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Abstract

Using the isomorphism from [3] between the category Pries of Priest-

ley spaces and the category PStone of pairwise Stone spaces we construct

a Vietoris hyperspace functor on the category PStone related to the Vi-

etoris hyperspace functor on the category Pries [4, 18, 24]. We show that

the coalgebras for this functor determine a semantics for the positive frag-

ment of modal logic. The sole novelty of the present work is the explicit

construction of the Vietoris hyperspace functor on the category PStone

as well as the phrasing of otherwise well-known results in a bitopological

language.
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1 1 Introduction

1 Introduction

A celebrated theorem by Marshall Stone [22] from 1936 states that the category

of Boolean algebras and Boolean algebra homomorphisms is dually equivalent

to the category of Stone spaces, i.e. zero-dimensional compact Hausdorff spaces,

and continuous maps1. We refer the reader to [13] for an introduction to the

theory of Stone duality.

From 1936 onwards a plethora of Stone like dualities between algebras and

topologies was discovered. Already in 1937 Stone [23] showed that the category

bDist of bounded distributive lattices and bounded lattice homomorphisms is

dually equivalent to the category Spec of spectral spaces and spectral maps.

In 1970 Priestley [19] showed that the category bDist and the category

Pries of Priestley spaces, i.e. compact and totally order-disconnected spaces

are dually equivalent, and in 1975 Cornish [7] showed that the category Pries

and the category Spec are not only equivalent but in fact isomorphic. Finally,

in 1994 Picado [17] showed that the category Pries is also isomorphic to the

category PStone of pairwise Stone spaces and bi-continuous maps. We refer the

reader to [3] for a good and coherent exposition of all the different equivalences

and isomorphisms between the above categories.

Abramsky [1] showed that not only can the well-known Stone duality be

expressed in coalgebraic terms but also the Jónsson-Tarski duality between de-

scriptive general Kripke frames and modal algebras can be given a coalgebraic

formulation2, see also [15] for more details. More precisely the category of de-

scriptive general frames is isomorphic to the category of coalgebras for the Vi-

etoris hyperspace functor on the category Stone. This connection was already

noted by Esakia [9]. Thus we can represent a sound and complete semantics for

modal logic by coalgebras for the Vietoris functor on Stone. In 2004 Palmigiano

[18] obtained a similar result for the positive fragment of basic modal logic in

terms of coalgebras of a Vietoris hyperspace functor on the category Pries. See

also [4, 24].

Lastly we mention that in Johnstone’s work [14] from 1985 on Vietoris locales

we already find a construction of a Vietoris hyperspace functor on Spec. This

leaves only the bitopological approach to positive modal logic untouched.

The aim of this report is to combine the idea that the semantics of positive

modal logic can be seen as coalgebras for the hyperspace functor on Pries with

the fact that the category Pries is isomorphic to the category PStone, to obtain

a semantics for positive modal logic in terms of coalgebras for an endofunctor on

1Of course Stone did not formulate his result in terms of an equivalence of categories, for

the simple reason that category theory was first introduced by Eilenberg and Mac Lane in the

mid Nineteen-Forties.
2Abramsky had already presented this work at several occasions during the period 1988-

1989.
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PStone. Although the construction of a hyperspace functor on the category of

pairwise Stone spaces does not exist in the literature the report at hand does not

as such contain any new results, but only provides a bitopological perspective

to the already known fact that the relational semantics for positive modal logic

can be obtained as coalgebras for the Vietoris hyperspace functor on a category

dually equivalent to bDist.

The structure of this report is as follows: In section 2 we recall the definitions

of the categories PStone and Pries as well as the isomorphism between them.

In section 3 we construct a Vietoris hyperspace functor on the category Pries,

which is very similar to the one found in [18, 4, 24]. Section 4 contains the

construction of the Vietoris hyperspace functor on the category PStone, and we

show that this functor is the analogue of the hyperspace functor on the category

Pries. In section 5 we introduce positive modal logic and its various semantics

and in section 6 we show that the coalgebras for the hyperspace functor on

PStone, encode a sound and complete semantics for the minimal positive modal

logic K+, which is well behaved with respect to axiomatic extensions. Finally

section 7 contains a proof that the hyperspace functor on Pries restricts to a

functor on the category Esa of Esakia spaces, as well as a short discussion on

intuitionistic modal logic.

We assume the readers familiarity with basic notions from topology and cat-

egory theory. Finally to appreciate the connection to modal logic it might be

helpful if the reader is familiar with the Jónsson-Tarski duality for which we

refer the reader to chapter 5 of [2].

Acknowledgements: I would like to thank Nick Bezhanishvili for taking the

time to supervise this project and for introducing me to many of the different

aspects of duality theory. I always left his office more optimistic about the

success of this project than when I entered. I would also like to thank Martin

Speirs for offering some comments and corrections on the present work.

2 Pairwise Stone spaces and Priestley spaces

Definition 1. A Priestley space is triple (X,τ,≤) such that (X,τ) is a Stone

space and ≤ is a partial order of X, i.e. reflexive, transitive and anti-symmetric,

satisfying the Priestley Separation Axiom:

x /≤ y implies that there exists a clopen upset U , such that x ∈ U and y /∈ U.

If (X,≤) is a partial ordered space and U ⊆X we define

↑U = {x ∈X ∶ ∃u ∈ U u ≤ x} ↓U = {x ∈X ∶ ∃u ∈ U x ≤ u}.

If U a subset of X we call ↓U the downset of U and ↑U the upset of U . Fur-

thermore we say that U is a downset if ↓U = U and an upset if ↑U = U .
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Proposition 1. Let (X,τ,≤) be a Priestley space. If F ⊆ X is closed then ↑F
and ↓F are both closed, i.e. upsets and downsets of closed sets are closed.

Proof. Let F ⊆X be closed and suppose that x /∈ ↑F . Then for all y ∈ F it must

be the case that y /≤ x and so by the Priestley separation axiom we have for all

y ∈ F a clopen upset Uy satisfying:

y ∈ Uy and x /∈ Uy.

It follows that ⋃y∈F Uy is an open cover of F . Now since (X,τ) is compact and

F is closed, F is compact and we must therefore have a finite subcover ⋃ni=1Uyi
of F . So letting U ∶= ⋂ni=1U

c
yi we get a clopen downset satisfying x ∈ U and

U ⊆ F c. Moreover if we have x′ ∈ U and y ∈ F such that y ≤ x′, then since

U is a downset y ∈ U , which contradicts the fact that U ⊆ F c. It follows that

U ⊆ (↑F )c, hence U is an open neighbourhood of x contained in (↑F )c. So

as x /∈ ↑F was arbitrary we conclude that (↑F )c is open and hence that ↑F is

closed.

The argument to the fact that ↓F is closed is completely similar and is

therefore omitted. ∎

The following theorem due to Priestley explains why we are interested in

Priestley spaces.

Theorem 1 ([19]). The category Pries of Priestley spaces and continuous

order-preserving functions is dually equivalent to the category bDist of bounded

distributive lattices and bounded lattice homomorphisms.

By a bitopological space3 we understand a triple (X,τ1, τ2) such that (X,τ1)
and (X,τ2) are topological spaces. Given a bitopological (X,τ1, τ2) we denote

by δ1 and δ2 the collections of τ1 and τ2 closed sets, respectively. Finally we let

β1 ∶= τ1 ∩ δ2 and β2 ∶= τ2 ∩ δ1.

Definition 2 ([21]). Let (X,τ1, τ2) be a bitopological space.

i) We say that (X,τ1, τ2) is pairwise Hausdorff if for every x, y ∈ X with

x ≠ y we have disjoint sets U ∈ τ1 and V ∈ τ2 separating x and y.

ii) We say that (X,τ1, τ2) is pairwise zero-dimensional if β1 constitutes a

basis for τ1 and β2 constitutes a basis for τ2.

iii) We say that (X,τ1, τ2) is pairwise compact if (X,τ1∨τ2) is compact, where

τ1 ∨ τ2 is the smallest topology containing both τ1 and τ2.

3Bitopological spaces were first introduced by Kelly in [11], although his motivation for

studying these space was very different from ours.
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Note that by The Alexander Subbasis Lemma 8, definition 2iii) is equivalent

to the conditions that any cover of X consisting of elements of τ1 ∪ τ2 has a

finite subcover.

We call a bitopological space which is pairwise Hausdorff, pairwise zero-

dimensional and pairwise compact a pairwise Stone space. Moreover we let

PStone denote the category of pairwise Stone spaces and bi-continuous maps

between them, where a bi-continuous map f ∶ (X,τ1, τ2) → (X ′, τ ′1, τ
′
2) between

bitopological spaces is a map which is continuous as a map from (X,τi) to

(X ′, τ ′i), for i ∈ {1,2}.

The following three proposition establish the connection between Priestley

spaces and pairwise Stone spaces.

Proposition 2 (Lem. 3.3, [3]). Let (X,τ1, τ2) be a pairwise zero-dimensional

space and let ≤i be the specialization preorder of (X,τi), i ∈ {1,2}. Then ≤1=≥2.

Proposition 3 (Prop. 3.4, [3]). If (X,τ1, τ2) is a pairwise Stone space then

(X,τ,≤) is a Priestley space, where τ = τ1∨τ2 and ≤ is the specialisation preorder

of (X,τ1). Furthermore with the obvious notation we have that:

β1 = ClpUp(X,τ,≤) β2 = ClpDo(X,τ,≤)
τ1 = OpUp(X,τ,≤) τ2 = OpDo(X,τ,≤)
δ1 = ClUp(X,τ,≤) δ2 = ClDo(X,τ,≤)

Proposition 4 (Prop. 3.6, [3]). If (X,τ,≤) is a Priestley space, then (X,τ1, τ2)
is a pairwise Stone space, where τ1 = OpUp(X,τ,≤) and τ2 = OpDo(X,τ,≤).

Furthermore we have that:

i) β1 = ClpUp(X,τ,≤)

ii) β2 = ClpDo(X,τ,≤)

iii) ≤=≤1=≥2.

The above actually gives an isomorphism between categories.

Theorem 2. The categories Pries and PStone are isomorphic

Sketch. Given a pairwise Stone space (X,τ1, τ2), then one constructs a Priestley

space Φ((X,τ1, τ2)) = (X,τ,≤) by letting τ = τ1 ∨ τ2 and ≤ be the specialization

pre-order of (X,τ1). We let Φ act as the identity on functions.

Conversely given a Priestley space (X,τ,≤) one constructs the corresponding

pairwise Stone space Ψ(X,τ,≤) = (X,τ1, τ2) by letting τ1 = OpUpτ(X) and τ2 =
OpDoτ(X), i.e. the open upsets and open downsets of (X,τ,≤), respectively.

We let Ψ act as the identity on functions.

By Propositions 3 and 4 we see that these two functors are well-defined on

objects and that they are each others inverses on the object level. Thus one
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only needs to check that the functors are well-defined on morphisms, but this

is straightforward given Propositions 3 and 4, and is therefore omitted. ∎

In the following we will often refer back to the functors Φ∶PStone→ Pries

and Ψ∶Pries→ PStone.

3 Hyperspaces of Priestley space

We here briefly recall the well-known Vietoris functor K ∶KHaus→KHaus, on

the category of compact Hausdorff spaces and continuous maps between them.

If (X,τ) is a compact Hausdorff space, then we let K(X) denote the set of

closed sets of X. We can then define the hit-and-miss or Vietoris topology τv

on K(X) to be the topology generated by the subbasis {◻U,◇U}U∈τ , where

◻U = {F ∈K(X)∶F ⊆ U} and ◇U = {F ∈K(X)∶F ∩U ≠ ∅}.

The action of K on arrow is given by K(f) = f∗, where f∗ denotes the direct

image function obtained from f . Now we can think of ◻U as the set of all the

closed sets that miss the closed set U c and the set ◇U as the set of all the closed

sets that hit the open set U .

Note that a basis for (K(X), τv) is given by

∇(U1, . . . , Un) = {F ∈K(X)∶F ⊆
n

⋃
i=1

Ui and F ∩Ui ≠ ∅},

Where U1, . . . Un ranges over all finite collections of open subsets of X.

One can now prove the following:

Theorem 3 ([16]). If (X,τ) is a Stone space then so is (K(X), τ).

In fact this give rise to a endofunctor on the category of Stone spaces with

the following actions on morphisms:

Proposition 5. The assignment (X,τ) ↦ (K(X), τv) determines an endo-

functor K ∶Stone → Stone on the category of Stone spaces and continuous

functions, with K(f ∶X → Y ) the direct image function f∗∶K(X) →K(Y ) given

by F ↦ f[F ].

Proof. Clearly K(id∶X →X) = idK(X) and

K(g∶Y → Z) ○K(f ∶X → Y ) =K(g ○f ∶X → Z).

Thus we only need to show that for f ∶ (X,τ) → (Y, τ ′) continuous, the assign-

ment F ↦ f[F ] determines a well-defined function from K(X) to K(Y ). If F

is a closed subset of X, then as (X,τ) is compact we have that F is compact

as well and hence f[F ] is a compact subset of Y as f is continuous. Finally as

(Y, τ ′) is Hausdorff we have that f[F ] is closed in Y i.e. f[F ] ∈K(Y ). ∎
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Now given a Priestley space (X,τ,≤) we want to find a way to lift the partial

order ≤ to partial order ≤v on K(X) such that (K(X), τv,≤v) is a Priestley

space. Moreover we want such a construction to determine an endofunctor on

the category of Priestley spaces. It turns out that for this to work we must

modify the above construction slightly.

Definition 3. Let R be any relation on a set X. Then the Egli-Milner lift of

R is the relation REM on P(X) given by

WREMV ⇐⇒ W ⊆ R−1(V ) and V ⊆ R(W ),

where

R(W ) = {x ∈X ∶ ∃w ∈W xRw} and R−1(V ) = {x ∈X ∶ ∃v ∈ V vRx}.

Now if ≤ is a partial order it is easy to check that ≤EM is reflexive and

transitive. But ≤EM will not in general be antisymmetric. However if we restrict

it to the class of convex sets then any partial order on a set X will lift to a partial

order ≤EM on the set of convex sets of X.

Definition 4. Let X be a set with a relation R. We say that U ⊆ X is convex

if for all y ∈X and all x, z ∈ U

xRy ∧ yRz Ô⇒ y ∈ U.

Proposition 6. Let (X,≤) be a partially ordered set and let U ⊆ X, then the

following are equivalent:

1. U is a convex subset of X.

2. U = ↑U ∩ ↓U .

3. U = V ∩W , for some upset V and some downset W of X.

Proof. We first show that if U is a convex set then ↑U ∩↓U ⊆ U . This suffices to

establish item 2 since U ⊆ ↑U ∩ ↓U as ≤ is a partial order and as such reflexive.

If y ∈ ↑U ∩ ↓U then since y ∈ ↑U we have x ∈ U such that xRy and since

y ∈ ↓U we have z ∈ U such that yRz, and so by the convexity of U we must have

that y ∈ U .

Conversely if U = ↑U ∩ ↓U then as

↑U ∩ ↓U = {y ∈X ∶ ∃x∃y x, y ∈ U & xRy ∧ yRz}

we can immediately conclude that U is convex.

Evidently item 2 implies item 3. On the other hand if U is the intersection

of an upset V and a downset W then if x, z ∈ U and y ∈ X is such that x ≤ y
and y ≤ z, then we must have that y ∈ ↑V as x ∈ V and y ∈ ↓W as z ∈W . Hence

y ∈ ↑V ∩ ↓W = V ∩W = U.

∎
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3.1 The construction of the functor V ∶Pries→ Pries

Our aim in this subsection is to define an endofunctor V ∶Pries→ Pries analo-

gous to the Vietoris functor K ∶Stone → Stone of section 2. The definition of

the functor V seems to be folklore. It can be found in [4, 24] but no explicit

proof of the fact that this is indeed a well-defined functor is given there. The

definition is also very similar to the one found in [18] but simpler due to the fact

that we can prove that the set Conv(X) of closed and convex sets of a Priestley

space is compact when topologized by the topology given below. This is not

done in [18] which instead considers a quotient space construction to make the

Egli-Milner lift of the order on a Priestley space a partial order on the set of

(equivalence classes of) closed subsets.

If (X,τ,≤) is a Priestley space we let Conv(X) denote the set of closed

and convex sets of (X,τ,≤). Moreover for any Priestley space (X,τ,≤) we let

V (X) = (Conv(X), τv,≤EM) where with abuse of notation we let τv be the

topology on Conv(X) generated by the subbasis {◻U,◇U}U∈ClpUp(X)∪ClpDo(X)
with

◻U = {F ∈ Conv(X)∶F ⊆ U} and ◇U = {F ∈ Conv(X)∶F ∩U ≠ ∅}.

In the remainder of this section we show that the above assignment determines

an endofunctor V ∶Pries→ Pries.

Proposition 7. If (X,τ,≤) is a Priestley space then (Conv(X), τv) is compact.

Proof. To show that (Conv(X), τv) is compact it suffices by the Alexander

Subbasis Lemma to show that every cover by elements of the subbasis {◻U,◇U}
with U ∈ ClpUp(X) ∪ClpDo(X) has a finite subcover. Therefore let

Conv(X) = ⋃
i∈I
◻Ui ∪ ⋃

j∈J
◇Uj ⋃

k∈K
◻Vk ∪ ⋃

l∈L
◇Vl (⋆)

be such a cover, with Ui and Uj τ -clopen upsets for all i ∈ I and j ∈ J , and with

Vk and Vl τ -clopen downsets for all k ∈K and l ∈ L . We claim that

X = ⋃
i∈I
Ui ∪ ⋃

j∈J
Uj ⋃

k∈K
Vk ∪ ⋃

l∈L
Vl. (‡)

To see this let x ∈ X then as (X,τ) is a Stone space it is in particular T1

whence {x} is closed and therefore {x} ∈ Conv(X), as it is clearly also convex.

Thus {x} ∈ ◻W for some W ∈ {Ui, Vk}i∈I,k∈K or {x} ∈ ◇W ′ for some W ′ ∈
{Uj , Vl}j∈J,l∈L. In the former case we obtain that x ∈ W and in the latter case

we obtain that x ∈W ′. Hence we see that (‡) follows.

Now since ⋃j∈J Uj ∪⋃l∈L Vl is a τ -open set we have that

F ∶=X − (⋃
j∈J

Uj ∪ ⋃
l∈L
Vl)
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is a τ -closed set. Moreover as ⋃j∈J Uj is an upset and ⋃l∈L Vl is a downset we

must have that F is the intersection of an downset and an upset and therefore

convex. Hence F ∈ Conv(X). So by (⋆) we must have that F ∈ ◻Ui′ for some

i′ ∈ I or F ∈ ◻Vk′ for some k′ ∈ I. We may without loss of generality assume that

the former is the case. It then follows from (‡) that X = Ui′ ∪⋃j∈J Uj ∪⋃l∈L Vl.
So by the compactness of X we have that X = Ui′ ∪⋃ni=1Uji ∪⋃mi=1 Vli . We claim

that

Conv(X) = ◻Ui′ ∪
n

⋃
i=1

◇Uji ∪
m

⋃
i=1

◇Vli .

To see this let G ∈ Conv(X) then either G ⊆ Ui′ in which case G ∈ ◻Ui′ or

G /⊆ Ui′ in which case we get that G ∩ (⋃j∈J Uj ∪ ⋃l∈L Vl) ≠ ∅ and thus either

G∩Uji ≠ ∅ for some i ≤ n, in which case G ∈ ◇Uji or G∩Vli ≠ ∅ for some i ≤m,

in which case G ∈ ◇Vli . ∎

Lemma 1. If (X,τ,≤) is a Priestley space then V (X) = (Conv(X), τv) is zero-

dimensional.

Proof. To see that Conv(X) is zero-dimensional we note that

◻U = (◇(U c))c and ◇U = (◻(U c))c,

whence Conv(X) has a subbasis for clopen and hence a basis of clopens. ∎

Lemma 2. If (X,τ,≤) is a Priestley space then V (X) = (Conv(X), τv) is Haus-

dorff.

Proof. Let F,G ∈ Conv(X) with F ≠ G. Then as ≤EM is a partial order on

Conv(X) we have that F /≤EM
G or G /≤EM

F . We may without loss of generality

assume that the former is the case. Therefore we either have i) x ∈ F such that

x /≤ y for all y ∈ G or we have have ii) y ∈ G such that x /≤ y for all x ∈ F .

We consider first the case i). By the Priestley Separation Axiom we have

clopen upsets Uy for all y ∈ G such that x ∈ Uy and y /∈ Uy. It follows that⋃y∈GU c
y

is an open cover of G. Now G is a closed subset of X and therefore compact,

hence we have a finite subcover ⋃ni=1U
c
yi of G. So if we let U = ⋂ni=1Uyi then we

have that x ∈ U and U ∩G = ∅. So as x ∈ F we get that F ∩U ≠ ∅. It follows that

F ∈ ◇U andG /∈ ◇U . So as U is a clopen upset we have that ◇U is open in τv and

as moreover τv is zero-dimensional with subbasis {◻U,◇U}U∈ClpUp(X)∪ClpDo(X)
we have that ◇U is also closed. Hence (◇U)c = ◻U c is an open set containing

F disjoint from ◇U containing G.

In the case ii) a similar argument allows us to find clopen upset U such that

F ∈ ◻U and G /∈ ◻U .

Hence in both cases we may conclude that Conv(X) is Hausdorff. ∎

Lemma 3. If (X,τ,≤) is a Priestley space then so is V (X) = (Conv(X), τv,≤EM).
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Proof. By Proposition 7 and Lemma 1 and 2 above it is enough to show that

≤EM satisfies that Priestley Separation Axiom.

Therefore let F,G ∈ Conv(X) such that F /≤EM
G. Then we must find clopen

upset W of Conv(X) such that F ∈W and G /∈W .

If F /≤EM
G the either F /⊆ ↓G or G /⊆ ↑F . In the former case we must have

x ∈ F such that x /∈ ↓G. So for all y ∈ G we have that x /≤ y. Now as (X,τ,≤) is

a Priestley space we must have clopen upsets Uy for each y ∈ G such that x ∈ Uy
and y /∈ Uy. It follows that ⋃y∈GU c

y is an open cover of G. Now G being a closed

subset of the compact Hausdorff space X must also be compact. Consequently

we have y1, . . . , yn ∈ G such that ⋃ni=1U
c
yi covers G. Letting U = ⋂ni=1Uyi we see

that U is a clopen upset with x ∈ U and U ∩G = ∅. So as U ∩F ≠ ∅ we see that

F ∈ ◇U and G /∈ ◇U .

Finally we show that ◇U is upwards closed. Therefore let H ∈ ◇U and

H ≤EM H ′. If H ′ /∈ ◇U then H ′ ∩U = ∅ and consequently H ′ ⊆ U c and as U is

an upset U c is a downset. Hence we must have that ↓H ′ ⊆ U c, and as H ≤EM H ′

we have that H ⊆ ↓H ′ contradiction the fact that H ∈ ◇U . Thus ◇U must be

an upset, and we may take W = ◇U .

The argument for the latter case is similar and is therefore omitted. ∎

Let f ∶ (X,τ,≤) → (X ′, τ ′,≤′) be a morphism between Priestley spaces. Then

we show that F ↦ ↓f[F ] ∩ ↑f[F ] determines a mapping V (f)∶V (X) → V (Y )
making V into an endofunctor on the category Pries. For this the following

proposition suffices.

Proposition 8. If f ∶ (X,τ,≤) → (X ′, τ ′,≤′) is a morphism between Priestley

space, then F ↦ ↓f[F ] ∩ ↑f[F ] determines a continuous and order preserving

function V (f)∶V (X) → V (Y ) between the Priestley spaces V (X) and V (Y ).

Proof. We first show that V (f) is well-defined. As X is compact every closed

subset of X is compact and hence every F ∈ Conv(X) will be compact. The

image of a compact set under a continuous function is again compact and so as

Y is Hausdorff f[F ] will be closed. Since in any Priestley space the upwards and

downwards closure of closed set is again closed we have that V (f)[F ] is closed.

Hence as V (f)[F ] is obviously convex we see that the function V (f)∶V (X) →
V (Y ) is indeed well-defined.

To see that it is also order preserving assume that F ≤EM F ′, i.e.

F ⊆ ↓F ′ and F ′ ⊆ ↑F.

Then if y ∈ V (f)[F ] we have x1, x2 ∈ F such that f(x1) ≤′ y ≤′ f(x2). As

F ⊆ ↓F ′ we must have x3 ∈ F such that x2 ≤ x3, consequently we have that

f(x2) ≤ f(x3) so f(x2) ∈ ↓f[F ′] ∩ ↑f[F ′] and hence y ∈ ↓(↓f[F ′] ∩ ↑f[F ′]).
Thus we have that

V (f)[F ] ⊆ ↓(↓f[F ′] ∩ ↑f[F ′]) = ↓(V (f)(F ′)).
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The argument for the fact that V (f)(F ′) ⊆ ↑V (f)(F ) is completely similar.

Finally to see that it is continuous it suffices to show that the preimages of

elements of the subbasis are open. Therefore let U ∈ τ ′ be a clopen upset then

we show that V (f)−1(◻U) = ◻f−1U and V (f)−1(◇U) = ◇f−1U . From which

we may conclude that V (f) is continuous.

V (f)−1(◻U) = {F ∈ Conv(X)∶V (f)(F ) ∈ ◻U}
= {F ∈ Conv(X)∶ ↓f[F ] ∩ ↑f[F ] ⊆ U}
= {F ∈ Conv(X)∶ f[F ] ⊆ U} (since U is an upset)

= {F ∈ Conv(X)∶F ⊆ f−1(U)}
= ◻f−1(U).

V (f)−1(◇U) = {F ∈ Conv(X)∶V (f)(F ) ∈ ◇U}
= {F ∈ Conv(X)∶ ↓f[F ] ∩ ↑f[F ] ∩U ≠ ∅}
= {F ∈ Conv(X)∶ f[F ] ∩U ≠ ∅} (since U is an upset)

= {F ∈ Conv(X)∶F ∩ f−1(U) ≠ ∅}
= ◇f−1(U).

Similar argument applies to the situation where U is a clopen downset. ∎

Remark 1. Note that taking V (f) to be the mapping F ↦ f[F ] would not be

well-define as f[F ] is not necessarily convex when f is non-surjective.

The above shows that we have a functor V ∶Pries→ Pries.

4 Hyperspace of Pairwise Stone space

In this section we want to define a notion of a bitopological Vietoris space for

a bitopological Stone space. More precisely what we want is an endofunctor

Vbi∶PStone→ PStone such that the following diagram

PStone Pries

PStone Pries

Φ

Vbi

Ψ

VΦ

Ψ

(1)

commutes. By standard category theoretic argumentation this will ensure that

the category of coalgebras for the functor Vbi will be isomorphic to the category

of the coalgebras for the functor V .
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4.1 The construction of the functor Vbi

Given a bitopological space (X,τ1, τ2) we define

κ(X) ∶= {F ∩G∶F ∈ δ1, G ∈ δ2},

that is κ(X) is the set of all intersections of τ1-closed and τ2-closed sets.

Furthermore we let τv1 be the topology on κ(X) generated by the subbasis

{◇U,◻U}U∈β1 where as usual

◇U = {H ∈ κ(X)∶H ∩U ≠ ∅} and ◻U = {H ∈ κ(X)∶H ⊆ U}.

Similarly τv2 will be the topology on κ(X) generated by {◇V,◻V }V ∈β2 .

We then define the bitopological Vietoris space Vbi(X) of a Pairwise Stone

space (X,τ1, τ2) to be the bitopological space (κ(X), τv1 , τv2 ). In what follows

we will show that this constitutes the object part of an endofunctor on PStone.

Remark 2. One could also have defined τv1 to be generated by {◇U}U∈β1∪β2 and

τv2 to be generated by {◻U}U∈β1∪β2 . This also determines an endofunctor on

the category PStone. However this will not make the diagram (1) commute.

Lemma 4. If (X,τ1, τ2) is a Pairwise Stone space and ≤1 is the specialization

order of (X,τ1) then ≤EM
1 is a partial order when restricted to κ(X).

Proof. As (X,τ1, τ2) is pairwise zero-dimensional and pairwise Hausdorff we

have that (X,τ1) is a T0-space, whence ≤1 is a partial order. Therefore ≤EM
1 is

reflexive and transitive. Now suppose that we have H,H ′ ∈ κ(X), i.e. H = F ∩G
and H ′ = F ′ ∩G′ for some F,F ′ ∈ δ1 and G,G′ ∈ δ2, such that H ≤EM

1 H ′ and

H ′ ≤EM
1 H. As H ⊆ ↓H ′ we have that for all x ∈ H there is yx ∈ H ′ such that

x ≤1 yx. So we must have that

H ⊆ ⋃
x∈H

cl1(yx)

⊆ ⋃
y∈H′

cl1(y)

⊆ cl1( ⋃
y∈H′

y)

⊆ cl1(H ′)
⊆ cl1(F ′) = F ′.

As H ′ ⊆ ↑H we have that for all y ∈ H ′ an element xy ∈ H such that xy ≤1 y

and therefore by Proposition 2 such that y ≤2 xy. So by a similar argument we

see that H ′ ⊆ G. Finally using that H ′ ≤EM
1 H we see that H ⊆ G′ and H ′ ⊆ F ,

whence from we conclude that H =H ′ as H = F ∩G and H ′ = F ′ ∩G′.
∎

Lemma 5. If (X,τ1, τ2) is a pairwise Stone space then Vbi(X) = (κ(X), τv1 , τv2 )
is pairwise zero-dimensional.
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Proof. We show that βv1 = τv1 ∩δv2 , is a basis for τv1 where δv2 is the set of τv2 -closed

sets.

By definition we have that if W ∈ τv1 then

W = ⋃
i∈I

(
mi

⋂
j=1

◇Uj ∩
ni

⋂
k=1

◻Uk), Uj , Uk ∈ β1.

Thus to show that βv1 is a basis for τv1 it suffices to show that

m

⋂
j=1

◇Uj ∩
n

⋂
k=1

◇Uk ∈ βv1

when Uj , Uk ∈ β1. Since βv1 is closed under finite intersections it is enough to

show that ◇U,◻U ∈ βv1 whenever U ∈ β1 We immediately see from the definition

of τv1 that ◇U,◻U ∈ τv1 , whenever U ∈ β1. Now (◇U)c = ◻U c and (◻U)c = ◇U c.

So as U ∈ β1 implies that U c ∈ β2 we see that ◇U,◻U ∈ δv2 whenever U ∈ β1.

Hence we may conclude that ◇U,◻U ∈ βv1 when U ∈ β1 and so βv1 is indeed a

basis for τv1 .

The argument to the fact that βv2 = τv2 ∩ δv1 , where δv1 is the set of τv1 -closed

sets, is a basis for τv2 is completely similar and thus omitted. ∎

Lemma 6. If (X,τ1, τ2) is a pairwise Stone space then Vbi(X) = (κ(X), τv1 , τv2 )
is pairwise Hausdorff.

Proof. Let H,H ′ ∈ κ(X) with H ≠H ′. So H = F ∩G and H ′ = F ′ ∩G for some

F,F ′ ∈ δ1 and some G,G′ ∈ δ2. By Lemma 4 we then have that H /≤EM1 H ′ or

H ′ /≤EM1 H. We therefore first assume that H /≤EM1 H ′.
Thus either H /⊆ ↓H ′ or H ′ /⊆ ↑H. We assume first that H /⊆ ↓H ′. It

immediately follows from this assumption that we must have x ∈ H such that

x /≤1 y for all y ∈H ′, i.e for each y ∈H ′ we have that x /∈ cl1(y). So as (X,τ1, τ2)
is a pairwise Stone space we have that β1 is a basis for τ1 and hence we must

have for each y ∈ H ′ a basic τ1-open Uy ∈ β1 witnessing that x /∈ cl1(y). This

means that x ∈ Uy and y /∈ Uy. It follows that ⋃y∈H′ U c
y is a τ2-open cover of

H ′. In particular it is a τ1 ∨ τ2 open cover of H ′. Now by proposition 13 we

have that H ′ is pairwise compact, being the intersection of a δ1 and a δ2 set.

So we have a finite subcover ⋃ni=1U
c
y1 of H ′. Therefore if we let U ∶= ⋂ni=1Uyi we

have that H ∩U ≠ ∅, as x ∈ H ∩U and H ′ ∩U = ∅, as U ⊆ H ′c. It follows that

H ∈ ◇U and H ′ /∈ ◇U . Finally since β1 is closed under finite intersections we

have that U ∈ β1 and thereby that U c ∈ β2. Hence we have that ◇U ∈ τv1 and

(◇U)c = ◻U c ∈ τv2 , thus ◇U and ◻U c are disjoint τv1 and τv2 sets respectively

which separates H and H ′.
If H ′ /⊆ ↑H then we have y ∈ H ′ such that x /≤1 y for all x ∈ H. So as β1

is a basis for τ1 we obtain by a similar argument as above a set V ∈ β1 such

that H ∈ ◻V and H ′ /∈ ◻V . So ◻V and ◇V c will be disjoint τv1 and τv2 sets

respectively which separates H and H ′.
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Finally if H ′ /≤EM1 H, then by a completely similar argument as above we

obtain disjoint τv1 and τv2 sets separating H and H ′. ∎

Lemma 7. If (X,τ1, τ2) is a pairwise Stone space then Vbi(X) = (κ(X), τv1 , τv2 )
is pairwise compact.

Proof. By Proposition 14 we have that {◻V,◇V }V ∈β1∪β2 is a subbasis for τv1 ∨τv2
and so by the Alexander Subbasis Lemma it suffices to show that any cover of

κ(X) by elements from the subbasis {◻V,◇V }V ∈β1∪β2 has a finite subcover.

Therefore assume that

κ(X) = ⋃
i∈I
◻Ui ∪ ⋃

j∈J
◇Vj

is an open cover with Ui, Vj ∈ β1 ∪ β2.

We claim that

X = ⋃
i∈I
Ui ∪ ⋃

j∈J
Vj .

For suppose that we have x /∈ ⋃i∈I Ui∪⋃j∈J Vj . Then if we let Cx = cl1(x)∩cl2(x)
we have that Cx ∈ κ(X), and therefore Cx ∈ ◻Ui, for some i ∈ I or Cx ∈ ◇Vj , for

some j ∈ J . Now as x ∈ Cx we have that Cx ∈ ◻Ui implies x ∈ Ui contradicting

the assumption that x /∈ ⋃i∈I Ui ∪ ⋃j∈J Vj . On the other hand, if Cx ∈ ◇Vj for

some j ∈ J , then Vj ∩Cx is non-empty. But as x /∈ ⋃j∈J Vj we have that x ∈ V c
j

for all j ∈ J . Therefore if Vj ∈ β1 then V c
j ∈ β2 and so V c

j is a τ1-closed set

containing x, whereby it follows that cl1(x) ⊆ V c
j and thereby that Cx ⊆ V c

j ,

contradicting the fact that Cx ∩ Vj ≠ ∅. A similar argument applies if Vj ∈ β2.

Now let F ∶=X/⋃j∈J Vj . Since Vj ∈ β1 ∪ β2 we have that

F = ⋂
k∈K

Wk ∩ ⋃
l∈L
W ′
l

with Wk ∈ β1 and W ′
l ∈ β2. So since β1 = τ1 ∩ δ2 and β2 = τ2 ∩ δ1 we must have

that W ∶= ⋂k∈KWk is in δ2 and W ′ ∶= ⋃l∈LW ′
l is in δ1. Therefore we have that

F is the intersection of a δ1 set and a δ2 set and as such F ∈ κ(X). Thus as

⋃i∈I ◻Ui∪⋃j∈J ◇Vj covers κ(X) we must have that F ∈ ⋃i∈I ◻Ui, as F is disjoint

from all Vj . Let i′ ∈ I be such that F ∈ ◻Ui′ . Then F ⊆ Ui′ , and therefore

X = Ui′ ∪ ⋃
j∈J

Vj ,

and so as (X,τ1, τ2) is pairwise compact we have that

X = Ui′ ∪
m

⋃
j=1

Vj .

We finally claim that

κ(X) = ◻Ui′ ∪
m

⋃
j=1

◇Vj .
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To see this, let G ∈ κ(X). Then either G ⊆ Ui′ in which case F ∈ ◻Ui′ or G /⊆ Ui′
in which case G∩⋃mj=1 Vj most be non-empty. From this it follows that G∩Vj ≠ ∅
for some j ≤m and therefore that G ∈ ◇Vj for some j ≤m. ∎

The three above lemmas establish:

Theorem 4. If (X,τ1, τ2) is a pairwise Stone space, then Vbi(X) = (κ(X), τv1 , τv2 )
is also a pairwise Stone space.

We define how Vbi acts on maps: Given a bi-continuous map f ∶ (X,τ1, τ2) →
(X ′, τ ′1, τ

′
2) we define a function Vbi(f)∶Vbi(X) → Vbi(X ′) by H ↦ cl′1(f[H]) ∩

cl′2(f[H]), where cl′i(−) is the closure operator associated to the topology τ ′i for

i ∈ {1,2}.

Proposition 9. If f ∶ (X,τ1, τ2) → (Y, τ ′1, τ ′2) is bi-continuous then Vbi(f) given

by

H ↦ cl′1(f[H]) ∩ cl′2(f[H]),

is a bi-continuous function from (κ(X), τv1 , τv2 ) to (κ(Y ), (τ ′1)v, (τ ′2)v).

Proof. It suffices to show that preimages of the elements of the subbasis are

open. We simply observe that if U ′ ∈ β′1 then

V (f)−1(◇U ′) = {H ∈ κ(X)∶V (f)(H) ∈ ◇U ′}
= {H ∈ κ(X)∶ cl′1(f[H]) ∩ cl′2(f[H]) ∈ ◇U ′}
= {H ∈ κ(X)∶ (cl′1(f[H]) ∩ cl′2(f[H])) ∩U ′ ≠ ∅}
= {H ∈ κ(X)∶ f[H] ∩U ′ ≠ ∅} (as U ′ is δ′2)

= {H ∈ κ(X)∶H ∩ f−1(U ′) ≠ ∅} = ◇f−1(U ′).

A similar argument applies when V ′ ∈ β2. Furthermore an analogous argument

shows that V (f)−1(◻W ′) = ◻f−1W ′, for W ′ ∈ β1 ∪ β2. So as f is assumed to

be bi-continuous we have that f−1W ′ ∈ βi whenever W ′ ∈ β′i, for i ∈ {1,2}.

Hence V (f)−1(◇U ′) and V (f)−1(◻U ′) are open in τv1 for all U ′ ∈ β′1. Likewise

V (f)−1(◇V ′) and V (f)−1(◻V ′) is open in τv2 whenever V ′ ∈ β′2. ∎

4.2 The relation between V and Vbi

To justify the claim that Vbi determines the bitopological analogue of the Vi-

etoris functor on Pries we must show that the diagram (1) commutes. Now

establishing the commutativity of (1) amounts to showing that the following

two diagrams commutes:

PStone Pries

PStone Pries

Φ

Vbi V

Φ

PStone Pries

PStone Pries

Vbi

Ψ

V

Ψ

This is the case because Φ and Ψ are each others inverses.
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Proposition 10. Let V and Vbi be the hyperspace functors for Priestley spaces

and pairwise Stone spaces and let Φ∶PStone→ Pries and Ψ∶Pries→ PStone

be as in theorem 2 then V Φ = Φ Vbi.

Proof. Let (X,τ1, τ2) be a pairwise Stone space. Then we must show that

(Convτ(X), τv, (≤1)EM) = (κ(X), τv1 ∨ τv2 ,≤τv1 ),

where τ = τ1 ∨ τ2, and ≤τv1 is the specialization preorder of (κ(X), τv1 ).
By proposition 3 and proposition 6 we see that Convτ(X) = κ(X). By

using proposition 3 we see that τv is the topology generated by the subbasis

{◻U,◇U} for U ∈ β1 ∪ β2, which must coincide with the topology τv1 ∨ τv2 by

proposition 14. Hence we only need to show that (≤1)EM =≤τv1 . Therefore let

H,H ′ ∈ Convτ(X) = κ(X).
If H /≤τv1 H

′, then we have U ∈ β1 such that either

H ∈ ◇U and H ′ /∈ ◇U,

or

H ∈ ◻U and H ′ /∈ ◻U.

In the former case we have an x ∈ H ∩ U for which U witnesses that x /∈ cl1(y)
for all y ∈H ′. Thus x /∈ ↓H ′ and therefore H /⊆ ↓H ′, why H /≤EM

1 H ′.
In the latter case we have y ∈ H ∩ U c for which U witnesses that x /∈ cl1(y)

for all x ∈H. Thus y /∈ ↑H and therefore H ′ /⊆ ↑H, why H /≤EM
1 H ′.

If H /≤EM
1 H ′ then either H /⊆ ↓H ′ or H ′ /⊆ ↑H. In the former case we get

x ∈ H such that x /∈ ↓H ′ i.e such that for all y ∈ H ′ we have x /∈ cl1(y), which

means that for all y ∈ H ′ we have Uy ∈ β1 such that x ∈ Uy and y /∈ Uy. So by

the now standard compactness argument we can find U ∈ β1 such that x ∈ U
and y /∈ U for all y ∈H ′, whence from it follows that H ∩U ≠ ∅ and H ′ ∩U = ∅,

i.e. H ∈ ◇U and H ′ /∈ ◇U , showing that H /≤τv1 H’. In the former case we get by

a similar argument U ∈ β1 such that H ⊆ U and H ′ /⊆ H ′. Hence H ∈ ◻U and

H ′ /∈ ◻U which shows that H /≤τv1 H
′. ∎

Proposition 11. Let V , Vbi and Ψ, Φ be as in proposition 10. Then Vbi Ψ =
ΨV .

Proof. We show that Φ Vbi Ψ = V and thereby that Vbi Ψ = ΨV as Ψ is the

inverse of Φ.

Let (X,τ,≤) be a Priestley space. Then we see that

Φ Vbi Ψ(X,τ,≤) = Φ Vbi(X,OpUpτ(X),OpDoτ(X))
= Φ(κ(X), (OpUpτ(X))v, (OpDoτ(X))v))
= (κ(X), (OpUpτ(X))v ∨ (OpDoτ(X))v,≤′),
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where ≤′ is the specialization preorder of (X, (OpUpτ(X))v), and where now

κ(X) is obtained from the pairwise Stone space (X,OpUpτ(X),OpDoτ(X)),
i.e.,

κ(X) = {F ∩G∶F c ∈ OpUpτ(X), Gc ∈ OpDoτ(X)}
= {F ∩G∶F ∈ ClDoτ(X), G ∈ ClUpτ(X)}.

By proposition 4 and proposition 6 we see that κ(X) = Convτ(X). More-

over as (OpUpτ(X))v is the topology generated by {◇U,◻U}U∈ClpUpτ (X) and

(OpDoτ(X))v is the topology generated by {◇V,◻V }V ∈ClpDoτ (X) we see by

lemma 14 that (OpUpτ(X))v ∨ (OpDoτ(X))v is the topology generated by

{◇W,◻W}W ∈ClpUpτ (X)∪ClpDoτ (X), which is the topology τv, the Vietoris topol-

ogy on (X,τ,≤).
Therefore we now only need to show that ≤EM=≤′. To see this, we observe

that if F /≤′ F ′, then there exists U ∈ ClpUpτ(X) such that

F ∈ ◇U and F ′ /∈ ◇U or F ∈ ◻U and F ′ /∈ ◻U.

In the former case we get x ∈ F ∩ U such that x ≤ y for all y ∈ F ′, witnessing

that F /⊆ ↓F ′ and therefore that F /≤EM
F ′. In the latter we get y ∈ F ′ such that

x /≤ y for all x ∈ F , witnessing that F ′ /⊆ ↑F , and thereby that F /≤EM
F ′.

Conversely if F /≤EM
F ′ then by the now standard compactness argument

we either obtain U ∈ ClpUpτ(X) such that F ∈ ◇U and F ′ /∈ ◇U or U ′ ∈
ClpUpτ(X) such that F ∈ ◻U ′ and F ′ /∈ ◻U ′, which in both cases implies that

F /≤′ F ′.
We have thus shown that

Φ Vbi Ψ(X,τ,≤) = (Conv(X), τv,≤EM) = V (X,τ,≤),

as desired. ∎

From the commutativity of (1) we immediately obtain that the functors Φ

and Ψ induce an isomorphism of categories CoAlg(V ) and CoAlg(Vbi).

5 Positive modal logic

By the language of positive modal logic we understand the {∧,∨,◻,◇,⊺,�}-

fragment of the language of basic modal logic.

Given that we do not have implication in our language we cannot present a

deductive system for positive modal logic in terms of a Hilbert style calculus as is

done in [2] for basic modal logic. Therefore we give a presentation of the minimal

positive modal logic K+ in terms of consequence pairs. This presentation is

due to Dunn [8] see also [10] for a generalization of positive modal logic to
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distributive modal logic. A consequence pair is an expression ϕ ⊢ ψ where ϕ,ψ

are formulas in the language of positive modal logic.

A positive modal logic Λ is a set of consequence pairs which contains the

following axioms:

ϕ ⊢ ϕ ϕ ⊢ ⊺ � ⊢ ϕ

ϕ ∧ ψ ⊢ ϕ ϕ ∧ ψ ⊢ ψ

ϕ ⊢ ϕ ∨ ψ ψ ⊢ ϕ ∨ ψ

ϕ ∧ (ψ ∨ χ) ⊢ (ϕ ∧ ψ) ∨ (ϕ ∧ χ)

⊺ ⊢ ◻⊺ ◇ � ⊢ �

◻(ϕ ∧ ψ) ⊢⊢ ◻ϕ ∧ ◻ψ ◇ (ϕ ∨ ψ) ⊢⊢ ◇ϕ ∨◇ψ

◇ϕ ∧ ◻ϕ ⊢ ◇(ϕ ∧ ψ) ◻ (ϕ ∨ ψ) ⊢ ◻ϕ ∨◇ψ

and which moreover is closed under the following inference rules:

ϕ ⊢ ψ ψ ⊢ χ
ϕ ⊢ χ

ϕ ⊢ ψ ϕ ⊢ χ
ϕ ⊢ ψ ∧ χ

ϕ ⊢ χ ψ ⊢ χ
ϕ ∨ ψ ⊢ χ

ϕ ⊢ ψ
◻ϕ ⊢ ◻ψ

ϕ ⊢ ψ
◇ϕ ⊢ ◇ψ

Remark 3. One can also give a presentation of positive modal logic in terms of

a genuine Gentzen style sequent calculus. For this see e.g. [5, 6, 8].

We now define K+ to be the minimal positive modal logic. In [8] it is

proven that K+ is sound and complete with respect to Kripke frames with one

accessibility relation.

Theorem 5 ([8]). Let ϕ and ψ be formulas in the language of positive modal

logic, then we have that

ϕ ⊢ ψ ∈ K+ if and only if ϕ ⊧ ψ.
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All of the above axioms and inference rules should not be surprising, with

the exception of the (◻,◇)-interaction rules i.e.

◇ϕ ∧ ◻ϕ ⊢ ◇(ϕ ∧ ψ) ◻ (ϕ ∨ ψ) ⊢ ◻ϕ ∨◇ψ.

To get an idea of why these axioms are imposed we note that since we do not

have negation in the language, ◻ and ◇ are no longer interdefinable. Therefore

we can consider the positive modal logic to consist of two separate modalities.

Consequently in the Kripke semantics for this language we would have two

different accessibility relations with the following clauses:

w ⊧ ◻ϕ iff ∀w′ ∈W wR◻w′ implies w′ ⊧ ϕ,

and

w ⊧ ◇ϕ iff ∃w′ ∈W wR◇w′ and w′ ⊧ ϕ.

Now together the (◻,◇)-interaction rules ensures that R◻ = R◇, in the sense

that ◇ϕ ∧ ◻ϕ ⊢ ◇(ϕ ∧ ψ) is valid on precisely those frames which satisfies

R◇ ⊆ R◻ and ◻(ϕ ∨ ψ) ⊢ ◻ϕ ∨ ◇ψ is valid on precisely whose frames which

satisfies R◻ ⊆ R◇. Therefore we can consider Kripke frames with only one

accessibility relation, so that ◇ will be the dual of ◻, at least on the semantic

level.

Even though the logic K+ is sound and complete with respect to the the usual

Kripke semantics restricted to the forcing clauses for the positive connectives,

it turns out that this semantics is not very well-behaved when it comes to even

very simple extensions of minimal positive modal logic. E.g. if the consequent

pair ◻ϕ ⊢ ◻◻ϕ is added to K+ then the resulting logic K4+ is frame incomplete.

More precisely we have that the consequent pair ◇◇ ϕ ⊢ ◇ϕ is valid on every

frame that validates ◻ϕ ⊢ ◻ ◻ ϕ, however ◇◇ ϕ ⊢ ◇ϕ is not deducible from

◻ϕ ⊢ ◻◻ϕ over K+. Thus we need a different semantics for positive modal logic

where the frame complete logics are precisely those that are characterized by

some class of frames. In order to achieve this Celani and Jansana introduced in

[5] a semantics based on quasi ordered Kripke frames (W,≤,R) satisfying

(≤ ○R) ⊆ (R○ ≤) and (≥ ○R) ⊆ (R○ ≥).

Moreover the valuations on these frames is restricted to those which maps the

propositional letters into upsets. In [5] it is shown that K+ is sound and complete

with respect to this semantics and that the frame complete extensions of minimal

positive modal logic are precisely the ones characterized by some class of frames.

5.1 Duality theory for positive modal logic

As one could imagine an algebraic semantics for K+ is based on distributive

lattices with two operators interpreting the box and the diamond modalities.

More precisely we define:
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Definition 5. A positive modal algebra is a structure (A,∧,∨,◻,◇,0,1, ) such

that (A,∧,∨,0,1, ) is a bounded distributive lattice with operators ◻,◇∶A→ A

satisfying:

◻1 = 1 ◇ 0 = 0

◻(a ∧ b) = ◻a ∧ ◻b ◇ (a ∨ b) = ◇a ∨◇b
◻a ∧◇b ≤ ◇(a ∧ b) ◻ (a ∨ b) ≤ ◻a ∨◇b.

By PMA we will denote the category of positive modal algebras and bounded

lattice homomorphisms which commute with the operators ◻ and ◇.

In order to obtain a duality for positive modal logic á al Jónsson-Tarski,

Celani and Jansana [6] introduced the notion of a K+-space which is going to

be to positive modal algebras what the general descriptive frames are to normal

modal algebras in the well-know Jónsson-Tarski duality theory for full modal

logic. In the following we briefly sketch the duality theory for positive modal

logic. For details we refer to [6].

Definition 6. A K+-space is a quadruple (X,τ,≤,R) such that

i) (X,τ,≤) is a Priestley space.

ii) The set R[x] is closed for each x ∈X.

iii) R[x] = (R○ ≤)[x] ∩ (R○ ≥)[x] for each x ∈X

iv) The topology τ is closed under the operations ⟨R⟩ and [R],

where R[x] = {y ∈X ∶xRy} is the set of R-successors of x.

By a K+-morphism we understand a continuous and order preserving func-

tion f ∶ (X,τ,≤,R) → (X ′, τ ′,≤′,R′) between K+-space which are also a p-morphism

with respect to the relations R and R′. Recall that a p-morphism is a map

f ∶ (X,R) → (Y,R′) between sets with relations such that

i) xRx′ implies f(x)R′f(x′),

ii) f(x)Ry implies that there exists x′ ∈X such that xRx′ and f(x′) = y.

Since (R○ ≤)[x] = ↑R[x] and (R○ ≥)[x] = ↓R[x] one readily checks that

the K+-spaces of [6] are the same as the Modal Priestley spaces of [4], where a

modal Priestley space is defined as a quadruple (X,τ,≤,R) such that (X,τ,≤)
is a Priestley space and R is a binary relation on X satisfying

i) R[x] is closed and convex for all x ∈X.

ii) The set ClpUp(X) is closed under the operations ⟨R⟩ and [R].

Remark 4. Note that as ClpDo(X) = {U c∶U ∈ ClpUp(X)} and [R]U c = (⟨R⟩U)c

and ⟨R⟩U c = ([R]U)c it follows that if R satisfies ii) then ClpDo(X) is also

closed under the operations ⟨R⟩ and [R].
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We let MPS denote the category of modal Priestley spaces with morphisms

continuous order preserving functions which are also p-morphisms with respect

to the relation R. Hence MPS is the same as the category of K+-spaces and

K+-morphisms and therefore in what follows we shall refer to this category as

the category of modal Priestley spaces rather that the category of K+-spaces.

Now if (X,τ,≤,R) is a modal Priestley space then

A(X) = (ClpUp(X),∩,∪, [R], ⟨R⟩,∅,X)

will be a positive modal algebra. Moreover if f ∶ (X,τ,≤,R) → (X ′, τ ′,≤′,R′) is

morphism of modal Priestley spaces then A(f)∶A(X ′) → A(X) given by

A(f)(U) = f−1(U)

is a positive modal algebra homomorphism. In fact this determines a functor

A∶MPS→ PMA.

Conversely if (A,∧,∨,◻,◇,0,1) is positive modal algebra then

F (A) = (pf(A), τ,⊆,RA)

is a modal Priestley space, where pf(A) is the set of all prime filters on A and

τ is the topology on pf(A) generated by the subsets

ϕ+(a) = {P ∈ pf(A)∶a ∈ P} and ϕ−(a) = {P ∈ pf(A)∶a /∈ P},

with a ranging in A. Finally the relation RA is given by

PRAQ ⇐⇒ ◻−1(P ) ⊆ Q ⊆ ◇−1(P ).

If we let R◻ ∶= (RA○ ⊆) and R◇ ∶= RA○ ⊆ then on may readily check that

RA = R◻ ∩R◇.

If h∶A → B is an homomorphism between positive modal algebras then

F (h)∶F (B) → F (A) given by F (h)(P ) = h−1(P ) will be a morphism of modal

Priestley spaces. Thus we have a functor F ∶PMA→MPS.

Celani and Jansana has showed that this indeed gives us a Jónsson-Tarski

style duality theory for positive modal logic, i.e.

Theorem 6 ([6]). The functors F ∶PMA → MPS and A∶MPS → PMA de-

termines a dual equivalence between the categories PMA and MPS.

Note that this is an extension of the Priestley duality between the categories

bDist and Pries in exactly in the same way that the Jónsson-Tarski duality is

an extension of Stone duality.
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6 The Coalgebraic view

Let C be a category and F ∶C → C an endofunctor. By a coalgebra for F (or

an F -coalgebra) we shall understand a pair (C, ξ) such that ξ∶C → F (C) is an

arrow in C.

Example 1. The coalgebras for the covariant powerset functor P(−)∶Set →
Set can be seen as Kripke frames. More precisely given a coalgebra ξ∶W →
P(W ) we define a relation R on W , by

xRy ⇐⇒ y ∈ ξ(x).

Conversely given a Kripke frame (W,R) we get a P-coalgebra R[−]∶W →
P(W ).

A coalgebra morphism between F -coalgebras (C, ξ) and (D,χ) is an arrow

f ∶C →D in C such that the following diagram

F (C) F (D)

C D

F (f)

ξ

f

χ

commutes.

Example 2. The coalgebra morphisms between coalgebra for the covariant pow-

erset functor corresponds to the p-morphisms between the corresponding Kripke

frames.

Now given an endofunctor F ∶C → C we denote by CoAlg(F ) the category

of F coalgebras and F -coalgebra morphisms.

Thus if we let Krp denote the category of Kripke frames and p-morphisms

then examples 1 and 2 tell us that the categories Krp and CoAlg(P) are

isomorphic.

Hence we can see the category CoAlg(P) as providing a semantics for basic

modal logic. By changing the base category we can view coalgebra as a tool

for obtaining semantics for different kinds of modal logics. The following two

theorems may serve as an example of this.

Theorem 7 ([18]). The category CoAlg(V ) of coalgebras for the endofunctor

V ∶Pries → Pries is dually equivalent to the category PMA of positive modal

algebras.

Remark 5. Note that the functor V ∶Pries → Pries in [18] is define somewhat

differently from the one of the present work. However argument in [18] should

easily be adaptable to the functor as define by us. This fact is also noted in

[4, 24].
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The above theorem is inspired by following:

Theorem 8 ([1, 15]). The category CoAlg(K) of coalgebras for the endofunctor

K ∶Stone→ Stone is dually equivalent to the category MA of modal algebras.

Where a modal algebra is a Boolean algebra ⟨A,∧,¬,0,1⟩ with an operator

◻∶A→ A which preserves finite meets, i.e ◻1 = 1 and ◻(a∧ b) = ◻a∧◻b. And as

morphisms in MA we take Boolean algebra homomorphisms which commute

with the operator ◻.

Our aim is to study the category CoAlg(Vbi) of coalgebras for the bi-Vietoris

functor Vbi∶PStone → PStone, which in light of theorem 7 should be dually

equivalent to the category of PML.

6.1 Coalgebras for the bi-Vietoris functor Vbi

We begin with an example

Example 3. Let (X,τ1, τ2) be a bitopological space and let ξ∶X → κ(X) be

given by x↦ cl1(x) ∩ cl2(x). Then we see that

ξ−1(◇U) = ξ−1(◻U) = U

for all U ∈ β1 ∪β2. Therefore we can conclude that ξ is a bi-continuous function

from (X,τ1, τ2) to Vbi(X). So ((X,τ1, τ2), x↦ cl1(x)∩cl2(x)) is a Vbi-coalgebra

for all bitopological spaces (X,τ1, τ2).

We wish to investigate the relational semantics of positive modal logic by

characterizing the relations R which give rise to a Vbi coalgebra by x ↦ R[x].
And vice versa we want to determine the relations R defined via a Vbi-coalgebra

ξ as follows:

xRy ⇐⇒ y ∈ ξ(x).

6.1.1 From relations to coalgebras

If R is a relation on a set X and U ⊆X we define

⟨R⟩U ∶= {x ∈X ∶R[x] ∩U ≠ ∅} and [R]U ∶= {x ∈X ∶R[x] ⊆ U}.

Definition 7. Let (X,τ1, τ2) be a pairwise Stone space, and R a binary relation

on X. We say that R is a positive accessibility relation if the following holds:

i) R[x] ∈ κ(X), for all x ∈ X, i.e. for all x ∈ X we have τ1-closed F ⊆ X and

τ2-closed G ⊆X such that R[x] = F ∩G.

ii) ⟨R⟩U, [R]U ∈ β1 for all U ∈ β1.
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Remark 6. Note that as β2 = {U c∶U ∈ β1} and [R]U c = (⟨R⟩U)c and ⟨R⟩U c =
([R]U)c it follows that if R satisfies item ii) in the above definition, then β2 is

also closed under the operations ⟨R⟩ and [R].

We claim that positive accessibility relations give rise to coalgebras for Vbi

in the following sense.

Theorem 9. Let (X,τ1, τ2) be a pairwise Stone space, and R a positive accessi-

bility relation on X. Then ξR∶X → Vbi(X) given by ξR(x) = R[x] is a coalgebra

for the functor Vbi.

Proof. By item i) in the definition of positive accessibility relation we have that

ξR(x) belongs to κ(X) for all x ∈ X, and therefore ξR is indeed a well-defined

function from X to κ(X). Thus in order to show that ξR is a coalgebra for Vbi

we only need to show that ξR is bi-continuous, i.e. that ξR is continuous as a

mapping from (X,τ1) → (κ(X), τv1 ) and as a mapping (X,τ2) → (κ(X), τv2 ).
As {◇U,◻U}U∈β1 is a subbasis for τv1 and {◇V,◻V }V ∈β2 is a subbasis for τv2
it suffices to show that ξ−1

R (◇U) and ξ−1
R (◻U) are τ1-open for all U ∈ β1 and

ξ−1
R (◇V ) and ξ−1

R (◻V ) are τ2-open for all V ∈ β2.

We easily see that

ξ−1
R (◇W ) = ⟨R⟩W and ξ−1

R (◻W ) = [R]W,

for all W ∈ β1 ∪ β2. So by item ii) in the definition of positive accessibility

relations we see that

ξ−1
R (◇U), ξ−1

R (◻U) ∈ β1, for all U ∈ β1,

and by and remark 6 we also obtain that

ξ−1
R (◇V ), ξ−1

R (◻V ) ∈ β2, for all V ∈ β2.

Therefore we may conclude that ξR is bi-continuous. ∎

6.1.2 From coalgebras to relations

Conversely we want to show that any coalgebra ξ∶X → Vbi(X) induces a positive

accessibility relation Rξ on X such that ξRξ = ξ and RξR = R.

Theorem 10. Let (X,τ1, τ2) be a pairwise Stone space and let ξ∶X → Vbi(X)
be a coalgebra for Vbi. Then the relation Rξ given by

xRξy ⇐⇒ y ∈ ξ(x)

is a positive accessibility relation on X.
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Proof. We first observe that for any x ∈ X we have Rξ[x] = ξ(x). It follows

that Rξ[x] ∈ κ(X) for all x ∈ X, which is item i) in the definition of a positive

accessibility relation. Moreover we see that for U ∈ β1

⟨Rξ⟩U = {x ∈X ∶Rξ[x] ∩U ≠ ∅}
= {x ∈X ∶ ξ(x) ∩U ≠ ∅}
= {x ∈X ∶ ξ(x) ∈ ◇U}
= ξ−1(◇U).

Similarly we have that [Rξ]U = ξ−1(◻U).
So as ξ is bi-continuous we can therefore conclude that ⟨Rξ⟩U, [Rξ]U ∈ τ1 for

all U ∈ β1 and ⟨Rξ⟩V, [Rξ]V ∈ τ2 for all U ∈ β1∪β2. Moreover as β2 = {U c∶U ∈ β1}
and as

⟨Rξ⟩U = ([Rξ]U c)c and [Rξ]U = (⟨Rξ⟩U c)c,

we must also have that ⟨Rξ⟩U, [Rξ]U ∈ δ2 for U ∈ β1. Therefore we see that

⟨Rξ⟩U, [Rξ] ∈ β1, which is the second and final item in the definition of positive

accessibility relations. ∎

Let PAR be the category whose objects are pairwise Stone spaces with a

positive accessibility relation and whose morphism are bi-continuous maps

f ∶ (X,τ1, τ2,R) → (X,τ ′1, τ ′2,R′)

satisfying

R′[f(x)] = cl′1(f[R[x]]) ∩ cl′2(f[R[x]]).

The condition on the maps is made to ensure that they are also Vbi-coalgebra

morphisms between the corresponding Vbi-coalgebras.

Proposition 12. The correspondences R ↦ ξR and ξ ↦ Rξ determines an

isomorphism between the categories PAR and CoAlg(Vbi).

Proof. We first show that if f ∶ (X,τ1, τ2,R) → (X ′, τ ′1, τ
′
2,R

′) is a morphism in

PAR then it is a coalgebra morphism from (X,ξR) → (X ′, ξR′). For this we

simply observe that

(V (f) ○ ξR)(x) = V (f)(R[x])
= cl′1(f[R[x]]) ∩ cl′2(f[R[x]])
= R′[f(x)]
= (ξR′ ○ f)(x).

Conversely if f ∶ (X,ξ) → (Y,χ) then we have by a similar argument that f

is a PAR-morphism from (X,τ1, τ2,Rξ) to (X ′, τ ′1, τ
′
2,R

χ).
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It follows from the above that the assignment

(X,τ1, τ2,R) ↦ ((X,τ1, τ), ξR) and ((X,τ1, τ), ξ) ↦ (X,τ1, τ2,Rξ)

on objects and f ↦ f on morphism determines functors between PAR and

CoAlg(Vbi). We show that these functors are indeed isomorphisms.

Let (ξ,X) be a Vbi-coalgebra and let R be a positive accessibility relation

on X. We observe that

ξRξ(x) = Rξ[x] = {y ∈X ∶ y ∈ ξ(x)} = ξ(x),

for all x ∈X, and hence ξRξ = ξ. Moreover we see that for all x, y ∈X:

xRξRy ⇐⇒ y ∈ ξR(x) ⇐⇒ y ∈ R[x] ⇐⇒ xRy,

so RξR = R. ∎

Theorem 11. The category MPS and PAR are isomorphic.

Proof. We obtain this immediately from the isomorphism between the categories

PStone and Pries, as one can readily check that R is a positive accessibility

relation on the pairwise Stone space (X,τ1, τ2) precisely when (X,τ1∨τ2,≤1,R)
is a Modal Priestley space. ∎

Thus we have now esthablished the following theorem

Theorem 12. The logic K+ is sound and complete with respect to coalgebras

for the functor Vbi∶PStone→ PStone.

7 Intuitionistic modal logic

We here briefly touch upon the question of intuitionistic modal logic, which we

think arises naturally in the context of this report. For this we return to the

setting of Priestley spaces.

Definition 8. An Esakia space is a Priestley space (X,τ,≤) such that ↓U is

clopen for every clopen subsets U .

Recall that a map f ∶ (X,≤) → (Y,≤′) between partial ordered sets is called

a p-morphism if f is order preserving and for all x ∈X and y ∈ Y :

f(x) ≤′ y Ô⇒ ∃x′ ∈X x ≤ x′ ∧ f(x′) = y.

Note that being a p-morphism is equivalent to satisfying the condition that

f[↑x] = ↑f(x), for all x ∈X. Moreover the above definition also makes sense for

an arbitrary binary relation. The following theorem shows that Esakia spaces

are to intuitionistic logic what Stone spaces are to classical logic, i.e. the dual

spaces of the algebraic semantics:
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Theorem 13 ([9]). The category Esa of Esakia spaces and continuous p-

morphisms is dually equivalent to the category HA of Heyting algebras.

Ideally we would like to extend the coalgebraic techniques so that we can

define the category IMA of intuitionitic modal algebras as the dual of the cat-

egory of coalgebras for an appropriate functor. The following theorem gives a

candidate for such a functor.

Theorem 14. The functor V ∶Pries → Pries restricts to an endofunctor on

Esa.

Proof. To establish this we need to prove that (Conv(X), τv,≤EM) is an Esakia

space whenever (X,τ,≤) is an Esakia space. And that V (f) is a p-morphism

whenever f is.

Therefore let W be a τv-clopen set. Then we have that W is a finite in-

tersection of subbasis element, and as ◻ distributes over intersection we in fact

have that

W =
m

⋂
i=1

◇Ui ∩
n

⋂
j=1

◇Vj ∩ ◻U ∩ ◻V,

for Ui, U ∈ ClpUpτ(X) and Vi, V ∈ ClpDoτ(X).
We show that

↓W =
m

⋂
i=1

◇↓(Ui ∩U ∩ V ) ∩
n

⋂
j=1

◇↓(Vj ∩U ∩ V ) ∩ ◻↓(U ∩ V )

from which it will follow that ↓W , being an intersection of finitely many clopen,

is clopen.

If F ∈ ↓W . Then we have F ′ ∈ W such that F ⊆ ↓F ′ and F ′ ⊆ ↑F . Since

F ′ ∈W we must have that

F ′ ∩Ui ≠ ∅, and F ′ ∩ Vj ≠ ∅ and F ′ ⊆ U and F ′ ⊆ V.

It follows that for all i ≤m that we have xi ∈ F ∩Ui ∩U ∩V and for every j ≤m
we have yj ∈ F ∩ Vj ∩U ∩ V so since there for F ′ ⊆ ↑F we must have that

F ∩ ↓(Ui ∩U ∩ V ) ≠ ∅ and F ∩ ↓(Vj ∩U ∩ V ) ≠ ∅,

for all i ≤ m and all j ≤ n. As also F ⊆ U ∩ V we see that F ⊆ ↓F ′ ⊆ ↓(U ∩ V ).
Thus we obtain that F ∈ ⋂mi=1◇↓(Ui ∩U ∩V )∩⋂nj=1◇↓(Vj ∩U ∩V )∩◻↓(U ∩V ),
and thereby that

↓W ⊆
m

⋂
i=1

◇↓(Ui ∩U ∩ V ) ∩
n

⋂
j=1

◇↓(Vj ∩U ∩ V ) ∩ ◻↓(U ∩ V ).

If on the other hand

F ∈
m

⋂
i=1

◇↓(Ui ∩U ∩ V ) ∩
n

⋂
j=1

◇↓(Vj ∩U ∩ V ) ∩ ◻↓(U ∩ V ).
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Then we must have that F ∩ ↓(Ui ∩ U ∩ V ) ≠ ∅ for all i = 1, . . .m, and that

F ∩ ↓(Vj ∩ U ∩ V ) ≠ ∅ for all j = 1, . . . , n. It follows that ↑F ∩ Ui ∩ U ∩ V and

↑F ∩Vj ∩U ∩V ≠ ∅. Now as F ⊆ ↓(U ∩V ) we must have that F ′ ∶= ↑F ∩(U ∩V )
is non-empty and also that F ≤EM F ′. We claim that F ′ ∈ W , whence from it

will follow that F ∈ ↓W , and thereby that

m

⋂
i=1

◇↓(Ui ∩U ∩ V ) ∩
n

⋂
j=1

◇↓(Vj ∩U ∩ V ) ∩ ◻↓(U ∩ V ) ⊆ ↓W.

To see that F ′ ∈W we first note that by proposition 1 ↑F is closed and therefore

F ′ is closed being the intersection of closed set. Moreover as U is an upset and

V a downset we have that F ′ is an intersection of an upset, namely ↑F ∩ U ,

and a downset, namely V , and therefore convex by proposition 6. Thus we have

that F ′ ∈ Conv(X). Finally by construction we have that F ′ ⊆ U and F ′ ⊆ V
and F ′ ∩ Ui ≠ ∅ and F ′ ∩ Vj ≠ ∅ for all i = 1, . . .m and all j = 1, . . . n. So we

indeed have that F ′ ∈W .

Finally assume that f ∶ (X,τ,≤) → (Y, τ ′,≤′) is a continuous continuous p-

morphism. Then by proposition 8 we know that V (f)∶V (X) → V (Y ) is con-

tinuous and order preserving and so we only need to show that V (f) is also a

p-morphism.

Therefore let F ∈ Conv(X) and G ∈ Conv(Y ) be such that

V (f)(F )(≤′)EMG.

Then we must find F ′ ∈ Conv(X) such that F ≤EM F ′ and V (f)(F ′) = G. We

claim that F ′ ∶= ↑F ∩ f−1(G) will satisfy these conditions. We first show that

f−1(G) ∈ Conv(X) from which it will follow that F ′ ∈ Conv(X). As f is a

p-morphism we see that

f−1(↓G) = {x ∈X ∶ ∃y ∈ G f(x) ≤ y} = {x ∈X ∶ ∃x′ ∈ f−1(G) x ≤ x′} = ↓f−1(G).

Likewise we obtain that f−1(↑G) = ↑f−1G. Hence by proposition 6 we must

have that

f1(G) = f−1(↓G ∪ ↑G) = f−1(↓G) ∪ f−1(↑G) = ↓f−1G ∩ ↑f−1(G).

Hence f−1(G) is convex and as f is continuous and G is close in τ ′ we have

that f−1(G) is closed and so f−1(G) ∈ Conv(X). Clearly F ′ ⊆ ↑F . To see that

F ⊆ ↓F ′, suppose that x ∈ F then as f(x) ∈ V (f)[F ] we have that f(x) ≤′ y for

some y ∈ G. Now as f is a p-morphism we know that there exists x′ ∈ X such

that x ≤ x′ and f(x′) = y. Hence x′ ∈ F ′ and therefore x ∈ ↓F ′. We have thus

shown that F ≤EM F ′.
We conclude the proof by showing that V (f)(F ′) = G. For this it suffices to

prove that f[F ′] = G, as G is convex. Evidently we have that f[F ′] ⊆ G. On
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the other hand if y ∈ G. Then as V (f)(F )(≤′)EMG we have x′ ∈ V (f)(F ) such

that x′ ≤′ y. Now x′ ∈ V (f)(F ) implies that f(x1) ≤′ x′ for some x1 ∈ F . It

follows that f(x1) ≤ y and so since f is a p-morphism we must have x2 ∈X such

that x1 ≤ x2 and f(x2) = y. Hence we have that x2 ∈ ↑F ∩ f−1(G) = F whence

y being the image of x2 under f must belong to the set f[F ′]. ∎

There do not seem to be any consensus in the literature on what intuitionistic

modal logic should be. But in light of the above theorem one could argue by

way of analogue that since classical modal logic is sound and complete with

respect to the coalgebras for the Vietoris functor on the category of Stone space,

the coalgebras for the endofunctor V ∶Esa → Esa should determine a sound a

complete relational semantics for intuitionistic modal logic - whatever that might

be. We refer the reader to [26] and to [20] sec. 3.2. for a nice and brief survey of

the different (non-coalgebraic) approaches to intuitionist modal logic. However

the problem with saying that intuitionistic modal logic should be determined

by CoAlg(V ) is, that since Esa is not a full subcategory of Pries it is not

clear how to give a characterisation of the relations R on Esakia spaces such

that x ↦ R[x] becomes a coalgebra for V ∶Esa → Esa. In the end what we

would like is a purely axiomatic description for intuitionistic modal logic, and

at present it still seems to be an open problem how to axiomatize the logic with

semantics given by the coalgebras for the Vietoris functor on the category of

Esakia spaces. Moreover even if we could give such an axiomatization it is not

certain that we get a logic that we would like to call intuitionistic modal logic.

This is after all a philosophical question. See e.g. [20, 26] for a list of arguably

very reasonable desiderata for intuitionistic modal logic. It could very well be

that one would have to consider the coalgebras for a functor on a completely

different base category to obtain a logic that could be called intuitionistic modal

logic.

A General (bi)topological results

Proposition 13. If (X,τ1, τ2) is a bitopological space which is pairwise com-

pact, and {Fi}ni=1 is a finite family of subsets of X, with Fi ∈ δ1∪δ2 then ⋂ni=1 Fi

is pairwise compact.

Proof. It suffices to show the claim for n = 2 as the general case then follows

from an easy induction argument. Let F1∩F2 ⊆ ⋃i∈I Ui be an τ1∨τ2 open cover.

Then as F c
1 , F

c
2 ∈ τ1 ∪ τ2 we have that

⋃
i∈I
Ui ∪ (F1 ∩ F2)c = ⋃

i∈I
Ui ∪ F c

1 ∪ F c
2 (♣)

is a τ1∨τ2-open cover of X, and as X is assumed to be pairwise compact we have

a finite subcover of the cover (♣). If (F1 ∩ F2)c does not belong to this cover
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this will also be a finite subcover of ⋃i∈I Ui. If on the other hand (F1∩F2)c does

belong to this subcover then simply discarding it will yield a finite subcover of

⋃i∈I Ui. ∎

It follows from the above proposition that any δ1 or δ2 subset of a pairwise

compact bitopological space will again be pairwise compact.

Proposition 14. If B1 is a subbasis for τ1 and B2 is a subbasis for τ2 then

B1 ∪B2 is a subbasis for τ1 ∨ τ2.

Proof. Let τ be the topology generated by the set B1 ∪ B2. We show that

τ = τ1 ∨ τ2, from which the claim follows.

By definition τ1 ∨ τ2 is the least topology containing the topologies τ1 and

τ2, and as τ1 is the least topology containing B1 and τ2 is the least topology

containing B2 we have that τ1 ∨ τ2 ⊇ B1 ∪ B2. So as τ is the least topology

containing B1 ∪B2 we must have that τ ⊆ τ1 ∨ τ2.

Conversely as τ ⊇ B1 ∪B2 we have that τ ⊇ B1, whence τ ⊇ τ1 as τ1 is the

least topology containing B1. By a similar argument we see that τ ⊇ τ2 and

therefore that τ ⊇ τ1 ∪ τ2. So as τ1 ∨ τ2 is the least topology which contains the

set τ1 ∪ τ2 we get that τ ⊇ τ1 ∨ τ2.

We may thus conclude that τ = τ1 ∨ τ2, whence from it follows that B1 ∪B2

is a basis for τ1 ∨ τ2. ∎

The following classic result in point-set topology, known as the Alexander

Subbasis Lemma, can be found most advanced textbooks on topology, e.g [25].

Lemma 8. Let (X,τ) be a topological space and let B be a subbasis for τ . Then

(X,τ) is compact iff every cover of X by element of the subbasis B has a finite

subcover.
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