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Abstract

We identify the universal n-model of the negation-free fragment
of the intuitionistic propositional calculus IPC. We denote it by U*(n)
and show that it is isomorphic to a generated submodel of the universal
n-model of IPC, which is denoted by U(n). We show that this close
resemblance makes U*(n) mirror many properties of U(n). Finally,
using U*(n), we give an alternative proof of Jankov’s Theorem that
the intermediate logic KC, the logic of the weak excluded middle, is
the greatest intermediate logic extending IPC that proves exactly the
same negation-free formulas as IPC.

1 Preliminaries

1.1 Basic Notations

In this section we briefly recall the relational semantics for the intuitionistic
propositional calculus IPC. For a detailed information about IPC, we refer
to [3].

Definition 1 (Kripke Frames and Models). A Kripke frame is a pair § =
(W, R) where W is a non-empty set and R is a partial order on it. A Kripke
model is a triple 9 = (W, R, V) where (W, R) is a Kripke frame and V is
a partial map V : Prop — Z(W) (where £ (W) is the powerset of W)
such that for any w,w’ € W, w € V(p) and wRw' imply w’ € V(p). The
valuation can be extended to all formulas as follows:

V(e Ap) =V(p) NV (¥);

V(p Vi) =V(p) UV (y);

(¢—>1/1)—{w€W|for all w' s.t. wRw', if W' = ¢ then w' = ¢};
V(L

) =

We call the upward closed subsets of W (with respect to R) upsets. The set
of all upsets of W is denoted by Up(W).



Definition 2 (General Frames).

1. A general frame is a triple § = (W, R, P), where (W, R) is a Kripke
frame and P is a family of upsets containing () and closed under N, U
and the following operation D: for every X,Y C W,

XoY={zeW:Vye WazRyAye X - ycY)}

Elements of the set P are called admissible sets.

2. A general frame § = (W, R, P) is called refined if for any z,y € W,
VX ePlxe X »yeX)=zRy.

3. § is called compact, if for any families X C P and Y C{W\X : X €
P}, for which XUY has the finite intersection property, (J(X'UY) # 0.

4. A general frame § is called a descriptive frame iff it is refined and
compact.

In this paper our models will usually be n-models with V' restricted to n-
formulas built up from py,...,p,.

Next we introduce some frame and model constructions that will be used
consequently.

Definition 3 (Generated Subframe and Generated Submodel).

1. For any Kripke frame § = (W, R) and X C W, the subframe of §
generated by X is §x = (R(X),R'), where R(X) = {w' € W|wRuw'
for some w € X} and R’ is the restriction of R to R(X). If X = {w},
then we denote §x by Fu and R(X) by R(w).

2. For any Kripke frame § = (W, R), any valuation V on § and X C W,
the submodel of M = (F, V) generated by X is Mx = (Fx, V'), where
V' is the restriction of V' to R(X). If X is a singleton {w}, then we
denote My by IM,,.

3. For any general frame § = (W, R,P) and any X C W, the (general)
subframe of § generated by X is §x = (R(X), R/, Q), where (R(X), R)
is the subframe of (W, R) generated by X, and Q = {UNR(X)|U € P}.

The next lemma states a basic fact about descriptive frames. For a proof
we refer to, e.g., [6].

Lemma 4. For any descriptive frame § = (W, R, P), any W' € P, we have
that & = (W' R, Q), the (general) subframe of § based on W', where R’ is
R restricted to W' and Q = {UNW'|U € P}, is a descriptive frame.



Next we introduce p-morphisms:
Definition 5 (p-morphism).

1. For two Kripke frames § = (W, R) and § = (W', R'), a p-morphism
from § to §’ is a map f : W — W’ satisfying:

e wRw' implies f(w)R' f(w') for any w,w’ € W;

e f(w)R'v implies v € W(wRv A f(v) =').

2. Let § = (W,R,P) and & = (V, S, Q) be two general frames. We call
a Kripke frame p-morphism f of (W, R) to (V,S) a (general frame)
p-morphism of § onto &, if it also satisfies the following condition:

VX €Q, fYX)eP.

3. A p-morphism f from MM = (W,R,V) to M = (W/,R', V') is a p-
morphism from (W, R) to (W', R) such that w € V(p) < f(w) € V'(p)
for every p € Prop. For models based on general frames, we also
require the condition for p-morphisms between general frames. For
n-models, the definition is similar.

Next we give a definition for the n-Henkin model, which is the canonical
model used in the completeness proof for the n-variable fragment of IPC.

Definition 6 (n-Henkin Model).

1. An n-theory is a set of n-formulas closed under deduction in TPC.

2. A set of formulas I" has the disjunction property, if for all n-formulas
v, 1, we have that ¢ V¢ € I' implies p € I' or ¢p € I'.

3. The n-canonical model or n-Henkin model H, = (Wy, Ry, V,) is a
model where W,, consists of all consistent n-theories with the disjunc-
tion property, R, is the subset relation, and I' € V,,(p) iff p € I".

For the n-Henkin model, we have the following truth lemma:

Proposition 7 (Truth Lemma). For each n-formula ¢ and each T' € W,

F'eyiffeel.



1.2 The n-Universal Model for the Full Language of IPC

In this part we define the n-universal model for the full language of IPC,
state its properties, define the de Jongh formulas and state Jankov-de Jongh
theorem. All of the content of this part can be found in [2], [3, Chapter §]
and [4].

In the following we use the terminology color to denote the valuation at
a world in an n-model. In general, an n-color (n can be omitted if it is
clear from the context) is a sequence c¢j...c, of 0’s and 1’s. The set of
all n-colors is denoted by C". We define the order of colors as following:

c1...cn <o iff ¢ < for 1 <i<n. Wewritecy...cp, <c}...d,if

n n

C1...cpn <.y buter.ien £ d.

A coloring on § = (W, R) is a map col : W — C" satisfying uRv = col(u) <
col(v). It is easy to see that colorings and valuations are in 1-1 correspon-
dence. Given 9 = (W, R, V'), we can describe the valuation by the coloring
coly : W — C™ such that coly(w) = ¢1...cy,, where for each 1 < i < n,
¢i = 1lifw € V(p;), and 0 otherwise. We call coly (w) the color of w under V.

In any frame § = (W, R), we say that X C W totally covers w (notation:
w < X), if X is the set of all immediate successors of w. When X = {v},
we write w < v. X C W is called an anti-chain if | X| > 1 and for every
w,v € X, w # v implies that =(wRv) and —(vRw). If uRv we say u is
under v.

We can now inductively define the n-universal model U(n) by its cumulative
layers U(n)¥ for k € w. (We omit n if it is clear from the context.)

Definition 8 (n-Universal Model).

e The first layer (n)! consists of 2" nodes with the 2" different n-colors
under the discrete ordering.

e Under each element w in U (n)* \ U(n)*~1, for each color s < col(w),
we put a new node v in U (n)**! such that v < w with col(v) = s, and
we take the reflexive transitive closure of the ordering.

e Under any finite anti-chain X with at least one element in U(n)* \
U(n)*~1 and any color s with s < col(w) for all w € X, we put a new
element v in U (n)**! such that col(v) = s and v < X and we take the
reflexive transitive closure of the ordering.

The whole model ¢(n) is the union of its layers.



It is easy to see from the construction that every U (n)* is finite. As a con-
sequence, the generated submodel U (n),, is finite for any node w in U(n).

We now state some properties of the n-universal model. For a proof of the
next lemma we refer to, e.g., [6, Theorem 3.2.3.].

Lemma 9. For any finite rooted Kripke n-model N, there exists a unique
w € U(n) and a p-morphism of M onto U(n),,.

With this lemma we can show in the next theorem that U(n) is a counter-
model to every n-formula not provable in IPC. This shows why U/(n) is called
a “universal model”. For a proof we refer to, e.g., [6, Theorem 3.2.4.].

Theorem 10.

1. For any n-formula ¢, U(n) = ¢ iff Fipc .

2. For any n-formulas ¢, ¢, for all w € U(n)(w = ¢ = w = ) iff
¢ Frpc .

In the following we define de Jongh formulas for the full language of IPC
and prove that they define point generated submodels of universal models.

For any node w in an n-model M, if w < {w1, ..., wy}, then we let

prop(w) := {pi|w = pi, 1 <i <n},
notprop(w) = {gi|lw ¥ ¢;, 1 <i < n},
newprop(w) := {r;|lw ¥ r; and w; F r;j for each 1 <i <m, for 1 < j <n}.

Here newprop(w) denotes the set of atoms which are about to be true in
w, i.e., they are true in all of w’s proper successors. Next, we define the
formulas ¢, and 1,,, which are called de Jongh formulas.

Definition 11. Let w be a point in U(n). We inductively define its de
Jongh formulas ¢,, and t)y,:

If d(w) = 1, then let

¢w = /\prop(w) A A{=pk|px € notprop(w),1 <k <n},

and

Y 1= TP
If d(w) > 1, and {w1,...,wn} is the set of all immediate successors of w,
then define

©w := /A prop(w) A (\/ newprop(w) V ‘\Z Y, — '\z Ow, )s
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and
m
Yoy 1= Pw — v Pw; -
=1

The most important properties of the de Jongh formulas are revealed in the
following proposition. For a proof we refer to [2, Theorem 3.3.2.].

Proposition 12. For every w € U(n) we have that
e V(py) = R(w), where R(w) = {w' € U(n)|lwRw'};
o V(tw)

Now we state more properties of the universal model and de Jongh formulas.
(For a proof we refer to [4, Corollary 19].) We write Cn,(¢) = {¢|¢ is an
n-formula such that Frpc ¢ — ¥}, Thy, (9N, w) = {¢|p is an n-formula such
that 9, w = ¢}, and we omit n if it is clear from the context.

UN)\R(w), where R~ (w) = {w' € U(n)|w' Rw}.

Lemma 13. For any point w in U(n), Thy(U(n), w) = Cn,(ow)-

The next lemma states that U(n),, is isomorphic to the submodel of H(n)
generated by the theory axiomatized by the de Jongh formula of w. For a
proof we refer to [4, Lemma 20].

Lemma 14. For any w € U(n), let vy, be the de Jongh formula of w, then
we have that H(n)con(p,) = UM)w-

Let Upper(9M) denote the submodel My, c|aw)<w) generated by all the
points with finite depth, where depth is defined as usual. Intuitively, Upper(90)
is the “upper” part of 9. It can be shown that the n-universal model is
isomorphic to the upper part of the n-Henkin model, i.e. Upper(H(n)). For

a proof we refer to, e.g., [2, Theorem 3.2.9.] and [4, Theorem 39].

Lemma 15. Upper(H(n)) is isomorphic to U(n).

The following is a corollary which follows from the correspondence between
H(n) and U(n). For a proof we refer to [4, Corollary 21].

Corollary 16. Let 9t be any model and w be a point in U(n) = (W, R, V).
For any point x in M, if M,z |= @y, then there exists a unique point v
satisfying M, x = o, M, x B @y, ..., M,z ¥ @,,,, where v < {v1,...,vm},
and wRv.

In the following we state the Jankov-de Jongh theorem for the full language
of IPC. For a proof we refer to [2, Theorem 3.3.3.] and [4, Theorem 26].

Theorem 17 (Jankov-de Jongh Theorem for the Full Language of IPC).
For every finite rooted frame §, let 1, be the de Jongh formula of w in
the model U(n)y, then for every descriptive frame &, & ¥ 1, iff § is a
p-morphic image of a generated subframe of &.



2 The Top-Model Property and its Relationship
with [V, A, —]-fragment

In this section we will introduce the top-model property and the top-model
construction. This is related to the [V, A, —]-fragment of IPC, which con-
tains the formulas constructed only by V, A, — (i.e. the negation-free for-
mulas) and we denote by Ly A . For other fragments, the notations are
similar. Here we state the relevant results without proof, except for an al-
gorithm for which we give the procedure.

By replacing every occurrence of L by —(p — p), every formula is IPC-
equivalent to a |-free formula. For simplicity of discussion, we restrict our
discussion to L-free formulas (i.e. formulas in £y A ) only.

Definition 18 (Top-Model Property). We say that a formula ¢ has the
top-model property, if for all Kripke models MM = (W, R, V), all w € W,
M, w = @ iff M, w = ¢, where M = (WT, RT, V1) is obtained by adding
a top point ¢ (which is a successor of all points) such that all proposition
letters are true in t.

We have the following results about the top-model property:

Proposition 19.

1. Ewvery formula in Ly A has the top-model property, and so has L.

2. For any formula ¢ in Ly s -, there exists an IPC-equivalent formula
@O built from p,q,...,—p,—q,...,~—p,—q,... by applying V, A, =,
with the same number of binary connectives.

3. For any formula ¢ in Ly s —, there exists a formula ¢* in Ly a5 or
©* =1 such that for any top-model (MM, w), we have (M, w) = ¢ < p*.

Proof of Proposition 19.2. We prove this by induction on the number of
binary connectives:

1. For formulas with no binary connectives, they would be of the form
—...7p, by Frpo = < ———1), we can repeat reducing every three
adjacent negations to one, therefore we can obtain the required formula
¢’

2. For formulas with n + 1 binary connectives, by Frpc =0 < —=——60 we

can reduce every three adjacent negations to one. Therefore it suffices
to discuss formulas ¢ where there are no adjacent three negations:

(a) For o =V 0,9 AO,¢p — 0, take 0 as 0 v 09,0 A 0O 0 — 0O,
respectively. Then it is trivial that in each case, Frpc ¢ <> ©¥;



(b) For ¢ = —y, Then we discuss v in cases:

i. 7=V by Frpe ~(¥VE) < =h A=, take @ = —p¥ A=6Y;
ii. v =1Ad: by Frpc ~(1AJ) < ¥ — =8, take ¥ = 0 — —6°;
iii. vy =9 — &6 by Frpe =(¢p — §) < == A -0, take (po =

g A =0,

iv. vy =-6:

A0 =YV by Fipe == V) < b — =, take
o0 = =0 —5 =80,

B. 0 = ¢ A by Frpe == (¥ A d) < == A =6, take
00 = ——h0 A 0

C. 0 =v — §: by Frpec == (¢ — §) < =) — =4, take
QOO = ﬂ—\@Z)O — =00,

O

Proof of Proposition 19.3. By Item 2, it suffices to prove it for formulas
with — only in front of proposition letters. Any such formula ¢ is built from
Dyqy .y, Dy G, ..., P, g, ... by using V, A, —.

1. By replacing every occurence of —p by L, =—p by T i.e. by = L, we
obtain a formula ¢'. We can prove by induction on ¢ that for any
top-model 9 = (W, R, V) and any w € W, M, w = ¢ iff M, w = ¢

(a) For p, —p, ——p, trivial;

(b) For o =9 VO, Mw =1 Vo
iff M, w =1 or Mw =0
iff M, w = ¢ or M, w | ¢ (induction hypothesis)
i 90, w = (V)

(c) For ¢ =1 A 0, similar;

(d) Foro=v =0, M,wEvy — 0
iff for all v such that wRv, M, w |= 1 implies M, w = 0
iff for all v such that wRv, M, w = ¢ implies M, w = ¢ (induc-
tion hypothesis)
iff Mw = (v — 06).

2. Now we will formulate an algorithm to compute the formula ¢* as the
lemma requires (in this algorithm we regard T as if it is an indepen-
dent constant, and for our final result we eliminate every T):

For any formula ¢ built from p,q,...,—p,—q,...,=—p,—q,... by ap-
plying V, A, —, we execute the following procedure:



(a) Compute ¢’ for the current formula ¢, therefore there is no = in
¢', then check if both L /T and V/ A / — occur in ¢'; if so, then
go to 2b, otherwise go to 2e;

(b) Eliminate L /T or V/ A/ — with the help of the following equiv-
alences (since for this elimination procedure, the number of con-
nectives decreases after each step, so it stops eventually):

iFipc TVY e T, Fipopy VT & T

ii. Frpo TAY & U, Fripc Y AT < s

iii. |—]ch—>”(/)<—)1/), |—[P0’(/J—>TH—|—;

iv. Frpel Vi <, Frpe YV L& 1)

v. Fipol AY L Frpo YN L1

vi. Frpol—= v < T, Frpo ¥ — L& )

vii. |—ij - 1le T;
viil. l_IPC’ =T HJ_;

x. Frpe 70 < )

After this procedure, if both L /T and V/ A/ — occur, then
L /T must occur under one of V/ A/ — /=, in which case the
formula can still be reduced, a contradiction. So one of L /T
and V/ A/ — disappears. If L /T disappears then go to 2c

(in this case the formula obtained has fewer binary connectives),
otherwise go to 2d;

(¢) For the current formula ¢, compute ¢° and go to 2a (in this step
the number of binary connectives does not change);

(d) What we have now is L /T /p/—p/——p, if it is T then replace it
by p — p, if it is —p then replace it by L, if it is =—p then replace
it by p — p; quit;

(e) If there is no V/ A/ —, then it must be of the form L /T /p,
if it is T, then replace it by p — p and quit, if it is L /p, then
quit immediately; otherwise, there is no =/ L /T in the current
formula ¢, it is the formula required by the lemma; quit.

Since each round will stop in finite time and after each round, either
the algorithm stops and we obtain a required formula, or we obtain a
formula with fewer binary connectives, so it finally stops and gives the
required result.



3 The universal model for the [V, A, —|-fragment
of IPC

We will now proceed by defining the m-universal model, U*(n), for the
[V, A, —]-fragment of TPC. This model closely resembles the n-universal
model for IPC: it is a generated submodel of it. Mirroring the definition
of U(n) we define U*(n) = (U*(n), R*, V*) inductively:

Definition 20.

e The first layer U*(n)! consists of 2" — 1 nodes with all the different
n-colors — excluding the color 1...1 — under the discrete ordering.

e Under each element w in U*(n)* \ U*(n)*~1, for each color s < col(w
we put a new node v in U*(n)**1 such that v < w with col(v) =
and we take the reflexive transitive closure of the ordering.

);
S,

e Under any finite anti-chain X with at least one element in U*(n)* \
U*(n)*~1 and any color s with s < col(w) for all w € X, we put a new
element v in U*(n)**! such that col(v) = s and v < X and we take
the reflexive transitive closure of the ordering.

The whole model &*(n) is the union of its layers.

In view of Definition 8, it is clear that &*(n) is isomorphic to N' = (N, R, V)
with N = {w € U(n) : w* ¢ R(w)}, a generated submodel of U(n), where
w* is the greatest node of U(n) such that col(w*); = 1 for every i < n.

We should also note here the sharp contrast between ¢/(1), also known as the
Rieger-Nishimura ladder, and &/*(1). The latter consists of a single element
that does not satisfy p. The only formulas satisfied at that element are the
intuitionistic tautologies.

Given two intuitionistic models (W, R, V') and (W', R’, V') and a partial map
fW=W it X CW welet f*(X) =W\ R W\ X)).

Definition 21. A positive morphism is a partial function f : (W, R,V) —
(W', R', V') such that:

1. If w,v € dom(f) and wRv then f(w)R'f(v).

2. If w € dom(f) and f(w)R'v then there exists some u € dom(f) such
that f(u) = v and wRu (back condition).

3. If w € dom(f) and vRw, then v € dom(f).

4. For every p € Prop we have V(p) = f*(V'(p)).

10



If the models are descriptive, then f : (W,R,P,V) — (W' R, Q, V') is
a descriptive positive morphism if furthermore for every Q € Q we have

(@) eP.

Lemma 22. Let f: W — W' be a positive morphism. If X C W' such that
X is an upset of W', then f*(X) = f~1[X]U (W \ dom(f)).

Proof. Let X be an upset of W’. Then W'\ X is a downset of W’. By (3)
from the definition of positive morphisms if w € dom(f) and u € R~ (w)
then v € dom(f) and by (1) f(u)Rf(w). These, along with the fact that
W'\ X is a downset imply that if w € f~[W’\ X] and u € dom(f) then
u € f7HW'\ X], hence R7L(f~1[W’'\ X]) = f~H{W'\ X].

Now we have that f*(X) =W\ R7Y(f W'\ X]) = W\ f~1[W'\ X]. But
W F1 W\ X] = £ [X]0 (W \ dom(/)). a

Positive morphisms correspond to dense subreductions of [3, Section 9.1] and
are related to strong partial Esakia morphisms that are presented in [1].

Lemma 23. A a partial function f: (W, R, V) — (W', R, V') is a positive
morphism if and only if the following conditions hold:

1*. If w,v € dom(f) and wRv then f(w)R'f(v).

2*. If w € dom(f) and f(w)R'v then there exists some u € dom(f) such
that f(u) = v and wRu (back condition).

3*. If w € dom(f) and vRw, then v € dom(f).

4*. For every p € Prop and w € dom(f) we have w € V(p) <— f(w) €
V'(p).

5*. dom(f) D{w e W :3p € Propw ¢ V(p)}.

Proof. We need to prove that under the assumption of 1 through 3 of the
definition of positive morphisms, 4 is equivalent to 4* and 5*.

Let us assume 4* and 5*. By Lemma 22 we have that f*(V'(p)) = f~[V'(p)]U
W\ dom(f). By 4* we have that f~![V’(p)] = V(p)Ndom(f). We have that
5* implies that W \ dom(f) C V(p) since every element not in the domain
of f satisfies all propositional atoms. Therefore V' (p) = (V(p) Ndom(f)) U
W\ dom(f) and thus f*(V'(p)) = V(p).

For the other direction assume 4. Then if w € dom(f) and since f~1[V’(p)]u
W\ dom(f) = V(p) it follows that w € V(p) if and only if f(w) € V'(p), i.e.
we arrive at 4*. Also, for any p € Prop we have that W\dom(f) C V(p) and
hence all elements not in the domain of f satisfy all propositional atoms,
i.e. we arrive at 5*. O
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From here on we will use this alternative definition of positive morphisms.

We note that if for all w € W, there is some propositional atom p such that
p is not satisfied in w, then the positive morphisms are p-morphisms. Also,
every p-morphism is a positive morphism. Finally it is easy to check that
the composition of two positive morphisms is a positive morphism.

The essential difference between p-morphisms and positive morphisms is that
the latter are partial maps - they do not have to contain in their domains
worlds that satisfy all propositional atoms. The reason we can ignore these
worlds, when dealing with the [V, A, —]-fragment of IPC lies in the sim-
ple fact (which can be easily checked by induction) that in such worlds all
negation-free formulas hold. Next we show that positive morphisms preserve
negation-free formulas:

Proposition 24. Let f: (W,R,V) — (W', R, V') be a positive morphism.
Then for every negation-free formula ¢ and w € dom(f) we have that

(W7 R7 V)7w 'Z “)0 Zﬁ (Wl? Rl? Vl)?f(w> ): SO

Proof. We proceed by induction on the complexity of the formulas. The base
case, i.e. atoms, follows directly by the definition of positive morphisms. Let
us assume that f preserves the negation-free formulas ¢ and . That this
is also the case for ¢ V¢ and ¢ A ¢ trivially follows from the semantic defi-
nitions of the connectives.

Let us now assume that (W, R, V), w | ¢ — 1. Let f(w)R'v and assume
that (W', R',V'),v |= ¢. Then by the definition of the positive morphisms
we have that there is some u € dom(f) such that f(u) = v and wRu. By the
induction hypothesis we have that (W, R, V'), u |= ¢, hence (W, R, V'), u |= 1,
which by the induction hypothesis gives us that (W', R", V'), f(u) &= 4. For
the converse, let us assume that (W', R', V'), f(w) = ¢ — 1 and for some
u such that wRu we have (W,R,V),u = ¢. If v € dom(f), then the
induction hypothesis readily implies that (W, R,V),u = ¢. If u ¢ dom(f),
then for every propositional atom p we have that v € V(p), which implies
that (W, R,V),u [ 1, since all negation-free formulas are true in such
worlds. O

We can now prove the following:

Lemma 25. There exists a positive morphism F : U(n) — U*(n), which
is onto, dom(F) = {w € U(n) : Ip € Prop(w ¢ V(p))} and for every
w € dom(F) we have that the restriction of F' to U(n)y, is onto U*(n) p(y)-

Proof. We will define F' by induction on the depth of the elements of U(n)
in such a way that the color of F'(w) is the same as that of w. If d(w) = 1,
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then F(w) = w', where d(w’) = 1 and col(w) = col(w’). Let us now assume
that F' is defined for the elements of U(n) of depth m. Let d(w) = m + 1
and let us assume that w < {wy,...,wi}. Take A C F[{wy,...,w}] as the
set that contains the R-minimal elements of F[{w,...,wi}]. A is finite as
a subset of a finite set. If A is empty then let F'(w) be the element of U*(n)
of depth 1 with the same color as w. If A = {u} and u has the same color
as w, then let F(w) = u. Otherwise by the construction of U*(n), there is
a unique v < A (by the induction hypothesis about F') with the same color
as w and we let F(w) = v.

It is left to be shown is that F' is a positive morphism. That w € V(p) <=
F(w) € V*(p) follows directly by the construction of F. Likewise it is easy
to see by the above construction that if uRw then F'(u)R*F(w).

That if F(w)R*v implies the existence of some u such that F(u) = v
and wRu follows from the fact that the restriction of F' to U(n), is onto
U*(n) p(w)- To prove this we just need to show that for all u € dom(F") all
the immediate successors of F'(u) are images of successors of u, since the
depth of all elements of U*(n) have finite depth. That it is the case for
the immediate successors follows by the definition of F: F(w)’s immediate
successors form a subset of F[{wi,...,w;}] (where wy,...,wy are the only
immediate successors of w).

Finally, that F is onto can be shown by viewing U*(n) as the generated
submodel of U(n) presented above, A/. Then it is routine to check that F
is the identity function on . O

The above lemma gives us analogues of Lemma 9 and Theorem 10 for posi-
tive morphisms.

Theorem 26. For any finite rooted intuitionistic n-model M = (W, R, V)
such that for some x € W and p € Prop with x ¢ V(p), there exists a unique
w € U*(n) and positive morphism of M onto U*(n).,.

Proof. Given any finite rooted intuitionistic n-model 91, Lemma 9 implies
that there is a unique w € U(n) and a p-morphism f from 9t onto U(n),.
By taking the F' from Lemma 25, it follows that F o f (with domain {x €
M : f(z) € dom(F)}) is a positive morphism (as a composition of positive
morphisms) of M onto U*(n) g,y (assuming of course that dom(F o f) # ).
To show the uniqueness we observe that given two positive morphisms g1, g2
from 9 to U*(n), dom(g1) = dom(g2) = {xr € M : Ip € Prop(x ¢ V(p))},
since in no element of U*(n) every propositional atom holds. Thus, if xg
is the root of M, g1(z0) # g2(wo) and g1[M] = U*(n)g, (z) and go[M] =
U*(1)gy () then there are two different p-morphisms (g1 and ga) from
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dom(gy1) to U(n) (since U*(n) is a generated subframe of U(n)), contra-
dicting Lemma 9. O

Theorem 27. For every n-formula ¢ € [V, A\, —], U*(n) = ¢ iff Fipc ¢.

Proof. One direction is trivial. For the other, let us assume that ¥rpo ¢,
i.e. there is a finite rooted model 9T such that 9,z ¥ ¢, where x is the
root of M. Since ¢ is negation-free we have that z does not satisfy all
propositional atoms. Then by Theorem 26, there exists a unique w € U*(n)
and a positive morphism f from 9% onto U*(n),. By Proposition 24, it
follows that U*(n), f(z) ¥ ¢. O

We will now define the de Jongh formulas for the [V, A, —] fragment of IPC.
We will present two ways of constructing the formulas, one that mirrors
the construction from the standard de Jongh formulas, and one that derives
the formulas through the algorithm presented in Section 2. For w € U*(n)
let prop(w), newprop(w) and notprop(w) be defined as for the elements of
U(n).

Definition 28. Let w be a point of U*(n). We will define the formulas ¢},
and ¢} by induction on the depth of w:

o If d(w) =1 then define

O = /\ prop(w \/ notprop(w) — /\ notprop(w))

and

U= = [\ i

1EN

e If d(w) > 1 then let w < {wy,...,w,} and define

T /\ prop(w \/ newprop(w) V \/ v, — \/ ©ro:)

i<r i<r

and

VA

i<r

The construction is motivated by the following observation: By Proposi-
tion 19.1 (U*(n))* satisfies the same negation-free formulas as U*(n). It
is also the case that (U*(n))T is (isomorphic to) a generated submodel of
U(n), whose domain consist of the elements of U(n) whose only successor of
depth 1 satisfies all propositional atoms. Then, using the original de Jongh
formula ¢, for w the greatest element of (U*(n))*, we can define the de
Jongh formulas from depth 2, using exactly the same construction as for
the standard de Jongh formulas. Only now there is no need to take into
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consideration the ), formula. This is because every negation-free formula
is satisfied in a world that satisfies all propositional atoms, and hence all
negation-free formulas are true in w.

The above leads us to the second way of constructing the de Jongh formulas
for U*(n). As we noted above, (U*(n))* is isomorphic to a generated sub-
model of U(n). Let us call this submodel M, and let G : (U*(n))™ — M be
this isomorphism.

Definition 29. For every w € U*(n), we define ¢}, and 97, as [pg(w]* and
[Yc(w)]” respectively, where [-]* is the operation defined in Proposition 19.3.

Proposition 30. The formulas defined in Definition 28 and 29 are equiva-
lent.

Proof. The proof is by induction on the depth of w. For d(w) = 1, we note
that [pg(w)]* is A prop(w) A (V notprop(w) — A prop(w) A /A notprop(w)),
which is clearly equivalent to A prop(w) A (\/ notprop(w) — /\ notprop(w))
and the 9, coincide. For d(w) = k+1, since the formulas are inductively con-
structed in the same manner, the induction hypothesis immediately yields
the desired result. O

We can now show that these formulas are indeed analogous to the standard
de Jongh formulas:

Proposition 31. For every w € U*(n) we have that

o V*(pw) = R*(w)

o V*(thw) =U"(n) \ (R*) ™! (w)
Proof. By Theorem 19.1 we have that any formula o is equivalent in the
top models with [o]*. Hence ¢}, is satisfied in the same worlds of M (which
is isomorphic to (U*(n))") as ¢, (and likewise for 1,,). But since ¢}, are
negation-free formulas, by Proposition 19.1, they will be satisfied in the same
worlds in (U*(n)). O
4 n-Henkin models and Jankov’s theorem for KC

Let us denote the n-Henkin model for the [V, A, —]-fragment of IPC with
H*(n). We write

Cn)(¢) ={v € [V,A =] : ¢ is an n-formula and Frpc ¢ — 9}
and we write

Thy (9, w) = {¢ € [V,A =] : ¢ is an n-formula and M, w = ¢}.
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Proposition 32. For any point w € U*(n), Thy (U*(n),w) = CnJ(ek).

Proof. That the right hand side is a subset of the left hand side follows from
Proposition 31. For the other direction, assume U*(n), w |= o. Then if ¥pc
@y — o, there is a finite model 9t whose root, z, satisfies ¢}, and does not
satisy o. Then, since x does not satisfy all negation-free formulas, it does not
satisfy all propositional atoms, hence there is a nonemtpy positive morphism
f from 9 to U*(n). Because x satisfies ¢,, Proposition 31 implies that
f(z) € R*(w). Since U*(n),w = o we get U*(n), f(w) = o, a contradiction
because f preserves negation-free formulas and specifically o. O

Lemma 33. Let I be an n-theory of the [V, A\, —|-fragment of IPC. If T D
Cn*(¢r), for some w € U*(n), then either there exists some v € R*(w),
such that I' = Cn*(y}), or I' contains all negation-free formulas.

Proof. Let I' O Cn*(¢},) and let v be such that wRv and ¢} € I' while for
all immediate successors of v (let vy, ..., v be all the immediate successors
of v) we have that I' N {¢},,..., ¢ } = 9.

If this v is unique we can see that I' = CnJ (¢}). One inclusion is trivial; for
the other we observe that for every o € I' we have o A @ ¥ oy V-V oy
which implies by Theorem 27 that there is a point of U*(n) that satisfies
o Ay but not @5 V-V . By Proposition 31, there is only one such
element, v. Hence o € Th} (U*(n),v), which by Proposition 32 means that
o € Ca(p}).

To complete the proof we will show that the aforementioned v is unique or
it has depth 1. If d(v) > 1 and there is u (v # u) with the aforementioned
property, then Proposition 31 implies that =(vR*w) and —(wR*v) and hence
Yy € Thl (U*(n),u), thus b} € T'. Therefore, since I' has the disjunction
property, there is some immediate successor v; of v, such that ¢}, € I'. This
is a contradiction, hence if d(v) > 1 then v is unique.

Finally, if ¢}, @3 € ', where v # u and d(v) = d(u) = 1, then (without loss
of generality we can assume that) there is some propositional atom ¢ true
in v but not true in u. By the definition of ¢} we have that ¢ € I'. By
the definition of ¢} we have that ¢ — A,~,, p; € I'. Hence all propositional
atoms are in I', which implies that I" contains all negation-free formulas. [

Lemma 34. For any w € U*(n) we have H*(n)cn* (o) = U (n)w) ™.

Proof. We will show that the function g : (U*(1)w)" = H*(1)cn*(pr), such
that g(v) = CnJ(y}) and the topmost element is mapped to the set of all
negation-free formulas, is the isomorphism we are looking for. That it is
injective and that the frame relations are preserved follow from Proposition

31. Finally, Lemma 33 implies that g is onto. O
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Corollary 35. Upper(H*(n)) = (U*(n))™".

Proof. As above, the isomorphism will be the function g : (U*(n))T —
Upper(H*(n)), such that g(v) = Cn}(¢}) and the topmost element will be
mapped to the set of all negation-free formulas. That this map is injective
and preserves the relation is trivial. What is left to show is that it is onto.
Let © € Upper(H*(n)), and = does not contain all negation-free formulas.
Then, by Theorem 26, there is a positive morphism, f (which is non-empty
by the assumptions for ) from Upper(H*(n)), onto some U*(n),,. Then we
observe by Proposition 24 that Thy (U*(n),w) = z, i.e., by Proposition 32
z = Cny(¢},)- O

Corollary 36. Let M = (W, R, V) be any n-model and let X C V (¢},) for
some w € U*(n) and X # &. Then there is a unique positive morphism
f from Mx to U*(n)y. Furthermore if Mx is rooted and does not satisfy
all negation-free formulas, then there is a unique v € U*(n) such that wR*v
and f is from Mx onto U*(n),.

Proof. Since X C V(¢},) for every y € W such that xRy for some x € X, we
have that Thy (9, y) D Cn}(yr). By Lemma 33 such a theory is equal to
some CnJ (¢F) or contains all negation-free formulas. We define the positive
morphism f by making f(y) = w such that Th} (9, y) = Cn}(¢}) (if no
such u exists then y ¢ dom(f)).

If the domain of f is empty then it is vacuously a positive morphism. If
the domain is non-empty, by the definition of f the only non-trivial step
to show that f is a positive morphism is the back condition. For this we
have: If vR*u and f(y) = v, then by Proposition 31, it is the case that
M,y ¥ 7F; hence there is some z € W with yRz such that 9, 2z = ¢} and
M, 2z ¥ \/;<; oy, This yields that Thy, (9, z) = Cnj(¢y), ie. f(z) = u.

Finally, if 9x is rooted and it doesn’t satisfy all negation-free formulas,
then the root, x, is in the domain of f. Then we let v = f(z). O

Note that the underlying Kripke frame of U*(n)y, = (U*(1)w, B*(n)w, V*(N)w)
described in the previous lemma can be viewed as the general frame (U*(n),,
R*(n)w, Up(U*(n)y)), which is a descriptive frame since W is finite.

We can prove an analogue of the Jankov’s-de Jongh theorem (Theorem 17),
which will be used to give an alternative proof of Jankov’s theorem for KC.

Theorem 37 (Jankov’s Theorem for the negationless fragment of IPC). For
every descriptive frame & and w € U*(n) we have that & ¥ 1% if and only
if there is an n-valuation V' on & such that U*(n),, is the image, through a
positive morphism, of a generated submodel of (&,V).
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Proof. Let U*(n), be the image, through a positive morphism f, of a gen-
erated submodel K of (&, V). Proposition 31 implies that U*(n)., w ¥ ¥,
Since f is a positive morphism, Proposition 24 yields that I,z ¥ 7 for
every € f~'[{w}]. Now, because K is a generated submodel of (&,V), we
have that (&, V), x ¥ ¢y, ie. GE Y.

For the other direction, let us assume that there is some valuation and some
x such that (&,V),x ¥ 7. This implies that there is some 7y such that
rRyo and (&,V),y0 = ¥y, while (&,V),y0 ¥ ¢y, , for all immediate succes-
sors w; of w.

We take (&, V)y (,r ), the submodel of (&, V) generated by V(¢},). We note
that by the above observation V(¢}) # @. Furthermore, we have that
(8,V)y(er) does not satisfy all negation free formulas since yo € V(¢},)

and (&,V),yo ¥ oy, for all immediate successors w; of w.

Therefore, by Corollary 36, we have that there is a positive morphism f
from (&, V)y(pr) to U*(n)y,. It is onto because Th*((&, V'), yo) = Cn*(¢},)
and hence f(yo) = w.

Finally, we have that (&,V)y(,,) is a descriptive model, by Lemma 4, since
it is based on V' (¢,,). To show that the positive morphism is also descriptive,
we only need to show that f~1[R*(v)] U (& \ dom(f)) = V(g}), for v €
U*(n)y. For the left to right inclusion we observe that anything outside the
domain of f satisfies all negation-free formulas and f preserves negation-free
formulas. For the right to left assume that x € V(p}). Then z € V(¢})
and by Lemma 33 we get that f(x) € R*(w) or z satisfies all propositional
atoms and hence it is not in the domain of f. O

We recall that KC is complete with respect to the finite frames with a top-
most node. Thus, by reflecting on Proposition 19.1, one can easily see that
KC proves exactly the same negation-free formulas as IPC. Jankov, in [5]
proved that KC is maximal with that property. In [4] an alternative proof
based on the universal model for IPC is given.

Using the universal model for negation-free formulas we can provide a sim-
pler and more insightful proof of that fact:

Lemma 38. If § is a descritpive frame with a topmost element, and f :
(8, V) = (F,V) is a descriptive positive morphism between models, then f
can be extended to a descriptive frame p-morphism.

Proof. If f is a total then it is a frame p-morphism. If f is not total then,
we extend f to f’ such that for every y € &\ dom(f) we have f'(y) = zo,
where 1z is the topmost element of §. We claim that f’ is the desired frame
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p-morphism. That the forth condition holds is trivial, since everything in
§ is below zg. For the back condition the only possible problem may arise
if some f’(y)Rxo. In that case, if y € dom(f) then f(y)Rxo and by the
definition of positive morphisms a witness for the back condition exists. If
y ¢ dom(f) then the witness is y. To show that it is descriptive we only
need to show that f'~1[Q] is admissible, where @ is admissible in §. But,
by the construction of f we have that f~'[Q] = f~[Q] U (& \ dom(f)),
which is admissible since it is equal to f*(Q) and f is a descriptive positive
morphism. ]

Theorem 39. (Jankov) For every logic L € KC there exists some negation-
free formula o such that £ = o while IPC ¥ o.

Proof. Let us assume that £ ¢ KC. Then £ + x and KC ¥ x for some
formula x. As KC is complete with respect to finite rooted frames with a
topmost element (e.g. [3]), there is a a finite rooted frame with a topmost
element, § = (W, R) with § ¥ x. We define a valuation, V, on § such
that each of its elements has a different color and that there is a proposi-
tional atom, ¢, not satisfied at the topmost element. A way to do this is to
have a propositional atom p, for each x € F such that V(p,) = R(z) and
V(q) = @. By Theorem 26, there is some w € U(n) and a positive mor-
phism from (§F, V') onto U*(n),,. Since each element of (F, V) has a different
color, the positive morphism is 1-1 and since in every element of W at least
one propositional atom is not satisfied, the positive morphism has W as its
domain, hence (§,V) = U*(n)w.

We claim that the negation-free formula, o, that we are looking for is .
Heading towards a contradiction, let us assume that £ ¥ ;. Then, as
every logic is complete with respect to descriptive frames (e.g. [2], [3]), there
exists a descriptive L-frame, & such that & ¥ 1. By Theorem 37 there is
a valuation V’ on &, a generated submodel K of (&,V”), and a descriptive
positive morphism f, from K onto (F, V). By Lemma 38, f can be extended
to a descriptive frame p-morphism, f’. We have reached a contradiction:
Since & is an L-frame and y € £, we have that & = x. As f’ is a descriptive
frame p-morphism, & |= x implies that § = x, contrary to the assumption
that § ¥ . O

5 Application: Minimal Logic

In this part we give an application of the positive universal model for IPC:
the positive (n + 1)-universal model of IPC is essentially the n-universal
model for the minimal logic L;.;,. In the following we will only give a
sketch of the proof and will skip most of the technical details.
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Minimal logic is obtained from the [V, A, —|-fragment of IPC by adding a
weaker negation: — is defined as ¢ — f, where the variable f is a special
proposition variable interpreted as the falsum. Therefore, the language of
minimal logic is the [V, A, —]-fragment of IPC plus f. f has no specific
properties, in particular f — ¢ does not hold, therefore the Hilbert system
for the minimal logic is the same as IPC but without f — . Note that
every negation-free formula containing f is equivalent in L,,;, to a formula
not containing f, because . f <> —p A =—p. For the semantics, f is
interpreted as an ordinary proposition letter. Therefore, if we regard the f
as an ordinary proposition letter in the syntax, we will get the semantics for
IPC in the [V, A, —]-fragment, with an additional proposition letter f.

Then by defining the n-universal model Uy, (1) for minimal logic as U p(n+
1), where the (n+ 1)-th proposition letter is f, we can check that the model
is indeed universal for minimal logic. The proof can be easily obtained by
using the semantics for IPC and minimal logic.
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