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Abstract

We provide an overview of research on computational models of analogy-making.
The survey ranges from a fairly basic introduction to the topic of computational
analogy-making to reporting some quite recent advanced results concerning the
study of these systems, their properties and particularities. When doing so,
we mainly take a cognitive modeling and computer sciences inspired point of
view, mostly discarding other possible criteria such as psychological or biolog-
ical adequacy. We introduce different abstract types of computational models
of analogy-making in terms of symbol-based models, connectionist models and
hybrid models, before having a more detailed look at one or two characteristic
examples for implemented systems of each category. Concludingly, after summa-
rizing the characteristics of the studied systems in a crisp synopsis, we present
some basic aspects of Heuristic-Driven Theory Projection, a mathematically
sound framework for analogy-making currently under construction.



Chapter 1

Introduction

Analogy and analogical reasoning can be encountered everywhere, from studies
in academic philosophy ([1]) to the real-world use of a formerly unknown oper-
ating system on a computer without prior instruction, or from formal enquiries
into forms of reasoning ([2]) to shortening the description of a task in an in-
struction manual of a refrigerator (e.g., “To set the high limit value HL, proceed
analogously as described for LL.”, p.31, [3]). Still, for a long time analogy was
merely considered a special case of reasoning, mostly to be found in application
when encountering creative solutions or in arts, as for example in the case of
poetic writing. The scene has changed dramatically during the last decades,
and today it is undoubted that the ability to see two a priori distinct domains
as similar based on their shared relational structure (i.e., analogy-making) is
one of the basic elements of human cognition ([4]). Some prominent cognitive
scientists nowadays even consider analogy the core of cognition itself ([5]). Key
abilities within everyday life, as communication, social interaction, tool use and
the handling of previously unseen situations crucially rely on the use of analogy-
based strategies and procedures. As also pointed out in [4], relational matching
is also the basis of perception, language, learning, memory and thinking (i.e.,
the constituent elements of most conceptions of cognition). Even more, it seems
these capabilities are not exclusive to our species, but can also be accessed by
other primates ([6]).

Since the advent of computer systems, researchers in cognitive science and ar-
tificial intelligence have been trying to create computational models of analogy-
making. Their motivation for doing so is twofold: On the one hand, a widely
applicable and working analogy-making system would form a great step towards
the goal of creating general artificial intelligence, i.e., human-like reasoning and
thinking capabilities within an artificial computational framework. Also, on the
other hand, the performance of certain theoretical paradigms and theories on
how analogy-making works can be tested by means of computational implemen-
tations, by this also allowing for deductive inferences back into the domain of
cognitive science. The present essay wants to sketch an overview of this devel-
opment, starting with a historical note on Evan’s ANALOGY ([7]) as one of
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the first systems, and afterwards presenting a representative choice of the most
popular systems in the field (whilst staying far away from raising any claim to
completeness).

The paper is structured as follows: Sect. 2 offers a crisp general introduc-
tion into the field of computational analogy-making systems, also providing a
categorization of different paradigms of system architecture into symbolic, con-
nectionist and hybrid. Sect. 3 gives an overview of the historical ANALOGY
system, which can be considered one of the forefathers of modern models of
analogical reasoning. The presentation continues with the Structure-Mapping
Engine and MAC/FAC in Sect. 4, using these as modern examples of symbolic
systems. The connectionist domain within the field is represented by LISA in
Sect. 5, followed by a contrasting elaboration on the STAR system family. As
hybrid systems, Copycat and AMBR have been chosen, serving as representa-
tives of a larger family of systems within a concise presentation. These overviews
are followed by a short summarizing synopsis in Sect. 7, before briefly addressing
HDTP, a mathematical sound framework for analogy-making currently under
development, in Sect. 8. Sect. 9 concludes the paper.
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Chapter 2

A General Categorization of
Computational Models of
Analogy-Making

In this short introductory part to the overall field of analogical reasoning by
means of computer systems, the presentation will mostly go along the lines of a
similar undertaking in [8]. As lined out there, analogy-making can broadly be
characterized as a mapping process between a source and a target domain (see
also Fig. 2.1 for a schematic visualisation). Following a schematization proposed
in [10], and adding an initial step introduced in [11], the following five abstract
processes are arguably considered necessary for analogy-making:

• The initial representation-building.

• The recognition of a source, based on a target description.

• The elaboration of a possible mapping between both.

• The evaluation of the mapping, and the transfer of the corresponding
information from source to target.

• The final consolidation of the outcome, i.e., a concluding learning process,
possibly leading to a certain behaviour or application of the newly obtained
insights.

Whilst expansions or slight modifications of this scheme have been proposed in
the meantime (see, for example, [12]), at this point the just sketched schema
serves as a general formal model of analogy-making, and as a basic listing of
the steps a computer system has to perform when doing analogical reasoning
(although, as pointed out in [11], the building of a representation step is absent
from many computer-based models).
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Figure 2.1: A schematic overview of the analogy-making process. ([9], p.252)

In the following subsections, we want to establish a categorization of analogy-
making systems into three different classes, according to the respective under-
lying architectural paradigm (of course also other categorizations are possible,
e.g., see Sect. 5 of [13] for a more pragmatic, application-based classificatoin).

The symbolic approach: Making things explicit

The symbolic approach in analogical reasoning systems broadly follows the sym-
bolic paradigm known from the field of artificial intelligence, i.e., an account
being based on the idea of manipulation of explicit symbols (named “Good Old
Fashioned AI ” or GOFAI by Haugeland in [14]). In the conception of symbolic
models of analogy-making, usually the main focus lies on symbols and symbol-
bound processing, as planning, searching and logical methods. One of the main
advantages of this approach to constructing a model of analogical reasoning is
the possibility of tracking and reconstructing the mechanisms at work, due to
the explicit way of giving and storing information. Critics often doubt the cog-
nitive adequacy of symbol-based systems, arguing that humans probably don’t
mentally do explicit symbol handling or logical inference. Also, these systems
often show deficits in adaptivity and handling of unforeseen situations, due to
the static (often rule-based) architecture of the system.

The connectionist approach: The power of many

The antithesis to the symbolic approach is the connectionist paradigm. In this
setting, analogical reasoning is modeled as emerging from interconnected net-
works of more simple units, possibly down to the level of mere McCulloch-Pitts
neurons within an artificial neural network ([15]). Characteristic element of such
a framework is a graph-like model consisting of interconnected nodes, weights,
and the propagation of activation patterns. Some of the advantages of this
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construction paradigm are a more cognitively plausible architecture, as also hu-
man brains are made up of interconnected neurons (of course still huge gaps
and deficits between the concepts remain), a good capability of modeling rela-
tional structures, and high adaptivity and learning abilities. Downsides are the
loss of explicitly represented knowledge, a mostly only indirectly controllable
system behaviour, and a general lack of a priori predictability or a posteriori
explicability of the system (“black box behaviour”).

The hybrid approach: Unifying philosophies

The third category of analogy-making systems are hybrid models, sharing fea-
tures of both, symbolic systems and connectionist ones (where the latter are
here ment to be understood in a rather broad reading, generally covering sys-
tems based on network architectures). The use of techniques from both subfields
offers various advantages, as shortcomings of one approach may be remedied by
some functionality of the other, and vice versa. Also, in our reading these sys-
tems provide the highest degree of cognitive adequacy, as simple rule or reflex
triggered mechanisms may be modeled alongsides functionality emerging from
a connectionist network. Unfortunately, some disadvantages of the inidividual
paradigms, as e.g. the black box behaviour characteristic from the connectionist
side, carry over, too. Still, the author of the present paper is convinced that on
a longer perspective, only hybrid architectures might allow for a quasi-human
like style of reasoning behaviour to be shown by an artificial computer system
(if so at all).
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Chapter 3

A historical account:
ANALOGY

Although the first computer model of analogy-making probably was Reitman’s
Argus system ([16]), a program which solved fairly simple proportional analo-
gies (but from the architectural point of view already included quite advanced
principles such as conceptual networks and the automatic building of represen-
tations for the source and the target of the analogy process), the arguably most
prominent model from the early days of computerized analogical reasoning and
analogy-making is the ANALOGY system by Evans ([7]). ANALOGY also was
a system designed for solving proportional analogies, in this case between simple
geometrical figures (i.e., source and target domain are the same, being popu-
lated by geometrical figures). Due to its relative popoularity, in the following
we will give a crisp overview of the main features and the operating principles
of ANALOGY, serving as a historical introduction to the more recent models
and systems studied in later sections of the present paper.

[7] provides a thorough introduction to ANALOGY (for an even more de-
tailed, complete elaboration see [17]). Evan’s model was designed to solve
geometric-analogy problems, as can classically be found in intelligence tests
(actually, Evans took his testing samples from the 1942 version of the “Psycho-
logical Test for College Freshmen”, issued by the American Council on Educa-
tion). An example for a typical task of this kind is given in Fig. 3.1, where the
test subject has to decide which out of the figures in the second row system-
atically continues the series of objects in the first row (i.e., has to decide the
question “A is to B, as C is to X ”, where X is to be taken from figures 1 to 5).
In the given example, the desired answer would, e.g., be “Element 4 ”, based on
the relation established by the conservation of the outer circular shape, and the
disappearing of the inner square, in analogy to the disappearing of the inner
triangle when comparing element A to element B.

For solving this type of problem, ANALOGY followed a quite straightfor-
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Figure 3.1: A typical analogy problem as addressed by ANALOGY: The three
problem figures are to be found in the upper row, the possible solution figures
in the lower one. ([7], p.327)

ward, yet remarkably elaborate approach. As an initial step, descriptions of
the given figures have to be read as input. In [7], these descriptions are still
hand-made by the operator of the system, using LISP as representation lan-
guage. Still, according to Evans, also an automatic generation of the needed
input would have been realizable without greater efforts. On an abstract level,
the descriptions represent the respective figures using straight line segments
and arcs of circles, up to an arbitrary precision (given no limitations on the
representation length). Given these initial descriptions, ANALOGY starts a
decomposition process, partitioning every problem figure into subfigures (in the
following also referred to as “objects”). Evans points out that already a very
simple subdivision approach, only separating a given figure into its connected
subfigures, yielded quite satisfying results. However, a more sophisticated pro-
gram was implemented, also allowing for the separation of overlapping objects.
The intermediate state of such an implementation, reported in [7], was capable
of finding all occurences of a simple closed figure in any other connected figure,
being subsequently able to separate the connected figure into the simple closed
subfigure, and the remainder of the initial connected figure.

Taking the output of the just described pre-processing steps, a routine cal-
culating specified properties of the objects under consideration, and relations
among those, is called (where ANALOGY allows for an easy exchange of the
property set). A simple example for such a relation would, e.g., be that one
object lies within another. If a relation is found, a corresponding statement is
added to the output description of the respective object. This part of ANAL-
OGY requires a quite broad variety of routines and mechanisms for analytic
geometry operations, for example allowing for the handling of intersections of
arcs of circles and straight line segments in every situation possible. Addi-
tionally, at this stage of the program, calculations concerning similarities are
conducted. For each suitable pair of objects, all elements of a certain set of
transformations mapping one object of the pair into the other are found. This
set of transformations is constructed via composition from Euclidian similarity
transformations (i.e., rotation and uniform scale alteration), together with hor-
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izontal and vertical reflections. Given descriptions of any pair of line-drawings,
the corresponding parameters of all members of the transformation set for a
mapping of one drawing into the other are computed (using metrical tolerance
as tunable parameter within the respective programs).

Summarizing the part of ANALOGY just sketched, one can interpret it
(in accordance with [7], p.331) as a “pattern-recognition program with built-
in invariance under scale changes, rotations and certain types of reflections”,
augmented with a module for the recognition and expatiation of relational struc-
tures. Its main functionality is the construction of a topological matching, based
on metric comparisons between selected figurative elements.

The second part of the analogy-making system is given the similarity infor-
mation for every required pair of objects within a problem figure, as well as
between figures, and the decomposition information, together with the property
and relational information, and subsequently yields the number of the solution
figure as output, or answering that no solution could be found. The first step
on the way to this final result is the generation of a single rule, or a set of alter-
nate rules, transforming one figure into another (i.e., listing how objects have
to be deleted, expanded or altered in properties and relations in order to allow
for a mapping between figures). Then, the crucial step is the generalization of
the just obtained rule(s), weakening each rule just as much as to maintain the
mapping between the original figures, but also making the mapping of the third
problem figure into (exactly) one of the possible answer figures possible. As
this construction of a shared generalization may create a set of possible gener-
alizations, being distinct in their discriminative power, a single strongest rule,
according to some predefined criterion, has to be selected. Finally, the outcome
of the application of this rule (if the result is unique) is considered the answer
to the problem task. At this point it should be remarked that no semantical
information concerning the properties and relations is used in the process, i.e.,
no interpretation of geometrical meaning is involved.

In the implementation of ANALOGY presented in [7], the number of ele-
ments which are altered, removed or added for the mapping between the two
initial figures, has to be the same as the one taken into account when selecting
the answer figure corresponding to the third problem figure. If a generalized
rule does not comply with this criterion, it is discarded, and the process will
continue with another generalized rule (if there are any, if not, the problem
will be answered as unsolvable for the system). If the outcome is not unique,
ANALOGY takes, for a given matching of the third problem figure to an answer
figure, each rule between the two initial problem figures, and tries to adapt it
to the new setting (i.e., comparing each rule between the initial two problem
figures with each rule between the third problem figure and a possible solution
figure, and finding more general candidate rules covering both of the original
rules for each admissible comparison). This gives one or more new generalized
rules fitting both, the mapping between the two initial figures, and the mapping
between the third figure and the possible answer. Now, again the strongest
(i.e., most specific) rule is selected, considering ties between rules as a reason
for discarding the entire method as failed and trying another configuration (if
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there is any left).
Cutting a longer story short, in accordance with a similar résumé in [10], it

can be stated that ANALOGY elaborates analogies between two representations
within one problem domain via a two-level mapping procedure. Direct object
mappings can be encountered during the rule generation process, followed by
object role mappings during the comparison part of the program. Constraints
on these mapping processes are given in the requirement of shape equality (i.e.,
both objects have to be of the same geometric type) in the case of direct object
mappings, and in that objects have to play an equivalent role (e.g., addition or
omission) within rules in the object role mapping stage. Due to its construction
principles (i.e., the restriction to object-level comparisons only), ANALOGY
in some cases shows to be severely limited in that it cannot find solutions to
analogy tasks which would require both, transformation of relations as well as of
objects. Cases in which an above relation between the initial two problem figures
should correspond to a below relation between the third problem figure and the
answer, ANALOGY would drop these relations when generalizing, possibly not
allowing for a correct choice of answer.

In [7], Evans also provides a very crude comparison between the perfor-
mance of ANALOGY and human test subjects on his test sample, claiming
that ANALOGY would be able to compete with 9th to 12th grade college-
preparatory students on this kind of geometric-analogy task. Furthermore, he
states that rather simple modifications to the first part of ANALOGY’s program
structure might improve the system’s performance in a way to significantly out-
perform its human competitors. Unfortunately, to the best of our knowledge, no
further performance evaluation, confirming or refuting these conjectures, seems
to be available at present.
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Chapter 4

Symbol-Based Modeling:
The Structure-Mapping
Engine and MAC/FAC

Departing from the baseline given by Evan’s ANALOGY system (which, with
its rule-oriented architecture, and explicit information storage and handling, can
clearly be categorized as symbol-based), we now want to turn to a more recent
symbolic approach to computational analogy-making, the Structure-Mapping
Engine (SME) presented by Falkenhainer, Forbus and Gentner ([18]), together
with a prominent model of similarity-based retrieval MAC/FAC ([19]), com-
monly used as front-end for the SME.

As pointed out in [11], an influential family of computational analogical
reasoning systems has been based on the Structure Mapping Theory (SMT)
as introduced by Gentner ([20]). SMT assigns a crucial role in the process of
analogy-making to structural similarities between base and target domains: The
theory emphasizes the dependence of rules exclusively on syntactic properties
of the knowledge representation, and the possibility of distinguishing analogies
from literal similarity statements or other, distinct types of comparison. The
corresponding mapping principles can be characterized as a mapping of rela-
tions between objects from base to target domain, and a choice of mapped
relations based on a certain systematicity, rooted in the existence of some des-
ignated higher-oder relations. [11] gives a short list of conjectures underlying
the Structure-Mapping Engine implementation of SMT:

• The mapping part of the process is widely isolated and disjoint from other
sub-mechanisms.

• Relational matches get assigned a higher priority than mere property-
based matchings.
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• In order to be interpreted as corresponding relations in the base and target
domains, relations have to be identical.

• Relations which form arguments of higher-order relations, which in turn
can also be used for a mapping, get assigned a higher priority than mere
isolated relations.

In [21], Forbus gives a short sketch of how the SME works (for a more
detailed account see Sect. 4.1). As input, the engine is given two structured
propositional representations, with an internal predicate/argument structure,
of the base and the target domain of the analogy. Possible elements of these
representations can be unary predicates indicating features, relations express-
ing connections between domain entities, and higher-order relations expressing
connections between relations. Given this initial information, SME searches
for possible mappings, where each mapping contains a set of correspondences
aligning entities in the base domain with entities in the target domain, and
candidate inferences, representing statements about the base domain which are
conjectured to carry over to the target domain due to the correspondences.

MAC/FAC was developed by Forbus and Gentner, later also together with
Law, as a front-end to the SME. As explained in [8], MAC/FAC is a two-stage
analogical retrieval engine, providing SME with the needed input representa-
tions (for a more detailed treatment of MAC/FAC and the underlying mecha-
nisms, see Sect. 4.2). The underlying idea is the conjecture that episodes are en-
capsulated representations of past events, to be found in a dual encoding within
long-term memory (see [11]): A full-fledged predicate calculus representation of
properties and relations of entities within an episode, and a compressed vector
representation indicating relative frequencies of predicates used in the detailed
representation. The retrieval process subsequently performed by MAC/FAC
can then be divided into two sub-parts, a superficial search for episodes shar-
ing predicates with the target problem, and an in-depth search for the episode
matching best with the target based on the predicate calculus representations
of the highest ranked episodes from the step before. As noted by Kokinov
and French, the two-staged approach also reflects two basic characteristics of
SMT, the dominant role of superficial similarity, and the influence of structural
similarity.

4.1 The SME framework: Emphasizing struc-
tural similarity

As Falkenhainer, Forbus and Gentner state already in the abstract of [18], the
Structure-Mapping Engine has been developed to explore Gentner’s SMT, pro-
viding an SMT-conform framework for the construction of matching algorithms
for analogies (i.e., SME is not a single matching system, but wants to serve as
a simulator for several possible matchers). The SME has soon become a highly
influencial model in the field, paving the way for numerous more or less similar
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successors and related conceptions, and to the best of our knowledge can today
be regarded as one of the cornerstones within the field of computational models
and implementations of analogy-making systems. Due to this vast success and
importance, the following presentation will in parts be more detailed than most
of the more schematic sketches of distinct systems and models in later sections.
Also, by this more extensive insights on how the SMT as an influential and
far-reaching theory from the more conceptual side of cognitive sciences can be
implemented and tested in a computational system shall be provided.

In the reading of the concept of structure-mapping underlying the presen-
tation in [18] (which has closely been followed as reference for the elaborations
on the SME in this section), analogical processing can be subdivided into three
consecutive steps: An access phase, during which, given a target situation, an-
other description similar or analogous to the target is retrieved from long-term
memory, subsequently constituting the base of the analogy; a mapping and in-
ference phase, representing the construction of a mapping, which consists of
correspondences between base and target and possibly also includes the can-
didate inferences (i.e., specifications of what additional base knowledge might
be transferred to the target) admissible within the analogy; an evaluation and
application phase, during which the quality of the match is estimated accord-
ing to the three criteria structure (i.e., number of similarities and differences,
degree of structural similarity, quantity and quality of knowledge provided via
the candidate inferences), validity (i.e., checking inferences against world knowl-
edge for meaningfulness and soundness, possibly performing inferential refine-
ment steps), and (pragmatical) relevance of the analogy for the reasoner. The
SME now focuses on the mapping phase, providing a structural and domain-
independent evaluation of the match. Here, the structure-mapping notion of
structural consistency is already initially included in the system, but can be
expanded or replaced by implementing new match rules at any time.

Facts in SME are represented by means of a typed higher-order predicate
calculus, whilst trying to keep the representation as general as possible, as to en-
sure domain-independence of the engine. The language is constructed of entities,
predicates and description groups (dgroups), which in turn are characterized as
follows:

• Entities are logical individuals, the domain objects and constants. Exam-
ples for typical entities would be physical objects, their material, aggregate
phase or temperature. Primitive entities are the tokens or constants of a
description, an option for establishing hierarchies of entity types is pro-
vided.

• Predicates are divided into three classes: Functions, attributes and re-
lations. Functions serve for mappings between entities, or entities and
constants. The structure-mapping framework allows for substitution of
functions, acknowledging the possibility of indirect referral to entities.
Attributes have a property describing function, and are by definition re-
stricted to take only one argument. The case where there would be mul-
tiple arguments is solved via classification of the predicate as relation.
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Whilst generally an attribute can be seen as logically equivalent to a func-
tion and a constant, under structure-mapping this is not the case. In the
implemented style of analogy-making, attributes are discarded, as long as
they do not form part of a higher-order structure of some kind. When
performing a matching, attributes have to match identically, and it is as-
sumed that a reasoner has a certain datum represented in only one of the
two possible forms at a time. Relations, similar to attributes, range over
truth values. They always have multiple arguments, where the arguments
can take the form of other predicates, or entities. Also relations have to
match identically in the structure-mapping framework. When declaring a
predicate, after indicating the type, syntactic information concerning the
predicate can be provided to the SME via explicitly declaring the predicate
commutative or n-ary in the number of arguments.

• Dgroups are collections of primitive entities and expressions (i.e., predicate
instances and compound terms) concerning those. The expressions and
entities in a description group are collectively referred to as items.

In order to give an overview of the SME algorithm, vocabulary for addressing
certain structural relations between items of the just defined type is needed.
As these relations form directed acyclic graphs, each item can be seen as corre-
sponding to a vertex in a graph. If item i has item j as an argument, we may
introduce a directed edge from the node i to the node j, i.e., the offspring of an
expression are its arguments. Primitive entities have no offspring, expressions
naming entities by compound terms are handled equal to other items. An item
k within the transitive closure of an item l is called a descendant of l, whilst
l is said to be an ancestor of k. Items without ancestors are called roots, and
Reachable(x) denotes the transitive closure of the subgraph starting at x, with
the depth of an item with respect to Reachable(x) being equal to the minimal
number of edges needed to reach the item departing from x.

Two more concepts play a crucial role in the SME implementation of the
structure-mapping process, namely global mappings (gmaps) and match rules.
A global mapping is a structurally consistent interpretation of the comparison
between a base and a target, consisting of three parts: A set of pairwise matches
between expressions and entities of the two respective dgroups, called correspon-
dences; a set of new expressions which all are conjectured to hold in the target
dgroup due to the comparison, called candidate inferences; a numerical estimate
of match qualities exclusively based on the gmap’s structural properties, called
structural evaluation score (SES). The data for the estimation of the match
qualities is provided by match rules, which specify which pairwise matches are
possible, and provide local measures of quality for the SES computation. Here,
great flexibility is introduced to the SME, as for building a new matcher, only
the set of matching rules has to be modified accordingly.

Given these preliminaries, the SME algorithm can conceptually be divided
into four steps:

1. The construction of local matches, finding all pairs of items in the base and
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target domain which can possibly match, and creating a match hypothesis
for each such pair (for representing the possibility that the local match is
part of a global match).

2. The construction of gmaps, combining local matches into maximally con-
sistent collections of correspondences.

3. The candidate inference construction, deriving the inferences correspond-
ing to each gmap.

4. The match evaluation, attaching evidence to local match hypothesis, and
consecutively assigning structural evaluation scores to each gmap.

Local match construction

The initial local match construction phase of SME serves for finding poten-
tial matches between items in the base and target domain. Allowable matches
are specified by so called match constructor rules, roughly consisting of a base
variable, a target variable, possibly an associated test form, a rule body and a
trigger. Given that base variable and target variable can be bound to items from
the respective dgoups, and (if present) the condition stated in the test form is
fulfilled by the binding, the rule body will be executed. The trigger decides on
the type of execution, if the trigger type is set to filter, the rule will be applied
to each pair of items from base and target, creating a set of match hypotheses
between individual expressions in base and target, respectively. If the trigger is
set to intern, the rule will be applied to each newly created match hypothesis,
binding variables to corresponding base and target items, and thus resulting
in more matches suggested by the given match hypotheses. Having run the
match constructor rules, a collection of match hypotheses has been obtained.
In the following, if item i ∈ base and j ∈ target match, we will denote this by
Match(i, j). Again, for the structural properties of graphs of match hypothe-
ses the graph-theory inspired vocabulary, introduced before for dgoups, can be
used, as the collection of match hypotheses can also be viewed as a directed
acyclic graph, having at least one root.

Gmap construction

The most complex of the four SME phases is the global map construction, where
local match hypotheses are combined into collections of gmaps. Global maps
here consist of maximal, structurally consistent collections of match hypotheses
from the local match construction phase. To be structurally consistent, here a
match hypothesis has to be one-to-one (i.e., the assignments of base to target
items given by the totality of hypotheses in the collection have to be bijective),
and it has to hold that if a certain hypothesis is in the collection, so are all
match hypotheses which pair the arguments of this hypothesis’ base and target
items (support property). Maximality of a collection is reached if adding any
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additional hypothesis would cause the collection to become structurally inconsis-
tent. The gmaps are built in a two-step process, the computation of consistency
relationships and the merging of the match hypotheses:

• In the computation of consistency relationships, for each match hypothesis
the set of entailed entity mappings is found, together with a list indicating
which of the remaining match hypotheses are locally conflicting with the
hypothesis under consideration, and a similar list of match hypotheses
which are structurally inconsistent with respect to the initial hypothesis.

Recursively making use of the support property for structurally consis-
tent collections of match hypotheses, each individual match hypothesis
implies a certain set of entity correspondences, summarized within an en-
tity map (emap). An emap thus expresses a match hypothesis between
entities, and Emaps(Match(i, j)) denotes the emap implied by the match
hypothesis Match(i, j), i.e., denotes the union of the emaps supported
by the descendants of Match(i, j) (where also hypotheses involving func-
tions are included). As to guarantee that all occuring mappings are one-
to-one, it is helpful to associate with Match(i, j) the set of competing
match hypotheses, which would also provide alternate mappings for i and
j. We call this set Conflicting(Match(i, j)) in the following, referring
to its elements as conflicting match hypotheses of Match(i, j) (where
naturally no element of Conflicting(Match(i, j)) can be an element of
the same gmap as Match(i, j) is). Taking Conflicting(Match(i, j)) and
Emaps(Match(i, j)), by means of recursion the set NoGood(Match(i, j)),
i.e., the overall set of match hypotheses which may never be in the same
gmap as Match(i, j), can be constructed. If Matchi is an emap,
NoGood(Matchi) = Conflicting(Matchi), whereas in any other case
NoGood(Matchi) is given by the union of Conflicting(Matchi) with all
the NoGood() sets of descendants of Matchi.

Having computed the Conflicting() set for each match hypothesis, Emaps()
and NoGood() can be computed for each emap, followed by the compu-
tation of Emaps() and NoGood() for all other hypotheses, based on a
propagation of the Emaps() data to the respective ancestors. When this
process is completed, a search for internally inconsistent match hypothe-
ses, which cannot be part of any valid gmap, is conducted. Here, a match
hypothesis is called inconsistent, if the emaps entailed by one subgraph of
its descendants are in conflict with the emaps of another subgraph.

• Gmap construction collects sets of consistent match hypotheses, following
a top-down approach, starting at the roots. As inconsistencies propa-
gate upwards in the graph, if a root is found to be consistent, the entire
structure under it has to be consistent. As there are typically several con-
sistent roots of the graph of match hypotheses, several initial gmaps have
to be considered. As maximality was one of the characteristics of true
gmaps, the initial gmaps have to be merged into larger, structurally con-
sistent collections, resulting in maximal collections of match hypotheses.

15



For doing so, initial combinations are formed from the descendants of the
highest-order structurally consistent match hypotheses, initial gmaps with
overlapping base structure (subject to structural consistency) are merged,
and complete gmaps are formed by merging the partial maps (subject to
structural consistency), discarding all but the maximal results.

In order to form the initial combinations, interconnected and consistent
structures have to be combined. Here, each consistent root, together with
its descendants, forms an initial gmap. If a root is found to be inconsis-
tent, each immediate descendant is considered a potential root, and the
procedure is applied recursively, finally resulting in a set Gmap1. Starting
from an empty Gmap1 set, for every root Match(i, j), if it is found to be
consistent, a gmap GM is created, with its set of elements being equal
to Reachable(Match(i, j)). In case the root is found to be inconsistent,
recursion on the offspring of Match(i, j) is started. Having done so, for
every gmap GM within Gmap1, the set NoGood(GM) is defined as the
union of the NoGood() sets of all matching hypotheses serving as a root
in GM . Similarly, the set Emaps(GM) is set to the union of the Emaps()
sets of all matching hypotheses serving as a root in GM . Concludingly,
in order to obtain maximal sets of correspondences, mutually consistent
gmaps (i.e., the elements of one gmap are not to be found in the NoGood()
set of the other gmap, and vice versa) have to be merged.

Now, Gmap1 is revised, and a search for elements with identical roots
in the base structure is conducted. If such elements with shared base
structure are found, and their correspondences are not structurally incon-
sistent, there has to be some connecting structure in the base, not to be
found in the target. Combining such elements, the resulting partial gmaps
are collected in a set Gmap2. Now, taking two elements from Gmap2 with
disjoint relational correspondences, each such pair can be merged, given
that they sanction consistent sets of emaps. By doing so, finally all consis-
tent combinations of gmaps from Gmaps2 can be obtained by successive
unions, discarding all but maximal combinations.

Candidate inference construction

Gmaps represent sets of correspondences which can be used for interpreting the
match. For information to be carried over from the base to the target (i.e., for
the essential function of analogy-making), two conditions have to be satisfied:
It has to be consistent with the substitutions imposed by the gmap, and its
subexpressions must at some point have shared parts with the base informa-
tion belonging to the gmap (a property called structural grounding by Falken-
hainer, Forbus and Gentner). Structures complying with these constraints are
considered the candidate inferences for the respective gmap. These candidate
inferences for a gmap GM are computed by examining each root in the base
dgroup, and checking whether it is an ancestor of the root of a match hypothesis
in the gmap. If this test is positive, any elements in the set of descendants of
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the root from the dgroup, which are not to be found in the base items of GM ,
are included in the set of candidate inferences.

Match evaluation

In many cases, a single base and target pair might yield several gmaps, each
corresponding to a distinct interpretation. As a means to select the most fit-
ting interpretation as analogy, a structural evaluation score is introduced. This
score is obtained in yet another two-phase process. A first stage assigns weights
to individual match hypotheses, the second phase summarizes these scores into
a single score for the gmap comprised of the hypotheses. SME uses a belief
maintenance system (BMS, see for example [22]) for handling the numerical
evidence, so that each match hypothesis and gmap gets assigned a BMS node
to record the respective evidential information. The structural evaluation score
of a gmap is computed by summation of the evidence of its match hypotheses.
In turn, match evidence rules can add evidence to a match hypothesis in two
ways, by installing relationships between different hypotheses and propagating
a certain percentage of a hypothesis’ degree of belief to the respective offspring,
or by directly altering the local properties of a rule. Finally, having obtained the
structural evaluation score, the interpretation with the highest score is selected
as analogy.

Concerning the performance of the SME, [18] gives positive reports of appli-
cations in cognitive simulation studies and a machine learning project. Guiding
SME with adequate analogy rules, the system has shown to replicate human per-
formance in the cognitive simulation studies, and has also shown its usefulness
in providing the means for constructing new qualitative explanatory theories in
the framework of a machine learning project. Although a computational com-
plexity analysis indicates that the worst-case performance of the SME algorithm
lies within O(N !), in practice the system exhibits surprisingly moderate require-
ments, with most steps being polynomial and bounded by an order of N2. It
is worth remarking that, contrary to many other cases, here the determinant
characteristic for computational efficiency is not length, but the degree of struc-
ture of knowledge, where SME performs better with systematic, deeply nested
descriptions. Concerning follow-up developments, a later version of the SME
([23]) included the use of pragmatics, together with re-representation techniques
for matching related, but still distinct predicates.

4.2 The MAC/FAC system: Many are called,
but few are chosen

Two years after the publication of the SME in [18], Gentner and Forbus pre-
sented MAC/FAC ([19]), a model of similarity-based retrieval, which can concep-
tually be seen as a front-end to the structure-mapping engine. MAC/FAC is an
attempt at constructing a model producing similarity and analogy phenomena
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Figure 4.1: A schematic overview of the 1995 version of the MAC/FAC sys-
tem, depicting the memory input, the MAC stage with parallel content vector
matchers for processing the sample (here: “probe”), the FAC stage, and the
final output. ([24], p.149)

in a statistically plausible manner: Whilst producing mainly literal-similarity
(i.e., based on both structural and superficial commonalities) and superficial re-
mindings, by times also a spontaneous analogy (i.e., structural similarity only)
shall occur. The underlying theory assumes that similarity-based transfer can
be decomposed into three subprocesses. Assuming that a target situation is cur-
rently present in a subject’s working memory, a similar base situation in long-
term memory (LTM) has to be found and accessed, subsequently a mapping
from base to target has to be established, concluding with an evaluation of the
mapping. As mechanism for the alignment and the import of inferences, SMT
is the process model of choice, and (as already in the SME setting) structural
consistency and one-to-one mapping govern the computation of inter-situation
mappings.

The MAC/FAC model is (as already suggested by its naming) a two-stage
process model (see also Fig. 4.1), where (MAC stage) a computationally efficient
filter is used to select a subset of likely candidates within the large number
of cases in memory (which is simply assumed to be a pool of descriptions),
followed by (FAC stage) a more costly processing step. The inputs to MAC/FAC
are the pool of memory entries and a sample description for which a match is
to be found, the outputs take the form of a certain memory description and
a comparison of the sample with the latter. Both, MAC and FAC, consist
of a matcher and a selector, with the matcher being applied to every input
description, and the selector using the matcher’s evaluations when selecting
which comparisons are to be returned as output of the respective stage.

The task of the MAC stage can be summarized as using a cheap matcher for
estimating how FAC would rate certain comparisons, and by this narrow down
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the number of candidates for the FAC stage to a processable number. An obvious
estimate is the number of match hypotheses that FAC would generate when
comparing a memory item to the sample, i.e., the numerosity of the comparison.
If only few local matches are hypothesized, the best global interpretation cannot
be large either. Unfortunately, the converse does not hold, as a large number
of local matches does not automatically induce a large global interpretation,
making numerosity not a perfect estimate. Numerosity is estimated in a quite
elaborate manner (whilst earlier versions of MAC/FAC used a mere brute-force
approach, see [25]): Denoting with P the set of functors (predicates, functions,
connectives) within the descriptions that constitute memory items and samples,
a content vector of a structured description now is an n-tuple of numbers, each
entry corresponding to a single element within P . Given a description D, the
number of occurrences of P in D is indicated by the value of the respective entry
in the content vector. Clearly, concent vectors are easy to compute departing
from structured representations (as computation boils down to simple counting
the number of occurences of functors), and can be stored in an economical way.

Now, given pairs of memory entries and corresponding content vectors, when-
ever a sample is handed over to the MAC stage, its content vector is computed,
and each item within the memory pool gets assigned a score equal to the dot-
product of the item’s content vector and the sample’s content vector. The MAC
selector then searches for the highest score, and hands the corresponding ele-
ment, together with additional elements scoring over a certain threshold (90% of
the maximal score in [19]), over to the FAC stage (which subsequently mitigates
also one of the main weaknesses of the content vector approach to measuring
similarity by adding inferential power via its structural matcher, making up for
the total lack of correspondences and candidate inferences not provided by the
content vectors).

MAC/FAC uses literal similarity computation in the matchers of the FAC
stage, implemented by using the Structure-Mapping Engine in literal similarity
mode (i.e., in difference to the analogy mode described earlier, both relational
predicates and object descriptions are mapped, allowing for the computation
of relational similarity, object similarity or overall similarity, see [24]). SME is
used to calculate structural alignments of the sample with the items handed over
from MAC (with MAC only considering functor overlap, a big part of MAC’s
output will be discarded during the structure-sensitive FAC stage, as pointed
out in [26]). Thus, the FAC stage acts as a structural filter, taking as input the
memory descriptions from MAC, does the alignment computation, and outputs
a set of correspondences between structural descriptions, a numerical evaluation
score of the overall match quality, and a set of candidate inferences representing
the conjectures concerning the sample which are sanctioned by the comparison.
Here, the FAC score for each pair is the structural evaluation score of the best-
ranked mapping, and the returned output consists of the top-scoring match plus
any others within a certain range from it (again, a score of 90% of the maximal
score has been used in [19]).

A comparison of the performance of MAC/FAC on a similarity/analogy task
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with the performance of humans undergoing the same experiment, shows that
MAC/FAC’s results match those of humans ([25]), also meeting the require-
ments concerning statistical distribution of the different types of similarities
and analogies already mentioned initially. Sensitivity studies reported in [24]
moreover strengthen the position that these encouraging results are not due to
random or unintended phenomena (choice of algorithms, nontheoretically mo-
tivated parameters), but really are a consequence of the underlying theory and
model.
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Chapter 5

Connectionist Modeling:
LISA and the STARs

A different, almost antithetical approach to constructing a computational model
of analogy-making is taken by the designers of connectionist models of analog-
ical reasoning. Although the ACME system by Holyoak and Thagard ([27])
probably was the first connectionist model in the field, relying on a localist
constraint-satisfaction connectionist network, in the present paper we want to
focus on two more recent examples: the LISA model by Hummel and Holyoak
([28]), and the STAR system family by Wilson, Halford et al. ([29], [30]). Where
the SME was built in accordance with a symbolic architectural paradigm, LISA
and the STARs are representants of the connectionist type of systems (where
LISA constitutes a special case by itself, being a so called symbolic connectionist
model, [31]). The first subsection of this part of the present paper will give a
more in-depth overview of LISA, being followed by an introduction to STAR,
also pointing at some of the main differences to LISA, in the second subsection.
But before providing these more detailed reports on the aforementioned sys-
tems, again we want to give a short conceptual overview, based on [8] and [11].

For associating structures, LISA relies on partially distributed concept repre-
sentations, selective activation and dynamic bindings, only binding node struc-
tures together which oscillate in synchrony, allowing both working memory
(WM) and long-term memory to interact during retrieval and mapping ([8]).
The idea underlying this approach is based on the introduction of an explicit
time axis, making the time of activation an additional, independent model pa-
rameter, and providing a means for modeling patterns of activation which are
oscilating over time ([11]). If patterns oscilate in synchrony, they are assumed
to be bound together, if the oscilation is asynchronous, no binding is considered.
Thus, a whole statement can be represented by periodic alternations of groups
of statements. Representations in LISA’s WM are distributed over a network of
semantic primitives, whereas in its LTM a localist paradigm is followed, using
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separate units representing episodes, propositions, components of propositions,
predicates, arguments and bindings. Within these structures, retrieval is per-
formed by spreading activation, and mapping is modeled as a process of learning
new connections between active nodes. Functionally, the LISA model manages
to integrate both processes, the retrieval of a base and the subsequent base to
target mapping.

The STAR model family follows a conceptually different path. According
to [11], STAR-1 ([29]) was the first distributed connectionist model in the field,
being based on the tensor product connectionist modeling approach suggested
by Smolensky (i.e., on the idea that pairs of values and variables can be repre-
sented through accumulation of activity in a collection of units, each of which
computes the product of a feature of a variable and a feature of the correspond-
ing value, see [32]). Here, complex propositions are represented by the tensor
product of the vectors corresponding to its primitive parts, subsequently also
allowing for the extraction of any primitive part by (possibly iterated) applica-
tion of a generalized dot product operation. STAR-1’s LTM is represented in
form of a tensor, which is the sum of all tensor products representing individual
statements. The application scenario of STAR-1 was the solving of proportional
analogies. STAR-2 ([30]) is a more mature version of STAR-1, mapping com-
plex analogies by sequentially concentrating on parts of the domain, i.e., simple
propositions with at most four dimensions, and selecting a best map for the
propositions’ arguments by means of a parallel computation in a constraint sat-
isfaction network (a method for coping with the – in the number of arguments
of predicates exponential – blow-up of the needed number of units for tensor
product representation).

5.1 The LISA model: Learning, Inference,
Schemas and Analogy

In this subsection, we want to have a closer look at one of the in our oppinion
most ambitious systems within the field of connectionist models of analogy-
making, LISA ([28]). The presentation will stay close to Hummel and Holyoak’s
report in [31].

As mentioned before, LISA constitutes a special case within the class of
connectionist models of analogy, being an attempt at building representations
of a symbolic style in a neurally inspired network model architecture, earning
it the name of a symbolic connectionist system. Hummel and Holyoak try to
carry over some abilities of symbolic systems, namely the possibility to bind
roles to their fillers dynamically, and to represent the obtained bindings inde-
pendently of the roles and fillers (i.e., a process resulting in the binding of rep-
resentations into propositional structures), to a neurally more plausible seeming
neural network architecture, representing propositions as distributed patterns
of activation. Thus, whilst aiming at preserving the generalization capacities of
a connectionist model, the structure sensitivity of a symbolic system shall be

22



added ([28]). This shall be achieved by the already described synchrony of firing
approach for binding representations of roles to representations of their fillers:
A binding between two elements is represented by a synchronous firing pattern
of the corresponding units, whilst an asynchronous pattern indicates an absence
of any kind of connection. Thus, binding information can be represented ex-
plicitly and independently of the representation of the bound elements, and the
model accords with the computational requirements for dynamic binding as to
be found in a symbolic system. As pointed out in [28], dynamic binding still has
its limitations: The domain of the dynamic binding process is naturally limited
to the working memory, and unsuitable for use in LTM, where a static binding
mechanism has to be used (for example LISA here applies a hierarchy of struc-
ture units). Also, dynamic binding does not allow for some kind of unlimited
parallel processing over distributed representations, but introduces hard capac-
ity limitations. In the case of LISA, roughly speaking, the number of distinct
dynamic bindings that can be represented at a time is given by the maximal
number of different asynchronous firing schemes between simultaneously active
groups of units. A third constraint is given by the limitation of dynamic bind-
ing to at a time representing only one level of abstraction or hierarchy, as only
one level of embedding can be represented simultaneously at the level of se-
mantic primitives (i.e., higher-order propositions cannot be processed directly).
LISA handles this last difficulty by means of serial processing for maintaining
structure sensitivity during the task of mapping hierarchical structures.

Like already explained, the core of LISA’s architecture is a subsystem per-
forming dynamical binding of roles to fillers in WM, and enconding those bind-
ings in LTM. In the WM part, case roles and objects are represented as dis-
tributed firing patterns on a set of semantic units, as schematically shown in
Fig. 5.1. The subsequent encoding in LTM is conducted by a hierarchy of struc-
ture units, see Fig. 5.2 for a schematic depiction. The lowest level of the hier-
archy is formed by predicate and object units, having bidirectional excitatory
connections to the respective semantic units. Semantically related predicates
and objects share units in corresponding roles, giving explicit evidence of the
similarities in semantics. The next layer is constituted by subproposition units,
binding roles to respective fillers, and thus constituting an intermediate level
of proposition complexity. A subproposition again has bidirectional connec-
tions to the respective predicate or object units. Proposition units, representing
entire propositions, composed of possibly several subpropositions, are at the top-
level of the hierarchy, also having bidirectional connections to their constituent
subproposition units. Propositional units may fulfill a dual role in hierarchi-
cal (higher-level) structures, showing different behaviour depending on whether
they are at the top-most parent position, or if they are fulfilling a child function,
e.g., serving as argument of another proposition. Structure units of any kind
do not directly encode semantic content, but have a structuring and relating
function, only being used for storing that content in LTM, and for interacting
with the corresponding synchrony patterns on the semantic units.

The architecture is completed by so called mapping connections between
structure units of the same type in different analogues. Proposition units in dif-
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Figure 5.1: A schematic overview of an example for the representation of propo-
sitions in LISA’s WM, encoding the proposition “Jim loves Mary.”, as can be
seen from the synchronous firing patterns between “Jim” and “Love1 (lover)”,
as well as between “Mary” and “Lover2 (beloved)”. ([31], p.166)

Figure 5.2: A schematic overview of an example for the representation of propo-
sitions in LISA’s LTM, encoding the proposition “Jim loves Mary.”. At the bot-
tom, triangle-shaped predicate units and circular object units have bidirectional
excitatory connections to semantic units, binding the corresponding semantics
together in LTM. Role-filler bindings are encoded in rectangular subproposition
units, having excitatory connections with the respective role and filler. At the
top-level, the complete proposition is accumulated from role-filler bindings and
encoded into the elliptic proposition unit, having excitatory connections with
its constituent subpropositions. ([31], p.167)
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ferent analogues share a mapping connection with each proposition unit in every
other analog, and so do subproposition units with subproposition units. Finally,
the same holds for objects and predicates. Mapping and retrieval is conducted
over a bipartition of the set of analogues: Two disjoint sets are formed, one
containing a driver analog, which controls the retrieval and mapping process,
the other containing one or more recipient analogues. A form of guided pattern
matching now conducts the mapping process within LISA. When a proposi-
tion unit in the driver analog becomes active, due to the cascade of excitatory
connections interlinking the different levels of the structural hierarchy, for each
role-argument binding a synchronized pattern of activation is created on the
semantic units. As the semantic units are used by all analogues, the patterns
generated by a proposition in one analog will, due to the bidirectional nature of
the excitatory connections, probably activate one or more similar propositions in
distinct analogues in LTM, which corresponds to analogical access of episodes,
or in WM, constituting an analogical mapping. The difference between mapping
and retrieval is to be found in the type of mapping connections. Whilst retrieval
uses constant connections, mapping alters the weights on mapping connections,
making them grow between the respective units whenever a simultaneous acti-
vation pattern is performed, thus allowing LISA to learn correspondences gen-
erated during retrieval. By repeated performance of this process, subsequent
memory access and mapping gets more and more constrained, by the end of a
simulation run allowing to find correspondences between structure units with
large positive weights on the relating mapping connections. Noncorresponding
units, to the contrary, will expose strongly negative weights.

We want to also report on an expansion to the original LISA framework
and functionality, presented in [31], too. Adding unsupervised learning and,
subsequently, intersection discovery features to LISA, the system additionally
is able to conduct inference and schema induction. The latter is performed in
the following way ([33]): As an example, consider the two situations “Alfred
is friends with Bertrand, Bertrand likes to smoke a pipe, and Alfred buys a
pipe for Bertrand.” and “Martin is friends with Jeroen, Jeroen likes to smoke
cigarettes.”. Now, during mapping, corresponding elements in the two situation
analogues will be activated simultaneously, e.g., “isFriends(Alfred, Bertrand)”
will activate “isFriends(Martin, Jeroen)”, and in accordance with the overall
principle, corresponding elements (“Alfred”, “Martin”) will fire in synchrony,
noncorresponding elements (“Alfred”, “Jeroen”) will fire asynchronously. On
the level of semantic units, “Alfred” will probably share features like “male”
with “Martin”, as well as “Bertrand” and “Jeroen” do, so a reasonable proposi-
tion to induce would, e.g., be “isFriends(male, male)”. For making explicit the
commonalities between corresponding elements, LISA uses some sort of inter-
section discovery. As activation is not only fed to semantic units by the driver
but also by the recipient analog, any semantic unit that is common to driver
and recipient will receive input from both at a time, and approximately become
twice as active as a semantic unit which receives input only from one analog
(as the activation of a semantic unit is a linear function of its inputs). This
allows for locating common semantic units, which are then encoded into LTM
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by means of the aforementioned unsupervised learning algorithm. For doing
so, the algorithm makes use of unrecruited structure units, which are not yet
used for representing the two situation analogues. These spare units are ran-
domly connected to one another and to the semantic units, basically forming
a third schema analog. Predicate and object units within this schema analog
structure were assigend high thresholds, only allowing for activation by highly
active semantic units, i.e., semantic units which in turn were activated by both,
driver and recipient analog. These unrecruited schema units now learn in an
unsupervised way to respond to the common elements of the known analogues,
whilst at the same time unrecruited subproposition units learn to respond to
certain conjunctions of predicate, object and possibly propositon units (in case
of hierarchical propositions), and unrecruited proposition units learn to respond
to specific subproposition unit combinations. In consequence, propositions de-
scribing the common elements of the driver and recipient analog are encoded
into LTM as schema analog. But LISA is not only capable of intersection detec-
tion, but can also transfer additional knowledge in an analogical form from one
situation to another, i.e., conduct analogical inference. Based on the analogical
structure of both situations, going back to the known mappings, the slightly
augmented version of LISA is able to draw the reasonable inference “Martin
buys cigarettes for Jeroen.”. For doing so, the same unsupervised learning algo-
rithm is applied, implementing a copy with substitution and generation method
([34]). Now, when “Alfred buys a pipe for Bertrand.” enters WM in the driver,
no match in the second situation can be found, giving LISA a cue to infer a new
proposition in the recipient situation, stating that Martin will buy cigarettes
for Jeroen. The main difference to the schema induction mechanism presented
before thus is that the unrecruited units are not any more placed in a completely
separate analog, but are located in the recipient analog itself, allowing for some
filling in of additional structure ([33]).

Concludingly, we shall shortly come back to one of the major limitations of
LISA and of the taken symbolic connectionist approach in general, reproduc-
ing results from [28]. As already stated, due to the finite number of activation
patterns which can simultaneously be active, whilst still staying mutually asyn-
chronous, LISA’s processing capabilities at one point in time are limited. Thus,
LISA requires systematical serial processing (for example driver propositions
are activated serially during mapping) combined with limited parallel constraint
satisfaction. Surprisingly, for a considerable number of suitably structured prob-
lems, the serial mapping mechanism returns results which are closeley similar
to those that could be obtained by unlimited parallel constraint satisfaction (as
applied in many other systems for computational analogy-making). But still,
WM intensive or ill-structured analogies may reveal LISA’s limits.

5.2 The STAR family: Structure and Tensors

After having seen the symbolic connectionist LISA, we now want to turn to the
arguably first family of distributed connectionist models of analogy-making, the
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STAR series by Wilson, Halford et al. ([29], [30]).
In [32], Smolensky introduced a new technique for the representation of

value/variable bindings. As already sketched initially, his approach is based on
the idea of accumulating activation in a group of units, each computing the
product of a feature of a variable and a feature of its value, by this allowing
for a completely distributed representation of bindings and symbolic structures.
He shows that the tensor product representation forms a more general case
of some well-known forms of representing structured data in a connectionist
way (as, e.g., applied in NETtalk, [35], Derthick’s µKLONE system, [36], or
Rumelhart and McClelland’s model for learning the formation of the past tense
form of English verbs, [37]), exhibiting numerous pleasant properties, as the
capability of performing recursive construction of complex representations from
simpler ones, and independent generation and maintenance of multiple bindings
in parallel. Smolensky’s technique has also been applied by Wilson, Halford et
al. when constructing STAR-1, replacing the synchronous oscillation model
Hummel and Holyoak had decided for in LISA at the moment of representing
the propositions that comprise the base and target of the analogy.

Characteristics of the STAR systems

We will now give an account of the common principles underlying the archi-
tecture of both, the STAR-1 and the STAR-2 system, mainly following the
presentation in [30]. Propositions and relational instances are represented by
means of assigning a vector to the relation symbol and each argument, whilst the
binding is represented by computing the tensor product of these vectors. Thus,
an n-ary relation is represented in a tensor product space of dimension n + 1,
with orthonormal vectors representing concepts in the factor spaces. Informa-
tion retrieval is possible by means of a generalized dot-product operation (also
called inner-prodcut operation): Given a representation of “relation(X,Y)”, if
“relation(X,?)” shall be answered, the dot-product of the tensor product repre-
senting “relation(X,-)” (i.e., leaving the second place empty) together with the
tensor product of the original representation is computed. Several propositions
can be superimposed on the same representation by adding the corresponding
tensor products. This already allows for the solving of proportional analogies
by the STAR-1 system, performed by superimposition of a fitting set of propo-
sitions on a neural net representation.

A tensor product representation T of a set of propositions is defined as the
superimpositon of the propositions. Given an appropriate T , a proportional
analogy of the type “A:B:::C:?” can be solved by first using “A” and “B” as
input, thus obtaining all the relation symbols of propositions which have “A”
in the first argument position, and “B” in the second one, yielding a so called
“relation-symbol bundle” ([30], p.137). This bundle consists of superpositions
of relation symbols, i.e., a sum of vectors representing the respective relation
symbols. Now, this bundle is used for the retrieval of the analog to “C ” by
computing the tensor product between the bundle and the vector representing
“C ”, followed by a dot-product operation of the result with T . The ouput of
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this procedure is another vector bundle, equal to a weighted sum of the vectors
representing the possible solutions for the analogy. This second bundle now is
used for computing the dot products with the vectors representing arguments
to the analog relation ([29]). Whenever the inner product (i.e., the weight of
the vector within the bundle) is nonzero, the argument is a possible solution.
Furthermore, the larger the value of the inner product for an argument “D”
is, the more relations are satisfied by the pair “C:D” in common with the pair
“A:B”, giving a possible measure of salience of the respective solution to the
analogy task. Finally, the argument with the greatest value for the last dot
product is chosen as answer. The functionality of STAR-1 is not limited to
this type of retrieval, also other forms of analogy (amongst others: missing
relation-symbol, retrieval of a base) can be solved.

As explained in more detail in [29], STAR-1’s means of representation un-
dergo certain limitations. A concept of n-ary dimensionality in representation
corresponds to a tensor product of rank n + 1. This induces a blow-up of the
computational demands of the representation when progressing to higher-order
structures: Treating with n vectors of m elements each, the number of elements
in the tensor product already equals mn. This makes necessary the use of spe-
cial techniques for treating complex structures (normally of complexity order
5 or higher). Two possible solutions for mitigating these difficulties are con-
ceptual chunking and segmentation, the former one referring to a recoding of a
concept into fewer dimensions (making some relations temporarily inaccessible),
the latter one meaning a decomposition of tasks into smaller steps (similar to a
serial processing strategy). At this point, capacities for processing hierarchically
structured knowledge representations would be useful, which were therefore in-
troduced in the construction of STAR-2, the direct descendant and successor to
STAR-1.

The STAR-2 system

STAR-2 is capable of processing complex structures, given in a hierarchical
fashion similar to the one depicted in Fig. 5.3. Arguments are either elements
representing basic objects, or chunked propositions indicating more complex
concepts. The hierarchical level of a proposition for obvious reasons is di-
rectly proportional to the amount of chunked structure which can be found
in it (where the height of a higher-order proposition is equal to the height of
the highest unchunked argument plus one). The limitation to mappings of or-
der at most 4 has been preserved in STAR-2, whilst nonetheless being able to
form mappings between domains which contain multiple propositions. Sequen-
tially, corresponding pairs of propositions from base and target of the analogical
process are selected by a constraint satisfaction network (CSN), and another
CSN is applied for mapping relation symbols and arguments in each selected
pair in parallel, followed by a new choice of base and target pair of proposi-
tions. By this, a form of segmentation is implemented, sequentially treating
with propositions of acceptable dimensionality in order to process a mapping
between higher-order concepts. The STAR-2 model can be broken down into
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Figure 5.3: A schematic overview of an analogical mapping between rela-
tional structures representing water-flow and heat-flow, where the hierarchical
structures represent the input in form of domains. The order of focus of the
model is represented by the superscript numbers within the relational instances.
([30],p.140)

three main structures: A focus selection network (the first of the two aforemen-
tioned CSN), an argument-mapping network (the second CSN), and information
storage structures, including a map-storing network (in form of a mapping ten-
sor of rank 2). Given these ingredients, a run of STAR-2 can conceptually be
sketched as follows:

1. Establishing information storage structures for the domains being mapped,
specifying needed input information.

2. Establishing the focus selection network, applying the network in (heuris-
tically) selecting a single base/target pair of propositions for an initial
mapping.

3. Establishing the argument mapping network, forming mappings between
relation symbols and arguments of the focus propositions, subsequently
storing the mappings in the map-storing network.

4. Learning by modifying connectivity in the focus selection network, incor-
porating the newly obtained mappings from the previous step, in order to
avoid the reselection of propositions. Selecting another pair of propositions
for mapping.

5. Reestablishing the argument-mapping network for the current proposi-
tions, again followed by a storage process in the map-storing network.

6. Repetition of steps 4 and 5, until termination criterion is met.
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The argument-mapping network is a CSN, consisting of up to five columns and
rows of mapping nodes. Each of the rows here corresponds to the relation-
symbol or an argument position of the base currently focused on (as the dimen-
sionality is limited to a maximum of 4, five nodes are sufficient for representing
every possible proposition), while each column corresponds to the respective
elements of the target. Thus, each mapping node can be seen as representing
a potential mapping between an element of the base and an element of the
target. The focus selection network in turn is a two-layer CSN, built for the
purpose of selecting the pair of propositions to be passed on to the argument-
mapping network. Each layer is structurally similar to the just described design
of the argument-mapping network, each row within a layer representing a base
proposition, each column referring to a target one. Summarizing, each node
represents a pair of chunked propositions from base and target. The first layer
of the double-layer CSN is used for selecting propositions with similar features,
as for example height in the hierarchy, number of arguments or corresponding
relation-symbols and arguments, whilst the second layer selects a single winning
pair of chunked propositions from the set provided by the first layer. Finally, the
information storage structures are a number of tensor networks, storing different
types of entity-related information (similarity between pairs of entities, salience
of entites, etc.) and chunked proposition/unchunked proposition associations,
supplemented by the already mentioned rank 2 tensor serving as a map-storing
network, used for storing mappings between entities formed by the mapping net-
work. As a criterion for triggering a test for termination of the above sketched
procedure, three possible configurations are used: Either the selection of an al-
ready previously selected focus, or the selection of a focus inconsistent with a
previous focus, or convergence of the argument-mapping network to a state not
allowing for the interpretation of a set of mappings from the result. In any of
these cases, the percentage of chunked propositions in the smaller domain which
have formed a focus is computed, with successful termination of the algorithm
if a value of 90% or higher is encountered. Alternatively, successful termination
may also take place when all chunked propositions in the smaller domain have
formed a focus.

Concerning the performance of STAR-2, Wilson, Halford et al. in [30] re-
port several successful applications of the model, ranging from the Rutherford
solar system analogy (setting the structure of the solar system in relation to
the structure of a hydrogen atom), over a formal analogy concerning the prop-
erties of associativity, commutativity, and the existence of an identity element
on numeric addition and set union (originally introduced by Holyoak and Tha-
gard in [27]), to several examples known from psychological testings of human
analogical reasoning. These tests also show that, as has already been predicted,
STAR-2, due to the limitations in dimensionality, reaches its limitations when
dealing with more complex analogies (which actually in many cases also consti-
tute problems for human subjects).
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Chapter 6

Hybrid Modeling: Copycat
and AMBR

Having seen representants of two competing system design paradigms, SME
and the MAC/FAC combination serving as examples for symbol-based analogy-
making systems, and LISA and the STAR system family standing for connec-
tionist models of computational analogical reasoning, we want to direct our
attention to the third class of models, the hybrid systems. These systems unify
elements of both competing design paradigms, trying to make additional use of
the synergy effects and individual advantages of the distinct approaches when
integrating both aforementioned modeling styles side by side into one system
architecture. In the following, we will have a look at two prominent members
of the group of hybrid analogy-making systems, Hofstadter’s Copycat model
([38], [39]) and Kokinov’s AMBR family ([40], [41]). In these hybrid models,
high-level cognition results from a continual interaction of low-level, localist
processing units, where on an intermediate level semantic knowledge is incor-
porated to achieve a context-sensitive computation of the similarity of elements
from the base and target domain ([11]).

The Copycat architecture is built on a concept later named parallel ter-
raced scan ([42]), a technique resembling pruning of search trees without totally
abandoning less promissing paths. As explained in [11], Copycat was explic-
itly designed to perform the integration of top-down semantic information with
the bottom-up emergence of connectionist processing. Three of its most impor-
tant features ([8]) are the ability to build its own representation of base and
target, together with the mapping between them, the use of simulated paral-
lelism (allowing the representation building process and the mapping to run
in parallel and interact), and its stochastic nature. Copycat is able to solve
letter-string analogies (“EFG is to MNO, as EFH is to ?”), and its architecture
([11]) is based on a working memory, a simulated long-term memory realized as
a semantic network, for defining concepts and concept relationships, and a pro-
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cedural memory, serving as a store for nondeterministic computational agents
influencing the structures in WM and interacting with LTM.

The origins of the AMBR system family date back to [43], where Kokinov
presented the principles underlying the later implementations of his analogy-
making system. As summarized in [11], AMBR-1 ([40]) is based on a general
cognitive architecture whose LTM consists of micro-agents, each representing
rather small bits of knowledge (more complex concepts are represented by coali-
tions of agents). Each micro-agent is hybrid by itself: Whilst the symbolic part
encodes declarative or procedural knowledge, the connectionist part represents
the relevance of this knowledge to the current context by means of its activa-
tion level. In turn, the symbolic processors operate at a speed proportional
to their respective relevance, making the system behaviour context-sensitive.
Both, AMBR-1 and its descendant AMBR-2 ([41]) implement interactive par-
allel processes of recollection, mapping and transfer emerging from the agents’
collective behaviour. In AMBR-2, through activation of aspects of event infor-
mation, general knowledge and knowledge of other episodes, together with the
formation of a coherent representation corresponding to the target, recollection
is reconstruction of the base episode in WM. This results in an analogy, but can
also turn out to be a re-representation of illusory memory.

6.1 The Copycat model: Non-determinism and
creativity

As stated in [39] (which will also serve as main source for our presentation of
the basic principles underlying Copycat), Copycat aims at being a computer
program for discovering insightful analogies, possibly operating in a psycholog-
ically realistic way on a modeled subcognitive, but superneural level. Copycat
addresses the problem of solving analogies over strings of letters of the form
“EFG:MNO:::EFH:?”, with Hofstaedter et al. claiming that the overall goal
is not only about analogical reasoning itself, but in a more general framework
about simulating fluid concepts and cognitive fluidity. In Copycat, high-level
cognition-like features emerge from the independent activity of numerous par-
allel processes, so called codelets. These codelets serve as basis for a non-
deterministic process of creation of temporary perceptual constructs, possibly
yielding a suitable answer to the analogy task at some point.

Copycat’s architecture is tripartite, allowing for a subdivison of the system
into three architectural main parts: the Slipnet, the Workspace, and the Coder-
ack. The Slipnet constitutes a form of LTM, holding types of concepts (but
no concrete instances), similar to the idea of Platonic concepts. The distance
of concepts in the Slipnet gives indication of the probability of a slippage be-
tween concepts, with a high slip probability corresponding to a closeness of
the concepts. The Workspace can be described as close in spirit to blackboard
systems as known from the architecture of numerous multi-agent systems in ar-
tificial intelligence. There, the equivalent of perceptual activity takes place. The
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Workspace contains instances of concepts represented in the Slipnet, combining
them into temporary perceptual structures, making the Workspace Copycat’s
WM. The Coderack finally houses numerous agents, waiting to be invoked for
carrying out tasks in the Workspace. Conceptually, the Coderack may be seen
as close to an agenda, with the important difference that agents are selected
stochastically, i.e., in a non-determinist manner.

The Slipnet

The Slipnet can conceptually be described as a network of interrelated concepts,
each concept being represented by a node, and conceptual relationships serving
as links between these nodes. These links are assigned numerical weights or
lengths, indicating the conceptual distance between two nodes. The Slipnet dy-
namically responds to situations: Its nodes acquire varying levels of activation
(roughly going in accordance with the relevance of the node to the situation at
hand), spread activation to neighbours, and over time lose activation similar to
a cooling down process. Additionally, the weights/lengths of links is adjusted
dynamically, allowing an influence of the perception of the situation at hand
on the probability of certain slippages between concepts (the shorter the link,
the easier the slippage). Nodes in the Slipnet have an important static feature,
referred to as conceptual depth. Each node gets assigned a numerical value, cor-
responding to the generality and abstractness of the concept the node represents
(roughly speaking, the depth of a concept indicates how far the concept is from
being directly perceivable in a situation). The architecture includes a drive to
prefer deep aspects, once they have been perceived, in constructing an overall
understanding of a situation. Also, conceptual depth is directly proportional
to the resistance of a concept to slippage, making shallow concepts more likely
candidates for slipping. Concerning the flow of activation within the Slipnet,
each node spreads activation into its neighbourhood, where the intensity de-
creases with distance from the source, and the conceptual depth value of a node
defines its cooling down rate, with deep concepts cooling down more slowly than
shallow ones. Links in the Slipnet are grouped into link types, where all links
within the same group get assigned the same label. Labels itself are concepts to
be found in Slipnet, with each link constantly adjusting its length in accordance
with the activation level of the label concept (high activation corresponding to
short links, low activation causing long link length). Via its outgoing links, each
node is placed in the center of a probabilistic cloud or halo, representing the
likelihood of slippage into other nodes. In interpretation, neighbouring nodes
can be seen as being part of a given concept probabilistically, i.e., as function
of their proximity to the concept node, thus converting the representation of a
concept within Slipnet from a pure, discrete node-based one into a more diffuse,
halo-oriented conception. Still, the existence of an explicit core to each concept
stays crucial, as slippability vitally relies on the (discrete) change from one core
to another. Concludingly, it has to be noted that whereas the Slipnet’s shape
changes during and within a single run of Copycat, no new permanent concepts
are created, and Slipnet is reset to its initial state after completion of a run, i.e.,
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no permanent learning process takes place.

The Workspace

The Workspace strongly contrasts the topologically invariant Slipnet. At the
start of a run of the Copycat system, the Workspace consists of a collection of
unconnected raw data, representing the situation at hand. Initially, each item
in the workspace, i.e., each letter token, only carries its alphabetic type, and,
for the letters at the very edge of a string, the descriptor leftmost or right-
most is provided. This state changes over time, as agents (the aforementioned
codelets) add various descriptions of features. Also, items are linked together
by perceptual structures, which in turn are built from concepts in the Slipnet.
The amount of attention objects in the Workspace receive from the agents is
regulated by the object’s salience, i.e., by a function of the set of descriptions
the concept currently has. A two-factor model is applied: Objects with de-
scriptions consisting of highly activated concepts in the Slipnet are perceived as
important, whilst also weakly integrated objects, i.e., objects with no or only
few connections to other objects in the Workspace, are taken care of. Salience is
a dynamic quantity, depending on both just described factors, and thus simul-
taneously on the state of the Workspace and the state of the Slipnet. Processing
is characterized by a stochastical selection of pairs of neighbouring objects (i.e.,
objects within a single letter-string), follwed by a scanning for similarities or
relationships, with subsequent reification of the most promising ones as inter-
object bonds in the Workspace. Bonds have dynamically varying strengths,
reflecting activation and conceptual depth of the concept representing it in the
Slipnet, together with the prevalence of similar bonds in the neighbourhood.
Sets of objects in the Workspace, which exhibit the same bond type, are candi-
dates for chunking into a higher-level object, called a group. Again, the more
salient the component objects, and the higher the strength values of bonds, the
higher the probability for reification. When a group has been established, the
same procedure starts again, also assigning a description and a salience value
to the group, and featuring all the characteristics just described for simple ob-
jects. This results in the creation of hierarchical perceptual structures, guided
by biases coming from the Slipnet. Another process at work is the probabilis-
tic selection of pairs of objects in different frameworks (i.e., originating from
different letter strings), followed by another scan for similarity, leading to a pro-
cess of bridging (i.e., reification in form of correspondences) between the most
promising candidates. A bridge within two objects in the Workspace signalizes
that the system considers two objects each other’s counterparts, going back to
being regarded as intrinsically similar objects, or to playing similar roles in the
respective framework. Bridges obviously entail slippages, whose ease, amongst
other things, is indicated by a strength value assigned to the bridge. Taking
all this together, the final purpose of the bridge building process is the creation
of a coherent mapping between two frameworks. During the course of a run of
Copycat, the workspace evolves in complexity, and new structures have to be
more and more consistent with preexistent structures. Being consistent here can
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(roughly speaking) either mean, that two structures are instances of one and
the same Slipnet concept, or that their Slipnet types are at least close to each
other. Thus, the Workspace is building a more and more coherent vision, called
a viewpoint (i.e., a set of mappings). Concerning the interaction between the
Slipnet and the Workspace, any discovery taking place in the Workspace (e.g.
the formation of a group of a certain type) sends activation to the corresponding
concept in the Slipnet. So not only does the Slipnet influence the Workspace,
but also the other way round, binding both parts of Copycat together in an
operationally almost unseparable bundle.

The Coderack

The third part of the tripartite Copycat architecture is the Coderack, serving as
a basis for the numerous codelets. The set of agents can be subdivided into two
categories, scout codelets and effector codelets. Scout codelets serve to estimate
the promise of potential actions, possibly creating one or more other scout or ef-
fector codelets, which follow up on the initial scouts’ findings. Effector codelets
are used for the creation or removal of a structure in the Workspace. After
creation, each agent is placed in the Coderack, together with an urgency value,
determining the probability of being chosen from the codelet pool for execu-
tion as next agent. This urgency value is given by a function of the estimated
importance of the codelet’s envisioned action, ranging back to biases from the
current state of Slipnet and Workspace (i.e., a measure of how well the agent’s
action would fit into the Workspace’s viewpoint). Also, a distinction can be
drawn between bottom-up and top-down codelets: Bottom-up codelets perform
an unfocused exploration, whilst top-down codelets search for specific patterns
or phenomena. In accordance with these characteristics, bottom-up codelets
are continuously active and added to the Coderack, top-down codelets on the
other hand have to be triggered from the Slipnet (for example activated nodes
may spawn top-down scout agents, subsequently scanning the Workspace for
instances of the spawning concept). Each run of Copycat starts with a standard
initial population of bottom-up codelets on the Coderack. At each time step,
one agent is stochastically chosen for execution, and gets removed from the cur-
rent Coderack population. In order to keep the population of the Coderack at a
high level, new codelets can be generated in three ways: Bottom-up codelets are
continually being generated, running agents can call further follow-up codelets
into the Coderack, and active nodes in the Slipnet may add top-down codelets
as already mentioned. This induces a dynamical adjustment of the Coderack
population to the system’s needs, influenced by the judgment of previously run
agents, as well as by activation patterns in the Slipnet.

After completing the presentation of the main parts of Copycat, which also
included several hints and comments on how these parts interact, we want to
comment on some of the further particularities and characteristics of the model.
We will start with some remarks concerning the already initially mentioned
parallel terraced scan, followed by short elaborations on time-evolving biases
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and the concept of temperature within the model, before concluding with a
short summary of general trends during a run of Copycat:

• The parallel terraced scan: As a consequence of the intertwinedness of dif-
ferent conceptual pressures, Copycat seems to be constantly testing vari-
ous possible pathways, some with higher speed, others with less emphasis.
In the Workspace, only one viewpoint is taken at any time, but conceptu-
ally nearby variants of this actual viewpoint are constantly flickering, due
to the probabilistic design of the Coderack. If any of these virtual view-
points is considered sufficitenly promissing by some scout agents, they will
trigger the creation of effector codelets, which in turn will follow up on
the scouts path, possibly starting a switch of viewpoints. These scouting
processes are structured in a terraced way, being carried out in a sequence
of stages of rising depth, with each stage relying on the successful termi-
nation of its predecessor.

• The time-evolving biases: In Copycat’s initial state, the Coderack only
contains bottom-up similarity-scanning agents, used for discovering first
information about the situation, and subsequently triggering the use of
situation-specific codelets. Whilst these early agents are active, the Work-
space slowly starts to get structured and populated by small groups, by
this activating certain nodes in the Slipnet. These activations in turn
initiate a generation process of top-down codelets spawned by the con-
cepts in the Slipnet, gradually leading to a domination of the Coderack
by top-down agents. Thus, at the beginning, the Slipnet is neutral, and
all observations within the Workspace are local and not very deep. In the
course of a run of Copycat, the Slipnet gives up this neutrality, and gets
more and more biased towards certain themes (i.e., individual activated
deep concepts or groups of those), which then guide overall processing.

• The temperature: During a run of Copycat, the system develops a more
and more coherent viewpoint, focusing on certain themes. Thus, top-level
decisions should not be made at will anymore. To cover this need, a tem-
perature variable was introduced, monitoring the stage of processing, and
mediating the focusing process. Temperature is controlled by the degree of
perceived order in the Workspace, resulting in temperature as an inverse
measure of the quality of structure. The temperature in turn controls
the degree of randomness used in decision making: During high temper-
ature phases, for example, the difference in salience between Workspace
objects, guiding the attention of the codelets, will not be as important
for the agents’ decisions, as in a low temperature setting. As the system
starts with high temperature, followed by a process of cooling down (which
does not have to be monotonic), Copycat’s behaviour changes from open-
minded to resembling a conservative decision maker, slowly converting
the non-deterministic parallel processing into a deterministic serial mode
of operation. Concludingly, the final temperature of a run may serve as
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indication of the quality of an answer, with a low temperature indicating
an answer as good answer in Copycat’s judgement.

• Overall trends: Typical runs of Copycat show a set of characteristic ten-
dencies. In many cases, the initially activated concepts in the Slipnet are
conceptually shallow, followed by an increasing depth of concepts dur-
ing the run. Also, a tendency towards theme building can be found. The
Workspace typically changes from unstructured to a state with much struc-
ture, as well as from a state showing many local, unrelated objects towards
global, coherent structures. Processing moves over time from a parallel
towards a serial, and from a non-deterministic towards a deterministic
style, together with a change from bottom-up to top-down mode.

Copycat has been highly successful and far recognized as a model of compu-
tational analogy-making, due to both the new architectural paradigms, seeming
to be in accordance with findings from cognitive science and psychology, and
the performance of the system itself. Also, Copycat served as forefather for dif-
ferent more recent models, some of which directly build on the Copycat model
and extend it (see, e.g., Metacat, [44], which incorporates some self-observation
capabilities into the original Copycat framework), whereas others are different
in some aspects (application, micro-domain, etc.).

6.2 The AMBR model: Associative Memory-
Based Reasoning

As a second example for an up-and-running hybrid analogical reasoning system,
we want to have a closer look at Kokinov’s AMBR system family, formed by
AMBR ([40]) and its direct descendant and successor AMBR-2 ([41]). Before
directly investigating into some of the basic principles of AMBR-1 and AMBR-
2, we shortly have to focus on the paradigm underlying the AMBR program
family, the general-purpose cognitive architecture DUAL ([45], [46]).

The DUAL architecture

DUAL is an architecture aiming at offering a unified description of mental rep-
resentation, memory structures, and processing mechanisms. Following the de-
scription in [41], DUAL tries to meet the design principles listed in Fig. 6.1 by
means of a hybrid, multi-agent design, which supports dynamic emergent com-
putation. DUAL is based on numerous micro-agents, with coalitions of these
representing pieces of knowledge, and locally communicating agents carrying
out computations. Here, the forming of coalitions amongst the micro-agents
is done dynamically, initiated by context-dependent communication amongst
the agents. Single agents are kept simple, representing a simple proposition,
or an aspect of a concept or an object, with the total information concerning
one particular object or concept being distributed over several micro-agents.
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Figure 6.1: An overview of the principles underlying DUAL and AMBR.
([41],p.88)

Also, the architecture is free of a central processor, but the micro-agents re-
lated to a proposition/object/concept do carry out the respective computation.
The level of an agent’s participation in these processes is graded, ranging from
passive behaviour to very active involvement, with the level of participation re-
flecting the relevance of the agent’s knowledge concerning the current task and
context. The agent design is hybrid, with the connectionist part continuously
calculating and updating an activation value for each micro-agent (implement-
ing the aforementioned relevance estimation). The symbolic side is given by a
symbolic processor, capable of performing simple symbolic operations, whilst
being regulated in speed and performance by the activation level issued by the
connectionist side. In turn, the evolution of the context, altered by symbolic
operations, influences the agents’ activation levels. Micro-agents communicate
via message exchange with a small group of neighbours, allowing for compu-
tations to span over entire populations of agents. The message exchange is
conducted via temporary or permanent weighted links, serving for spreading
both, activation (the weight of the link measures the strength of the coupling)
and messages. Overall, micro-agents are (permanently or temporarily) placed
in big communities, which correspond to the system’s LTM. Agents with an
activation level over a certain threshold are considered as additionally forming
the working-memory of the system, and thus are responsible for the outcome of
current computations. Most links within these communities are stable, having
been established over time, but can also be of temporary nature. Thus, with
the possibility of creating both, temporary agents and temporary links, the net-
work can adapt dynamically to tasks. Fig. 6.2 provides a summarizing overview
of relevant terms and concepts within the DUAL framework. As a concluding
incidental remark, it shall be emphasized that Kokinov (see, e.g., [41]) claims
his DUAL architecture to be a concrete and fully implemented instantiation of
Minsky’s “Society of Mind” ([47]).
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Figure 6.2: An overview of the basic terms within DUAL. ([41],p.93)

AMBR-1

As also explained in [48], the design of AMBR is based on some of the principles
stated in Fig 6.1, namely integration, unification and context-sensitivity. Inte-
gration here means that AMBR has to be seen as integrated model based on
a parallel emergent architecture, i.e., each computational process does not only
produce an immediate result, but also influences other mechanisms. Unification
is given in that AMBR shall be a general model of reasoning with emphasis on
analogy-making, but also capable of doing deduction and induction (i.e., gener-
alization), which may be interpreted as extreme, degenerate cases of analogy-
making. Finally, with context-sensitivity Kokinov wants to refer to a form of
reasoning which does not only take into account the particular task, and the
content of the LTM, but is also influenced by external factors. According to the
outline in [41], AMBR-1 integrated memory and mapping, as well as transfer
and simulated analogy-making in a commonsense domain. Under experimental
conditions, it was shown that AMBR-1’s ability to remember previous situa-
tions (which allows for priming with foreknowledge) is crucial for solving some
elaborate analogies. In AMBR-1, remindings are based on the spreading of ac-
tivation within the connectionist part of the model. As sources of activation
serve the perceived elements from the environment and the goals of the sys-
tem, which trigger a complex emergent process (involving local marker-passing
and structure-comparisson processes), constituting a mapping. For implement-
ing this mapping, a constraint satisfaction network is used, which follows some
arguably psychologically valid guidelines:

• The system does not construct all possible hypotheses, but only those for
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which at least one agent finds a justification, based on semantic similarity
or structural consistency (i.e., only hypotheses which seem relevant for the
actual context).

• Both, mapping and memory processes, are conducted in parallel, and can
possibly interact.

• Hypotheses are constructed dynamically, amongst others resulting in tem-
porally staggered establishing of hypotheses.

• The CSN forms part of the overall network of micro-agents, allowing for
an activation-mediated interaction between memory and mapping, fitting
the particular context.

• The semantic similarity computation is conducted in a context-dependent,
dynamical way, again based on interactions between the micro-agents, and
thus subject to influence by the agents’ activation levels.

• Finally, the structure correspondence process is not constrained by any
kind of arity restriction, but AMBR-1 is able to map any kind of rela-
tions as soon as a semantic similarity has been detected (the interactive
mechanism between agents disambiguates the correspondence between ar-
guments of different propositions, based on the semantics represented in
the network).

Still, AMBR-1 only met some of the aforementioned principles (Fig. 6.1), in
that it was based on dynamic context-sensitive computation, but limited to
static representation of episodes only. For each episode, there is a key agent
in the system, pointing to all agents representing the various aspects, making
the coalition centralized around a leading micro-agent. Due to this deficiency,
AMBR-1 was refined into a second version of the system, AMBR-2.

AMBR-2

As described in [41], AMBR-2 is a direct descendant of AMBR-1, relying on
emergent context-sensitive computation, but moreover being able to also rep-
resent episodes emergent and context-sensitive. Concepts and objects are still
represented in the same way as in AMBR-1, using coalitions of micro-agents,
centered around one leading agent, which normally gets associated the name of
the concept or object. Episodes, to the contrary, normally are more complex
and unnamed, leading to a decentralized representation in AMBR-2: No micro-
agent in the respective coalition knows all the agents forming the group, making
the coalitions in the case of episodes more dynamic and susceptible to influences
from the context. This augmented decentralization comes at a quite high cost,
as mapping and transfer turn out to be difficult to realize without complete
lists of propositions on both sides. Difficulties arise, for example, when deciding
what to map, after sufficient correspondences have been found, or what still
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has to be transferred. Therefore, the version of AMBR-2 reported on in [41],
implements mapping and memory, but excludes transfer.

As already stated before, the representation scheme underlying the AMBR
systems is framelike, with slot fillers only being pointers or lists of pointers to
other micro-agents. Thus, the actual fillers are represented by separate agents,
converting even simple propositions into a representation over a small coali-
tion of agents. On the level of interpretation, both the connectionist and the
symbolic paradigm can be seen in this: On the one hand, this is a localist,
symbolic form of representation, whilst on the other hand, a single representa-
tion is also distributed over the entire coalition, and other representations might
overlap with it. Still, the representation stays centralized, as there is one lead-
ing micro-agent, knowing all other coalition members. Particular objects are
also represented by a centralized coalition, with the important difference that
the leader, which is standing for the object itself, does not know directly all
other members of the coalition, representing the objects properties or relations
to other objects and classes of objects. Also concepts are represented in the
same decentralized, distributed way with only partial leader knowledge. This
allows for pieces of generic knowledge to be moving through the coalition space
without being listed explicitly in any coalition. A disparity can be found in the
relation between concepts and corresponding instances. Whilst the leader of an
object representing coalition normally has a pointer to the concept, the leader of
the concept coalition will only rarely be connected to the object representation.
Amongst others, this is an attempt at avoiding a fan-out effect when spreading
activation from concepts to instances. Instead, concept to object links are only
established in case of familiar or recently used objects, leading to an altering
set of concept to object connections, finally influencing the reminding process
in a way that seeing a certain object will not trigger all situations involving this
particular object, but only some. Goals in AMBR-2 are specially tagged propo-
sitions, which, whenever being activated, are recognized as goals, and added
to the system’s goal list. The set of goal propositions changes over time, as
new goals can be added by AMBR-2’s reasoning mechanism, or older goals may
be reactivated. Finally, the most important difference in representations be-
tween AMBR-1 and AMBR-2 is the decentralized, distributed representation of
episodes conducted in AMBR-2. Episodes are represented in fairly big coalitions
without leading micro-agents, i.e., without any agents having a (partial) list of
members of the coalition. Instead, there is one designated agent representing
the time and place location, to which all other micro-agents within the coalition
point. Whilst there are no outgoing pointers from this agent to any members
of the coalition, it still is the only evidence that all the micro-agents represent
aspects of one certain event.

In AMBR-2, the connectionist mechanism of spreading activation across
populations of micro-agents is the basic memory mechanism, influencing all pro-
cesses mediated by the impact on agents’ activation levels. As already sketched,
the level of activation of an agent depends on a dynamic estimate of each agent’s
relevance to the current context. As the system’s behaviour thus depends on
the participation level of all agents, AMBR-2 can rightfully be called a system
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based on context-guided emergent processing. Each agent’s activation level and
output activation are computed as a function of the agent’s input, also taking
into account spontaneous exponential decay of activation when lacking external
support. Activation is obtained from input and goal nodes, where the input
node forms an uplink to all agents corresponding to currently perceived ele-
ments of the environment, and the goal node serves as connection to the leading
agents of currently active goal coalitions. Due to a quite low decay rate, residual
activation stays present for some time, making an earlier memory state influence
a later one, and allowing for priming effects.

We now want to focus on the mechanism of collective reasoning within the
system. Mapping in AMBR-2 is performed by gradually altering a constraint
satisfaction network, which is built incrementally and distributedly by micro-
agents, operating on local information only. The purpose of the CSN then is
to integrate the local results of the involved agents, and aggregate them into a
globally consistent mapping at the coalition of hypotheses level. Structurally,
the CSN is made up by a group of temporary hypothesis agents, together with
temporary excitatory and inhibitory links within the group. Via numerous con-
nections to the main network of permanent agents, hypotheses receive activation
from the permanent micro-agents, as well as give activation feedback to those,
making the CSN synchronise harmonically with the overall system. There are
four main mechanisms involved in constructing and operating the CSN, as well
as in promoting and selecting winning hypotheses:

• The marker-passing mechanism: Semantic similarity is computed by a
marker-passing mechanism. Each micro-agent is capable of passing mark-
ers along to its neighboring superclass agent with a speed corresponding
to the agent’s current activation level. Markers are emitted by coalition
leader agents (representing an object, a property or a relation), when
they enter WM. On its way upwards through the superclass hierarchy, a
marker signals the presence of an instance of a particular type. Thus, when
markers originating from different instances intersect, at a certain level of
abstraction these instances have to belong to the same class, creating the
possibility to consider them similar in a certain way. The micro-agent
which detects the marker intersection creates a new temporary agent rep-
resenting the hypothesis that the instances actually might correspond,
incorporating the assumed semantic similarity into the CSN in a context-
sensitive way (as the speed of marker passing is proportional to agents’
activation levels).

• The structure-correspondence mechanism: Structural consistency is en-
sured by the ability of hypothesis agents to create other hypothesis agents
representing hypotheses consistent with the creating agent’s actual hy-
pothesis. Top-down hypothesis construction takes place when a corre-
spondence hypothesis between two propositions is established, yielding
hypotheses about the correspondence of the propositions parts, as well as
excitatory links between them. Bottom-up hypothesis construction is per-
formed when establishing a correspondence hypothesis between two con-
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cept instances, resulting in the establishing of correspondences between
the concepts. This in turn leads to a facilitated construction of additional
hypotheses (or a strengthening of already existing ones) at the instance
level of the same type. In its totality, this mechanism guarantees the emer-
gence of global structural consistency in the winning hypotheses from the
CSN.

• The CSN-consolidation mechanism: The local establishing of hypotheses
by micro-agents can possibly lead to different justifications for establishing
the same correspondence, which in turn would yield two distinct, compet-
ing hypothesis agents representing the same correspondence. AMBR-2
avoids this by a duplicate hypotheses merging mechanism, producing one
hypothesis with possibly several justifications. Permanent agents keep
track of the hypothesis micro-agents related to them, and newly estab-
lished hypothesis agents are kept in a tentative state, issuing registration
requests to all corresponding agents. Only after locally checking with
corresponding secretaries whether the tentative agent may mature into a
full-fledged hypothesis agent in its own right (i.e., whether a new hypoth-
esis is represented, or only an already existing one would be duplicated),
the hypothesis agent is established. Otherwise, its justification is added
to the already existing hypothesis micro-agent, and the tentative one is
discarded. Over time, this leads to a gradual construction of the CSN,
based on local addition of agents and links.

• The winning hypotheses mechanism: There is continuous building and re-
laxation of the constraint satisfaction network ongoing in AMBR-2. For
each object, relation or concept, a secretary holds a winning hypothe-
sis at each time, allowing for parallel mapping, transfer and evaluation.
Also, backward influences from the transfer and evaluation of hypothe-
ses processes on the mapping are made possible, for example causing the
abandonment of a winning hypothesis invalid in the target domain. As
secretaries constantly have registered all hypotheses involving the current
agent, it is possible to decide which of the hypothesis is the actually most
promissing one. A candidate hypothesis is promoted into a winning hy-
pothesis only after having maintained its status as actual candidate for a
certain period of time, and only if the difference in activation to the next
best competitor is sufficiently large. Once a winning hypothesis has been
established, evaluation and transfer mechanisms may use it as starting
point for further processing.

To conclude this closer look at AMBR-2, we shall have a quick glance at a
particular phenomenon occuring during some runs of AMBR-2 (again see [41]):
Blending of episodes. A typical pattern when running AMBR-2 is that at an
early stage different agents belonging to distinct episodes are brought to the
working memory from LTM, based on their semantic similarity to some target
element. Only then, the dynamics of the gradually constructed CSN slowly
drives the system into a state of consistent mapping between the target and
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one specific source episode by influencing the activation pattern over the entire
agent population. Still, in some rare cases blends of episodes occur, i.e., several
sources are partially mapped to the target. Simulation experiments indicate
that these blends may happen when no episode from LTM matches the target
sufficiently well, or when the matching episode is for some reason (as, e.g.,
priming or context effects) superseded by another one. As mapping in AMBR-2
is done element by element, and the CSN only exerts mild pressure to keep the
dominant source episode the same, under the aforementioned circumstances it
can happen that one source maps to some fraction of the target, and another
source maps to the rest.
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Chapter 7

E Pluribus Unum: An
Intermediate Synopsis

The main part of the present paper (Sect. 4 to Sect. 6) consists of more or
less detailed presentations of several well-known computational analogy-making
systems, also representing the three architectural paradigms within the field.
In this section, we want to summarize some of the insights from the previous
sections, and try to give a helpful synopsis and summary.

To start with, Table 7.1 gives a very high-level summarized overview of the
main systems presented in this paper, making accessible the main features and
functionalities.

Table 7.1: Overview of Computational Analogy-Making Systems

Model Paradigm Characteristics/Main Features

SME symbolic
• Implementing the mapping

phase of Gentner’s Structure
Mapping Theory.

• Propositional representations
as input (typed higher-order
predicate calculus).

• Searching for mappings (set of
correspondences aligning enti-
ties in base and target) and
candidate inferences (state-
ments about the base carrying
over to the target).
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Table 7.1: Overview of Computational Analogy-Making Systems

Model Paradigm Characteristics/Main Features
MAC/FAC (+ SME) symbolic

• Analogical retrieval engine
providing input for SME.

• Episodes as encapsulated rep-
resentations of past events,
dual encoding in LTM: Com-
plete predicate calculus and
compressed vector representa-
tion.

• Two-stage retrieval process:
High-level search for episodes
sharing predicates with tar-
get (vector based), in-depth
search for best match episode
(predicate calculus based).

LISA connectionist

• Symbolic connectionist model.

• Integrating retrieval and map-
ping.

• Interaction between LTM and
WM during retrieval and map-
ping.

• Distributed representation in
WM, localist representation in
LTM.

• Associating structures based
on synchrony of activation of
corresponding groups of nodes
in a connectionist network.
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Table 7.1: Overview of Computational Analogy-Making Systems

Model Paradigm Characteristics/Main Features
STAR-2 connectionist

• Based on tensor product con-
nectionist modeling.

• LTM as aggregating tensor
over tensor products repre-
senting statements.

• Mapping complex analogies by
sequentially concentrating on
parts of the domain.

• Best match selection via paral-
lel computation in a constraint
satisfaction network.

Copycat hybrid

• Based on parallel terraced
scan.

• Building own representation of
base and target, together with
mapping between both.

• Simulated parallelism between
representation building and
mapping.

• Partially stochastic processes.

• Slipnet, Workspace, Coder-
ack.
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Table 7.1: Overview of Computational Analogy-Making Systems

Model Paradigm Characteristics/Main Features
AMBR-2 hybrid

• Based on general-purpose cog-
nitive architecture DUAL.

• Using hybrid micro-agents.

• Implementing interactive par-
allel processes of recollection,
mapping and transfer.

• Recollection as reconstruction
of base in WM (possible oc-
curence of illusory memory).

It should have become clear from the last sections that efforts in the field of
computational analogical reasoning have given rise to several quite distinct
paradigms of modeling and system architecture, leading to a wide variety of
implementations and programs, which makes the creation of clear-cut cate-
gories, possibly allowing for the establishment of a systematisation (and the
comparison of respective prototypical systems) on a not too abstract level (more
specific than the threefold subdivision according to architectural paradigms we
performed, but less detailed than a classification according to lines of develop-
ment and system families, as the STAR or the AMBR clans) complicated or
almost impossible to achieve. Also, such an undertaking would clearly go be-
yond the scope of the present report. Therefore, we will have to make do with
stating a few additional observations concerning the systems we presented in
the previous sections, pointing at some conceptual links, and providing some
comparative information.

As already pointed out by Kokinov in [41], one commonality between some
of the presented computational models of analogy-making, namely MAC/FAC,
LISA and at least AMBR-1, is that they use a storehouse-like conception of
memory, with their LTM storing a collection of static representations of past
episodes. MAC/FAC clearly has a centralized collection of past memories, from
which the retrieval process tries to select the best one, LISA’s LTM (contrasting
the distributed WM) is based on centralized localist representations of episodes,
and AMBR-1 also relies on stable and complete representations.

[41] also provides some insights concerning the differences in conception be-
tween AMBR/DUAL and the Copycat architecture: Whilst the ideas of codelets
and micro-agents are conceptually close to each other, Copycat maintains with
its Workspace a separate storage area, creating a platform for copies of the
codelets to run and construct representations. No similar construct is to be
found in DUAL. Also, DUAL is determinist in nature, contrasting the (par-
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tially) inherently stochastic nature of Copycat (which the latter actually shares
with LISA, as also LISA may yield distinct outputs for multiple runs over the
same input data, [28]). Where a certain dependence on probabilistic mecha-
nisms is an internal part of the Copycat architecture, the variability of DUAL’s
behaviour is due to the permanent influences from the context.

Hofstadter and Mitchell, in [39], provide an overview comparison of Copycat
with SME. Following their presentation, Copycat and SME agree in several
crucial points, most importantly on a basic principle originating from Gentner’s
SMT: Systematicity, i.e., that the essence of a situation, and therefore the crucial
part for mapping, is not only a collection of independent low-level facts, but
rather a high-level coherent whole. But, as was to be expected, of course there
are also fundamental points of disagreement, some of the most salient ones being
SME’s emphasis on syntactic connections between potential mapping partners,
as opposed to Copycat’s integration of semantic information into the process,
the total absence of notions like conceptual similarity or slippage from Gentner’s
SMT (and thus also from SME), which are characteristic features of Copycat,
and the need for a precise and unambiguous (predicate logic) representation of
situations in SME (due to its emphasis on syntax), which is by far less present in
Copycat (wich exhibits some real-time representational flexibility in processing).

LISA and STAR both address in their way the role of WM capacity in
the process of analogical mapping, whilst SME forms numerous possible local
matches between base and target elements ( most of which are again discarded
during the matching process) and is moreover theoretically capable of mapping
analogies of arbitrary size ([28]).

In general, it should not be surprising to find quite different ambitions un-
derlying the presented models, in our eyes ranging from SME and MAC/FAC on
the one side, which – though being inspired by concepts from cognitive science
and psychology – can mainly be interpreted as implementations of the Struc-
ture Mapping Theory, emphasizing the conceputal and algorithmic aspects and
serving as a test bed, to Copycat at the other extreme, trying to step by step
constitute a full-fledged model of mental fluidity, perception and analogical rea-
soning in a bigger framework. Both LISA and the STAR system family already
show signs in the same direction, but stay way more moderate in their pre-
tensions and just want to incorporate some features of human-like reasoning,
as for example the aforementioned working memory limitations. Concludingly,
AMBR in turn (as already indicated by its close connection to the general cog-
nitive architecture DUAL, though still staying considerably more tempered in
its claims) from our understanding has to be positioned somewhere between
LISA/the STARs and Copycat.
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Chapter 8

Work in Progress:
Heuristic-Driven Theory
Projection

In this penultimate section of the present study, we want to turn to a slightly
different framework for analogical reasoning, which at the current moment is
still in a mostly conceptual stadium, being subject to ongoing research, and for
which no official, full-fledged implementation is yet available (although it has
partially been implemented in a PROLOG program): Heuristic-Driven Theory
Projection (HDTP).This framework has been conceived as a mathematically
sound framework for analogy-making (see, e.g., [9]). In the following we will
give a crisp outline of the basic principles and functionality of HDTP, before
concludingly comparing the framework to some of the analogical reasoning sys-
tems from earlier sections.

As explained in [49], HDTP has been created for computing analogical re-
lations and inferences for domains which are given in form of a many-sorted
first-order logic representation. Base and target of the analogy-making process
are defined in terms of axiomatisations, i.e., given by a finite set of formulae.
From there, HDTP tries to align pairs of formulae from the two domains by
means of anti-unification. Anti-unification is the dual to the more prominent
unification problem, which has thoroughly been studied for example in logic
programming and automatic theorem proving. The less popular undertaking of
anti-unification, to the best of our knowledge firstly studied by Plotkin in [50],
basically tries to solve the problem of generalizing terms in a meaningful way,
yielding for each term an anti-instance, in which distinct subterms have been
replaced by variables (which in turn would allow for a retrieval of the origi-
nal terms by a substitution of the variables by appropriate subterms, see [9]
for a more detailed description). Fig. 8.1 gives some examples for first-order
anti-unification in a Plotkin-like style.
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Figure 8.1: Some examples of first-order anti-unifications: Minuscules represent
instances, capitals represent variables, the terms in braces indicate substitutions.
([9], p.253)

The goal of anti-unification is to find a most specific anti-unifier, i.e., the
least general generalization of the involved terms. Plotkin has shown that for
a proper definition of generalization, for a given pair of terms there always is a
generalization, and that there is exactly one least general generalization (up to
renaming of variables). HDTP now extends Plotkin’s classical first-order anti-
unification to a restricted form of higher-order anti-unification, as mere first-
order structures have shown to be too weak for the purpose of analogy-making:
Just think of structural commonalities which are embedded in different contexts,
and therefore not accessible by first-order anti-unification only.

Restricted higher-order anti-unification as used in HDTP was introduced
in [51]. In order to restrain generalizations from becoming arbitrarily complex,
a new notion of substitution is introduced. First of all, classical first-order terms
are extended by the introduction of variables which may take arguments (where
classical first-order variables correspond to variables with arity 0), making a
term either a first-order or a higher-order term. Now, anti-unification can be
applied analogously to the original first-order case, yielding a generalization
subsuming the specific terms. As already indicated by the naming, the class of
substitutions which are applicable in HDTP is restricted to (compositions of)
the following four cases: renamings, i.e., substitutions replacing one variable
by another, fixations, i.e., substitutions replacing a variable by a function of
the same argument structure, argument insertions, i.e. a substitution of the
form F (t1, . . . , tn)→ F ∗(t1, . . . , ti, G(ti+1, . . . , ti+k), ti+k+1, . . . , tn) (where F is
a variable of arity n, G a variable of arity k, and F ∗ a variable of arity n−k+1,
and 0 ≤ i ≤ n, as well as k ≤ n − i), and permutations, i.e., rearrangements
of a term’s arguments. In [51], it is shown that this new form of (higher-order)
substitution is a real extension of the first-order case, which has proven to be
capable of detecting structural commonalities not accessible to first-order anti-
unification. Unfortunately, the least general generalization loses its uniqueness
(which in turn may be interpreted as corresponding to the multiple possibilities
humans may find in drawing analogies between a base and a target domain).
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Therefore, as explained in [9], HDTP introduces a way of ranking generalizations
according to a complexity order on the complexity of generalization, which in
turn is based on a complexity measure for substitutions. HDTP chooses the
least complex generalization as preferred generalization.

From a practical point of view, it is also necessary to anti-unify not only
terms, but formulae. Therefore, HDTP extends the notion of generalization
also to formulae by basically treating formulae in clause form and terms alike
(as positive literals are structurally equal to function expressions, and complex
clauses in normal form may be treated component wise). Furthermore, analogies
do in general not only rely on an isolated pair of formulae from base and target,
but on two sets of formulae. Here, as also pointed out in [49], a heuristics is
applied when iteratively selecting pairs of formulae to be generalized: Coherent
mappings outmatch incoherent ones, i.e., mappings in which substitutions can
be reused are preferred over isolated substitutions, as they are assumed to be
better suited to induce the analogical relation. Once obtained, the generalized
theory and the substitutions specify the analogical relation, and formulae of
the base for which no correspondence in the target domain can be found may
by means of the already established substitutions be transferred to the target,
constituting a process of analogical transfer between the domains.

Based on more detailed elaborations in [9], we will now shortly compare
HDTP to some of the other models of analogy-making discussed in the present
paper. Whilst SME and HDTP may have equally expressive representation
formalisms, the mapping HDTP performs may be interpreted as more power-
ful than SME’s counterpart, as – contrary to SME – HDTP also accounts for
some semantic information (as, e.g., from quantified variables in general laws).
Also, in the case of HDTP, the mapping is less rigid, as HDTP aligns basically
any entity, function or predicate (although it clearly prefers literally-matching
alignments over non-literally ones, and equivalent structures to structural mis-
matches), whilst SME requires identical labels for the alignment of attributes
and relations. A third main difference can be found in the way of establishing
a mapping between domains: Here, SME constructs a mapping without gener-
alizing across domains (a generalization is built only on demand), contrasting
the explicit generalizations performed by HDTP. Concerning the hybrid systems
Copycat and DUAL, the fundamentally different architectural paradigms and
modeling approaches cause extensive differences. These become noticeable for
example when considering DUAL’s way of representing domains and establish-
ing analogical relations, as compared to the respective mechanisms in HDTP.
Also it seems unclear how generalization can be handled in DUAL. With respect
to Copycat, one of the main architectural differences is the difference in the rela-
tion to the system’s domain: Where Copycat’s string domain is hard-wired into
it, HDTP is an open domain system, only defining the representation format
of its domains. Finally, whilst also HDTP claims a certain degree of cognitive
plausibility, its ambitions in these matters seem considerably more moderate
than it is the case especially with Copycat (where the designers in parts even
claim a small degree of biological plausibility due to the emergence-based nature
of some mechanisms).
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Concerning application scenarios, HDTP has successfully been used in some
proof-of-concept applications in the domain of modeling mathematical reasoning
and conceptual blending in mathematics. A fairly crisp overview of these efforts
can be found in [52], a more detailed report is also provided by [49].
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Chapter 9

Conclusion

In this survey, we have looked at several different systems and models for com-
putational analogical reasoning, covering a time span from the late 1980s to the
present day. The selection we made of course stays far from being complete, but
should rather be seen as a presentation of some representative systems, showing
some of the most prominent features and functionalities analogy-making sys-
tems can have, whilst still leaving much unsaid. For more high-level overviews,
which on the other hand may be more exhaustive in the number of presented
models, we may point the reader to [8] and [11]. A perspective from the end
of the 1980s, which we still consider very worth reading, can be found in [10].
Also, the in this study often cited book by Gentner, Holyoak and Kokinov ([53])
gives a fairly recent overview of research on the modeling of analogy-making,
not only limiting its scope on the computational side, but amongst others also
treating more with issues from cognitive sciences, developmental and neuropsy-
chology, and cognitive linguistics. This book may be seen as a descendant of the
proceedings of the 1998 workshop on “Advances in Analogy Research” ([54]),
which also offer some interesting articles for the interested reader.

We finally want to emphasize our confidence in that understanding analogy-
making will show to be crucial for getting a grasp on understanding and model-
ing human thinking, reasoning and cognition in general. Also we are confident
that analogical reasoning will find numerous applications in artifical intelligence,
but also in other disciplines as, e.g., economics and decision theory. Already
by now, publications using analogical reasoning techniques and concepts from
analogy research range from areas as diverse as the Semantic Web ([55]) to game
theory ([56]), and still numerous issues, questions and possible applications re-
main to be explored in future research.
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