent i, and agent k refused that both agent i and j
joined it at the same time. We avoid such ambiguities with this assumption.

Finally, we assume that agents are myopic and rational, and members of a coalition
accepts a new member only when all members agree. After a change of CS, it is possible,
if not likely, that another agent changes its coalition, leading to a different CS. As it is
computationally expensive to perform multi-steps look ahead because of the large state
space, we consider myopic agents that change coalition to maximize their immediate reward.
We believe it is reasonable to assume that current members can control when other agents
can join a coalition. Moreover, it would not be myopic rational for a member i to accept
a new agent if this meant a payoff loss for i. Hence, we also assume that all members of
a coalition must agree to accept a new member and, if some member i refuses, we will say
that agent ¢ vetoes the transition. We also make the implicit assumption that members of
a coalition cannot prevent a member to leave, even if some of the remaining members lose
utility.
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2.2 Stability Concepts

We first start by giving the definition of stability concepts in the non-transferable utility
case when the value function depends only on the members of the coalition [4]. In the
following, 7, denotes a preference order over coalitions.

Definition 2.1. A coalition structure s is core stable iff AC C N | Vi € C,C =; 5(i).

Definition 2.2. A coalition structure s is Nash stable (Vi € N) (VC € sU{0}) s(z) =
C U {i}

Definition 2.3. A coalition structure s is individually stable iff (#i € N) (JC € s U
{0}) | (CU{i} =i 5(2) and (Vj € C, C U{i} Z; C)

Definition 2.4. A coalition structure s is contractually individually stable iff (Fi €
N) (AC € su{0}) | (CU{i} =i s(i)) and (Vj € C, CU{i} ; C) and (V5 € s(i) \ {i}, s(i) \
{1} 5 s(4))

If a CS is core stable, no subset of agents has incentive to leave their respective coalition
to form a new one. In a Nash stable CS s, no single agent ¢ has an incentive to leave its
coalition s(i) to join an existing coalition in s or create the singleton coalition {i}. The
two other criteria add a constraint on the members of the coalition joined or left by the
agent. For an individually stable CS, there is no agent that can change coalition from s(i)
to C € (s\s(i)) U{D} yielding better payoff for itself, and the members of C' should not lose
utility. The contractually individual stability in addition requires that the members of s(i),
the coalition left by 4, should not lose utility.

The definition of Nash, individually and contractually individually stability can easily
be extended to the case where the value of a coalition depends on the CS. Another criterion
for a rational agent to be a member of a coalition is individual rationality [6]: an agent @
would consider joining a coalition only when it is beneficial for itself. The agent compares
the situation when it is on its own and when it is a member of a coalition. However, the
payoff the agent gets when it is by itself depends on the CS. The minimum payoff that agent
i can guarantee on its own is r; = minge o 1i}es vi(s) [6] (the minimum is over all the CSs
where agent ¢ forms a coalition on its own). An agent is individual rational when its payoff
in a coalition with other agents is greater than the minimum payoff it can get on its own.

For some coalition formation problem, it is possible that no CS satisfies any of these
stability criteria. Satisfying the individually or contractually individually stability criteria
may depend on the protocol used by the agents to form coalition. For example, an academic
can freely leaves its department to join a new one, provided that no member of the new
department will suffer from its presence. In some cases, the coalition left is allowed to
demand compensation. For example, as pointed out in [7], a player of a soccer team can
join another club, but its former club can receive a compensation for the transfer. In the
following, we will only assume that members of a coalition can veto the entrance of new
agent in their coalition. Hence, we consider as our main stability criterion the individually
stability.

2.3 Graphical representation

We can represent the relation ~ by a preference graph of the coalition formation
process: each node is a CS, and there exists an edge from node S to node T when Ji €
N | T »=; S. The transition graph of the coalition formation process is a directed
graph where the nodes represent the CSs, and edges are valid transitions between two CSs.

A transition from node s to node ¢ is valid when
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e Jie N,3C e (t\s()U{d}|t=(s\s(i)\C)U(CU{i}) and t > s. In other words,
there is an agent ¢ that is better off leaving its coalition s(¢) to either join an existing
coalition in s or to form a singleton coalition.

e and Vj € C, t Z; s, i.e., this transition is not vetoed by the members of the coalition
C joined by 4 (of course, i is always allowed to form a singleton coalition).

Incidentally, another agent j may also prefer ¢ over s (for example, when ¢ moves to an
existing coalition C, all agents in C' may benefit). Hence, a transition may be beneficial
for more than one agent. However, only the agent that changes the coalition can induce
the transition. Even if it is beneficial for members of C, C’s members cannot force i to
leave its current coalition to join them (this action would be considered to be a group action
whereas in our model, we consider only individual actions). In the case where two agents 4
and j that were previously forming singleton coalitions now form a coalition of two agents
in the new CS, it may be difficult to interpret which agent induced the transition: as it is
beneficial for both agents, an interpretation of the transition can be that agent 7 joins the
coalition {j} or vice versa. Our interpretation is that both agents are responsible for this
transition. Hence we make an exception for this case.

Since we assume that agents are myopically rational, for a given CS, each agent will only
choose the transition that yields the maximum immediate payoff gain over all its possible
legal moves. For each state, there can then be at most n outgoing edges, one for each of
the n agents (this happens when every agent prefer another CS over the current one). This
prunes the number of transitions from the preference graph to the transition graph.

Property 1. A CS s is individually stable iff there is no outgoing edge from state s in the
transition graph of the coalition formation.

The proof is obvious given the definition of the transition graph. In Figure 1(a), we
present an example with three agents where the payoff of an agent is shown below its
label in a coalition. In this example, no CS is core or Nash stable. However, {{1,2,3}}
is individually stable. However, if the agents start from the bottom of the lattice (where
each agent forms a singleton coalition) or any other CS in the mid level, the agents will be
trapped in a cycle: for each CS in the mid-level, one agent benefits from leaving its coalition
in that CS to join the singleton agent. We present a different scenario in Figure 1(b): the
CS {{0}{1,2}} is Nash stable, core stable (and hence individually stable), and the grand
coalition is individually stable. From any CS, it is possible to reach an individually stable

CS.

3 A Markov Chain model

A myopic rational agent will change coalitions if it can immediately gain utility by doing so.
In this paper, we assume that the valuation is common knowledge. It is therefore possible
to build and analyze the transition graph. Given the assumption that only one agent at a
time can change coalition, we are now in position to estimate the probability of transition
between any two CSs. For each outgoing edge e from CS s, the probability of making this
transition is either

° ﬁ, where o(s) is the out degree of a node, i.e., the number of agents that want to
change from s.

) ﬁ when two agents 7 and j that are each forming a singleton coalition merge to form
the two-agent coalition {7, j} and it is the best choice for both ¢ and j.
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Figure 1: Example of Coalition Formation problem (double boxed CS are individually stable)
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{1,2,3} 1 0 0 0 0
{1,2}{3} 00 1 0 0
{1,3}{2} 00 0 1 0
{2,3}{1} 01 0 0 0
1 1 1
{13{2}{3} 0 5 5 35 0

Table 1: Transition Matrices for Figure 1(a)

As the probability of a transition does not depend upon the prior states of the population,
the Markov assumption is verified. We have now completely defined a Markov chain. From
the above specified transition model, we can construct the transition matrix P of the Markov
chain. The size of the matrix is #(n) x %£(n), where n is the number of agents and #(n) is
the Bell function. The dimension of the matrix can be quite large, however, the matrix is
sparse: for each row of the matrix, there can be only up to n positive entries®. In Table 1,
we present the transition matrix for the example of Figure 1(a).

As agents change from one CS to another, the chain moves from one state to another.
A state of a Markov chain is either transient or ergodic: ergodic states are states that
the chain will keep coming back to, whereas transient states are states that the chain will
eventually leave to never visit again. In the long term, the chain will be in one of the ergodic
states. The ergodic states form multiple strongly connected components. If the size of such
a strongly connected component is one, it means that the corresponding CS is individually
stable (it may also be core or Nash stable, but not necessarily). The study of the Markov
chain will tell us, given a probability distribution over the initial state, the probability to
reach each strongly connected component, and, once reached, what is the proportion of time
spent in each ergodic states. Hence, the value of the expected utility is an average over the

2.7 can be represented by a lattice where each CS at a given level of the lattice contains the same number
of coalitions. For each level ¢ in the lattice, an agent has at most ¢ actions: joining one of the existing i — 1
coalitions and forming a singleton coalition if it is not already forming one. As there are n levels, the
maximum number of transitions from a CS is n.
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Figure 2: Example of the ART domain: probability to be in an ergodic state

possible stable CSs, and the CSs that are parts of some cycle. More formally, let & be the
set of ergodic states of the Markov chain. For each strongly connected component X C &,
we compute the probability pxto reach X, and then for each state s of X, we compute
the fraction of time ps spent in s in the limit (the chain may visit a state in X more often
then another). If a CS s is at least individually stable, then the size of the corresponding
component is one, and p; = 1. For each ergodic state s € &, let X(s) be the strongly
connected component of s. The expected utility F(v;) is then E(v;) = pr(s) - ps - 0;(8).

sEE
In Figure 2, we present an example issue from the Agent Reputation and Trust

testbed [8]. In the testbed, agents provide appraisals about artifacts and compete for a
pool of clients. To improve their appraisals, agents can ask other agents for appraisals for
artifacts and reputation of other agents. We consider collusion of agents: agents can form a
coalition where members provide their truthful appraisals, which benefits all members. In a
domain with 8 agents, we computed the valuation function and the associated Markov chain
for a particular instance, and the outcome is presented in Figure 2. In that instance, the
Markov chain contains 4,140 CSs, 26,641 transitions, 62 stable CSs and 5 additional ergodic
states which correspond to some strongly connected components.

4 A Fair Payoff Distribution for Myopic Rational Agent

It is possible that some coalition formation problem do not have any stable CS. To operate
efficiently, we require that the agents remain in a CS. We propose that the agent forms a CS
s* that maximizes social welfare. However, s* may not be stable, hence we want to share
the utility u* of s* that provides the agent an incentive to stay in that CS.

The utility function, as a whole, tells how good the agent is. A first candidate is to
share u* proportionally to the average utility over all the CSs. This assumes that each CS is
equally important and we believe it is not so. Another candidate is to consider an average
over the stable CSs. However, such stable CSs may not always exist, and even if they do,
there may not be a path allowing to reach a stable CS (as in the example of Figure 1(a)).
If we assume any CS is likely to be the initial CS, we can compute an expected utility when
the agents are myopic, rational, and when members of a coalition can veto the entrance of
new members. The expected utility is a great metric to determine and compare the strength
of each agent in the coalition formation process. We will show that the payoff obtained is
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at least its expected utility, which is a sufficient incentive for using our proposed payoff
distribution.

4.1 Choice of Final Payoff Distribution and Corresponding CS

The expected value F(v;)we computed using the Markov chain assumes that the initial CS
is chosen uniformly over ., in other word, it is no biased by the initial CS. E(v;) reflects
the utility that agent ¢ receives on average when all agents are myopically rational. We
consider that this value represents the strength of an agent given the valuation function.
Agents with high E(v;) should obtain a larger payoff than agents with lower E(v;).

To be used in a real world application, it is not desirable to have agents continuously
change coalitions: agents should form a stable CS and have no incentive to further change
coalition. To maximize the agents’ payoff, we choose as the final CS s* one of the CSs that
maximizes social welfare. This CS may not be a stable, but it guarantees maximal total
payoff to the agents. As we view the expected utility value as a measure of the strength
of each agent, we propose a distribution of v(s*) to all agents proportional to the expected
payoff of the agents, i.e., we prescribe the payoff to agent i to be

B(v)
ZjeN E(Uj)

Note that this value is guaranteed to be at least as good as E(v;), as shown by Property 2.
So, when agents share the payoff we propose, they are guaranteed to have at least the
expected value when they were changing coalitions to maximize their immediate reward,
and in general, they may get more. In addition, the payoff distribution is Pareto Optimal
as we share the value of a social welfare maximizing CS (if an agent gets more utility, at
least another agent must lose some). We believe that these incentives are sufficient for the
agents to accept our proposed value. Not only is the payoff distribution fair, as the share
of utility the agents receive is proportional to their expected utility over the chain, but the
outcome is also efficient as it maximizes social welfare.

(s7)-

U; =

Property 2. u; = %v(s*) > E(v;), i.e., the payoff of an agent is at least as good as

the expected utility that an agent would get on average if the agents are myopically rational.

Proof. Let & denote the set of the ergodic states of a Markov chain. For player ¢, the
expected payoff is a weighted average over the ergodic states: E(v;) = > . asvi(s), where
as is the weight of the ergodic state s and we have ) _,a, = 1. The transient states
are only used to determine the probability of leading to one of the ergodic sets: the ay’s
are determined by the transient and the ergodic states (when there is a cycle or a regular
sub-chain).

Vs, v(s) < w(sY)
Vs, as-v(s) < as-v(s*)asas >0
Zseg as-v(s) < Zseg as - v(s)
Zseg Qs - ’U(S) < U(S*) ! Zseg Qs
sce Xs U(S) < 1}(8*), as Zs€£ Qs = 1
Dsee s D jenvils) < w(s)
djen oses QsVi(s) < w(s¥)
jen Elvi) < (s
E(v;) < %v(s*) as E(v;) > 0.
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Another important question is to determine whether the payoff distribution v; is individ-
ually rational: is an agent guaranteed to get as much as when an agent is forming a singleton
coalition? The minimum payoff an agent can guarantee for itself is r; = minge &, (;}es vi(s).
For example, consider the three-agent example in Figure 3. The value obtained by i is
% = 5.806, which is lower than 6, the minimum payoff that agent ¢ receives when it forms
a singleton coalition. This means that the payoff obtained by an agent in a coalition from
our protocol is less than the worst payoff obtained by the agent when it forms a singleton
coalition. Although possible in the general case, this may not be likely in practice: the worst
case scenario for an agent should be when it forms a singleton coalition and when all other
agents in the population try to minimize its payoff. As shown by Property 3, if the worst
payoff for an agent occurs when it is forming a singleton coalition, our protocol is individual
rational.

{3 Uy &
6 0 0

There is a cycle with 4 states, hence, the proportion spent in each state is i. The value of
the optimal CS is 11. The minimum value of agent ¢ when it is in a singleton coalition is 6.
E(v) = HT4+04646) =475 0= groatsse - 11 =5.8056 < 6 = 2¢
B(vj) =72+5+0+1)=2 v = 4-7545;;2'25 11 =2.4444>0
E() =124+6+0+41)=225 o= 220 11=275>0

Figure 3: Case where the protocol is not individual rational: ¢’s payoff is lower than r;, ¢’s
minimum payoff when it forms a singleton.

Property 3. If (Vs € ) vi(s) > r; = minge o |(5}es, then u; > 1y, i.e., the payoff distribu-
tion u; 1s individually rational.

Proof. The hypothesis Vs € ., v;(s) > r; means that for any CS, the valuation of agent
1 is at least equal to 4’s minimum valuation when it forms a singleton coalition, i.e., the
payoff of an agent in a coalition with at least another agent should be at least the minimum
payoff the agent receives when it is on its own in a singleton coalition. Hence, we have
Y sce AsVi(8) > D o ary, and then E(v;) > 1y as ) .0 o, = 1. From Proposition 2, we
have u; > E(v;) > r;. O

4.2 Computational Complexity of the centralized algorithm

We now consider the complexity of computing the payoff distribution if a centralized entity
was used. To compute the canonical form of a stochastic matrix, we first need to compute
the communication classes of the matrix and this operation is polynomial in the size of the
matrix (O(%(n)?)). Then, to determine the canonical form of the matrix, we need to find
the permutation matrix, which can also be done in quadratic time, hence in O(%(n)?). To
compute the limit behavior of the Markov chain, either a matrix has to be inverted (which
can be done in O(%(n)?), or a linear system needs to be solved (iterative methods can also
be used here). The complexity is then O(%(n)3). The fact that the matrix is sparse should
allow for faster computation. The search of the optimal CS is O(#(n)) if the brute force
method is applied. As we consider valuation function that depends on CS, we cannot use
the faster algorithm in [11]. The computation of the side-payments and the execution of the
payments has linear complexity. Hence, the complexity of the protocol is O(%(n)?).
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4.3 Experiments with Random Valuation Function

We now experiment with random valuation functions. The valuation of a coalition C for a
particular CS is drawn from a uniform distribution in [0,C]. Using this distribution, it is on
average better to have coalitions containing many agents, but the valuation function is not
superadditive. The valuation of each member of C is distributed randomly: each member
i € C receives w; - v(C) with z; drawn from a uniform distribution in [0, 1] and w; = Z]iﬁ

We now present the result of a particular valuation function with 6 agents where the number
of CSs is 203. The associated Markov chain has 54 transient states and 149 ergodic states.
The associated transition matrix of size 203 x 203 = 41209 has only 735 positive entries,
the matrix is quite sparse. The CS with maximal social welfare is not individually stable.
The value of the agents are shown in Table 4.3: the second column (avg) represents the
average payoff of an agent over all CSs, the third column v; is the expected utility of an
agent computed with the Markov chain, the fourth column w; is the share of the value of
the optimal CS and the last column v; is payoff of the agents from our protocol. Note that
in the example, the value allocated to the agents from our protocol is much larger than the
expected value from traversing the Markov chain.

agent | avg Ui w; V;
0 0.50 | 0.61 | 0.17 || 0.96
0.49 | 0.63 | 0.17 || 0.99
0.50 | 0.60 | 0.16 || 0.93
0.51 | 0.64 | 0.18 || 1.00
0.56 | 0.54 | 0.15 || 0.85
0.50 | 0.58 | 0.16 || 0.90

Y | W DN —

Table 2: Agents utilities for a random valuation function

4.4 Discussion on the payoff distribution

Our protocol uses global properties of the valuation function and shares the utility of the
optimal CS, s*, in a fair manner. The distribution of the valuation of s*, however, is not
according to the actual coalitions present in s*. In other words, given the payoff function
vy, it is possible that, for each coalition C € s*, > 7. o ui # D0 vi(s™).

This is different from the traditional assumption in game theory where agents share the
value of their coalition. For some agents 4, v;(s*) > w;, which may not appear fair. What
we propose to the agents is to sign a binding contract to form s* and receive u; as a payoff.
If one agent does not want to sign the contract, the agents can form a random CS and
try to find a stable CS3. From Proposition 2, we see that the expected utility from such
a process is at most as good as the value proposed by the protocol and hence the agents
have an incentive to accept the guaranteed value while saving on the “cost” of continual
change. Hence, on one hand, we want the entire population of agents to cooperate and work
together, which has a flavor of using the grand coalition. On the other hand, we want to
use the synergy between the agents, and thus form a CS that maximizes social welfare. The
reward the agent obtain is designed to be fair for all agents and reflects the performance of
the agents over all CSs.

To compute the expected utility of an agent, we have assumed that the coalition forma-
tion process starts in a CS picked randomly from a uniform distribution. Of course, some

3Note that some agents may benefit from starting the coalition formation process in s*, hence, if some
agents deviate, other agents should force the restart the coalition formation process from a random CS
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probability distribution for the initial CSs will benefit some agents in detriment of others.
We believe that the probability distribution of the initial CS is part of the definition of the
coalition formation problem, and agents do not have any control over it. It is from the entire
definition of the coalition formation problem that we compute the expected utility, which
we use as a measure of the strength of an agent. If it the distribution is not uniform, the
probability to reach the strongly connected components will be different (some components
may not be reachable). In addition, the search of the CS that maximizes social welfare
should be performed on the subset of CSs that are reachable from the set of possible initial
CSs. Minor modification of our computations are needed to address these changes.

5 Conclusion, current and future work

Myopic rational agents who receive a private payoff that depends on the CS may never
reach an agreement on the CS to be formed. It may be possible that for each CS, at least
one agent has an incentive to change coalition. We designed a protocol that computes a
payoff distribution so that agents are guaranteed to have at least the expected utility from
a process where each agent would change coalition to maximize its immediate reward. The
protocol assumes that 1) the valuation function provides a payoff for each individual agent
given a CS and 2) the agents are myopically rational. The payoff function we propose is
based on the value of a social welfare maximizing CS and on the expected utility of the
agents if they try to change coalitions to maximize their immediate reward. Following our
protocol, the agents form the optimal CS, which makes the multiagent system efficient from
the viewpoint of a system designer. The valuation of the optimal CS is shared proportionally
to the expected utility of the agents. We argue that this is a fair distribution as the payoff
obtained by an agent reflects the behavior of the agents over the entire space of CSs, i.e.,
it is a global property of the valuation function. When the agents follow our protocol, they
are guaranteed to have a payoff which is at least their expected value if all agents try to
maximize their immediate reward.

The drawback of our approach is its computational cost: the agents needs to build
a Markov chain where the number of states is equal to the number of the CSs, which
is exponential in the number of agents. Although the corresponding transition matrix is
sparse, this method may not be suitable for large number of agents (10 and more). The
agents can approximate the expected value by simulating the Markov chain. In that case,
they only need to be able to evaluate the best coalitional move from a given CS.

Because of the computational cost, we are studying algorithms to approximate the com-
putation of the Markov chain. By sampling the chain, we can obtain rapidly good estimate of
the expected utility of the agents. Another current line of research is the design of protocols
and the issue of revealing the valuation function. In the general case, agents have to reveal
their valuation, and protocol as [3] can help us ensure that no agent can take advantage of
knowledge asymmetry. When agents are sharing a niche, e.g., when the valuation function
represent a share attributed to each agent, the agents only need to reveal a preference order
over the CSs and no agent has incentive to lie unilaterally.
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Computing the Degree of Manipulability in
the Case of Multiple Choice

Fuad Aleskerov, Daniel Karabekyan, Remzi Sanver, Vyacheslav Yakuba

Abstract

The problem of the manipulability of known social choice rules in the case of mul-
tiple choice is considered. Several concepts of expanded preferences (preferences
over the sets of alternatives) are elaborated. As a result of this analysis ordinal
and nonordinal methods of preferences expanding are defined. The notions of the
degree of manipulability are extended to the case under study. Using the results of
theoretical investigation, 22 known social choice rules are studied via computational
experiments to reveal their degree of manipulability.

1 Introduction

The problem of manipulation in voting is that the voter can achieve the best social decision
for herself by purposely changing her sincere preferences. Theoretical investigations of the
manipulation problem were first made in [5] [11]. There, it was shown that if some rather
weak conditions hold, any nondictatorial choice rule is manipulable. To which extent social
choice rules are manipulable was studied in [1] [7]. However, estimating the degree of manip-
ulability is a very difficult computational problem — to resolve it simplifying assumptions
are made. The main and the strongest assumption used is a tie-breaking rule, which allow to
consider manipulation problem in the framework of single-valued choice. According to such
rule from the set of winning alternatives only one winner is chosen. For example, in [1] [3]
in the case of multiple choice the outcome has been chosen with respect to the alphabetical
order. This is the most common type of tie-breaking rule because it is simple to implement.
But this method also breaks the symmetry between candidates, that can distort the results
of computation. The weaker tie-breaking rule was introduced in [9]. According to this rule,
a winner is chosen at random in the event of a tie.

Manipulation problem in the case of multiple choice has not been elaborated in detail not
only by its computational difficulty, but also because of absence of the common framework
allowing to construct preferences over sets of alternatives.
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2 The framework

We use notations from [1]. There is a finite set A consisting of m alternatives (m > 2). Let
A = 24\ {0} denote a set of all not-empty subsets of the set A. Each agent from a finite
set N ={1,...,n}, n > 1, has preference P; over alternatives from the set A and expanded
preference EP; over the set A.

Preferences P; are assumed to be linear orders, i.e., P; satisfies the following conditions:

o irreflexivity (Vo € A zPx),
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e transitivity (Vz,y,z € A 2Py and yPz = xPz),

e connectedness (Vz,y € A x # y either Py or yPx).

An ordered n-tuple of preferences P; is called a profile, P.A group decision is made by
a social choice rule using P and is considered to be an element of the set A. Let £ denote
the set of all linear orders on A . Then the social choice rule can be defined as F' : L — A.

Manipulation in the case of multiple choice can be described as follows. Let

P={P,...,P,....P}
be the profile of agents’ sincere preferences, while
P_i={P\,....,P,_1,P,Pyy1,...,P,}

is a profile in which all agents but i-th declare their sincere preferences, and P/ is agent i’s
deviation from her sincere preference P;. Let C (?), C(P_;) denote social choice (a subset
of the set A) with respect to profile P and profile ?,i, correspondingly. Then we say that
manipulation takes place if for i-th agent C(ﬁ,i)EPiC(?), where EP; is the expanded
preference of i-th agent. In other words, we suppose that outcome when the i-th agent
deviates from her true preference is more preferable according to her expanded preference
(i.e., according to her preferences over sets) than in the case when she reveals her sincere
preference.

3 Basic assumptions for preferences expansion

Let us give some basic conditions of the relationship between preferences over alternatives
and expanded preferences over outcomes (sets of alternatives).

First condition was introduced in [6] and is also known as Kelly’s Dominance axiom.
Here we will use the stronger version of Kelly’s axiom introduced in [8]

Kelly’s Dominance axiom (strong). Vi € N and V]_D), P e L™ if
(Vm € C(ﬁ) and Vy € C’(ﬁ) = xPy or x = y) and
(Elz € C(P) and Jw € C’(ﬁ) = zPiw)
then C(B) (EP (P;)) C(P)).

We should notice, that this assumption allows us to compare social choices which have
at most one alternative in the intersection.

Example. Let x1Px¢P;x7P;xg. Using this condition, we can say that
{x1, 26} EP;{x¢, 29}, but we cannot compare sets {x1, z¢, z7} and {xg, x7,x9}.

In other words, if two outcomes are different only by one alternative, the set which has
more preferable alternative must be more preferable than another set.

Girdenfors principle. Vi € N, VP € £" and Vy € A/C(P)
1) (C(ﬁ)) EP; (C(TD’) U {y}) whenever Va € C(P) : 2P,y

2) (C(?) U {y}) EP; (C(ﬁ)) whenever Vz € C(?) ryPx

This condition is also known as Gérdenfors principle defined in [4]. It can be explained
in the following way. If we add to some set an alternative which is more (respectively,
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less) preferable than every alternative in the chosen set, new outcome should be more
(respectively, less) preferable than the old one.

In the literature, for example in [2], another conditions can be found. But almost all
of them do not allow us to compare every possible sets of alternatives. For example, for
lexicographic preferences (x4 PixoP; ... Pixym—1Px,) we can not compare sets {x1, xg, 7}
and {xz2, x4} or {x1,z100} and {zgg, z101}. Thus, we should define algorithms of preferences
expanding which satisfy conditions mentioned above and allow us to compare all the sets of
alternatives.

4 Preference expanding methods

4.1 Lexicographic methods
4.1.1 Leximin

This algorithm of preferences expansion is introduced in [8] and is based on the well-known
maximin behaviour approach. Here we will use it in the form given in [10]. This method is
based on comparison of the worst alternatives of any two sets. If the worst alternatives are
the same, then we should compare second-worst altenatives and so on. If this is impossible,
that is, when one social choice is a subset of another social choice, then the greater set is
preferred to the lesser one.

Let us describe leximin method of preferences expanding. From preferences P; € L we
can recieve leximin expanded preferences EP; by the following algorithm.

Two social choices X,Y € A are compared:

1. If |X| = |Y| = k, where k € {1,...,m — 1}, then sort alternatives from each social
choice from the most preferred to the least one, that is: X = {z1,...,2;} and Y =
{y1,...,yx}, where z;Pizj11 and y; Py;41 Vj € {1,...,k — 1}. Then X EP; Y if and
only if xj, Py, for the greatest h € {1,...,k} for which =), # yp.

2. If | X| # |Y|, then sort alternatives from each social choice from the least preferred to
the most one, that is: X = {xl, . 7x‘x‘} and Y = {yl,...,y|y|}, where z;11P;x;
Vie{l,...,|X| -1} and y;41Piy; Vi € {1,...,|Y]| — 1}. There can be two cases:

(a) zp, = yp, Yh e {1,...,min{|X|,|Y|}}. That is, one social choice is a subset of
another social choice. Then, it was already mentioned above, the greater set is
preferred to the lesser one, that is, X EP; Y if and only if | X| > |Y].

(b) Fh € {1,...,min{|X|,|Y]|}} for which x), # yr. Then X EP; Y if and only if
xp Py for the least h € {1,...,min {|X/|, |Y|}}, for which z}, # yp.

For example, for three alternatives and preferences aP;bP;c over them, leximin expanded
preferences EP; will be

{a} EP;{a,b} EP;{b} EP;{a,c} EP;{a,b,c} EP; {b,c} EP; {c}

4.1.2 Leximax

This preferences expanding method is similar to the leximin one, but in this case the best of
any two social choices are compared. If the best alternatives are the same, then we should
compare second-best altenatives and so on. If this is impossible, that is, when one social
choice is a subset of another social choice, then the lesser set is preferred to the greater one.

For example, for three alternatives and preferences a P;bP;c over them, leximax expanded
preferences EP; will be
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{a} EP;{a,b} EP;{a,b,c} EP;{a,c} EP;{b} EP; {b,c} EP; {c}

4.2 Probabilistic methods

These methods of preferences expanding in contrast to lexicographic methods suggest that
for voter not only the presence of the alternative in a social choice is important, but the
probability that this alternative would be the final outcome is important as well. Here two
algorithms are considered: an ordering is constructed based on the probability of the best
alternative and an ordering is constructed based on the probability of the worst alternative.

4.2.1 Ordering based on the probability of the best alternative

This preference expanding algorithm is based on the element-wise comparison of two social
choices. If the best alternatives of two sets are the same, then the set, in which the proba-
bility that this alternative would be the final outcome is higher, is more preferable. In fact,
it will be the lesser set. If the best alternatives are the same and have equal probability to
be the final outcome, then next alternatives are compared in the same way.

Example. In the set {a,b, ¢} probability that alternative a would be the final outcome
equals % (we assume that each alternative of the winning set has equal probability to be
chosen as final outcome). In the set {a,c} this probability equals % In other words, there
will be {a,c} EP;{a,b,c} by expanded preferences based on the probability of the best
alternative algorithm.

For example, for three alternatives and preferences aP;bP;c over them, expanded prefer-
ences EP; based on the probability of the best alternative will be:

{a} EP;{a,b} EP;{a,c} EP;{a,b,c} EP;{b} EP;{b,c} EP;{c}

4.2.2 Ordering based on the probability of the worst alternative

This preferences expanding method is similar to the previous, but in this case the probability
of the worst alternative is consider. The set in which this probability is higher is less
preferable.

For example, for three alternatives and preferences aP;bP;c over them, expanded prefer-
ences FP; based on the probability of the worst alternative will be:

{a} EP;{a,b} EP;{b} EP;{a,b,c} EP;{a,c} EP;{b,c} EP;{c}

4.3 Ordinal methods

This approach is based on the assumption of expected utility maximization introduced by
von Neuman and Morgenstern. Here we will use a particular case of this assumption.

1. First of all, we will assign utility of each alternative for its place in preferences. In
fact, we will rank the alternatives - the best one will receive the rank m, the next one
the rank m — 1, and so on. The worst alternative has the rank of 1.

2. We assume that each alternative has equal probability to be chosen as the final out-
come. It means that utility of the set of alternatives is equal to the average utility
value of all alternatives within this set.

In fact, even these assumptions do not allow us to compare all social choices when m > 2.
For example, for three alternatives and preferences a P;bP;c over them, there are sets {a, b, ¢},
{a,c}, {b}, which have equal utility of 2 according to this approach. So, we need to consider
additional assumptions.
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4.3.1 Lexicographic expansions

These methods suggest the use of lexicographic approach to the sets which are uncompared
by ordinal method itself. Note that new expanded preferences may differ from lexicographic
preferences.

4.3.2 Probabilistic expansions

This methods suggest the use of probabilistic approach to the sets which are uncompared
by ordinal method itself. For example, for four alternatives and preferences a P;bP;cP;d over
them, expanded preferences FP; based on ordinal method with the probability of the worst
alternative approach are (the groups of the sets for which expansion is used are underlined):

{a} EP;{a,b} EP;{b} EP;{a,b,c} EP;,{a,c}EP;
EP;{a,b,d} EP;{b,c} EP;{a,b,c,d} EP;{a,d}EP;
EP;{a,c,d} EP;{c} EP;{b,c,d} EP; {b,d} EP; {c,d} EP; {d}

4.3.3 Attitude to risk expansions

These methods are based on attitude to risk approach. In the case when the expected
utility of several sets is equal, the risk-averse voter will prefer the set with the lowest
variance and risk-lover voter will prefer the set with the highest variance. For up to 6
alternatives expanded preferences based on ordinal method with this expansions coincide
with expanded preferences based on ordinal method with probabilistic expansion. If the
number of alternatives is greater than 7 the coincidence does not hold.

Example. Let us consider lexicographic preferences x1Pjx2P; ... P;x,, where n > 7.
There are sets {x1, x5, 6} and {2, x3, 7} which have the equal rank and the equal variance.
So, these sets are uncompared by ordinal method with attitude to risk expansions.

For three alternatives these methods yield the same results as probabilistic methods,
but for four alternatives this fact does not hold. For example, for four alternatives and the
preferences aP;bP;cP;d over them, expanded preferences E P; based on ordinal method with
risk-lover expansion are (the groups of the sets for which expansion is used are underlined):

{a} EP;{a,b} EP{a,c} EP;{a,b,c} EP,{b}EP;
EP; {a,b,d} EP/{a,d} EP, {a,b,c,d} EP, {b, ¢} EP,
EP, {a,c,d} EP; {b,d} EP; {b,c,d} EP; [ EP, {c,d} EP, {d}

4.3.4 Cardinality expansions

This approach is based on comparison of the cardinality of sets which are uncomapred by
ordinal method itself. We assume, that when expected utility of several sets is equal, then for
voter a cardinality is important. There are two methods: one assumes that the greater set
is preferred to smaller one in case of the same rank, and the other assume that the smaller
set is preferred to the greater one. Note that these assumptions are rather non-binding.
It allows us to compare all sets only when there are three alternatives. However, even in
this case this method do not give different results. For example, for three alternatives and
preferences aP;bP;c over them, expanded preferences FP; based on ordinal method with
greater set approach yield the same result as leximax method and ordinal method with
leximax expansion:

{a} EP;{a,b} EP;{a,b,c} EP;{a,c} EP;{b} EP;{b,c} EP;{c}

For more than four alternatives cardinality expansion itself don’t allows to compare all
sets of alternatives. So, additional expansions mentioned above should be added in this
case.
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5 Indices of manipulability

Number of alternatives being m, the total number of possible linear orders is obviously equal
to m!, and total number of profiles with n agents is equal to (m!)”. In [7] to measure a
degree of manipulability of social choice rules the following index was introduced (we call it
Kelly’s index and denote as K) :

K = Gt
where dy is the number of profiles in which manipulation takes place!.

In [1] index of freedom of manipulation is introduced. We also introduce two similar
indices: the degree of nonsensitivity to preference change and probability of getting worse.
Let us note that for an agent there are (m! — 1) linear orders to use instead of her sincere
preference. Denote as x; (i = 1,..,n; 0 < k7 < m! — 1) the number of orderings in
which voter is better off, k) - the number of orderings when the result of voting remain
the same and x; -the number of orderings in which voter is worse off. It is obvious that
ki + kY + Kk, = (m! —1). Dividing each x; to (m! — 1) one can find the share of each
type of orderings for an agent ¢ in this profile. Summing up each share over all agents and
dividing it to n one can find the average share in the given profile. Summing the share over
all profiles and dividing this sum to (m!)” we obtain three indices

(mh™
L= Gy
where k; is k], k¥ or k; . It is obvious that I} + I + I} = 1.

These indices K and I; (as well as index J) measure the degree of manipulability in
terms of the share of manipulable profiles or the share of orderings using which an agent
can manipulate.

The following two indices show the efficiency of manipulation, i.e., to which extent
an agent can be better off via manipulating her sincere ordering. Let under a profile P

social decision be the set C' (ﬁ) which stands at k-th place from the top in the expanded

_
preferences of i-th agent. Let after her manipulation the social decision be a set C (P’)

which stands in the expanded preferences of the i-th agent at j-th place from the top, and
let j < k. Then 8 = j — k shows how is the i-th agent better off. Let us sum up 6 for
all advantageous orderings ] (defined above), and let us divide the obtained value to «; .
Denote this index through Z;, which shows an average ”benefit” (in terms of places) of
manipulation of the agent ¢ gained via manipulaiton n;-" orderings from (m!—1). Summing
up this index over all agents and over all profiles, we obtain the index under study

i Y %

12 = j=(1ml)"~n

The next criterion I3 is a modification of I5. Instead of evaluating the ”average” benefit
Z; for i-th agent, we evaluate the value

ZMex = max(Z1, ..., Zy, )-

In other words, the value Z*** show the maximal benefit which can be obtained by
agent i. Summing up this index over all agents and over all profiles, we obtain our next
index under study

n [1] an extended version of Kelly’s index was introduced. Denote by Aj the number of profiles in which
exactly k voters can manipulate. Construct index Ji = (72‘% which shows the share of profiles in which

exactly k voters can manipulate. Obviously, K = J; + J2 + ... + Jn. Then one can consider the vectorial
index J = (J1, J2, ..., Jn).
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Z(m!)" n o gmax
j=1 i=1""
(mh)mn

I3 =

The indices K, I, I, I3, J have been calculated for each of the rules introduced in the
next section. The indices I, I and I3 were introduced in [1].

6 Social Choice Rules

The calculation of indices is performed for up to m = 5 alternatives for 22 social choice
rules. In this work the results only for 5 rules will be given.

1. Plurality Rule
Choose alternatives, that have been admitted to be the best by the maximum number
of agents, i.e.

acC(P)e=s NreA nt(a, P)>nt(z,P),

where nt(a, P) = card{i € N | Yy € A aPy}

2. Approval Voting.
Let us define

n*(a, P,q) = card{i € N | card{D;(a)} < q — 1},

i.e., nt(a, f’),q) means the number of agents for which a is placed on ¢’th place in their
orderings. Thus, if ¢ = 1, then «a is the first best alternative for i-th voter; if ¢ = 2, then
a is either first best or second best option, etc. The integer ¢ can be called as degree of
procedure.

Now we can define Approval Voting Procedure with degree ¢

aeC(P)s vz e Ant(a, P,q) > nt(z, P,q)],

i.e., the alternatives are chosen that have been admitted to be between ¢ best by the maxi-
mum number of agents.

It can be easily seen that Approval Voting Procedure is a direct generalization of Plurality
Rule; for the latter ¢ = 1.

3. Borda’s Rule.

Put to each € A into correspondence a number r;(z, 1_3)) which is equal to the cardi-
nality of the lower contour set of z in P, € P, ie. ri(z, P) = |Li(z)| = |{b € A : 2P,b}|.
The sum of that numbers over all : € N is called Borda’s count for alternative z,

r(a, I_D)) = ri(a, P;).

-

i=1

Alternative with maximum Borda’s count is chosen., i.e.

a€C(P)«= [Vbe A, r(a,P)>rb P).

4. Black’s Procedure.
If Condorset winner exists, it is to be chosen. Otherwise, Borda’s Rule is applied.

5. Threshold rule.
Let vi(x) be the number of agents for which the alternative z is the worst in their
ordering, ve(x) is the number of agents placing the x second worst, and so on, v, (z)
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the number of agents considering the alternative x the best. Then we order the alternatives
lexicographically. The alternative x is said to V-dominate the alternative y if: v1(x) < v1(y)
or, if there exists k not more than m, s.t. v;(z) = v;(y), i =1,....,k — 1, and vg(z) < v (y).
In other words, first, the number of worst places are compared if these numbers are equal
then the number of second worst places are compared and so on. The alternatives which
are not dominated by other alternatives via V' are chosen.

7 Computation scheme

The calculation of indices is performed for up to m = 5 alternatives. For small number
of voters n all possible profiles are checked for manipulability and respective indices are
evaluated. For greater number of voters the statistical scheme is used.

For each profile under consideration in both exhaustive and statistical schemes, all m!-1
manipulating orderings for each voter are generated and the respective choice sets of ma-
nipulating profiles are compared with the choice of the original profile, using all introduced
methods of the preference extensions.

8 Results

In the case of 3 alternatives there are 4 different types of extended preferences. For example,
if preferences over are aP;bP;c then the extended preferences are as follows:

1. Leximin method, Ordinal method with leximin or greater set extensions.
{a} EP;{a,b} EP;{b} EP;{a,c} EP;{a,b,c} EP;{b,c} EP;{c}

2. Leximax method, Ordinal method with leximax or lesser set extensions.
{a} EP;{a,b} EP;{a,b,c} EP;{a,c} EP;{b} EP; {b,c} EP; {c}

3. Probabilistic method based on the probability of the worst alternative, Ordinal method
with risk-averse extension.

{a} EP;{a,b} EP;{b} EP;{a,b,c} EP;{a,c} EP; {b,c} EP; {c}

4. Probabilistic method based on the probability of the best alternative, Ordinal method
with risk-lover extension.

{a} EP;{a,b} EP;{a,c} EP;{a,b,c} EP;{b} EP; {b,c} EP; {c}

The results of Kelly’s index calculation for 3 and 4 voters are presented in the tables
1 and 2 correspondingly. In the brackets near the name of the rule the results from [1]
are given. One can see that in most cases, especially in the case of 4 voters, the degree of
manipulability in the case of single-valued choice is underestimated. We also can state that
for almost all rules Method 1 and Method 3 have the same Kelly’s index as well as Methods
2 and 4.

In Figures 1 and 2 the results of calculation for the larger number of voters are given.
Kelly’s index is shown on the Y-axis and the logarithm of the number of voters is shown on
the X-axis. The calculation was made for each number of voters from 3 to 25 and then for
29, 30, 39, 40 and so on up to 100. That explains changes at the figures when number of
voters is more than 25.

We can make several conclusions from these figures.
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Method 1  Method 2 Method 3 Method 4
Plurality (0,1667) 0,2222 0 0,2222 0
Approval q=2 0,1111 0,6111 0,1111 0,6111
Borda (0,2361) 0,3056 0,4167 0,3056 0,4167
Black (0,1111) 0,0556 0,1667 0,0556 0,1667
Threshold 0,3056 0,4167 0,3056 0,4167

Table 1: The case of 3 alternatives and 3 voters

Method 1  Method 2 Method 3 Method 4
Plurality (0,1852) 0,3333 0,3333 0,3333 0,3333

Approval q=2 0,2963 0,2963 0,2963 0,2963
Borda (0,3102) 0,3611 0,4028 0,3611 0,4028
Black (0,1435) 0,2361 0,2778 0,2778 0,2361

Threshold 0,4028 0,4028 0,4028 0,4028

Table 2: The case of 3 alternatives and 4 voters
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0,35

0,3
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0,1

0,05

0 T T T T T
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Figure 1: Kelly’s index for Leximin extension method.
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Figure 2: Kelly’s index for Leximax extension method.

1. The answer on the question which rule is less manipulable depends on the method
of preferences extension. For example, for the number of voters divisible by 3 Ap-
proval voting rule is less manipulable than Plurality rule for Method 1 and is more
manipulable for Method 2.

2. If the number of voters is small Threshold rule is less manipulable than Borda rule.
But when the number of voters is high enough Borda rule is better in Kelly’s sense.
The exact minimum number of voters needed depends on the method used.

3. Black’s Procedure is least manipulable almost for any number of voters and for any
method.

4. Kelly’s index for Black’s Procedure and Method 1 depends on even or odd number of
the voters considered. At the same time for rules such as Plurality, Approval voting
and Threshold, there is a cycle length of m. In this case there is a cycle length of 3.
The dependence from the number of alternatives is explained by differences in number
and cardinality of ties produced by rules. For example, the set {a,b, c} can appear as
the result of plurality voting only in the case when the number of voters is divisible
by the number of alternatives.

In Figure 3 the results of calculation of I; index for 3 alternatives, 3 voters and Method
1 are given. The left part of each row is the degree of freedom of manipulation. The right
part is the probability of getting worse. The middle part is the degree of nonsensitivity to
preference change. In Figure 4 the results of calculation of I; index for 3 alternatives, 100
voters and Method 1 are given. We can see that the bigger the number of voters is, the less
is freedom of manipulation as well as the probability of getting worse.
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Figure 3: I for Leximin extension method and 3 alternatives.
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Figure 4: I for Leximin extension method and 100 alternatives.
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On the Complexity of Rationalizing Behavior
Jose Apesteguia and Miguel A. Ballester

Abstract

We study the complexity of rationalizing choice behavior. We do so by analyzing two
polar cases, and a number of intermediate ones. In our most structured case, that is
where choice behavior is defined in universal choice domains and satisfies the “weak
axiom of revealed preference,” finding the complete preorder rationalizing choice
behavior is a simple matter. In the polar case, where no restriction whatsoever
is imposed, either on choice behavior or on choice domain, finding the complete
preorders that rationalize behavior turns out to be intractable. We show that the
task of finding the rationalizing complete preorders is equivalent to a graph problem.
This allows the search for existing algorithms in the graph theory literature, for the
rationalization of choice.

1 Introduction

The theory of individual decision making is typically formulated on the basis of two dif-
ferent approaches. A revealed preference approach that directly studies individual choice
behavior through choice correspondences. Or a preference relation approach, where tastes
are summarized through binary relations. Clearly, the relation between these two distinct
formal approaches to individual behavior is a fundamental question in economics. It is
said that a collection of preference relations rationalizes choice behavior, whenever both
approaches identify the same alternatives for every possible choice problem that may arise.!
This problem has attracted a great deal of attention in the literature.

Drawing on the tools of theoretical computer science, we study the question of how
complex it is to find the preference relations that rationalize choice behavior. That is, given
any possible choice rule, how difficult it is to construct the collection of preference relations
that summarizes choice behavior. In spite of the fact that the question of rationalization is
central to economics, to the best of our knowledge this paper is the first one to study the
practical difficulty of rationalization.

We analyze two polar cases and some intermediate ones. In the first place we study what
we call the rational procedure. This is the case where the choice correspondence satisfies
the well-known consistency property known as the “weak axiom of revealed preference”
(WARP). The classic result in this case is that a choice correspondence defined on the
universal choice domain (i.e., choice is defined on all possible choice problems) satisfying
WARP is rationalized by a unique complete preorder. We show that finding the complete
preorder in such a case is a simple matter, as there are algorithms that can easily construct
it.

We then turn the analysis to the polar case where no restriction whatsoever is imposed,
neither on choice behavior nor on the choice domain. In other terms, we do not impose
any consistency property on choice behavior; neither WARP, nor any other property. With
regard to the choice domain, we consider arbitrary collections of choice problems. Then,
drawing from a seminal paper by Kalai, Rubinstein, and Spiegler (2002; hereafter KRS),
in order to rationalize behavior we use a collection (a book) of complete preorder relations
(rationales), such that for every choice problem A in the domain of feasible choice problems,
the choice ¢(A) is maximal in A for some complete preorder. Clearly, there are multiple
books that rationalize a given choice rule. KRS naturally propose to focus on those books

n the next section we will make precise the terminology we use in this introduction.
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that use the minimal number of preference relations. In this case, we show that, contrary to
the previous one, finding a minimal book is a difficult computational problem (see Theorem
3.2). That is, there is little hope for the existence of an algorithm that for every possible
choice rule finds a minimal book in a reasonable time frame. Hence, in this extremely
unstructured case, the task of finding the collection of preferences that rationalize behavior
is in general intractable.

Now, the question arises whether it is the conjunction of (i) unstructured choice behavior
and (ii) unrestricted choice domain that leads to the computational hardness of the problem
of rationalization. It could be the case that the difficulty in finding the preference relations
rationalizing choice comes from the unstructured nature of behavior. It turns out that the
answer to this question seems to depend on the single or multi-valued nature of the choice
function.

Theorem 3.4 suggests that in the case of single-valued choice functions, the essence of the
intractability of rationalization is triggered by the interplay of both unstructured behavior
and unrestricted domain. Theorem 3.4 shows that under the universal choice domain, the
problem of finding a minimal book is quasi-polynomially bounded. However, we argue that
in the case of choice correspondences the practical difficulty of rationalizing behavior may
be due to the nature of choice behavior per se.

The challenge is then to understand the driving force of the complexity of rationalization.
If we are able to understand the roots of the complexity in rationalizing choice behavior, we
may use this to search for specific algorithms that behave well under certain circumstances.
We start this challenge by defining two binary relations on the space of choice problems,
that capture two fundamental properties on the structural relation of choice problems. By
doing so we will be able to draw a connection with a graph theory problem (see Theorem
4.3). This is especially useful since there is a wealth of algorithms for graph problems that
may be used to solve the problem of rationalization of certain choice structures.

We then end the analysis by exploring a specific case, inspired by the recent work of
Manzini and Mariotti (2007; hereafter MM). MM study the nature of choice functions
that can be rationalized by sequentially applying a fixed set of asymmetric binary relations.
Among other results, they provide a full characterization for the case when a choice function
is sequentially rationalizable by two rationales. Such a choice function is called a Rational
Shortlist Methods (RSMs). Using the tools derived for establishing the connection with
graph theory, we show that the rationalization of RSMs through multiple rationales turns
out to be a computationally tractable problem.

Apart from those papers already mentioned, Salant (2003), Ok (2005), and Xu and Zhou
(2007) constitute recent related works. Salant (2003) studies two computational aspects of
choice when the “independence of irrelevant alternatives” (ITA) axiom does not necessarily
hold: the amount of memory choice behavior requires, and the computational power needed
for the computation of choice. He shows that the rational procedure is favored by these
considerations. Ok (2005) provides an axiomatic characterization of choice correspondences
that satisfy the ITA axiom. Finally, Xu and Zhou (2007) propose the rationalization through
extensive games with perfect information, and provide a full characterization of those choice
functions that can be so rationalized.

The rest of the paper is organized as follows. Section 2 gives the definitions on choice
behavior and binary relations, and makes precise the notion of rationalization we will use
throughout the paper. Furthermore, it contains a brief introduction to the theory of NP-
completeness. Section 3 contains the complexity results. In section 4 we draw on the
connection between the problem of rationalization and the literature on graph theory. Fi-
nally, section 5 concludes and relates our work to the economics literature on language and
to the bounded rationality literature.
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2 Preliminaries

2.1 Choice behavior and preference relations

Let X be a finite set of n objects. We denote by U the set of all non-empty subsets of

X. We also consider the general case of arbitrary domains D C U, with D # (. A choice

correspondence ¢ on D assigns to every A € D a non-empty set of elements ¢(4) C A. A

single-valued choice function simply assigns to every A € D, a unique element c¢(A) € A.2
The weak axiom of revealed preference is the classic consistency property:

Weak Axiom of Revealed Preference (WARP): Let A,B € D and assume
x,y € AN B; if © € ¢(A) and y € ¢(B), then we must also have x € ¢(B).

WARP imposes a great deal of structure on choice. This can be best appreciated through
its implications on the connection with preference relations. In order to elaborate on the
connection between choice behavior and preference relations, which is central to this paper,
we first introduce some notation. Denote by > a binary relation on X, =C X x X. Binary
relations > and ~ are the asymmetric and symmetric parts of >, respectively. Hence, = > y
if and only if x > y and —(y = x), and x ~ y if and only if z > y and y = x. We will say
that a binary relation is a preorder if it is reflexive and transitive. We will often refer to
complete preorders by rationales. We will say that a binary relation is a linear order if it
is antisymmetric, transitive, and complete. Finally, we will say that it is a partial order if
it is reflexive, antisymmetric, and transitive. For any A € D, M (A, >) denotes the set of
maximal elements in A with respect to =, that is, M(A, =) ={z € A:y > x for no y € A}.
Let ¢(A) = ¢(B), A, B € D, denote the case when for every © € ¢(A) and y € ¢(B), we have
T = y.

The classic notion of rationalization of a choice correspondence deals with the issue of
existence of a unique complete preorder relation > that explains choice behavior defined on
U.2 The question is whether there is a = such that c(A) = M(A, ) for every A € U. A
well-known result establishes that a choice correspondence ¢ satisfies WARP if and only if
there is a complete preorder = such that c(A) = M(A, =) for every A € U.* This result
makes it clear that if ¢ does not satisfy WARP then a broader definition of rationalization
is needed.

In the context of single-valued choice functions and universal choice domains U,
KRS propose the rationalization of any possible choice function through collections
of linear orders. The interest is naturally directed to the minimal number of linear
orders that rationalizes choice behavior. Here we use this notion of rationalization. To
this end we extend the original definition to include choice correspondences and arbi-
trary choice domains D. Accordingly, we also substitute linear orders by complete preorders.

Minimal Rationalization by Multiple Rationales (RMR): A K-tuple of complete
preorders (=g)g=1,.,x on X is a rationalization by multiple rationales (RMR) of ¢ if for
every A € D, there is a k € {1,..., K}, such that ¢(A) = M(A,>y). It is said to be
minimal if any other RMR of ¢ has at least K preference relations.

Note that a minimal RMR is an extension of the classic idea of rationalization by one
rationale. In fact, if ¢ satisfies WARP, then the minimal RMR is composed of one complete

2To avoid tedious duplication of notation, we denote both the multi-valued and the single-valued cases
by c. In any case, the context will be specific enough to avoid confusion.

3 Uzawa (1957), Arrow (1959), Richter (1966) and Sen (1970) were among the first to study aspects of
this problem.

4Moulin (1985) and Suzumura (1983) provide surveys of the related literature.
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preorder. Further, note also that the case of choice correspondences generalizes the case of
single-valued choice functions. The classic result in the latter context is that a single-valued
choice function c¢ is rationalized by a linear order if and only if ¢ satisfies the property of
independence of irrelevant alternatives (ITA):

Independence of Irrelevant Alternatives (ITA): For any A, B € D,ifye€ ACB
and y € ¢(B), then y € ¢(A).

We highlight an especially important class of choice sets; the collection of c-maximal
sets. These are the sets that must be explained in order to rationalize behavior. A set S is
c-maximal if any addition to S of elements (consistent with the domain of choice problems
D) leads to a change in choice behavior with respect to the original elements of S. Formally,

c-Maximal Sets: A subset S € D is said to be c-maximal if for all T € D, with S C T,
it is the case that ¢(S) # ¢(T) N'S. Denote the family of c-maximal sets under the choice
domain D by MP.

For any c-maximal set there is no possibility of obtaining its associated elements from
any other superset of it included in the domain D, and thus, the study of choice behavior
needs to incorporate it.> Clearly, all other choice sets in D can be trivially associated with
at least one c-maximal set.

2.2 NP-completeness

We now present an informal introduction to the notion of complexity we use in this paper.
For an excellent, detailed and formal account see Garey and Johnson (1979).5

The theory of NP-completeness is conventionally centered around decision problems.
These are problems formulated with a yes-or-no answer. Consequently, we define a decision
problem that is the binary analog of the problem of finding a minimal RMR of a choice
correspondence ¢ on D as follows.

Rationalization by Complete Preorders in D (RCP-D): Given a choice corre-
spondence ¢ on D, can we find k£ < K complete preorders that constitute a rationalization
by multiple rationales of ¢?

Appropriately setting D or U, and complete preorders or linear orders, we may define
the binary problems Rationalization by Complete Preorders in &, RCP-U, Rationalization
by Linear Orders in D, RLO-D, and Rationalization by Linear Orders in U, RLO-U.

In this paper we use the proof-by-reduction technique to prove that a particular (decision)
problem is NP-complete. That is, to prove that a given problem II in NP is in fact NP-
complete, we show that it contains a known NP-complete problem II’ as a special case.

3 Complexity of rationalization

We start with the classic, structured case, where D = U and WARP holds. Let us call this
case the rational procedure. Then we will study the polar case of the rational procedure.

5In the simpler case of single-valued choice functions, the condition to identify the class of c-maximal
sets is simply ¢(S) # ¢(T).

6See also Cormen, Leiserson, Rivest, and Stein (2001). Ballester (2004) and Aragones, Gilboa, Postlewaite
and Schmeidler (2005) provide introductions in the context of economics.
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This is the case where no restriction whatsoever is imposed either on choice behavior, or on
the choice domain. At the same time, we will deal with a number of intermediate cases.

3.1 Structured choice behavior: The rational procedure

We start by considering the case where a choice correspondence defined over the universal
choice domain U satisfies WARP. We have already mentioned that this represents a very
structured case, as it is well-known that there exists a unique complete preorder relation >
rationalizing c.

Now the question arises of how difficult it is to find the rationalizing binary relation >.
Intuitively, it seems that the high degree of structure of the rational procedure implies that
finding the rationale is not a difficult task. This is in fact the case. It is easy to show that
the set |[MY| is small, as it contains at most n elements. The simplicity of the family of
maximal sets allows us to consider very simple algorithms to obtain the rationalization of
choice behavior in polynomial time. Consider for instance the following trivial one.

Take Xo = X and iteratively define X = Xj_1 \ e(Xp—1) if Xg—1 \ ¢(Xg—1) # 0 holds.
Then, the set of maximal elements is the collection of sets { X}, with cardinality equal to
or less than n. Clearly, every element is chosen from exactly one set Xj. Then, the rationale
can be defined by stating that x = y if and only if z € X, y € X, with X, X; in the family
of c-maximal sets { Xy} and k < j.

We summarize the above in the following observation.

Observation 3.1 Let the choice correspondence ¢ be a rational procedure and D = U,
then |MY| < n and the problem of finding the complete preorder = that rationalizes c is
polynomial.

There are two important remarks to Observation 3.1. First, as a corollary to the above,
finding the linear order > rationalizing a single-valued choice function defined on U that
satisfies ITA is also polynomial. This follows from the fact that the single-valued case is but
a special case of the multi-valued choice correspondence.

Second, the results also hold for arbitrary choice domains D. To find the binary relation
rationalizing ¢ when D # U, simply write x > y if and only if x € ¢(A) and y € A, A € D.
It is easy to see that WARP guarantees that such a binary relation is a complete preorder.

3.2 Unstructured behavior and unrestricted domain

We now turn to the polar case of the rational procedure where we neither impose structure
on choice behavior, nor on the domain of choice sets. This means that, in general, there
is not a single binary relation rationalizing choice behavior, but a set of them in the sense
of KRS. It is clear that the problem of finding the rationales in this case is a much more
demanding task than the one we faced for the rational procedure in the previous section.
In fact we show below that the task is demanding to the point of being intractable. That
is, we show that finding a minimal RMR in this setting belongs to the class of NP-complete
problems, and hence unless P=NP, there is no hope of finding an efficient algorithm that
for every choice correspondence ¢ gives a minimal RMR in a reasonable time frame.
We can now state our first NP-complete result.

Theorem 3.2 RCP-D is NP-complete.

It can be shown that the ¢ used in the proof is single-valued and the binary relations
defined from the partition of the graph are linear orders. Hence, the following corollary to
(the proof of) Theorem 3.2 is immediate.
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Corollary 3.3 RLO-D is NP-complete.

Theorem 3.2 (and Corollary 3.3) show that the conjunction of (i) unstructured choice
behavior and (ii) unrestricted choice domain lead to the NP-completeness of the problem
of rationalization. But are the two conditions required to get the intractability result?
In principle, it could be that the real difficulty in finding a minimal RMR is completely
triggered by choice behavior per se, or it could be that it is the interplay of behavior and
domain that drives the result. Theorem 3.4 below suggests that in the case of single-valued
choice functions it is the interplay of both, unstructured behavior and unrestricted domain,
that triggers the intractability of finding the rationales.

Theorem 3.4 RLO-U is quasi-polynomially bounded.

Theorem 3.4 suggests that RLO-U is not NP-complete.” Otherwise, Theorem 3.4 would
imply that all NP-complete problems are quasi-polynomially bounded. However, in spite of
continuous efforts such a bound has never been found for NP-complete problems. Indeed,
there is the strong conviction this will never happen.

The question with regard to choice correspondences defined on U, however, remains open.
The naive algorithm used in Theorem 3.4 is not quasi-polynomially bounded in this case.
It is not difficult to see that the number of possible complete preorders is upper bounded
by n!2. The problem arises because, in the case of complete preorders, the n — 1 bound on
the maximum number of preference relations to check for rationalization does not hold. In
fact, it is straightforward to see that the bound turns out to be 2™. This implies that the
naive algorithm for choice correspondences cannot be quasi-polynomially bounded, having
an exponential order of magnitude. Therefore, it may well be the case that with choice
correspondences, the practical difficulty in finding a minimal RMR is triggered by choice
behavior per se.

The challenge for future research is then to understand the driving force of the complexity
of rationalization, and use this understanding to find specific algorithms that behave well
under certain circumstances. In the next section we start this task by drawing a connection
with graph theory. This is especially useful since there is a wealth of algorithms for graph
problems that may solve the problem of rationalization of certain choice structures.

4 On the structure of the complexity of rationalization

4.1 Rationalization and graph theory

The following binary relations capture two fundamental properties on the structural relation
of maximal sets.

Definition 4.1 Let A,B € MP, A — B if and only if c(A) N B ¢ {0,c(B) N A}.

This first binary relation — states the conditions under which a set A blocks another
set B, in the sense that A and B cannot be rationalized by a binary relation > writing
c(A) = ¢(B). Define Hy = A\ ¢(A), A € D. Then, when c is single-valued, — reduces to:
A — B if and only if ¢(A) € Hp.

Definition 4.2 Let A,B € MP, A — B if and only if c(A) Ne(B) # 0.

"The naive algorithm of Theorem 3.4 does not necessarily behave well in unrestricted choice domains D.
The reason being that in this case the input size need not be as high as 2™, but for example, it could be n.
This gives an exponential order of magnitude for the naive algorithm.
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A — B means that sets A and B are linked in the rationalization problem. That is,
whenever A — B, if A and B are to be rationalized by the same binary relation >, then it
must be that ¢(A) ~ ¢(B).

Finally, we use the above two binary relations to define an oriented cycle.

Oriented Cycle: The collection {A;}1 ; € MP, n > 2, is an oriented cycle if
1. Ay = A,
2. for every ¢ € {1,...,n — 1}, either A; — A;41, or A; — A;41, and

3. thereis j € {1,...,n — 1} such that A; — A,1;.

We are now in a position to introduce a graph theory problem over the space of
c-maximal sets.

Minimal Non-Oriented Partition (NOP): A partition of MP {V,},—1 . p is said
to be a non-oriented partition if for every class V,, there is no oriented cycle. It is said to
be minimal if any other NOP has at least P classes.

A (minimal) NOP is constructed over the set MP according to the binary relations —
and —. Hence, a class V}, in the partition has a clear interpretation: all the sets in the class
Vp can be rationalized through a complete preorder >=,. Then, an NOP gives information
on which choice problems can be rationalized together.

The following theorem establishes that finding a minimal RMR is equivalent to find-
ing a minimal NOP. This opens the possibility of drawing upon the established algorithm
knowledge on graph theory problems.

Theorem 4.3 Let ¢ be a choice correspondence:
If {=p}p=1,....p s a minimal RMR, then there is a minimal NOP {V,},=1,.. p.
If {V,}p=1,....p is a minimal NOP, then there is a minimal RMR {>,},=1,.p.

The significance of Theorem 4.3 is best appreciated in the case of single-valued choice
functions. Recall that when c is single-valued, A — B if and only if ¢c(A) € Hg, A, B € MP.
That is, A blocks B if and only if the chosen element in A belongs to B and, at the same,
time this element is not chosen in B. It is clear that such a case is inconsistent with a
linear order rationalizing B and writing ¢(A4) >= ¢(B). Also, note that A — B if and only
if ¢(A) = ¢(B). Then the relation between minimal RMRs and minimal NOPs simplifies
considerably. This is because for any three sets A1, As, B € MCD, whenever ¢(A1) = ¢(As),
then A; — B if and only if A5 — B. This implies that, whenever there is an oriented cycle,
there is a cycle composed of elements related only through —. Hence the analysis can obviate
the equivalence relation —, and focus on (MP, —). The latter is simply an standard directed
graph, and the structure defined as an oriented cycle reduces to the standard notion of a
directed cycle. There is an immense literature on graphs without directed cycles, typically
known as directed acyclic graphs (DAGs).® This is especially important since Theorem 4.3
guarantees that there is much to gain from the results in this literature. Hence, our problem
reduces to find a minimal partition into DAGs.

8See, e.g., Cormen, Leiserson, Rivest, and Stein (2001).
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4.2 An example

The study of concrete choice procedures appears particularly appealing. It is likely that the
structure inherent to specific choice procedures allows for the tractability of rationalization.
Here we provide an example that draws on the previous subsection.

Manzini and Mariotti (2007) study the nature of choice functions defined on U that
can be rationalized by sequentially applying a set of asymmetric binary relations in a fixed
order. Among other results, they provide a full characterization of the case when a choice
function is sequentially rationalized by two asymmetric binary relations. Such a choice
function is called a Rational Shortlist Method (RSM). Their characterization makes use of
the classical property of expansion.

Expansion: If z € ¢(A) and x € ¢(B), A,B € U, then z € ¢(AU B).

It is not difficult to observe that the set MY shrinks considerably whenever this property
holds. Clearly, for each element z in X there is at most one element in MY for which z
is the chosen element, namely, the union of all subsets A for which z is chosen. Denote
the latter by M (z). Then the problem of finding a minimal RMR here reduces to finding a
minimal partition into DAGs over the universal set of alternatives X according to =, where
for every = # v,

x = y if and only if M(xz) — M (y) if and ounly if x € M (y)

Hence the rationalization of RSMs through multiple rationales turns out to be a com-
putationally tractable problem.

5 Final remarks

We have used the tools of theoretical computer science to study the complexity of finding
the preference relations that rationalize choice behavior. The question of rationalizability
of choice behavior has played a central role in economics. However, surprisingly enough,
virtually no attention has been given to the practical problem of computing the rationales.

We have shown that, in the classical case, when the weak axiom of revealed preference
holds, finding the preference relation rationalizing choice behavior is easy. There are poly-
nomial time algorithms that compute the rationale quickly. On the other hand, when we
neither impose any restriction on choice behavior nor on the domain, we have shown that
the problem of rationalization is NP-complete. Therefore, there is little hope of finding an
efficient algorithm bounded above by a a polynomial function. Furthermore, we have shown
that in the case of single-valued choice functions, it is the conjunction of unstructured choice
and unrestricted domain that drives the intractability result. Under the universal domain,
the problem of finding a minimal book is quasi-polynomially bounded. On the other hand,
we argue that in the choice correspondences case, it may well be the case that the difficulty
in finding a minimal book is triggered by choice behavior per se.

We then turned to trying to better understand the complexity of rationalization. To this
end we identified two binary relations over choice sets that capture part of the essence of
rationalization. Furthermore, these binary relations define a problem in graph theory that
is equivalent to the problem of rationalization. This is particularly interesting since the
complexity issues have attracted a great deal of attention in graph theory. The equivalence
result provided allows for the searching of existing algorithms in graph theory that can be
used for the problem of rationalization.

Apart from the literature on rationalization, our results relate to two other strands in the
literature. First, the problem of rationalization can be read as the problem of transmission
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of information (choice behavior in different situations), given a specific grammar (complete
preorders a la KRS). Under this interpretation, our paper is related to the economics lit-
erature on language (see Rubinstein, 2000). Rubinstein stresses the importance of binary
relations to natural language. In this sense, our results establish that there are practical
limitations to the design of a grammar with the ability to transmit any kind of information.
Several questions arise. Does the structure of natural speech imply the existence of a collec-
tion of complete preorders computable in polynomial time? What, if anything, is lost in the
transmission of information, if the problem of constructing a grammar is upper bounded by
a polynomial time algorithm?

Second, an immediate conclusion from our results is that the more structured behavior
is, the easier it is to rationalize it in practice. That is, rationality makes things easier. This
type of observation has been recognized in the bounded rationality literature from different
perspectives. Tversky and Simonson (1993) note that the standard maximization problem
is hard to beat in terms of its simplicity of formulation. It is most likely that any descriptive
bounded rationality model is condemned to involve a more cumbersome formulation. Also,
Salant (2003) shows that the rational procedure requires the least memory possible and that
the automatation required to compute the rational procedure is the smallest possible.
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Alternatives to Truthfulness are Hard to
Recognize

Vincenzo Auletta, Paolo Penna, Giuseppe Persiano and Carmine Ventre

Abstract

The central question in mechanism design is how to implement a given social choice
function. One of the most studied concepts is that of truthful implementations in
which truth-telling is always the best response of the players. The Revelation Princi-
ple says that one can focus on truthful implementations without loss of generality (if
there is no truthful implementation then there is no implementation at all). Green
and Laffont [1] showed that, in the scenario in which players’ responses can be par-
tially verified, the revelation principle holds only in some particular cases.

When the Revelation Principle does not hold, non-truthful implementations become
interesting since they might be the only way to implement a social choice function
of interest. In this work we show that, although non-truthful implementations may
exist, they are hard to find. Namely, it is NP-hard to decide if a given social choice
function can be implemented in a non-truthful manner, or even if it can be imple-
mented at all. This is in contrast to the fact that truthful implementability can be
recognized efficiently, even when partial verification of the agents is allowed. Our
results also show that there is no “simple” characterization of those social choice
functions for which it is worth looking for non-truthful implementations.
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1 Introduction

Social choice theory deals with the fact that individuals (agents) have different preferences
over the set of possible alternatives or outcomes. A social choice function maps these
preferences into a particular outcome, which is not necessarily the one preferred by the
agents. The main difficulty in implementing a social choice function stems from the fact
that agents can misreport their preferences. Intuitively speaking, a social choice function
can be implemented if there is a method for selecting the desired outcome which cannot
be manipulated by rational agents. By ‘desired outcome’ we mean the one specified by the
social choice function applied to the true agents’ preferences.

More precisely, each agent has a type which specifies the utility he derives if some outcome
is selected. When agents are also endowed with payments, we consider agents with quasi
linear utility: the type specifies the gross utility and the agent’s utility is the sum of gross
utility and payment received. In either case, a rational agent reports a type so to maximize
his own utility and the reported type must belong to a domain consisting of all possible
types. In the case of partially verifiable information, the true type of an agent further
restricts the set of types that he can possibly report [1].

One of the most studied solution concepts is that of ¢ruthful implementations in which
agents always maximize their utilities by truthfully reporting their types. The Revelation
Principle says that one can focus on truthful implementations without loss of generality: A
social choice function is implementable if and only if it has a truthful implementation. Green
and Laffont [1] showed that, in the case of partially verifiable information, the Revelation
Principle holds only in some particular cases. When the Revelation Principle does not
hold, non-truthful implementations become interesting since they might be the only way
to implement a social choice function of interest. Although a non-truthful implementation
may induce some agent to misreport his type, given that he reports the type maximizing his
utility, it is still possible to compute the desired outcome “indirectly”. Singh and Wittman
[3] observed that the Revelation Principle fails in several interesting cases and show sufficient
conditions for the existence of non-truthful implementations.

1.1 Owur contribution

In this work, we study the case in which the declaration of an agent can be partially verified.
We adopt the model of Green and Laffont [1] in which the ability to partially verify the
declaration of an agent is encoded by a correspondence function M: M(t) is the set of
the possible declarations of an agent of type t. Green and Laffont [1] characterized the
correspondences for which the Revelation Principle holds; that is, correspondences M for
which a social choice function is either truthfully implementable or not implementable at
all.

We show that although non-truthful implementations may exist, they are hard to find.
Namely, it is NP-hard to decide if a given social choice function can be implemented for
a given correspondence in a non-truthful manner. This is in contrast to the fact that it is
possible to efficiently decide whether a social choice function can be truthfully implemented
for a given correspondence. Our results show that there is no “simple” characterization
of those social choice functions that violate the Revelation Principle. These are the social
choice functions for which it is worth looking for non-truthful implementations since this
might be the only way to implement them.

We prove these negative results for a very restricted scenario in which we have only one
agent and at most two possible outcomes, and the given function does not have truthful
implementations. We give hardness proofs both for the case in which payments are not
allowed and the case in which payments are allowed and the agent has quasi linear utility.
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In general payments are intended as a tool for enlarging the class of social choice functions
that can be implemented. We find that there is a rich class of correspondences for which it
is NP-hard to decide if a social choice function can be implemented without payments, while
for the same correspondences it is trivial to test truthful implementability with payments
via the approach in [3]. Finally, we complement our negative results by showing a class of
correspondences for which there is an efficient algorithm for deciding whether a social choice
function can be implemented.

We note that the characterization of Green and Laffont [1] has no direct implication
in our results. Indeed, the property characterizing the Revelation Principle can be tested
efficiently. Moreover, when the Revelation Principle does not hold, we only know that there
exists some social choice function which is only implemented in a non-truthful manner.
Hence, we do not know if the social choice function of interest can be implemented or not.
Note that this question can be answered efficiently when the Revelation Principle holds
since testing the existence of truthful implementations is computationally easy.

Road map. We introduce the model with partial verification by Green and Laffont [1] in
Section 2. The case with no payments is studied in Section 3. Section 4 presents our results
for the case in which payments are allowed and the agent has quasi linear utility. We draw
some conclusions in Section 5.

2 The Model

The model considered in this work is the one studied by Green and Laffont [1] who considered
the so called principal-agent scenario. Here there are two players: the agent, who has a type
t belonging to a domain D, and the principal who wants to compute a social choice function
f: D — O, where O is the set of possible outcomes. The quantity ¢(X) denotes the utility
that an agent of type ¢ assigns to outcome X € O.

The agent observes his type ¢ € D and then transmits some message t' € D to the
principal. The principal applies the outcome function g : D — O to ¢’ and obtains outcome
X = g(t'). We stress that the principal fixes the outcome function g in advance and then
the agent rationally reports ¢’ so to maximize his utility ¢(¢g(¢')). Even though the principal
does not exactly know the type of the agent, it is reasonable to assume that some partial
information on the type of the agent is available. Thus the agent is restricted to report a
type t’ in a set M(t) C D, which is specified by a correspondence function M : D — 2P, We
will only consider correspondences M (-) for which truth-telling is always an option; that is,
for all t € D, t € M(t). Notice that the case in which the principal has no information (no
verification is possible) corresponds to setting M (¢) = D for all ¢.

Definition 1 ([1]) A mechanism (M, g) consists of a correspondence M : D — 2P and
an outcome function g : D — O. The outcome function g induces a best response rule

¢g: D — D defined by ¢,4(t) € argmaxy cpre){t(g(t'))}. If t € argmaxyepry{t(g(t'))} then
we set gg(t) =t.

The correspondence M can be represented by a directed graph Gps (which we call the
correspondence graph) defined as follows. Nodes of Gy are types in the domain D and an
edge (t,t'), for t # ', exists if and only if ¢’ € M(t). We stress that the correspondence
graph of M does not contain self-loops, even though we only consider correspondences M
such that ¢ € M(t) for all t € D. We will often identify the correspondence M with its
correspondence graph Gy, and say, for example, that a correspondence is acyclic meaning
that its correspondence graph is acyclic. Sometimes it is useful to consider a weighted
version of graph Gys. Specifically, for a function g : D — O, we define G4 to be the
weighted version of graph Gys where edge (¢,t') has weight ¢(g(t)) — t(g(t')).
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We study the class of M-implementable social choice functions f : D — O.

Definition 2 ([1]) An outcome function g : D — O M-implements social choice function
f:D — O if for allt € D g(¢y(t)) = f(t) where ¢4(-) is the best response rule induced by
g. A social choice function f : D — O is M-implementable if and only if there exists an
outcome function g : D — O that M-implements f.

The social choice functions that can be truthfully M-implemented are of particular
interest.

Definition 3 ([1]) An outcome function g : D — O truthfully M-implements social choice
function f : D — O if g M-implements f and ¢g4(t) =t for allt € D. A social choice
function f : D — O is truthfully M-implementable if and only if there exists an outcome
function g : D — O that truthfully M-implements f.

The classical notions of implementation and of truthful implementation are obtained by
setting M(t) = D for all t € D. Actually in this case the two notions of implementable
social choice function and of truthfully implementable social choice function coincide due to
the well-known revelation principle.

Theorem 4 (The Revelation Principle) If no verification is possible (that is, M(t) =
D for all t € D), a social choice function is implementable if and only if it is truthfully
implementable.

The Revelation Principle does not necessarily hold for the notion of M-implementation and
of truthful M-implementation. Green and Laffont [1] indeed give a necessary and sufficient
condition on M for the revelation principle to hold. More precisely, a correspondence M
satisfies the Nested Range Condition if the following holds: for any t1,to,t3 € D ifty € M(t1)
and t3 € M(tQ) then t3 € M(tl)

Theorem 5 (Green-Laffont [1]) If M satisfies the NRC condition then a social choice
function f is M-implementable if and only if f is M-truthfully implementable. If M does
not satisfy the NRC condition then there exists an M-implementable social choice function
f that is not truthfully M -implementable.

Besides its conceptual beauty, the Revelation Principle can also be used in some cases
to decide whether a given social choice function f is M-implementable for a given corre-
spondence M. Indeed, if the Revelation Principle holds for correspondence M, the prob-
lem of deciding M-implementability is equivalent to the problem of deciding truthful M-
implementability which, in turn, can be efficiently decided.

Theorem 6 There exists an algorithm running in time polynomial in the size of the domain
that, given a social choice function f and a correspondence M, decides whether f is truthfully
M -implementable.

Proor. To test truthful AM-implementability of f we consider graph Gy s where edge
(t,t') has weight ¢t(f(t)) — t(f(t')). Then it is obvious that f is M-truthful implementable
if and only if no edge of Gy, 5 has negative weight. o

3 Hardness of the Implementability problem

In this section we prove that the following problem is NP-hard.
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Problem 1 The IMPLEMENTABILITY problem is defined as follows.

INPUT: domain D, outcome set O, social choice function f: D — O and correspondence
M.

TASK: decide whether there exists an outcome function g that M-implements f.

The following lemma, whose proof is immediate, gives sufficient conditions for an outcome
function g to M-implement social choice function f.

Lemma 7 For outcomes O = {T, F'}, if the following conditions are satisfied for all a € D
then outcome function g M -implements social choice function f.

1. If f(a) =T and a(T) < a(F) then, for all v € M(a), we have g(v) = T.
2. If f(a
3. If f(a
4. If f(a) = F and a(T

)

)=F and a(T) < a(F) then, there exists v € M(a) such that g(v)
)

)

(T) < a(F) =F.
=T and a(T) > a(F) then, there exists v € M(a) such that g(v) =T.
(T) > a(F) then, for all v e M(a), we have g(v) = F.

The reduction. We reduce from 3SAT. Let & a Boolean formula in 3-CNF over the
variables x1,---,x, and let Cy,---,C,, be the clauses of ®. We construct D, O, M and
f: D — Osuchthat f is M-implementable if and only if ® is satisfiable. We set O = {T, F'}.
We next construct a correspondence graph Gy, representing M. We will use variable gadgets
(one per variable) and clause gadgets (one per clause).

from clause-gadgets

to variable-gadgets

from clause-gadgets

(a) The variable gadget (b) The clause gadget
Figure 1: Gadgets used in the reduction.
The variable gadget for the variable x; is depicted in Figure 1(a). Each variable x; of

the formula ® adds six new types to the domain D of the agent, namely, t;, u;, v;, w;, z}
and 27 satisfying the following relations:

t(F) > t(T), (1)
wi(F) > u(T), (2)
vi(T) > v (F), (3)
wi(T) > wi(F). (4)

The labeling of the vertices defines the social choice function f; that is, f(¢;) = T, f(v;) =
T, f(w) =T, f(z}) =T, f(2?) = T, and f(u;) = F. Directed edges of the gadget describe
the correspondence M (rather the correspondence graph). Thus, for example, M(t;) =

53



{ti;yu;} and M(u;) = {u;,v;,w;}. Nodes v; and w; have incoming edges from the clause
gadgets. The role of these edges will be clear in the following.

We observe that (1) implies that the social choice function f is not truthfully M-
implementable. Indeed t; prefers outcome F = f(u;) to T = f(t;) and u; € M(L;).
Moreover, by Lemma 7, for any outcome function g implementing f we must have
g(t;) = g(u;) = T. On the other hand, since f(u;) = F it must be the case that any g
that M-implements f assigns outcome F to at least one node in M (u;) \ {u;}. Intuitively,
the fact that every outcome function g that M-implements f must assign F' to at least one
between v; and w; corresponds to assigning “false” to respectively literal z; and Z;.

The clause gadget for clause C; of ® is depicted in Figure 1(b). Each clause C; adds
types c¢; and d; to the domain D of the agent such that

¢(T) > ¢(F), (5)
d;(T) > d;(F). (6)

As before the labeling defines the social choice function f and we have f(d;) = T and
f(ej) = F. Moreover, directed edges encode correspondence M. Besides the directed edge
(¢j,d;), the correspondence graph contains three edges directed from d; towards the three
variable gadgets corresponding to the variables appearing in the clause C;. Specifically, if
C; contains the literal z; then d; has an outgoing edge to node v;. If C; contains the literal
Z; then d; has an outgoing edge to node w;. Similarly to the variable gadget, we observe
that (5) implies that for any g M-implementing f it must be g(d;) = F. Therefore, for g
to M-implement f it must be the case that, for at least one of the neighbors a of d; from a
variable gadget, we have g(a) = T. We will see that this happens if and only if the formula
® is satisfiable. This concludes the description of the reduction.

We next prove that the reduction is correct. Suppose that ® is satisfiable, let 7 be a
satisfying truth assignment and let g be the outcome function defined as follows. For the
i-th variable gadget we set g(t;) = g(u;) = g(z}) = g(2?) = T. Moreover, if z; is true in 7,
then we set g(v;) = T and g(w;) = F; otherwise se set g(v;) = F and g(w;) = T. For the
Jj-th clause gadget, we set g(d;) = g(¢;) = F.

Thus, to prove that the outcome function produced by our reduction M-implements f,
it is sufficient to show for each type a the corresponding condition of Lemma 7 holds. We
prove that conditions hold only for a = u,; and a = d;, the other cases being immediate. For
u; we have to verify that Condition 2 of Lemma 7 holds. Since 7 is a truth assignment, for
each 7 vertex u; has a neighbor vertex for which the outcome function g gives F'. For d; we
have to verify that Condition 3 of Lemma 7 holds. Since 7 is a satisfying truth assignment,
for each j there exists at least one literal of C; that is true in 7; therefore, vertex d; has a
neighbor vertex for which the outcome function g gives T'.

Conversely, consider an outcome function g which M-implements the social choice func-
tion f. This means that, for each clause C}, d; is connected to at least one node, call it a;,
from a variable gadget such that g(a;) = T. Then the truth assignment that sets to true
the literals corresponding to nodes aq, - -, a,, (and gives arbitrary truth value to the other
variables) satisfies the formula.

The following theorem follows from the above discussion and from the observation that
the reduction can be carried out in polynomial time and the graph we constructed is acyclic
with maximum outdegree 3.

Theorem 8 The IMPLEMENTABILITY Problem is NP-hard even for outcome sets of size 2
and acyclic correspondences of mazximum outdegree 3.
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3.1 Corrrespondences with outdegree 1

In this section, we study correspondences of outdegree 1.

We start by reducing the problem of finding g that M-implements f, for the case in
which Gy is a line, to the problem of finding a satisfying assignment for a formula in 2CNF
(that is every clause has at most 2 literals). We assume D = {¢1,---,t,}, O = {01, -, 0m}
and that, for i = 2,---,n, M(t;) = {t;,t;i—1} and M(¢t;) = {t1}. We construct a formula
® in 2CNF in the following way. The formula ® has the variables z;; for 1 < i < n and
1 < j < m. The intended meaning of variable z;; being set to true is that g(t;) = 0;. We will
construct ® so that every truth assignment that satisfies ® describes g that M-implements
f. We do so by considering the following clauses:

1. ® contains clauses (z;f(,) V Ti—1f(t,)), for i = 2,---,n, and clause x5,

These clauses encode the fact that for g to M-implement f it must be the case that
there exists at least one neighbor a of ¢; in Gys such that g(a) = f(t;).

2. ® contains clauses (z;; — Tix), for i =1,---,n and for 1 <k # j <m.

These clauses encode the fact that g assigns at most one outcome to ¢;.

3. ® contains clauses (z;f(;,) — Ti—1x) for all i = 2,---,n and for all k such that ;(ox) >
ti(f(ti))
These clauses encode the fact that if g M-implements f and g(¢;) = f(¢;) then agent
of type t; does not prefer g(t;—1) to g(t;). Therefore, in this case ¢;’s best response is
t; itself.

4. ® contains clauses (z;_1¢(t,) — Tix) for all i = 2,--- n and for all k¥ such that ¢;(o) >
ti(f(ti))-
These clauses encode the fact that if ¢ M-implements f and g(t;—1) = f(t;) then agent
of type t; does not prefer g(t;) to g(t;—1). Therefore, in this case t;’s best response is
ti_1.

It is easy to see that ® is satisfiable if and only if f is M-implementable. The above reasoning
can be immediately extended to the case in which each node of Gy, has outdegree at most
1 (that is Gy is a collection of cycles and paths). We thus have the following theorem.

Theorem 9 The IMPLEMENTABILITY Problem can be solved in time polynomial in the sizes
of the domain and of the outcome sets for correspondences of maximum outdegree 1.

4 Implementability with quasi linear utility

In this section we consider mechanisms with payments; that is, the mechanism picks an
outcome and a payment to be transferred to the agent, based on the reported type of the
agent. Therefore a mechanism is now a pair (g,p) where g is the outcome function and
p: D — R is the payment function. We assume that the agent has quasi linear utility.

Definition 10 A mechanism (M, g, p) for an agent with quasi-linear utility is a triplet where
M : D — 2P is a correspondence, g : D — D is an outcome function, and p: D — R is a

payment function.
The mechanism defines a best-response function ¢y, : D — D where ¢, (t) €
=t.

argmaxy e (1) {t(g(t")) +p(t')}. If t € argmaxy ey {t(g(t')) +p(t)} then we set ¢g(t)
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Definition 11 The pair (g,p) M-implements social choice function f : D — O for an
agent with quasi-linear utility if for allt € D, g(¢(g.p)(t)) = f(t).

The pair (g,p) truthfully M-implements social choice function f for an agent with quasi-
linear utility if (g,p) M-implements f and, for allt € D, ¢4 (1) =t.

In the rest of this section we will just say that (g,p) M-implements (or truthfully M-
implements) f and mean that M-implementation is for agent with quasi-linear utility.
Testing truthful M-implementability of a social choice function f can be done in time
polynomial in the size of the domain by using the following theorem that gives necessary
and sufficient conditions. The proof is straightforward from the proof of [2] (see also [4]).

Theorem 12 Social choice function f is truthfully M-implementable if and only if Gar s
has no negative weight cycle.

As in the previous case when payments were not allowed, if M has the NRC property then
the Revelation Principle holds and the class of M-implementable social choice functions
coincides with the class of truthfully M-implementable social choice functions. We next
ask what happens for correspondences M for which the NRC property does not hold. Our
answer is negative as we show that the following problem is NP-hard.

Problem 2 The QUASI-LINEAR IMPLEMENTABILITY problem is defined as follows.
INPUT: domain D, outcome set O, social choice function f: D — O and correspondence
M.
TASK: decide whether there exists (g,p) that M-implements f.

We start with the following technical lemma.

Lemma 13 Let M be a correspondence and let f be a social choice function for which
correspondence graph has a negative-weight cycle t — t' — t of length 2. If (g,p) M-
implements f then

{¢(9,p) (1), ¢(9,p)(t/)} Z {t,t'}.

PROOF. Let us assume for sake of contradiction that (g,p) M-implements f and that

{¢(g,p) (t), d)(g,p)(t/)} < {t,tl}- (7)
Since cycle C :=t — t' — ¢ has weight
t(f(t) —t(f() +¢'(f() —t'(f(t) <O (8)

then f(t) # f(t'). Therefore, since (g, p) M-implements f, it holds ¢4 ) (t) # ¢(g,p)(t') and
thus (7) implies that {¢ g ) (1), (gp) (')} = {t,t'}.

Suppose that ¢, ) (t) =t and thus ¢y ,)(t') = t. Then for (g,p) to M-implement f it
must be the case that g(t) = f(t'), g(¢') = f(t). But then the payment function p must
satisfy both the following:

p(t) +t(f(t) = p(t)+t(f(t)),

p) +H(f(t) = p(t") +t'(f(1)),
which contradicts (8). The same argument can be used for the case ¢, ,)(t) = t and
P (t) = 1" =
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The reduction. We are now ready to show our reduction from 3SAT to the QUASI-
LINEAR IMPLEMENTABILITY problem. The reduction is similar in spirit to the one of the
previous section. We start from a Boolean formula ® in conjunctive normal form whose
clauses contain exactly 3 literals and we construct a domain D, a set of outcomes O, a social
choice function f, and a correspondence M such that there exists (g,p) that M-implements
f if and only if ® is satisfiable.

We set O = {T, F} and fix constants 0 < § < §. Let x1,...,2, be the variables and
C4,...,C,, be the clauses of ®. The reduction uses two different gadgets: variable gadgets
and clause gadgets.

from clause-gadgets

to variable-gadgets

from clause-gadgets

(a) The variable gadget (b) The clause gadget

Figure 2: Gadgets used in the reduction.

We have one variable gadget for each variable; the gadget for x; is depicted in Figure 2(a)
where the depicted edges are edges of Gj;. Each variable z; of the formula ® adds six new
types to the domain D: t;,u;, v;, w;, 2}, and 22 satisfying the following two non-contradicting
inequalities:

G(T) = t:(F) < wlT) —ui(F), )
u(T) —u(F) = B. (10)

Nodes v; and w; have incoming edges from the clause gadgets. The role of these edges will
be clear in the following. The labeling of the nodes describes the social choice function f to
be implemented. More precisely, we have that f(t;) = f(v;) = f(w;) = f(z}) = f(z2) =T
and f(uz) =F.

We observe that, by (9), cycle C :=t; — u; — t; has negative weight. Moreover, since
B(g.p)(ti) € M(t;) = {ti,u;}, by Lemma 13, it must be the case that ¢y ) (u;) & {ti,ui}.
Therefore, if (g,p) M-implements f then g(é, (ui)) = f(u;) = F, and thus g assigns
outcome F' to at least one of the neighbors of u;. Intuitively, the fact that the outcome
function g assigns F' to at least one between v; and w; corresponds to assigning “false” to
literal x; and Z;.

We have one clause gadget for each clause; the gadget for clause C; is depicted in
Figure 2(b). Each clause C; of ® adds two new types to the domain D: ¢; and d; satisfying
the following two non-contradicting inequalities:

¢(F) = ¢;(T) < d;j(F) = d;(T), (11)
d;(T) — d;(F) = & (12)

Node d; has three edges directed towards the three variable gadgets corresponding to the
variables appearing in the clause C;. Specifically, if the clause C; contains the literal x;
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then d; is linked to the node v;. Conversely, if C'; contains the literal z; then d; is connected
to the node w;. The social choice function f is defined by the labeling of the nodes; that is,
f(dj) =T and f(Cj) =F.

Similarly to the variable gadget, we observe that (11) implies that ¢; and d; constitute a
cycle of negative weight of length 2. Since ¢, ) (c;) € {¢;,d;}, then, by Lemma 13, it must
be the case that ¢, ,)(d;) & {c;,d;}. Since for any (g,p) that M-implements f it must be
the case that g assigns T to d;’s best response, then g assigns outcome 7' to at least one of
the neighbors of d; from a variable gadget. We will see that this happens for all clauses if
and only if the formula ® is satisfiable. This concludes the description of the reduction.

We next prove that the reduction described above is correct. Suppose ® is satisfiable, let
7 be a satisfying assignment for ®, let v be a constant such that 3 < v < § and consider the
following pair (g,p). For i = 1,---,n, we set g(a) = T and p(a) = 0 for all nodes a of the
variable gadget for x; except for v; and w;. Then, if 7(z;) = 1, we set g(v;) = T, p(v;) =0,
g(w;) = F and p(w;) = v. If instead 7(z;) = 0, we set g(v;) = F, p(v;) =7, g(w;) =T and
p(w;) =0. For j =1,---,m, we set g(¢;) = g(d;) = F and p(c;) = p(d;) = 0.

We now show that (g,p) M-implements f. We show this only for types u; from variable
gadgets and types d; from clause gadgets, as for the other types the reasoning is immediate.
Notice that by definition, g assigns F' to exactly one of v; and w; and T to the other. Thus,
denote by a the vertex a € {v;, w;} such that g(a) = F and by b the vertex b € {v;, w;}
such that g(b) = T. We show that a is w;’s best response under (g,p). Observe that
ui(g(a))+pla) = w(F)+vy > u;(F) = u;(g(t;))+p(t;). Therefore ¢; is not u;’s best response.
On the other hand, we have u;(g(b)) +p(b) = u;(T). But then, since vy > 8 = u;(T) — u; (F),
we have that a is u;’s best response under (g, p).

For d;, we observe that, since 7 satisfies clause C;, there must exists at least one literal
of C; that is true under 7. By the definition of g, there exists at least one neighbor, call
it a;, of d; from a variable gadget such that g(a;) = T. We next show that a; is d;’s best
response. Notice that p(a;) = 0. For all vertices b adjacent to d; for which g(b) = F', we
have p(b) < ~. But then, since v < 6 = d;(T") — d;(F') we have that a; is d;’s best response
under (g, p).

Conversely, consider an outcome function (g, p) that implements f and construct truth
assignment 7 as follows. Observe that, for any clause Cj, d; and c; constitute a cycle of
negative weight and length 2. Moreover, c¢;’s best response is either c; or d; and thus, by
Lemma, 13, it must be the case that d;’s best response is a vertex, call it a;, from a variable
gadget such that g(a;) = T. Then if a; = v; for some ¢ then we set 7(z;) = 1; if instead
a; = w; for some i we set 7(x;) = 0. Assignment 7 (arbitrarily extended to unspecified
variables) is easily seen to satisfy ®.

The above discussion and the observation that the reduction can be carried out in poly-
nomial time proves the following theorem.

Theorem 14 The QUASI-LINEAR IMPLEMENTABILITY problem is NP-hard even for out-
come sets of size 2.

5 Conclusions

We have seen that is it NP-hard to decide if a given social choice function can be implemented
even under the premise that the function does not admit a truthful implementation. Indeed,
for these function it is NP-hard to decide if there is a non-truthful implementation, which
in turn is the only way to implement them. An important factor here is the structure of
the domain and the partial information, which we encode in the correspondence graph. In
particular, we have the following results:
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Correspondence Graph No Payments Payments and Quasi-linear Agent

Path Polynomial [Th. 9] | Always implementable [3, Th. 4]

Directed acyclic NP-hard [Th. §] Always implementable [3, Th. 4]
Arbitrary NP-hard [Th. §] NP-hard [Th. 14]

Note that for directed acyclic graphs, the QUASI LINEAR IMPLEMENTABILITY Problem
(where we ask implementability with payments) is trivially polynomial since all social choice
functions are implementable wheras it is NP-hard to decide if an implementation without
payments exists. So, it is also difficult to decide if payments are necessary or not for
implementing a given function. Once again, this task becomes easy when restricting to
truthful implementations [4].

Another interesting fact is that the problem without payments is difficult not because
there are many possible outcomes, but because an agent may have several ways of misre-
porting his type. Indeed, the problem is easy if the agent has at most one way of lying
(Theorem 9), but becomes NP-hard already for three (Theorem 8). The case of two remains
open.

Finally, the fact that we consider the principal-agent model (the same as in [1]) only
makes our negative results stronger since they obviously extend to the case of several agents
(simply add extra agents whose corresponding function is M (¢t) = {t}).

On the other hand it remains open whether the positive result for graphs of outdegree at
most 1 can be extended to many agents. Here the difficulty is the inter-dependence between
the best response rules of the agents.
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Complexity of comparison of influence of
players in simple games

Haris Aziz!

Abstract

Coalitional voting games appear in different forms in multi-agent systems, social
choice and threshold logic. In this paper, the complexity of comparison of influ-
ence between players in coalitional voting games is characterized. The possible rep-
resentations of simple games considered are simple games represented by winning
coalitions, minimal winning coalitions, weighted voting game or a multiple weighted
voting game. The influence of players is gauged from the viewpoint of basic player
types, desirability relations and classical power indices such as Shapley-Shubik index,
Banzhaf index, Holler index, Deegan-Packel index and Chow parameters. Among
other results, it is shown that for a simple game represented by minimal winning
coalitions, although it is easy to verify whether a player has zero or one voting
power, computing the Banzhaf value of the player is #P-complete. Moreover, it is
proved that multiple weighted voting games are the only representations for which
it is NP-hard to verify whether the game is linear or not. For a simple game with
a set W™ of minimal winning coalitions and n players, a O(n.]W™| 4+ n?log(n))
algorithm is presented which returns ‘no’ if the game is non-linear and returns the
strict desirability ordering otherwise. The complexity of transforming simple games
into compact representations is also examined.

1 Introduction

1.1 Overview

Simple games are yes/no coalitional voting games which arise in various mathematical
contexts. Simple games were first analysed by John von Neumann and Oskar Morgenstern
in their monumental book Theory of Games and Economic Behaviour [25]. They also
examined weighted voting games in which voters have corresponding voting weights and a
coalition of voters wins if their total weights equal or exceed a specified quota. Neumann
and Morgenstern [25] observe that minimal winning coalitions are a useful way to represent
simple games. A similar approach has been taken in [11]. We examine the complexity
of computing the influence of players in simple games represented by winning coalitions,
minimal winning coalitions, weighted voting games and multiple weighted voting games.

1.2 Outline

In Section 2, we outline different representations and properties of simple games. In Section
3, compact representations of simple games are considered. After that, the complexity of
computing the influence of players in simple games is considered from the point of view of
player types (Section 4), desirability ordering (Section 5), power indices and Chow parame-
ters (Section 6). The final Section includes a summary of results and some open problems.

IThe author would like to thank Prof. Mike Paterson and anonymous referees for valuable suggestions.
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2 Background

2.1 Definitions

Definitions 2.1. A simple voting game is a pair (N, v) with v : 2 — {0,1} where v(0) = 0,
v(N) =1 and v(S) < v(T) whenever S CT. A coalition S C N is winning if v(S) = 1 and
losing if v(S) = 0. A simple voting game can alternatively be defined as (N, W) where W is
the set of winning coalitions. This is called the extensive winning form. A minimal winning
coalition (MWC) of a simple game v is a winning coalition in which defection of any player
makes the coalition losing. A set of minimal winning coalitions of a simple game v can be
denoted by W™(v). A simple voting game can be defined as (N, W™). This is called the
extensive minimal winning form.

For the sake of brevity, we will abuse the notation to sometimes refer to game (N, v) as
v.

Lemma 2.2. For a simple game (N, W), W™ can be computed in polynomial time.

Proof. For any S € W, remove elements from S until any further removals would make the
coalition losing. The resultant coalition S’ is a member of W™. O

Definition 2.3. A coalition S is blocking if its complement (N \ S) is losing. For a simple
game G = (N, W), there is a dual game G = (N, W?) where W% contains all the blocking
coalitions in G.

Definitions 2.4. The simple voting game (N, v) where

W ={X CN,Y ,cxWs > q} is called a weighted voting game(WVG). A weighted voting
game is denoted by [q; w1, wa, ..., w,] where w; is the voting weight of player i. Usually,
Ww; = Wj ifi <j.

Definitions 2.5. An m-multiple weighted voting game (MWVG) is the simple game (N, vi A
-+ A\ vp,) where the games (N,v;) are the WVGs [¢';w!, ..., wt] for 1 < t < m. Then
v=v1 A AV 1S defined as:

L ifu(S) =1,V 1<t<m.
v(S) = { 0, otherwise.

The dimension of (N,v) is the least k such that there exist WMGs (N,v1),...,(N,vg) such
that (N,v) = (N,v1) A... A (N,vg).

Definitions 2.6. A WVG [q;w1,...,w,] is homogeneous if w(S) = ¢ for all S € W™.
A simple game (N,v) is homogeneous if it can be represented by a homogeneous WVG. A
simple game (N,v) is symmetric if v(S) =1, T C N and |S| = |T| implies v(T) = 1.

It is easy to see that symmetric games are homogeneous with a WVG representation of
[k;1,...,1]. That is the reason they are also called k-out-of-n simple games.
——

n
Banzhaf index [2] and Shapley-Shubik index [23] are two classic and popular indices to
gauge the voting power of players in a simple game. They are used in the context of weighted
voting games, but their general definition makes them applicable to any simple game.

Definition 2.7. A player i is critical in a coalition S when S € W and S\i ¢ W. For each
1 € N, we denote the number of coalitions in which i is critical in game v by the Banzhaf

value n;(v). The Banzhaf Index of player i in weighted voting game v is 5; = %
1EN 1T
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Definitions 2.8. The Shapley-Shubik value is the function k that assigns to any simple
game (N,v) and any voter i a value k;(v) where k; =Y v n(|X] = )(n — | X)) (v(X) —
v(X —{i})). The Shapley-Shubik index of i is the function ¢ defined by ¢; =
Definition 2.9. (/8]) For a simple game v, Chow parameters, CHOW(v) are
(IWAl, ... [Whl; [W|) where W; ={S:S C N,ie S}.

2.2 Desirability relation and linear games

The individual desirability relations between players in a simple game date back at least to
Maschler and Peleg [18].

Definitions 2.10. In a simple game (N, v),

o A player i is more desirable/influential than player j (i =p j) if v(SU{j}) =1 =
v(SU{i}) =1 for all S C N\ {i,j}.

e Playersi and j are equally desirable/influential or symmetric (i ~p j) if v(SU{j}) =
1< v(SU{i})=1 forall SC N\ {i,j}.

o A player i is strictly more desirable/influential than player j (i >=p j) if i is more
desirable than j, but if i and j are not equally desirable.

e A playeri and j are incomparable if there exist S, T C N\{i,j} such that v(SU{i}) =
1L, v(SU{j}) =0, v(TU{i})=0 and v(TU{j}) =1.

Linear simple games are a natural class of simple games:

Definitions 2.11. A simple game is linear whenever the desirability relation = p is complete
that is any two players i and j are comparable (i > j, j > i ori~ j).

For linear games, the relation R. divides the set of voters IV into equivalence classes
N/R. ={Ni,...,N;} such that for any ¢ € N, and j € Ny, i > jif and only if p < q.

Definitions 2.12. A simple game v is swap robust if an exchange of two players from two
winning coalitions cannot render both losing. A simple game is trade robust if any arbi-
trary redistributions of players in a set of winning coalitions does not result in all coalitions
becoming losing.

It is easy to see that trade robustness implies swap robustness. Taylor and Zwicker [24]
proved that a simple game can be represented by a WVG if and only if it is trade robust.
Moreover they proved that a simple game being linear is equivalent to it being swap robust.

Taylor and Zwicker [24] show in Proposition 3.2.6 that v is linear if and only if >p
is acyclic which is equivalent to >p being transitive. This is not guaranteed in other
desirability relations defined over coalitions [9].

Proposition 2.13. A simple game with three or fewer players is linear.

Proof. For a game to be non-linear, we want to player 1 and 2 to be incomparable, i.e., there
exist coalitions S1,So C N\ {1, 2} such that v({1}US;) = 1, v({2}US1) =0, v({1}US2) =0
and v({2} U S3) = 1. This is clearly not possible for n = 1 or 2. For n = 3, without loss
of generality, v is non-linear only if v({1} U®) = 1, v({2} U D) = 0, v({1} U {3}) = 0 and
v({2} U {3}) = 1. However the fact that v({1} U®) = 1 and v({1} U {3}) = 0 leads to a
contradiction. O
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3 Compact representations

Since WVGs and MWVG are compact representations of coalitional voting games, it is
natural to ask which voting games can be represented by a WVG or MWVG and what is
the complexity of answering the question. Deineko and Woeginger [6] show that it is NP-
hard to verify the dimension of MWVGs. We know that every WVG is linear but not every
linear game has a corresponding WVG. Carreras and Freixas,[3] show that there exists a six-
player simple linear game which cannot be represented by a WVG. We now define problem
X -Realizable as the problem to decide whether game v can be represented by form X.

Proposition 3.1. WVG-Realizable is NP-hard for a MWVG.

Proof. This follows directly from the proof by Deineko and Woeginger [6] that it is NP-hard
to find the dimension of a MWVG. O

Proposition 3.2. WVG-Realizable is in P for a simple game represented by its minimal
winning, or winning, coalitions.

This follows directly from Theorem 6 in [11]. The basic idea is that any simple game can
be represented by linear inequalities. The idea dates back at least to [16] and the complexity
of this problem was examined in the context of set covering problems. However it is one thing
to know whether a simple game is WVG-Realizable and another thing to actually represent
it by a WVG. It is not easy to represent a WVG-Realizable simple game by a WVG where
all the weights are integers as the problem transforms from linear programming to integer
programming.

Proposition 3.3. (Follows from Theorem 1.7.4 of Taylor and Zwicker[11]) Any simple
game is MWVG-Realizable.

Taylor and Zwicker [24] showed that for every n > 1, there is simple game of dimension
n. In fact it has been pointed out by Freixas and Puente [12] that that for every n > 1, there
is linear simple game of dimension n. This shows that there is no clear relation between
linearity and dimension of simple games. However it appears exceptionally hard to actually
transform a simple game (N, W) or (N,W™) to a corresponding MWVG. The dimension
of a simple game may be exponential (2(*/2)=1) in the number of players [24]. A simpler
question is to examine the complexity of computing, or getting a bound for, the dimension
of simple games.

4 Complexity of player types

A player in a simple game may be of various types depending on its level of influence.
Definitions 4.1. For a simple game v on a set of players N, player i is a

o dummy if and only if VS C N, if v(S) =1, then v(S\ {i}) = 1;

e passer if and only if VS C N, if i € S, then v(S) =1;

e vetoer if and only if VS C N, ifi ¢ S, then v(S) = 0;

e dictator if and only if VS C N, v(S) =1 if and only if i € S.

It is easy to see that if a dictator exists, it is unique and all other players are dummies.
This means that a dictator has voting power one, whereas all other players have zero voting
power. We examine the complexity of identifying the dummy players in voting games. We
already know that for the case of WVGs, Matsui and Matsui [19] proved that it is NP-hard
to identify dummy players.
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Lemma 4.2. A player i in a simple game v is a dummy if and only if it is not present in
any minimal winning coalition.

Proof. Let us assume that player 7 is a dummy but is present in a minimal winning coalition.
That means that it is critical in the minimal winning coalition which leads to a contradiction.
Now let us assume that 7 is critical in at least one coalition S such that v(SU{i}) =1 and
v(S) = 0. In that case there is a S’ C S such that S’ U {i} is a MWC. O

Proposition 4.3. For a simple game v,
1. Dummy players can be identified in linear time if v is of the form (N, W™).
2. Dummy players can be identified in polynomial time if v is of the form (N, W).
Proof. We examine each case separately:
1. By Lemma 4.2, a player is a dummy if and only if it is not in member of W™
2. By Lemma 2.2, W™ can be computed in polynomial time.
O

From the definition, we know that a player has veto power if and only if the player is
present in every winning coalition.

Proposition 4.4. Vetoers can be identified in linear time for a simple game in the following
representations: (N, W), (N,W™), WVG and MWVG.

Proof. We examine each of the cases separately:

1. (N, W): Initialize all players as vetoers. For each winning coalition, if a player is not
present in the coalition, remove him from the list of vetoers.

2. (N,W™): If there exists a winning coalition which does not contain player i, there
will also exist a minimal winning coalition which does not contain 1.

3. WVG: For each player i, i has veto power if and only if w(N \ {i}) < q.
4. MWVG: For each player i, i has veto power if and only if N \ {i} is losing.
O

Proposition 4.5. For a simple game represented by (N, W), (N,W™), WVG or MWVG,
it is easy to identify the passers and the dictator.

Proof. We check both cases separately:

1. Passers: This follows from the definition of a passer. A player i is a passer if and only
if v({i}) =1.

2. Dictator: It is easy to see that if a dictator exists in a simple game, it is unique. It
follows from the definition of a dictator that a player ¢ is a dictator in a simple game

if v({i}) =1 and (N \ {i}) =0.
O
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5 Complexity of desirability ordering

A desirability ordering on linear games is any ordering of players such that
1>p 2%=p ... =p n. A strict desirability ordering is the following ordering on play-
ers: 1 o 2 o ... o n where o is either ~p or >p.

Proposition 5.1. For a WVG:
1. A desirability ordering of players can be computed in polynomial time.
2. It is NP-hard to compute the strict desirability ordering of players.

Proof. WVGs are linear games with a complete desirability ordering. For (1), it is easy to
see that one desirability ordering of players in a WVG is the ordering of the weights. When
w; = wj, then we know that ¢ ~ j. Moreover, if w; > w;, then we know that ¢ is at least
as desirable as j, that is ¢ »= j. For (2), the result immediately follows from the result by
Matsui and Matsui [19] where they prove that it is NP-hard to check whether two players
are symmetric. O

Let v be a MWVG of m WVGs on n players. It is easy to see that if there is an ordering
of players such that such that w{ > w} > ... > w! for all ¢, then v is linear. However, if
an ordering like this does not exist, this does not imply that the game is not linear. The
following is an example of a small non-linear MWVG:

Example 5.2. In game v = [10;10,9,1,0]A[10;9, 10,0, 1], players 1 and 2 are incomparable.
So, whereas simple games with 3 players are linear, it is easy to construct a 4 player non-
linear MWVG.

Proposition 5.3. It is NP-hard to verify whether a MWVG is linear or not.

Proof. We prove this by a reduction from an instance of the classical NP-hard PARTITION
problem.

Name: PARTITION

Instance: A set of k integer weights A = {aq,...,ax}.

Question: Is it possible to partition A, into two subsets P} C A, P, C Asothat PLNP, =)
and P, U Py, = A and ZaiePl a; = Za,;ePz a;?

Given an instance of PARTITION {ay,...,ax}, we may as well assume that Zle a; is
an even integer, 2t say. We can transform the instance into the multiple weighted voting
v = v1 A vg where v1 = [¢;20a4,...,20ax,10,9,1,0] and vy = [g;20a4,...,20ax,9,10,0,1]
for ¢ = 10 + 20t and k + 4 is the number of players.

If A is a ‘no’ instance of PARTITION, then we see that a subset of weights
{20a1,...,20a;} cannot sum to 20t. This implies that players k + 1, k + 2, k + 3, and
k 4+ 4 are not critical for any coalition. Since players 1,...,k have the same desirability
ordering in both v; and vy, v is linear.

Now let us assume that A is a ‘yes’ instance of PARTITION with a partition (Py, P»). In
that case players k+1, k+2, k43, and k44 are critical for certain coalitions. We see that
v({k+11U({k+4}UP)) =1, v({k+2}U({k+4}UP)) =0, v({k+1}U({k+3}UP)) =0
and v({k +2} U ({k+3}UPy)) = 1. Therefore, players k + 1 and k + 2 are not comparable
and v is not linear. O

Proposition 5.4. For a simple game v = (N, W™), it can be verified in O(n|W™|) time if
v s linear or not.
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Proof. Makino [17] proved that for a positive boolean function on n variables represented
by the set of all minimal true vectors minT'(f), it can be checked in O(n|minT(f)|) whether
the function is regular (linear) or not. Makino’s algorithm CHECK-FCB takes minT'(f) as
input and outputs ‘yes’ if f is regular and ‘no’ otherwise. The proof involves encoding the
minimal true vectors by a fully condensed binary tree. Then it follows that it can be verified
in O(n(|[W™|)) whether a simple game v = (N, W™) is linear or not. O

Corollary 5.5. For a simple game v = (N, W), it can be verified in polynomial time if v
is linear or not.

Proof. We showed earlier that (N, W) can be transformed into (N, W™) in polynomial time.
After that we can use Makino’s method [17] to verify whether the game is linear or not. [0

Muroga [20] cites Winder [26] for a result concerning comparison between boolean vari-
ables and their incidence in prime implicants of a boolean function. Hilliard [14] points
out that this result can be used to check the desirability relation between players in WVG-
Realizable simple games. We generalize Winder’s result by proving both sides of the impli-
cations and extend Hilliard’s observation to that of linear simple games.

Proposition 5.6. Let v = (N,W™) be a linear simple game and let di; = |{S :1 € S,
S eWm™ |S|=k}|. Then for two players i and j,

1. i ~p jifand only if dp; = di; fork=1,...n.
2. % >=p j if and only if for the smallest k where di; # di j, dii > di ;.

Proof. 1. (=) Let us assume ¢ ~p j. Then by definition, v(SU{j}) =1 < v(SU{i}) =1
for all S € N\ {i,j}. So SU{i} € W™ if and only if SU {j} € W™. Therefore,
di; = d,; fork=1,...n.

(<) Let us assume that ¢ = p j. Since v is linear, ¢ and j are comparable. Without
loss of generality, we assume that ¢ >p j. Then there exists a coalition S\ {i,j} such
that v(SU{i}) =1 and v(SU{j}) = 0 and suppose |S| = k— 1. If SU{i} € W™,
then dy; > di ;. If SU{i} ¢ W™ then there exists S’ C S such that S U {i} € W™.
Thus there exists k' < k such that dy; > dj/ ;.

2. (=) Let us assume that ¢ >p j and let &’ be the smallest integer where dys ; # di/ ;.
If dy ; < di j, then there exists a coalition S such that SU{j} € W™, SU{i} ¢ W™
and |S] = kK = 1. SU{i} ¢ W™ in only two cases. The first possibility is that
v(S U {i}) = 0, but this is not true since ¢ =p j. The second possibility is that
there exists a coalition S" C S such that S’ U {i} € W™. But that would mean that
v(S"U{i}) =1 and v(S" U {j}) = 0. This also leads to a contradiction since &’ is the
smallest integer where dys ; # dp ;.

(<) Let us assume that for the smallest k where dy, ; # di j, d; > di ;. This means
there exists a coalition S such that SU {i} € W™, SU{j} ¢ W™ and |S| = k — 1.
This means that either v(S U {j}) = 0 or there exists a coalition S’ C S such that
S'U{i} e W If v(SU{j}) = 0, that means i >p j. If there exists a coalition
S" C S such that S" U {j} € W™, then dys ; > di; for some k’ < k. This leads to a
contradiction.

O

We can use this theorem and Makino’s ‘CHECK-FCB’ algorithm [17] to make an algo-
rithm which takes as input a simple game (N, W) and returns NO if the game is not linear
and returns the strict desirability ordering otherwise.
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Algorithm 1 Strict-desirability-ordering-of-simple-game
Input: Simple game v = (N, W™) where N = {1,...,n} and W™ (v) = {S1,...,Sjwm|} .
Output: NO if v is not linear. Otherwise output desirability equivalence classes starting
from most desirable, if, v is linear.

1: X = CHECK-FCB(W™)

2: if X = NO then

3:  return NO

4: else

5:  Initialize an n x n matrix D where entries d; ; = 0 for all 7 and j in IV

6: fori=1to |W™| do

7 for each player z in S; do

8

9

d|5i\7m - d\5i|v$ +1
end for
10: end for
11:  return classify(N,D,1)
12: end if

Algorithm 2 classify
Input: set of integers classingex, 7 X n matrix D, integer k.
Output: subclasses.

1. if Kk =n+1 or |classingex] = 1 then

2 return classjngex

3: end if

4: s « |classindex|

5: mergeSort(classindex) in descending order such that ¢ > j if dy; > dy ;.
6: for i =2 to s do

7:  subindex < 1; classindex.subindex “— ClaSSindex[1]
8 if dk,classindex[i] = dk,classindex[ifl] then

9: Classindex.subindex — CIaS‘S‘index.subindex U CIassindex [Z]
10: else if dk,daSSindex[i] < dk7d355index[i_1] then

11: subindex « subindex + 1

12: classindex.subindex ¢ {Classindex[7]}

13: end if

14: end for

15: Returnset « ()

16: A— 0

17: for j =1 to subindex do

18: A « classify(classindex.j, D, k + 1)

19:  Returnset < A U Returnset

20: end for

21: return Returnset

Proposition 5.7. The time complexity of Algorithm 1 is O(n.|W™| + n%log(n))

Proof. The time complexity of CHECK — FCB is O(n.|]W™]). The time complexity of
computing matrix D is O(Max(|]W™|,n?). For each iteration, sorting of sublists requires at
most O(nlog(n)) time. There are at most n loops. Therefore the total time complexity is
O(n.|JW™|) + O(Max(|]W™|,n?) + O(n?log(n)) = O(n.]W™| + n%log(n)).

O
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Corollary 5.8. The strict desirability ordering of players in a linear simple game v =
(N, W) can be computed in polynomial time.

Proof. The proof follows directly from the Algorithm. Moreover, we know that the set of all
winning coalitions can be transformed into a set of minimal winning coalitions in polynomial
time. =

6 Power indices and Chow parameters

Apart from the Banzhaf and Shapley-Shubik indices, there are other indices which are also
used. Both the Deegan-Packel index [5] and the Holler index [15] are based on the notion
of minimal winning coalitions. Minimal winning coalitions are significant with respect to
coalition formation [4]. The Holler index, H; of a player i in a simple game corresponds to
the Banzhaf index with one difference: only swings in minimal winning coalitions contribute
towards the Holler index.

Definitions 6.1. We define the Holler value M; as {S € W™ : i € S}. The Holler index

which is called the public good index is defined by H;(v) = % The Deegan Packel
jen IM;

index for player i in voting game v is defined by D;(v) = |W17"I|ZSEMZ- |—é‘

Compared to the Banzhaf index and the Shapley-Shubik index, both the Holler index and
the Deegan-Packel index do not always satisfy the monotonicity condition. In [19], Matsui
and Matsui prove that it is NP-hard to compute the Banzhaf index, Shapley-Shubik index
and Deegan-Packel index of a player. We can use a similar technique to also prove that it is
NP-hard to compute the Holler index of players in a WVG. This follows directly from the
fact that it is NP-hard to decide whether a player is dummy or not. Prasad and Kelly [21]
and Deng and Papadimitriou [7] proved that for WVGs, computing the Banzhaf values and
Shapley-Shubik values is #P-parsimonious-complete and #P-metric-complete respectively.
(For details on #P-completeness and associated reductions, see [10]). Unless specified,
reductions considered with #P-completeness will be Cook reductions (or polynomial-time
Turing reductions).

What we see is that although it is NP-hard to compute the Holler index and Deegan-
Packel of players in a WVG, the Holler index and Deegan-Packel of players in a simple game
represented by its MWCs can be computed in linear time:

Proposition 6.2. For a simple game (N, W™), the Holler index and Deegan-Packel index
for all players can be computed in linear time.

Proof. We examine each of the cases separately:

e Initialize M; to zero. Then for each S € W™, if ¢ € S, increment M; by one.

e Initialize d; to zero. Then for each S € W™ if ¢ € S, increment d;, by R Then
D, = —di
1 T IW‘n I'
O

Proposition 6.3. For a simple game v = (N, W), the Banzhaf index, Shapley Shubik indez,
Holler index and Deegan-Packel index can be computed in polynomial time.

Proof. The proof follows from the definitions. We examine each of the cases separately:

e Holler index: Transform W into W™ and then compute the Holler indices.
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e Deegan-Packel: Transform W into W™ and then compute the Deegan-Packel indices.

e Banzhaf index: Initialize Banzhaf values of all players to zero. For each S € W, check
if the removal of a player results in S becoming losing (not a member of W). In that
case increment the Banzhaf value of that player by one.

e Shapley-Shubik index: Initialize Shapley values of all players to zero. For each S € W,
check if the removal of a player results in S becoming losing (not a member of W). In
that case increment the Shapley value of the player by (|S| — 1)!(n — |S|)!.

The time complexity for all cases is polynomial in the order of the input. O

For a simple game (N, W™), listing W the winning coalitions may take time exponential
in the number of players. For example, let there be only one minimal winning coalition
S which contains players 1,...,[n/2]. Then the number of winning coalitions to list is
exponential in the number of players. Moreover, if [IW™| > 1, minimal winning coalitions
can have common supersets. It is shown below that for a simple game (N, W™), even
counting the total number of winning coalitions is #P-complete. Moreover, whereas it is
polynomial time easy to check if a player has zero voting power (a dummy) or whether it has
voting power 1 (dictator), it is #P-complete to find the actual Banzhaf or Shapley-Shubik
index of the player.

Proposition 6.4. For a simple game v = (N, W™), the problem of computing the Banzhaf
values of players is # P-complete.

Proof. The problem is clearly in #P. We prove the #P-hardness of the problem by providing
a reduction from the problem of computing |W|. Ball and Provan [1] proved that computing
|W| is #P-complete. Their proof is in context of reliability functions so we first give the
proof in terms of simple games. It is known that known [22] that counting the number of
vertex covers is #P-complete (a vertex cover in a graph G = (V, E) is a subset C' of V such
that every edge in E has at least one endpoint in C'). Now take a simple game v = (N, W™)
where for any S € W™, |S| = 2. Game v has a one-to-one correspondence with a graph
G = (V,E) such that N =V and {i,j} € W™ if and only if {i,j} € E(G). In that case the
total number of losing coalitions in v is equal to the number of vertex covers of G. Therefore
the total number of winning coalitions is equal to 2" —(number of vertex covers of G) and
computing |W| is #P-complete.

Now we take a game v = (N, W™) and convert it into another game v' = (N U {n +
1}, W™(v')) where for each S € W™ (v), SU{n + 1} € W™(v’). In that case computing
|W (v)] is equivalent to computing the Banzhaf value of player n 4+ 1 in game v’. Therefore,
computing Banzhaf values of players in games represented by MWCs is #P-hard. O

It follows from the proof that computing power of collectivity to act(%) and Chow
parameters for a simple game (N, W™) is #P-complete. Goldberg remarks in the conclusion
of [13] that computing the Chow parameters of a WVG is #P-complete. It is easy to
prove this. The problem of computing |W| and |W;| for any player i is in #P since a
winning coalition can be verified in polynomial time. It is easy to reduce in polynomial
time the counting version of the SUBSET-SUM problem to counting the number of winning
coalitions. Moreover, for any WVG v = [g; w1, ..., wy], |[IW(v)] is equal to |W,,41(v")| where
v' is [g; w1, . .., Wy, 0]. Therefore computing |W;| and |W| for a WVG is #P-complete.

7 Conclusion

A summary of results has been listed in Table 1. A question mark indicates that the specified
problem is still open. It is conjectured that computing Shapley values is #P-complete and

70



Table 1: Summary of results

[ vw) [ (W™ ] WVG | MWVG |

IDENTIFY-DUMMIES P linear NP-hard NP-hard
IDENTIFY-VETOERS linear linear linear linear
IDENTIFY-PASSERS linear linear linear linear
IDENTIFY-DICTATOR linear linear linear linear
CHOW PARAMETERS linear | #P-complete #P-complete #P-complete
IS-LINEAR P P (Always linear) NP-hard
DESIRABILITY-ORDERING P P P NP-hard
STRICT-DESIRABILITY P P NP-hard NP-hard
BANZHAF-VALUES P #P-complete #P-complete #P-complete
BANZHAF-INDICES P ? NP-hard NP-hard
SHAPLEY-SHUBIK-VALUES P ? #P-complete #P-complete
SHAPLEY-SHUBIK-INDICES P ? NP-hard NP-hard
HOLLER-INDICES P linear NP-hard NP-hard
DEEGAN-PACKEL-INDICES P linear NP-hard NP-hard

it is NP-hard to compute Banzhaf indices for a simple game represented by (N, W™). It is
found that although WVG, MWVG and even (N, W™) is a relatively compact representation
of simple games, some of the important information encoded in these representations can
apparently only be accessed by unraveling these representations. There is a need for a
greater examination of transformations of simple games into compact representations.
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Divide and Conquer: False-Name
Manipulations in Weighted Voting Games

Yoram Bachrach and Edith Elkind

Abstract

Weighted voting is a well-known model of cooperation among agents in decision-
making domains. In such games, each player has a weight, and a coalition of players
wins if its total weight meets or exceeds a given quota. Usually, the agents’ power
in such games is measured by a power indez, such as, e.g., Shapley—Shubik index.
In this paper, we study how an agent can manipulate its voting power (as measured
by Shapley—Shubik index) by distributing his weight among several false identities.
We show that such manipulations can indeed increase an agent’s power and provide
upper and lower bounds on the effects of such manipulations. We then study this
issue from the computational perspective, and show that checking whether a benefi-
cial split exists is NP-hard. We also discuss efficient algorithms for restricted cases
of this problem, as well as randomized algorithms for the general case.

1 Introduction

Collaboration and cooperative decision-making are important issues in many types of inter-
actions among self-interested agents. In many situations, agents must take a joint decision
leading to a certain outcome, which may have a different impact on each of the agents. A
standard and well-studied way of doing so is by means of voting, and in recent years, there
has been a lot of research on applications of voting to multiagent systems as well as on com-
putational aspects of various voting procedures. One of the key issues in this domain is how
to measure the power of each voter, i.e., his impact on the final outcome. In particular, this
question becomes important when the agents have to decide how to distribute the payoffs
resulting from their joint action: a natural approach would be to pay each agent according
to his contribution, i.e., his voting power.

This issue is traditionally studied within the framework of weighted voting games, which
provide a model of decision-making in many political and legislative bodies, and have also
been applied in the context of multiagent systems. In such a game, each of the agents
has a weight, and a coalition of agents wins the game if the sum of the weights of its
participants exceeds a certain quota. Having a larger weight makes it easier for an agent
to affect the outcome; however, the agent’s power is not always proportional to his weight.
For example, if the quota is so high that the only winning coalition is the one that includes
all agents, intuitively, all agents have equal power, irrespective of their weight. This idea
is formalized using the concept of a power index, which is a systematic way of measuring
a player’s influence in a weighted voting game. There are several ways to define power
indices. One of the most popular approaches relies on the fact that weighted voting games
form a subclass of coalitional games, and therefore one can use the terminology and solution
concepts that have been developed in the context of general coalitional games. In particular,
an important notion in coalitional games is that of the Shapley value [12], which is a classical
way to distribute the gains of the grand coalition in general coalitional games. In the context
of weighted voting, the Shapley value (also known as the Shapley—Shubik power index [13])
provides a convenient measure of an agent’s power and has been widely studied from both
a normative and a computational perspective.

As suggested above, power indices measure the agents’ power and can be used to de-
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termine their payoffs. However, to be applicable in real-world scenarios, this approach has
to be resistant to dishonest behavior, or manipulation, by the participating agents. In this
paper we study the effects of one form of manipulation in weighted voting games, namely,
false-name voting. Under this manipulation, an agent splits his weight between himself and
a “fake” agent who enters the game. While the total weight of all identities of the cheating
agent remains the same, his power (as measured by the Shapley—Shubik power index) may
change. In open anonymous environments, such as the internet, this behavior is virtually
impossible to detect, and therefore it presents a challenge to the designers of multiagent
systems that rely on weighted voting. The goal of this paper is to measure the effects of
false-name voting and analyze its computational feasibility. Our main results here are as
follows:

e We precisely quantify the worst-case effect of false-name voting on agents’ payoffs.
Namely, we show that in an n-player game, false-name voting can increase an agent’s
payoff by a factor of 2n/(n+ 1), and this bound is tight. On the other hand, we show
that false-name voting can decrease an agent’s payoff by a factor of (n + 1)/2, and
this bound is also tight.

e We demonstrate that finding a successful manipulation is not a trivial task by proving
that it is NP-hard to verify if a beneficial split exists. However, we show that if all
weights are polynomially bounded, the problem can be solved in polynomial time, and
discuss efficient randomized algorithms for this problem.

We also study several variants of the problem, such as splitting into more than two identities,
as well as the dual problem of manipulation by merging, where several agents pretend to be
one.

2 Related Work

In his seminal paper, Shapley [12] considered coalitional games and the question of fair
allocation of the utility gained by the grand coalition. The solution concept introduced in
this paper became known as the Shapley value of the game. The subsequent paper [13]
studies the Shapley value in the context of simple coalitional games, where it is usually
referred to as the Shapley—Shubik power index. Another measure of a player’s influence in
voting games is the Banzhaf power index [1].

Both of these power indices have been well studied. Straffin [14] shows that each index
reflects certain conditions in a voting body. Paper [5] describes certain axioms that char-
acterize these two indices, as well as several others. These indices were used to analyze the
voting structures of the European Union Council of Ministers and the IMF [7, 6].

The applicability of the power indices to measuring political power in various domains
has raised the question of finding tractable ways to compute them. However, this problem
appears to be computationally hard. Indeed, the naive algorithm for calculating the Shapley
value (or the Shapley—Shubik power index) considers all permutations of the players and
hence runs in exponential time. Moreover, paper [3] shows that computing the Shapley
value in weighted voting games is #P-complete.

Despite this hardness result, several works show how to compute these power indices
in some restricted domains, or discuss ways to approzimate them [9, 11, 8, 4]. A good
survey of algorithms for calculating power indices in weighted voting games is [10]. Many
of these approaches work well in practice, which justifies the use of these indices as payoff
distribution schemes in multiagent domains.

False-name manipulation has been studied in the context of non-cooperative games such
as auctions [16, 17], and, more recently, also in cooperative games [2, 15]. However, to the
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best of our knowledge, ours is the first paper to systematically study this type of behavior
in weighted voting.

3 Preliminaries and Notation

Coalitional Games A coalitional game G = (I,v) is given by a set of agents I =
{ai,...,an}, |I| = n, and a function v : 2/ — R that maps any subset (coalition) of
the agents to a real value. This value is the total utility these agents can guarantee to
themselves when working together. To simplify notation, we will sometimes write 7 instead
of a;.

A coalitional game is simple if v can only take values 0 and 1, i.e., v : 2f — {0,1}. In

such games, we say that a coalition C' C I wins if v(C) = 1, and loses if v(C) = 0. An agent
1 is critical, or pivotal, to a winning coalition C' if the agent’s removal from that coalition
would make it a losing coalition: v(C) =1, v(C \ {i}) = 0.
Weighted Voting Games A weighted voting game G is a simple game that is described by
a vector of players’ weights w = (w1, ..., w,) and a quota q. We write G = [wy, ..., wy;q],
or G = [w;q]. In these games, a coalition is winning if its total weight meets or exceeds the
quota. Formally, for any J C I we have v(J) = 1if )7, ;w; > q and v(J) = 0 otherwise.
We will often write w(.J) to denote the total weight of a coalition J, i.e., w(J) = ;. ; w;.
Also, we set Wmax = Max;=1, _n W;.

Shapley Value Intuitively, the Shapley value of an agent is determined by his marginal
contribution to possible coalitions. Let II,, be the set of all possible permutations (orderings)
of n agents. Each 7 € I, is a one-to-one mapping from {1,...,n} to {1,...,n}. Denote
by Sy (i) the predecessors of agent ¢ in , i.e., S;(2) = {j | 7(j) < 7(é)}. The Shapley value
of the ith agent in a game G = (I,v) is denoted by (i) and is given by the following

expression:
pali) = o1 37 (S (5) U i) — u(S; ()] 1)

" well,

We will occasionally abuse notation and say that an agent 4 is pivotal for a permutation m
if it is pivotal for the coalition Sy (7) U {i}.

The Shapley-Shubik power index is simply the Shapley value in a simple coalitional
game (and therefore in the rest of the paper we will use these terms interchangeably). In
such games the value of a coalition is either 0 or 1, so the formula (1) simply counts the
fraction of all orderings of the agents in which agent 4 is critical for the coalition formed by
his predecessors and himself. The Shapley-Shubik power index thus reflects the assumption
that when forming a coalition, any ordering of the agents entering the coalition has an equal
probability of occurring, and expresses the probability that agent 7 is critical.

While there exist several other approaches to determining the players’ influence in a
game, the Shapley value has many useful properties that make it very convenient to work
with. We will make use of two of these properties, namely, the normalization property and
the dummy player property. The former simply states that the sum of Shapley values of
all players is equal to 1. The latter claims that the value of a dummy player is 0, where a
player i is called a dummy if he contributes nothing to any coalition, i.e., for any C C I we
have v(CU{i}) = v(C). It is easy to verify from the definitions that Shapley value has both
of these properties.
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4 False-Name Manipulations

As discussed in the introduction, it might be possible for a player to change his total payoff
by splitting his weight between several identities. We will start by providing a few examples
of such scenarios.

Example 1. Consider a voting game G = [8,8,1,2;11], i.e., a game with a quota of ¢ = 11,
and four agents aq, ..., as, where a; has weight wy = 8, as has weight wy = 8, a3z has weight
wz = 1, and agent ay has weight wy = 2.

Using formula (1) to compute the Shapley value of a4, we get pg(as) = 4/24. Now,
suppose agent ay splits his weight equally between two new identities aly and alj, resulting in
a new game G' = [8,8,1,1,1;11]. Calculating the Shapley value of aly and aff in this game,
we get pgr(aly) = e (alf) = 12/120. Hence, although the total weight of all identities
of player a4 is the same as in the original game, the total power held by the agent and his
false-name “accomplice” has increased, since pgr(ay)+pa(a)) =24/120 > pg(aqs) = 4/24.

Our next example shows that false-name manipulations are not necessarily beneficial.

Example 2. Consider a game G = [3,3,2;4]. Agent as with the weight of ws = 2 has
Shapley value of pg(as) = 2/6. Splitting his weight between two identities ay and a¥ results
in a game G' = [3,3,1,1;4]. The Shapley values of the two identities a’y and a¥ of the agent
as in the new game are pg (a%) = par(ay) = 4/24, so we have pg(as) = g (ah) + v (a).
Consequently, az neither gained nor lost power by splitting.

Moreover, weight-splitting can be risky for the manipulator, as illustrated by the follow-
ing example.

Example 3. Consider a game G = [2,2,2;5]. Agent a3 with the weight of ws = 2 has
Shapley value of pg(as) = 2/6. By splitting into two agents, each with a weight of 1,
this agent can get the following game G' = [2,2,1,1;5]. The Shapley values of the two
agents ay and af in the new game are og(ay) = o (a) = 2/24, so we have pg(asz) >
ver (ah)+ o (ay). Hence, the splitting agent has lost power by splitting, i.e., it was harmful
for him to split.

4.1 Effects of Manipulation: Upper and Lower Bounds

We have seen that an agent can both increase and decrease his total payoff by splitting his
weight. In this subsection, we provide upper and lower bounds on how much he can change
his payoff by doing so. We restrict our attention to the case of splitting into two identities;
the general case is briefly discussed in Section 7.

To simplify notation, in the rest of this section we assume that in the original game
G = [wy,...,wy;q] the manipulator is agent a,, and he splits into two new identities a/,
and a!/, resulting in a new game G'.

Theorem 4. For any game G = [wy,...,wy;q] and any split of a,’s into al, and a, we
have per(ay,)+par(an) < f—f’lapg(an), i.e., the manipulator cannot gain more than a factor

of 2n/(n 4+ 1) < 2 by splitting his weight between two identities. Moreover, this bound is
tight, i.e., there exists a game in which agent a,, increases his payoff by a factor of 2n/(n+1)
by splitting into two identities.

Proof. Fix a split of a, into a], and a!. Let II,,_1 be the set of all permutations of the
first n — 1 agents. Consider any 7 € II,,_1. Let P(m) be the set of all permutations of the
agents in G’ that can be obtained by inserting a;, and aj, into 7. Let II7 | be the set of all
permutations 7* of agents in G’ such that a/, or a! is pivotal for 7*. Finally, Let P*(m, k)
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be the subset of P(7) N1II}, ; that consists of all permutations ©’ € P(7) in which at least
one of the a!, and a!’ appears between the kth and the (k+ 1)st element of 7’ and is pivotal
for 7’. Every permutation in II} | appears in one of the sets P*(r, k) for some m, k, so we
have

! " ‘II;+1| 1 2 : *
Dy —|— lali = < I 7 k .

On the other hand, it is not hard to see that |P*(m, k)| < 2n for any , k: there are two
ways to place a/, and a!’ between the kth and the (k+ 1)st element of m, n — 1 permutations
in P*(m, k) in which a/, appears after the kth element of 7, but a! is not adjacent to it,
and n — 1 permutations in P*(m, k) in which a! appears after the kth element of 7, but
a,, is not adjacent to it. Moreover, if P*(m, k) is not empty, then a, is pivotal for the

permutation f(m, k) obtained from 7 by inserting a,, after the kth element of 7. Moreover,
if (71, k1) # (w2, k2) then f(my, k1) # f(ma, k2). Hence,

1 1 « n+1 ’ "
ec(an) 2 o Z L= ol on Z |P*(m, k)| = T((‘DG'(G”) + ¢ (ay))-
7, k:P*(m,k)#0 7,k

We conclude that the manipulator cannot gain more than a factor of 2n/(n + 1) < 2 by
splitting his weight between two identities.

To see that this bound is tight, consider the game G = [2,2,...,2;2n] and suppose
that one of the agents (say, a,) decides to split into two identities a], and a] resulting
in the game G’ = [2,...,2,1,1;2n]. Clearly, in both games the only winning coalition
consists of all agents, so we have pg(a,) = 1/n, pg/(a)) = pg(all) = 1/(n + 1), ie,
par(ay,) + o (an) = 2pa(an).

We have seen that no agent can increase his payoff by more than a factor of 2 by splitting
his weight between two identities. In contrast, we will now show that an agent can decrease
his payoff by a factor of ©(n) by doing so. This shows that a would-be manipulator has to be
careful when deciding whether to split his weight, and motivates the algorithmic questions
studied in the next two sections.

Theorem 5. In any weighted voting game, no agent can lower his payoff by more than
a factor of (n+ 1)/2 by splitting his weight between two identities. Moreover, there exists
a weighted voting game in which splitting into two identities decreases the manipulator’s

payoff by a factor of (n+1)/2.

Proof. To prove the first part of the theorem, fix a split of a,, into a], and a!/ and consider
any permutation 7w of agents in G such that a, is pivotal for w. It is easy to see that at
least one of @], and a! is pivotal for the permutation f(m) obtained from = by replacing
a, with @/, and @] (in this order). Similarly, at least one of a), and a/. is pivotal for the
permutation g(m) obtained from 7 by replacing a,, with a!/ and a, (in this order). Moreover,
all permutations of agents in G’ obtained in this manner are distinct, i.e., for any =, 7" we
have g(m) # f(#'), and 7 # =’ implies f(n) # f(«'), g(7) # g(n’). Consequently, if I is
the set of all permutations 7 of the agents in G such that a,, is pivotal for 7, and II}, , ; is
the set of all permutations 7 of the agents in G’ such that a, or a!! is pivotal for 7, we have
[Ty | > 2T and

[l 20 2
> = G
(n+1)! =~ (n+1)! n+1

(an)~

var(ay,) + ear(ay) =

To see that this bound is tight, consider the game G = [2,2,...,2;2n — 1] and suppose
that one of the agents (say, a,) decides to split into two identities a], and a! resulting in
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the game G’ = [2,...,2,1,1;2n — 1]. In the original game G, the only winning coalition
consists of all agents, so we have pg(a,) = 1/n. Now, consider any permutation 7 of
the players in G’. We claim that a, is pivotal for 7 if and only if it appears in the nth
position of 7, followed by a!/. Indeed, if w(a)) = n, 7w(al!) = n + 1, then all players in the
first n — 1 positions have weight 2, so w(Sx(a,)) = 2n — 2, w(Sy(a,) U {al,}) = 2n — 1.
Conversely, if 7(al)) = n + 1, we have w(Sy(a,)) = 2n — 1 = ¢, and if w(a]) < n —1,
we have w(Sx(a,)U{al}) < 2(n —1). Finally, if w(a),) = n, but m(a,) # n + 1, we have
w(Sr(a,)U{al,}) =2n—2 < q. Consequently, a/, is pivotal for (n — 1)! permutations, and,

by the same argument, a!! is also pivotal for (a disjoint set of) (n—1)! permutations. Hence,
—1)!
we have p¢(al,) + per(ar) = 2((;:_11))!' = n%_lgag(an). O

5 Complexity of Finding a Beneficial Manipulation

We now examine the problem of finding a beneficial weight split in weighted voting games
from the computational perspective. Ideally, the manipulator would like to find a payoff-
maximizing split, i.e., a way to split his weight between two or more identities that results
in the maximal total payoff. A less ambitious goal is to decide whether there exists a
manipulation that increases the manipulator’s payoff. However, it turns out that even this
problem is computationally hard: in the rest of the section, we will show that checking
whether there exists a payoff-increasing split is NP-hard, even if the player is only allowed
to use two identities. To formally define the computational problem, we assume that all
weights and the quota are integer numbers given in binary.

Definition 6. An instance of BENEFICIAL SPLIT is given by a weighted voting game G =
[w1, ..., wn;q] and a certain target agent a;. We are asked if there is a way for a; to split his
weight w; between several new agents agl), e agk) so that the sum of their Shapley values
is greater than the Shapley value of a;. Formally, an instance (G, a;) is a “yes”-instance if
there exists a k > 2 and weights wgl), e ,wgk) such that Zj:l,...,k wl(j) = w; and in the new
game

’_ (1) (k) .
G =wi,...,wim,w, . W Wik, - - -, Wy q]

we have @G/(az(-l)) + -+ par (a§k)) > oa(ag).

Remark 7. Note that we are looking for a strictly beneficial manipulation, i.e., one that
increases the total Shapley value of the manipulator. Indeed, if we were just interested in a
split that is not harmful, the problem would always have a trivial solution: by the dummy
axiom, assigning a weight of 0 to the new agent does not affect the Shapley value of all
agents and therefore is not harmful.

Our hardness proof is by a reduction from PARTITION, which is a classical NP-complete
problem. An instance of PARTITION is given by a set of n weights T = {¢;,...,t,}. Itis a
“yes”-instance if it is possible to split T into two subsets Py C T, P, C T so that PiNPy = (),
PlUP,=T,and ), cp ti = >, cp, ti» and a “no”-instance if no such partition exists.

The high-level idea of the reduction is as follows. Given an instance of PARTITION
T = {t1,...,tn}, we create a weighted voting game G with n + 2 agents a1, ..., an, 4z, ay,
weights w = (8t1,...,8t,,1,2), and a quota of ¢ = 4", ¢; + 3. The weights are chosen
so that a, is a dummy if the original instance of PARTITION is a “no”-instance, but has
some power if it is a “yes”-instance. Moreover, when a partition exists, agent a, can gain
power by splitting into two agents of weight 1 each. It follows that T is a “yes”-instance of
PARTITION if and only if (G, a,) a “yes”-instance of BENEFICIAL SPLIT. For the rest of the
proof, we write A = {a1,...,a,} and for any A" C A we set w(A') =, , -4 wi.
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Lemma 8. IfT is a “no”-instance of PARTITION, then agent a, is a dummy player.

Proof. Suppose that T is a “no”-instance of PARTITON. Consider any A’ C A. The set A can
be partitioned into two equal-weight subsets if and only if T can, so either w(A’) < w(A)/2,
or w(A’) > w(A)/2. We will show that in either case a, cannot be critical to either A’U{a,}
or A'U{a,,ay,}, ie., ay is dummy player.

The weights of all agents in A are multiples of 8, so w(A)/2 is a multiple of 4. Similarly,
the weight of A’ is a multiple of 8. Hence, if w(A’) < w(A)/2, it follows that w(A’) <
w(A)/2 — 4 and w(A' U{az,ay}) < w(A)/2 —4+ 3 < q. Therefore, A’ U {a,,a,} (and a
forteriori A’ U{a,}) is not a winning coalition, so a, cannot be pivotal for it.

Similarly, if w(A") > w(A)/2, then w(A") > w(A)/2+4 > ¢, so A’ is a winning coalition.
Therefore a, cannot be critical for A’ U {a,} or A’ U {as,a,}. We conclude that by the
dummy axiom the Shapley value of a, is 0. O

Corollary 9. If T is a “no”-instance of PARTITION, then (G, a,) is a “no”-instance of
BENEFICIAL SPLIT.

Proof. By Lemma 8, if T' is a “no”-instance of PARTITION, the agent a, is a dummy in

G. Now, take any possible split of a, into several agents ag(ll), . ,al(,k) and consider any

permutation 7 of the agents in the new game. If there is a j < k such that a@(,j ) is pivotal

for m, then a, is pivotal for the permutation obtained from 7 by deleting all agents a?(f) with

[ # j and replacing ag(/j), with a,, a contradiction. We conclude that all al(,]), 7=1,...,k
are dummy players and hence their total Shapley value is 0. Therefore, a, gains no power
by splitting and (G, a,) is a “no”-instance of BENEFICIAL SPLIT. O

Lemma 10. If T is a “yes”-instance of PARTITION, then ay, can increase his power by
splitting into two agents, i.e., (G, ay) is a “yes”-instance of BENEFICIAL SPLIT.

Proof. Let T be a “yes”-instance of PARTITION. Let (P;, P») be a partition of T, so w(P;) =
w(Py). It corresponds to a partition (A;, As) of A, where a; € Ay if and only if ¢; € Py;
obviously, we have w(A;) = w(Az). We denote |A;| = s, so |[As]| =n —s.

It is easy to see that a, is critical for A; U{a,,a,} as well as for AyU{ay,a,}. There are
(s+1)!(n—s)! permutations of ai, ..., an, az, a, that put a, directly after some permutation
of Ay U{a,}. Similarly, there are s!(n — s+ 1)! permutations putting a, directly after some
permutation of Ay U {a,}. Thus, for each partition X; = (P}, P{), where |P}| = s, we have
at least (s + 1)!(n — s)! + s!(n — s + 1)! distinct permutations where a, is critical. On the
other hand, as shown in Lemma 8, if A’ is a subset of A such that w(A") # w(A)/2, then
a, is not critical for A’ U {a,} or A’ U {ay,a,}, since either w(A") < w(A)/2—4<g—3or
w(A") > w(A)/2+ 4> q.

Let P be the set of all partitions of T', where each partition is counted only once, i.e.,
P contains exactly one of the (P, P») and (P», P;). For each P; = (P}, Pi) € P, we denote
|Pj| = s;. There is a total of (n+ 2)! permutations of players in G. Thus, the Shapley value
of ay in G is

si+1)!(n—s;)!4s;!(n—s;+1)! sil(n—s;)!(si+14+n—s;+1
palay) = ZP;,EP ( M (n)+2)! ( E = ZPieP ( )((n+2)! d =

sil(n—s)!(n+2) _ sil(n—s;)!
Yper T rnl = 2PeP Dl

We now consider what happens when a, splits into two agents, a; and ay, w(a,) =
w(ay) = 1, resulting in a game G' = [8ty,...,8t,,1,1,1; 37" | t; + 3].

Again, let (P1, Py), |Pi| = si, |P2| = n — s;, be a partition of T, so w(P;) = w(P2), and
let (A1, A3) be the corresponding partition of A. Consider any permutation 7= which places

a,, directly after some permutation of A; U {a.,ay}; clearly, ay is critical for 7. Similarly,
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ag is critical for any permutation 7’ which places a;’ directly after some permutation of

Ag U {az,ay}. There are (s; +2)!(n — s;)! permutations putting a; directly after some
permutation of A; U {as,ay} and s;!(n — s; + 2)! permutations putting a; directly after
some permutation of Ay U {a,,a;,}.

Thus, for each partition P; =< P}, Pi >, where |P}| = s;, we have (s; + 2)!(n — s;)! +
si!(n — s; + 2)! permutations where a; is critical. Switching the roles of a; and ay, both of
which have the same weight and are thus equivalent, we also get that there are (s; +2)!(n —
si)!+sil(n—s; +2)! permutations where ay, is critical. There are n+3 agents in G’, so there
is a total of (n+3)! permutations of the agents. Thus each partition P; = (P}, P3), |P;| = si,

contributes % (s:+2)}(n ?n);g;, (n=sit2! 14 the
sum of the Shapley values of a; or a! in G'. We will now show that for any partition P;

to the Shapley value of a, in G, and 2

1
Yy

(si +2)l(n—s)!+s;l(n—s5;+2)! _ s;l(n—s;)!

2 (n+3)! ” (n+1)!

(2)

Summing these inequalities over all partitions P; will imply ¢er(ay,) + ¢ar(ay) > va(ay),
as desired. Inequality (2) can be simplified to

s+1)(s+2)+(n—s+1)(n—s+2)

(
2 (n+2)(n+3)

>1,

where we use s instead of s; to simplify notation, or, equivalently, 2(s 4+ 1)(s + 2) + 2(n —
s+1)(n—s+2)—(n+2)(n+3) > 0. Now, observe that 2(s+1)(s +2)+2(n—s+1)(n—
s+2)—(n+2)(n+3)=(n—2s)2+n+2>0 for any n. This proves inequality (2) for any
s,n. It follows that if there is a partition, agent a, always gains by splitting into two agents
of weight 1. Thus, if 7" is a “yes”-instance of PARTITION, then (G, a,) is a “yes”-instance of
BENEFICIAL SPLIT. O

We summarize our results in the following theorem.

Theorem 11. BENEFICIAL SPLIT is NP-hard, even if the only allowed split is into two
identities with equal weights.

Proof. We transform an instance T' of PARTITION into an instance (G, a,) of BENEFICIAL
SPLIT as explained above. We combine Corollary 9 and Lemma 10, and see that T  is a
“yes” instance of PARTITION if and only if the (G,a,) is a “yes”-instance of BENEFICIAL
SpLIT. This completes the reduction. O

Remark 12. Note that we have not shown that BENEFICIAL SPLIT is in NP, so we have not
proved that it is NP-complete. There are two reasons for this. First, if we allow splits into
an arbitrary number of identities, some of the candidate solutions may have exponentially
many new agents (e.g., an agent with weight w; can split into w; agents of weight 1), or
agents whose weights are rational numbers with superpolynomially many digits in their binary
representation. Second, even if we circumvent this issue by only considering splits into two
identities with integer weights, it is not clear how to verify in polynomial time whether a
particular split is beneficial. In fact, since computing the Shapley value in weighted voting
games is #P-complete, it is quite possible that BENEFICIAL SPLIT s not in NP.

6 Finding Beneficial Splits

In Section 5, we have shown that it is hard even to test if any beneficial split exists, let
alone to find the optimal split. This can be seen as a positive result, since complexity of
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finding beneficial splits serves as a barrier for this kind of manipulative behavior. However,
it turns out that in many cases manipulators can overcome this difficulty. Indeed, recall that
our hardness reduction is from PARTITION. While this problem is NP-hard, its hardness—
and hence the hardness of our problem—crucially relies on the fact that the weights of the
elements are represented in binary. Indeed, if the weights are given in unary, there is a
dynamic programming-based algorithm for PARTITION that runs is time polynomial in size
of the input (such algorithms are usually referred to as pseudopolynomial). In particular, if
all weights are polynomial in n, the running time of this algorithm is polynomial in n. In
many natural voting domains the weights of all agents are not too large, so this scenario is
quite realistic. It is therefore natural to ask if there exists a pseudopolynomial algorithm
for the problem of finding a beneficial split.

It turns out that the answer to this question is indeed positive as long as there is a
constant upper bound K on the number of identities that the manipulator can use and
all weights are required to be integer. To see this, recall that there is a pseudopolynomial
algorithm for computing the Shapley value of any player in a weighted voting game [10].
This algorithm is based on dynamic programming: for any weight W and any 1 < k < n,
it calculates the number of coalitions of size k£ that have weight W. One can use the
algorithm of [10] to find a beneficial split for a player a; with weight w; in a game G as

follows. Consider all possible splits w; = wgl) + wEK)7 where wl(j) € Z, ng) > 0 for
j=1,...,K. Clearly, the number of such splits is at most (w;)¥, which is polynomial in n

for constant K. Evaluate the Shapley values of all new agents in any such split and return
“yes” if and only if any of these splits results in an increased total payoff. Let A(G) be
the running time of the algorithm of paper [10] on instance G. The running time of our
algorithm is O((w;)® K - A(G)), which is clearly pseudopolynomial.

We will now consider a more general setting, where only the weight of the manipulator
is polynomially bounded, while the weights of other players can be large. To simplify the
presentation, we limit ourselves to the case of two-way splits; however, our approach applies
to splits into any constant number of identities. We can use the same high-level approach
as in the previous case, i.e., considering all possible splits (because of the weight restriction,
there is only polynomially many of them), and computing the Shapley values of both new
agents for each split. However, if we were to implement the latter step exactly, it would take
exponential time. Therefore, in this version of our algorithm, we replace the algorithm of [10]
with an approximation algorithm for computing the Shapley value. Several such algorithms
are known: see, e.g., [8, 4]. We will use these algorithms in a black-box fashion. Namely,
we assume that we are given a procedure Shapley(G,a;,d,€) that for any given values of
e > 0 and § > 0 outputs a number v that with probability 1 — ¢ satisfies |v — pg(a;)| < e
and runs in time poly(n 10g Wmax, 1/€,1/5). We show how to use this procedure to design
an algorithm for finding a beneficial split and relate the performance of our algorithm to
that of Shapley(G,a;,d,€).

Our algorithm is described in Figure 1. It takes a pair of parameters (d,€) as an input,
and uses the procedure Shapley(G,a;,d,€) as a subroutine. The algorithm outputs “yes”
if it finds a split whose total estimated payoff exceeds the payoff of the manipulator in the
original game by at least 3e. It can easily be modified to output the optimal split.

Proposition 13. With probability 1 — 36, the output of our algorithm satisfies the following:
(i) If the algorithm outputs “yes”, then (G,a;) admits a beneficial integer split; (i) Con-
versely, if there is an integer split that increases the payoff to the manipulator by more than
6e, our algorithm outputs “yes”. Moreover, the running time of our algorithm is polynomial
in nw;, 1/¢, and 1/4.

Proof. Suppose that the algorithm outputs “yes”. We have Prob[v* < ¢g(a;) — € < 4,
Problv' > pgr(al) + ¢ < 6§, Problv” > pg/(al) + €] < 0. Hence, with probability at least
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FindSplit(G = [w;ql,a;,d,¢€);
v* =Shapley(G,a;,d,€);
for j=0,...,w;
wi = jw! =w; — j;
G = [wy, ..., wi—1, W, W Wiy, ..., W3]
v’ = Shapley(G’,a},d,€), v =Shapley(G’,al,d,¢€);
v=20v"+2";
if v > v* + 3¢ then return yes;
return no;

Figure 1: Algorithm FindSplit(G = [w;q], a;,d,€)

1—34, if v + 0" > v* + 3¢, then pg(a}) + v (all) + 2e > v (a;) — € + 3¢, or, equivalently,
par(a;) + o (af) > palai).

Conversely, suppose that there is a beneficial split of the form (w}, w}) that improves
player a;’s payoff by at least 6e. As before, with probability at least 1 — 3J we have that
v* < @a(a;) + € and at the step j = w it holds that v/ > ¢g/(a}) — €, v > pa/(a)) — €.
Then v =v' +v" > g/ (al) + par(a) — 2e > pa(a;) + 6 — 2e > v* 4 3¢, so the algorithm
will output “yes”. O

While our algorithm does not guarantee finding a successful manipulation, it is possible
to control the approximation quality (at the cost of increasing the running time), so that a
successful manipulation is found with high probability.

Thus we can see that manipulators have several ways to overcome the computational
difficulty of finding the optimal manipulation. Thus, other measures are required to avoid
such manipulations.

7 Extensions

In this section, we consider some variants of the model studied in the paper. Our results
here are rather preliminary and provide several interesting directions for future research.

Splitting into more than two identities So far, we have mostly discussed the gain (or
loss) that an agent can achieve by splitting into two identities. However, it is also possible
for an agent to use three or more false names. Potentially, the number of identities an agent
can use can be as large as his weight (and if the weights are not required to be integer,
it can even be infinite). It would be interesting to see which of our results hold in this
more general setting. For example, while our computational hardness result holds for splits
into any number of identities, the algorithmic results of the previous section only apply
to splits into a constant number of new identities. An obvious open problem here is to
design a pseudopolynomial algorithm for finding a beneficial integer split into any number
of identities, or to prove that this problem is NP-hard even for small weights (i.e., weights
that are polynomial in n). Another question of interest here is to extend the upper and
lower bounds of Section 4.1 for this setting.

Manipulation by merging Each situation in which splitting is harmful for an agent
directly corresponds to a situation where it is beneficial for several agents to merge, i.e.,
pretend that they are a single agent whose weight is equal to the total weight of the manip-
ulators.

Some of the results presented in the paper can easily be translated to this domain. In
particular, it is not hard to see that the proof of Theorem 11 can be adapted to show that
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it is NP-hard to check whether there exists a beneficial merge, and the results of Section 4.1
can be interpreted in terms of merging rather than splitting. However, this problem is very
different from the game-theoretic perspective, as it involves coordinated actions by several
would-be manipulators who then have to decide how to split the (increased) total payoff.
We propose it as a direction for future work.

8 Conclusions

We have considered false-name manipulations in weighted voting games. We have shown
that these manipulations can both increase and decrease the manipulator’s payoffs, and
provided tight upper and lower bounds on the effects of false-name voting. We have also
shown that testing whether a beneficial manipulation exists is NP-hard. One may ask why we
view this hardness result as an adequate barrier to manipulation, while using Shapley value
(which itself is #P-hard to compute) as a payoff division scheme and therefore assuming
that it can be computed. To resolve this apparent contradiction, note that the Shapley value
corresponds to the voting power, and the players may try to increase their voting power by
weight-splitting manipulation even if they cannot compute it. Also, when the Shapley value
is used to compute payments, the center, which performs this computation, may have more
computational power than individual agents. Furthermore, a payoff division scheme that is
based on approximate computation of Shapley value may still be acceptable to the agents,
whereas the manipulator may want to know for sure that attempted manipulation will not
hurt him (and we have seen that in some cases weight-splitting can considerably decrease
the agent’s payoffs), or provide him with sufficient benefits to offset the costs of splitting.
While the approximation algorithm discussed in the previous section can be used for this
purpose, it only works if the manipulator’s weight is small. Generalizing it to large weights
(i.e., showing that if a beneficial split exists, it can be found by testing a polynomial number
of splits) is an interesting open question.

In this paper, we presented results on false-name voting for the case when the payoffs
are distributed according to the Shapley value. An obvious research direction is to see if one
can derive similar results for other power indices, such as Banzhaf index, as well as other
solution concepts used in co-operative games such as, e.g., the nucleolus. More generally, it
would be interesting to design a payoff distribution scheme that is resistant to this type of
manipulation, or prove that it does not exist.

The study of weighted voting has many applications both in political science and in
multiagent systems. There are several possible interpretations for identity-splitting in these
contexts, such as obtaining a higher share of the grand coalition’s gains when these are
distributed according to the Shapley value, or obtaining more political power by splitting
a political party into several parties with similar political platforms. In the first case, a
false-name manipulation is hard to detect in open anonymous environments, and can thus
be very effective. In the second case, the manipulation is done using legitimate tools of
political conduct. Therefore, we conjecture that false-name manipulation is widespread
in the real world and may become a serious issue in multiagent systems. It is therefore
important to develop a better understanding of the effects of this behavior and/or design
methods of preventing it.
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Computing Kemeny Rankings,
Parameterized by the Average KT-Distance

Nadja Betzler, Michael R. Fellows, Jiong Guo, Rolf Niedermeier, and
Frances A. Rosamond

Abstract

The computation of Kemeny rankings is central to many applications in the context
of rank aggregation. Unfortunately, the problem is NP-hard. Extending our previous
work [AAIM 2008], we show that the Kemeny score of an election can be computed
efficiently whenever the average pairwise distance between two input votes is not
too large. In other words, KEMENY SCORE is fixed-parameter tractable with respect
to the parameter “average pairwise Kendall-Tau distance d,”. We describe a fixed-
parameter algorithm with running time 0(16[‘1“} - poly).

1 Introduction

Aggregating inconsistent information has many applications ranging from voting scenarios
to meta search engines and fighting spam [1, 4, 5, 7]. In some sense, one deals with consensus
problems where one wants to find a solution to various “input demands” such that these
demands are met as well as possible. Naturally, contradicting demands cannot be fulfilled
at the same time. Hence, the consensus solution has to provide a balance between opposing
requirements. The concept of Kemeny consensus (or Kemeny ranking) is among the most
important research topics in this context. In this paper, extending our previous work [3],
we study new algorithmic approaches based on parameterized complexity analysis [6, 9, 13]
for efficiently computing optimal Kemeny consensus solutions in practically relevant special
cases.

Kemeny’s voting scheme can be described as follows. An election (V,C) consists of a
set V' of n votes and a set C of m candidates. A vote is a preference list of the candidates.
For instance, in the case of three candidates a,b, ¢, the order ¢ > b > a would mean that
candidate ¢ is the best-liked and candidate a is the least-liked for this voter. A “Kemeny
consensus” is a preference list that is “closest” to the preference lists of the voters. For each
pair of votes v, w, the so-called Kendall-Tau distance (KT-distance for short) between v
and w, also known as the number of inversions between two permutations, is defined as

KT—diSt(’U, UJ) = Z dv,w (Ca d)a
{c,d}CC

where the sum is taken over all unordered pairs {c, d} of candidates, and d, (¢, d) is 0 if v
and w rank ¢ and d in the same order, and 1 otherwise. Using divide-and-conquer, the
KT-distance can be computed in O(m -logm) time [12]. The score of a preference list | with
respect to an election (V,C) is defined as ) .\, KT-dist(l,v). A preference list [ with the
minimum score is called a Kemeny consensus of (V,C) and its score ), KT-dist(l,v) is
the Kemeny score of (V, (), denoted as K-score(V, C'). The underlying decision problem is
as follows:

KEMENY SCORE
Input: An election (V,C) and a positive integer k.
Question: Is K-score(V, C) < k?
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Known results. We summarize the state of the art concerning the computational com-
plexity of KEMENY SCORE. Bartholdi et al. [2] showed that KEMENY SCORE is NP-
complete, and it remains so even when restricted to instances with only four votes [7, §].
Given the computational hardness of KEMENY SCORE on the one side and its practical rele-
vance on the other side, polynomial-time approximation algorithms have been studied. The
Kemeny score can be approximated to a factor of 8/5 by a deterministic algorithm [15] and to
a factor of 11/7 by a randomized algorithm [1]. Recently, a polynomial-time approximation
scheme (PTAS) has been developed [11]. However, the running time is completely impracti-
cal and the result is only of theoretical interest. Conitzer, Davenport, and Kalagnanam [5, 4]
performed computational studies for the efficient exact computation of a Kemeny consensus,
using heuristic approaches such as greedy and branch-and-bound. Hemaspaandra et al. [10]
provided further, exact classifications of the classical computational complexity of Kemeny
elections. Very recently, we initiated a parameterized complexity study based on various
problem parameterizations [3]. We obtained fixed-parameter tractability results for the
parameters “score”, “number of candidates”, “maximum KT-distance between two input
votes”, and “maximum position range of a candidate”.! For more details, see Section 2

New results. Our main result is that KEMENY SCORE can be solved in O(16/d1 .
poly(n, m)) time, where d, denotes the average KT-distance between the pairs of input votes.
This represents a significant improvement of the previous algorithm for the maximum KT-
distance between pairs of input votes, which has running time O((3dmax + 1)! - poly(n, m)).
Clearly, d, < dmax-

1.1 Preliminaries

Let the position of a candidate ¢ in a vote v, denoted by v(c), be the number of candidates
that are better than ¢ in v. That is, the leftmost (and best) candidate in v has position 0
and the rightmost has position m — 1. For an election (V,C) and a candidate ¢ € C, the
average position p,(c) of ¢ is defined as

veV

For an election (V, C') the average KT-distance d, is defined as

1 .
da = m . Z KT-dlSt(u,’U).
{u,v}eV,u#v

Note that an equivalent definition is given by

1

©

. Z #v(a > b) - #v(b > a),

a,beC

where for two candidates a and b the number of input votes in which a is ranked better than
b is denoted by #wv(a > b). This definition is useful if the input is provided by the outcomes
of the pairwise elections of the candidates including the margins of victory.

We briefly introduce the relevant notions of parameterized complexity theory [6, 9, 13].
Parameterized algorithmics aims at a multivariate complexity analysis of problems. This
is done by studying relevant problem parameters and their influence on the computational
complexity of problems. The hope lies in accepting the seemingly inevitable combinatorial

1The parameterization by position range has only been discussed in the long version of [3].
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explosion for NP-hard problems, but confining it to the parameter. Hence, the decisive
question is whether a given parameterized problem is fized-parameter tractable (FPT) with
respect to the parameter, often denoted k. In other words, for an input instance I together
with the parameter k, we ask for the existence of a solving algorithm with running time f(k)-
poly(]Z]) for some computable function f.

2 Parameterizations of the Kemeny Score Problem

In recent work [3], we initiated a parameterized complexity study of KEMENY SCORE. In
this section, we review the considered parameterizations and results.

An election can be interpreted as having (at least) two “dimensions”, the set of votes and
the set of candidates. Thus, the “number n of votes” and the “number m of candidates” lead
to natural parameterizations. Fixed-parameter tractability with respect to the parameter
“number of votes” would imply P=NP since KEMENY SCORE is already NP-complete for
instances with four votes [7]. In contrast, concerning m as a parameter, there is a trivial
algorithm that tests all m! orderings of the candidates for a Kemeny consensus. Using a
dynamic programming approach, we were able to lower the combinatorial explosion in m;
more specifically, we provided an exact algorithm running in O(2™ - m?n) time [3].2

A common parameterization in parameterized algorithmics is the size of the solution of
a problem, motivating the consideration of “Kemeny score k” as a parameter. Using the
Kemeny score as a parameter, a preprocessing procedure (that is, a “problem kerneliza-
tion”) together with a search tree approach led to a fixed-parameter algorithm that runs
in O(1.53F + m?2n) time. The drawback of this parameterization is that the Kemeny score
can become large for many instances.

Finally, we turned our attention to two structural parameterizations: the “maximum
range of candidate positions” and the “maximum KT-distance”.® For an election (V,C),
the maximum range r of candidate positions is defined as

re= Jdax  {lv(c) —w(e)]}.
For this parameterization, we developed a dynamic programming algorithm that is based
on the observation that we can “decompose” the input votes into two parts. The resulting
running time is O((3r+1)!-rlogr-mn). Further, the maximum KT-distance dpax is defined
as

dmax := max KT-dist(v,w).

v,weV
We showed that for every election we have r < dy.x. Thus, our results for the maximum
range of candidate positions also hold for the maximum distance. The parameterization
by dmax was the main reason to study the parameterization by the maximum range of
candidate positions and, further, motivated us to consider the average distance as parameter
in this work.
In our previous work [3], we also extended some of our findings to two generalizations

of KEMENY SCORE; in one case allowing ties and in the other case dealing with incomplete
information. For more details, we refer to there [3].

2In a different context, this result has been independently achieved by Raman et al. [14].

3In the conference version of [3] we only dealt with the maximum KT-distance as parameter whereas
in the full version (invited for submission to a special issue of Theoretical Computer Science) we discussed
both structural parameterizations as we do here.
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3 Parameter “Average KT-Distance”

In this section, we further extend the range of parameterizations studied so far by giving
a fixed-parameter algorithm with respect to the parameter “average KT-distance”. We
start with showing how the average KT-distance can be used to upper-bound the range of
positions that a candidate can take in any optimal Kemeny consensus. Based on this crucial
observation, we then state the algorithm.

3.1 A Crucial Observation

Our fixed-parameter tractability result with respect to the average KT-distance of the input
is based on the following lemma.

Lemma 1. Let d, be the average KT-distance of an election (V,C) and d := [d,]. Then,
in every optimal Kemeny consensus l, for every candidate ¢ € C' with respect to its average
position pa(c) we have pa(c) —d < I(c) < pa(c) + d.

Proof. The proof is by contradiction and consists of two claims: First, we show that we can
find a vote with Kemeny score less than d - n, that is, the Kemeny score of the instance is
upper-bounded by d-n. Second, we show that in every Kemeny consensus every candidate is
in the claimed range. More specifically, we prove that every consensus in which the position
of a candidate is not in a “range d of its average position” has a Kemeny score greater than
d - n, a contradiction to the first claim.

Claim 1: K-score(V,C) < d - n.

Proof of Claim 1: To prove Claim 1, we show that there is a vote v € V with
> wey KT-dist(v,w) < d-n, implying this upper bound for an optimal Kemeny consen-
sus as well. By definition,

1
o ——————~ ° KT— 1 y 1
d Y p— Z dist(v, w) (1)
{v,w}eVvtw
1 1
= eV withdy, > —— n- KT-dist(v, w) = —— - KT-dist(v,w) (2)
n(n —1) 1;/ n—1 1;/
=3 eV with dy -n > Y KT-dist(v, w). (3)
weV

Since we have d = [d, ], Claim 1 follows directly from Inequality (3).
The next claim shows the given bound on the range of possible candidates positions.

Claim 2: In every optimal Kemeny consensus [, every candidate ¢ € C fulfills
pal(c) —d < 1(c) < palc) + d.

Proof of Claim 2: We start by showing that, for every candidate ¢ € C' we have

K-score(V,C) > Z l1(c) —v(c)]. (4)

veV

Note that, for every candidate ¢ € C, for two votes v, w we must have KT-dist(v, w) >
|v(c) —w(c)|. Without loss of generality, assume that v(c) > w(c). Then, there must be at
least v(c) —w(c) candidates that have a smaller position than ¢ in v and that have a greater
position than ¢ in w. Further, each of these candidates increases the value of KT-dist(v, w)
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by one. Based on this, Inequality (4) directly follows as, by definition, K-score(V,C) =
> vev KT-dist(v, 1).

To simplify the proof of Claim 2, in the following, we shift the positions in [ such
that I(c) = 0. Accordingly, we shift the positions in all votes in V', that is, for every v € V
and every a € C, we decrease v(a) by the original value of I(c). Clearly, shifting all positions
does not affect the relative differences of positions between two candidates. Then, let the
set of votes in which ¢ has a nonnegative position be V' and let V~ denote the remaining
set of votes, that is, V™~ := V\VT.

Now, we show that if candidate c is placed outside of the given range in an optimal Ke-
meny consensus [, then K-score(V,C) > d-n. The proof is by contradiction. We distinguish
two cases:

Case 1: I(c) > p,(c) + d.
As l(c) =0, in this case p,(c) becomes negative. Then,

0> pa(c) +d<& —pa(C) >d.

It follows that |p,(c)| > d. The following shows that Claim 2 holds for this case.

dole) = vl =D l@l= Y @)+ Y lo(e)l: (5)

veV veV veV+ veEV

Next, replace the term ), [v(c)| in (5) by an equivalent term that depends on |p,(c)]
and )+ [v(c)|. For this, use the following, derived from the definition of pq(c):

nepa(e) = Y (@)= D [v(e)

veV+ veV—
e Y @) =n-( + ) @ =nlpa(e)l + Y |v(c)]
veV - veV+ veEV+

The replacement results in

Yo le)—v(@l =2 fo(e)l +n |pa()] = n-lpale)| 2 n-d.
veV veV+
This says that K-score(V,C) > n - d, a contradiction to Claim 1.

Case 2: [(c) < pu(c) —d.
Since I(¢) = 0, the condition is equivalent to 0 < p,(c) — d < d < pu(c), and we have that
pa(c) is nonnegative. Now, we show that Claim 2 also holds for this case.

Do) —v@l =" @l = Y ]+ Y lv(o)

veV veV veV+ veV =
> Y w0+ 3 00 = ple) = don
veV+ veV—
Thus, also in this case K-score(V,C) > n - d, a contradiction to Claim 1. O

Based on Lemma 1, for every position we can define the set of candidates that can take
this position in an optimal Kemeny consensus. The subsequent definition will be useful for
the formulation of the algorithm.
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Definition 1. Let (V,C) be an election. For i € {0,...,m — 1}, let P; denote the set
of candidates that can assume the position ¢ in an optimal Kemeny consensus, that is,
P :={ce C|pylc)—d<i<pg(c)+d}.

Based on Lemma 1, we can easily show the following.
Lemma 2. For every position i, the size of P; is at most 4d.

Proof. The proof is by contradiction. Assume that there is a position 7 with |P;| > 4d. Due
to Lemma 1, for every candidate ¢ € P; the positions which ¢ may assume in an optimal
Kemeny consensus can differ by at most 2d — 1. This is true because, otherwise, candidate ¢
could not be in the given range around its average position. Then, in a Kemeny consensus,
each of the at least 4d + 1 candidates must hold a position that differs at most by 2d — 1
from position i. As there are only 4d — 1 such positions (2d — 1 on the left and 2d — 1 on
the right of 7), one obtains a contradiction. O

3.2 Basic Idea of the Algorithm

In Subsection 3.4, we will present a dynamic programming algorithm for KEMENY SCORE.
It exploits the fact that every candidate can only appear in a fixed range of positions in
an optimal Kemeny consensus.* The algorithm “generates” a Kemeny consensus from the
left to the right. It tries out all possibilities for ordering the candidates locally and then
combines these local solutions to yield a Kemeny consensus.

More specifically, according to Lemma 2 the number of candidates that can take a
position ¢ in an optimal Kemeny consensus for any 0 < ¢ < m — 1 is at most 4d. Thus,
for position 4, we can test all possible candidates. Having chosen a candidate for position 1,
the remaining candidates that could also assume ¢ must either be left or right of ¢ in a
Kemeny consensus. Thus, we test all possible two-partitionings of this subset of candidates
and compute a “partial” Kemeny score for every possibility. For the computation of the
partial Kemeny scores at position 7 we make use of the partial solutions computed for the
previous position 7 — 1.

3.3 Definitions for the Algorithm

To state the algorithm, we need some further definitions. For ¢ € {0,...,m — 1}, let I(4)
denote the set of candidates that could be “inserted” at position ¢ for the first time, that is,

I(i):=={ceC|ce P andc¢ P,_1}.

Let F(i) denote the set of candidates that must be “forgotten” at latest at position 4, that
is,
F(i):={ceC|c¢ P,and c € P;_1}.

For our algorithm, it is essential to subdivide the overall Kemeny score into partial
Kemeny scores (pK). More precisely, for a candidate ¢ and a subset of candidates R with

c ¢ R, we set
K(e,R):= Y _ Y dli(c,d),

c’cRveV

where for ¢ ¢ R and ¢ € R we have df¥(c,c’) := 0 if in v we have ¢/ > ¢, and d¥(c, ) := 1,
otherwise. Intuitively, the partial Kemeny score denotes the score that is “induced” by

4In contrast, the previous dynamic programming algorithms from [3] for the parameters “maximum
range of candidate positions” and “maximum KT-distance” rely on decomposing the input. Further, here
we obtain a much better running time by using a more involved dynamic programming approach.
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candidate ¢ and the candidate subset R if the candidates of R have greater positions than ¢
in an optimal Kemeny consensus.® Then, for a Kemeny consensus ! :=co > ¢1 > -+ > Cn_1,
the overall Kemeny score can be expressed by partial Kemeny scores as follows.

m—2 m—1
K-score(V, C) Z Z dyi(ci,cj) (6)
=0 j=i+lveV
m—2
Z Zd (ciyd) for R:={cj|i<j<m} (7)
i=0 c/€RveEV
m—2
= 3 pK(ei {es i < j <m}). (®)
i=0

Next, consider the three-dimensional dynamic programming table. Roughly speaking,
define an entry for every position i, every candidate ¢ that can assume 7, and every candidate
subset C’ of P;\{c}. The entry stores the “minimum partial Kemeny score” over all possible
orders of the candidates of C’ under the condition that ¢ takes position ¢ and all candidates
of €' take positions smaller than ¢. To define the dynamic programming table formally, we
need some further notation.

Let TI(C") denote the set of all possible orders of the candidates in C’, where C' C C.
Further, consider a Kemeny consensus in which every candidate of C’ has a position smaller

than every candidate in C\C’. Then, the minimum partial Kemeny score restricted to C' is
defined as

min {ZpK(cs,{cj |s<j<m}uU (C’\C"))} with z := |C’|.
s=1

(c1>ca>>cy)EN(C)

That is, it denotes the minimum partial Kemeny score over all orders of C’. We define
an entry of the dynamic programming table T" for a position i, a candidate ¢ € P;, and a
candidate subset P/ C P; with ¢ ¢ P/. For this, we define L := J;., F'(j) U P/. Then, an
entry T'(i,c, P/) denotes the minimum partial Kemeny score restricted to the candidates in
LU {c} under the assumptions that ¢ is at position 4 in a Kemeny consensus, all candidates
of L have positions smaller than i, and all other candidates have positions greater than 1.
That is, for |L| =i — 1, define

i—1

T(e,P)i=  min ZPK (s, O\{¢; | 5 < s}) + PK (e, C\(L U {¢})).

3.4 Dynamic Programming Algorithm

The algorithm is displayed in Fig. 1. It is easy to modify the algorithm such that it outputs
an optimal Kemeny consensus: for every entry T'(i,c, P{), one additionally has to store a
candidate ¢ that minimizes T'(i — 1,¢, (P/ U F(3))\{¢'}) in line 71. Then, starting with
a minimum entry for position m — 1, we reconstruct a Kemeny consensus by iteratively
adding the “predecessor” candidate. The asymptotic running time remains unchanged.
Moreover, in several applications, it is helpful not having one optimal Kemeny consensus
but to enumerate all of them. At the expense of an increased running time, our algorithm can
be extended to provide such an enumeration by storing all possible predecessor candidates.

Lemma 3. The algorithm in Fig. 1 correctly computes KEMENY SCORE.

5By convention and somewhat counterintuitive, we say that candidate ¢ has a greater position than
candidate ¢’ if ¢/ > ¢ in a vote.
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Input: An election (V,C) and, for every 0 < i < m, the set P; of candidates that can
assume position ¢ in an optimal Kemeny consensus.
Output: The Kemeny score of (V,C).

Initialization:

01 for 1=0,...,m—1

02 for all ce P,

03 for all P/ C P\{c}

04 T(i,c,P!) =400

05 for all c € P

06 T(0,c,0):=pK(c,C\{c})

Update:

07for 1=1,...,m—1

08 for all c € P,

09 for all P/ C P\{c}

10 if [P/UU;; F(j)|=4i—1and T(i—1,¢,(P/UF(i)\{c'}) is defined then
11 T(i,c,P))= min T(i—1,¢,(PUF®)\{c})
¢/ €P/UF(i)

+pK(e, (BU ([ TON\P U{e})

i<j<m

Output:
12 K-score = mingep,, _, T(m —1,¢, Pn_1\{c})

Figure 1: Dynamic programming algorithm for KEMENY SCORE
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Proof. For the correctness, we have to show two points:

First, all table entries are well-defined, that is, for an entry T'(i,c, P{) concerning po-
sition ¢ there must be exactly ¢ — 1 candidates that have positions smaller than ¢. This
condition is assured by line 10 of the algorithm.%

Second, we must ensure to find an optimal solution. Due to Equality (8), we know
that the Kemeny score can be decomposed into partial Kemeny scores. Thus, it remains
to show that the algorithm considers a decomposition that leads to an optimal solution.
For every position the algorithm tries all candidates in P;. According to Lemma 1, one
of these candidates must be the “correct” candidate ¢ for this position. Further, for ¢ we
can show that the algorithm tries a sufficient set of possibilities to partition all remaining
candidates C\{c} such that they have either smaller or greater positions than i. More
precisely, every candidate of C'\{c} must be in exactly one of the following three subsets:

1. The set F' of candidates that have already been forgotten, that is, F' := Uogjgi F(j),
2. the set of candidates that can assume position i, that is, P;\{c}, or
3. the set I of candidates that are not inserted yet, that is, I :=J,_;,,, 1(4).

Due to Lemma 1 and the definition of F'(5), we know that a candidate of F cannot take
a position greater than ¢ — 1 in an optimal Kemeny consensus. Thus, it is sufficient to try
only partitions in which the candidates of F' have positions smaller than 7. Analogously, one
can argue that for all candidates in [ it is sufficient to consider partitions in which they have
positions greater than i. Thus, it remains to try all possibilities to partition the candidates
of P;. This is done in line 09 of the algorithm. Thus, the algorithm returns an optimal
Kemeny score. O

Theorem 1. KEMENY SCORE can be solved in O(n?-mlogm+16%-(16d%-m+4d-m?logm-

n)) time with average KT-distance d, and d := [d,]|. The size of the dynamic programming
table is O(16 - 4dm).

Proof. The dynamic programming procedure requires the set of candidates P; for 0 < i < m
as input. To determine P; for all 0 < ¢ < m, we need the average positions of all candidates
and the average KT-distance d, of (V,C). To determine d,, we compute the pairwise
distances of all pairs of votes. As we have O(n?) pairs and the pairwise KT-distance can be
computed in O(mlogm) time [12], this takes O(n? - mlogm) time. The average positions
of all candidates can be computed in O(n - m) time by iterating once over every vote and
adding the position of every candidate to a counter variable for this candidate. Thus, the
input for the dynamic programming algorithm can be provided in O(n? - mlogm) time.

Concerning the dynamic programming algorithm itself, due to Lemma 2, for 0 < i < m,
the size of P; is upper-bounded by 4d. Then, for the initialization as well as for the update,
the algorithm iterates over m positions, 4d candidates, and 2%¢ candidates subsets. Whereas
the initialization in the innermost step (line 04) can be done in constant time, in every
innermost step of the update phase (line 171) we have to look for a minimum entry and
we have to compute a pK-score. To find the minimum, we have to consider all candidates
of P/ UF(i). As P/ U F(i) is a subset of P,_1, it can contain at most 4d candidates.
Further, the required pK-score can be computed in O(n - mlogm) time. Thus, for the
dynamic programming we arrive at the running time of O(m - 4d-2%¢. (4d +n-mlogm)) =
016 - (16d% - m + 4d - m?logm - n)).

61t can still happen that a candidate takes a position outside of the required range around its average
position. Since such an entry cannot lead to an optimal solution according to Lemma 1, this does not affect
the correctness of the algorithm. To improve the running time it would be convenient to “cut away” such
possibilities. We defer considerations in this direction to an extended version of this paper.
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Concerning the size of the dynamic programming table, there are m positions and at most
4d candidates that can assume a position. The number of considered subsets is bounded
from above by 24¢. Hence, the size of T is O(16% - 4d - m). O

Finally, let us discuss the differences between the dynamic programming algorithm we
used for the “maximum range of candidate positions” in [3] and the algorithm presented
in this work. In our previous work [3], the dynamic programming table stored all possible
orders of the candidates of a given subset of candidates. In this work, we eliminate the need
to store all orders by using the decomposition of the Kemeny score into partial Kemeny
scores. This allows us to restrict the considerations for a position to a candidate and its
order relative to all other candidates. We believe that our new approach can also be used
to improve the running time of the algorithm of [3].

4 Conclusion

We significantly improved the running time for a natural parameterization (maximum KT-
distance between two input votes) for the KEMENY SCORE problem. There have been some
experimental studies [5, 4] that hinted that the Kemeny problem is easier when the votes
are close to a consensus (and thus tend to have a small average distance). Our results for
the average distance parameterization can be regarded as a theoretical explanation for this
behavior.

As further challenges for future work, we envisage the following;:

e Extend our findings to the KEMENY SCORE problem with input votes that may have
ties or that may be incomplete (also see [3]).

e Extend our results to improve the running time for the parameterization by position
range—we conjecture that this is not hard to do.

e Improve the running time as well as the memory consumption (which is exponential
in the parameter)—we believe that significant improvements are still possible.

e Implement the algorithms for the parameters “number of candidates”, “range of po-
sition of candidates” [3], and “average KT-distance” (including some maybe heuristic
improvements of the running times).

e Investigate typical values of the average KT-distance, either under some distributional
assumption or for real-world data.
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Three-sided stable matchings with cyclic
preferences and the kidney exchange problem!

Péter Bird and Eric McDermid

Abstract

Knuth [14] asked whether the stable matching problem can be generalised to three
dimensions i. e., for families containing a man, a woman and a dog. Subsequently,
several authors considered the three-sided stable matching problem with cyclic pref-
erences, where men care only about women, women only about dogs, and dogs only
about men. In this paper we prove that if the preference lists may be incomplete,
then the problem of deciding whether a stable matching exists, given an instance of
three-sided stable matching problem with cyclic preferences is NP-complete. Con-
sidering an alternative stability criterion, strong stability, we show that the problem
is NP-complete even for complete lists. These problems can be regarded as special
types of stable exchange problems, therefore these results have relevance in some
real applications, such as kidney exchange programs.

1 Introduction

An instance of the Stable Marriage problem (SM) comprises a set of n men aq,...,a, and
a set of n women by,...,b,. Each person has a complete preference list consisting of the
members of the opposite sex. If b; precedes by, on a;’s list then a; is said to prefer b; to by.
The problem is to find a matching that is stable in the sense that no man and woman both
prefer each other to their current partner in the matching. The Stable Marriage problem
was introduced by Gale and Shapley [9]. They constructed a linear time algorithm that
always finds a stable matching for an SM instance.

Considering the Stable Marriage problem with Incomplete Lists (SMI), the only differ-
ence is that the numbers of men and women are not necessarily equal and each preference
list consist of a subset of the members of the opposite sex, i.e., each person lists his or
her acceptable partners. Here, a matching M is a set of acceptable pairs, and M is stable
if for every pair (a;,b;) ¢ M, either a; prefers his matching partner M(a;) to b; or b,
prefers her matching partner M(b;) to a;. We can model this problem by a bipartite graph
G = (AU B, E), where the sets of vertices, A and B, correspond to the sets of men and
women, respectively, and the set of edges, E represents the acceptable pairs. An extended
version of the Gale-Shapley algorithm always produces a stable matching for this setting
too.

In an instance of the Stable Marriage problem with Ties and Incomplete Lists (SMTT) it
is possible that an agent is indifferent between some acceptable agents from the opposite set;
in such a case, these agents appear together in a tie in the preference list. Here, a matching
M is stable if there is no blocking pair (a;,b;) ¢ M such that a; is either unmatched or
prefers b; to M(a;), and simultaneously b, is either unmatched or prefers a; to M(b;).
Manlove et al. [15] proved that the problem of finding a stable matching of maximum
cardinality for an instance of SMTI, the so-called MAX SMTTI problem, is NP-hard.

The Three-Dimensional Stable Matching problem (3DSM), also referred to as the Three
Gender Stable Marriage problem, was introduced by Knuth [14]. Here, we have three sets
of agents: men, women and dogs, say, and each agent has preference over all pairs from

I This work was supported by EPSRC grant EP/E011993/1.The first author was supported also by OTKA
grant K69027.
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the two other sets. A matching is a set of disjoint families i.e., triples of the form (man,
woman, dog). A matching is stable if there exists no blocking family that is preferred by all
its members to their current families in the matching.

Alkan [2] gave the first example of an instance of 3DSM where no stable matching exists.
Ng and Hirschberg [17] proved that the problem of deciding whether a stable matching exists,
given an instance of 3DSM, is NP-complete; later Subramanian [26] gave an alternative proof
for this. Recently, Huang [10] proved that the problem remains NP-complete even if the
preference lists are “consistent”. (A preference list is inconsistent if, for example, man m
ranks (wi,dy) higher than (wsa,d), but he also ranks (ws,d2) higher than (w1, ds2), so he
does not consistently prefer woman w; to woman wg.)

As an open problem, Ng and Hirschberg [17] mentioned the cyclic 3DSM, defined formally
in Section 2, where men only care about women, women only care about dogs and dogs only
care about men. Boros et al. [5] showed that if the number of agents n, is at most 3 in every
set, then a stable matching always exists. Eriksson et al. [8] proved that this also holds for
n = 4 and conjectured that a stable matching exists for every instance of cyclic 3DSM.

In Section 2, we study the cyclic 3DSM problem with Incomplete Lists (cyclic 3DSMI).
Here, each preference list may consist of a subset of the members of the next gender, i.e. his,
her or its acceptable partners, and the cardinalities of the sets are not necessarily the same,
a matching is a set of acceptable families. Thus cyclic 3DSMI is obtained via a natural
generalisation of cyclic 3DSM in a way analogous to the extension SMI of SM. First we give
an instance of cyclic 3DSMI for n = 6 where no stable matching exists. Then, by using
this instance as a gadget, we show that the problem of deciding whether a stable matching
exists in an instance of cyclic 3DSMI is NP-complete. We reduce from MAX SMTI.

In Section 3, we study the cyclic 3DSM problem under strong stability. A matching is
strongly stable if there exists no weakly blocking family. This is a family not in the matching
that is weakly preferred by all its members (i.e. no member prefers his original family to
the new blocking family). We show that the problem of deciding whether a strongly stable
matching exists in an instance of cyclic 3SDSM is NP-complete.

In Section 4, we describe the correspondence between the cyclic 3DSMI problem and the
so-called stable exchange problem with restrictions, defined in Section 4. More precisely, we
show that the 3-way stable 3-way exchange problem for tripartite cyclic graphs is equivalent
to cyclic 3DSMI. Therefore, the complexity result for cyclic 3DSMI applies also to the 3-
way stable 3-way exchange problem, which is an important model for the kidney exchange
problem (this application is described in further detail in Section 4).

We remark that all of these problems (namely, SM, SMI, 3DSM, 3DSMI, cyclic 3DSM
and cyclic 3DSMI) can be considered as special coalition formation games, where the notion
of a stable matching is equivalent to the notion of a core element in the corresponding NTU-
game. Those games, where the set of basic coalitions contain all singletons (i.e. where every
player has the right not to cooperate with the others) correspond to the stable matching
problems with incomplete lists. See more about this correspondence in [3].

2 Cyclic 3DSMI is NP-complete

Problem definition

We consider three sets of agents: M, W, D (men, women and dogs). Every man has a strict
preference list over the women that are acceptable to him. Analogously, every woman has a
strict preference list over her acceptable dogs, and every dog has a strict preference list over
its acceptable men. The list of an agent z is denoted by P(z). A matching F is a set of
disjoint families, i.e., triples from M x W x D, such that for each family (m,w,d) € F, w is
acceptable to m, d is acceptable to w and m is acceptable to d. Formally, if (m,w,d) € F,
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then we say that F(m) = w, F(w) = d and F(d) = m, thus in a matching, F(z) € P(z)U{z}
holds for every agent x, where F(z) = x means that agent z is unmatched in F. Note that
agent x prefers y to being unmatched if y € P(x).

A matching F is said to be stable if there exists no blocking family, that is a triple
(m,w,d) ¢ F such that m prefers w to F(m), w prefers d to F(w) and d prefers m to F(d).

We define the underlying directed graph D; = (V, A) of an instance I of cyclic 3DSMI
as follows. The vertices of D; correspond to the agents, so V(D;) = M UW U D, and
we have an arc (z,y) in Dy if y € P(x). This type of directed graph where A(Dy) C
(M x W)U (W x D)U (D x M) is called a tripartite cyclic digraph. Therefore, a matching
of I corresponds to a disjoint packing of directed 3-cycles in Dj.

An unsolvable instance of cyclic 3DSMI

We give an instance of cyclic 3DSMI with n = 6, denoted by R6, where no stable matching
exists.

Example 1. The preference lists and underlying graph of R6 are as shown below. Here,
the thickness of arrows correspond to preferences.

my :wy, W) wy :dy, dy
ma @ Wwe, Wh wa : da, df
ms : ’w3,’wé ws d3,dé
mi :ws wh :ds
mh :w; wh i dy
mh : ws wh = da

We refer to the agents {m;,w;,d; : 1 < i < 3} = I as the inner agents of R6 and the
agents {m},w},d; : 1 <1 <3} = O as the outer agents of R6.

1) 7

Lemma 1. The instance R6 of cyclic 3DSMI admits no stable matching.

Proof. By inspection of the underlying graph of R6, we can observe that the only accept-
able families are of the form (m;,w},d;—1), (mi,w;,d;) and (m},w;_1,d;_1), so that any
acceptable family contains exactly two inner agents. It is clear that for any matching F, it
must be the case that at least one inner agent is unmatched in F. By the symmetry of the
instance we may suppose without loss of generality that the inner agent m; is unmatched
in F. Then, the family (m1,w],ds) is a blocking family for F. O

We note that the 9 acceptable families of R6 have a natural cyclic order, the same order
that the directed 9-cycle has which is formed by the 9 inner agents in the underlying graph,
such that if an acceptable family is not in a stable matching F then the successor family
must be in F. For example, if (mq,wy,d]) ¢ F then (mh,wy,dy) € F, since (my,wy,d})
would be blocking otherwise. This argument gives an alternative proof for the above Lemma.

The instance created by removing the inner agent m; from R6, denoted by R6\ m, be-
comes solvable, since F* = {(mb, w1, d), (ma, we, db), (g, wh, d2), (m},ws,ds)} is a stable
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matching for R6 \ m1. In fact, F* is the unique stable matching for R6 \ m1, so we denote
it by FRre\m,. This is because in R6 \ m; we have 7 acceptable families in a row with the
property discussed above: if an acceptable family is not in a stable matching F then the
subsequent family must be in F. We state this claim formally below; its proof follows from
the symmetry of the instance.

Lemma 2. Let a; be an inner agent of R6. Then, R6\ a; admits a unique stable matching,
denoted by FRe\a, -

The instance R6 will also be of use to us as a gadget in the NP-completeness proofs of
the subsequent sections.

The NP-completeness proof

In [15], Manlove et al. proved that determining if an instance of SMTT admits a complete
stable matching is NP-complete, even if the ties appear only on the women’s side, and each
woman’s preference list is either strictly ordered or consists entirely of a tie of size two (these
conditions holding simultaneously).

We refer to the MAX SMTT problem under the above restrictions as Restricted SMTT.
The underlying graph G = (AU B, E) of a Restricted SMTT instance is such that the set A =
{a1,az,...,a,} consists of men a;, all of whom have strictly ordered preference lists, while
the set B of women can be partitioned into two sets By U By = {by,..., by, yU{b],... b }
where n; + ng = n, each woman b; € B; has a strictly ordered preference list, and each
woman bjT € Bs has a preference list consisting solely of a tie of length 2. We denote a

woman who can either be a member of By or By by bET).

In the remainder of this section we describe a polynomial-time reduction from Restricted
SMTT to cyclic 3DSMI. Let I be an instance of Restricted SMTT with the underlying graph
G = (AU B, E). We construct an instance I’ of cyclic 3DSMI with sets M, W, and D of
men, women, and dogs as follows.

The sets of men and women of I’ are created in direct correspondence to the men and
women in I, so let M = {mq,...,myp} and W = Wy UW, = {w1, ..., wy, }U{w], ... wl }.
The set of dogs of I’ consists of two parts D; U Dy = D, defined by creating a dog d;; in
D, if a; € P(b;), and creating a dog dJT in Dy if b]T € Bs.

Let us now describe the construction of the strictly ordered preference lists of I’. We let
P(z)[l] denote the Ith entry in agent x’s preference list, and a tie in the preference list of
an agent is indicated by parentheses. The preference lists of I’ are defined by the following
cases:

1. If P(ay)[l] = bé-T) then let P(m;)[l] = wJ(-T) (1 <1 < r, where r is the length of a;’s
list).

2. If P(b;)[l] = a; then let P(w;)[l] = d;; and P(d;;) = m; (1 <1 < r, where r is the
length of b,’s list).

3. If P(b]) = (ap,aq) then let P(w] ) = dl and P(d] ) = mymq (in arbitrary order).

This is the proper part of the instance. Next we construct the additional part of the
instance by creating n = |M| copies of R6, such that the ¢-th copy of R6 consists of inner
agents {my,,ws,,ds, : 1 <14 < 3} and outer agents {my ,w; ,d; :1<i <3} with preference
lists as described in Example 1. We add these n copies of R6 to the instance in the following
way. In the ¢-th added copy of R6, denoted by R6;, replace the inner agent m;, in R6; with
man m; € M by replacing each occurrence of my, in the preference lists of each agent in
R6; with m;. Also, let my,’s acceptable partners in R6;, namely w;, and w}, be appended
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in this order to the end of m;’s list. The final preference list of man m; along with R6; is
shown below. The portion of m;’s preference list consisting of women from the proper part
of the instance is denoted by P;.

. / . / ) /
my o Ppowg wy, wy, 1 dyy dy dyy, 1 My, My,
U /
my, Wy, Wy, Wy, dy, dy, dy, Mg, My,
Mg Wi, Wy, Wiy di, dy, dy, my my,
my, Wi w;, di, ' my
/ / U
my, Wy, wy, dy, b My,
o T o
my, i Wiy, wy, 0 dgy di, 1 My

This ends the reduction, which plainly can be computed in polynomial time. Now, we
prove that there is a one-to-one correspondence between the complete stable matchings in
I and the stable matchings in I’.

First we show that there is a one-to-one correspondence between the matchings of I and
the matchings in the proper part of I’. This comes from the natural one-to-one correspon-
dence between the edges of I and the families in the proper part of I’. More precisely, if M
is a matching in 7, then the corresponding matching 7, in the proper part of I is created as
follows: (a;,b;) € M <= (ms,wj,d;;) € Fp and (a;,b] ) € M <= (my,w] ,d) € F,.
To prove this, it is enough to observe that two edges in I are disjoint if and only if the two
corresponding families in I’ are also disjoint. Next, we show that stability is preserved by
this correspondence.

Lemma 3. A matching M of I is stable if and only if the corresponding matching F, in
the proper part of I' is stable.

Proof. 1t is enough to show that an edge (a;,b;) is blocking in [ if and only if the corre-
sponding family (m;,w;, d; ;) is also blocking in I’; and similarly, an edge (a;, bf) is blocking
in I if and only if the corresponding family (m;, ij, djT) is also blocking in I’.

Suppose first that (a;,b;) is blocking in I, which means that a; is either unmatched
or prefers b; to M(a;) and b; is either unmatched or prefers a; to M(b;). This implies
that m; prefers w; to F,(m;), w; prefers d;; to M(w;), and d;; is unmatched in F,, i.e.
(my,wj,d;;) is blocking in I’. Similarly, if (a;, bjT) is blocking then a; is either unmatched
or prefers b;‘-r to M(a;) and b;‘.r is unmatched in M. This implies that m; prefers w;F to
Fp(m;), ij and dJT are both unmatched in F,, and hence (m;, ij, dJT) is blocking in I'.

In the other direction, if (m;,w;,d; ;) is blocking in I’, then m; prefers w; to Fp,(m;),
w; prefers d;; to Fp(wj), and d;; is unmatched in F,. This implies that a; is either
unmatched or prefers b; to M(a;) and b; is either unmatched or prefers a; to M(b;), so
(@i, b;) is blocking in I. Similarly, if (m;, w]T, df) is blocking in I’, then w;F and d;r are both
unmatched in 7, and m; prefers wJT to Fp(m;). This implies that a; is either unmatched
or prefers b} to M(a;) and b] is unmatched in M, so (a;,b]) is blocking in 1. O

Furthermore, if the matching M is complete, then we can enlarge the corresponding
matching to the additional part of I’ by matching every R6; \ m; in the unique stable way,
so by adding Fre,\m, to Fp for every ¢. This leads to the following one-to-one correspondence
between the complete stable matchings of I and the stable matching of I’.

Lemma 4. The instance I admits a complete stable matching M if and only if the reduced
instance I' admits a stable matching F, where F is the corresponding matching of M.
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Proof. The stability of M implies that F is stable in the proper part of I’ by Lemma 3.
The completeness of M and Lemma 2 implies that F is also stable in the additional part
of I.

In the other direction, if F is stable then every man in M must be matched in a proper
family, since otherwise, if a proper man m; does not have a proper partner in F then
R6; would contain a blocking family, by Lemma 1. This implies that the corresponding
matching M, defined in Lemma 3, is complete. The stability of M is a consequence of
Lemma 3. Finally, we note that the additional part has a unique stable matching, since
every R6; \ a; must be matched in the unique stable way indicated by Lemma 2, which
implies the one-to-one correspondence. |

The following Theorem is a direct consequence of Lemma 4.

Theorem 1. Determining the existence of a stable matching in a given instance of cyclic

3DSMI s NP-complete.

3 Cyclic 3DSM under strong stability is NP-complete

Problem definition

For an instance of cyclic 3DSM, a matching F is strongly stable if there exists no weakly
blocking family, that is a family (m,w, d) ¢ F such that m prefers w to F(m) or w = F(m),
w prefers d to F(w) or d = F(w), and d prefers m to F(d) or m = F(d). We note that in a
weakly blocking family at least two members obtain a better partner, since the preference
lists are strictly ordered.

An unsolvable instance

We firstly show that, by completing the preference lists of R6 in an arbitrary way (i.e. by
appending agents not on the lists in an arbitrary order to the tail of the original lists),
the resulting instance of cyclic 3DSM, denoted by R6, does not admit any strongly stable
matching. The subinstance R6 of R6 is called the suitable part of R6, the original entries
of an agent x in R6 are the suitable partners of x and the families of R6 are called suitable
families.

Lemma 5. The instance R6 of cyclic 3DSM admits no strongly stable matching.

Proof. Suppose for contradiction that F is a strongly stable matching. As the 9 inner agents
form a 9-cycle in the underlying directed graph, the 9 suitable families have a natural
cyclic order. We show that if a suitable family, say (mq,ws,d}) is not in F, then the
successor suitable family (mb, w1, d;) must be in F, which would imply a contradiction given
that the number of these suitable families is odd. If (my,w1,d}) ¢ F then F(wy) = dy,
since otherwise (mq,ws,d}) would be weakly blocking. Similarly, (mf,w1,d1) ¢ F implies
F(di) = mo. But this means that (mo, wi,d1) € F, so (ma, wh, d1) is weakly blocking. O

Recall that Fge\q, is the unique stable matching for R6 \ a;. Let R6 \ a; denote the
instance created by removing an inner agent a; from R6. We denote by CRre\a, the subset

of agents of R6 \ a; that are covered by F, R6\a,» and by Ugg\ 4, those who are uncovered by
FR6\a,» TESPeCtively.

Lemma 6. Let a; be an inner agent of R6. For every matching F* D FR6\a, of R6\ at, no
suitable family can be weakly blocking, and therefore no agent from Cre\q, can be involved
in a weakly blocking family. For any other matching, at least one suitable family is weakly
blocking.
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Proof. Tt is straightforward to verify that Fre\q, is a strongly stable matching for R6 \ ay,
so no suitable family in R6 \ a; can weakly block F* O F R6\a,- Moreover, no agent z of
CRe\a, can be involved in a non-suitable weakly blocking family either, since = has a suitable
partner in F*.

Suppose that F’ is a matching of R6 \ a; which is not a superset of FRe\a,- As in the
proof of Lemma 5, we use the fact that if a suitable family is not in F’, then the successor
suitable family is either in F’ or weakly blocking. Therefore, if we do not include four
from the seven suitable families of R6 \ a; in a matching then one of them would be weakly
blocking. |

The NP-completeness proof

The reduction we describe in this section again begins with an instance of Restricted SMTI,
only we assume without loss of generality the role of the men and women of the instance
to be “reversed”. To be precise, we assume a given instance of Restricted SMTI I that
its vertex set ((A; U A3) U B) consists of a set Ay = {a1,az,...,a,, } of men with strictly
ordered preference lists, and As = {a],al,... al } of men with preference lists consisting
of a single tie of length 2, and ny +ny = n. The set B = {b1,ba,...,b,} consists entirely of
women with strictly ordered preference lists.

Given an instance I of Restricted SMTI as defined above, we create an instance I’ of
cyclic 3DSM. First we create a proper instance Iz/7 of cyclic 3DSMI as a subinstance of I’
with agents M, U W, U D, in the following way.

First we create a set W), of n women {w1,ws, ..., w,} such that the preference list of
woman w; is a single entry, dog d; € D,,. The preference list of d; is such that if P(b;)[l] = a;,
then P(d;)[l] = m;, otherwise if P(b;)[l] = al’, then P(d;)[l] = m; ; for 1 <1 <r, where r
is the length of b;’s list. So the preference list of dog d; is essentially the “same” as that of
woman b;, only with men in M, rather than A.

For each man a; € A;, create a man m; € My, such that if P(a;)[l] = b;, then let
P(m;)[l] = wj for 1 < I < r, where r is the length of a;’s list. So the preference list
of man m; is essentially the “same” as that of man a;. For each man aiT € As, with
a preference list consisting of a single tie of length two, say (b,,bs), we create five men
mi,mp ., mf . mi myi, four women wj ., w/,  wj w/, and four dogs dj ., d}.d; ., d},
where the preference list of m! contains w!, and w! , in an arbitrary order, and the other
preference lists are as shown below. ' '

m;ﬂ' : w;ﬂ‘ Wr w;ﬂ‘ : d;,r d;ir d;ﬂ‘ : m;/,r m’f
ml whosdldr di, sl m,
m;,s : w;,s Ws w;,s d;l,s d;/,s d;.,s : m;/,s m;

mis s wi wily iy di difs =i mi

We also add these agents to M), W), and D), respectively. Note that in I, every set of
agents has the same cardinality: n, = |Mp| = |W,| = |Dp| = n+4ns. The notions of proper
agent, proper partner and proper family are defined in the obvious way.

The additional part of instance I’ contains three subinstances. The suitable part of
I’ is the disjoint union of 3n, copies of R6, such that the ith copy of R6, denoted R6;,
incorporates the ith agent of I;, as described in the previous reduction in the proof of
Theorem 1 (we omit the full description of this process again). The new agents are referred
to as additional agents.
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Let Fs = Uieqa,...3n,}F R6,\a;, De the so-called suitable matching of the additional part,
where a; is the proper agent of RG;. We call the set C' = Ujc(1,..3n,)CRe;\a; covered
additional agents, as these additional agents are covered by F,, and we call the set U =
Uie{1,...3n,} URe,\a;, uncovered additional agents, as these additional agents are not covered
by Fs.

The fitting part of I' is constructed on U as follows. Note that U has equal numbers
of men, women and dogs. The fitting part consists of disjoint families that covers U, so
that every agent has exactly one agent in his/her/its list, i.e. the fitting part is a complete
matching of U, denoted by F .

Finally, the dummy part is obtained by an arbitrary extension of the preference lists, so
that by putting together the four subinstances, the proper and the three additional parts,
we get the complete instance I’. The preferences of the agents over the partners in different
parts respect the order in which we defined these parts: the list of a proper agent contains
the proper partners first, then the suitable partners, and finally the dummy partners; the list
of a covered additional agent contains the suitable partners first, then the dummy partners;
the list of an uncovered additional agent contains the suitable partners first, then the fitting
partner, and finally the dummy partners.

First we show that there is a one-to-one correspondence between the complete stable
matchings of I and the complete strongly stable matchings of IZ’,. The stability is pre-
served via the following one-to-one correspondence between the complete matchings of I
and complete matchings of I':

(ai,bj) eEM = (mi,wj,dj) € .7:p

(al,bs) e M = (m],wj ., di ), (m],w,,d,),(m}, w,ds) € Fp

i 10 Wi,s0 Yi,s 1,87 V1,8 1,8

(a?7b8) ¢ M s (m;,s7w7/l,s7d/'/ )7 (m;/,ww;/,y ;J,s) € ‘7:17

.8

Lemma 7. A complete matching M of I is stable if and only if the corresponding complete
matching F, of II’, is strongly stable.

Proof. As a man a] cannot belong to a blocking pair in I, it may be verified that his

corresponding copy m! cannot belong to a weakly blocking family in I,, either. Therefore,
it is enough to show that a pair (a;, b;) is blocking for M if and only if the corresponding
family (m,,w;,d;) is blocking for F,. But this is obvious, because the preference lists of a;
and m; are essentially the same, and the preference lists of b; and d; are also essentially the
same. O

Now, given a matching M of I let us create the corresponding matching F of I’ by
adding Fs and Fy to Fp,, so F = F, U Fs U Fy.

Lemma 8. The instance I admits a complete stable matching M if and only if the reduced
instance I' admits a strongly stable matching F, where F is the corresponding matching of

M.

Proof. Suppose that we have a complete stable matching M of I, and F is the corresponding
matching in I’. Lemma 7 implies that every proper agent has a proper partner in F and
no proper family is weakly blocking. Therefore, no proper agent can be involved in any
weakly blocking family either. By construction of Fjs, every covered additional agent has a
suitable partner in F and by Lemma 6, no suitable family is weakly blocking. Therefore, no
such agent can be part of any weakly blocking family. Finally, every uncovered additional
agent has a fitting partner in F, so these agent cannot form a weakly blocking family either,
since an uncovered additional agent prefers only suitable partners to fitting partners, which
cannot be involved in a weakly blocking family. Hence F is strongly stable.
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In the other direction, suppose that F is a strongly stable matching of I’. Every proper
agent must have a proper partner, since otherwise if a; had no proper partner in F, then
R6, would contain a suitable weakly blocking family by Lemma 5. So the corresponding
matching M in [ is complete. The stability of M is a consequence of Lemma 7. Finally,
we note that the additional agents must be matched in the unique strongly stable way in
F, namely, the covered additional agents must be covered by matching F; by Lemma 6,
and the uncovered additional agents must be covered by F, since otherwise a fitting family
would weakly block F. Therefore, we have a one-to-one correspondence as was claimed. [

Theorem 2. Determining the existence of a strongly stable matching in a given instance
of cyclic 3DSM is NP-complete.

4 Stable exchanges with restrictions

Problem definition

Given a simple digraph D = (V, A), where V is the set of agents, suppose that each agent
has exactly one indivisible good, and (i, j) € A if the good of agent j is suitable for agent i.
An exchange is a permutation m of V such that, for each i € V', i # 7(i) implies (i, 7(7)) € A.
Alternatively, an exchange can be considered as a disjoint packing of directed cycles in D.

Let each agent have strict preferences over the goods, that are suitable for him. These
orderings can be represented by preference lists. In an exchange 7, the agent i receives the
good of his successor, m(i); therefore the agent i prefers an exchange 7 to another exchange
o if he prefers m(i) to o(i). An exchange 7 is stable if there is no blocking coalition B, i.e.
a set B of agents and a permutation ¢ of B where every agent ¢« € B prefers ¢ to w. An
exchange is strongly stable is there exists no weakly blocking coalition B with a permutation
o of B where for every agent ¢ € B, either o(i) = 7(i) or i prefers o to m, and o(i) # (i)
for at least one agent i € B.

Complexity results about stable exchanges

Shapley and Scarf [25] showed that the stable exchange problem is always solvable and a
stable exchange can be found in polynomial time by the Top Trading Cycle (TTC) algorithm,
proposed by Gale. Moreover, Roth and Postlewaite [18] proved that the exchange obtained
by the TTC algorithm is strongly stable and this is the only such solution. We note that
they considered this problem as a so-called houseswapping game, where a core element
corresponds to a stable solution. (For further details about these connections with Game
Theory, see [3].)

In some applications the length of the possible cycles is bounded by some constant [.
In this case we consider an [-way exchange problem. Furthermore, the size of the possible
blocking coalitions can also be restricted. We say that an exchange is b-way stable if there
exists no blocking coalition of size at most b. Because of some applications, the most relevant
problems are for constants 2 and 3. Henceforth we also refer to “2-way” as “pairwise” in the
context of cycle lengths and blocking coalitions sizes. We remark that if b = [ then a stable
exchange corresponds to a core-solution of some related NTU-game, because the possible
coalitions, those that can form and those that can block, are the same (see [3] for details).

For | = b = 2, the pairwise stable pairwise exchange problem is in fact, equivalent to
the stable roommates problem. Therefore, a stable solution may not exist [9], but there is a
polynomial-time algorithm that finds a stable solution if one does exist [11] or reports that
none exists. For [ = b = 3, the 3-way stable 3-way exchange problem is NP-hard, even for
three-sided directed graphs, as is stated by the following theorem.
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Theorem 3. The 3-way stable 3-way exchange problem for tripartite directed graphs is
equivalent to the cyclic 3DSMI problem, and is therefore NP-complete.

Finally, we note that Irving [12] proved recently that the stable pairwise exchange and the
3-way stable pairwise exchange problems are NP-hard. The pairwise stable 3-way exchange
problem is open. This particular problem can be a relevant regarding the application of
kidney exchanges, next described.

Kidney exchange problem

Living donation is the most effective treatment that is currently known for kidney failure.
However a patient who requires a transplant may have a willing donor who cannot donate
to them for immunological reasons. So these incompatible patient-donor pairs may want to
exchange kidneys with other pairs. Kidney exchange programs have already been established
in several countries such as the Netherlands [13] and the USA [20].

In most of the current programs the goal is to maximise the number of patients that
receive a suitable kidney in the exchange [21, 22, 23, 1] by regarding only the eligibility of
the grafts. Some more sophisticated variants consider also the difference between suitable
kidneys. Sometimes the “total benefit” is maximised [24], whilst other models [19, 6, 7, 4]
require first the stability of the solution under various criteria.

The length of the cycles in the exchanges is bounded in the current programs, because
all operations along a cycle have to be carried out simultaneously. Most programs allow
only pairwise exchanges. But sometimes 3-way exchanges are also possible, like in the New
England Program [16] and in the National Matching Scheme of the UK [27]?. In these kind
of applications, if one considers stability as the first priority of the solution, then we obtain
a 3-way stable 3-way exchange problem, where the incompatible patient-donor pairs are
the agents and their preferences are determined according to the special parameters of the
suitable kidneys.

Finally, we remark that although the induced digraph of a real kidney exchange instance
may have special properties (see e.g. [22] about the effect of the blood-types on the digraph)
the problem remains hard, even for realistic situations. For example, if we have three sets
of patient-donor pairs with blood types O-A, A-B and B-O, then the digraph may appear
to be tripartite. But this particular case of the 3-way stable 3-way exchange problem is also
hard by Theorem 3.

5 Further questions

For cyclic 3DSMI, the smallest instance that admits no stable matching given here satisfies
n = 6. Is there an even smaller counterexample? In the case of strong stability, we are
aware of instances of cyclic 3DSM for n = 4 that admit no strongly stable matching.

The main questions that remain unsolved are (i) whether there exists an instance of
cyclic 3DSM that admits no stable matching, and (ii) whether there is a polynomial-time
algorithm to find such a matching or report that none exists, given an instance of cyclic
3DSM.

23-way exchanges may be also allowed in the national program of the USA (as it is declared to be a goal
of the system in the future in the Proposal for National Paired Donation Program [28]).
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Equilibria in Social Belief Removal'

Richard Booth and Thomas Meyer

Abstract

In studies of multi-agent interaction, especially in game theory, the notion of equilibrium often
plays a prominent role. A typical scenario for the belief merging problem is one in which
several agents pool their beliefs together to form a consistent “group” picture of the world.
The aim of this paper is to define and study new notions of equilibria in belief merging. To do
S0, we assume the agents arrive at consistency via the use of a social belief removal function,
in which each agent, using his own individual removal function, removes some belief from his
stock of beliefs. We examine several notions of equilibria in this setting, assuming a general
framework for individual belief removal due to Booth et al. We look at their inter-relations as
well as prove their existence or otherwise. We also show how our equilibria can be seen as a
generalisation of the idea of taking maximal consistent subsets of agents.

1 Introduction

The problem of multi-agent belief merging has received a lot of attention in KR in recent years
[13, 14, 5]. The problem occurs when several agents each have their own beliefs, and want to
combine or pool them into a consistent “group” picture of the world. A problem arises when two
or more agents have conflicting beliefs. Then such conflicts need to be smoothed out. In studies
of multi-agent interaction the notion of equilibrium often plays a prominent role (most famously in
[18]). It would therefore seem natural to investigate such notions in belief merging. The purpose of
this paper is to define and study some possible notions of equilibria in a belief merging setting.

To enable a clear formulation of such notions, we will employ the approach to merging advocated
in [5] and inspired by the contraction+expansion approach to belief revision [9, 16], in which the
merging operation is explicitly broken down into two sub-operations. In the first stage, the agents
each modify their own beliefs in such a way as to make them jointly consistent. This is called social
contraction in [5]. In the second, trivial, stage, the beliefs thus obtained are conjoined. In this
approach, the crucial question becomes “how do the agents modify their beliefs in the first stage?”
In this paper we assume agents do so by removing some sentence from their stock of beliefs. More
precisely we associate to each agent ¢ its very own individual removal function s, which computes
the result of removing any given sentence. A social belief removal function is then a function which,
given a profile of individual removal functions as input, returns a (consistent) profile consisting of
the results of each agent’s removal. The central question studied in this paper is “when can the
outcome of a social removal function be said to be in equilibrium?”.

How can we express the idea of equilibrium in social removal? As our starting point we would
like to propose the following general principle for multi-agent interaction:

Principle of Equilibrium
Each agent simultaneously makes the appropriate response to what all the other agents do.

It remains to formalise what “appropriate” means. In the theory of strategic games (see, e.g., [20]
as well as Section 6 of the present paper) agents are assumed to have their own preferences over the
set of all outcomes. Then a Nash equilibrium [18] is a profile consisting of each agent’s selected
action, in which no agent can achieve a more preferred outcome by changing his action, given the
actions of the other agents are held fixed. Hence in this setting “appropriate” may be equated with

! A longer version of this paper (including the more important proofs) appears in the Proceedings of the 11*" International
Conference on Principles of Knowledge Representation and Reasoning (KR 2008).
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“best” in a precise sense. We will see that the framework of social belief removal offers up new and
interesting ways of formalising what “appropriate” might mean.

Of course the explicit introduction of individuals’ removal functions raises the question of what
kind of belief removal function we should assume is being used. Do agents use AGM contraction
[1], or severe withdrawal [22], or perhaps a belief liberation function [6]? Luckily there exists a
general family, called basic removal [7] which contains all these families and more besides. Thus
we find it convenient to use this family as a basis.

The plan of the paper is as follows. In Section 2 we set up the framework of social removal
functions. Then in Section 3 we focus on the agents’ individual removal functions, reviewing some
results about basic removal functions and giving some concrete examples of such functions. In
Section 4 we introduce our first equilibrium notion, that of a removal equilibrium, and examine
its compatibility with some plausible minimal change properties, before proving the existence of
such equilibria for arbitrary basic removal profiles in Section 5. We also briefly look at the notion
of perfect removal equilibria. In Section 6 we move on to entrenchment equilibria, which can
be thought of as Nash equilibria of the strategic game where agent preferences over outcomes are
derived from their entrenchment orderings, and examine their relationship with removal equilibria.
We also suggest a possible refinement of this idea, the strong entrenchment equilibrium. In Section 7
we show how our equilibria can be thought of as generalising the idea of taking maximal consistent
subsets of agent. We finish with a concluding section.

Preliminaries: We work in a finitely-generated propositional language L. Classical logical con-
sequence and logical equivalence are denoted by |- and = respectively. W denotes the set of possible
worlds/interpretations for L. Given 6 € L, we denote the set of worlds in which @ is true by [6].
The set of non-tautologous sentences in L is denoted by L... We will usually talk of belief sets, but
assume a belief set is always represented by a single sentence standing for its set of logical con-
sequences. We assume a set of agents A = {1,...,n}. A belief profile is any n-tuple of belief
sets. Given two belief profiles we shall write (¢;)ica = (¢})iea iff ¢p; = ¢} for all i, and write
(Bi)iea =n (@))ien iff N\;cp di = Njcp @5 Clearly we have =C=, for belief profiles. We say the
belief profile is consistent iff the conjunction of its elements is consistent.

2 Social belief removal

As we said above, we assume each agent 7 € A comes equipped with its own removal function %;,
which tells it how to remove any given sentence from its belief set. In this paper we view %; as a
unary function on the set L, of non-tautologous sentences, i.e., agents are never required to remove
T. The result of removing A € L, from ¢’s belief set is denoted by ;(\). We assume 4’s initial
belief set can always be recaptured from ; alone by just removing the contradiction, i.e., ¢’s initial
belief set is %, (_L). We call any n-tuple (3%¢;);ca of removal functions a removal profile.

Definition 1 A social removal function F' (relative to A) is any function which takes as input any
removal profile (%;);ca and outputs a consistent belief profile F((%;)ica) = (¢:)ica such that, for
each i € A, there exists \; € L such that ¢; = %;(\;).

Each social removal function yields a merging operator for removal profiles — we just take the
conjunction \;_, ¢; of the agents’ new belief profile. However in this paper our main interest will
be in the profile itself.

The above definition differs from Booth’s social contraction in two main ways. First, here we
explicitly associate from the outset an individual removal function to each 7, whereas this was only
implicit in [5]. More importantly, unlike in social contraction, we will allow agents to use removal
functions which don’t necessarily satisfy the Inclusion property, i.e., removing a sentence may lead
to new beliefs entering ¢’s belief set. As is argued in [6], this situation can arise quite naturally. This
motivates the use of the term social removal rather than social contraction.
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What properties might we expect from a social removal function F? Throughout the paper we
will mention various postulates for F, but to begin with the following two properties have — on the
face of it — a strong appeal from a “minimal change” viewpoint:

(FVac)  If (3¢;(L));ea is consistent then F((;)ica) = (3¢:(L))ica
(FVac,) If (3¢;(L))iea is consistent then F((;);ea) =a (3%:(L))ica

Both these rules deal with the case the initial belief sets of the agents are already jointly consistent.
(F'Vac) says that in this case the agents’ beliefs should remain unchanged. Although intuitively
appealing, we will later have grounds for believing this rule is a touch too strong (specifically in
contexts where the agents’ individual removal functions might not adhere to the Vacuity rule —
see next section). Rule (F'Vac,) is weaker. It requires only that the result should be conjunction-
equivalent to the profile of the agents’ initial belief sets.

3 Basic and hyperregular removal

What properties should be assumed of the individual removal functions s;? We will assume agents
always use basic removal [7].

Definition 2 A function % : L, — L is a basic removal function iff it satisfies the following rules:
x1) %A\ A

(x2) If)\l = A then %()\1) = *(/\2)

(%3) Ifx(XxANMNExthen k(X NAAY) Fx

(x4) Ifx(x AN Exthen x(x AN X)) F %x(N)

(%5) x=(xAXN)Fx() V%N

(%6) If (X AN F Athen x(\) F %(x A N)

All these rules are familiar from the literature on belief removal. Rule (1) is the Success postulate
which says the sentence to be removed is no longer implied by the new belief set, while (%2) is a
syntax-irrelevance property. Rule (%3) is sometimes known as Conjunctive Trisection [11, 21]. It
says if x is believed after removing the conjunction x A A, then it should also be believed when
removing the longer conjunction x A A A ¢. Rule (%4) is closely-related to the rule Cautious
Monotony from the area of non-monotonic reasoning [15], while (%5) and (56) are the two AGM
supplementary postulates for contraction [1].

Note the non-appearance in this list of the AGM contraction postulates Vacuity (s(L) ¥ A
implies % (A) = (L)), Inclusion (3 (L) F %()\)) and Recovery (3¢(A) AX | (L)), none of which
are valid in general for basic removal. Inclusion has been questioned as a general requirement for
removal in [6], while Recovery has long been noted as controversial (see, e.g., [10]). Vacuity is a
little harder to argue against. It says if the sentence to be removed is not in the intial belief set, then
the belief set should remain unchanged. Nevertheless we feel there are plausible removal scenarios
in which it may fail, one of which will be described in Section 3.1 below when we introduce the
subclass of prioritised removal functions. For basic removals Inclusion actually implies Vacuity [7].

Note: The postulates are the same ones as in [7], but their appearance is changed to take into
account the fact we take s to be a unary operator which returns a sentence (rather than a logically-
closed set of sentences). We also leave out one rule from the list in [7], which in our reformulation
corresponds to “x(1) A =\ F x(A)”. This rule turns out to be redundant, being derivable mainly
from (x%3).

As well as the above postulates, [7] also gave a semantic account of basic removal. A context is
any pair C = (<, <) of binary relations over W such that (i) < is a total preorder, i.e., transitive and
connected, and (ii) = is a reflexive sub-relation of <. From any such C we may define a removal
operator %¢ by setting

[%c(N)] ={w e W | w < w for some w’ € min< ([=A])}.
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That is, the set of worlds following removal of A is determined by first locating the <-minimal
worlds in [- ], and then taking along with these all worlds which are less than them according to <.
We call ¢ the removal function generated by C. [7] showed ¢ is a basic removal function and that
in fact every basic removal function is generated from a unique context. For another, closely-related,
family of belief removal functions see [8].

In this paper, another property which we will find useful, especially for technical reasons, is
Hyperregularity [12]:

If % (AAx)F Athen % (A A x) = %(N).

This rule says if the removal of A A y excludes A then removing A A x is the same as removing just \.
This property is very strong. Not only does it imply Vacuity, but in the presence of (1) and (%2) it
implies (%3)-(56). It is probably too strong to be required in general. Indeed given (1) and (%2)
it can be shown to imply the“Decomposition” property of removal, i.e, either s (A A x) = x(\) or
# (A A x) = %*(x), which has been noted as overly strong in [9, p66]. Despite this it is nevertheless
still satisifed by several interesting sub-classes of basic removal (see Section 3.1 below), and when
proving results we will sometimes find it a useful stepping-stone towards the more general basic
removal. In terms of contexts, it corresponds to requiring the following condition on (<, <), for all
w1, Wo, W3 € W

(C-hyp) If wy, =X W and wao ~ W3 then wy, X w3

(where ~ is the symmetric closure of <), i.e, whether or not w; = ws depends only on the <-rank
of ws.

Definition 3 A hyperregular removal function is any basic removal function satisfying Hyperregu-
larity.

In [7] it was shown that hyperregular removal functions correspond precisely to the class of
linear liberation operators from [6].

3.1 Some examples of basic removal functions

We now give three concrete families of operators, all of which come under the umbrella of basic
removal. These families will be useful when we come to describing examples of equilibria.

(i). Prioritised removal Let (X, C) be any finite set of consistent sentences ¥, totally preordered
by a relation C over X. Intuitively the different sentences in X correspond to different possible
extensions, prioritised by C (and with sentences lower down in the ordering given higher priority).
Given such a set, for any A € L, let X(\) = {7 € X | v I/ A}. Then we define x x, -y from (3, )
by setting:

« ) = Vmine Z(A) if VEFA
~BL0) T otherwise.

In other words, after removing A, the new belief set is just the disjunction of all the C-minimal
elements in 3 which do not entail \. In case there is no sentence in 3 which fails to imply A, then
the result is just T. We will call any removal function definable in this way a prioritised removal
function. A similar family of removal has also been studied in [4].

One can easily check that ) satisfies (1)-(6) and so forms a basic removal function.
Note however that % s -y will fail to satisfy Vacuity (hence also Hyperregularity) in general. For
example suppose X = {p, —p} but C is the “flat” ordering on ¥ which ranks both sentences equally.
This would correspond to a situation in which an agent has equally good reasons to believe p and
—p. The belief set corresponding to this is then (s, -y (L) = p V —p, i.e., since the agent cannot
choose between p and —p, he commits to neither. But % s y(p) = —p. That is, the direction to
remove p tips the balance in favour of —p, and the agent thus comes to believe —p, even though p
was not in the initial belief set. We take this plausible removal scenario as indication that the Vacuity
rule may be too strong in general.
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(ii). Severe withdrawal [22]. A severe withdrawal function may be represented by a logical chain
p=01F Bak - F B, with %,(\) = §;, where ¢ is minimal such that 8; I/ A (equals T if no such
1 exists). Severe withdrawal functions always satisfy Inclusion and Hyperregularity. It is easy to see
they form a special case of prioritised removal. Severe withdrawal functions also have a simple
representation in terms of their generating contexts (<, <). They are just those basic removals for
which <=<.
(iii). o-liberation [6]. o-liberation functions again use a sequence of sentences o = (ay, . .., Q).
Given such ¢ and A\ € L,, define a sequence of sentences f;(o, A) inductively on 7 by setting
fo(o,\) = T, and then for i > 0,
_ ) fis(os ) A if fima(o,A) Aai A
filo, A) = { fici(o, A) otherwise.

In other words, f4(o, «) is obtained by starting with T, and then working through o from left to right,
adding each sentence provided doing so does not lead to the inference of A. (In [6] the direction was
right-to-left, but this difference is inessential.) Then %, (\) = fs(o, A). (This is very closely-related
to the “linear base-revision” of [19].) o-liberation functions do not satisfy Inclusion in general, but
they do satisfy Hyperregularity (and hence also Vacuity). In terms of their generating contexts, o-
liberation functions correspond to those contexts (<, <) which satisfy the Hyperregularity condition
(C-hyp) and for which = is transitive.

The three families described above are inter-related as follows: severe withdrawal C o-liberation
C prioritised removal. The inclusions are strict. In addition to these three, [7] showed basic removal
includes many other well-known families of removal functions, including systematic withdrawal
[17], AGM contraction and even AGM revision. In the rest of the paper we shall assume the
domain of a social removal function is the set of all n-tuples of basic removal functions.

4 Removal equilibria

When is the outcome of an operation of social removal in equilibrium? Our first idea is the following.

Definition 4 (¢;);cp is a removal equilibrium for (3%¢;);ca iff it is consistent and, for each i € A,
bi = % (0 Njsi 85)-
This definition is a direct formulation of the idea that each agent removes precisely the “right”

sentence to be consistent with every other agent. As such this seems like a good candidate for a first
formalisation of the word “appropriate” in our Principle of Equilibrium from the introduction.

Example 1 Assume A = {1,2} and suppose both agents use severe withdrawal to remove beliefs.
Let 51 and 3 be specified by the logical chains (p A q) = q and (—-p A —q) = (—pV —q) resp. Then
there are three possible removal equilibria for the profile (%1, %2): (1) (p A q, T), corresponding to
a case where 1 removes nothing and 2 removes everything, (2) (T, —p A —q), corresponding to the
opposite case, and (3) (q, —~pV —q), corresponding to the case where both agents give up something,
but not everything.

We might be interested in requiring the following property for social removal functions:
(FREq) F((¢;)ica) is a removal equilibrium for (;);ca.
Is (FREq) even consistent? In other words, do removal equilibria always exist for any profile of
basic removal functions? We shall shortly answer this question in the affirmative. But before that
we examine such equilibria in the special case when (3;(L));ca is consistent, and examine the

compatibility of (FREq) with (F'Vac) and (F'Vac,). First, the following example shows (FREq) is
not compatible with (F'Vac).

Example 2 Again suppose A = {1,2}. Suppose agent 1 uses the prioritised removal function
% (x,cy where ¥ = {p, —p} and C is the flat priority ordering, and suppose agent 2 uses the se-
vere withdrawal function specified by the single element logical chain (p). We have %1(L) = T
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and x2(L) = p. Then %1(L) A %2(L) is equivalent to p and so is clearly consistent, but
(%1(L),*2(L)) is not a removal equilibrium. This is because, while we do have %2(—=T) = p,
we have %1(—p) =p £ T.

Thus for general basic removal profiles, we cannot require both (FREq) and (F'Vac). At first
glance it might be thought (F'Vac) is unquestionable, and so it is (FREq) which must be given up.
However we believe that as soon as one takes the step — as we do — to relax Vacuity for individual
removal %, then (FVac) itself becomes less “untouchable”. Thus we believe this incompatibility
with (F'Vac) should not by itself be taken as reason to reject (FREq). Furthermore the next result
(which may be proved using the same construction as in Prop. 9 below) shows (FREq) is compatible
with (F'Vacx).

Proposition 1 If (s;(L));ca is consistent then there exists a removal equilibrium (¢p;)icn for
(%:)ica such that (¢;)ica =n (%:(L))ica.
In Example 2 we do indeed have a removal equilibrium which is conjunction-equivalent to
(#1(L), %2(L)), namely (p, p).

Note that in Example 2, agent 1 uses a removal function which does not satisfy Vacuity. The
next result says that if we do insist on Vacuity for individual removal functions, then we do achieve
compatibility with (F'Vac).

Proposition 2 Suppose each ; satisfies Vacuity, and suppose (3;(L));ca is consistent. Then
(%;(L))iea is a removal equilibrium for ((%;)ica ).

However, even if the ; satisfy Vacuity, this might not be the only removal equilibrium. That is, even
in this restricted domain case, (FREq) is not enough by itself to imply (F'Vac) or even (F'Vac,).

Example 3 Let % be the o-liberation function determined by the sequence (p, —p). Then the belief
set associated to x is %(L) = p. Now suppose we have n agents, all using this same removal
function %. Then for the resulting removal profile there are two removal equilibria. As well as the
expected (p)ica we also get (—p)ica!

It might seem bizarre that (—p);ca should be recognised as an equilibrium in this example. Why
should the agents all jump across to —p when they can just as well stay with the comfort of p? In
fact the situation is analogous to that with Nash equilibrium itself. We shall expand on this point
later after we introduce the notion of entrenchment equilibria.

By restricting the domain of F' further, we do force a unique removal equilibrium in the case
when the initial belief sets are jointly consistent.

Proposition 3 Suppose each x; satisfies Inclusion (and hence also Vacuity). Then if (%;(L));ea is
consistent then it is the only removal equilibrium for (3%;);ca.

5 Existence of removal equilibria

In this section we prove that removal equilibria are guaranteed to exist when the agents use basic
removal functions to remove beliefs. First we concentrate on the case when all agents use hyperreg-
ular removal, providing two concrete social removal operators which satisfy (FREq). We will build
on this case to prove existence in the general basic removal case.

5.1 The hyperregular case: First method

Our first social removal function F; requires the upfront specification of a linear order on A. Without
loss we take this order here to be just the numerical one on A = {1,2,...,n}. Given a removal
profile (¢;);ca, we define F1((3¢;)ica) = (¢i)iea inductively by setting

¢i = *;(— /\ ¢5)-

7<i
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In other words, ¢ is just taken to be agent 1’s initial belief set 1 (L), and then each agent takes
his turn to remove the negation of the conjunction of the belief sets of all those agents whose turn
has already passed. By an easy induction on ¢, and using the fact each s; satisfies (1), we know
“Nj<i®j € L. and so %;(= A\, _; ¢;) is well-defined. In particular we know from (x1) that
On = %n(7 N\ @) I 7 N\j<p @5 and 50 (¢;)ica is consistent.

Proposition 4 [f all s, satisfy Hyperregularity then ¥ returns a removal equilibrium for (%;);ca.

F'; might not return a removal equilibrium for general basic removal profiles. This can be seen
on Example 2, where running the above procedure returns the non-equilibrium (T, p).

What other properties does F; satisfy? Well to begin, it can be shown to satisfy (F'Vac) (in
the hyperregular case). Also, let’s say two removal functions % and %’ are revision-equivalent iff
% (M) A=A =% (A)A-Xforall A € L,. (i.e., the revision functions defined from them via the Levi
Identity [16] are the same). Then we have:

Proposition 5 ¥ satisfies the following rule for social removal functions:
(FRev,) If %, and % are revision-equivalent for each i € A then F((3%¢;)ica) =n F((%})ica)-

In fact F; satisfies this property even in the general basic removal case. Letting Fq((3;)ica) =
(¢i)ica and F1((%])iea) = (¢})iea, the proof proceeds by induction on i that A\ ;; ¢; = /\ ;<; ;-
This result implies that if we are only interested in the result of merging, we could just focus on
revision functions only.

One questionable property of F; is we always get ¢; = (L) for any input removal pro-
file. Thus agent 1 never leaves his initial belief set. He assumes a dictator-like role. Our second
construction aims at rectifying this.

5.2 The hyperregular case: Second method

Our second construction is just like the first, except now, at the start of the process, agent 1 removes
some fixed, possibly consistent, sentence y (chosen independently of the given removal profile)
rather than remove L as before. Formally, the function F5 makes use of an auxilliary function s
which takes as arguments a removal profile (;);ca together with a sentence y € L., and outputs a
belief profile (7););ca. The 7); are defined inductively by setting 7; = %7 (), and then for ¢ > 1,

ni = (- /\ n;5)-
j<i
Note that if x = L then this is just F';1 ((3;);ca ). Is this a removal equilibrium? In fact the result of
this operation will be a removal equilibrium for agents 2, . .., n, but not necessarily for agent 1.

Proposition 6 Assume all x; satisfy Hyperregularity and let s(x | (3;)iea) = (0:)ica. Then for
eachi > 1, n; = 3%;(= \;; 1), but in general m Z 1(= N\ jsq 1;)-

In case 1 # %1(= A5 7;) we just try again with s(x A = ;o1 7 | (3:)iea). Precisely, Fa
is defined via the following iterative procedure:
1. Calculate s(x | (3%¢i)ica) = (7i)iea.
2. If m = *1(= /\j>, 7;) then STOP and output Fa((%;)ica) = (1:)ica. Otherwise set y :=
X A= Ajs17m; and go to step 1.

In case the termination condition in step 2 is not met, it can be shown x Z x A= A j>11> S0 We
generate a stricly stronger sentence to input back into s(- | (%;);ea) in step 1. Hence the process
continues at most until we input L. But in this case s(L | (3;)ica) = F1((3:)ica) as we have
seen. Hence:

Proposition 7 If all the %; satisfy Hyperregularity then ¥4 satisfies (FREq).
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For example, if we run this method on Example 3, taking y = p, we obtain the 2"¢ equilibrium
Fa((%)ica) = (—p)ica. Hence we see Fy does not validate (FVac,). It also does not satisfy
(FRev,), since it can be shown the o-liberation function from Example 3 is revision-equivalent to
the severe withdrawal function %, determined by the 1-element chain p = (p). But if we again take
X = pthen Fo((3,)ica) = (p)iea-

Note although agent 1 no longer has dictator-like powers in F'5, agent j still 