
LSIR-2
Logic and the Simulation of Interaction and Reasoning

Pasadena CA, U.S.A., 12 July 2009
edited by Benedikt Löwe
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Logic & Interaction
In recent years, logicians have become more and more inter-
ested in the phenomenon of interaction. The research area
Logic and Games deals with the transition from the static
logical paradigm of formal proof and derivation to the dy-
namic world of intelligent interaction and its logical mod-
els. Fruitful technical advances have led to deep insights
into the nature of communicative interaction by logicians.
This new direction of logic has quickly gained momentum
and support. In 2006, a Marie Curie Research Training Site
GLoRiClass (“Games in Logic Reaching Out for Classical
Game Theory”) was opened in Amsterdam, providing grad-
uate student training for a number of PhD students. In 2007,
the European Science Foundation (ESF) has recognized this
direction as one of the foremost research developments for
the European science community and created a collaborative
research platform called “LogICCC — Modelling intelligent
interaction”. Finally, in December 2007, a new book series
entitled “Texts in Logic and Games” was launched.

While these interactive aspects are relatively new to logi-
cians, on a rather different level, modelling intelligent inter-
action has been an aspect of the practical work of computer
game designers for a long time. Pragmatic questions such as
‘What makes a storyline interesting’, ‘What makes an reac-
tion natural’, and ‘What role do emotions play in game de-
cisions’ have been tackled by practicing programmers. The
practical aspects of computer gaming reach out to a wide in-
terdisciplinary field including psychology and cognitive sci-
ence. So far, there are only a few cross-links between these
two communities.

LSIR-1 in Aberdeen (April 2008)
When the need for a venue to connect the research in logic
and games with the more applied research on stories, games
and simulation of behaviour was recognized, the mentioned
research training site GLoRiClass decided to organize a
workshop Logic and the Simulation of Interaction and Rea-
soning at the AISB Convention in Aberdeen in April 2008
(for more on the motivation for this workshop, cf. (Löwe
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2008)). The programme committee for this workshop con-
sisted of Stefania Bandini, Johan van Benthem, Cristiano
Castelfranchi, Bruce Edmonds, Jaap van den Herik, Wiebe
van der Hoek, Benedikt Löwe, Yoav Shoham, Keith Sten-
ning, and Rineke Verbrugge. A number of research con-
nections opened up during the workshop and discussions
between researchers in the gaming industry and logicians
created the opportunity for new ideas: LSIR-1 was consid-
ered a success by the participants (the proceedings of the
workshop are available as (Guerin, Löwe, and Vasconcelos
2008)). The general sentiment of participants was that such
a workshop should be repeated, possibly with more focus,
enabling directed efforts for new research projects.

The Goals of LSIR-2
The successor of the Aberdeen workshop is now being held
at IJCAI 2009, this time concretely focussing on the relation
between modern techniques in logic (such as discourse rep-
resentation theory or dynamic epistemic logic) and concrete
modelling problems in computer games (either as part of the
story or game design or as part of the design of the artificial
agents).

As with LSIR-1, our workshop is sponsored by the Re-
search Training Site GLoRiClass, allowing us to invite three
speakers (Morgenstern, Schubert, and Young). Talks at
LSIR-2 will describe either modelling techniques with po-
tential applications to questions in computer game design or
story design or to describe modelling problems that might be
an area of application for techniques from logic. The work-
shop layout allows ample time for informal discussions. The
experience from Aberdeen shows that this time is used prop-
erly and efficiently and will result in opening up research
opportunities between the fields.

Programme Committee.
The programme committee of LSIR-2 consisted of Jan
Broersen (Utrecht, The Netherlands), Cristiano Castel-
franchi (Rome, Italy), Frank Dignum (Utrecht, The Nether-
lands), Anton Leuski (Marina del Rey CA, United States of
America), Benedikt Löwe (Amsterdam, The Netherlands),
Erik T. Mueller (Hawthorne NY, United States of Amer-
ica), Amitabha Mukherjee (Kanpur, India), Mark Over-
mars (Utrecht, The Netherlands), Eric Pacuit (Stanford CA,
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United States of America), Rohit Parikh (New York NY,
United States of America), David Traum (Marina del Rey
CA, United States of America), Jos Uiterwijk (Maastricht,
The Netherlands), and Hans van Ditmarsch (Otago, New
Zealand & Aberdeen, Scotland). We would like to thank
the members of the PC for their effort and input.

Schedule
LSIR-2 will have ten presentations: three 45-minute invited
presentations and seven contributed talks of 20 minutes.
There were two more accepted presentations that had to be
cancelled due to travel restrictions of the presenters. These
were a paper entitled “Strategies made explicit in Dynamic
Game Logic” by Sujata Ghosh (Groningen) and a paper by
Jan Broersen (Utrecht). The latter paper is represented in
this abstract volume.

09.05–09.15 Opening

09.15–10.00 R. Michael Young. The Representational
Challenges of Fictional Worlds.

10.00–10.30 Coffee Break

10.30–10.50 Amitabha Mukerjee. Discovering symbols
from interactions — easier than explaining interactions
via symbols?

10.50–11.10 Nadine Guiraud, Andreas Herzig and Emil-
iano Lorini. Speech acts as announcements.

11.10–11.30 Break

11.30–12.15 Lenhart Schubert. From generic sentences to
scripts.

12.15–14.20 Lunch Break

14.40–15.00 Jos Uiterwijk and Kevin Moesker. Mathemat-
ical Modelling in TwixT.

15.00–15.30 Coffee Break

15.30–15.50 Rafael Pérez y Pérez. Emotions in Plot Gen-
eration.

15.50–16.10 Ethan Kennerly. Computing Quality of Life in
a Social Management Game

16.10–16.30 Ethan Kennerly, Andreas Witzel and Jonathan
Zvesper. Thief Belief

16.30–16.50 Break

16.50–17.10 Martin Magnusson, David Landén and Patrick
Doherty. Logical Agents that Plan, Execute, and Monitor
Communication

17.10–17.55 Leora Morgenstern. Traveling Through Time
and Logical AI: Toward a Formal Theory of Time Travel

References
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Proceedings of the AISB 2008 Symposium on Logic and the
Simulation of Interaction and Reasoning, volume 9 of AISB
2008 Convention, Communication, Interaction and Social
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reasoning: Introductory remarks. In Guerin, F.; Löwe, B.;
and Vasconcelos, W., eds., Proceedings of the AISB 2008
Symposium on Logic and the Simulation of Interaction and
Reasoning, volume 9 of AISB 2008 Convention, Commu-
nication, Interaction and Social Intelligence, 1st-4th April
2008, University of Aberdeen, iii–v.

4



The Representational Challenges of Fictional Worlds

R. Michael Young
Department of Computer Science, North Carolina State University,

Raleigh, NC 27695-7534, United States of America

Introduction and Background
Modern computer games often have a strong narrative struc-
ture to the progress of their gameplay. In some genres, story
is at the forefront of the interaction. As game makers seek
to add new capabilities for procedurally generated content
to their new releases, work on interactive narrative is grow-
ing in significance both as a basic research topic as well as
a source for insight into the creation of content for games.
As a result, there are now many compelling challenges for
researchers working in AI that involve interactive computer
games as their area of application. A significant different
exists between application contexts familiar to most AI re-
searchers and those found in games, however. Games are
fictional worlds. Of course, we are all aware that games are
fictional worlds. What is not so obvious is what this means
to the relationship between a player and his or her game sys-
tem and what consequences the relationship holds for the use
of representations like logic and other formal computational
approaches. Games are expected to be fictional in much the
same way that other narrative media are. Their worlds share
many properties in common with the real world, but their
experience is specifically not realistic. Games are not sim-
ulations, where system behaviors are required to be identi-
cal to real world correlates. When a game player begins to
play a game, he or she steps inside a magic circle (Huizinga
1955), effectively entering into a contract with the game?
designers where players agree to suspend disbelief and play
according to the rules and designers agree to manipulate the
game world in ways that facilitate that effective play rather
than recreate realistic interaction.

Understanding narrative in these game worlds, as in other
media, involves the active construction and experience of an
illusion (Gerrig 1993; Johnston and Thomas 1995). This
construction process is particularly participatory in com-
puter games, where players not only work to comprehend
the story but take action throughout its unfolding to shape it
in significant ways.

The distinction that I am drawing between simulations
and game worlds points to interesting challenges for AI
researchers in the representation and modeling of play-
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ers?interactions with games. I describe two examples be-
low, but essentially the larger class of challenges revolves
around the requirement not to create a real world experi-
ence in a game, but to create a fictional world whose expe-
rience will prompt the same narrative comprehension pro-
cesses that people use to understand other forms of narrative
in conventional media (Graesser, Mills, and Zwaan 1997).

Levels of Narrative
When considering the structure of narrative, narrative theo-
rists typical break a narrative down into two distinct levels:
the story and the discourse (Chatman 1980). The story level
contains the things within the story world itself ?the charac-
ters and their mental state, the characters actions, the objects
and locations they interact with and within. The discourse
contains those medium-specific elements used by the story
teller to communication the story to the reader ?a novel?
text, a film? camera shots and shot sequences, background
music and lighting. This division is useful for approach-
ing the design of narrative generation systems as it provides
a direct and reasonable way of factoring the many prob-
lems (Young 2007). The discussion below is divided into
two parts, providing an example representational challenge
from each level.

Two Representative Challenges
At the Story Level: Conflict
Conflict (or rather, the absence of it) is one of the most sig-
nificant representational challenges to current work on in-
teractive narrative. This is particularly true of plan-based
approaches to narrative generation (e.g., (Cavazza, Charles,
and Mead 2002; Young and Riedl 2005)), which rely on
provably sound planning systems to create flaw-free (and
thus conflict-free) character plans. In contrast to the plans
produced by AI planning systems, stories are delightfully
full of conflict. Logical systems hoping to model stories
must explicitly deal with the representation of this conflict
as a fundamental element of story structure. Like most real-
world notions that are found within stories, narrative conflict
is both like and unlike its real world correlate. As in the real
world, conflict in narrative typically involves two or more
characters each holding goals that are in opposition to one
another who form plans both to achieve their own goal and
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often to prevent their opponents from achieving theirs. Nar-
rative conflict differs from real-world conflict, however, in
a number of ways. For instance, narrative conflict is paced,
so that conflict is interleaved in the story between periods
of calm where other elements of the story can be advanced.
Narrative conflict is balanced, so that protagonist and antag-
onist are relatively equally matched in strength. As a result,
interaction between the two doesn? result in one side over-
whelming the other, thus ending the story prematurely. Nar-
rative conflict is measured in order to create a story? rising
action, that is, the tension that builds as the lead in to the
story? major climax.

At the Discourse Level: The Dynamics of User
Beliefs
As in other forms of work focusing on the generation of dis-
course (Moore and Paris 1993; Maybury 1992; Hovy 1989),
the generation of narrative discourse has as its goal the cre-
ation of a sequence of communication actions that effec-
tively manipulate the beliefs of a reader (or, in our case,
a player). In typical existing AI approaches to discourse
generation (often focusing on instructional text as a target
genre), the content and organization of a discourse is se-
lected in order to provide rhetorical structure that leads a
reader to come to hold a certain set of beliefs. These beliefs
are the central communicative goals of the discourse and, in
some sense, the satisfaction of these goals is all that matters
in the process of constructing the discourse.

In contrast, the beliefs that a reader or player holds about
the story world at the end of a narrative are much less sig-
nificant than in the case of instructional text generation.
Rather, a storyteller (or a storytelling system) must give sig-
nificant care to the creation of a discourse that manipulates
the beliefs of the reader about the story world throughout
the course of the unfolding story. In narrative discourse,
information is intentionally withheld in order to create ef-
fects like surprise and suspense (Ohler and Neiding 1996;
Cheong and Young 2008). Information is presented out of
order (e.g., flashbacks or foreshadowing) in order to drive
expectations and build anticipation. Structures in narrative
discourse follow specific, genre- and medium-specific con-
ventions or idioms (Jhala and Young 2006) that license cer-
tain types of inferences in much the same way that indirect
speech acts license inferences in conversational discourse.
A narrative discourse may intentionally prompt inferences
at one point in the story that are in direct contradiction with
prompted inferences at other points in the story. In many
ways, it is the trajectory of the beliefs of a story? reader that
matters in narrative rather than his or her beliefs about the
story at its end.

Discussion
In the discussion above, I briefly describe two represen-
tational challenges for interactive narrative within game
worlds. Both these challenges arise from the particular fic-
tional nature of game worlds themselves and the important
difference between real-world and narrative models. These
two areas are provide a significant number of open research

question, but they are not the only areas where progress
on fictional representation is needed. Fortunately, there are
many familiar logical tools that can be brought to bear on
these issues. Epistemic logics, dynamic logics, logics of
action and change and other computational models with
well-understood semantics address aspects of these prob-
lems. Just as planning algorithms provide significant, well-
founded models for the generation of casual and temporal
structures in stories, so these logical tools come with ob-
vious first steps towards application in narrative contexts.
Whatever points are chosen for advance in this area, how-
ever, the significantly distinct nature of narrative and fic-
tional worlds must play a central and consistent role.
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Discovering symbols from interactions — easier than
explaining interactions via symbols?

Amitabha Mukerjee
Department of Computer Science and Engineering, Indian Institute of Technology, Kanpur, India

Models of symbols in logic differ fundamentally from
how what symbols are in linguistic usage. Most crucially,
symbols in language, in the cognitive linguistic view (Lan-
gacker 1991), are a tight binding between the phonological
pole (or the label), and the semantic pole (all sorts of as-
sociations indexed to the label). In the developmental view
of language, such symbols are learned based on experiential
patterns. On the other hand, symbols are givens in logic, and
attempts at constructing semantics, e.g. in model theory, can
only define these in terms of other algebraic symbols, which
are in the limit, not experientially grounded.

At one level, all algebras are autonomous axiomatic con-
structs, not requiring any semantics; this is why in formal
logic, semantics is sometimes considered an ”illusion”. On
the other hand, logic gets much of its legitimacy in terms
of its being able to “formally model phenomena such as so-
cial interactions” or even in esoteric questions such as “What
makes a storyline interesting” (Löwe 2009)? To address
such questions in terms of formal structures is meaningful
if it provides insights or holds explanatory power in under-
standing such interactions. In particular, it would be impor-
tant for artificial systems that attempt to learn to interact.

But is logic causally prior to the interaction, or is it inter-
action that lets us reconstruct it in terms of logic? Arguments
on both side of the debate have been made by philosophers
(Quine, Fodor). I would like to focus on the semantics, and I
would like to argue that to assume that the logical structures
are prior to experience might call for a much larger set of
assumptions (requiring us to natively know these constructs,
in the Fodorian sense), and hence might be violative of Oc-
cam’s razor.

But while defining the semantics of interaction is a com-
plex enterprise, is it really any simpler in the other direction?
This would depend on the mechanism suggested for learning
semantics.

We present some arguments for the naive position that
semantics, in the form of what psychologists call “image
schemas”, arise directly from perceptual inputs, and is thus
prior to syntax. Our approach is similar to Carnap’s radical
reductionism, in that we feel that semantics may form a pri-
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ori categories based on similarity (Aufbau’s remembered as
similar (Schilpp 1963). If this relation is representedR, then
it may, in a certain sense be a prior, though the descriptors
of the sensory phenomena on which it works (“features”)
may not be. In addition, our mechanism considers bottom-
up attention as another prior, which selects elements from
the dataset using a priori measures of relevance, thus ruling
out certain combinations and limiting the set of objects to be
matched byR.

Even if the enterprise we suggest is successful, it results in
a private language, which is susceptible to drift, as pointed
out in late Wittgenstein. We propose that these prior inter-
nal abstractions are subsequently stabilized through interac-
tions with a set of conventional categories that exists among
others the system is interacting with. This external system
serves to stabilize the units of the mental lexicon and also
to modify it, by amplifying certain distinctions and merging
others.

Clearly this is a forbiddingly complex argument, and
the validity is subject to recognizing the mechanisms in-
volved. Unlike Carnap’s approach however, it is possible
to now construct empirical demonstrations of how the pro-
cess might work. We proceed next to suggest some clues
as to how this might be achieve, by presenting demonstra-
tions from two domains. In the first, we consider a sys-
tem that learns, from co-occurring language and visual se-
quences, relations on events. In the second, we show how
an intuitive sense of optimization may constitute one of the
mechanisms that lead to the lower-dimensional chunks that
eventually can form the atomic units in deriving symbols,
and eventually inferential systems, from a chaotic percep-
tual space.

Composition occurs first in semantics, and is then re-
flected in syntax. This then provides the basis for an a pos-
teriori logic with which we can describe some of the effects
in the real world. We demonstrate how simple modus po-
nens structures might develop as an inheritance structure for
action types, and how these eventually get reflected in the
syntactic constructs such as valency.

Domain 1: Actions in 2D visual input
Here we consider a simple 2D visual input, which is an-
alyzed based on a 2D feature vector, and clustered using
an unsupervised clustering algorithm, which uses euclidean
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distance in the feature space as its model of R. The input
and the clusters in the features space are shown in Figures 1
and 2.

Figure 1: Input visual sequence of relative motions between
two objects. (a) and (b) are both instances of “chase”, but
attentive focus (in our computational bottom-up simulation)
goes to the pursuer (square) in (a) and on the leader (circle)
in (b). (c) and (d) are instances of “move-away” and “move-
closer”. We show that the conceptual notions underlying
these units correlate with four concept spaces that can be
clustered in a 2D feature space representing relative position
and relative velocity.
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Figure 2: Unsupervised emergence of clusters in feature
space

These four clusters map dominantly to one of the three
concepts of “come closer”, “move away”, and “chase”, but
since the latter is not symmetric, we find two instances of
the latter, C3 an C4, in the cluster space. These may be
roughly thought of as corresponding to “Lm chases Tr” and
to ”Lm follows Tr” (Lm=landmark = object in attentive fo-
cus; Tr=trajector). (Satish and Mukerjee 2008)

The input to each cluster is ordered in terms of the
trajector-landmark distinction. What is revealing is that if
the ordering is altered, the clusters C1 and C2 continue to
be recognized as the same, but clusters C3 and C4 are in-
verted. Thus, this discovers reflexivity for the predicates
move-closer and move-away, and asymmetry for chase. In
syntax, these will reflect as free word-order for the first two
predicates, and for inferences a specific ordering in the latter.

Further, if the number of clusters are increased, we
find preliminary evidence that the clusters move-closer and
move-away are also classified into three clusters. These ap-
pear to correspond to the situations where one object (either
the landmark or the trajector) is static, or where both are
moving simultaneously.

Finally, these were correlated with linguistic inputs (un-
processed commentary provided by American and Indian
speakers), and reasonably high correlations are obtained for

these in terms of phrases in the language stream. This com-
pletes the symbol discovery process by relating the prior im-
age schema (the semantic pole) with a label (the phonolog-
ical pole). Subsequently, all relations in which this label is
involved may be thought as new logical structures that can
be added to the system.

Domain 2: Optimization and Symbol formation
Many input spaces are very complex and high dimensional.
Thus a very large number of parameters may be required to
define a padlock geometry, say. Yet, once we consider func-
tion, many of these parameters do not seem independent; we
may find that as the body of the lock grows larger, the diame-
ter of the shackle bolt also increases. Thus these two param-
eters are not independent. In the cognitive literature, these
type of relations are called chunks. Discovering chunks may
constitute be a fundamental step in the process of discover-
ing symbols in high-dimensional perceptual spaces.

We consider this problem in the context of design, where
function is often more formally elucidated than in everyday
situations. Discovering a systematic inference structure for
design problems also remains an important problem. Also,
the dimensionality of many design problems (the number of
parameters N required to describe a design) is very large.

In such situations, we find that optimization results in a
sharp reduction of the parameter space. In general, designs
are often evaluated based on multiple functional objectives,
so that their optima lies on a pareto frontier; if there are d
objectives, then this frontier has dimensionality d − 1 (usu-
ally d << N ). If the functional mapping is well-behaved,
then the set of pareto designs in the N dimensional space
will lie on a d − 1 dimensional manifold. Such manifolds
can be detected, and lead to the formation of chunks.

As an example, we consider an universal motor, with eight
independent design parameters, optimized here for three
functional aspects - mass, torque and efficiency. The result-
ing set of non-dominated designs lie on a 2D surface, and
can be clustered in an unsupervised manner (a). The same
designs are then projected from the 8 dimensional parameter
space onto a 2D manifold using Locally Linear Embedding
(LLE). It is seen that the mapping remains coherent, reveal-
ing reasonable inter-parameter relationships along each axis
of the lower dimensional space.
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Figure 3: Optimal surfaces form lower dimensional chunks.

Conclusions
We have sketched the barest outline of a mechanism
whereby semantic units may be learned directly, and the re-
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lations between these may give rise to syntax. When ex-
posed to a cultural system of symbols, these proto-concepts
get reified and stabilized, and rich sets of relations are added
to the system.

If such a mechanism exists, it would be able to explain
how logical primitives arise to begin with. The other alter-
native, that logical primitives are ontologically prior in some
sense, faces the complex task of explaining how these set of
symbols and their semantics arose in the cognitive structure.
One answer may be radical nativism as in Fodor, but this re-
quires too complex an input at the very least, and fails the
Occam’s razor.

While clearly not complete, this process highlights the
possibility that logic may be a consequence, and not a prior,
to understanding various modes of interaction. If so, the en-
terprise suggested in this workshop may be doomed. Logic
is fine as it is in terms of a set of abstract relations. It may
also be interesting as a post facto explanation of interactins
etc., but the set of symbols that are used in such enterprises
must be grounded in experience, and if this is to happen, the
same system can also derive the rules of logic, and not the
other way around.
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Abstract

Our aim is to use the logic of public announcements and more
generally dynamic epistemic logics as a logic of speech acts.
To that end we start from a simple multimodal logic of be-
liefs and goals (without common belief), and add public an-
nouncements. We suppose that announcements do not mod-
ify goals. We then consider several variants of speech acts of
assertive and directive force and provide a modeling in terms
of speech acts.

1. Introduction
In this paper, we consider the domain of communication
between agents, in particular we describe the dynamics of
mental states due to communication by means of speech
acts. Starting from the representation of speech acts by
(Grice 1989), we consider the mental states which define
the success preconditions of a speech act: intentions and be-
lief. Thus Alice can say to Ben I like cookies. The mental
state corresponding to this action, if Alice is honest, is that
Alice wants that Ben believes that she likes cookies. This
is the well-known assertive speech act. On this way, Grice
defines other kinds of speech acts we consider in this paper:
assert, inform , confirm , request, yes-no question. We do
not only consider the mental states of the speaker, but also
we represent the mental states of the hearer. In particular,
we represent how the speech act influences beliefs and in-
tentions of a locutor.

In agreement with Grice’s theory, we suppose that when
an agent speaks, he informs about his mental states. In the
previous example, when Ben hears Alice’s utterance I like
cookies, whether he thinks Alice is honest or not, he starts to
believe that Alice wants him to beliefs that she likes cookies.
Thus, in case of a successfull communication, the hearer will
understand the mental states of the speaker.

The success preconditions of speech acts are formalized
in this work by means of a modal logic of beliefs and goals.
Similar formalisms have been used in (Herzig and Longin
2002; Sadek 2000). The logic is extended with modal opera-
tors for announcements of Dynamic Epistemic Logic (DEL)

Copyright c© 2009, the author(s). All rights reserved.
In: Benedikt Löwe (ed.), LSIR-2: Logic and the Simulation of
Interaction and Reasoning, Pasadena CA, U.S.A., 12 July 2009.
pp. 13–17.

(van Ditmarsch, van der Hoek, and Kooi 2007) in order to
model the dynamics speech acts. Our formalism enables to
represent how a speech act of the speaker modifies the be-
liefs of the hearer and so to capture the dynamic dimension
of a dialogue between agents.

The paper is organized as follows: we first present the
static modal logic of beliefs and goals. Then we provide a
definition of model update by an announcement. Finally, we
formally characterize the success preconditions of several
kinds of speech acts and we develop an analysis of speech
act dynamics.

2. A logic of beliefs and goals
Let PRP = {p, q, . . .} be a countable set of propositional
letters, and let AGT = {i, j, . . .} be a countable set of
agents. The set of formulas of our logic of beliefs and goals
is defined by the following BNF:

φ ::= p | > | ¬φ | φ ∧ φ | Beliφ | Goaliφ

where p ranges over PRP and i ranges over AGT. Beliφ
reads “agent i believes that φ” and Goaliφ reads “agent i
wants that φ”. The others boolean operators⊥,∨,→ and↔
are defined in the standard way.

Models for that language are of the form M =
〈W,B,G, V 〉 where

• W is a nonempty set of possible worlds;

• B : AGT −→ 2W×W associates a belief accessibility
relation to every agent;

• G : AGT −→ 2W×W associates a goal accessibility rela-
tion to every agent;

• V : W −→ 2PRP associates to every possible world a
valuation.

We use Bi(w) to denote the set {w ′ | 〈w ,w ′〉 ∈ Bi}, Gi(w)
to denote the set {w ′ | 〈w ,w ′〉 ∈ Gi}. Bi(w) is the set of
worlds that are compatible with agent i’s beliefs at world w
and Gi(w) is the set of worlds that are compatible with agent
i’s goals at world w .

The truth conditions are as usual:

• M,u |= Beliφ iff M, v |= φ for every v such that uBiv;

• M,u |= Goaliφ iff M, v |= φ for every v such that uGiv;
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The logic of that class of models is fairly standard. It can
be axiomatized by the principles of K45 for the belief op-
erator Beli, the principles of KD for the goal modal Goali,
plus the following axiom schemas of positive and negative
introspection for goals:

(1) Goaliφ→ BeliGoaliφ

(2) ¬Goaliφ→ Beli¬Goaliφ

Axioms 4 and 5 for beliefs correspond together to the fol-
lowing semantic constraint (C.1) on models, Axiom D for
goals corresponds to the constraint (C.2) and, finally, the
axioms of positive and negative introspection for goals cor-
respond together to the semantic constraint (C.3).

(C.1) w ′ ∈ Bi(w) implies Bi(w) = Bi(w ′)
(C.2) Gi(w) 6= ∅
(C.3) w ′ ∈ Bi(w) implies Gi(w) = Gi(w ′)

3. Adding announcements
We suppose that announcements are public, and that they
only modify the agents’ beliefs, but not their goals. Tech-
nically, our logic combines Kooi’s version of public an-
nouncement logic (Kooi 2007) with Gerbrandy’s logic of
private updates (Gerbrandy 1999; Gerbrandy and Groen-
eveld 1997). The latter allows us to update beliefs without
updating goals, and is a particular dynamic epistemic logic
(Baltag, Moss, and Solecki 1998; Baltag and Moss 2004;
van Ditmarsch, van der Hoek, and Kooi 2007).1

We extend our language by modal operators of public an-
nouncement by adding [φ!]φ to the above BNF. The formula
[ψ!]φ reads “φ holds after the public announcement of ψ”.

In order to give semantics to announcements we de-
fine the update of a model by an announcement. The up-
date of M = 〈W,B,G, V 〉 by φ! is the model Mφ! =
〈Wφ!,Bφ!,Gφ!, V φ!〉 where

• Wφ! = {ub : u ∈W} ∪ {ug : u ∈W};
• Bφ! = {〈ub, vb〉 : 〈u, v〉 ∈ B and M, v |= φ}∪{〈ug, vg〉 :
〈u, v〉 ∈ B};

• Gφ! = {〈ub, vg〉 : 〈u, v〉 ∈ G} ∪ {〈ug, vg〉 : 〈u, v〉 ∈ G};
• V φ!(ub) = V φ!(ug) = V (u).

Basically, the effect of an announcement is to shrink the set
of belief accessible worlds, while keeping constant the set of
goal accessible worlds.

Proposition 1. For every φ, if M is a model of our logic of
beliefs and goals then Mφ! is still a model of our logic of
beliefs and goals.

Proof. The proof consists in verifying the conservation of
semantic properties seen ahead.

1For readers who are familiar with these logics: our event mod-
els have two possible events b and g, where Bi = {〈b, b〉, 〈g, g〉}
and Gi = {〈b, g〉, 〈g, g〉}.

• For C.1: There are two cases for belief after announce-
ment: either w2b ∈ Bψ!

i (w1b) or w2g ∈ Bψ!
i (w1g). In each

case, it implies by definition that w2 ∈ Bi(w1). Then
Bi(w1) = Bi(w2), because M satisfies constraint C.1.
And also assume w3 ∈ Bi(w2). Then w3 ∈ Bi(w1).

In case w2b ∈ Bψ!
i (w1b): if w3 |= ψ then w3b ∈

Bψ!
i (w2b) and w3b ∈ Bψ!

i (w1b). And if w3b 6|= ψ

then w3b 6∈ Bψ!
i (w2b) and w3b 6∈ Bψ!

i (w1b) and w3g 6∈
Bψ!
i (w2b) and w3g 6∈ Bψ!

i (w1b).
Then Bψ!

i (w1b) = Bψ!
i (w2b).

In case w2g ∈ Bψ!
i (w1g): whether or not w3 |= ψ then

w3g ∈ Bψ!
i (w2g) and w3g ∈ Bψ!

i (w1g).
Then Bψ!

i (w1g) = Bψ!
i (w2g).

Therefore, M ψ! satisfies constraint C.1.
• For C.2: Let us suppose Gψ!

i (wb) = ∅ . Then Gi(w) = ∅
by the semantic definition, and it is contradictory with the
constraints on M . Then Gψ!

i (wb) 6= ∅. It is the same proof
for Gψ!

i (wg) 6= ∅. Therefore M ψ! satisfies constraint C.2.
• For C.3: There are two cases for belief after announce-

ment: either w2b ∈ Bψ!
i (w1b) or w2g ∈ Bψ!

i (w1g). In each
case, it implies by definition that w2 ∈ Bi(w1). Then
Gi(w1) = Gi(w2), because M satisfies constraint C.3.
And also assume w3 ∈ Gi(w2). Then w3 ∈ Gi(w1).

In case w2b ∈ Bψ!
i (w1b) : w3g ∈ Gψ!

i (w2b) and w3g ∈
Gψ!
i (w1b). And in case w2g ∈ Bψ!

i (w1g) : w3g ∈ Gψ!
i (w2g)

and w3g ∈ Gψ!
i (w1g).

Then Gψ!
i (w1) = Gψ!

i (w2) in both cases.
Therefore, M ψ! satisfies constraint C.3.

Items 1, 2 and 3 together imply that M ψ! is a model of our
logic of belief and goal.

The truth condition for announcement is:
• M,u |= [ψ!]φ iff Mψ!, ub |= φ

We suppose the usual definitions of validity and satisfia-
bility. Then the following equivalences are valid:

(3) [ψ!]p↔ p if p ∈ PRP

(4) [ψ!]¬φ↔ ¬[ψ!]φ

(5) [ψ!](φ ∧ χ)↔ ([ψ!]φ ∧ [ψ!]χ)

(6) [ψ!]Beliφ↔ Beli(ψ → [ψ!]φ)

(7) [ψ!]Goaliφ↔ Goaliφ

Proof.
(3) 〈W,B,G, V 〉,w |= [ψ!]p
iff 〈Wψ!,Bψ!,Gψ!, V ψ!〉,wb |= p
iff w ∈ V ψ!(p)
iff w ∈ V (p)
iff 〈W,B,G, V 〉,w |= p.

(4) 〈W,B,G, V 〉,w |= [ψ!]¬ϕ
iff 〈Wψ!,Bψ!,Gψ!, V ψ!〉,wb |= ¬ϕ
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iff 〈Wψ!,Bψ!,Gψ!, V ψ!〉,wb 6|= ϕ
iff 〈W,B,G, V 〉,w 6|= [ψ!]ϕ
iff 〈W,B,G, V 〉,w |= ¬[ψ!]ϕ.

(5) 〈W,B,G, V 〉,w |= [ψ!](ϕ1 ∧ ϕ2)
iff 〈Wψ!,Bψ!,Gψ!, V ψ!〉,wb |= ϕ1 ∧ ϕ2

iff 〈Wψ!,Bψ!,Gψ!, V ψ!〉,wb |= ϕ1

and 〈Wψ!,Bψ!,Gψ!, V ψ!〉,wb |= ϕ2

iff 〈W,B,G, V 〉,w |= [ψ!]ϕ1 and 〈W,B,G, V 〉,w |= [ψ!]ϕ2

iff 〈W,B,G, V 〉,w |= [ψ!]ϕ1 ∧ [ψ!]ϕ2.

(6) We show that the equivalent formula
¬[ψ!]Beliϕ↔ ¬Beli(ψ → [ψ!]ϕ)

is valid:
〈W,B,G, V 〉,w |= ¬[ψ!]Beliϕ
iff 〈W,B,G, V 〉,w |= [ψ!]¬Beliϕ, by (4),
iff 〈Wψ!,Bψ!,Gψ!, V ψ!〉,wb |= ¬Beliϕ
iff ∃w ′b ∈ Bψ!(wb) s.t. 〈Wψ!,Bψ!,Gψ!, V ψ!〉,w ′b |= ¬ϕ
iff ∃w ′ ∈ B(w) s.t. 〈W,B,G, V 〉,w ′ |= ψ and
〈W,B,G, V 〉,w ′ |= [ψ!]¬ϕ
iff ∃w ′ ∈ B(w) s.t. 〈W,B,G, V 〉,w ′ |= ψ ∧¬[ψ!]ϕ , by (4),
iff ∃w ′ ∈ B(w) s.t. 〈W,B,G, V 〉,w ′ |= ¬(ψ → [ψ!]ϕ)
iff 〈W,B,G, V 〉,w |= ¬Beli(ψ → [ψ!]ϕ).

(7) We show that the equivalent formula
¬[ψ!]Goaliϕ↔ ¬Goaliϕ

is valid:
〈W,B,G, V 〉,w |= ¬[ψ!]Goaliϕ
iff 〈W,B,G, V 〉,w |= [ψ!]¬Goaliϕ, by (4),
iff 〈Wψ!,Bψ!,Gψ!, V ψ!〉,wb |= ¬Goaliϕ
iff ∃w ′g ∈ Gψ!(wb) s.t. 〈Wψ!,Bψ!,Gψ!, V ψ!〉,w ′g |= ¬ϕ
iff ∃w ′ ∈ G(w) s.t. 〈W,B,G, V 〉,w ′ |= ¬ϕ
iff 〈W,B,G, V 〉,w |= ¬Goaliϕ.

The following rules of equivalence for announcements

(8) from φ↔ φ′ infer [ψ!]φ↔ [ψ!]φ′

(9) from ψ ↔ ψ′ infer [ψ!]φ↔ [ψ′!]φ

preserve validity.
The above equivalences 3-7 and rules of inference 8-9 are

so-called reduction axioms: they allow to ‘move’ announce-
ment operators across the other logical operators ‘inside’
formulas, and to eliminate them once they face a propo-
sitional letters. Rewriting formulas starting from the in-
nermost announcements, we can in this way eliminate an-
nouncement operators from formulas, resulting in an equiv-
alent formula of the underlying logic of beliefs and goals.

This provides a completeness result for our logic of an-
nouncements.
Theorem 1. Our logic of beliefs and goals is sound and
complete.

4. Speech acts as announcements
In dynamic epistemic logics announcements are usually
viewed as communication actions performed by an agent
that is ‘outside the system’, i.e. that is not part of the set
of agents AGT under consideration. Our aim is to investi-
gate how communication actions performed by agents from
AGT can be modelled in our logic of announcements. To

that end we consider a particular subset of announcements:
we say that formulas of the form Beliψ! or Goaliψ! are
about the mental state of agent i. We identify announce-
ments about the mental state of i, with actions performed by
i. We follow Grice’s idea that speech acts are expressions of
intentions by the speaker, and consider that such expressions
take the form Goaliψ! of announcements of goals. Such an-
nouncements of goals are directed towards an addressee.

4.1 Assertive speech acts
We consider the basic assertive as the primitive speech act
and we suppose that the other kinds of speech acts are de-
fined from this primitive speech act. We identify the ex-
pression “i asserts to j that ψ” with the announcement of
GoaliBeljψ:

Asserti,jψ
def= GoaliBeljψ!

One might express a more complex notion of as-
sertive speech act whose content is communicative in-
tention in the sense of Grice (Grice 1989) of the form
GoaliBeljGoaliBeljψ, i.e. agent i wants that j believes
that i wants that j believes ψ. In the classical Gricean view
of linguistic communication, a communicative intention of
the speaker is aimed at the recognition by the hearer of the
speaker’s goal of making the hearer to believe something.

Starting from the basic assertive, we define the two speech
acts inform and confirm. The speech act inform is a speech
act assert under the precondition that i believes that j has no
opinion about ψ. We identify it therefore with the announce-
ment of Beli(¬Beljψ ∧ ¬Belj¬ψ) ∧GoaliBeljψ:

Informi,jψ
def= Beli(¬Beljψ ∧ ¬Belj¬ψ) ∧GoaliBeljψ!

The speech act confirm is a speech act assert under the
precondition that i believes that j believes ψ. We iden-
tify it therefore with the announcement of BeliBeljψ ∧
GoaliBeljψ:

Confirmi,jψ
def= BeliBeljψ ∧GoaliBeljψ!

In both cases one might add the sincerity condition of as-
sertives to the announcement: the speaker believes what he
asserts. We then would write Beliψ∧GoaliBeljψ instead of
GoaliBeljψ for the basic assertive of the form Asserti,jϕ,
etc.

4.2 Directive speech acts
The speech act request is the basic speech act of the directive
kind. We define it from the assertive. We identify “i requests
j that ψ” with “i asserts that he wants that j has the goal that
ψ”:

Requesti,jψ
def= Asserti,jGoaliGoaljψ

The yes-no query “i asks j whether ψ” is a particular case
of a request:

Aski,jψ
def= Requesti,j(Beliψ ∨ Beli¬ψ)

Note that if we had the sincerity condition Beliψ for the
assertive speech act, under the condition ¬Beli⊥, the act
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of request would imply GoaliGoaljψ and the yes-no query
would imply GoaliGoalj(Beliψ ∨ Beli¬ψ).

Suppose j is cooperative. This could be expressed by the
formula

BeljGoaliBeljGoaliGoaljp→ Goaljp
Under this hypothesis the satisfaction conditions can be
guaranteed, i.e. we have

Theorem 2.
` [Requesti,jp](BeljGoaliBeljGoaliGoaljp

→ Goaljp)→ [Requesti,jp]Goaljp

Proof. We have the theorems that
` [Requesti,jp]BeljGoaliBeljGoaliGoaljp
and ` [Requesti,jp]Goaljp↔ Goaljp

so by K `[Requesti,jp](BeljGoaliBeljGoaliGoaljp
→ Goaljp)→ [Requesti,jp]Goaljp

4.3 Moore sentences in speech acts

In our logic one can study Moore-like sentences for beliefs.
We can prove that the assertion of p ∧ ¬Belip leads to
inconsistencies of the (higher-order) beliefs:

Theorem 3.
` Beli(p ∧ ¬Belip)↔ Beli⊥
` [Asserti,jBeli(p ∧ ¬Belip)!]BeljGoaliBeljBeli⊥
Proof.

• ` ¬Belip→ Beli¬Belip (axiom 5)
so ` ¬Beli¬Belip→ Belip
and ` BeliBelip ∧ ¬Beli⊥ → ¬Beli¬Belip
so ` BeliBelip ∧ ¬Beli⊥ → Belip
and so ` BeliBelip ∧ ¬Beli⊥ ↔ Belip ∧ ¬Beli⊥
Beli(p ∧ ¬Belip)
↔ Belip ∧ Beli¬Belip ∧ (Beli⊥ ∨ ¬Beli⊥)
↔ (Belip∧Beli¬Belip∧Beli⊥)∨(Belip∧Beli¬Belip∧
¬Beli⊥)
↔ Beli(p ∧ ¬Belip ∧ ⊥) ∨ (BeliBelip ∧ ¬Beli⊥ ∧
Beli¬Belip)
↔ Beli⊥
Therefore ` Beli(p ∧ ¬Belip)↔ Beli⊥

• So [Asserti,jBeli(p ∧ ¬Belip)!]BeljGoaliBeljBeli⊥
iff Belj(GoaliBeljBeli(p ∧ ¬Belip)→
[GoaliBeljBeli(p ∧ ¬Belip)!]GoaliBeljBeli⊥) by (6)
iff Belj(GoaliBeljBeli(p ∧ ¬Belip)→
GoaliBeljBeli⊥) by (7)
iff Belj(GoaliBeljBeli⊥ → GoaliBeljBeli⊥)
iff Belj>
which is a tautology.
Therefore
` [Asserti,jBeli(p ∧ ¬Belip)!]BeljGoaliBeljBeli⊥

On the same way, we can prove that

` [Asserti,jBeli(p ∧ ¬Belip)!]BeliGoaliBeljBeli⊥

5. Discussion and conclusion
An immediate extension of our logic is to add announce-
ments modifying goals, similar to (van Benthem 2007;
Roy 2008; van Benthem, Girard, and Roy to appear). Such
announcements would leave an agent’s beliefs unaltered. In
order to model this form of goal change, a product construc-
tion symmetric to the one for beliefs can be used.

Another issue we intend to investigate in the future is the
theory of speech acts in the context of indirected commu-
nication. The idea is to extend the analysis presented in
this paper to the case in which agents make assertions, re-
quests, queries, etc. to other agents by using a shared black-
board which can be observed by other agents connected to
it. In this case, an agent’s speech act (defined in terms of an-
nouncements) modify and update the contents of the black-
board which is accessible to other agents, rather than directly
modifying the beliefs and goals of other agents. In order to
model this notion of blackboard, as a form of artefact used
for mediating communication between agents, we intend to
use the logic of acceptance recently proposed in (Lorini et
al. 2009).

We also leave open the problem of integrating belief revi-
sion mechanisms into our logic, and refer to (Aucher 2003;
2008; van Ditmarsch, van der Hoek, and Kooi 2007; Baltag
and Smets 2007) for possible solutions.
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Abstract

One way to tackle the problem of acquiring general world
knowledge to support language understanding and common-
sense reasoning is to derive this knowledge by direct inter-
pretation of general statements in ordinary language. One of
several problems encountered in such an effort is that gen-
eral statements frequently involve “donkey anaphora”. Here
a “dynamic Skolemization” approach is suggested that avoids
dynamic semantics and leads naturally to script- or frame-like
representations.

Introduction: Long-range goals, and the need
for world knowledge

A group of us at the University of Rochester are pursuing
the ambitious goal of creating a broadly knowledgable di-
alog agent that is motivated by curiosity, by vicarious sat-
isfaction in fulfilling user goals, and by the sheer “plea-
sure” (positive utility) of engaging in conversation. How-
ever, our achievements so far fall far short of this goal: we
have (1) a general knowledge representation (episodic logic,
or EL) intended to match the expressiveness of human lan-
guages (e.g., (Schubert and Hwang 2000; Schubert 2000)),
(2) a functioning, but still incomplete inference engine for
that representation, EPILOG (e.g., (Schaeffer et al. 1993;
Morbini and Schubert 2008)), (3) compositional methods
for generating logical forms from English parses, (4) a large
base of general “factoids” (Schubert and Van Durme 2008),
and (5) a self-motivated, reward-seeking agent in a small
simulated world, capable of planning ahead and simple di-
alogs (Liu and Schubert 2009). One of the most glaring la-
cunae in all of this is a sizable world knowledge base.

Two related bottlenecks, and the KNEXT
system

I believe that human-like language understanding by ma-
chines is encumbered by two varieties of the notorious
“knowledge acquisition bottleneck”: a pattern acquisition

∗This work was supported by NSF grants IIS-0328849 and IIS-
0535105.
Copyright c© 2009, the author(s). All rights reserved.
In: Benedikt Löwe (ed.), LSIR-2: Logic and the Simulation of
Interaction and Reasoning, Pasadena CA, U.S.A., 12 July 2009.
pp. 19–23.

bottleneck, and a world knowledge acquisition bottleneck.
Concerning the former, I suggest that we need to re-
conceptualize parsing/interpretation as a massively pattern-
based process, in which more specific idiomatic and se-
mantic patterns select (and sometimes override) traditional,
generic phrase structure patterns (Schubert 2009). Concern-
ing world knowledge acquisition, we are confronted with a
variety of practical and theoretical problems, some of which
will be my focus here.

Our approach to knowledge acquisition is text-based, i.e.,
we are attempting to exploit the abundant textual materials
available online nowadays. Most of our efforts so far, start-
ing about 8 years ago, have been concerned with obtaining
simple general factoids from arbitrary texts (see item (4) in
the opening section). For example, the sentence “The boy
entered through the open door of the old man’s shack”, when
processed by our KNEXT system (e.g., (Schubert 2002;
Schubert and Tong 2003; Van Durme and Schubert 2008))
yields a set of EL formulas that are automatically verbalized
as

A BOY MAY ENTER THROUGH A DOOR OF A SHACK.

A SHACK MAY HAVE A DOOR.

A DOOR CAN BE OPEN.

A MAN MAY HAVE A SHACK.

A MAN CAN BE OLD.

(assuming that the intitial statistical parse is correct). We
have obtained many millions of such factoids, and we regard
these as providing a direct means for alleviating the pattern
acquisition bottleneck; i.e., they provide patterns of predi-
cation and modification that can be used to guide a parser
and semantic interpreter to produce more reliable phrasal
and logical form analyses. In this way they pave the way
for acquiring more complex knowledge.

Generic knowledge and donkey anaphora
In particular, with improved parsing and interpretive accu-
racy, we should be able to reliably interpret sentences with
multiple verbs, such as “A car crashed into a tree, killing
the driver”, or “If a car crashes into a tree, the driver is apt
to be injured or killed”. Note that the first sentence is spe-
cific, but should lend itself to tentative generalization, while
the second is already explicitly generic. (Generic sentences
similar to this can be found, for example, in the Open Mind
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Common Sense collection (Singh et al. 2002)). A key point
is that a generic conditional sentence such as the preced-
ing one (unlike the earlier simple factoids) can enable in-
ferences. For example, given a particular instance of a car
crashing into a tree, we can infer that the driver of the car
was probably injured or killed.

It is the acquisition of this kind of generic conditional
knowledge about the world that is currently our primary
concern. We are exploring a number of approaches, in-
cluding abstraction from clusters of related factoids (Van
Durme, Michalak, and Schubert 2009), abstraction from par-
ticular multi-verb sentences, and interpretation of available
collections of generic sentences. But there are some pro-
found difficulties afflicting all approaches that seek to de-
rive inference-capable generic knowledge from generic sen-
tences phrased in ordinary language:

• lexical ambiguity; e.g., “Journalists write articles” – ar-
ticles in what sense?

• temporal ambiguity; e.g., “People worry about the econ-
omy” – now? always?

• quantificational ambiguity; e.g., “Bears are rarely dan-
gerous” – few bears, or bears in general at few times?

• radical underspecification; e.g., “Cats land on their
feet” – under what conditions? and

• donkey anaphora; e.g., “If a car crashes into a tree,
the driver (of the car) is apt to be hurt” – which driver,
which car?

There are plausible approaches to all five issues, but I will
focus on the last, because it is equally important from the
perspective of NL semantics and from the perspective of
knowledge representation and reasoning (KR&R); my ap-
proach to donkey anaphora leads to a serendipitous conver-
gence of these perspectives.

The problem with donkey anaphora is well-known (Geach
1962). For example, in the sentence

If a farmer buys a donkey, he rides it home,
we would like to bind the anaphoric pronouns he and it to
the indefinites a farmer and a donkey in the antecedent. But
if we interpret the sentence (using a generic event quantifier
Gen) as

(Gen e: during(e,Extended-present)
[[(∃x: farmer(x))(∃y: donkey(y)) buys(x,y,e)]
→ (∃e′: after(e′,e) rides-home(x,y,e′)],

we are left with free variables in the consequent, falling
outside the scopes of the existential quantifiers in the an-
tecedent. This difficulty sparked the development of vari-
ous versions of dynamic semantics, including discourse rep-
resentation theory (DRT) (Kamp 1981; Heim 1982) and
dynamic predicate logic (DPL) (Groenendijk and Stokhof
1991). In these logics, formulas are thought of as transform-
ing an “input” variable assignment. In the above formalized
sentence, the antecedent formula would transform the val-
ues of x and y, for any given value of e, so as to satisfy
buys(x, y, e) (if such values exist); these values would then
be available in the consequent. We say in this case that x and
y are dynamically bound by the existential quantifiers in the

antecedent, even though they lie outside the static scopes of
those quantifiers.

A disadvantage of dynamic semantics from a KR&R per-
spective is loss of modularity. For example, even in a simple
narrative such as

A farmer bought a donkey; he rode it home,
if we use free variables for he and it that are dynamically
bound by the existential quantifiers in the first sentence, then
the combined meaning of the two sentences would be lost if
we interchanged their formal representations, let alone if we
stored these representations separately in a KB, for indepen-
dent use in inference processes. This difficulty is aggravated
in extended generic contexts. For example, in the conjunc-
tive sentence

Every man had a gun, and many used it,
the initial universal quantifier does not cover the second
sentence, and consequently dynamic interpretation of the
anaphoric it requires repetition of material from the first sen-
tence, along the lines

Every man had a gun, and many men had a gun
and used it.

Treatment of extended generic passages in DRT was pio-
neered in (Carlson and Spejewski 1997), but the need to re-
peat earlier material for each new quantifier that applied to
some portion of the generic passage was very much in evi-
dence in that study.

Dynamic Skolemization
These problems can be avoided by Skolemizing. For ex-
ample, the Skolemized representations of the two-sentence
examples above would be (neglecting tense)

farmer(A), donkey(B), bought(A,B,E1);
after(E2,E1), rode-home(A,B,E2).
(∀x: man(x)) gun(G(x))∧ had(x,G(x));
(Many x: man(x)) used(x,G(x)),

where A, B, E1, and E2 are Skolem constants and G is a
Skolem function. Note that if we immediately Skolemize
upon encountering an existentially quantified variable, the
Skolem constant or function will be available for resolving
subsequent anaphors.

But of course the recalcitrant cases are those involving
donkey anaphora, where the existential quantifiers occur in
a conditional antecedent, and thus in a negative-polarity en-
vironment. Standard Skolemization should not be expected
to “work” in such a case, and at first glance, it does not. For
example, consider a conditional version of the last example,
tentatively Skolemized as before:

If every man has a gun, then many use it.
[(∀x: man(x)) gun(G(x))∧ have(x,G(x))]
→ (Many x: man(x)) use(x,G(x)).

This formulation has many undesirable models, e.g., mod-
els in which there are men, each has a gun, and none uses
it, simply because G(x) happens to denote something that is
not a gun; in such a case, the conditional sentence is trivially
true in virtue of the falsity of the antecedent.

But this observation, that Skolemized donkey sentences
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are rendered trivially true by trivially false antecedents, also
holds the key to a solution: We constrain the Skolem con-
stants or functions in the antecedent so that they cannot be
trivially false. In the present example, this can be done by
stipulating (separately) the following Skolem conditional:

(∀x: man(x))[[(∃y: gun(y))have(x,y)]
→ [gun(G(x))∧ have(x,G(x))]].

Thus G(x) is constrained to refer to a gun that a man x has,
if indeed x is a man who has a gun; and thus if in fact every
man has a gun, then the Skolemized antecedent is true, and
so the conditional sentence as a whole is true only if many
men x use G(x), which must then be a gun that x has.

In general, we define dynamic Skolemization as the re-
placement of indefinites (as soon as they are encountered in
NL interpretation) by Skolem constants or functions, while
simultaneously stipulating a corresponding Skolem condi-
tional. More formally:

Given an occurrence of a formula (∃y : Φ)Ψ, contain-
ing free variables x1, ..., xm (and no unresolved refer-
ring expressions) in the “provisional logical form” of
an English sentence being interpreted,

(a) Assert the Skolem conditional
(∀x1)...(∀xm)[[(∃y : Φ)Ψ]→

[ΦF (x1,...,xm)/y ∧ΨF (x1,...,xm)/y]],
where F is a new m-place function symbol;

(b) Replace the original occurrence of (∃y : Φ)Ψ by
[ΦF (x1,...,xm)/y ∧ΨF (x1,...,xm)/y]].

Some points worth noting are the following. First, as long
as anaphors occur after (to the right of) their indefinite coref-
erents, dynamic Skolemization enables anaphora resolution
“as we go”. Second, we can easily generalize the above defi-
nition so that multiple indefinites occurring in sequence, and
lying within the scopes of the same non-existential quan-
tifiers, are Skolemized simultaneously. Third, the Skolem
conditional can be looked at as an equivalence, since its
converse is assured by existential generalization. Fifth, dy-
namic Skolemization reduces to ordinary Skolemization if
the existential formula (∃y : Φ)Ψ being Skolemized lies in
a positive-polarity (upward-entailing) environment; i.e., in
such a case the Skolem conditional can be shown to be logi-
cally redundant.

Abbreviating dynamic Skolemization: concept
definitions

There is a certain verbosity in the use of dynamic Skolem-
ization: we are writing down variants of the formula to be
Skolemized, (∃ y : Φ)Ψ, three times – once on each side of
the Skolem conditional, and once in the Skolemized version
of the original existential sentence. We can condense dy-
namic Skolemization through concept definitions that essen-
tially name the Skolemized material, and leave the Skolem
conditional itself implicit.

For example, for the earlier sentence, “If every man has
a gun, then many use it”, instead of writing down the stated

Skolem conditional, we would assert
(Def HG (x) (G) [gun(G) ∧ has(x,G)]),

and rewrite the logical form of the given sentence as
[(∀x: man(x)) HG(x)→ (Many x: man(x)) use(x,G(x)).

The stated Def-schema is a shorthand for
(∀x)[HG(x)↔[(∃y: gun(y)) have(x,y)]

↔[gun(G(x))∧ have(x,G(x))]],
i.e., it stipulates that HG(x) holds just in case x has a
gun, which in turn holds just in case G(x) is a gun that
x has. In general, a Def-schema for an existential formula
(∃y1)...(∃yn)Φ, containing free variables x1, ..., xm,

(Def Π (x1, ..., xm) (F1, ..., Fn) ΦF/y),

is shorthand for
(∀x1)...(∀xm)[Π(x1, ..., xm)↔

(∃y1)...(∃yn)Φ ↔ ΦF (x1,...,xm)/y],

where F (x1, ..., xm) = (F1(x1, ..., xm), ..., Fn(x1, ..., xm))
and y = (y1, ..., yn).

Creating scripts
To see how these devices lead to scripts, suppose that we are
given something like the following English generic passage
as a description of the process of dining at a restaurant:

Generally, when a person dines at a restaurant,
they enter it,
they get seated at a table,
they make a meal selection from a menu,
they tell the order to a waiter,
etc.

A rough provisional logical form, with anaphors subscripted
for clarity with the presumed referents, is as follows:

(Gen e: (∃x: person(x))(∃y: restaurant(y)) dine-at(x,y,e))
(∃e1: initial-part(e1,e)) enter(x,ity ,e1) ∧
(∃e2: part-of(e2,e) ∧ before(e1,e2))

(∃t: table(t)) get-seated-at(theyx,t,e2) ∧
...etc...

The restrictor of the generic sentence is not a positive polar-
ity environment, and so we Skolemize it dynamically, using
a concept definition for conciseness. Note that the only free
variable in the restrictor is e; for memonic reasons, we use
X , Y for the Skolem functions (of e) corresponding to x and
y:

(Def PDR (e) (X,Y)
[person(X) ∧ restaurant(y) ∧ dine-at(X,Y,e)]).

The body of the generic formula is a positive-polarity envi-
ronment, and so we use ordinary Skolemization there. The
rewritten logical form, with the anaphors resolved, thus be-
comes

Gen e: PDR(e))
initial-part(E1(e),e) ∧ enter(X(e),Y(e),e) ∧
part-of(E2(e),e) ∧ before(E1(e),E2(e)) ∧
table(T(e)) ∧ get-seated-at(X(e),T(e),e) ∧
...etc...

But now it is clear that the Def-schema for predicate PDR,
together with the condensed logical form for the generic
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restaurant dining description, is remarkably script-like in
structure and meaning. In fact, if we were to package the
two items together, using a Script header, we would have

(Script PDR (e) (X,Y)
[person(X) ∧ restaurant(Y) ∧ dine-at(X,Y,e)]

initial-part(E1(e),e) ∧ enter(X(e),Y(e),e) ∧
part-of(E2(e),e) ∧ before(E1(e),E2(e)) ∧
table(T(e)) ∧ get-seated-at(X(e),T(e),e) ∧
...etc... ),

where by definition we take the first 4 items following
“Script” to denote (respectively) the script name (i.e., the
predicate defined in the implicit Def-schema), the script pa-
rameters, the script roles, and the script summary (much as
proposed in (Lehnert 1977)). The advantages here, however,
are that
• The representation is derived directly from English logi-

cal form.
• The constituents of the script have a precise semantics,

via their defined relationship to the original logical repre-
sentation.

• We can refer to functional entities in scripts outside the
scripts; this provides a solution to many problems in the
interpretation of bridging anaphora.

• Because of the preceding point, we have complete
flexibility in elaborating the derived script or vari-
ants/specializations of it.
The last two points deserve brief illustration. Suppose that

we have stored the above sort of script in a KB. and we come
across the sentences

John dined at Mario’s. His table was wobbly.
In traditional script theory, as well as in a dynamic seman-
tics approach, there is no simple way to equate the table re-
ferred to with the table John was seated at, if he followed
the generic restaurant script. Essentially we would have to
instantiate the general script, which would have John being
seated at some table and eating at that table, and then iden-
tify that table with the one referred to here. In the present
approach, we can simply refer to the table as T (E), where
E is John’s dining at Mario’s, and its proper role in the script
instance – which need it not be made explicit – will be well-
defined. The same method applies, for instance to parts of
familiar kinds of objects. For example, in

John ran to a nearby house. The door was locked,
we can easily interpret the door as a Skolem function ap-
plied to the house in question, where that Skolem function
was dynamically generated in the interpretation of a descrip-
tion along the lines, “A house generally has a door at the
front, through which people can enter the house”. Descrip-
tions such as this one, which quantify over objects rather
than events, can be thought of as giving rise to Minsky-like
frames rather than scripts, upon dynamic Skolemization, and
packaging with the appropriate Def-schema.

Concerning variant scripts and specialized scripts,
consider the following elaboration of the original generic
passage:

When people dine at a fancy restaurant, their table

usually has a tablecloth on it.
Much as in the previous examples, we can use the available
Skolem functions for this elaboration:

(Usually e: [PDR(e)∧fancy(Y(e)])
(∃c: tablecloth(c)) on(c,T(e)).

We can in turn Skolemize the tablecloth:
(Usually e: [PDR(e)∧fancy(Y(e)])

tablecloth(C(e)) ∧ on(C(e),T(e)).

Concluding remarks
I have indicated briefly that dynamic Skolemization can be
used to deal systematically with donkey anaphora in generic
sentences, without recourse to dynamic semantics or rep-
etition of material. Moreover, the approach fortuitously
leads to a convergence with traditional script- or frame-
representations, while providing more flexibility and having
a precise semantics. The connection between Skolem func-
tions and roles in frames was noted early on in (Hayes 1981),
but Hayes did not consider the possibility of Skolemizing
indefinites in negative-polarity environments. Also, what
has been added here is a systematic transduction from lan-
guage to scripts or frames, and an elucidation of the role of
Skolem constants/functions in anaphora, including donkey
anaphora.

In previous work, I described both the dynamic Skolem-
ization approach (Schubert 1999) and an approach called
implicit Skolemization that avoids the stipulation of Skolem
conditionals (Schubert 2007). But neither approach seemed
fully satisfactory: Dynamic Skolemization seemed inca-
pable of dealing with extended negative contexts where
an indefinite phrase and anaphoric references to it both
lie within the same downward-entailing environment; im-
plicit Skolemization deals uniformly with all environments
– but the semantics remains dynamic. However, I have re-
cently found that negative-polarity environments can in fact
be handled straightforwardly within the dynamic Skolem-
ization approach. In essence, we distinguish co-Skolem
constants/functions from the ordinary variety, and inter-
pret these in terms of universal closure (whereas ordinary
Skolem constants/functions are in effect interpreted in terms
of existential closure). It turns out that co-Skolemization in
donkey anaphora leads to “strong readings” of donkey sen-
tences (where for instance “If a man has a gun, he uses it”
is considered true only if multiple-gun owners use all their
guns; in the weak readings I have restricted myself to herein,
the multiple-gun owners need only use one of their guns). In
current work, I am also looking at dynamic Skolemization of
indefinites within attitudes such as belief, and this likewise
appears feasible.
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Abstract
Logical models for agent interaction often neglect differences
between agents. Yet, human agents know very well that the
way they interact with other agents depends crucially on the
other agent’s ‘type’. A good example is the game of poker,
where success depends heavily on the quality of opponent
models. Also, the way human agents interact with software
agents is completely different from the way they interact with
human agents. This paper gives a preliminary investigation
into the possible game theoretic and logical dimensions of
agent types that determine the ways agents interact with each
other.

Introduction
In the area of logics for agent interaction and game theory,
it is usually assumed that the participating agents are all of
the same type. And the investigations forming an excep-
tion to this general pattern, concern limited aspects. For in-
stance, within the BOID architecture (Broersen et al. 2002;
2001), we distinguish between between benevolent and self-
ish agents, and Liu (Liu 2009) distinguishes between agents
with different types of memory.

However, knowing the other agents ‘type’ is of crucial im-
portance when deciding on a strategy for interaction with an-
other agent. Recent developments in AI models for the game
of poker (Billings et al. 1998; Felix and Reis 2008) have
acknowledged this crucial aspect of interaction. Poker is a
cards game that is not so much about the strengths of play-
ers’ hands, but about what opponents think is the strength
of a player’s hand. Different opponents have different be-
liefs, and managing these beliefs of opponents is of crucial
importance for success in poker. Different opponent models
for poker have been developed. Most are low-level opponent
models, based on statistical analysis of opponent behavior.
But one can also think of high level models, keeping track
of, for instance, how risk averse opponents are.

For another argument in favor of opponent models, con-
sider the well known problems with backwards induction
(Aumann 1995). Examples of well-known games where
backwards induction is a rational mode of reasoning are the
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so called centipede games (Rosenthal 1981). Example: there
is a stack of 100 pennies and there are two agents. In each
turn each agent can either take 1 or 2 pennies. But if an
agent takes 2, the game is stopped. By backwards induction
reasoning we arrive at the conclusion that the agent starting
has to take 2 immediately, and thus that the game ends after
the first move. However, experiments with human players
have shown that in practice human agents often do not play
like this. The reason is not that they are not able to see the
reasoning according to backwards induction. So, apparently,
there are other forms of reasoning interfering. The question
is what these other forms of reasoning are. One attractive
view is that agents playing the game will recognize some-
how that by cooperating they can gain much more pennies.
But this crucially depends on the view on the opponent in
the game. Is the opponent capable of recognizing the gen-
eral structure of the problem? Is the opponent even aware of
the concept of cooperation? Or is the opponent a computer
knowing only standard game theory (for then it will not co-
operate...)? If I start by taking one penny, will my opponent
be smart enough to recognize this as a signal for wanting to
cooperate? If the opponent indeed cooperates, at what point
will he then stop doing so? These are all aspects of opponent
models without which the reasoning that in many cases in-
terferes with the backwards induction reasoning, cannot take
place.

It is a fundamental question then to ask what general as-
pects of opponent models are relevant for deciding on what
strategy to employ. This brief abstract considers the dif-
ferences between modeling an opponent (1) as a random
chooser, (2) as a maximal expected utility decision making
agent, (3) a game theoretic agent, and finally (4) an agent
that is equal in all relevant decision making aspects.

An extended prisoners dilemma

I will give an extension of the standard prisoners dilemma
that is designed to make it clear that our choice for what to
do depends on fundamental characteristics of our model of
the opponent. Table 1 gives the game. The standard pris-
oners dilemma is extended with one extra choice for each
player: the ‘be silent’ action. Furthermore, ‘defecting’ is
replaced by ‘betraying’. I assume the table speaks for itself.
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XXXXXXXXXYou
Opponent Confess Silent Betray

Confess (4, 4) (0, 5) (0, 6)
Silent (5, 0) (3, 3) (1, 1)

Betray (6, 0) (1, 1) (2, 2)

Table 1: An extended prisoners’ dilemma

Playing against a random chooser. If we assume the op-
ponent is a random chooser we deny him any rationality.
Basically, we treat the opponent not as another agent, but as
part of an unpredictable environment, like in decision the-
ory. So when deciding what to play, we can best employ the
decision theoretic ‘sure thing’ principle (Savage 1954). The
game theoretic counterpart is ‘strict dominance’. The idea
is that we simply look at which choice is best ‘on average’,
without assuming the opponent has any preference for one
choice over the other (after all it is a random chooser, and
thus seen as a non-deterministic environmental variable).
Looking at table 1 we easily reach the conclusion that we
should play ‘betray’. For two of the opponent ‘events’ (con-
fessing and betraying), betraying is the best choice, and for
one of the opponent ‘events’ (be silent) betraying is the sec-
ond best choice. So, ‘betray’ is by far the best choice ‘on
average’, which is why we should play this choice under the
given assumption about the ‘opponent’.

Playing against a maximal expected utility maximizer.
The natural next question to ask is whether it makes a differ-
ence is we switch from seeing the other as a random chooser
to seeing the other as a decision theoretic agent that sees
us as part of his non-deterministic environment. The gen-
eral answer to this question we leave to an extended version
of this paper, but it is clear that for the particular interaction
shown in the table, there is no difference: if the other reasons
decision theoretically, it will choose ‘betray’, which makes
‘betray’ also the best choice for us.

Playing against a game-theoretic agent. If we assume
the opponent is a game theoretic agent, we may assume it
will recognize that there are two Nash equilibria. To be pre-
cise: (2, 2) and (3, 3) are Nash, while (4, 4) is not. Also
(2, 2) is Pareto dominated by (3, 3), which in turn is Pareto
dominated by (4, 4). Combining these two game theoretical
solution concepts, we can trust the opponent to choose ‘be
silent’ as the better option. Which is why, clearly, we also
have to play ‘be silent’.

Another game-theoretically inspired line of reasoning is
that we can first eliminate the ‘confess’ choices from the
table, because whatever the other agent does, ‘confessing’ is
always the worst choice (a variant of dominance reasoning).
In the table that is left, we obviously have to choose ‘be
silent’.

Playing against an agent that is equal in all relevant de-
cision making aspects. I now want to consider the most

fascinating category of agents: agents that are exactly like
you. At the same time, this is the most dubious and contro-
versial category, since it is not clear what it actually means
to call two agents exactly the same and whether it makes
sense to make decisions depend on it.

But we can employ a thought experiment. Assume we
talk about software agents. We can call software agents the
same if they run the same program. Now assume we reason
from the perspective of such a software agent, and we know
the opponent runs exactly the same program. Now there is
a lot to say in favor of ‘confess’ as the best option. The
point is that we simply can be very sure that the opponent
reaches the same conclusion as we do, simply because it is
identical to us. This draws us inevitably in the direction of
the ‘confess’ choice.

A slightly different kind of super-rational reasoning lead-
ing to the same conclusion, is the following. If there is such
a thing as an objectively (mathematically, or even empiri-
cally) best choice, than this best choice must be the same
one for both players if both players are identical. But if both
players necessarily play an identical choice, the best choice
can only be ‘confess’, since (4, 4) is better than (3, 3) and
(2, 2).

Admittedly, the arguments for playing ‘confess’ given in
this subsection are debatable. Nevertheless, it is tempting to
see the relation between the forms of reasoning associated
with the different assumptions about the opponent as subse-
quent steps on one continuing line: if the other agent is, un-
like us, completely non-intelligible (a random chooser) we
betray it; if it is more like us and intelligible (understanding
game theory, that is, also acknowledging us as an intelligible
agent), we do better and keep silent; and only if it is exactly
like us, we fully cooperate and confess.

Arguments favoring (3, 3) over (2, 2) must refer to the
cognitive abilities of the opponent, since the absence of cog-
nitive abilities on the opponent’s part leads to (2, 2) as the
best choice. But then, such arguments are about the oppo-
nent being more like us (intelligible). And taking these same
arguments one step further then leads to ‘confess’ as the best
choice.

Conclusion
Solution concepts of game theory and logics for agent in-
teraction say nothing about the differences between agents.
Implicitly they assume that all agents are the same. The
main message of this abstract is however that making op-
timal choices in interactions with other agents depends cru-
cially on very fundamental aspects of the opponent model.

Also, if we know what the crucial dimension of opponent
models are, we know how to direct learning algorithms what
to learn from observing the behavior of opponents. For in-
stance, in iterated versions of games like the one in this ab-
stract, agents get knowledge about their opponents through
their history of moves. Also they know that their opponents
get knowledge about them in the same way. One of the mo-
tivations of this work is then to find out the ‘nature’ of this
knowledge. What are the parameters that should actually be
learned is such repeated interactions in order to benefit from
this knowledge in future interactions?
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Many other fundamental aspects of opponents can be
taken into consideration. And in a longer version of this
paper, I plan to investigate other games distinguishing be-
tween these. For instance, what are the games, if any, where
it makes a difference whether or not the opponent is mod-
eled as a (1) bounded reasoner, (2) BDI-agent (3) emotional
agent, (4) a moral agent?
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Abstract

In this paper we present results of an investigation of the con-
nection game TwixT. This game has a very large complex-
ity and lacks a good evaluation function based on (human)
knowledge. To compensate for these drawbacks we decided
to use several mathematical-modelling techniques. These
are (1) board dominance based on a Voronoi tesselation, (2)
shortest-path difference, (3) maximum-flow difference, and
(4) shortest-path-list difference. Using these techniques we
built an αβ computer player. With some preliminary experi-
ments it is shown that the mathematical-modelling tools can
profitably be used as an alternative for domain knowledge,
though much effort needs to be investigated to enhance the
efficiency of this approach.

Game AI and Computer TwixT
Traditionally, it is considered to be a major milestone to-
wards computer intelligence if a computer can outsmart a
person in an intellectually challenging game. Claude Shan-
non’s famous article on computer chess (Shannon 1950)
laid the foundations for research on automated game play-
ing. Building high-performance game-playing programs be-
came a major goal of artificial intelligence research. Chess-
playing programs now play at world-champion level, but
they do so with limited intellectual mechanisms compared to
those used by a human, substituting large amounts of com-
putation for understanding.

For some games the best move cannot be obtained by
large amounts of computation alone, and different tech-
niques have to be tried. One of these games is TwixT, which
is a two-player connection game that is invented around
1960 by Alex Randolph. TwixT challenges computer-games
researchers, because the search space is large and the pro-
cess of evaluating a board-position’s utility value is known
to be extremely complex. Little knowledge is available on
how to make a computer play a strong game of TwixT.
Currently no program for TwixT exists that cannot be eas-
ily beaten by an experienced TwixT player. In this paper
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we investigate the usability of mathematical-modelling tech-
niques to build an artificial TwixT player.1

The Rules of Computer TwixT
For the official rules of TwixT we refer to the article An
Introduction to TwixT by David Bush (2000a).2 In short,
two players (White and Black) alternately make moves on
a board consisting of a 24 × 24 square grid of holes, minus
the corner holes. A move consists of placing a peg in an
empty hole. The border rows exclusively are reserved for
white (top and bottom) and black (left and right) pegs, re-
spectively. After placing a peg, the same player may place a
link between pegs of his color at a knight move’s distance,
as long as no other links are crossed. The goal for White
(Black) is to connect the top and bottom (left and right) bor-
ders with a continuous chain of white (black) links. If nei-
ther side can complete such a chain, the game is a draw.
Figure 1 shows a board position that is won by White and
Figure 2 a board position that is a draw.

In the standard version of TwixT a player is allowed to
remove links of his own color prior to placing new links.
In computer TwixT this rule is replaced by the auto-linking
rule, imposing that a move only consists of a peg placement
and that all links that can be added to a placed peg are auto-
matically added.

The Complexity of TwixT
In order to compare the complexity of TwixT with that of
other games, we calculated two complexity measures for
TwixT, i.e., its state-space complexity and its game-tree
complexity.

State-Space Complexity
Allis (1994) defines the state-space complexity as: “the
number of legal game positions reachable from the initial
position of the game”.

We calculated the number of possible peg configurations
on the board, which is a lower bound on the state-space com-
plexity of TwixT. Our calculation excludes link placement,

1This paper is based on the M.Sc. thesis of the second author
(Moesker 2009).

2For a more comprehensive understanding of the game we refer
to (Bush 2000b) and (Bush 2001).
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Figure 1: A TwixT position won by White.

Figure 2: A drawn TwixT position.

treats mirrored board positions and rotated board positions
as different positions, and includes the assumption that each
player has no more than 50 pegs. Three areas exist on a
TwixT board. The white border rows can only be occupied
by White, the black border rows can only be occupied by
Black, and the centre area can be played by both players.
Each area has the corresponding capacity of 44, 44, and 484
holes.

The algorithm iteratively adds up the number of possible
board positions for each total number of pegs. The summa-
tion of the calculated number of peg configurations for each
number of pegs leads to a lower bound of ≈ O(10140) dif-
ferent board positions. Note that this is a rather crude under-
estimate of the real state-space complexity, since for most
peg placements multiple link placements are possible, due
to different sequences of peg placements. Since the calcu-
lated state-space complexity is already high, we did not find
it useful to invest the effort of calculating a more precise
state-space complexity.

Game-Tree Complexity
A game tree is a directed graph where nodes represent game
states and arcs represent legal moves, with the root node as
the initial board position. The root node of a game tree is re-
cursively expanded for all possible continuations from each
game state until states are reached where the game comes to
an end. Allis (1994) defines the game-tree complexity of a
game as the number of leaf nodes in the solution search tree
of the initial position(s). He points out that calculating the
exact game-tree complexity for a nontrivial game like chess
is hardly feasible. He also mentions that bdaverage

average gives a
crude estimate of the game-tree complexity, where baverage
is an estimate on the average branching factor and daverage
is an estimate on the average depth of a game. For conve-
nience, we assume that all pegs are placed in the Common
area during a game. This assumption implies that only a
22 × 22 area can be played, an area with a total capacity of
484.

It is tricky to estimate the average game length of TwixT,
because humans generally do not play out the whole game,
and because human games end quickly when the playing
strength is not equal. We estimate the average TwixT game
length to be 60 when both players are highly skilled and if
games are played out until the end. Using an initial branch-
ing factor of 484, the final branching factor will be 424, av-
eraging 454. This results in an estimated game-tree com-
plexity for TwixT of ≈ O(10159).

Comparison with Other Games
Van den Herik et al. (2002) investigated the state-space and
game-tree complexity of several games as game characteris-
tics for determining solvability. Table 1 shows the identifi-
cation numbers of the games, the name of the games, and the
matching state-space and game-tree complexities. We have
added the entry for TwixT for comparison reasons.

The estimated state-space complexity potentially exceeds
all other games listed here. The estimated game-tree com-
plexity of TwixT is above average compared to other games,
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Id. Game ssc gtc
1 Awari 1012 1032

2 Checkers 1021 1031

3 Chess 1046 10123

4 Chinese Chess 1048 10150

5 Connect-Four 1014 1021

6 Dakon-6 1015 1033

7 Domineering (8× 8) 1015 1027

8 Draughts 1030 1054

9 Go(19× 19) 10172 10360

10 Go-Moku (15× 15) 10105 1070

11 Hex (11× 11) 1057 1098

12 Kalah(6,4) 1013 1018

13 Nine Men’s Morris 1010 1050

14 Othello 1028 1058

15 Pentominoes 1012 1018

16 Qubic 1030 1034

17 Renju (15× 15) 10105 1070

18 Shogi 1071 10226

19 TwixT >> 10140 10159

Table 1: State-space complexities (ssc) and game-tree com-
plexities (gtc) of various games (van den Herik et al 2002).

but it is lower than the game-tree complexity of Go. Go
has an average branching factor of 250 and average game
length of 150 moves, which results in a game-space com-
plexity of approximately 10360 (Allis 1994). Twixt has a
game-space complexity of approximately 10159. The most
notable difference between both games is the average game
length. This is intuitive, because the shortest possible game
in TwixT takes less moves than the shortest possible game
in Go.

Mathematical Modelling Applied to TwixT
As a compensation for the lack of knowledge we decided to
use mathematical-modelling techniques to guide a search-
based AI player. We used three measures in this respect;
they are (1) board dominance, (2) shortest-path difference,
(3) and maximum-flow difference. We treat them in succes-
sion.

All the features are based on the concept of networks
for both players. For each player we determine three net-
works, i.e., the player’s link network, with edges correspond-
ing with the links on the board belonging to the player; (2)
the player’s allowed-link network containing edges for each
possible link for the player; and (3) the player’s combined
network, which is a superposition of the player’s link and
allowed-link networks. For all three networks of White we
add two pegs to the position, a source peg s above the up-
per row, being connected to all white upper border holes,
and a target peg t below the lower row, being connected to
all white lower border holes. Similarly, when considering
Black’s networks, source and target pegs are added to the
left and right of Black’s border rows.

Figures 3-6 illustrate how White’s perspective on a 12×12
board position is represented by White’s link network,

White’s allowed-link network, and White’s combined net-
work.

Figure 3: A 12×12 board position.

Figure 4: White’s link network.

Board Dominance
To calculate board dominance, we determine the Voronoi re-
gions of the board position. A Voronoi region represents the
region of influence of a peg. Virtual pegs are added to a
TwixT board position to correct strength-interpretation mis-
takes on the board. Black and white virtual pegs are placed
at the corresponding border rows to indicate that the upper
and lower border rows are under influence of White, and the
left and right border rows are under influence of Black. Vir-
tual pegs of corresponding color are also added at the middle
of a link to indicate the strength of the link.

Figure 7 shows the Voronoi tessellation of an example
24×24 TwixT position. The white squares, at the ‘upper’
and ‘lower’ border rows, indicate White’s virtual pegs and
the black squares, at the ‘left’ and ‘right’ border rows, indi-
cate Black’s virtual pegs.

Subsequently, we create a Delaunay triangulation, the
dual representation of a Voronoi tessellation, to model
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Figure 5: White’s allowed-link network.

Figure 6: White’s combined network.

Figure 7: Voronoi representation of a TwixT position.

Voronoi-region connectedness. The dual representation is
all we need for dominance checking, because all pegs with
a shared Voronoi region boundary are connected in the De-
launay triangulation. Many methods exist for drawing a De-
launay triangulation from a set of points on a plane. We
used Fortune’s sweep algorithm (van de Berg et al. 2000).
Ownership information is added to the Delaunay edges to
indicate to which of the players an edge belongs. An edge is
owned by White if it connects white pegs, owned by Black
if it connects black pegs, and owned by no player otherwise.
Figure 8 shows the Voronoi representation with the Delau-
nay triangulation.

Figure 8: Voronoi representation with Delaunay triangula-
tion.

The Delaunay triangulation has edges between pegs that
are owned by White, owned by Black, and owned by both
players. A close examination shows that adjacent Voronoi
regions are connected in the Delaunay triangulation. Fig-
ure 9 shows the Delaunay triangulation with White’s owned
edges and Figure 10 shows the Delaunay triangulation with
Black’s owned edges. We observe that White has a contin-
uous chain of links from the top to the border row, while
Black has not. This indicates White’s board dominance of
the position.

Shortest-Path-Weight Feature
The shortest-path-weight feature expresses a player’s min-
imal number of required link placements to win the game.
We explain the shortest-path-weight metric from White’s
perspective. White’s shortest-path weight is extracted from
White’s combined network with weight function w, with
weight 0 for allowed links, weight 1 for existing links and
weigh ∞ for impossible links.

The weight of a path, p = v1 → v2 →, . . . , vk−1 → vk,
is then defined by

w(p) =
k−1∑

i=1

w(vi, vi+1). (1)

The shortest-path weight SP from s to t is defined by

min{w(p) : p is a path from s to t}. (2)
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Figure 9: Delaunay triangulation with only White’s owned
edges.

Figure 10: Delaunay triangulation with only Black’s owned
edges.

To determine the shortest path weight for a player we
use a straightforward extension of the standard breadth-
first search algorithm. The extension is needed to include
the weights for edges corresponding with different types of
links.

Since in some positions many moves yield the same value
for the shortest-path difference, we also implemented a
shortest-path-list difference SPL. The reasoning is that a po-
sition with multiple shortest paths is better than a position
with just one such path. The implementation of this feature
is a little bit complicated, and we refer to (Moesker 2009)
for details.

Maximum-Flow Feature
The maximum-flow feature expresses a player’s freedom
to travel from side to side. “The maximum flow problem
is to find a feasible flow through a single-source, single-
sink flow network that is maximum” (Cormen et al. 2001).
White’s maximum flow is extracted from White’s combined
network.

The maximum flow MF can be found by using the
Edmonds-Karp algorithm (Cormen et al. 2001). The algo-
rithm is very straightforward. A copy of the combined net-
work is created to serve as a residue network. Repeatedly,
a shortest path from s to t is determined (using the weight-
ing function w and extracted from the residue network un-
til there is no path between s and t. After an augmenting
path is found, all path edges with a capacity of 1 are deleted
from the residue network. The path edges with infinite ca-
pacity are not deleted. The number of shortest paths found
determines the maximum flow. Special caution is required
concerning path selection, because different path-selection
strategies might lead to a different number of augmenting
paths to be found. We remove paths according to a strategy
where a shortest path with vertices closest to the target is
selected.

Game-Termination Feature
The game termination feature indicates if a game is a draw,
a win for White, a win for Black, or still in progress. The
game is a draw if both players are unable to make an un-
interrupted chain of links between the corresponding sides.
In terms of networks: a board position is a draw if for both
players no path exists from s to t in the corresponding com-
bined network. The existence of a path between s and t is
checked with an informed depth-first search. Our ‘informed’
version of a DFS inserts adjacent vertices into an ordered
priority queue with an increasing Euclidean distance order
of vertices in the queue. Figure 11 and Figure 12 show the
combined networks for White and Black, respectively, for
the drawn position in Figure 2. Both figures illustrate that a
drawn position leads to a failed search for a path from s to
t on both White’s combined network and Black’s combined
network.

A win for a player can be checked ‘strictly’ or ‘softly’.
For White the game is won in a strict sense if there is a path
from s to t in White’s link network. There is a soft win for
White if White has no strict win and there is a path from s
to t in White’s combined link network and no such path in
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Figure 11: White’s combined network for the position of
Figure 2.

Figure 12: Black’s combined network for the position of
Figure 2.

Black’s combined link network. A soft win does not have
to be a strict win because White, the soft winning player,
might not have connected to the border rows. Connecting
the border rows is normally a formality but it is not always
possible. There is an exceptional situation where Black, the
soft losing player, cannot move because there are no legal
moves left. We declare such a situation as a win for White
and use the soft win condition in our AI players. An in-
formed depth-first search based on the Euclidian distance to
the target checks for possible paths between sides for White
and Black. If the game is not a draw, not a win for White,
and not a win for Black, then the game is still in progress.

Preliminary Experiments
To test the effectiveness of our modelling techniques, we
implemented a computer player, using the standard αβ al-
gorithm (Knuth and Moore 1975) with iterative deepening.
The board-dominance feature is used as a move-ordering
heuristic, meaning that dominant moves are investigated be-
fore non-dominant moves. Within the categories of domi-
nant and non-dominant moves we use the history heuristic
(Schaeffer 1983) for further ordering. In addition, a trans-
position table was used (Zobrist 1970). Game termination is
checked in the ‘soft’ sense as described above.

The evaluation function is a weighted function of the fea-
tures described above. In particular:

Eval(p, player) =
3∑

i=1

wi · fi(p, player) (3)

with

f1(p, player) = SP (p, player)− SP (p, opponent) (4)

f2(p, player) = MF (p, player)−MF (p, opponent) (5)

f3(p, player) = SPL(p, player)− SPL(p, opponent)
(6)

Weights are set to 10,000 for w1 and w2. For w3 we used
a value of 1, meaning that this feature only discriminates be-
tween moves with the same shortest-path distance and the
same maximum flow. We added a randomized number be-
tween 0 and 1000 to the evaluation function to prevent the
games from being deterministic. The randomized number is
approximately 2% of the evaluation value range.

As a reference we implemented a basic Monte Carlo
player (Bouzy and Helmstetter 2003). This player performs
a one-ply search and then chooses the most promising move
based on many random game simulations.

For our test we used a 8×8 board size in order to speed up
the calculations. In a match of 100 games (50 times as first
player, 50 times as second) with 10 minutes per player for
the whole game, the αβ player wins 80 games against the
Monte Carlo player. Although this is by no way a conclu-
sive result, it indicates at least that using the mathematical
features within an αβ framework yields promising results.
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Conclusion and Future research
The preliminary experiments show that the αβ player is con-
siderably stronger than the reference Monte Carlo player.
This indicates that the mathematical modelling used pro-
vides at least some compensation for the lack of domain
knowledge.

Of course the experiments also reveal that the present αβ
player is far from competitive with strong (human) play. For
future research we therefore envision at least two routes. (1)
The algorithms incorporated have to be enhanced in such a
way as to improve their performance in order to speed up the
program considerably. (2) Due to the fact that many moves
are equally good regarding their main features, shortest-path
difference and maximum-flow difference, it is worthwhile
to incorporate at least some basic domain knowledge (both
tactical and strategic) in order to guide the search.
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Abstract

This document describes a computer model for plot genera-
tion named MEXICA. As a distinctive characteristic, the sys-
tem employs emotional links between characters and the dra-
matic tension of the story in progress as cue to probe memory
and retrieve sequences of actions. The main claim of this doc-
ument is that a story can be represented as a cluster or group
of emotional links and tensions between characters that pro-
gresses over story-time; story-actions work as operators that
modify such clusters. This representation provides flexibil-
ity and, by contrast with previous models, avoids the use of
predefines story-structures and explicit characters goals. 1

Introduction
MEXICA (Pérez y Pérez and Sharples 2001) is a program
that generates frameworks for short stories about the Mexi-
cas (the old inhabitants of what today is México City) based
on the engagement-reflection cognitive account of writing
(Sharples 1999). MEXICA does not generate natural lan-
guage but sequences of actions that are coherent, interesting
and novel. During engagement the system focuses on gener-
ating sequences of actions driven by content and rhetorical
constraints and avoids the use of explicit goals or predefined
story-structures. During reflection MEXICA evaluates the
novelty and interestingness of the material produced so far
and verifies the coherence of the story. Figure shows a frag-
ment of a story developed by MEXICA.

The design of the system is based on structures known
as story-actions, which are a set of actions that any charac-
ter can perform in the story and whose consequences pro-
duce some change in the story-world context. The name
of a story-action might be defined as single word (usually
a verb) like A found B, as a couple of verbs like A fol-
lowed and found B, or as a whole phrase like A followed
the trace through the forest and finally found B swimming
in a beautiful waterfall, where A and B represent characters
in the story. MEXICA requires a dictionary of story-actions
to work with. In such a dictionary the user of the system
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1An important part of this document has been published earlier
in (Pérez y Pérez 2007).

Suddenly, virgin saw that jaguar knight had the sacred knife that
had been stolen from the temple some months ago; there was not a
doubt: jaguar knight was the murderer of the priest. Jaguar knight’s
frame of mind was very volatile and without thinking about it
jaguar knight charged against virgin. Suddenly, virgin and jaguar
knight were involved in a violent fight. Jaguar knight threw some
dust in virgin’s face. Then, using a dagger jaguar knight perfo-
rated virgin’s chess. Imitating the sacred ceremony of the sacrifice,
jaguar knight took virgin’s heart with one hand and raised it to-
wards the sun as a sign of respect to the gods.

Figure 1: A fragment of a story created by MEXICA.

specifies the name that identifies the action, the number of
characters that participate in it (maximum three actors), a
set of preconditions and post conditions associated with the
action, an a text (describing the action) that is employed by
the system to generate its output. In this way, in MEXICA a
story is defined as a sequence of story-actions. There are two
types of possible preconditions and post conditions in MEX-
ICA: 1) emotional links between characters and 2) dramatic
tensions in the story.

Emotions and Tensions in MEXICA
MEXICA allows defining two types of emotional links be-
tween characters. For practical reasons all types of emotions
are implemented in discrete terms with a value in the range
of −3 to +3. Type 1 represents a continuum between love
(brotherly love) and hate. Type 2 represents a continuum be-
tween being in love with (amorous love) and feeling hatred
towards. For example, the action where character A falls in
love with character B includes as a post condition an emo-
tional link from A towards B of type 2 and intensity +3. In
the same way, the action A wounds B includes as a precon-
dition the fact that A hates B, i.e. A has an emotional link of
type 1 and intensity −3 towards B. Tension is a key element
in any short story. In MEXICA, it is assumed that a tension
in a short story arises when a character is murdered, when
the life of a character is at risk, when the health of a char-
acter is at risk (e.g., when a character has been wounded)
and when a character is made a prisoner. These tensions
can be defined as part of actions’ post conditions and trig-
gered when the action is performed in the story: e.g. the
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action A wounds B triggers the post condition the health of
B is at risk. In the same way, tensions can be deactivated
through post conditions: e.g. the action C cures B deacti-
vates the post condition the health of B is at risk. Notice
that C cannot cure B at least B is wounded (or ill); so, the
tension the health of B is at risk is a precondition of the ac-
tion C cures B. There is a second group of tensions referred
to as inferred tensions: 1) clashing emotions: when a char-
acter establishes two opposite emotional links towards other
character; 2) love competition: when two different charac-
ters are in love with a third one; and 3) potential danger:
when a character hates another character and both are lo-
cated in the same place. These tensions are not defined as
part of the story-actions; they are hard-coded and become
active only when the emotions that trigger them are present
in the story. Thus, each time an action is executed in the
story in progress MEXICA verifies if inferred tensions must
be triggered or deactivated. Each tension in MEXICA has
associated a value. Thus, each time an action is executed the
value of the tension accumulated in the tale is updated; this
value is stored in a vector called Tensional Representation.
The Tensional Representation records the different values of
the tension over time. The Tensional Representation per-
mits representing graphically a story in terms of the tension
produced in the story. In MEXICA, a story is considered
interesting when it includes increments and decrements of
the tension. Figure shows the values of the tension for the
fragment of the story showed in Figure .

Figure 2: The tensional representation of the fragment of the
story in Figure .

Discussion
The main claim of this paper is that a story can be rep-
resented as a cluster of emotional links and tensions be-
tween characters that progress over story-time (Pérez y
Pérez 2007). During engagement such clusters are employed
as cue to probe memory and retrieve actions to continue the
story. During reflection the material produced so far is eval-
uated and if it is necessary modified. Figure shows the story
in Figure in terms of emotional links and tensions between
characters that evolve as the story progress.

In Figure , an emotional link of type 1 is represented as a
solid arrow joining two characters; the intensity of the link
is indicated by a signed number. An emotional link of type
2 is represented as a dashed arrow joining two characters;
the intensity of the link is indicated by a signed number.
Tensions between personae are represented as sharp arrows

joining two characters; the type of tension is indicated by a
mnemonic (Ad when an actor dies, Pd for potential danger,
Lr when the life of a character is at risk, and so on).

Figure 3: An example of how clusters of emotional links and
tensions between characters evolve as the story progress.

The story develops as follows (see Figure ). The first ac-
tion is provided by the user. So, at t = 0 the virgin discovers
that the knight is a murderer. The actions post conditions
generate a cluster of emotional links and tensions between
characters known as the story-context. As the reader can
observe in Figure , at t = 0 the story-context shows that the
virgin hates the knight because of his actions and the tension
potential danger is triggered because the princess and the
knight are located in the same position (by default they are
located by the lake). MEXICA employs the story-context
as cue to probe memory and retrieves a set of possible ac-
tions to continue the tale. One of these actions is selected at
random (e.g. the knight attacks the virgin). In this way, at
t = 1 the knight attacks the virgin putting her life at risk;
so, the tension life at risk is triggered updating the story-
context. The context is employed as cue to probe memory
and a new action is retrieved and performed. Thus, at t = 2
the virgin and the knight engage in a fight. As a result the
life of the knight is at risk, which produces that the knight
hates the virgin. Notice that the life of the virgin contin-
ues at risk. To illustrate the fact that both characters hate
each other and that the life of both characters are at risk a
double headed arrow is employed to represent the emotional
link and the tension Lr. Because both characters hate each
other and both are located by the lake, the tension poten-
tial danger is triggered. Again, a double headed arrow is
employed to represent the tension. Finally, the knight kills
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the virgin. This action triggers the tension actor dead; be-
cause she is dead, all virgins emotional links and tensions
are deactivated although the negative emotional link from
the knight towards the virgin continues active. A new search
in memory is launched and the cycle continues. During re-
flection the system breaks impasses, and evaluates novelty
and coherence. Then, it switches back to engagement and
the process continues.

Conclusions
Emotions are the core elements in MEXICA: 1) All op-
erators preconditions and post conditions are described in
terms of emotional links and tensions between characters;
2) A story is represented as a cluster of emotional links and
tensions that evolve over time; 3) Tension is used to evalu-
ate the interestingness of the story produced by MEXICA;
4) During engagement MEXICA employs clusters of emo-
tional links and tensions to progress the story. MEXCA has
shown that the engagement-reflection cognitive account of
writing is adequate for plot generation and that the use of
emotional links and tensions between characters provides
flexibility that previous programs lack (Pérez y Pérez and
Sharples 2004).
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Abstract

Instead of scoring the dominion of the emperor, Civilization
IV can be adapted to score the quality of life of the citizens.
To supplement the pedagogy of computational ethics, the au-
thor replaces the imperialist score in Civilization IV with
quality of life, adapted from the medical ethics concept of
a quality-adjusted life year. In order to optimize their score
in the modified Civilization IV, the modern student may be
motivated to compute ethics.

Introduction
In the videogame series, Civilization, the player settles an
empire, advances through epochs of technology, civics, and
culture. Like many imperial games, the player rules a soci-
ety, determines what will be produced, which sectors of so-
ciety will prosper, and what sacrifices the people will make
for the glory of the empire. Decisions of sacrificing lives
are naturally within the domain of ethicists (Broome 2004).
However, in Sid Meier’s Civilization IV, conquest and world
domination are two paths to victory, wherein quality of life
is sacrificed (Firaxis 2005). A player may kill thousands,
sacrifice thousands, and devote a society to war in order to
achieve a conquest or domination victory. These atrocities
can be measured in terms of lives sacrificed (Broome 2004).

Civilization is a suitable videogame for playing with prin-
ciples of history (Squire 2004). There may be a simi-
lar potential to play with computational ethics. In ethics,
some simulations have refined conjectures by implementing
thought experiments (Wiegel and van den Berg 2008). Civ-
ilization IV may be adapted to play with utilitarian conjec-
tures about the moral values of a society.

Quality-Adjusted Life Years
The designers of Sid Meier’s Alpha Centauri were no doubt
aware of utilitarianism, as they named one of their social

∗During years of conversation, Robert Bass informed the ethics.
Peter Brinson advised the user experience. The anonymous refer-
ees advised the literature. All errors and omissions are mine.
Copyright c© 2009, the author(s). All rights reserved.
In: Benedikt Löwe (ed.), LSIR-2: Logic and the Simulation of
Interaction and Reasoning, Pasadena CA, U.S.A., 12 July 2009.
pp. 41–45.

control technologies Ethical Calculus (Firaxis 1999). Al-
though such a calculus is intractable, special case compu-
tations have affected many lives in the health care sector.
For 30 years, some medical decision makers analyzed cost-
effectiveness with a metric called a quality-adjusted life year
(QALY) (Gold, Stevenson, and Fryback 2002). A QALY is
composed of two factors: quality-adjustment and life years.
As anyone who has ever been sick knows, health dramati-
cally affects the satisfaction derived from living. Through
subjective surveys, medical assessors measure satisfaction
of living, or a quality-adjustment. The high-level formula is
simple: Quality of health × years of life = Individual medi-
cal well-being.

Q× 1L× Y (1)
The conventional benchmarks for quality-adjustment are

[0...1], where 0Q represents death and 1Q represents good
health. For example, suppose a photographer may undergo
an operation that will blind him but extend his expected life
from seven years to eight years. Good health with vision
(1Q), for seven years (7LY ) may be computed as:

1Q× 1L× 7Y = 7QLY (2)
The operation renders the photographer blind (0.6Q) and

extends life to eight years (8LY ), which may be computed
as:

0.6Q× 1L× 8Y = 4.8QLY (3)
In comparison, the photographer prefers the slightly

shorter life in significantly better health. The difference is
2.2QLY .

Even within the domain of medical ethics, this calculus
is overly simplistic to account for chronic illness, multiple
diseases, and extrinsic factors. Strong assumptions of risk
neutrality and independence of time and quality must hold
for this metric to assist in decision making (Broome 2004).
Moreover, many forms of QALY do not differentiate stages
of life, and do not differentiate the moral values of the per-
sons.

Still, a quality-adjusted life year is a starting point for
an ethical calculus (Broome 2004). One may extend the
QALY to non-medical conditions. To accommodate mis-
taken beliefs, a super preference may be supposed, that be-
ing the preference the agent would have if the agent were
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well-informed (Bass 2008). This may be extended to com-
pare between persons (Broome 2004). To distinguish this
extension of the medical quality-adjusted life year, call this
a well-informed, subjective, extended quality-adjusted life
year (WISE-QALY). Although this does not fully define of
well-being (Bass 2008), it is a convenient approximation of
a good life (Broome 1999). The 0Q convention for death has
some arithmetic advantages to compute lives not worth liv-
ing. The upper limit of 1Q, established for good health may
be lifted and replaced by another benchmark. For example,
it may be conventionally assigned to the average quality of
life for all cities of an empire in Civilization IV that were
queried during the year 2000 B.C.E.

Computing Homogenous Moral Values
The original scoring algorithm in Civilization IV was not
intended to represent quality of life, but rather how glorious
the civilization is, which might reflect the emperor’s inter-
ests. Briefly put, Civilization IV rewards a large population,
a large territory, extravagant buildings, and advanced tech-
nology (see Listing 1).

def calculateScore(self,argsList):
...
return int(iPopulationScore + iLandScore

+ iWondersScore + iTechScore)

Listing 1: Computing score in original Civilization IV

An emperor could satisfy these criteria while partially ig-
noring the welfare of the citizens. A minimum level of cit-
izen health and satisfaction is needed to produce wonders
and research technology. Beyond this minimum, the welfare
of citizens is superfluous to maximizing score.

Yet, the designers of Civilization seem to have been con-
sidering the citizens. For each city, Civilization IV ab-
stractly represents happiness, unhappiness, health, sickness,
and other parameters indicated by a quality of life survey
(Stevenson and Wolfers 2008). Since satisfaction of these
moral values are distinguished for each city, it would be sim-
ple to weigh them. For a baseline of indifference suppose the
weighting 0 (see Table 1).

Suppose an empire of hedonists. For implementation in
Civilization IV, an extreme hedonist may only value happi-
ness and conversely disprefers unhappiness and anger. The
hedonist’s importance of happiness is depicted positively
(0.1), of unhappiness negatively (-0.2), and of anger neg-
atively (-0.3). These numbers only have relative meaning.
Contrast them with an empire of puritans, who cares noth-
ing for happiness (0), but values health (0.05) and conversely
dislikes sickness (-0.1) (see Table 1). Many other permuta-
tions of moral values are possible, such as a temperate char-
acter, somewhat resembling Aristotle’s ethical advice (see
right column).

In the modified Civilization, positive moral values multi-
ply and negative moral values divide the quality of life (see
Listing 2). For convenient display, quality is represented
on a scale at 100, instead of 1.0, and is an integer instead
of a real number. The full code is too long to embed here.
For details, you may download the modified code (Kennerly

Moral value Indifferent Hedonist Puritan Nicomachean
happy 0 0.1 0 0.05

unhappy 0 -0.2 0 -0.1
angry 0 -0.3 0 -0.2
food 0 0 0 0

health 0 0 0.05 0.05
sick 0 0 -0.1 -0.2
eat 0 0 0 0

work 0 0 0 0.01
gold 0 0 0 0.01

science 0 0 0 0.01
culture 0 0 0 0.02

great 0 0 0 0.03

Table 1: Sample moral values to weight quality of life in
Civilization IV

2009) and install it into Civilization IV. This product algo-
rithm partially normalizes the diverse ranges of scores for
parameters, which have no linear correspondence to phys-
ical citizens. For example, unhappiness is incremented for
each unit of population and is offset by happiness. So the
value is not proportional to the population. It is an arbitrary
pool of points to manage.
def get_quality(city_parameters, \

moral_values):
quality = 1
for parameter, weight \

in zip(city_parameters,
moral_values):

if 0 <= weight:
quality *= 1 + weight \

* float(parameter)
else:

quality /= 1 - weight \
* float(parameter)

return int(quality * 100)

Listing 2: Positive moral values multiply and negative moral
values divide overall quality of life.

To avoid complexity of heterogenous moral values, the
simplicity of Civilization IV’s population and quality of life
model may be exploited. Let any heterogenous population
be converted into a homogenous population by averaging the
moral values of the heterogenous population (see Listing 3).

moral_values = aggregate_moral_values(
(20, hedonist),
(20, puritan),
(60, nicomachean))

quality = get_quality(
py_city_parameters, moral_values)

Listing 3: Aggregate quality for population of 20% hedo-
nists, 20% puritans, and 60% Nicomacheans.

Collective Utility for Homogenous Moral
Values

Satisfying preferences is a popular yardstick of utility, but
for conflicting interests, there is no collective solution (Ar-
row 1970). However, if everyone in the population is a he-
donist or everyone is a puritan, Nicomachean, or any other
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group with similar utility functions, then aggregation is pos-
sible. A simple representation of collective well-being is the
sum of individual goodness (Moulin 1991).

n∑

i=1

Qi × 1L× Yi (4)

Summing utility is not without its controversies; however,
it is similar to how the original Civilization IV scores popu-
lation. Individual citizens are not simulated, only city popu-
lations are, which is equivalent to adopting a utilitarian col-
lective utility function. Therefore, aggregating well-being of
city populations is already encoded in the original version of
Civilization IV. In the simple model of Civilization IV’s city,
the total population’s moral values may be the average of all
its citizens.

This formula is intuitive for applying to a single person’s
life, but aggregating the scores of persons into a society ex-
poses dilemmas. Suppose 100 persons are alive for one year,
each with quality-adjustment of 1.

100∑

i=1

1Q× 1L× 1Y = 1Q× 100L× 1Y = 100QLY (5)

Suppose everyone sacrifices half of their quality in order
to support 150 more persons.

0.5Q× 250L× 1Y = 125QLY (6)
This summation utility function leads to a repugnant con-

clusion: The highest scoring scenario would be one in which
the world is saturated with lives barely worth living (Parfit
1986). The second solution posed to this problem is to aver-
age the welfare of those living.

living∑

i=1

Qi × 1L× Yi
1L× Yi

=
living∑

i=1

Qi (7)

The units of this formula are no longer QLY , but are Q.
In the example, the base is now 1Q, which is not comparable
with the 100QLY from the summation formula.

1Q× 100L× 1Y
100L× 1Y

= 1Q (8)

By averaging quality, it becomes clear that a larger popu-
late (250) of miserable lives yields a quality (0.5Q).

0.5Q× 250L× 1Y
250L× 1Y

= 0.5Q (9)

In Civilization IV, the lowest level of granularity is the
city. Not all cities are the same size. Those with a greater
population are weighted proportional to their population to
retain equal importance of each living person. This is en-
coded in the function aggregate city quality (see
Listing 4).

The living average function leads to a second repugnant
conclusion. Suppose a future in which a number of persons
may live. By following advice to prefer the highest average,
kill all who are less happy than the average (Parfit 1986).

For example, suppose 50 persons live well (1.5Q) and 50
persons live poorly (0.5Q). Their average is the same as
before.

(1.5Q× 50L+ 0.5Q× 50L)× 1Y
(50L+ 50L)× 1Y

= 1Q (10)

If the 50 persons living poorly die, then the average qual-
ity rises:

1.5Q× 50L× 1Y
50L× 1Y

= 1.5Q (11)

The second repugnant conclusion can also be illustrated
in a single person’s life. Suppose a person lives fifty years
(50Y ) well (1.5Q), and lives a further fifty years (50Y )
poorly yet tolerably (0.5Q).

(1.5Q× 50Y + 0.5Q× 50Y )× 1L
(50Y + 50Y )× LY

= 1Q (12)

The person’s living average can be raised by ending life
after the first fifty years.

1.5Q× 1L× 50Y
1L× 50Y

= 1.5Q (13)

The second repugnant conclusion can be avoided by re-
taining an average of those who have died. This function
is similar to the average, except that those being counted is
more inclusive between alternate outcomes.

n∑

i=1

Qi × 1L× Yi
1L× E(Yi)

(14)

To make this function easier to interpret, those living or
dead can be retained in the pool for their expected lifespan,
at the time of the calculation. So, if a person at 90 years of
age is expected to live to 100 years, then their loss of life is
still a loss, even though they had outlived the world average
life expectancy, calculated around age 1. By this formula,
when the 50 less fortunate die, the average diminishes for
the duration of their expected life.

(1.5Q× 50L+ 0Q× 50L)× 1Y
(50L+ 50L)× 1Y

= 0.75Q (15)

Likewise, the person ending their life after the first fifty
(if expected to live another fifty poorly, yet tolerably).

(1.5Q× 50Y + 0Q× 50Y )× 1L
(50Y + 50Y )× 1L

= 0.75Q (16)

In Civilization IV, the lives of those dying in battle may
be calculated. One could calculate for a full period, whether
the person is expected to be alive or not and it would still
retain the same ordering. For example, during a period of
100 years, the lives of those who live and die could continue
to be averaged long after the expected duration has expired.
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(1.5Q× 50L× 1Y + 0Q× 50L× 100Y )× 1L
(50L+ 50L)× 100Y

= 0.75Q

(17)
Yet calculating life-years for duration of expected living

enables a mathematical shortcut. The scores of a running
average can be compared between each other. This is conve-
nient for a score that is being displayed to the player before
the game is over, which is the case in Civilization IV.

This algorithm also accords with naive decision making.
Consider the possible outcomes and compare them, consid-
ering the expected lives in both outcomes, rather than failing
to account for a life in one possible outcome while account-
ing for it in alternate future.

Aggregating Over Time
One naive technique to aggregate segments of time, such as
years, is to average the years. In the average quality func-
tion, the years (Y ) are averaged. No further operations are
necessary. When two or more segments of time are aggre-
gated, they may be averaged by the total number of life-
years, as demonstrated above. In Civilization IV, each turn
represents the passage of years. The quality of life is more
meaningful as a representation not of a particular turn’s peak
or trough, but as a running average. The lives of ancestors
should be counted equally with the living. This is encoded in
average by years (see Listing 4). Therefore, the value
during the present turn represents an average with previous
years. The information screen presents this score for quality
of life. By seeing a running average, the merit of long-term
strategies is incentivized.

If only snapshots are averaged, then horrible histories be-
come incentivized. For example, if 100 persons live miser-
ably (0.5Q) before 1 person lives well (1.5Q), then a naive
snapshot seems to advise such a sacrifice.

0.5Q× 100L× 1Y
100L× 1Y

+
1.5Q× 1L× 1Y

1L× 1Y
= 1Q (18)

To avoid this, the summation of quality is retained and the
total population is also retained, which gives more weight to
generations in which a larger population live.

∑T
t=1

∑nt

i=1Qi × 1L× Yi∑T
t=1

∑nt

i=1 1L× E(Yi)
(19)

We now see that many suffering for a few at a different
time is not rewarded:

(0.5Q× 100L× 1Y ) + (1.5Q× 1L× 1Y )
(100L× 1Y ) + (1L× 1Y )

≈ 0.51Q

(20)
As a game, this realistic running average induces bore-

dom. In Civilization IV, the passage of time quickens. At
first each turn represents 50 years. With accelerating tech-
nology, the turn duration shortens. The quality of life can
be weighed by the number of years passed. In doing so,
the quality score becomes stagnant. After 1000 years have

passed, the effect of 10 more years is only a one percent
change, so to improve the average by one percent during
one turn, the current quality of life (or the current popula-
tion) would have to double in the span of that turn. This is
not a problem for simulation, but it is a serious problem for
players to enjoy the game enough to continue playing. To
avoid a stable score, and yet count that past, the past may
be discounted. The default discount ratio is 1 / 256, where
the current turn counts for 256 times as many years as the
preceding history. A game of Civilization IV spans a few
thousand years, so after 2500 years have passed, the years in
the current turn are worth about 10% of the history. For
details see history weight in average by years
(Kennerly 2009).

def calculateScore(self,argsList):
city_list = \

get_city_qaly_population_list(
ePlayer)

current_quality = \
aggregate_city_quality(city_list)

previous_scores = \
get_previous_scores(ePlayer)

average_quality = average_by_years(
previous_scores, current_quality)

Listing 4: Computing quality of life in modified Civilization
IV

Emergent Benevolence
Playing games to maximize score without this modification
and with the modification reveal how the incentives change.
Originally, Civilization IV incentivizes rapid growth through
scoring population and territory, and rapid progress through
scoring wonders and technology. The modified version,
most strikingly, incentivizes minimal growth. Each new city
expands the population and expands the productivity. But a
new city starts without the infrastructure for health and en-
tertainment, without aqueducts, temples, theaters, libraries,
and so on. Therefore, a new city has a lower quality of life,
which lowers the empire’s average. Because territory is no
longer a criteria for scoring, the player’s score is not penal-
ized for having a small footprint. Within a city, the option to
”avoid growth” becomes attractive, as large population nec-
essarily increases unhappiness and sickness. Growing and
producing become enabling objectives of citizen well-being.
The empire is less interested in conquering other territories,
as the conquered territories may have lower standards of liv-
ing.

Because the living conditions of the citizens is the end of
the modified game, building temples, theaters and improve-
ments is incentivized. A player may consider technologies
for the benefits that they bring to their citizens, such as poly-
theism and monarchy to spread happiness. The player might
avoid civics that detriment happiness, such as slavery. Since
Civilization IV enables the acquisition of a neighboring city
by expanding culture, the benevolent empire may inciden-
tally acquire cities of its neighbors.

This modification of Civilization IV has not altered the
strategies of the artificially intelligent players. All players
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are scored by their own citizen’s quality of life. There-
fore, the computer-controlled emperors remain aggressive
and expansionist, even though it may lead to a lower score
for their empire. Maintaining diplomacy with neighbors be-
comes important, as attacks impinge a city’s happiness and
health.

Compared to unmodified Civilization IV, scoring quality
of life might lead to less imperial or fascist strategies. As a
work of entertainment, intended to fuel the fantasies of their
players, computing quality of life is not a requirement, and
indeed guilt detracts from the make believe of total authority.
Yet as an educational toy, playing with the moral values may
inspire interest in computing ethics.
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Overview
The video game Thief: The Dark ProjectTM (Eidos In-
teractive 1998) is themed as a game of stealth, in which
the player (the thief) avoids being detected by computer-
simulated guards. Essentially, the player exploits the, possi-
bly false, beliefs of the guard regarding the thief’s presence.
Due to the simplicity of the guard’s control program, the
guard’s beliefs are in practice perceived as either believing
that the thief is, or may be, near (having seen him or be-
come suspicious in some other way) and acting accordingly,
or not.

We conjecture that the entertainment value of a typical
Thief scenario would be enhanced by a guard that acts not
only depending on his own beliefs about the facts in the
world, but also depending on what he believes the thief be-
lieves, including what he believes the thief believes he be-
lieves.

Besides making the interaction more realistic, we believe
that dealing with, and possibly exploiting, higher-order be-
liefs is intrinsically enjoyable. This is not news to the logic
community, in fact there exist detailed formalizations of
the epistemic mechanisms involved in real-world games of
knowledge and suspicion such as Cluedo (van Ditmarsch
2000). However, so far there has not been much focus on
the complementary direction of putting such formalizations
to work to support a computer simulation of a virtual game
world.

In this paper, we will substantiate our previous discus-
sion (Witzel, Zvesper, and Kennerly 2008) by describing an
actual implementation of the pseudo-code given there and
providing a detailed description of an experiment setup in-
tended to test our conjectures about the increase in entertain-
ment value resulting from exploiting higher-order beliefs.
Before conducting the actual experiment, we are planning
a small pilot study with 6 subjects in the control group and

∗We thank Martin Magnusson, Cédric Dégremont and three
anonymous referees for discussion and helpful suggestions. The
second and third authors were supported by a GLoRiClass fellow-
ship funded by the European Commission (Early Stage Research
Training Mono-Host Fellowship MEST-CT-2005-020841).
Copyright c© 2009, the author(s). All rights reserved.
In: Benedikt Löwe (ed.), LSIR-2: Logic and the Simulation of
Interaction and Reasoning, Pasadena CA, U.S.A., 12 July 2009.
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6 subjects in the experimental group.

Scenario
In the control scenario, when a guard has noticed a thief, the
guard attacks or calls an alarm as per its scripted behavior.
In the experimental scenario, the guard models the beliefs of
the thief based on his own current beliefs and past observa-
tions, and acts accordingly.

In the original game, a common tactic is to shoot an arrow
against a wall, in order to cause a noise which will attract the
guard (who has a behavior rule along the lines of “if I hear
a noise, I go there and look around”). It is questionable how
innocent such a noise is, and an actually reasoning guard
would probably rather conclude that it is high time to ring
the alarm instead of sniffing around in the bushes. While this
was likely a conscious design decision to give the player an
easy and obvious way to outwit that guard, we think that a
belief-based approach can provide a more flexible solution.

Instead of rigidly connecting events to resulting behav-
iors, we therefore introduce beliefs as an abstraction layer.
The behaviors are defined depending on the beliefs, and
these beliefs are modeled independently.

For example, if the guard believes that the thief is present,
but the guard believes that the thief does not believe that the
guard is present, the guard tries to ambush the thief, rather
than attacking him openly or ringing the alarm. This and
a few more behavior rules constitute the guard control pro-
gram in our experimental scenario, shown in Listing 1. We
will specify the events and the semantics of beliefs later on.

This approach removes from the scripter the burden of
having to decide exactly which events cause what, and fa-
cilitates adjustments and more complex dependencies. For
example, in our scenario a more clearly innocent noise such
as breaking a twig will induce the guard to believe that there
is a thief (who accidentally caused that noise), which will
then trigger the behavior rule that says to ambush him.

Experiment design
We stipulate some necessary conditions for entertaining de-
ception:

1. The exploitation of the higher-order belief is intrinsically
enjoyable.
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if Believes(guard, thief_present):
if Believes(guard, not Believes(thief, guard_present)):

guard.ambush(thief)
elif Believes(guard, not Believes(thief, Believes(guard, thief_present))):

guard.attack_or_alarm_inconspicuously()
else:

if not alarm_active:
guard.alarm_quickly()

else:
guard.attack(thief)

Listing 1: Guard control program in Python style

2. The player knows there is a reward for modeling the other
agents’ (higher-order) beliefs.

3. The player expects the other agents to model the player’s
beliefs.

Based on these assumptions, we will run a small popu-
lation pilot study among volunteers who are randomly as-
signed to a control group or experimental group.

Before play, the player is surveyed for the last video game
that they played and their level of enjoyment on a five-point
Likert scale, and their interest in playing that game again.

Text directly informs the player that the agents have a
mental model. Without explanation, a player may fail to
model the mechanisms underlying the behavior of agents in
a video game. In the control scenario, the player is informed
of the guard and that it will respond to noticing the thief.
In the experimental scenario, the player is informed that the
guard will ambush, attack, or call for help depending on how
the thief behaves.

The session of play occurs on a personal computer using
an animated two-dimensional prototype of the scenario. The
graphical depiction and other media are identical. The set-
ting and characters are identical. The player is also informed
about the input and output conventions, which are identical
for both the control group and experimental group. The dif-
ference is isolated to the behavior of the artificial agent.

During play, the player’s facial expressions, vocal re-
sponses, and body language are observed. Signs of (plau-
sibly) spontaneous emotions, such as chuckles, grins, fur-
rowed brows, crossed legs are noted.

We conjecture that our modest belief engine encourages
the original game’s tactics of misleading a guard. It also
encourages pretending in another way: The thief may play
stupid and let himself be seen from behind by the guard, who
then again thinks he can do something sneakier than ringing
the alarm.

We also conjecture that our scenario encourages trepida-
tion. A guard who has actually noticed the thief without be-
ing noticed himself will act inconspicuously while preparing
a counter-attack. The blackjack is the weapon for subduing,
which has a short reach. A guard that pretends to not have
noticed, will swing around and stab with his sword first be-
fore the player’s blackjack is in range.

Overall, we conjecture that the average enjoyment and in-
terest in the experimental group exceed those of the control

group.
To test our conjectures, after play the player is surveyed

for their level of enjoyment on a five-point Likert scale, and
their interest in progressing in this game. The player is also
surveyed on open-ended questions about the tactics they em-
ployed, and what stood out in their experience.

Knowledge module
There are various ways in which relevant beliefs can come
about: by causing or hearing noise, seeing the other one
from behind, or facing each other. When scripting the be-
haviors, the programmer need not worry about how exactly
the beliefs came about, he simply uses the familiar concept
of belief in order to express the rules on a high level.

It is the job of the knowledge module to take care of main-
taining and updating the agents’ knowledge,1 taking into ac-
count whichever events occur in the virtual world. As an
agent’s control script is executed, the knowledge module is
queried and determines the truth value of any given formula.

We assume that the scene starts with thief and guard
present and no events having occurred, and that agents can-
not enter or leave. Put differently, the guard will not leave
the scenario, and if the player leaves, the scenario ends.
Note that this assumption is not inherent to our approach
and serves mostly to avoid unnecessary complications. In
the context of a computer game it is not too unnatural: Game
worlds often are simulated per scene, and a scene starts and
ends whenever the player enters or leaves.

In our experiment, we consider the following kinds of
events:
• bt, bg: The thief, respectively the guard, sees the other one

from behind.
• nt, ng: The thief, respectively the guard, makes some

noise. We limit this to “relevant” events in the sense that,
e.g., nt can only occur if the thief is present.

• f : Thief and guard see each other face to face.
The epistemic effects of these events are as follows:
• bt: The thief believes that the guard is present; the guard

never assumes this event to occur, so this event does not
change the guard’s beliefs.

1In our case beliefs rather than knowledge, but we will stick
with the name ‘knowledge module’.
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• nt: The guard believes a thief is present; the thief believes
that, if a guard is present, that guard believes that the thief
is present.

• f : Thief and guard commonly believe that both are
present.

In addition, these effects are commonly believed. For now,
we assume that events are not forgotten. Note that a conse-
quence of all this is that after both ng and nt have occurred,
guard and thief commonly believe that both are present.

To model this situation formally, we use a modal logic
model with history-based semantics (Fagin et al. 1995). We
introduce two propositions, pt and pg , with the reading that
the thief, respectively the guard, is present. A valuation is
a function that assigns either true or false to each of these
propositions, and can be denoted as a set V containing those
propositions that are to be assigned true.

The set of events, as above, is E = {bt, bg, nt, ng, f}.
A history H is a sequence of events. For a history H , by
Ag(H) we denote the set of agents involved in the events
in H , i.e. Ag(H) ⊆ {t, g}, where naturally both t and g
are involved in any of {bt, bg, f}, and only t (resp. g) is
involved in nt (resp. ng). We also writeH−e for any e ∈ E
to denote the history obtained by removing all occurrences
of e from H . The empty history is denoted by ε.

A pair (V,H) is a state (or possible world) if and only if
Ag(H) ⊆ V . So the described initial situation is represented
by the state ({pt, pg}, ε).

We now define accessibility relations 99Kt and 99Kg
between states in our history-based model. Intuitively,
(V,H) 99Kt (V ′, H ′) means that in state (V,H), t considers
it possible that the state is (V ′, H ′). According to the intu-
itions described above, we define these relations as follows:

(V,H) 99Kt (V ′, H ′) iff
{
t 6∈ V ′ and H ′ − ng = ε if t 6∈ V
t ∈ V ′ and H ′ = H − bg if t ∈ V .

Note that in the first of these two cases, ng is the only event
which can occur inH ′, so the condition boils down to saying
that H ′ may be any sequence of ng . The second case cap-
tures the intuition that t does not assume the possibility that
he is being seen from behind. The relation 99Kg is defined
analogously.

We consider the doxastic language consisting of formulas
of the following form:

ϕ ::= pt | pg | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Btϕ | Bgϕ .

The semantics is standard relational modal semantics,
see (Blackburn, de Rijke, and Venema 2001).

If we merge all doxastically equivalent states, that is, all
states that make the same formulas true, our model can be
depicted as in Figure 1. 2

Note that, in contrast to our starting point from history-
based semantics, this representation is static in the sense that
it does not grow (or shrink) over time, as the world evolves
and events occur. It is straightforwardly represented in any

2This is the so-called ‘bisimulation contraction’ of our original
model. Note that in our case, if (V, H) and (V ′, H ′) are doxasti-
cally equivalent, so are (V, He) and (V ′, H ′e) for any event e.

programming language (our implementation uses Python),
and the knowledge module simply needs to keep track of
which one is the current state.

Since in a computer game there is a central place where
the game world is simulated, only one such model needs to
be maintained, even in a scenario with more agents. Rather
than maintaining a separate model inside each agent, this
central model is fed with the events occurring in the game
world, and queried by the agents’ programs. This also means
that the evaluation of formulas can be done efficiently since
it corresponds to model checking, rather than testing validity
as in a truly distributed setting.

Finally, note that while agents can have false beliefs, there
is no need for elaborate belief revision mechanisms in our
simple scenario, since there is no way for the agents to notice
their false beliefs.

Technical discussion
The knowledge module we presented is a centralized imple-
mentation of the approach described in (Witzel and Zves-
per 2008). The fact that it is centralized together with the
simplicity of our scenario remove the necessity of finding
restrictions of the doxastic language or other optimizations:
About any conceivable model and implementation would be
trivially tractable.

However, our scenario still shows the advantages of the
modular approach which consists in introducing beliefs as
an abstraction layer and separating the belief model from
the agent’s control program. The knowledge module can
be refined independently to cope with new events or exten-
sions, such as probabilistic beliefs, with no need to change
the behavior scripts. While one could implement some ad-
hoc tracking of events in the agent control program, this is
error-prone and difficult to maintain, as already in our small
test scenario the exact dependencies on events are getting
confusing: What does “if nt or bg have occurred, but neither
ng nor f have, then. . . ” mean?

Of course a knowledge module may also need debugging,
but this can be done separately from the rest of the program.
To this end, it would be interesting to define a Why() func-
tion, which should give a (useful) explanation of why a given
belief formula holds in a given state.

One extension that is easy to incorporate into our knowl-
edge module are decaying events, or unstable states: If the
guard makes some noise, like whistling (which he obviously
would only do if he does not believe a thief is present), he
might have forgotten about that when he 10 minutes later
sees the thief from behind, and therefore not conclude that
the thief believes the guard is present. This could be mod-
eled by a spontaneous transition from state 5 to 2 after some
time.

The advantages of our finite-state-machine-like represen-
tation is that it is straightforwardly represented using a very
simple data structure, and that it is a static, pre-computed
model, so there is no expense at run-time and no surprises
from uncontrolled growth. However, for bigger scenarios, it
may not be feasible to keep the whole model in memory all
the time. Mechanisms to generate the model only locally as
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Figure 1: Representation of our doxastic model. The numbered nodes represent states and are annotated with one of the
equivalent possibilities of what events have (optionally) taken place. Boxed states have V = {pt, pg}, a missing left corner
means pg 6∈ V , and a missing right corner means pt 6∈ V . State 0 represents the initial situation. Solid arrows with black
labels show event transitions, dashed arrows and edges (the latter corresponding to bidirectional arrows) with gray labels
show accessibility relations. The following are omitted for clarity: reflexive transitions for each optional event at each state;
f -transitions from each boxed state to 8; and reflexive accessibilities, except for g in states 2 and 6 and for t in states 1 and 7.

needed, and strategies for expanding, shrinking, or swapping
out unused parts of the model may be necessary.

A very promising alternative is Dynamic Epistemic Logic
(DEL). Instead of using one model to represent all possi-
ble ways in which the world may evolve, one starts with a
model representing only the initial situation. Events are rep-
resented as so-called ‘update models’, which are applied to
the current model as the events occur, changing the model to
reflect the resulting situation.

It is then desirable to ensure that the model will not grow
indefinitely. In our scenario, this can be achieved by show-
ing that the events are commutative and idempotent in an
adequate sense, and that the update mechanism preserves
minimality with respect to bisimulation. It would be inter-
esting to look at such properties of DEL models and events
in a more general way.

Besides this ‘online’ use, DEL could also be used sim-
ply as a description language for initial situation and events,
from which a static model similar to ours could be pre-
computed ‘offline’. Again, considerations about the size of
the resulting model, or language restrictions to ensure cer-
tain complexity bounds, would be relevant.

An interesting suggestion that would also simplify reason-
ing is to consider so-called ‘interaction axioms’ between the
belief modalities of the players. For example, in (Lomus-
cio and Ryan 1998) the authors show that (2WD) is valid on
two-player ‘hypercubes’, i.e., models that are based on the
Cartesian product of an interpreted system’s state space:

♦1�2p =⇒ �2♦1p. (2WD)
In a different context (van Ditmarsch and Labuschagne

2007) consider interaction axioms that characterise differ-
ent Theories of Mind, including ‘autistic’ and ‘deranged’.
It is an interesting question whether interaction axioms that
capture agents that are fun to interact with might exist.

Another point worth noting is that we do not distinguish
between knowledge and true belief. There are many philo-
sophical discussions concerning differences between these
two notions, and formally they are generally taken to be dif-
ferent as well. Beliefs should really be revisable for ex-
ample, which is something we have not considered here.
A possible future direction of research would be to use
models and languages that take both belief and knowledge
into account, for example along the lines of (Shoham and
Leyton-Brown 2009, Chapter 13). Some actions would then
generate knowledge, while some would (only) generate be-
lief. This corresponds to the distinction van Benthem (2007)
draws between ‘hard’ and ‘soft’ information. For example,
if you see something then you might be said to know it, but if
somebody you don’t entirely trust tells you something then
you might only believe it.

Finally, it may be desirable to get rid of manually de-
signed behavior rules altogether, and let the agents act purely
based on their beliefs and some abstractly defined goals.
In order to accomplish this, a very promising approach is
to combine a game world that uses deductive planning,
e.g. (Magnusson and Doherty 2008), with a belief model
such as the one we discussed. In this way, the planning
agents would be enabled to reason about the epistemic pre-
conditions and consequences of their actions and the epis-
temic parts of their goals.
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A very long-term vision is then to have an artificial guard
that by himself adopts behaviors similar to the ones we de-
scribed, or to the tactics we conjectured for the human thief.
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Abstract

Real and simulated worlds that involve cooperation between
several autonomous agents create highly dynamic conditions.
An individual agent can not hope to rely on fixed behaviors,
but needs to plan both physical actions and communication
actions that enlist other agents to help achieve the goal. We
present a logical agent that plans regular actions and speech
acts, monitors their execution, and recovers from unexpected
failures. The architecture is based on automated reasoning in
a formal logic and is grounded in a physical robot platform in
the form of an autonomous helicopter. We apply the system
to a knowledge gathering goal and illustrate how it deals with
the complexities of the task.

Introduction
Imagine the chaotic aftermath of a natural disaster. Teams of
rescue workers search the afflicted area for people in need
of help, but they are hopelessly understaffed and time is
short. Fortunately, they are aided by a small fleet of un-
manned aerial vehicles (UAVs) that can be requested to carry
out tasks autonomously. The UAVs help quickly locate in-
jured by scanning large parts of the area from above using
infrared cameras and communicating the information to the
command and control center (CCC) in charge of the emer-
gency relief operation.

Complex tasks like these occur frequently in real world
situations as well as in training simulations and computer
games. Achieving their goals requires the cooperation of
many independent agents. Each agent faces an environment
that can change in response to actions by other agents in ad-
dition to its own. It is unrealistic to assume that such an
agent could be made autonomous by equipping it with fixed
behaviours for all possible situations that might arise. In-
stead, the agent must automatically construct plans of action
adapted to the situation at hand. These multi-agent plans
involve other agents’ mental states and communicative acts
to affect them. In addition, assumptions made during plan-
ning must be monitored during execution so that the agent
can autonomously recover from failures, which are prone to
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happen in any dynamic environment. These are significant
challenges for any proposed planning formalism.

We extend Temporal Action Logic (Doherty and Kvarn-
ström 2007), a first-order language with a well-developed
methodology for representing actions that has previously
been used for planning (Magnusson 2007), with syntactic
operators that express the modalities of belief and commit-
ment. This makes it possible to formalize inform and re-
quest speech acts, and to plan both physical and communica-
tive actions in a multi-agent setting. Automation is provided
by a natural deduction theorem prover that integrates plan-
ning, execution, monitoring, and plan revision. The result-
ing physical actions are executed (in simulation) by a del-
egation framework (Doherty and Meyer 2007), built using
the Java agent development framework1 (JADE), and com-
municative actions are realized as standardized FIPA ACL
(Foundation for Intelligent Physical Agents 2002) speech
acts. We describe this agent architecture and its use in solv-
ing the above scenario.

Related Work
Early planning research tended to ignore any processes that
occur before or after the planning phase, and many classical
planning algorithms depended crucially on a global closed
world assumption. Agent programming languages provide
interesting alternatives that often incorporate execution and
monitoring, but move planning to a less prominent role or
eliminate planning altogether, which might result in some
sacrifice of flexibility in unforeseen situations.

Modern planning research tries to relax the classical
restrictions while keeping the planning process in focus.
Shanahan’s agent architecture (Shanahan 2000) based on the
Event Calculus seamlessly integrates planning and plan revi-
sion. Though it has not been applied in multi-agent settings,
and its implementation as an abductive logic program is not
sufficiently expressive to represent communicative acts con-
veniently.

Searle’s speech acts (1969) characterize natural language
utterances as actions with conditions upon their execution
and effects on the mental states of others. Speech acts form
a basis for expressing communicative acts as planning oper-
ators, as is done by Perrault, Allen, and Cohen (1978). They
generate plans that involve both regular actions and speech
acts, but the implementation uses limited versions of speech
acts in the form of STRIPS-like planning operators.

1http://jade.tilab.com/

53



Speech acts have also been adopted by research on soft-
ware agents (Genesereth and Ketchpel 1994). This body of
work depends fundamentally on agent communication lan-
guages (ACL), which are standardized sets of speech acts
that ensure interoperability in agent to agent communica-
tion. The widely used FIPA ACL is based on speech act the-
ory and has a logical semantics defined using multi-modal
BDI logic. But there is no integration of speech acts within
a more general framework of action and change that would
facilitate planning of speech acts together with other actions
to achieve goals. This is reflected by architectures that use
the FIPA ACL-based JADE framework in robotic applica-
tions. Their focus is not planning but rather the interoper-
ability that is gained from using a standardized ACL and the
ease of developing agents using JADE.

In contrast, Morgenstern (1988) offers an integrated the-
ory of both types of actions using a syntactic first-order
logic that includes quotation. Davis and Morgenstern (2005)
provide an alternative integration using regular first-order
logic. The two theories’ semantics cover both speech acts
and their content, however their use has so far been limited
to a STRIPS-like planner in the case of the former theory,
and as a specification for future implementations in the case
of the latter.

Temporal Action Logic
Reasoning about both physical and communicative actions
is only possible in a highly expressive formalism. We have
chosen one such formalism as a foundation, the Temporal
Action Logic (TAL), and extended it with a representation
of belief and commitment.

The origins of TAL are found in Sandewall’s model-
theoretic Features and Fluents framework (1994). Doherty
(1994) selected important concepts, such as an explicit time
line and the use of occlusion (discussed below), to form TAL
and gave it a proof-theoretic first-order characterization. Do-
herty and Kvarnström (2007) provide a detailed account of
the logic, but the version presented below includes further
extensions that make TAL suitable for applications in multi-
agent planning and reasoning.

TAL uses fluents to model properties and relations that
may change over time. A fluent f is a function of time, and
its value at a time point t is given by (value t f ). An agent
carrying out action a during time interval (t1 t2] is speci-
fied by a predicate (Occurs agent (t1 t2] a). But the most
important feature of TAL is its occlusion concept. A flu-
ent that is persistent by default is permitted to change its
value when occluded, but must retain its value during time
intervals when not occluded. The following formula (with
free variables implicitly universally quantified and in prefix
form to make the representation of the quoted formulas in-
troduced below more convenient) relates a fluent f ’s value
at the start and end time points of a time interval:

(→ (¬ (Occlude (t1 t2] f )) (= (value t1 f ) (value t2 f )))

By assuming that fluents are not occluded unless otherwise
specified, one is in effect making the frame assumption that
things usually do not change. Exceptions are made explicit

by occluding affected fluents in action specifications and de-
pendency constraints. E.g., if the UAV flies between two lo-
cations, its location fluent (location uav) would be occluded
during any interval with a non-empty intersection with the
movement interval. By exercising fine-grained control over
occlusion one gains a flexible tool for dealing with important
aspects and generalizations of the frame problem.

Syntactic Belief
Previous accounts of TAL lack a representation of agents’
mental states and beliefs. Introducing a syntactic belief op-
erator that takes a quoted formula as one of its arguments
provides a simple and intuitive notion of beliefs. E.g., the
fact that the UAV believes, at noon, that there are five sur-
vivors in grid cell 2,3 of the area map can be expressed by
the following formula (where 12:00 is syntactic sugar for a
Unix time integer):

(Believes uav 12:00 ’(= (value 12:00 (survivors (cell 2 3))) 5))

We use the quotation notation from KIF (Genesereth and
Fikes 1992), which is a formal variant of Lisp’s. An expres-
sion preceded by a quote is a regular first-order term that
serves as a name of that expression. Alternatively one may
use a back quote, in which case sub-expressions can be un-
quoted by preceding them with a comma. This facilitates
quantifying-in by exposing chosen variables inside a back
quoted expression for binding by quantifiers. E.g., we can
use quantifying-in to say that there is some number that the
UAV believes to be the number of survivors:

(∃ n (Believes uav 12:00
‘(= (value 12:00 (survivors (cell 2 3))) ’,n))) (1)

Note that it is not the existentially quantified number itself,
but the name of the number, that should occur as part of the
quoted third argument of Believes. The quote preceding the
comma ensures that whatever value n is bound to is quoted
to produce that value’s name.

However, if expressed as above, Formula 1 would be sat-
isfied if the UAV believes all tautologies of the form x = x.
To see this, simply replace n by the term (value 12:00 (sur-
vivors (cell 2 3))) and apply existential generalization. We
need to add the requirement that the UAV’s belief is not
merely a tautology, but that it really identifies the number
of survivors.

Moore (1980) suggests the use of rigid designators and
Morgenstern (1987) modifies this suggestion slightly in her
requirement that standard identifiers are known. We follow
Morgenstern and use the syntactic predicate (Id x) to sin-
gle out the name x as a standard identifier, adding the back-
ground knowledge that integers are standard identifiers. It is
convenient to introduce a two argument predicate asserting
that the second argument is a standard identifier for the first:

(↔ (Id ‘’,x ‘’,y) (∧ (= x y) (Id ‘’,y)))

Note the interaction between back quote and quote in ‘’,x
and ‘’,y to make sure that the arguments of Id are names
of the expressions. The initial back quote turns the follow-
ing quote into the name of a quote, leaving the variables x
and y free for binding. The resulting expression denotes the
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quoted version of whatever the variables are bound to rather
than quoted variables that can not be bound at all. The use
of quoted expressions as arguments to the Id predicate pre-
vents substitution of identicals, as is required by opaque be-
lief contexts.

If the UAV can identify the number of survivors we say:

(∃ n (Believes uav 12:00
‘(Id ’(value 12:00 (survivors (cell 2 3))) ’’,n)))

Here, the occurrence of the Id predicate is nested in a belief
predicate, necessitating double quotes on the variable n.

Speech Acts
Speech acts can be used to communicate beliefs to, and to
incur commitment in, other agents. The extensions intro-
duced above make it possible to reformulate Allen’s speech
acts (1988) in TAL using syntactic belief and commitment
predicates. The type of information we will be interested in
is beliefs about what a particular value is. This is straight-
forwardly communicated by standard identifiers. E.g., if the
UAV wishes to inform the CCC that it is in the map’s grid
cell 2,3 at noon, it may plan an action of the following form:

(inform ccc ’(Id ’(value 12:00 (location uav)) ’(cell 2 3))) (2)

However, this is complicated when the CCC wishes to ask
the UAV what its location is. Hintikka (1978), and many
others, suggests viewing questions as requests for informa-
tion. The CCC should thus request that the UAV perform
the inform action in Formula 2. But since the CCC does
not know where the UAV is, which is presumably the reason
why it is asking, it can not know what action to request.

Again we follow Allen’s directions and introduce an in-
formRef action designed to facilitate questions of this type.
The informRef action does not mention the value that is un-
known to the CCC, which instead performs the following
request:

(request uav ’(Occurs uav (b e]
(informRef ccc (value 12:00 (location uav)))))

The informRef preconditions require that the informing
agent holds a belief about what the value that is being in-
formed about is and the effects assert the existence of a stan-
dard name that the hearer believes the value has. Note that
an agent that commits to executing the action schedules an
inform procedure call, plugging in the sought value. In con-
trast, an agent that only reasons about the effects of the in-
formRef action, as in the question example above, knows
that it will come to hold a belief about the value, but need
not yet have such a belief.

Automated Natural Deduction
The theory presented so far needs to be complemented with
an automated reasoner. Earlier work with TAL made deduc-
tive planning possible through a compilation of TAL formu-
las into Prolog programs (Magnusson 2007). But Prolog’s
limited expressivity makes it inadequate for our present pur-
poses. Instead, our current work utilizes a theorem prover
based on natural deduction, inspired by similar systems by
Rips (1994) and Pollock (1999).

Natural deduction is an interesting alternative to the
widely used resolution method. A natural deduction prover
works with the formulas of an agent’s knowledge base in
their “natural form” directly, rather than first compiling them
into clause form. The set of proof rules is extensible and eas-
ily accommodates special purpose rules that make reasoning
more efficient. E.g., we incorporate specialized inference
rules for reasoning with quoted expressions and beliefs. This
works well, though the quoted expressions in our examples
are simple atomic formulas. Whether the approach will scale
to an effective method of reasoning with more general uses
of quotation is an open question.

Rules are divided into forward and backward rules. For-
ward rules are triggered whenever possible and are designed
to converge on a stable set of conclusions so as not to con-
tinue generating new inferences forever. Backward rules,
in contrast, are used to search backwards from the current
proof goal and thus exhibits goal direction. Combined, the
result is a bi-directional search for proofs.

Nonmonotonic reasoning and planning is made possible
through an assumption-based argumentation system. The set
of abducibles consists of negated occlusion, action occur-
rences, temporal constraints, and positive or negative holds
formulas, depending on the current reasoning task. These
are allowed to be assumed rather than proven, as long as
they are not counter-explained or inconsistent.

For some restrictions on the input theory we are able
to guarantee completeness of the nonmonotonic reasoning
(Magnusson, Kvarnström, and Doherty 2009). But in the
general case, when one cannot guarantee completeness of
the consistency checking, we might conceivably fail to dis-
cover that one of the assumptions is unreasonable. However,
this would still not be a cause of unsoundness, since we are
using the sound system of natural deduction that keeps track
of all assumptions and the formulas that follow from them.
But it might result in plans and conclusions that rest on im-
possible assumptions. A conclusion Φ depending on an in-
consistent assumption would in effect have the logical form
⊥→ Φ, and thus be tautological and void. This is to be ex-
pected though, due to the uncomputability of consistency
checking. The most one can hope for is for the agent to
continually evaluate the consistency of its assumptions, im-
proving the chances of them being correct over time, while
regarding conclusions as tentative (Pollock 1995).

Agent Architecture
Solving the scenario in the introduction requires a system
with a tight coupling between planning, execution, and mon-
itoring. Our architecture achieves this through logic-based
planning that results in abductive frame assumptions (about
the persistence of certain parts of the world) that are moni-
tored during plan execution, as described below.

Planning
Planning is the result of proving a goal while abductively
assuming action occurrences that satisfy three kinds of pre-
conditions. The action must be physically executable by an
agent during some time interval, the agent must have a belief
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that identifies the action, and the agent must be committed to
the action occurring, at the start of the time interval:

(→ (∧ (Executable agent (b e] action)
(Believes agent b ‘(ActionId ’’,action ’,actionid))
(Committed agent b ‘(Occurs ’,agent ( ’,b ’,e] ’,action)))

(Occurs agent (b e] action))

Executability preconditions are different for each action and
are therefore part of the specifications of an action.

The belief precondition is expressed by a single axiom:

(→ (∧ (Primitive name) (Id arg1 id1) · · · (Id argn idn))
(ActionId ‘(,name ,arg1 · · · ,argn) ‘(,name ,id1 · · · ,idn)))

This captures Moore’s (1980) insight that knowing identi-
fiers for the arguments of a primitive action is knowing that
action. This condition prevents e.g. a stock market agent
from planning to get rich by buying “the stock that will in-
crease in value.” While theoretically correct, the plan is of
no practical value unless the agent can identify some partic-
ular stock that will increase in value.

The time point at which an action is executed is also crit-
ically important. One would not want the agent to gener-
ate a plan to buy a particular stock “when it is lowest” and
sell it “when it is highest.” Without additional information
about when these events occur this plan is equally useless.
However, it seems overly restrictive to require that the agent
holds beliefs that identify the action occurrence time points.
Actions that do not depend on external circumstances can be
executed whenever the agent so chooses, without deciding
upon an identifiable clock time in advance. Actions that do
depend on external circumstances can also be successfully
executed as long as the agent is sure to know the correct
time point when it comes to pass. This is precisely what the
concept of dynamic controllability captures. Following Vi-
dal and Fargier (1999) we denote time points controlled by
the agent by b and time points over which the agent has no
control by e. The temporal dependencies between actions
form a simple temporal network with uncertainty (STNU)
that can be checked for dynamic controllability to ensure an
executable plan.

Finally, the commitment precondition can be satisfied in
one of two ways. Either the agent adds the action to its own
planned execution schedule (described below), or it uses the
request speech act to delegate the action to another agent,
thereby ensuring commitment.

Execution

Scheduled actions are tied to the STNU through the explicit
time points in TAL’s Occurs predicate. An STNU execution
algorithm propagates time windows during which these time
points need to occur (Morris and Muscettola 2000). Time
points that are live and enabled with respect to the time win-
dows are executed, i.e. they are bound to the current clock
time and action occurrences scheduled at those time points
are proved dispatched using the following axiom:

(→ (∧ (ActionId ‘ ’,action ‘ ’,id)
(ProcedureCall self (b e] id))

(Dispatch self (b e] action))

The ProcedureCall predicate is the link between the auto-
mated reasoner and the execution sub-system in that the
predicate is proved by looking up the procedure associated
with the given action and calling it. Note that it is the ac-
tion’s identifier that is used in the procedure call. This guar-
antees that only integers, strings, and other standard iden-
tifiers are passed as arguments to procedures, and is neces-
sary since the action’s arguments might depend on informa-
tion gathering actions whose results were not available at
the time of planning. Invoking automated reasoning on the
above axiom, rather than simply performing the procedure
call, allows the full power of theorem proving to be applied
in finding standard identifiers for the procedure call argu-
ments. This could be necessary in order to apply background
knowledge to convert the arguments into the standard for-
mat, or if the arguments are only implicitly represented as a
deductive consequence of explicit knowledge.

Monitoring
Executing the plan will satisfy the goal as long as fluent per-
sistence assumptions hold up. But the real world is an unpre-
dictable place and unexpected events are sure to conspire to
interfere with any non-trivial plan. To detect problems early
we continually evaluate all assumptions that are possible to
monitor.

When a persistence assumption (in the form of a non-
occlusion formula) fails it produces an occlusion percept
that is added to the agent’s knowledge base. A truth main-
tenance system removes assumptions that are contradicted
by observations and unchecks goals that were previously
checked off as completed but that include a failed assump-
tions among their dependencies. This immediately gives rise
to a plan revision and failure recovery process as the theorem
prover tries to reestablish those goals.

If the proof of the unchecked goals succeeds, the revision
will have had minimal effect on the original plan. A failed
proof means that the current sub-goal is not viable in the
context of the execution failure, and the revision is extended
by dropping the sub-goals one at a time. This process con-
tinues until a revision has been found, or the main goal is
dropped and the mission fails.

UASTech Delegation Framework
Procedure calls are carried out by the UASTech Delegation
Framework (Doherty and Meyer 2007). But the actions are
often still too high-level to be passed directly to the low-level
system. An example is the action of scanning a grid cell us-
ing the infrared camera. This involves using a scan pattern
generator, flying the generated trajectory, and applying the
image processing service to identify humans in the video
footage (as described in (Doherty and Rudol 2007)). The
assumption is that, while not a primitive action in the low-
level system, the scanning of a grid cell will always proceed
in the manner just described so there is no need to plan its
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sub-actions. Such macro-actions are coordinated by special-
ized modules, in this case the scan coordinator.

The Delegation Framework implementation uses the Java
agent development framework (JADE) and encapsulates the
agent so that all communication is channeled through a stan-
dardized interface as FIPA ACL speech acts. Human oper-
ators, like those in the CCC, communicate through an in-
terface like any other agent but use a graphical user inter-
face that displays a map subdivided into grid cells through
which they can ask questions, position no-fly zones or other
constraints, and delegate requests to other agents. The re-
sulting multi-agent system can consist of widely differing
agents that are able to interact through standardized speech
acts to help each other achieve complex goals.

Scenario Solution
We have implemented this theorem proving based agent ar-
chitecture and applied it to the scenario described in the in-
troduction. If the UAV’s knowledge base was initialized at
12:00 and the CCC requests having information of the sur-
vivor count in map grid cell 2,3 at 13:00 the UAV produces
the following plan (in addition to an STNU that relates qual-
itative time points):

(Schedule uav (b1 e1] (fly (cell 2 3)))
(Schedule uav (b2 e2] (scan (cell 2 3)))
(Schedule uav (b3 e3]

(informRef ccc ’(value 13:00 (survivors (cell 2 3)))))

The success of the plan depends on two abductive assump-
tions that were made during planning and that can be moni-
tored during execution:

(¬ (Occlude (12:00 b3] (radio uav ccc)))
(¬ (Occlude (e1 b2] (location uav)))

There is also an assumption of the persistence of the sur-
vivor count, though this is impossible for our UAV to moni-
tor since it can not see the relevant area all at once. If one of
the survivors runs off, then the plan will be modified to take
the resulting body count discrepancy into account when it is
discovered.

Suppose however that the large distance and mountainous
terrain causes a radio communication break down while the
UAV is scanning the area. The UAV perceives that the flu-
ent (radio uav ccc) was occluded and the truth maintenance
system successively removes incompatible assumptions and
sub-goals until a revised plan suffix is found:

(Schedule uav (b4 e4]
(informRef mob ’(value 13:00 (survivors (cell 2 3)))))

(Schedule uav (b5 e5]
(request mob

’(Occurs mob (b6 e6]
(informRef ccc ’(value 13:00 (survivors (cell 2 3)))))))

The new plan involves requesting help from another mobile
agent (mob). By communicating the survivor count to this
“middle man,” and requesting it to pass on the information to
the CCC, the UAV ensures that the CCC gets the requested
information.

Another set of assumptions now require monitoring:

(¬ (Occlude (oc 12:00 b6) (radio mob ccc)))
(¬ (Occlude (oc 12:00 b4) (radio uav mob)))

While the UAV is incapable of monitoring the other agent’s
radio communication, it will be monitored if that agent is
also running our agent architecture. Unless further failures
ensue, this concludes the successful completion of the given
knowledge gathering assignment.

Conclusions
We have described a scenario that involves planning com-
munication between agents, plan execution with monitoring,
and plan revision to recover from an unexpected communi-
cation failure. Our solution uses speech acts formalized in
an extension of Temporal Action Logic that includes syntac-
tic belief and commitment operators, which are made possi-
ble through the use of a quotation mechanism. Plan gener-
ation and revision is carried out using an automated natural
deduction theorem prover. The subsequent execution uses
an STNU execution algorithm to dispatch actions in accor-
dance with the plan’s temporal constraints. Finally, an action
dispatch mechanism links the automated reasoning system
and a delegation framework that coordinates the execution
of primitive actions on the physical robot platform.

Our framework makes extensive use of logic to meet the
challenges of dynamic environments. While the use of logic
as a theoretical foundation is relatively commonplace, we
have constructed a practical logical agent architecture that
uses theorem proving technology to plan and execute actions
in a multi-agent setting.

Much work remains before the technology is sufficiently
efficient and robust for larger scale applications. But there
is great potential for using logical agents in both real and
simulated worlds. This paper has explored a robotic search
and rescue scenario. Another paper uses the same tech-
nology in intelligent computer game characters (Magnusson
and Doherty 2008). We believe these and similar opportuni-
ties make continued effort worthwhile.
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Ontological Foundations of a Formal Theory of Time Travel
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Abstract

Although the phenomenon of time travel is common in fic-
tion, film, and video games, little work in AI has been done
on integrating time travel into a formal theory of action. This
paper considers how one might develop a formal ontology
and model that support inferences about time travel.
This paper is an extended abstract. A more complete ver-
sion of this paper will be available soon at http://www-
formal.stanford.edu/leora/tt .

Introduction: Overview and Motivation
Although the phenomenon of time travel is common in fic-
tion, film, and video games, little work in AI has been done
on integrating time travel into a formal theory of action.

Why hasn’t there been much work in this area? Perhaps
because there is much about time travel that seems con-
trary to the spirit of formal AI. There is, first of all, the
fact that in AI formal theories of action, time, whether lin-
ear or branching, goes only forward, and that time travel
by definition requires moving backward in time. Second,
time-travel seems to lend itself to various paradoxes, such as
the grandfather (or autoinfanticide) paradox (Barjavel 1943;
Horwich 1987). Third, AI, even formal AI, is ultimately mo-
tivated by practical problems 1 and time travel is in the realm
of science fiction.

Why might work in this area be nevertheless interesting
for AI? Time travel has become increasingly popular in pop-
ular culture, including TV (Lost), movies (Back to the Fu-
ture, Bill and Ted’s Excellent Adventure), and video games
(Chrono Trigger). At the same time, the field of AI and en-
tertainment has grown significantly. When time-travel video
games are developed, it would be good to have some notion
of what makes a time-travel narrative coherent, and it would
be useful to have some formal theory underpinning this idea.

Copyright c© 2009, the author(s). All rights reserved.
In: Benedikt Löwe (ed.), LSIR-2: Logic and the Simulation of
Interaction and Reasoning, Pasadena CA, U.S.A., 12 July 2009.
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1Even esoteric problems, such as variations on the Yale Shoot-
ing Problem (Hanks and McDermott 1987), or on the Missionaries
and Cannibals Problem (McCarthy 1998) are studied in formal AI
because they shed light on, respectively, temporal projection and
elaboration tolerance.

Scope of paper and methodology: This initial work fo-
cuses on ontological and conceptual issues. We examine a
very simple problem of “fixing” the past, and begin to de-
velop a model that could support these inferences.

We make the following simplifications: First, we focus
on traveling to the past rather than the future. Second, we
restrict time travel to one agent at a time. Traveling groups
of agents would significantly complicate the details of the
ontological structure. Third, we do not allow bringing back
objects from the future.

We focus on the following conceptual problems:

1. In standard temporal ontologies, time moves forward and
not back. Is it possible to use these ontologies to represent
moving back in time?

2. There are various representational difficulties that time
travel presents. Can different sets of people exist in some
chronicles that do not exist in others? Can several instan-
tiations of a person (or an object) exist? How can this be
represented in the ontology?

3. Time travel is subject to various paradoxes, such as the
predestination and autoinfanticide paradoxes. How these
can be avoided or explained in the developed ontology?

Axiomatization will be the next step in this project, but is
not covered in this paper.

Temporal Ontology
Working Examples
We will refer in this discussion to two simple working ex-
amples:
Working Example 1 John is an athlete with Olympic aspira-
tions. He crosses a room using a route that has an obstacle
in it and breaks his foot. This results in his going to rehab
instead of going to the Olympics. Some time later, John is
given the opportunity to travel back in time. He now crosses
the room using a route without an obstacle, does not break
his leg, and goes on to win the Olympics.
Working Example 2 The beginnning of this example is the
same as Working Example 1. Sometime subsequent to
John’s rehab, he marries and has a child, who learns from an
early age about the accident that dashed her father’s Olympic
hopes. When she grows up, she travels back in time to just
before the foot-breaking incident, and removes the obstacle
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from the route he takes. John winds up going to and winning
the Olympics.

Choosing a temporal model for reasoning about
time travel
AI temporal ontologies are of two flavors: linear time, as
in the event calculus (Kowalski and Sergot 1986; Miller and
Shanahan 1994) and branching time, as in the situation cal-
culus (McCarthy and Hayes 1969; Reiter 2001). Because
linear time does not facilitate reasoning about alternate pos-
sibilities, it seems inherently unsuitable as the underlying
ontology for time travel. Branching time, with its built-in
structure of different possible futures and different possible
paths through the temporal tree, seems to have better poten-
tial. Still, we are faced with a basic conceptual problem:
time goes forward, and not back. The idea is that you can
get to any point that exists in the subtree rooted at the point
you are now. But in time-travel you want to go back. That
is, you wish to move to a different part of the subtree. This
isn’t allowed within standard branching time structures, so a
different way must be found.

We use a combination of several tricks to achieve what we
need.

First, we move away from the implicit assumption in
time-travel accounts that there is a path in the time tree that
“really” occurs; that this path is in some sense subsumed
when time travel leads to a new path that “really” occurs. In
our paradigm, there is no sense of a “real” path through the
time tree. Rather, at any point in the time tree, certain sets of
paths — more precisely, certain subtrees of the time tree —
are accessible by certain embodiments of agents. Some of
these subtrees intuitively correspond to how the world might
be if time travel were allowed.

Second, we embrace the idea of different embodiments
of agents. Intuitively, an agent changes as he goes through
different experiences, most notably by gaining knowledge.
In some sense, then, one can say that an agent Q is different
at a later time than at an earlier time. We will talk about
different embodiments of an agent. Specifically, we will talk
about the embodiment of an agent Q(Sb, Sa), where there is
a path segment from Sa to Sb, where Sa precedes Sb; this
represents an agent Q at Sa who in his mind has lived all the
way up to Sb. He knows what happens on the path segment
from Sa to Sb. Intuitively, Q(Sb, Sa) corresponds to the
agent Q who has time-travelled back from Sb to Sa.

Third, we introduce (possibly finite) sets of time-travel
points and re-entry points for particular agents. These cor-
respond to the points at which we can think of time travel
occurring. They are constrained as follows: An agent is as-
sociated with a time-travel point and a re-entry point only if
there is a path segment from the re-entry point to the time-
travel point. (Let us call this path segment the reversible
path segment.)

It is important to note that there is no action that takes an
agent from a time-travel point to a re-entry point. Rather,
an embodiment of an agent will be characterized by the pair
(time-travel point, re-entry point), indicating that the agent
in this embodiment will have (at least some) knowledge of
what has happened in the reversible path segment. In the

simple case where the agent embodiment is an embodiment
of the agent who performed the first step of the reversible
path segment, the embodied agent will have the knowledge
and the “memories” of an agent who has traversed the entire
reversible path segment.

In subtrees that are rooted at re-entry points, there will be
paths in which alternate embodiments of agents have active
roles. These are the paths which intuitively correspond to
time travel.

In the same way that there are actions accessible to Q at
Sa, there are actions available to Q(Sb, Sa), the embodi-
ment of the agent who has “lived through” the path segment
from Sa to Sb. The set of actions accessible to an agent Q
at a point Sa will usually overlap with the set of actions ac-
cessible to Q(Sb, Sa). However, the set of actions will not
necessarily be identical, since Q(Sb, Sa) may face different
constraints at Sa than Q.

Developing the model
To see in detail how this would work, let us consider more
carefully Working Example 1, which is depicted in Figure 1.
For this initial work, we use the temporal ontology similar
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Figure 1: How time travel is effected in a classic forward-
branching time tree. Certain time points are designated as
time-travel or re-entry points for particular agents. Here S7

is designated as a time-travel point, and S1 is designated as
a re-entry point for John. This means that an embodiment
of John moves through a portion of the subtree rooted at
S1; the embodiment has full knowledge of what happened
between S1 and S7

to the situation calculus, as presented in (Reiter 2001). At
time S1, there are a variety of actions available to different
agents.

Let us assume that there are several actions available to
John at S1, which include the action of crossing the room
across route x (see the path segment from S1 to S2), and

60



crossing the room across route y (path segment from S1 to
S3). Route y contains an obstacle, and when John takes this
route, he breaks his leg, dashing his dream of competing in
the long jump in the Olympics. Instead, John must go to
rehab. Poor John! Had he only taken route x, he would have
gone on to win the long jump competition.

John continues in his dreary life, along the path whose
initial segment is (S1, S3), always wondering what might
have been. But then he reaches a time-travel point, labeled
S7 in Figure 1. What does time travel in this model actually
constitute? As argued above, it would violate the principle
of forward branching time to posit an action that John per-
forms that takes him back to S and that would allow him to
follow the time-tree path between S1 and S2, taking route
x. Rather, we represent the time travel as an ordered triple
(S7, S0, John). This triple represents the time-travel point,
the re-entry point, and the agent who is intuitively doing the
time travel, along portions of the subtree rooted at S1. These
portions of the subtree are accessible, not to the original John
who had the choice of taking route x or route y, but to an
older and wiser John, who knows the folly of taking route
y. This is a different embodiment of John than the original
John. This is the John who has known the pain of breaking
a leg, going to rehab,and missing the Olympics. We denote
this embodiment of John as John(S7, S1), the John who has
all the knowledge of what it is like to follow the path from
S1 to S7, and chooses now to follow the better path.

John(S7, S1) cannot follow the path from S1 to S2. That
path was available only to John. But John(S7, S1) can fol-
low a very similar path, consisting of the same action, that of
taking route x. This very similar path is depicted in Figure
3 as the path between S1 and S11.

Although we never identify any path through the tree as
an actual path that happens, it is the case that in general an
embodied agent Q(Sb, Sa) will at Sa have the knowledge of
someone who has traversed the path from Sa to Sb in the
time tree.

We note the following about embodiments:
First, this process might be repeated along the path seg-

ment of an embodied agent, leading to nested embodiments.
Consider what might happen after John wins the gold medal.
He could make a bad choice and engage in illegal activities,
such as the inhaling of illicit substances. This could lead to a
fall from grace, and the cancellation of contracts for product
endorsements. This is depicted in Figure 2, where the fall
from grace occurs at S12.

But this embodiment of John may be given yet another
chance to redeem himself. Figure 2 shows that S14 is a
time-travel point for John(S7, S1) with a re-entry point of
S12. The embodiment of the twice time-travelling John is
John(S7, S1, S12, S14); he is someone who behaves as a
person who has traversed the time tree path segment from
S1 to S7, has then traversed another time-tree path segment
from S1 to S14, and begins again at S12.

Second, as this example shows, embodiment along a path
stays the same or grows deeper, but does not grow shallower.
An agent is marked by the path segments that he believes he
has lived.
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Figure 2: Agent embodiments can be nested. In this case,
there is a time-travel point along the path taken by the agent
embodiment John(S7, S1). This results in the nested em-
bodiment John(S7, S1, S14, S12)

More on Agent Embodiments
We briefly discuss, though we do not necessarily resolve, the
following questions:
Do other agents know that Q(Sb, Sa) is distinct from Q?

Probably not, unless they have been involved in closely
related time-travel. This is not even supported by the current
model: it would at the least require time-travel and re-entry
points for pairs of agents and complicated indexing schemes
of embodiment that take into account multiple agents. It
should, however, be possible for an agent embodiment to tell
another agent (or agent embodiment) about the particulars of
his embodiment, or equivalently, his time travels.
Is an agent embodiment Q(Sb, Sa) at Sa the age that Q was
at Sb, or the age that Q was at Sa?

Neither answer is entirely satisfactory. If Q(Sb, Sa) is at
Sa the age thatQ was at Sb, then, if Sb is sufficiently greater
than Sa, it will be noticeable that the agent that all know as
Q has suddenly aged. If Q(Sb, Sa) is at Sa the age that Q is
at Sa, then the embodiment/time travel is hidden to all. The
only problematic issue is that Q(Sb, Sa) knows quite well
how old he is. Presumably, however, in his mind the time
travel has rolled back the years, and he finds it natural to be
the age that Q is at Sa.

This brings up a related question:
Is it possible to have two or more embodiments of a single
agent co-existing during a path segment? That is, can one
meet a future or past version of oneself?

This is not necessarily impossible in the current model.
Even in those path segments in whichQ(Sb, Sa) is the active
agent, Q could be present as a passive agent. On the other
hand, it seems easy to disallow it by constraining all path
segments so that only one embodiment of an agent appears,
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in a sense to be made precise later.
Disallowing multiple embodiments of an agent to co-exist

would seem to resolve Horwich’s autoinfanticide paradox
(Horwich 1987). However, the paradox can be reformulated
in a more general form, as discussed below.
Is it possible for an agent to travel back to a time prior to his
birth? In terms of the current model, can there be an agent
embodiment Q(Sb, Sa) if Q was not alive at Sa?

This question is central to Working Example II. At S1,
John’s daughter has not been born. If her agent embodiment
cannot exist at S1, she cannot prevent John’s fall.

More generally, enforcing such a constraint would disal-
low a great amount of time-travel literature, from E. Nesbit’s
The Story of the Amulet to the movie Back to the Future. We
would not want to disallow these.

Yet allowing embodiments of agents that have not yet
been born is also problematic. If the agent embodiment has
a re-entry point x years before its birth, does it remain ac-
tive for all these x years? In The Story of the Amulet and
Back to the Future, time-traveling agents do not spend long
in the past: they zoom back into the future from which they
came, either when they have finished their mission, or when
they feel endangered. But zooming into the future would be
meaningless in the current model.

However, one could approximate the effects of zooming
back into the future, after a brief visit to the past, by doing
the following:
(1) Allowing entry-points of agent embodiments before the
birth of the agent.
(2) Specifying activity periods for each agent embodiment.
(3) Enforcing very brief activity periods for agent embodi-
ments in the period prior to the birth of the agent.

Elements of the Model
Summarizing our discussion above, the basic constructs of
our ontology are:
• A partial ordered set of situations S with a least element
S0 such that for all situations Si other than S0, S0 pre-
cedes Si. If Si precedes Sj , the interval between Si and
Sj is denoted [Si, Sj ].

• A set Q of agents and agent embodiments, recursively
constructed as described below

• A set of (possibly parameterized) actions, are functions
on situations. At any situation, a (possibly empty) subset
of actions is feasible for any agent or agent embodiment.

• A set of time-travel points T ⊆ S and a set of re-entry
points R ⊆ S.

• A 3-ary time-travel relation RR ⊆ T ×R×Q.
• A set of constraints on the set of situations, agents and

agent embodiments, and feasible actions. Constraints can
be used, for example, to ensure that two or more embod-
iments of an agent do not co-exist, or that agent embodi-
ments have limited activity in time periods before they are
properly born.
We forsee using constraints to classify certain sets of

paths in the time tree as obeying certain principles of co-
herence. For example, all sets of paths in which there are

never two or more embodiments of a single agent within any
interval obey the unique-agent principle. These notions of
coherence will be used to enable inferences.

Agent embodiments are constructed as follows: If
(t, r, q) ∈ RR, then q(r, t) is an agent embodiment. If q
is already expressed as an agent embodiment of the form
q′(r1, t1, ..., rn, tn), the newly constructed agent embodi-
ment is expressed as q′(r1, t1, ..., rn, tn, r, t).

We have not yet discussed the semantics for knowledge
and belief. Since, effectively, most of the “time travel” is
effected through the beliefs of the embodied agent, it is im-
portant to give a coherent semantics for this. We aim to give
a modification of a standard possible-worlds semantics for
belief. Instead of talking about accessible possible worlds or
situations, however, it would seem preferable to talk about
accessible time-travel structures, where a time-travel struc-
ture for an agent embodimentQ(Sb, Sa) at Sc would include
the path segment from Sa to Sb, as well as the path from Sa
to Sc. Making this notion precise is ongoing work.

Time Travel Paradoxes and Puzzles
Time travel is subject to a number of well-known paradoxes
and puzzles. Two of the best known are the autoinfanticide
paradox (Horwich 1987; Barjavel 1943), and the predestina-
tion paradox.

The autoinfanticide paradox can occur in time-travel sce-
narios if one travels back in time and kills oneself when one
is an infant. This would seem to entail that one would never
have grown up and been able to time-travel back to the point
when one is an infant: this seems paradoxical.

As discussed above it is easy to avoid the autoinfanticide
paradox by positing that it is never the case that two or more
embodiments of an agent co-exist in the same interval. How-
ever, this does not prevent the similar grandfather paradox,
in which an embodiment of an agent kills the agent’s grand-
father before the grandfather gives birth to the agent’s par-
ent, thus ensuring that the agent will not be born.

The predestination paradox appears as far back as Oedi-
pus Rex, though in that case without time travel: An agent,
trying to avoid a prophesied and undesirable event, performs
actions which in fact lead to the event happening.

It has been argued by philosophers and astrophysicists,
such as Horwich and Novikov (Novikov 1998), that the au-
toinfanticide and grandfather paradoxes are not really para-
doxes, since one can ensure that such branches do not occur.
It appears to be feasible to formalize this intuition in the
model that we are developing. We can specify sets of paths,
such as ones in which an embodiment of an agent kills the
agent’s grandfather before the agent’s parent is born, as in-
coherent. Or we can be sure to set up the action structure so
that certain actions are not feasible for certain agent embod-
iments.

The predestination paradox is not really a paradox at all.
Indeed, it may be desirable to set up one’s time tree so that
certain sets of paths are constrained to entail a particular fact
(e.g., the occurrence of a particular event). Our model sup-
ports and encourage this phenomenon.
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Related and Future Work
Time travel has long fascinated physicists and philosophers,
who have thought about many of the issues discussed in this
paper in great detail. Our contribution is to demonstrate how
these notions can be integrated into existing AI theories of
time and action.

To date, this is still preliminary work. Our next step is to
formally categorize sets of paths or path segments that obey
certain principles of coherence, and to demonstrate that de-
sired inferences, such as the ones needed in Working Exam-
ples 1 and 2, hold in sets of coherent paths.

Future work includes lifting various restrictions and ex-
amining multi-person time travel and travel into the future.
We would also like to explore to what extent results on
regression (Reiter 1991) and progression (Lin and Reiter
1997) might still hold in this model. Although the tem-
poral structure remains one that is strictly forward branch-
ing, there are many properties, such as the knowledge of the
agent embodiments, that would seem to violate these results.
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