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Abstract

In the setting of concurrency theory, Joyal, Winskel and Nielsen intro-
duced a general notion of path bisimulation and showed that path bisimu-
lations can be characterized as spans of open maps between presheaves. A
modal logic for presheaves, called path logic, was shown to be expressive
for such notion of bisimilarity. We consider the special case where the
presheaves are defined over a topological space, and in particular where
they are sheaves. We illustrate how natural properties of sheaves can be
expressed in path logic and show how to encode the key concepts of the
sheaf-theoretic treatment of contextuality [2]. We further investigate the
associated notion of path bisimulation on sheaves, proving a characteri-
zation result for co-spans of open maps. Finally, we introduce a “hybrid
path logic” and show that the notion of a sheaf itself can be captured by
an axiom of this enriched logic.

1 Introduction

In computer science modal logic usually appears in concurrency theory, as a
specification language for reasoning about concurrent systems. The most com-
mon approach here is to represent a concurrent system as a labelled transition
system, and view these models as Kripke models for a multi-modal language,
with different modalities corresponding to each label. Some standard modal
logics used are linear time temporal logic, computation-tree logic or the modal
µ-calculus. What drives this connection is the fact that modal logic is invariant
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for bisimulations, which are understood as behavioural equivalences of processes:
models are bisimilar if they represent essentially the same process.

The so called “presheaf approach” to Concurrency Theory originated from
the categorical outlook towards models of concurrency of [14]. In this paper
many important models such as transition systems, synchronization trees and
event structures are organized into categories and systematically related via
adjunctions. Upon realization that each of these models was associated to a
corresponding notion of path, in the seminal paper [8] Joyal, Winskel and Nielsen
devised a representation of models of concurrency in terms of presheaves over
suitable path categories, following the intuition that a model of concurrency
consists of bundles of different paths glued together in a coherent way.

This perspective unveiled the possibility to define a general categorical notion
of behavioural equivalence solely in terms of path preservation and path ‘lifting’.
While the former is usually inbuilt in the definition of morphism of the categories
under examination, the latter had to be imposed, leading to the definition of
open maps (which coincides on presheaves with the one in [7]). The desired
general notion of bisimilarity was then at hand: two models of concurrency
are deemed bisimilar if their presheaf representations are connected by a span
of open maps. In a follow-up paper [15] it was observed that presheaves can
themselves be regarded as transition system via the construction usually known
as category of elements. A notion of bisimulation for these transition systems,
called path bisimulation, was proved equivalent to the bisimulation in terms of
span of open maps, and a modal logic called path logic was proposed and shown
to be characteristic for path bisimulation. Path logic is a modal logic whose
modalities are labelled by the morphisms of the path category. Given some
conditions on the base category, presheaves can be thought of as generalized
models of concurrency, with representables playing the role of path shapes.
Path logic becomes then the natural choice of language for such models.

The main contribution of this paper is to bring the path logic developed
for presheaves in concurrency theory, along with the closely related notion of a
path bisimulation, into the context of topology. This is achieved by restricting
our attention to the special case of presheaves over topological spaces, and in
particular sheaves, a concept that is widely used in geometry and topology.1

The main test case for our approach is the recent sheaf-theoretic analysis
of non-locality and contextuality pioneered by Abramsky and Brandenburger
in [2]. Contextuality has proven to be a crucial feature of quantum phenomena
and this line of research has since then been developed in a series of papers.2 We
will show how the pivotal concepts of that analysis can be captured by path logic;
this in turn entails that such properties are invariant under path bisimulation.
Such insights suggest that the study of Path Logic for sheaves could bear more
fruits when developed in full generality. Moving the first steps in this direction,
we prove some basic results concerning the apt notion of bisimulation in the
context of sheaves, in particular a characterization result for co-spans of open
maps, and suggest how to enrich Path Logic to capture the notion of sheaf itself.

1See [10] for a classic text.
2We will especially refer to [1, 2, 9].
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2 Preliminaries

Suppose we are given a small category C.3 Along the lines of the presheaf
approach surveyed in the previous sections, we assume C has an initial object,
denoted with 0.

Definition 1. A presheaf P : Cop → Set is rooted if P (0) is a singleton. The
unique objects in P (0) is called the root, and is usually denoted by r.

Note that due to the universal property of the initial objects all representable
presheaves are rooted. Given a cardinal κ and a set Var of propositional vari-
ables, the syntax of path logic is defined by the grammar

PLκ(C,Var) 3 ϕ ::= e | ¬ϕ |
∨
i∈I
{ϕi} | 〈f〉ϕ | 〈f〉ϕ

where a ranges over Var, f ∈ C1 and the cardinality of I is less than κ. We
define > =

∧
∅ and ⊥=

∨
∅. The syntax of this logic is amenable for many

interpretations, depending on the nature of the category C; we will see in later
sections how, when the base category is a poset, we can think of the modalities
〈f〉ϕ and 〈f〉ϕ as extension and restriction of contexts.

In order to evaluate path logic on a presheaf, we first turn the presheaf into
a labelled transition system:

Definition 2. Given a presheaf P : Cop → Set, we can define a labelled
transition system 〈W, {Rf}f∈C1〉 via a variation of the category of elements, as
described in [15]:

• W := {(x,C)|x ∈ P (C), C ∈ C0}

• Rf := {((x,C), (y, C ′))|f : C → C ′, P (f)(y) = x}

Definition 3. A presheaf model M over C is a presheaf P together with a
valuation V : Var → PW , where 〈W, {Rf}f∈C1〉 is the LTS associated with P .
The model M is said be rooted if P is a rooted presheaf.

We can now define the satisfaction relation for formulas of PLκ(C,Var) on
a presheaf model M = (P, V ) over C, essentially by doing standard Kripke
semantics over the LTS associated with the presheaf P and treating 〈f〉 as a
backwards modality. For atomic propositions we have M, (x,C) � e iff (x,C) ∈
V (e) and the clauses for connectives are as usual, while for the modalities put

• M, (x,C) � 〈f〉ϕ iff there is (y, C ′) such that ((x,C), (y, C ′)) ∈ Rf and
M, (y, C ′) � ϕ

• M, (x,C) � 〈f〉ϕ iff there is (y, C ′) such that ((y, C ′), (x,C)) ∈ Rf and
M, (y, C ′) � ϕ

The syntax and semantics of path logic were introduced in [8] to characterize
the notion of strong path bisimulation:4

3We indicate with C0 and C1 the sets of objects and arrows respectively.
4We will always consider strong path bisimulation, hence we will drop the adjective strong

henceforth.
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Definition 4. A path bisimulation Z between rooted presheaf models M1 =
(Q1, V1) and M2 = (Q2, V2) over C is a family (ZC)C∈C0

in which each ZC is a
set of pairs of objects (p, q) such that p ∈ Q1(C) and q ∈ Q2(C) satisfying the
following conditions:

1. roots are related: (r1, r2) ∈ ZI ;

2. if (p, q) ∈ ZC then p ∈ V1(e) iff q ∈ V2(e)

3. (forward) for (p, q) ∈ ZC , if there is p′ ∈ Q1(C ′) such that Q1(f)(p′) = p
for f : C → C ′ then there must be q′ ∈ Q2(C ′) such that Q2(f)(q′) = q
and (p′, q′) ∈ ZC′ , and conversely reversing the role of the presheaves;5

4. (backward) if (p, q) ∈ ZC and f : C ′ → C then (Q1(f)(p), Q2(f)(q)) ∈
ZC′ .

In case Var = ∅ we refer to Z simply as a path bisimulation between the
presheaves Q1, Q2.

Path logic is expressive for path bisimulations:

Theorem 1 ( [8]). There is a path bisimulation between two rooted presheaf
models M1,M2 over C iff the respective roots satisfy the same formulas of the
path logic PL|C0|(C,Var).

Definition 5. Given two presheaves Q1, Q2 : Cop → Set, a natural transfor-
mation η : Q1 → Q2 is an open map if, for every f : C → C ′ in C, the following
commuting square

Q1(C) Q1(C ′)

Q2(C) Q2(C ′)

ηC ηC′

Q1(f)

Q2(f)

is a quasi-pullback, that is, if x ∈ Q1(C) and y ∈ Q2(C ′) are such that ηC(x) =
Q2(f)(y) then there exist z ∈ Q1(C ′) for which ηC′(z) = y and Q1(f)(z) = x.6

Theorem 2 ( [8]). A pair of rooted presheaves are path bisimilar if, and only
if, they are related by a span of open maps.

This concludes the review of the existing material; we now proceed to our
contributions.

3 Path logic for sheaves

We now introduce path logic for sheaves and presheaves over a topological space
and we study some properties of the associated notion of path bisimulation in
the topological setting.

5The two directions of this condition are sometimes called “zig” and “zag” or “forth” and
“back” conditions in Modal logic; here they are clustered together.

6This definition is equivalent to the one in term of path lifting, see [5].
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From now on we shall only be interested in presheaves over a fixed topological
space X, that is, presheaves with base category the poset category of open
sets Open(X). In fact, we shall simply identify a topological space X with the
associated poset category of open sets. Hence the path logic associated with a
space X and a cardinal κ is just the logic PLκ(X), where this notation is used
just as before. Given a presheaf P : Xop → Set, an inclusion ι : U ⊆ U ′ and
an element x ∈ P (U ′) we sometimes denote P (ι)(x) ∈ P (U) with x|PU ; this is
sometimes called the restriction of x to U . Elements of P (U) for an open set
U will be referred to as the sections of P over U . Elements of P (X), where X
refers to the whole space, are called global sections.

Definition 6. A sheaf P over X is a presheaf over Open(X) satisfying the
following conditions, for a given covering family (Ui)i∈I of an open U :

1. If x, y ∈ P (U) are such that x|PUi
= y|PUi

for all i ∈ I then x = y, that is,
if two elements agree on their restrictions to the members of the covering
family then they must coincide. This condition is often called locality.

2. Suppose given a family (xi)i∈I such that xi ∈ P (Ui) and xi|PUi∩Uj
=

xj |PUi∩Uj
for all i, j ∈ I (the elements of the family ‘agree on the intersec-

tions’ of the covering family) then there exists a ‘glueing’ of such family,
an element x ∈ P (U) such that x|PUi

= xi. This condition is known as
glueing.

We denote by Sh(X) the category of sheaves over X, and we let PrSh(X) denote
the category of presheaves over X. Note that every sheaf is a rooted presheaf.

Definition 7. A sheaf model is a presheaf model (P, V ) such that P is a sheaf.

Since the morphisms in the base category are inclusion maps, and there is
only one such inclusion for each pair of objects, in the corresponding path logic
we denote with 〈U,U ′〉 the modality associated to the inclusion U ⊆ U ′ for U,U ′

opens in X. A fairly natural way of interpreting the modalities in this setting,
and more generally when the base category is a poset category, is in terms of
change of context : the forward modality expresses the fact that a property holds
when the context is extended from U to U ′, while the backward one handles
the restriction from bigger to smaller contexts. This perspective on path logic
is particularly apt for the sheaf-theoretic analysis of contextuality, as we will
see in the next section.

For a formula ϕ of path logic and a rooted presheaf P , we may write P � ϕ
to say that ϕ is true at the root. An example of a sheaf of immediate topological
interest is the sheaf of sections of a covering map:

Definition 8. Let X, and let π : Y → X be any continous map. Then π is
called a covering map if, for every point u in X, there is an open neighborhood
U of u such that the inverse image π−1[U ] is the union of disjoint sets {Vi}i∈I
such that, for each i ∈ I, the restriction of π to Vi is a homeomorphism onto U .
We say that U is evenly covered.

Fix a space X. Then any covering map π : Y → X gives rise to a sheaf P ,
called the sheaf of sections of π. Given an open set U , the elements of P (U)
are continuous maps f mapping U into Y such that π ◦ f = IdU . Restrictions
of sections are given simply by function restriction.
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3.1 Path logic and Contextuality

In this section we outline the framework put forward in [2] and describe how
to encode the crucial notions of weak and strong contextuality. Suppose given
a finite set X of variables, that in the quantum setting can be regarded as
physical quantities, together with a set of possible outcomes O. Define a sheaf
E : ℘(X)op → Set mapping U ⊆ X to OU , the set of functions from U to O,
while on arrows the function E(U ⊆ U ′) simply maps a function to the same
function on the restricted domain. This functor is called the sheaf of events, as
it associates to each set of variables all the possible assignments of outcomes to
those variables.

Consider now a family of subsets of X, call it M, such that the members
of M form an antichain in ℘(X) and

⋃
M = X. Such family M is called

measurement cover and represents the maximal sets of variables that can be
tested together. For example the variables associated to position and momentum
in a quantum system cannot be tested together: this and analogous constraints
motivate this definition. Note that our inability to test two variables together
does not preclude a priori the existence of a simultaneous assignment of values
to both. Given a triple 〈X,M, O〉, a subpresheaf S of E is called an empirical
model if

1. S(C) 6= ∅ for all C ∈M: possible joint measurements give joint outcomes.

2. S(U ⊆ U ′) is surjective if U ⊆ U ′ ⊆ C for C ∈ M: the model satisfies
the no-signalling principle (a sheaf with this property is sometimes called
flasque or flabby ; here the condition is relative to M).

3. For any family {sC}C∈M with sC ∈ S(C) such that

∀C,C ′ ∈M sC |C∩C′ = sC′ |C∩C′

there exists a unique global section in S(X). This is the same as the
glueing condition for sheaves, relativized to M.

With respect to contextuality, the key properties of an empirical model
are called weak contextuality and strong contextuality.7 An empirical model is
weakly contextual if there is a maximal context C ∈M and a section s ∈ S(C)
such that s cannot be extended to a global section in S(X). This means that
there is a particular assignment of values to the measurements that cannot be
reconciled with an assignment of values to all variables together.

We can express these properties in path logic in a natural way: given an
empirical model S, we turn the sheaf of events E into a sheaf model, introduce
a propositional variable e and let the valuation VS interpret e by

VS(e) = {(s, C) | s ∈ S(C)}

The propositional variable a says about a value assignment s over the set of
variables C that it represents a possible, real assignment according to the em-
pirical model S.8 Representing an empirical model as a sheaf model in this way,
we can now capture weak contextuality by the formula:

7Weak contextuality is called logical contextuality in [1].
8It is worth remarking that the notion of empirical model cannot itself be encoded in path

logic. The first condition can be captured by
∧

C∈M〈∅, C〉>, a formula stating that there
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∨
C∈M

〈∅, C〉(e ∧ [C,X]¬e)

An empirical model is said to be strongly contextual if there is no global section:
S(X) = ∅. This condition states that there cannot be a simultaneous assignment
of values to all variables; it can be encoded with the formula:

¬〈∅, X〉e

A similar treatment of these notions, also casted in a modal language, was of-
fered by Kishida in [9]. In said paper the labels for the modalities are measure-
ments contexts, that is, compatible sets of measurements, and propositional
variables are used to specify which outcome is associated to which measure-
ment. The notion of weak and strong contextuality are captured via a formula
Det expressing determinacy, namely a big disjunction encoding all the pairs
measurements-outcomes and stating that one of them is the case.

We believe path logic constitutes an improvement over this line of work for
three reasons.9 First, the modalities of path logic contain all the identities
of the objects of ℘(X), thus we can encode a formula [a]φ from [9], meaning
that φ will be the case whenever measurement a is performed, into the formula
[∅, {a}]φ, stating that every section over a, hence any assignment of outcome to a
brought about by measuring a, will satisfy φ. We can then use the propositional
variables to associate measurements and outcomes to reproduce the formulas
of Kishida within path logic. Second, path logic can express the change of
measurement context: this allows for a characterization of contextuality in terms
of the impossibility to extend to global sections, along the lines of the original
paper [2]. Such characterization abstracts away from the particular specification
of all the measurement-output pairs. Finally, path logic is not a logic designed
specifically for this setting, but rather a very general language already studied
in relation to concurrency. As known tools do, it not only solves the task at
hand but also suggests connections with previous applications. In particular,
since we know that path logic formulas are invariant under path bisimulations,
expressing some of the central properties in the framework for contextuality in
path logic leads to a simple but illuminating observation:

Corollary 1. The properties of weak and strong contextuality are preserved by
path bisimulations (and hence by spans of open maps).

This connection, between contextuality and path bisimulation, seems to
merit further investigation. In the setting of empirical models, the above corol-
lary suggests that the properties of empirical models that are invariant for path
bisimulation are typically properties concerning the degree and manner in which
measurements are sensitive to context.

is a section assigning outcomes to all the measurements in C, for all C ∈ M. The second
requirement is recorded by the formula

∧
C∈M

∧
U⊆U′⊆C [∅, U ]〈U,U ′〉>, expressing the fact

that every section over U has a section over U ′ extending it. Note that we do not need
infinitary logic to form these conjunctions, due to the finiteness of X. The third condition
however cannot be rendered in path logic; this issue will be addressed in Section 5, where we
will suggest how to express such properties with the use of nominals.

9These consideration address only the fragment without probabilities; we believe similar
remarks can be made for the probabilistic case.
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This raises some conceptual questions, in particular: is path bisimulation the
“right” or most natural notion of equivalence for reasoning about such properties
of empirical models? Related to this is the question if path logic is adequate as
a language for reasoning about contextuality, i.e. can it express all properties
of relevance to contextuality? We do not settle these questions here, but in
the next section we shall see that there are indeed other possible candidates for
notions of behavioural equivalence of sheaves.

3.2 Beyond Contextuality

The topological space that we considered in this section is a special one, the
discrete topology over X. Nevertheless, the expressivity of path logic and the
insight about the preservation of important properties via suitable bisimulations
suggest that it might be fruitful to give a systematic treatment of path logic and
path bisimulations in the wider context of sheaves. In fact, even the properties
that we just discussed turn out to be of general significance.

In the case of the sheaf of sections associated with a covering map, strong
contextuality describes how the space Y is related to X by the covering map
π: the former looks locally like the latter, but not globally. An example is
the covering map π : R → S1, where R is the real line and S1 is the unit
circle. This covering map has no global section, although there are infinitely
many sections over every smaller open set in S1. On the other hand, weak
contextuality only forces the existence of some section that cannot be extended
to a global one; an example of a covering map that is weak but not strongly
contextual is π : R + R → R, the obvious projections of two disjoint copies of
R into itself.

Another example of a general notion that can be encoded in path logic is
flabby sheaf : a sheaf P : Xop → Set is said to be flabby if, for every inclu-
sion ι : U → X, the restriction map Pι is surjective. It is not hard to see
that the class of flabby sheaves over X is captured by the path logic formula∧
U∈Open(X)[∅, U ]〈U,X〉>. Flabby sheaves play a special role in homological

algebra, see [4] for an overview.
This suggests that properties expressible in path logic may have more general

importance in the context of topology. By previous results on path logic we
can conclude that said properties are invariant under path bisimulation over
presheaf models, giving a topological significance to path bisimulations.10 We
therefore study the connections between different candidates for bisimulations
at the general level of sheaves over topological spaces.

4 Bisimulations for sheaves

In the general case path bisimulations could be neatly characterized in terms
of spans of open maps in the category of presheaves over a fixed base category:
path bisimulations correspond to spans of open maps, in the sense that rooted
presheaves are path bisimilar if and only if they are related by a span of open

10A general study of the expressivity of path logic can be pursued along the lines of similar
characterization results a là van Benthem. A straightforward modification of the usual argu-
ment shows that path logic is the fragment of many-sorted FOL (where the sorts are given by
the objects of the base category) that is invariant for path bisimulation.
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maps. Since open maps are special cases of coalgebra morphisms [11], spans
of open maps correspond to what is known as an Aczel-Mendler bisimulation.
Furthermore, it is not hard to show that two presheaves are related by a span
of open maps iff they are related by a co-span of open maps (a pair of open
maps from the respective presheaves with the same co-domain). Seeing open
maps as coalgebra morphisms, this is in fact an instance of the coalgebraic
concept of behavioural equivalence as a co-span in a category of coalgebras. So
we have three equivalent descriptions of bisimilarity of presheaf models: path
bisimilarity, spans of open maps and co-spans of open maps.

The situation for sheaves is less straightforward: the proofs of the equiva-
lences mentioned above are not valid when we restrict attention to the category
of sheaves over a space, i.e. when “span of open maps” means a span in the
category of sheaves over the given space. So it seems we have three genuinely
distinct candidates for behavioural equivalence of sheaves. It is easy to see that
spans of open maps give rise to path bisimulations. Furthermore, co-spans of
open maps give rise to spans of open maps (since the category of sheaves over
a fixed space has pullbacks and open maps are stable under pullbacks). So we
have:

co-spans ⇒ spans ⇒ path bisimulations

In the following sections, we shall look more closely at spans and co-spans of
open maps, and relate them to special kinds of path bisimulations.

4.1 Path bisimulations and spans of open maps

We start by investigating the connection between path bisimulations and spans
of open maps. It is certainly true that, for any pair of path bisimilar sheaves,
we can construct a span of open maps connecting these sheaves. However, the
presheaf at the “vertex” of this span may not be a sheaf, so the characterization
of path bisimulations as spans of open maps is not internal to the category of
sheaves over a given space. It turns out that a fairly natural condition on path
bisimulations guarantees that the construction of a span of open maps from a
bisimulation results in a proper sheaf:

Definition 9 (Locality axiom for path bisimulations). Suppose we are given
a covering (Ui)i∈I of an open set U , two sheaves Q1, Q2 : Open(X)op → Set
and a path bisimulation Z between them. We say Z satisfies Locality if for all
p ∈ Q1(U) and q ∈ Q2(U) such that (p|Q1

Ui
, q|Q2

Ui
) ∈ ZUi

for all i ∈ I, we have
(p, q) ∈ ZU .

The name of this property derives from the fact that it has the same shape
of the locality condition on sheaves, with the difference that the equality is now
replaced by the path bisimulation relation.

Proposition 1. Suppose two sheaves on X are related by a path bisimulation
satisfying the Locality axiom. Then these sheaves are also related by a span of
open maps.

In the context of empirical models, imposing conditions like Locality changes
what sort of properties are invariants for bisimulations. So deciding what the
“right” notion of bisimulation is in this setting amounts to making a decision
regarding what sort of properties of empirical models we want to focus on. In
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particular the class of properties that are invariant for bisimulations with the
Locality property will satisfy a corresponding locality constraint: in order to find
what the invariant properties of a variable assignment v on a set of variables X
is, given a cover C of X it suffices to investigate the invariant properties of each
restriction of v to elements of the cover X.

At the present time we do not know whether the converse of Proposition 1
is true in general.11

4.2 Path bisimulations and co-spans of open maps

Another important notion of bisimulation in the coalgebra literature is given
exactly by the dual of the span, i.e. a co-span of coalgebra morphisms. This
is often called a behavioural equivalence. The same concept can be applied to
sheaves, that is, we may consider co-spans of open maps rather than spans. It
turns out that we can do better for co-spans than we did for spans: we can
characterize the existence of a co-span of open maps precisely in terms of a
concrete notion of path bisimulation. First, we introduce a Glueing property
for path bisimulations, mimicking the corresponding axiom for sheaves in the
same way as we defined the Locality property for bisimulations earlier:

Definition 10 (Gluing axiom for path bisimulations). Suppose given a covering
(Ui)i∈I of an open set U , two presheaves Q1, Q2 : Open(X)op → Set and a path
bisimulation Z between them. The relation Z satisfies Glueing if the following
is the case : whenever there are two families (pi)i∈I and (qi)i∈I such that pi ∈
Q1(Ui) and qi ∈ Q2(Ui) for all i and moreover for all i, j (pi|Q1

Ui∩Uj
, qj |Q2

Ui∩Uj
) ∈ Z

there exist two elements p ∈ Q1(U) and q ∈ Q2(U) such that (p, q) ∈ Z and, for

all i, (p|Q1

Ui
, qi) ∈ Z and (q|Q2

Ui
, pi) ∈ Z.

Finally, we need a little technical side condition, that we borrow from [6]:

Definition 11. A path bisimulation Z is said to be di-functional if (p, q) ∈ Z,
(p′, q) ∈ Z and (p′, q′) ∈ Z entail (p, q′) ∈ Z.

We can now state our characterization result:

Theorem 3. Two sheaves Q1 and Q2 are related by a co-span of open maps

Q1 → P ← Q2

where P is a sheaf, if and only if they are related by a di-functional path bisim-
ulation that satisfies the Gluing and Locality axioms.

Proof. From left to right, assume there are a sheaf P and two open maps f :
Q1 → P and g : Q2 → P . Define

ZU = {(p, q) ∈ Q1(U)×Q2(U)|fU (p) = gU (q)}
11The requirement of Locality can be lifted in some special circumstances, for example when

the space satisfies the following property: given any open cover (Ui)i∈I of a non-empty open
set U , and given any superset U ′ of U , there is a cover (U ′i)i∈I of U ′ such that U ′i ∩ U = Ui

for all i ∈ I and U ′i ∩ U ′j = Ui ∩ Uj for all i 6= j. An example of a space with this property
is natural numbers with the topology generated by all cofinite sets. This is however a very
strong requirement, and typically many spaces of interest will not enjoy this property.
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Clearly Z =
⋃
U ZU . We start with the forward condition of path bisimulation.

Suppose (p, q) ∈ ZU , ι : U → U ′ and there is p′ ∈ U ′ such that p′|Q1

U = p. We

need to show that there is q′ ∈ Q2(U ′) such that q′|Q2

U = q and (p′, q′) ∈ ZU ′ ,

that is, fU ′(p′) = gU ′(q′). By naturality we know that fU ′(p′)|PU = fU (p′|Q1

U ) =

fU (p) = gU (q), so by weak pullback we obtain q′ ∈ Q2(U ′) such that q′|Q2

U = q
and fU ′(p′) = gU ′(q′).

For the backward condition suppose (p, q) ∈ ZU and ι : U ′ → U . We need

to show that p|Q1

U ′ = p′ and q|Q2

U ′ = q′ are in relation: (p′, q′) ∈ ZU ′ , that is,
fU ′(p′) = gU ′(q′). This follows immediately by the naturality of f and g and
fU (p) = gU (q). We proceed to check that the Locality property holds. Suppose
given a covering (Ui)i∈I of U . Say there are p ∈ Q1(U) and q ∈ Q2(U) such

that (p|Q1

Ui
, q|Q2

Ui
) ∈ ZUi for all i ∈ I. We want to show that (p, q) ∈ ZU , that is,

that fU (p) = gU (q). We have for every i that

fU (p)|PUi
= fUi

(p|Q1

Ui
) (1)

= gUi(q|
Q2

Ui
) (2)

= gU (q)|PUi
(3)

where the first and last step are given by the naturality of f and g and the second
is given by our assumption. Since fU (p)and gU (q) agree on all the restrictions we
can apply the locality property of the sheaf P to obtain fU (p) = gU (q). Now for
Gluing. Suppose given a covering (Ui)i∈I of U . Say there are two families (pi)i∈I
and (qi)i∈I such that for all i pi ∈ Q1(Ui) and qi ∈ Q2(Ui) and moreover for

all i, j (pi|Q1

Ui∩Uj
, qj |Q2

Ui∩Uj
) ∈ Z. We need to show that there are p ∈ Q1(U) and

q ∈ Q2(U) such that (p, q) ∈ Z and, for all i, (p|Q1

Ui
, qi) ∈ Z and (q|Q2

Ui
, pi) ∈ Z.

Our definition entails that fUi∩Uj (pi|Q1

Ui∩Uj
) = gUi∩Uj (qj |Q2

Ui∩Uj
). By naturality

of f and g we get that fUi
(pi)|PUi∩Uj

= gUj
(qj)|PUi∩Uj

. When i = j this means

that fUi(pi) = gUi(qi), hence we have a family of objects (fUi(pi) = gUi(qi))i∈I
such that fUi(pi) = gUi(qi) ∈ P (Ui) and the elements of this family agree at
the intersections. Thus we can apply glueing in P to obtain t ∈ P (U) such that
t|PUi

= fUi
(pi) = gUi

(qi) for all i.
Pick an index i; by the fact that f and g are open maps we obtain by

weak pullback p ∈ Q1(U) and q ∈ Q2(U) such that fU (p) = t = gU (q), which

means (p, q) ∈ ZU , and p|Q1

Ui
= pi and q|Q2

Ui
= qi. This entails that fUi(p|

Q1

Ui
) =

t|PUi
= gUi

(qi) and gUi
(q|Q2

Ui
) = t|PUi

= fUi
(pi). Now take j 6= i. We have that

fUj
(p|Q1

Uj
) = fU (p)|PUj

= t|PUj
= gUj

(qj), where the first step is by naturality and

the last is a consequence of gluing. Similarly we can show that gUj
(q|Q1

Uj
) =

fUj
(pj).
Difunctionality is immediate by the definition of the relation: if p, q, p′ and

q′ are all sent to the same object then the relation will hold between p′ and q′.
From right to left, suppose there is a difunctional path bisimulation between

Q1 and Q2 satisfying Locality and Glueing. Take EqU to be the smallest equiv-
alence relation containing ZU . Define the sheaf P as follows

U 7→ Q1(U) +Q2(U)\EqU
ι : U → U ′ 7→ P (ι) : Q1(U ′) +Q2(U ′)\EqU ′ → Q1(U) +Q2(U)\EqU
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where P (ι)([x]) = [Ql(ι)(x)] if x ∈ Ql(U
′), for l ∈ {1, 2}. Notice that this

definition automatically makes [−] : Ql → P a natural transformation for l = 1
and l = 2. We sometimes omit the subscript when it is clear.

We first show that P (ι) is well defined. Suppose x 6= y and [x] = [y], we want
to show that P (ι)([x]) = P (ι)([y]). Since [x] = [y], only two scenarios can occur.
Suppose (x, y) ∈ ZU ′ . Then P (ι)([x]) = [Q1(ι)(x)] and P (ι)([y]) = [Q2(ι)(y)].
By backward condition of path bisimulation we obtain from (x, y) ∈ ZU ′ that

(x|Q1

U , y|Q2

U ) ∈ ZU ′ , so [Q1(ι)(x)] = [Q2(ι)(y)] and we are done. Now suppose
x and y are in relation because of a zig-zag of relations in ZU ′ . Applying
our previous argument to every pair in ZU ′ we get, by transitivity of equality,
that [Q1(ι)(x)] = [Q2(ι)(y)]. We now show that [−] is an open map. Suppose
ι : U → U ′ and say that there are x1 ∈ Q1(U) and [x2] ∈ P (U ′) such that

[x1] = P (ι)([x2]). We know that [x1] = P (ι)([x2]) = [x2|Ql

U ], for some l ∈ {1, 2}.
Hence there is a zig-zag of ZU edges between x1 and x2|Ql

U . Starting from
x2, we apply the forward condition to all the edges of the zig-zag (this is an
argument by induction, similar to the one in [8]); in this way we obtain an
element x′ ∈ Q1(U ′) such that there is a zig-zag of ZU ′ edges between x2 and

x′, hence [x2] = [x′], and x′|Q1

U = x1.
We proceed to show that P is a sheaf, beginning with locality. Suppose given

a covering (Ui)i∈I of U . Consider [x], [y] ∈ P (U) such that [x]|PUi
= [y]|PUi

for
all i. Because the bisimulation includes the roots, we can always assume that
each equivalence class [x]U contains at least a member of Q1(U) and a member
of Q2(U). So we can take x ∈ Q1(U) and y ∈ Q2(U). By [x]|PUi

= [y]|PUi
we can

infer that [x|Q1

Ui
] = [y|Q2

Ui
] for every i. By difunctionality we can conclude that

(x|Q1

Ui
, y|Q2

Ui
) ∈ ZUi

for all i. The Locality condition on Z allows us to infer that
(x, y) ∈ ZU , hence [x] = [y]. Finally we prove that P has the gluing property.
Suppose given a covering (Ui)i∈I of U . Suppose there is a family ([xi])i∈I with
[xi] ∈ P (Ui) such that, for all i, j ∈ I, [xi]|PUi∩Uj

= [xj ]|PUi∩Uj
. We want to

find [x] ∈ P (U) such that [x]|PUi
= [xi] for all i. We know [x]U contains at

least a member of Q1(U) and a member of Q2(U). So we can infer that there
are two families (pi ∈ Q1(Ui))i∈I and (qi ∈ Q2(Ui))i∈I such that [pi] = [qi] =

[xi]. So from [xi]|PUi∩Uj
= [xj ]|PUi∩Uj

we infer that [pi|Q1

Ui∩Uj
] = [qj |Q2

Ui∩Uj
]. By

difunctionality it must be that (pi|Q1

Ui∩Uj
, qj |Q2

Ui∩Uj
) ∈ ZUi∩Uj

, and this for all i
and j. By the gluing property of the bisimulation we conclude that there are
p ∈ Q1(U) and q ∈ Q2(U) such that (p, q) ∈ ZU and for all i p|Q1

Ui
= qi and

q|Q2

Ui
= pi. Take [x] = [p] = [q]: we have for all i that [x]|PUi

= [p]|PUi
= [p|Q1

Ui
] =

[qi] = [xi]. This concludes the proof.

It is easy to see that every path bisimulation is contained in a difunctional
path bisimulation, its “difunctional closure”. But since we cannot assume that
the difunctional closure operation preserves the Gluing and Locality axioms, we
have to state difunctionality as an explicit premise of the previous theorem.

5 A hybrid path logic

While the path logic for presheaves has a natural interpretation on presheaves
over a topological space, it is not obvious that this is the right modal language
for reasoning about these structures. In fact, it is not hard to see that the basic
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property of being a sheaf over the base space X is not definable in the path logic
corresponding to X, since this property is easily seen not to be preserved by path
bisimulations. Any example of a sheaf that is path bisimilar to a presheaf that
is not a sheaf will show this, and such an example can easily be obtained using
a presheaf that does not satisfy locality. We leave out the details.

So in order to remedy this, we need to extend the path logic with extra
expressive power, but we want to do this as gently as possible. The suggestion
that presents itself is to go to hybrid logic. We define the syntax of hybrid path
logic for X, a regular cardinal κ and over a set of nominals N , by the following
grammar:

HPLκ(X, N,Var) 3 ϕ ::= e | i | @iϕ |
∨

Γ | ¬ϕ | 〈U, V 〉ϕ | 〈U, V 〉ϕ

Here i ranges over N , U and V range over open sets of X, e ranges over Var and
Γ ranges over sets of formulas of size < κ.

A presheaf model for this language is a rooted presheaf P over X together
with a map A : N → Σ{P (U) | U ∈ Open(X)} and a valuation V for Var.
Truth conditions of formulas in a model (P,A) at some w ∈ P (U) are defined
as before, with the added clauses:

• (P,A,w) � i if and only if A(i) = w

• (P,A,w) � @iϕ if and only if (P,A,A(i)) � ϕ

Definition 12. We say that ϕ is true in (P,A, V ), written (P,A, V ) � ϕ, if
(P,A, V, r) � ϕ where r is the root of P . We say that ϕ is valid in P , written
P � ϕ, if (P,A, V ) � ϕ for every A and every V .

Now, given a space X, which we assume to be infinite, let κ be a regular
cardinal greater than 2ξ where ξ is the number of open sets of X. Assuming
the axiom of choice we can take this to be the successor of 2ξ. Let N be a
set of nominals with 2ξ ≤ |N | < κ. Then consider the following formulas of
HPLκ(X, N):

Loc: For any cover {Ui}i∈I of an open set U of X, pick nominals j, k, {li}i∈I
and construct the formula:∧

i∈I
@li〈Ui, U〉j ∧

∧
i∈I

@li〈Ui, U〉k → @jk

Then we define Loc to be the conjunction of all these formulas, correspond-
ing to all the covers of open sets in X. The conjunction is well defined
since there are at most 2ξ covers to consider.

Glu: For any cover {Ui}i∈I of an open set U of X, pick nominals k, {li}i∈I and
construct the formula:∧

i,j∈I
@li〈Ui ∩ Uj , Ui〉〈Ui ∩ Uj , Uj〉lj → 〈∅, U〉

∧
i∈I
〈Ui, U〉li

We take Glu to be the conjunction of all these formulas.

The proof of the following result is a simple check, but we list it as a theorem
since we think it has some importance.
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Theorem 4. A rooted presheaf P is a sheaf if, and only if, P � Loc ∧ Glu.

It follows, of course, that validity of formulas in hybrid path logic is not
preserved by path bisimulations. However, truth in a model is easily seen to be
preserved by a natural extension of path bisimulations:

Definition 13. Let (P,A, V ) and (P ′, A′, V ′) be presheaf models. Then a
nominal path bisimulation is a path bisimulation between (P, V ) and (P ′, V ′)
such that, for every nominal i, A(i) is related to x by this path bisimulation if
and only if x = A′(i), and vice versa.

Proposition 2. Formulas of HPLκ(X, N,Var) are invariant under nominal
path bisimulations.

6 Conclusions and further work

We started showcasing the expressing power of path logic by encoding the key
concepts of the sheaf-theoretic approach to contextuality proposed in [2]. This
encoding improves on the existing one and suggests that path logic might be the
right logic to express in general the extension and restriction of contexts. Not
only: the same formulas treated in the contextuality approach turned out to have
a general significance for topology, for example encoding interesting properties
of covering spaces. From previous results we know that such formulas will be
invariant for path bisimulation on presheaves. Nevertheless,in the context of
sheaves the notion of path bisimulation is more involved.

In this setting we give sufficient condition for the existence of a span of open
maps and sufficient and necessary conditions for the existence of a co-span,
therefore characterizing when two sheaves are behaviourally equivalent. It is
also intriguing to note that said conditions, called here Locality and Gluing,
resemble the sheaf properties of locality and gluing, when equality is replaced
with the bisimulation relation. We outlined the relationship between spans and
co-spans in presheaves and sheaves. Finally, we suggested how path logic has
to be enriched in order to capture the key features of sheaves.

In future work we intend to address some of the questions left open and
mentioned in the text; we list them here for easy reference:

• In light of the fact that sheaves are not definable in FOL, prove corre-
spondence results over sheaf models.

• Find the conditions on path bisimulations that are equivalent to the exis-
tence of a span of open maps on sheaves.

• Find the conditions under which existence a span of open maps is equiv-
alent to the existence of a co-span of open maps on sheaves.

• Axiomatize the class of transition systems arising from sheaves with hybrid
path logic.

• Explore the connection with the usual topological semantics for modal
languages [12,13] and the sheaf semantics for first-order modal logic [3].
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