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Abstract

Solovay’s proof of the arithmetical completeness of the provability logic
GL proceeds by simulating a finite Kripke model inside the theory of
Peano Arithmetic (PA). In this article, a new perspective on the proof
of GL’s arithmetical completeness will be given. Instead of simulating
a Kripke structure inside the theory of PA, it will be embedded into an
arithmetically defined Kripke structure. We will examine the relation of
strong interpretability, which will turn out to have exactly the suitable
properties for assuming the role of the accessibility relation in a Kripke
structure whose domain consists of models of PA.

Given any finite Kripke model for GL, we can then find a bisimilar
model whose nodes are certain nonstandard models of PA. The arith-
metical completeness of GL is an immediate consequence of this result.
In order to define the bisimulation, however, and to prove its existence,
the most crucial and ingenious ingredients of Solovay’s original proof are
needed. The main result of the current work is thus not so much a new
proof as a new perspective on an already known proof.

1 Introduction: PA and GL

Peano arithmetic (PA) is a first-order theory in the language L = {0, S,+, ·},
where 0 is a constant, S a unary function symbol, and + , · binary function
symbols1. PA contains six axioms and one axiom schema, the original purpose of
which was to capture the structure of the natural numbers. However, PA fails to
achieve this goal, as it is not even ω-categorical: also (countable) structures other
than the natural numbers satisfy the axioms of PA. These so-called nonstandard
models will play an important role in the current article.

The natural numbers, where the non-logical constants are interpreted in the
obvious way, are of course among the models of PA - in fact they form an
initial segment of any model of PA. This justifies the usual interpretation of PA
as proving statements about natural numbers. Since the latter can be used to
code (via gödelnumbering) syntactic objects of PA, like e.g. proofs, PA is able to
∗This is a report on an individual project supervised by Albert Visser and Dick de Jongh.
1Throughout this article it will be easier to assume that we are working with a relational

language. See p.4 in [3] for a treatment of function symbols in a relational language.
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engage in the self-reflective activity of “speaking about” (i.e. proving sentences
about) provability in itself. In particular, there is a predicate BewPA (x) of PA
which expresses the provability relation in PA. As a consequence of this, we
have, for all sentences ϕ and ψ of L:

1. if PA ` ϕ, then PA ` BewPA(pϕq), where pϕq stands for the code of ϕ,
and pϕq for the numeral2 of this code.

2. PA ` BewPA(pϕ→ ψq)→
(
BewPA(pϕq)→ BewPA(pψq)

)
3. PA ` BewPA(pϕq)→ BewPA

(
pBewPA(pϕq)q

)
These self-reflective capacities of PA, the so-called Hilbert-Bernays-Löb deriv-
ability conditions, are in fact crucial for proving the Second Incompleteness
Theorem. According to the second, PA “knows” that modus ponens is among
its rules of inference. According to the third, PA “knows” that it has the self-
reflective capacity stated in 1.

But the self-reflective capacities of PA also have a limit. For example, we
might expect PA to “know” that if it can prove a sentence ϕ, then ϕ holds,
i.e. PA ` BewPA(pϕq) → ϕ. However, according to Löb’s Theorem, PA proves
this statement only for sentences which it already can prove. Intuitively, this
means that PA does not engage in counterfactual speculations about its ability
to prove theorems. If PA does not know that a sentence is true (i.e. PA 0 ϕ),
then it also will not claim that the sentence would be true in case it would be
provable (i.e. then also PA 0 BewPA(pϕq) → ϕ). It is therefore a reasonable
question to ask whether there is a way to characterise provable sentences in PA
that involve the provability predicate.

As it turns out, the self-reflective capacities of PA can be neatly analysed
by using modal logic. In order to do that, the operator � is interpreted as “it is
provable in PA that . . . ” - as opposed to the more traditional “it is necessary that
. . . ”. More specifically, the analysis requires us to establish a correspondence
between modal sentences and sentences of L. For this purpose, we introduce
the notion of a realisation - an assignment of sentences of PA to propositional
letters in the modal language. Given a realisation ∗ , a sentence ϕ of the
modal language is translated into a sentence ϕ∗ of PA according to the following
recursive definition:

1. p∗ = ϕ∗p

2. ⊥∗ = ⊥

3. (ϕ→ ψ)∗ = (ϕ∗ → ψ∗)

4. �ϕ∗ = BewPA
(
pϕ∗q

)
2For each natural number n, its numeral n is the closed term of L denoting it, i.e. 0,

preceeded by n applications of S. E.g. the numeral of 5 is SSSSS0
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where ϕ∗p denotes the L-sentence assigned to the sentence letter p by the reali-
sation ∗.

There is in fact a modal system that is perfectly suited for characterising
formal provability in PA. GL (named after Gödel and M.H. Löb) is obtained
by adding to K the Löb axiom � (�ϕ→ ϕ) → �ϕ; this system is sound and
complete with respect to frames that are finite transitive and irreflexive trees
(equivalently, transitive and converse well-founded frames).

Solovay’s proofs of the arithmetical soundness and completeness of the modal
system GL show that GL is the logic of formal provability in PA in the following
sense:

• If GL ` ϕ, then PA ` ϕ∗ for all realisations ∗ (Arithmetical soundness).

• If PA ` ϕ∗ for all realisations ∗, then GL ` ϕ (Arithmetical completeness).

GL’s arithmetical completeness and soundness thus means that the translations
of GL’s theorems are exactly the sentences that are always provable in PA, i.e.
regardless of which sentences are assigned to the propositional letters.

In section 3, we will give a brief outline of Solovay’s proof of the arith-
metical completeness of GL. By making use of certain sentences constructed
in this proof, we are able to show the existence of a bisimulation between a
finite Kripke structure for GL, and the Big Model N whose domain consists of
certain nonstandard models of PA. This result yields an alternative proof for
the arithmetical completeness of GL. Section 2 contains the preliminary work
that is needed to construct the Big Model N in the first place. In particular,
we establish the existence of a relation that holds between models of PA, and is
suitable for assuming the role of the accessibility relation in N.
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2 Constructing the Big Model
This section introduces the relation of strong interpretability on the class of
models of PA. We will establish that this relation has certain properties which
entitles us to view it as an accessibility relation, in the sense of Kripke structures,
between models of PA.

2.1 Interpretability
The notion of interpretability allows us to compare first-order theories. Intu-
itively, if a theory T interprets a theory S then T is at least as strong as S.

Definition Let S and T be first-order theories in the languages LS and LT
respectively. A function I from the formulas of LS to formulas of LT is an
interpretation of S and T if

1. for each predicate symbol3 P of S, there is a formula ψP of T , and for all
variables x and y, I (P (x, y)) = ψP (x, y). 4

2. I commutes with the propositional connectives: for any formulas ϕ and ψ
of S,

(a) I (¬ϕ) = ¬I (ϕ)
(b) I (ϕ→ ψ) = I (ϕ)→ I (ψ)

3. I commutes with the quantifiers in a relativized sense: there is a formula
δ(x) of T containing one free variable, such that for any variable y and
any formula ϕ of S, I(∃yϕ) = ∃y (δ(y) ∧ I(ϕ)). Furthermore, T ` ∃xδ (x).

4. For all axioms ϕ of S, T ` I (ϕ).

Given that S ` ϕ, and T interprets S via I, it follows that T ` I (ϕ), i.e. T
proves the translations of all theorems of S.

An important application of the notion of interpretability are proofs of rela-
tive consistency. If T interprets S, then T ’s consistency implies S’s consistency.
If S ` ⊥, then T ` I (⊥), and hence, because I commutes with the propositional
connectives, also T ` ⊥.

The notion of interpretation can also be viewed from a semantic perspective.
Given a model N of a theory T , an interpretation I of S in T allows the
construction of a modelM of S inside N . The domain ofM will be the subset
dom (M) := {mεdom(N ) | N � δ(m)}. Since T ` ∃xδ (x), dom (M) 6= ∅. Given
a formula ϕ (x1, . . . , xn) of S, and elements a1, . . . , anεdom (M) we define:

M � ϕ [a1, . . . , an] :⇔ N � I (ϕ) [a1, . . . , an]

where I (ϕ) (x1, . . . , xn) is the formula of T assigned to ϕ (x1, . . . , xn) by I. If
M is constructed in such a way from N , we say thatM is an internal model of
N , or internal to N .

3We will treat the case that P is a binary relation symbol. The other cases are similar.
4For the sake of simplicity, we will require the equality symbol to be interpreted as the

equality symbol, although in the general case this is not necessary.
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Requirements for an accessibility relation
In this article, the notion of internal models will be used to shed new light on
the proof of the arithmetical completeness of the modal logic GL. Given some
modifications, the relation between a model and its internal models will turn
out to have exactly the right properties for assuming the role of the accessibility
relation in a Kripke structure whose domain consists of models of PA.

The box of modal logic is translated into the language of PA as the provabil-
ity predicate BewPA. In Kripke models, we have the following truth definition
for modal formulas that have the form �ϕ:

M, i � �ϕ ⇐⇒ for all j s.t. iRj ,M, j � ϕ

In order to construct a Kripke model whose domain consists of models of PA,
we must thus find a relation 4 on models of PA s.t.

N � BewPA(pϕq) ⇐⇒ for allM s.t. M4N ,M � ϕ

Since the relation of interpretability is reflexive (we can simply take the identity
function for I), each model is internal to itself. The above requirement would
thus impose that for any model N of PA and any sentence ϕ, N � BewPA(pϕq)
implies N � ϕ. However, consider the Gödel sentence G which is a fixed point
of ¬BewPA (x):

PA ` G↔ ¬BewPA

(
pGq

)
.

Since G is independent of PA, we have a modelM of PA s.t. M � BewPA

(
pGq

)
and M � ¬G, violating the above requirement. Hence the relation we are
looking for must be irreflexive. In the next section, we strengthen the notion
of interpretability so as to satisfy the above requirement for truth definition in
Kripke structures.

2.2 Strong interpretability
Roughly speaking, a strong interpretation of S in T is an interpretation I where
T has a truth predicate for the internally constructed models of S. More pre-
cisely, there is a formula γ of T s.t. for all sentences ϕ of S, T ` I (ϕ)↔ γ

(
pϕq

)
.

We will refer to this condition as the minimal requirement for a truth predicate.
The truth predicate that comes with a strong interpretation, however, has to
satisfy more than just the minimal requirement. Apart from the above, we re-
quire T to prove various properties about γ as a truth predicate. For example,
we want T to prove that ϕ∧ψ is true in a (internally constructed) model of S if
and only if both ϕ and ψ are true in that model, and that a formula of the form
∃xϕ is true in a (internally constructed) model of S if and only if the formula
has a witnessing element in that model.

Preliminaries
Since we are working with a truth predicate, which can only be applied to
(numerals of codes of) sentences, not to formulas and assignments, the last
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requirement poses a technical problem. In order to say that existential formulas
have witnesses, T has to be able to express that an existential formula is in the
extension of γ if and only if some instance of it is in the extension of γ. Since
only sentences can be in the extension of γ, we need a sentence expressing the
fact that ∃xϕ has a witness. Note that this is not a problem if S is a Henkin
theory, i.e. if for any any existential sentence ∃xϕ in S, also some sentence of
the form ϕ(c) is in S, where c is a constant symbol. Then T can say that ∃xϕ
has a witness by proving the statement γ

(
p∃xϕq

)
↔ γ

(
pϕ (c)q

)
.

In order to deal with this problem, we consider the function κ which numer-
ates a countable set {cn}n∈N of new constant symbols inside T :

pcnq = m ⇐⇒ T ` κ (n) = m

We assume that the coding of these constant symbols extends the standard
coding, thereby ensuring that the element κ[a] always codes a constant, and
nothing else. We also assume κ to adequately represent the fact that the coding
is injective, i.e.

T ` ∀xy (x 6= y → κ (x) 6= κ (y)) .

In particular, κ is an injective function from elements in the extension of δ to
codes of constants, and so we can use it to assign names to the elements of an
internally constructed model of S. If a is such an element (i.e. if N � δ [a] where
N is a model of T ), we let ca, the a’th new constant, be its name according to
T , and so κ [a] is the code of the constant that names a.
The definition of a strong interpretation makes use of formulas representing
certain primitive recursive functions and relations inside PA, which will be in-
troduced in the following. Let σ (x) be the formula numerating the axioms of S
in T , i.e.

ϕ ∈ S ⇐⇒ T ` σ
(
pϕq

)
The formulas ν (x) and νF (x) numerate the sentences of S and formulas of S
containing one free variable, respectively, inside T , e.g.

n is the code of an S-sentence ⇐⇒ T ` ν (n)

Similarly, Var (x) numerates variables inside T .
Let Sbs (x, y, z) be the formula numerating the substitution function inside

PA, i.e5
[t/x]ϕ is ψ ⇐⇒ T ` Sbs

(
ptq, pxq, pϕq

)
= pψq

The symbol “∗” represents the concatenation function, thus x ∗ p→q ∗ y is the
numeral of the code of an implication whose antecedent is the formula whose
code is denoted by the numeral x, and the consequent the formula whose code
is denoted by the numeral y.

5[t/x]ϕ stands for the formula that results when the term t is substituted for all free
occurrences of x in ϕ
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Definition of strong interpretability
Let S and T be first-order theories containing PA, and the formulas κ(x), σ(x),
ν(x), νF (x), Sbs(x), Var(x), as above.

Definition We call an interpretation I of S in T strong, and write S ≺ T if
there is a formula γ of T containing one free variable s.t.

1. for all relation symbols6 P of S,

T ` ∀xy
(
δ (x) ∧ δ (y)→

(
I (P (x, y))↔ γ

(
pPq∗κ (x) ∗ κ (y)

)))
2. γ commutes with the propositional connectives:

(a) T ` ∀x∀y
(
ν (x) ∧ ν (y)→

(
γ
(
x ∗ p→q ∗ y

)
↔ (γ(x)→ γ (y))

))
(b) T ` ∀x

(
ν (x)→

(
γ
(
p¬q ∗ x

)
↔ ¬γ(x)

))
3. γ commutes with the quantifiers (in the relativised sense):

T ` ∀x∀y
(
νF (x) ∧Var (y)→

(
γ
(
p∃q ∗ y ∗ x

)
↔ ∃z (δ (z) ∧ γ (Sbs (κ (z) , y, x)))

))
4. T ` ∀x (σ(x)→ γ(x))

If a modelM of S is given by a strong interpretation (as described in section
2.1) inside a model N of T , we say thatM is a t-internal (’t’ stands for truth)
model of N or t-internal to N , and writeM 4 N .

Note that in clause 3., the variable z plays a double role. If N is a model
of T , and N � δ [a] for some a ∈ dom (N ), then a will be an element of the
internal model M of S constructed inside N . The first occurrence of z thus
refers to an element in the domain of a model of S. The second instance of z
(as an argument of κ), however, is concerned with κ (a) as denoting the code of
the constant ca which functions as a name for a in that model. Clause 3. says
that the sentence ∃xϕ is true in a model of S (γ

(
p∃xϕq

)
) if and only if there is

some element in the domain of S (δ (z)), denoted by the constant cz, s.t. ϕ [cz]
is true in the model (γ

(
pϕ [cz]q

)
).

Similarly, in clause 1. the variable x plays different roles. On the left, we are
interested in an element of an internally constructed model that is assigned to x
by some assignment - this is how variables are usually interpreted. In the scope
of γ, however, the element assigned to x interests us insofar as its image under
κ codes a constant (naming the element that concerns us on the left side).

6We will treat the case where P is a binary relation symbol. The other cases are similar.
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Internal quantifiers
In this section, we will explain why the internal quantifiers occurring in the
definition of strong interpretability constitute a non-trivial requirement.

Note that clause 4. in the above definition requires T to prove the formal
statement that all axioms of S are true. If T interprets S, then T containing
a truth predicate which satisfies the minimal requirement already allows T to
prove the informal version of this statement, i.e. that for all sentences ϕ of S,
T ` γ(pϕq). To see that, note that if ϕ is a sentence of S, then by the definition
of an interpretation, we have T ` I (ϕ), and hence also T ` γ(pϕq) by the
minimal requirement.

However, this alone does not guarantee the validity of clause 4, i.e. it might
still be that T 0 ∀x (σ (x)→ γ (x)). To see this, consider an arbitrary model N
of T and a ∈ dom (N ) s.t. N � σ [a].
If a is a standard element, then by properties of σ, a is the code of some sentence
ϕ of S, whence T ` I (ϕ), and thus also T ` γ [a] (by the minimal requirement).
Hence if N is the standard model, N � ∀x (σ (x)→ γ (x)).
But T also has nonstandard models, and so a might be a nonstandard element.
In that case, a is not the code of any sentence of S, and the above argument
does not go through, whence it seems possible thatM 2 γ [a].
Whereas the external meta-language quantifier in the informal statement ranges
over natural numbers (via their being codes of elements of S), the internal quan-
tifier in the formal statement possibly also ranges over nonstandard elements a
which are not used to code elements of S and thus fail to give us the desired
conclusion that T ` γ [a] immediately.
In fact, we can give a counterexample illustrating that clause 4. does not follow
from the minimal requirement. Suppose that T interprets S via I, and let σ(x)
be s.t. for all ϕ,

ϕ ∈ S ⇐⇒ T ` σ
(
pϕq

)
.

Extend the language of T with a one-place predicate γ, and add to T , for any
sentence ϕ in the language of S, the axiom I(ϕ) ↔ γ

(
pϕq

)
. Let T γ be the

resulting theory. Clearly, T γ interprets S, and also contains a truth predicate
that satisfies the minimal requirement. We will show that T γ has a model
that satisfies ∃x (σ(x) ∧ ¬γ(x)), i.e. a model where clause 4. is not satisfied.
It suffices to show that any finite subset of T γ ∪ {∃x (σ(x) ∧ ¬γ(x))} has a
model. So let T ′ be a finite subset of T γ . Then there is some ϕ ∈ S s.t.
T ′ 0 I(ϕ)↔ γ

(
pϕq

)
(since S contains PA, it is not finitely axiomatisable).

If T ′ 0 I(ϕ)→ γ
(
pϕq

)
, then T ′∪

{
I(ϕ) ∧ ¬γ(pϕq)

}
is consistent. Since T `

σ
(
pϕq

)
⇔ T ` I(ϕ) (since we assumed ϕ ∈ S), also T ′∪

{
σ(pϕq) ∧ ¬γ(pϕq)

}
is

consistent and thus it has a model. On the other hand, if T ′ 0 γ
(
pϕq

)
→ I(ϕ),

then by properties of I and γ we have that T ′ 0 I(¬ϕ) → γ
(
p¬ϕq

)
(since I

commutes with the propositional connectives, the minimal requirement imposes
that also γ commutes with the propositional connectives in the externally quan-
tified sense) and so T ′ ∪

{
σ(p¬ϕq) ∧ ¬γ(p¬ϕq)

}
has a model. Hence T γ has a

model where clause 4. is not satisfied, so the latter does not follow from the
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minimal requirement for a truth predicate.
A more natural example illustrating the independence of clause 4. from the

minimal requirement for a truth predicate involves a non-standard consistency
statement, e.g. one based on Feferman-provability (see Feferman, p. 68). Ac-
cording to Corollary 5.10, there is a formula π (x) numerating the axioms of PA
in PA s.t. PA ` Conπ. Using the formalised completeness theorem (see section
2.4), we then obtain a formula γ, and an interpretation I of PA in itself, s.t.
γ fulfils the minimal requirement for a truth predicate, together with clauses
1. - 3. of the definition of a strong interpretation. However, the fact that
Conπ is not the standard Π0

1 -consistency statement, clause 4. of the definition
is not fulfilled. Hence it is the failure of this clause that prevents there being
a strong interpretation of PA in itself, in accordance with the Second Incom-
pleteness Theorem (if PA would strongly interpret itself, it would prove its own
consistency statement).

Properties of strong interpretations
In this section, we prove some consequences of a theory T strongly interpreting
a theory S via I and γ.

An induction on the complexity of a formula shows that for any formula
ϕ of S containing at most n free variables, all variables v0, . . . vn, and for all
x0, . . . , xn in the extension of δ, T proves

I (ϕ (x0, . . . xn))↔

γ
(

Sbs
(
κ (x0) , pv0q, . . . ,Sbs

(
κ (xn) , pvnq, pϕ (v0, . . . vn)q

)
. . .
))

.

In particular if ϕ is a sentence,

T ` I (ϕ)↔ γ
(
pϕq

)
.

i.e. γ satisfies the minimal requirement for a truth predicate.
An important property of a strong interpretation of S in T is that

T ` ∀x (Bewσ(x)→ γ(x))

where σ is the formula numerating the axioms of S in T . This means that
T proves the formal statement that all theorems of S are true.

The proof relies on Theorem 4.6.(v) in Feferman’s article. This theorem
formalises the method of using induction on the length of the derivation in order
to prove properties of derivable formulas. For any formula χ of T , we have:

T ` ∀x ((σ(x)→ χ(x)) ∧ (λ(x)→ χ(x)))∧

∀xy
(
χ
(
x ∗ p→q ∗ y

)
∧ χ(x)→ χ(y)

)
→ ∀z (Bewσ (z)→ χ (z))

where λ is a formula that numerates a set of logical axioms in T .
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Taking γ for χ in the above formula, we thus have to prove the following in
order to get the desired result:

T ` ∀x (σ(x)→ γ(x)) (1)

T ` ∀x (λ(x)→ γ(x)) (2)

T ` ∀xy
((
γ
(
x ∗ p→q ∗ y

)
∧ γ(x)

)
→ γ(y)

)
(3)

(1) Immediate by the definition of strong interpretability.

(2) We assume that λ (x) is an intensionally correct formalisation of the set of
axioms of predicate logic in Hilbert style, defined as a finite disjunction
of sentences like e.g. ∃y∃z

(
x =

(
y ∗ p→q ∗

(
z ∗ p→q ∗ y

)))
, correspond-

ing to the axiom schema (ϕ→ (ψ → ϕ)). Let M be a model of T , and
m ∈ dom (M) s.t. M � λ [m]. We will consider an exemplary case
where m has the form a ∗ p→q ∗

(
b ∗ p→q ∗ a

)
, with a, b ∈ dom (M)

possibly nonstandard. We want to show that M � γ [m], i.e. that
M � γ

[
a ∗ p→q ∗

(
b ∗ p→q ∗ a

)]
. By the requirement that γ commutes

with the propositional connectives in the internally quantifed sense , we
have that

T ` ∀x∀y
(
γ
(
x ∗ p→q ∗

(
y ∗ p→q ∗ x

))
↔ (γ (x)→ (γ (y)→ γ (x)))

)
whence it suffices to prove thatM � γ [a]→ (γ [b]→ γ [a]). But the latter
is a propositional tautology and hence we are done.

(3) Immediate by the requirement. that γ commutes with the propositional
connectives in the internally quantified sense.

From the above, it also follows that T ` ¬Bewσ

(
p⊥q

)
. We have T `

∀x (¬γ (x)→ ¬Bewσ (x)) by propositional logic, and hence also T ` ¬γ
(
p⊥q

)
→

¬Bewσ

(
p⊥q

)
. On the other hand, we also have T ` ¬γ

(
p⊥q

)
↔ ¬I (⊥), i.e.,

since I commutes with the propositional connectives, T ` ¬γ
(
p⊥q

)
↔ >,

whence T ` ¬γ
(
p⊥q

)
. Thus if T strongly interprets S, then T proves the for-

mal statement of S’s consistency. This also implies that the relation of strong
interpretability between theories whose models are models PA is irreflexive: by
Gödel’s Second Incompleteness Theorem, no such theory can prove its own con-
sistency statement. In the next section, we will see that also the opposite of the
above statement is the case: if T proves the formal statement of S’s consistency,
then T strongly interprets S.

Since the axioms of PA are a subset of the axioms of S, the above proof
also goes through if instead of σ we work with a formula numerating the axioms
of PA in T . It follows that T ` ∀x (BewPA(x)→ γ(x)), and T ` ConPA, i.e.
T proves that all theorems of PA are true in models of S which are internally
constructed inside models of T .
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2.3 Strong interpretability as an accessibility relation
This section establishes the property of the relation of strong interpretability
allowing us to think of models of PA as nodes in a Kripke structure (see also
2.1). Let N andM be models of PA. Then

N � BewPA(pϕq)⇒ for allM s.t. M4N ,M � ϕ.

N � ¬BewPA

(
pϕq

)
⇒ there isM s.t. M 4 N andM � ¬ϕ

Besides making it possible to construct the Big Model, the validity of this equa-
tion has another virtue: it makes the provability predicate BewPA behave in a
very reasonable way.

As mentioned in section 2.1, a consequence of the Diagonal Lemma is that
inside any model M of PA, we have, for some sentences ϕ, both M � ϕ and
M � ¬BewPA

(
pϕq

)
, orM � ϕ andM � BewPA(p¬ϕq). But if a model “claims”

that a sentence is true, but at the same time not provable, or that a sentence is
true but its negation is provable, it might seem that there is something wrong
with the provability predicate.

The validity of the above equations shows that there is at least one context
that makes the provability predicate behave as neatly as we might expect. The
best that we can get, in this sense, is a provability predicate in one model whose
behaviour is meaningful with respect to sentences in other models, namely ones
which are t-internal to it. If a model N claims that ϕ is provable, then ϕ is true
in all its t-internal models, and if N claims that ϕ is not provable, then there
is at least one model t-internal to N where ϕ is false. Thus, whereas the self-
reflexive capacities of PA have a limit, in that the statement BewPA(pϕq)↔ ϕ
is not provable for all sentences ϕ7, any model of PA has “perfect knowledge”
about all models that are t-internal to it, at least when it comes to provability
in PA. In the following, I will outline the proofs of the above statements.

In order to show that

N � BewPA(pϕq)⇒ for allM s.t. M4N ,M � ϕ

assume N � BewPA(pϕq), M 4 N , N is a model of T , and M a model
of S. By the result in 2.2, we have that T ` ∀x (BewPA(x)→ γ(x)). Thus
N � BewPA(pϕq) implies N � γ

(
pϕq

)
. Since also T ` I (ϕ) ↔ γ

(
pϕq

)
(see

section 2.2), N � I(ϕ) . Therefore M � ϕ (since M is t-internal to N , this
follows by construction ofM inside N ).

For the other direction, we show

N � ¬BewPA

(
pϕq

)
⇒ there isM s.t. M 4 N andM � ¬ϕ

Since N is a model of PA + ¬BewPA

(
pϕq

)
, it suffices to show that

PA + ¬ϕ ≺ PA + ¬BewPA(pϕq)

7This biconditional is provable only for provable Σ1-sentences.
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Note that ¬BewPA(pϕq) is a consistency statement for PA + ¬ϕ. First, it
states that not everything is provable in PA, implying the consistency of PA. In
particular, it states that ϕ is not provable in PA, and this implies the consistency
of PA + ¬ϕ. The desired result is thus a direct consequence of the formalised
Completeness Theorem for first-order theories, according to which T strongly
interprets S, given that T contains an ordinary Π0

1 consistency statement for S
(as was shown in section 2.2, also the converse holds). The next section contains
a proof sketch of this theorem.

2.4 Formalised Gödel’s Completeness Theorem
Let S be a first-order theory and σ (x) a formula that numerates the axioms of
S in PA. Then

S ≺ PA + Conσ,

where Conσ is an ordinary Π0
1-consistency statement for S (e.g. ¬Bewσ

(
p⊥q

)
)

depending on the representation of S’s axioms by σ inside PA.
This theorem is a formalised version of Gödel’s Completeness Theorem which

states that every consistent theory has a model. In the formalised version, our
perspective is replaced by that of PA, and the intuitive meaning of the theorem
is: PA “knows” that if S is consistent (Conσ), then S has a model (a model of
S can be internally constructed inside a model of PA + Conσ). Traditionally
(see Feferman, Lindström), the proof of the theorem is used to obtain an inter-
pretation I of S in PA + Conσ. However, the additional requirement that the
consistency statement is the ordinary Π0

1-consistency statement suffices for PA
to strongly interpret S.

Our proof of the formalised Gödel’s Completeness Theorem resembles closely
Henkin’s proof of Gödel’s Completeness Theorem. After giving an outline of the
latter, we will indicate how it can be carried out inside PA.

Henkin’s proof of Gödel’s Completeness Theorem
Let S be a consistent theory in the language LS . In order to find a model for S,
we expand the language of S to L and construct an L-theory Γ s.t. S ⊆ Γ, Γ is
maximal (i.e. for every L-sentence ϕ, either ϕ ∈ Γ or ¬ϕ ∈ Γ), and if ∃xψ ∈ Γ
for some L-formula ψ, then there is some constant in L s.t. ψ [c/x] ∈ Γ. We
say that a theory with these properties is a Henkin theory. The syntactical
information contained in Γ is then rich enough to allow us to construct a model
for S on the basis of it.

In constructing the language L, we have to make sure that there is a witness-
ing constant for every existential sentence of L. Bearing in mind that we have to
formalise this procedure in PA, it is convenient if the constants are typographi-
cally associated with the formulas they will witness in Γ. For that we consider a
fixed constant symbol c. Given a formula ∃xϕ, the witnessing constant for that
formula will be the symbol c [∃xϕ]. Note that given any reasonable coding, this
choice of constants will imply that for any sentence ϕ, pϕq < pc [ϕ]q.

The constants and sentences of L will be constructed interdependently:

12



1. if ϕ is a sentence of L, then c [ϕ] is a constant of L

2. the formulas of L are constructed by the standard rules

This definition ensures that whenever ϕ is a sentence of L, the constant c [ϕ] is
a term of L, and also that pϕq < pc [ϕ]q.

Next, we will recursively construct the Henkin theory Γ by making sure
simultaneously that it is maximal consistent and contains witnessing constants
for all existential formulas. For that, consider an enumeration of L-sentences
according to their codes: ϕj0 , ϕj1 , ϕj2 , . . . where pϕjkq = jk for all k, and j0 is
the smallest code of an L-sentence, j1 the next smallest code of an L-sentence,
etc. We can now recursively define theories Γi for i ∈ ω. Let Γ0 := ∅. Assuming
we have already defined Γi for j < i, we define Γi by taking care of the L-
sentence with code i. In case there is no L- sentence ϕ s.t. i = pϕq, we let
Γi+1 := Γi. In case i = pϕq for some L-sentence ϕ, we make sure that either ϕ
or ¬ϕ is in Γi, and in case ϕ is an existential sentence, we make sure that Γi
contains a witnessing constant for ϕ. More formally, if i = jk for some k, i.e. if
i = pϕiq, we define

Γi :=



Γi−1 ∪ {¬ϕi} if S 0
∧
θj∈Γi−1

θj → ϕi

Γi−1 ∪ {ϕi} if S `
∧
θj∈Γi−1

θj → ϕi,

and ϕi does not have the form ∃xψ
Γi−1 ∪ {ϕi ∧ ψ [c [ϕi] /x]} if S `

∧
θj∈Γi−1

θj → ϕi,

and ϕi has the form ∃xψ

and let
Γ :=

⋃
i∈N

Γi.

Although in usual circumstances, the above definition could be made to look
more intuitive, e.g. by letting Γ0 := S (from which it would immediately follow
that S ⊆ Γ), we have to keep in mind that the goal of formalising this procedure
inside PA. In particular, it is good to keep each of the steps finite (where
possible), so instead of adding all sentences of S immediately, we add each on
the appropriate stage (indexed by its code).

Note that at stage, i c [ϕi] is a new constant, i.e. it occurs neither in ϕi nor
in Γi−1. The first is due to the fact that i = pϕiq < pc [ϕi]q by construction
of the individual constants. If c [ϕi] would occur in ϕi, we would have pϕiq >
pc [ϕi]q for any reasonable coding. And c [ϕi] does not occur in Γi−1 because
all constants occurring in Γi have smaller codes than c [ϕi]. By choice of the
enumeration of L-sentences, for all j < i, pϕjq < pϕiq, whence also pc [ϕj ]q <
pc [ϕi]q for all j < i.

We will now show that Γ is a Henkin theory.
First, we have that S ⊆ Γ. If ϕi ∈ S then S ` ϕi, hence also for any ψ,

S ` ψ → ϕi and so ϕi is added to Γ at stage i.
We show by induction on i that Γi is consistent for all i. So assume that Γi

is consistent and suppose for contradiction that Γi+1 ` ⊥. Then i must be the
code of some L-sentence ϕi, otherwise we would have Γi = Γi+1.

13



• In case Γi+1 = Γi ∪ {¬ϕi+1}, S 0
∧
θj∈Γi

θj → ϕi+1 by definition of Γi+1.
But if Γi+1 = Γi ∪ {¬ϕi+1} ` ⊥, also Γi ` ¬¬ϕi+1, i.e.

∧
θj∈Γi

θj ` ϕi+1,
whence also S `

∧
θj∈Γi

θj → ϕi+1 which is a contradiction.

• If Γi+1 = Γi ∪ {ϕi+1}, then S `
∧
θj∈Γi

θj → ϕi+1. If also Γi+1 =
Γi ∪ {ϕi+1} ` ⊥, then

∧
θj∈Γi

θj ` ¬ϕi+1, whence `
∧
θj∈Γi

θj → ¬ϕi+1,
and also S `

∧
θj∈Γi

θj → ¬ϕi+1. So S ∪ Γi is inconsistent. So there is
some sentence ϕ where pϕq = j < i + 1 s.t. S ` ϕ and Γi ` ¬ϕ . By
construction of Γi, we have that ϕ ∈ Γi, contradicting the assumption
that Γi is consistent.

• Finally, if Γi+1 = Γi ∪ {ϕi+1 ∧ ψ [c [ϕi+1] /x]}, then S `
∧
θj∈Γi

θj → ϕi+1

and ϕi+1 has the form ∃xψ. If Γi ∪ {ϕi+1 ∧ ψ [c [ϕi+1] /x]} ` ⊥, and
Γi 0 ¬ϕi+1, then Γi ` ¬{ψ [c [ϕi+1] /x]}. Since c [ϕi] does not occur in Γi
or in ϕi, this implies that Γi ` ∀x¬ψ, i.e. `

∧
θj∈Γi

θj → ¬ϕi and so also
S `

∧
θj∈Γi

θj → ¬ϕi. By a similar argument as above, this can be seen
to contradict the consistency of Γi.

Then also Γ is consistent. If Γ ` ⊥, then there is a finite subset Γ′ of Γ s.t.
Γ′ ` ⊥. Let k = max {pϕq | ϕ ∈ Γ′}. Then Γ′ ⊆ Γk+1, contradicting the
observation above.

Γ is maximal: by construction, we have either ϕ ∈ Γ or ¬ϕ ∈ Γ for every
L-sentence ϕ. It follows that for every L- sentence ϕ, ϕ ∈ Γ if and only if Γ ` ϕ.
If ϕ ∈ Γ, then obviously Γ ` ϕ. For the other direction, suppose that Γ ` ϕ. We
have that either ϕ ∈ Γ or ¬ϕ ∈ Γ. But if ¬ϕ ∈ Γ, then Γ ` ¬ϕ, contradicting
the consistency of Γ.

By construction, we also have that if ∃xϕ ∈ Γ, there is a constant c in L s.t.
ϕ [c [∃xϕ] /x] ∈ Γ.

To obtain the modelM of S we let dom (M) = {c [ϕ] | ϕ is an L-sentence}8,
and use membership in Γ to define the interpretations of sentences. If ϕ and ψ
are L-sentences, we let

c [ϕ]M = c [ϕ]

and e.g. for a two-place predicate P ,(
c [ϕ]M , c [ψ]M

)
∈ PM ⇐⇒ Pc [ϕ] c [ψ] ∈ Γ

Using the fact that Γ is a Henkin theory, we can then show by induction that
for all L-sentences ϕ,

M � ϕ ⇐⇒ ϕ ∈ Γ.

Since S ⊆ Γ, it follows thatM is a model of S.
8We will ignore the issue that of having c [ϕ] = c [ψ] ∈ Γ for different L-sentences ϕ and

ψ, in which case c [ϕ] and c [ψ] should refer to the same object in dom (M). This can be
solved by taking the elements of the domain to be equivalence classes of constants instead of
constants themselves. In the formal version, the situation can be solved by taking the smallest
representatives of each equivalence class, i.e. the smallest codes.
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The formalised Completeness Theorem
Let σ numerate the axioms of S in PA, i.e. for all sentences ϕ,

ϕ ∈ S ⇐⇒ PA ` σ
(
pϕq

)
.

In the formalised version of the Completeness theorem, we want to construct a
model of S inside a model of PA + Conσ. The elements of this model will be
elements (of a model of PA+Conσ) which function as codes of the individual con-
stants that were added to LS to obtain L. The set {pϕq | ϕ is an L -sentence}
is recursively enumerable, hence we have a formula ν (x) which numerates the
elements of this set in PA, i.e.

ϕj is an L-sentence ⇐⇒ PA ` ν
(
j
)

where j refers to the enumeration of L-sentences according to their codes (i.e.
pϕjq = j). Also, let νF be the formula numerating the formulas of L containing
one free variable.

By that, we also have a formula κ that numerates the new individual con-
stants in PA, i.e.

pc [ϕj ]q = a ⇐⇒ PA ` κ
(
j
)

= a

We will now define the formula γ′ (z, y) which will intuitively correspond, inside
PA, to the recursive definition of the theories Γi. The first variable, z, will
represent a finite sequence whose elements are the (codes of) sentences that
have already been added. In order to make the construction of γ′ simple, we
assume that exactly one sentence is added at each stage. So, if at stage i, i is
not the code of any sentence, we just add >. If x codes an existential sentence,
we add the conjunction of this existential sentence and its instance containing
the witnessing constant. In that way, z represents the sentences that have been
added so far, and at the same time also the stage of construction. The second
argument y represents the code of the last sentence that has been added to this
finite sequence. For reasons of readability, we have written down the formula in
a semi-formal language.

γ′ (z, y) := FinSeq (z) ∧ (z)length(z)−1 = y ∧

∀x < length (z)

1. (z)x = p>q if ¬ν (x)

2. if ν (x):

(a) (z)x = p¬q ∗ x if ¬Bewσ

((
(z)0 ∗ p∧q ∗ · · · ∗ p∧q (z)x−1

)
∗ p→q ∗ x

)
(b) if Bewσ

((
(z)0 ∗ p∧q ∗ · · · ∗ p∧q (z)x−1

)
∗ p→q ∗ x

)
:

i. (z)x = x if ¬∃vu
(
Var (v) ∧ νF (u) ∧ x = ∃ ∗ v ∗ u

)
ii. (z)x = x∗p∧q∗Sbs (κ (x) , v, u) if ∃vu

(
Var (v) ∧ νF (u) ∧ x = ∃ ∗ v ∗ u

)
15



Even more informally (here we speak of formulas instead of their codes),

1. if x does not code a formula, the x’th element of the sequence is >.

2. if x codes a formula ϕ, then the x’th element of the sequence is:

(a) ¬ϕ if ¬ϕ is consistent with the previous elements in the sequence

(b) if the previous elements in the sequence prove ϕ, (according to the
axioms of S) the x’th element of the sequence is

i. ϕ if ϕ is not an existential sentence
ii. ϕ ∧ [x/c [ϕ]]ψ if ϕ is an existential sentence ∃xψ

The construction of γ′ illustrates why it is convenient for the constants of L
to be typographically associated to the existential sentences they are supposed
to witness. Using a more traditional form of the completeness proof, we would
have to explicitly require the constant c witnessing ϕn = ∃zψ to be new with
respect to Γn and ϕn. Following our version of the completeness proof, however,
we obtain the new constant straightforwardly by using κ (n), without having to
think of formulas of PA which would express the fact that a certain constant is
new. We can now define the formula γ (x) by letting

γ (x) := ∃zγ′ (z, x) ∨ ext (x)

where ext (x) is an abbreviation for the formula

∃vu
(
Var (v) ∧ νF (u) ∧ x = ∃ ∗ v ∗ u

)
∧ ∃wγ′

(
w, x ∗ p∧q ∗ Sbs (κ (x) , v, u)

)
.

The existential case needs to be treated separately because an existential formula
is never added to Γ alone, but only as a conjunct together with its witnessing
instance (the other conjunct will appear at some later stage in the enumeration
of L-sentences where it will be added as a single sentence).

Intuitively, γ (x) means that x codes a member of Γ. Note that since Γ is
not recursively enumerable, γ can not numerate Γ inside PA. We could say that
PA’s knowledge of Γ via γ is similar to our knowledge of Γ. Although we know
facts about Γ, such that it contains S, and is maximal consistent, we do not
know which particular elements it contains; we even cannot list these elements.
The same applies to PA.

Definition of I

In order to define the interpretation I, we first set δ (x) := ∃y (x = κ (y)). Thus
some element a of a model of PA+Conσ is in δ - in the domain of the internally
constructed model of S - if and only if a is the code of some constant cy.
Similarly like we had to prove that the syntactical information in Γ was rich
enough to allow us to construct a model, we have to see that PA proves enough
facts about γ for it to function as a truth predicate.
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In particular, we have that PA + Conσ proves the following statements (the
free variables below should be viewed as universally quantified):

σ (x)→ γ (x) (4)

corresponding to the fact that S ⊆ Γ. In order to establish this, Conσ has to
be an ordinary Π0

1-consistency statement. PA + Conσ also proves

Conγ (5)

corresponding to the result in the informal proof that Γ is consistent if S is.
Corresponding to the result that Γ is maximal, we have that

ν (x)→
(
γ
(
p¬q ∗ x

)
↔ ¬γ(x)

)
(6)

and
ν (x) ∧ ν (y)→

(
γ
(
x ∗ p→q ∗ y

)
↔ (γ(x)→ γ (y))

)
. (7)

Corresponding to the property that Γ contains witnesses for all existential state-
ments, i.e.. that

∃xψ ∈ Γ ⇐⇒ ψ (c [∃xψ]) ∈ Γ

we have

νF (x) ∧Var (y)→
(
γ
(
p∃q ∗ y ∗ x

)
↔ (∃z (δ (z)→ γ (Sbs (z, y, x))))

)
(8)

In the informal statement, the symbol c [∃xψ] functions both as a syntactical
object - an individual constant - and an element in the domain of a model that
is defined through Γ. In a similar way, the variable z in the formal version has
two functions. In the first occurrence, we are concerned with z as denoting an
element of the domain of the internal model of S (constructed inside a model
of PA + Conσ). In the second occurrence, we are concerned with z as coding
some individual constant c. Since z is in the domain if and only if it codes an
individual constant by definition, the two perspectives are entangled, exactly
as in the informal version, where whether c is an element of the domain or an
individual constant is just a matter of perspective.

As a formula numerating the elements of a maximal consistent set, γ is a good
candidate for the truth predicate that we require from a strong interpretation.
In fact, note that the properties of γ listed above correspond to clauses 2.-4. in
the definition of a strong interpretation. In order to also get clause 1. we just
have to define the interpretation I in a suitable way. Whereas in the informal
version, we use membership in Γ to construct the model M of S, we will now
use γ to define the interpretation I of S inside PA + Conσ.

To define I using γ, we let, for a two-place predicate P , and x and y in δ,

I (P (x, y)) = γ
(
pPq ∗ x ∗ y

)
.

Thus if x = pcaq and y = pcbq for some a, b (this is required for x and y to be in
the extension of δ), then I (P (x, y)) = γ

(
pP (cm, cn)q

)
. Then γ

(
pPq ∗ x ∗ y

)
17



is the formula ψP (x, y) required in the definition of an interpretation. We
also require I to commute with the propositional connectives, and with the
quantifiers in a relativised sense, i.e. for all sentences ϕ and ψ,

1. I (¬ϕ) = ¬I (ϕ)

2. I (ϕ→ ψ) = I (ϕ)→ I (ψ)

3. I (∃xϕ) = ∃x (δ (x) ∧ I (ϕ))

By these requirements, I is determined for all formulas of S. By the definition
of I, and since PA+Conσ proves the properties of γ as numerating the elements
of a maximal consistent set, PA+Conσ proves for any formula ϕ of S containing
at most the free variables v0, . . . vn, and for all x0, . . . , xn in the extension of δ,

I (ϕ (x0, . . . xn))↔ γ
(

Sbs
(
x0, pv0q, . . . ,Sbs

(
xn, pvnq, pϕ (v0, . . . vn)q

)
. . .
))

(where the atomic case follows by the definition of I). This corresponds to the
result in the informal proof that for all L-sentences ϕ,

M � ϕ ⇐⇒ ϕ∈Γ

In particular, if ϕ is a sentence of S, then

PA + Conσ ` I(ϕ)↔ γ(pϕq)

i.e. γ satisfies the minimal requirement for a truth predicate. Thus, PA “knows”
that: a sentence ϕ is true in a model of S (I(ϕ) - because I is used to construct
a model of S inside a model of PA + Conσ) if and only if ϕ is included in the
Henkin theory Γ containing S (γ(pϕq)).

Since PA + Conσ ` ∀x(σ(x) → γ(x)), and σ numerates the axioms of S in
PA + Conσ, we have, for all axioms ψ of S:

PA + Conσ ` γ(pψq)

and hence also
PA + Conσ ` I(ψ)

It follows that I satisfies all the requirements of an interpretation, and together
with γ we have a strong interpretation of S in PA + Conσ.
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3 Solovay’s proof
The proof of GL’s arithmetical completeness proceeds by contraposition, and
makes use of the fact that GL is complete with respect to finite transitive and
irreflexive Kripke frames. Given a sentence ϕ s.t. GL 0 ϕ, we want to find a
realisation ∗ s.t. PA 0 ϕ∗. Due to the semantical completeness of GL, there
is a model M = 〈WM, R, VM〉, where WM = {1, . . . , n}; R is transitive and
irreflexive, and M, 1 2 ϕ.

The core of Solovay’s proof is the construction of sentences S0, S1 . . . , Sn
of LPA (I will refer to these as Solovay sentences from now on) that make it
possible to simulate M inside PA. By translating a sentence letter into PA as
the disjunction of all Si s.t. the sentence letter is true at the world i in M,
i.e. putting p∗ =

∨
i:iV p Si for a sentence letter p, the simulation consists in the

following result:

Lemma 1 : For each subsentence χ of ϕ:

• if M, i � χ, then PA ` Si → χ∗

• if M, i 2 χ, then PA ` Si → ¬χ∗

The satisfiability relation of the Kripke model is thus simulated by a provable
implication whose antecedent is the sentence Si simulating the node i, and the
consequent the translation of the sentence true at the node i.

The assumption M, 1 2 ϕ will then imply PA ` S1 → ¬ϕ∗, whence, by
propositional logic and the Hilbert-Bernays-Löb derivability conditions (see sec-
tion 1),

PA ` ¬BewPA(p¬S1q)→ ¬BewPA(pϕ∗q)

In order to get the desired result, there is the true (but undecidable) sentence
S0 s.t.

PA ` S0 →¬BewPA(p¬S1q)

whereby then PA ` S0 →¬BewPA(pϕ∗q). Since PA is sound, S0 →¬BewPA(pϕ∗q)
is true. And since also S0 is true, also ¬BewPA(pϕ∗q) has to be true. But the
truth of ¬BewPA(pϕ∗q) just means that ϕ∗ is not a theorem of PA.

3.1 Construction of the Solovay sentences
The model M is extended to a model M′ = 〈W ′, R′, V ′〉 by adding the node
0 that has access to all the nodes of the original model, and carries the same
propositional information as node 1.

Si is the arithmetized statement that a certain function h, whose range is
W ′, has the limit i. A node i in M′ is then simulated by a sentence of PA
asserting that i is the limit of h. Informally, the function h is defined as:

h(0) = 0
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h(m+ 1) =

{
j if Prf

(
m, p¬Sjq

)
and h(m)R′j

h(m) else

Then Si can be defined as:

Si := ∃y∀x
(
x ≥ y → ∃z

(
z = i ∧ h (x) = z

))
The function h “climbs up” the accessibility relation R′ of M′: theoretically,
each new value is the successor (in M′) of the previous one. The function will
start at 0, and assume another value j only if it is provable that it will not stay
there, i.e. that j will not be the limit of this function. Since the range of the
function is finite, and R′ is irreflexive and transitive, it is clear that the function
will never leave its initial value 0. Since Sj , which is used to define the function
h in the first place, makes a claim about the limit of h, the definition of h is
obviously self-referential. However, h can be given a nice formal definition by
making use of the Generalised Diagonal Lemma.

3.2 Properties of the Solovay sentences
1. PA ` Si → ¬Sj if 0 ≤ i < j ≤ n

2. PA ` S0 ∨ S1 ∨ · · · ∨ Sn

3. PA ` Si → ¬BewPA

(
p¬Sjq

)
for iR′j

4. PA ` Si → BewPA

(
p¬Siq

)
for i ≥ 1

5. PA ` Si → BewPA(p
∨
j:iR′j Sjq) for i ≥ 1

6. For i ≥ 1, Si is false (hence, because of 2., S0 has to be true)

7. For i ≥ 0, Si is undecidable in PA

Strange as these properties may seem, each of them is crucial for proving
Lemma 1 in section 3. In the next section, I will show how these proper-
ties also guarantee the existence of a bisimulation between a finite irreflexive
and transitive Kripke structure and a Kripke structure whose domain consists
of certain nonstandard models of PA.
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4 The new perspective
In this section, it will be shown that the finite Kripke structure M, introduced
above as a countermodel to a sentence ϕ s.t. GL 0 ϕ, is bisimilar to the model
N = 〈WN,4, VN〉, where WN is the set of nonstandard models M of PA s.t.
M 2 S0, i.e. WN contains all models of PA that do not satisfy the true Solovay
sentence S0. The arithmetical completeness of GL is an immediate consequence
of this result.

4.1 The bisimulation
Whereas usually, bisimilar nodes are required to carry identical atomic informa-
tion, this condition has to be loosened here, as there are no proposition letters
in LPA. Bisimilar nodes are required to carry identical information only in the
sense that a propositional letter p is true at a node in M if and only if its
realisation p∗ is satisfied at its related node in N. The realisation ∗ will be
like the one used in Solovay’s proof, i.e. p∗ =

∨
i:iVMp Si. The bisimulation

Z ⊆ (WN ×WM) is defined by making use of the Solovay sentences:

(M, i) εZ :⇔M � Si
By using the properties of the Solovay sentences in section 3.2, and the result in
section 2.3, the three conditions a bisimulation has to satisfy are easily obtained:

(i)

To show: If (M, i) εZ, then N,M � p∗ ⇐⇒ M, i � p

⇐ Assume M, i � p. By definition of ∗, Si is a disjunct in p∗, i.e. p∗ = Si∨ . . . .
Since (M, i) εZ, we have, by definition of Z, N,M � Si, and thus also, by
propositional logic, N,M � Si ∨ . . . .

⇒ Assume N,M � p∗, i.e. N,M � Sj1 ∨Sj2 ∨ . . . where M, jk � p. Thus, there
has to be k s.t. N,M � Sjk . On the other hand, because (M, i) εZ, also
N,M � Si. But since N,M � Si → ¬Sj for all i 6= j (by 1. in 3.2 ), we
must have that jk = i, and hence M, i � p.

(ii) (The forth condition)

To show: If (M, i) εZ and N 4M, then there is j s.t. iRj and (N , j) εZ
Since (M, i) εZ, N,M � Si. Since PA ` Si → BewPA

(
p
∨

j:iRj Sjq
)

9 (by 5. in

3.2), we have N,M � BewPA

(
p
∨
j:iRj Sjq

)
. By the result in section 2.3, N,N �∨

j:iRj Sj . I.e. there is j, iRj s.t. N � Sj , and hence (N , j) εZ.

9For nodes i ≥ 1 which interest us here, R′ is the same as R.
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(iii)(The back condition)

To show: If (M, i) εZ and iRj, then there is N s.t. N 4M and (N , j) εZ
Since (M, i) εZ, N,M � Si. Since PA ` Si → ¬BewPA

(
p¬Sjq

)
if iRj, (by 3. in

3.2), we have N,M � ¬BewPA

(
p¬Sjq

)
. By the result in section 2.3, there is

N , N 4 M s.t. N,N � Sj (because M contains a consistency statement for
N ). Thus also (N , j) εZ.

Finishing the proof
Using the bisimulation just established, and the result in section 2.3, it is easily
obtained that all nonstandard models M of PA with M � Si are “modally
equivalent” to the node i in the finite Kripke model M, in the sense that M.i � ϕ
if and only if N,M � ϕ∗. The arithmetical completeness of GL is an immediate
consequence of this result.

If GL0ϕ for some ϕ, then, by completeness of GL with respect to finite
transitive converse well-founded frames, there is a model M = 〈{1, . . . , n} , R, V 〉
s.t. M, 1 2 ϕ. Corresponding to this model, there are the Solovay sentences
S1, . . . , Sn.

Given the bisimulation, the node 1 in M is bisimilar to all nodes M (i.e.
nonstandard models of PA) in N s.t. M � S1 (models with this property
are guaranteed to exist by the fact S1 is independent of PA). Thus, we have
M � ¬ϕ∗ for all such models. But sinceM is a model of PA, this means that
PA 0 ϕ∗ : if ϕ∗ would be a theorem PA, we would haveM � ϕ∗ for all models
M of PA.

4.2 Comparison of the two proofs
Essentially, both proofs rely on the capacity of the Solovay sentences to bring
modal properties into the realm of Peano Arithmetic. But whereas Solovay’s
original proof simulates a finite Kripke model inside the formal system of PA,
the proof presented in this article establishes a direct correspondence between
the Kripke model and an arithmetically defined model. In order to construct this
embedding of structures, however, the main technical ingredients of the original
proof, i.e. the Solovay sentences, are needed, and also some additional ones, in
particular the notion of strong interpretability. As a payoff, the completeness
of GL follows in a very intuitive and obvious way: given a model of GL where
¬ϕ is true at a node, we immediately obtain a model of PA where ¬ϕ∗ is
true. By contrast, the original proof has to apply to soundness of PA, and to
the meaning of BewPA

(
pϕq

)
in order to get the desired result. Thus, whereas

Solovay’s original proof is technically more simple, one might find the proof
presented in this article intuitively more appealing.

When looking more carefully into the details of the two proofs, we see that
the bisimulation is basically a substitute for Lemma 1. In Solovay’s original
proof, one node of M is simulated by a sentence independent of PA. In the
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proof presented in this article, each node is simulated by a nonstandard model
of PA in which that independent sentence holds.

Lemma 1 is proved by induction on the complexity of the modal formula
ψ. Like the proof of the bisimulation in 4.1, this proof by induction depends
crucially on the definition of p∗ as the disjunction of all Si s.t. M, i � p, and
the properties of the Solovay sentences in section 3.2. In fact, the structural
similarity between the two proofs is rather fine-grained. In the table below, I
have listed the non-trivial steps of the two proofs, and the properties of the
Solovay sentences that these steps rely on.

The Bisimulation Lemma 1

(M, i) εZ, M, i � p ⇒ N,M � p∗ M, i � p ⇒ PA ` Si → p∗ Def. of p∗

(M, i) εZ, N,M � p∗⇒ M, i � p M, i 2 p ⇒ PA ` Si → ¬p∗ Property 1.

The forth condition M, i � �ψ ⇒ PA ` Si → �ψ∗ Property 5.

The back condition M, i 2 �ψ ⇒ PA ` Si → ¬�ψ∗ Property 3.

Property 1 : PA ` Si → ¬Sj if 0 ≤ i < j ≤ n

Property 3 : PA ` Si → ¬BewPA

(
p¬Sjq

)
for iRj

Property 5 : PA ` Si → BewPA(p
∨
j:iRj Sjq) for i ≥ 1
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