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Institute for Logic, Language and Computation, University of
Amsterdam

March 21, 2016

Abstract

We give a general definition of bisimulation for conditional modalities
interpreted on selection functions and prove the correspondence between
bisimilarity and modal equivalence. We describe how this framework
specializes to unary modalities and further investigate the operators and
semantics to which these results apply. First, we show that our models
encompass both Grove’s sphere models and Gabbay’s models for non-
monotonic reasoning. Second, we show how to derive a solid notion of
bisimulation for conditional belief, behaving as desired both on plausibility
models and on evidence models. These novel definitions of bisimulations
are exploited in a series of undefinability results. Third, we treat relativized
common knowledge, underlining how the same observations still hold for a
different modality in a different semantics. Finally, we show the flexibility
of the approach by generalizing it to multi-agent systems, encompassing
the case of multi-agent plausibility models and suggesting how to cover
group conditional belief.

1 Introduction

The Modal Logic literature offers a number of examples of conditional modalities,
developed for a variety of reasons: conditionals from conditional logic, conditional
belief, relativized common knowledge, to name a few. Yet there has been little
work so far in developing model-theoretic tools to study such operators, which
have been used mainly for the purpose of modelling our intuitions. The notable
exception is conditional belief. The problem of finding the right notion of
bisimulation for conditional belief has been the focal point of some recent
publications in the field of formal epistemology [1, 2, 3, 10, 11].

In this paper we attempt to understand what is conditional about condi-
tional modalities, proposing a framework that covers all the aforementioned
operators. We do so by giving a general notion of bisimulation for conditional
modalities, where the latter are interpreted on selection functions. Conditional
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logics, together with selection functions, have a long history and tradition in
philosophical logic [18, 16, 9, 27]; they have been used in various applications
such as non-monotonic inference, belief change and the analysis of intentions and
desires. We thus tackle the problem at a high level of generality; this bird’s eye
perspectives enables a streamlined presentation of the main arguments, avoids
repetitions and highlights the crucial assumptions.

To ensure that the notion of bisimulation is a good fit for the logic, the key
result that one would like to obtain is the classical theorem ‘bisimilarity iff modal
equivalence, on some restricted class of models’, echoing the analogous theorem
for basic modal logic.1 In other words, one wants to characterize exactly when
two models are indistinguishable by means of a conditional modality. Such a
result is however not the end of the story, a well behaved notion of bisimulation
should also satisfy the following list of desiderata:

1. The bisimulation should be structural, that is, it should not make refer-
ence to formulas of the modal language besides the atomic propositions
featuring in the basic condition “if w and w′ are bisimilar then ∀p we have
w ∈ V (p) iff w′ ∈ V (p)”.2

2. Ideally such bisimulation should be closed under unions and relational
composition. The former ensures the existence of a largest bisimulation,
while the latter guarantees that the related notion of bisimilarity is transi-
tive.

3. The definition of such bisimulation should be in principle independent from
additional parts of the structure that do not appear in the semantics of
the conditional modality: two states should be indistinguishable only if
they behave in the same with respect to the features that the conditional
modality can “detect”. This feature makes the bisimulation modular,
allowing us to add further conditions to it in order to take care of additional
operators in the language and still retain the correspondence with modal
equivalence.

4. When the unconditional modality is amenable to different semantics, the
bisimulation for the conditional version should generalize the bisimulation
for the unconditional modality uniformly across semantics.

In this paper we provide a notion of bisimulation for conditional modalities
that satisfies all the desiderata in the list and prove the correspondence between
bisimilarity and modal equivalence for the semantics on selection functions. In
the rest of the paper we discuss a number of examples of our general framework
and reap the benefits of the general results. We begin by showing that our
models encompass both the sphere models for belief revision and the selection
function models for non-monotonic reasoning. We proceed by discussing how this

1See [8] for a standard reference in Modal Logic.
2For example, a non-structural notion of bisimulation for conditional belief on epistemic

plausibility models was given in [10], but was regarded as problematic by the author himself
for the same reason.
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approach provides a solid notion of bisimulation for conditional belief, fulfilling
the list of desiderata that we put forward. We then treat another conditional
operator, relativized common knowledge, underlining how the same results still
hold for a different modality with a different semantics. Finally, we show the
flexibility of the approach by generalizing it to multi-agent systems, on one hand
encompassing the case of multi-agent plausibility models and on the other hand
suggesting how to cover group conditional belief.

The paper proceeds from the abstract to the concrete. In Section 2 we
define conditional logic with semantics of selection function and give a general
notion of bisimulation for conditional modalities; such notion is used to prove
the main results of the paper. We pause to explain how such results translate to
unconditional modalities. We then proceed to compare our conditional models
with Grove’s sphere models and the selection function models for non-monotonic
reasoning, arguing that the latter are both examples of our definition. In Section
3 we introduce plausibility models, derive a notion of bisimulation for conditional
belief on such structures and instantiate the previous result to this context. The
bisimulation for conditional belief is then exploited to obtain some undefinability
results. Section 4 deals with evidence models, structures introduced to describe
how belief and knowledge relate to a body of available evidences. We show
how they can be seen as conditional models equipped with selection functions
and again obtain another version of the previous results, to which we add more
observations about undefinability. In Section 5 we cover the case of relativized
common knowledge interpreted on Kripke models, commenting on how to relate
our framework to the original Hennessy-Milner result. Section 6 describes how
our analysis extends to the multi-agent case by treating the example of multi-
agent plausibility models and subsequently discussing the interesting issue of
merging the beliefs of a group of agents. In Section 7 we discuss related work;
we conclude in Section 8.

2 Bisimulation for conditional modalities

Consider the language

φ ::= p | ¬φ |ψ ∧ φ |ψ  φ

where p ∈ At, a set of atomic propositions. The formulas ψ  φ are supposed
to encode statements such as “φ is the case, conditional on ψ”. As a semantic of
this logic we consider selection functions of type W × ℘(W )→ ℘(W ), along the
lines of [16]. Similar considerations can be cast in the more general framework
proposed by Chellas in [9], but the generality of neighborhood selection functions
is not really needed here, neither to prove our results or to encompass the
examples of the following sections; we thus limit ourselves to Lewis’ original
proposal.

Definition 2.1. A conditional model is a tuple M = 〈W, f, V 〉 with W a non-
empty set of worlds, a function f : W × ℘(W ) → ℘(W ), called a selection
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function, and V : W → ℘(At) a valuation function. The selection function is
required to satisfy two conditions:

1. for all w ∈W we have f(w,X) ⊆ X;

2. if X ⊆ Y then for all w ∈W we have that if f(w, Y ) ⊆ X then f(w, Y ) =
f(w,X).

The intuition behind the selection function is that f(w,X) selects the worlds
in X that are more ‘relevant’ or ‘important’ from the perspective of world w.
This reading immediately explains the first condition. The second requirements
prescribe what the behaviour of the selection function should be with respect to
stronger conditions. If X is a stronger condition than Y and all worlds v that
are relevant to w within Y are still contained in X then the worlds relevant to
w with respect to X coincide with the worlds relevant to w with respect to Y .

The semantics for the propositional part of the language is the usual one,
while for conditionals we have the clause:

M, w � ψ  φ iff f(w, JψKM) ⊆ JφKM

This encodes the intuition that “φ is the case, conditional on ψ” is the case in
a world w iff all the ψ worlds that are relevant to w according to f are worlds
that satisfy φ.

We now turn to the definition of bisimulation for conditional modalities, that
is, the notion that is supposed to capture when two models are indistinguishable
in the eyes of the language we just introduced. First we lay out some notation:
given a relation R ⊆W ×W ′, X ⊆W and X ′ ⊆W ′ define

• R[X] = {y ∈W ′|∃x ∈ X, (x, y) ∈ R}

• R−1[X] = {x ∈W |∃y ∈ X ′, (x, y) ∈ R}

Definition 2.2 (Conditional Bisimulation). Given two conditional models M1

and M2, a conditional bisimulation is a non-empty relation Z ⊆W1 ×W2 such
that if (w,w′) ∈ Z then

• for all p ∈ At, p ∈ V (w) iff p ∈ V (w′),

• for all X ⊆ W and X ′ ⊆ W ′ such that R[X] ⊆ X ′ and R−1[X ′] ⊆ X we
have that for every x ∈ f(w,X) there exists a y ∈ f ′(w′, X ′) (where f ′ is
the selection function in M2) such that (x, y) ∈ Z, and viceversa.

Theorem 2.3 (Bisimilarity entails modal equivalence). Given two conditional
models M1 and M2, if (w,w′) ∈ Z ⊆ W1 × W2, where Z is a conditional
bisimulation, then w and w′ are modally equivalent with respect to the logic of
conditionals.

Proof. Suppose that Z is a conditional bisimulation, (w,w′) ∈ Z and M1, w �
ψ  φ. Note that by induction hypothesis on ψ we have that JψKM1

and
JψKM2

satisfy the right requirements and therefore can act as X and X ′ in
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the preconditions of the bisimulation property. Because of w � ψ  φ we
have f(w, JψKM1) ⊆ JφKM1 . Now consider v′ ∈ f ′(w′, JψKM2). By viceversa
of the bisimulation property we know that there exists a v ∈ f(w, JψKM1

)
such that (v, v′) ∈ Z. By assumption and induction hypothesis on φ we get
M2, v

′ � φ. Since v′ was generic we can conclude that f ′(w′, JψKM2
) ⊆ JφKM2

,
thusM2, w

′ � ψ  φ. For the converse use the other direction of the bisimulation
property.

Note that this proof does not make use of the properties of selection functions.
However, they will turn out to be crucial in the following Theorem.

Theorem 2.4 (Modal equivalence entails bisimilarity on finite models). Given
two finite conditional models M1 and M2, if w and w′ are modally equivalent
then (w,w′) ∈ Z ⊆W1 ×W2, where Z is a conditional bisimulation.

Proof. We show that the relation of modal equivalence is a conditional bisimula-
tion, we will call it Z for short.

First a preliminary observation. Call X and X ′ the two sets satisfying
Z[X] ⊆ X ′ and Z−1[X ′] ⊆ X. We show how to build a formula α that plays the
role of X and X ′ as precondition. Notice that we can divide the domain of M1

into three disjoint parts

• X

• A, the set of elements having some modally equivalent counterparts in X,
but having no modally equivalent counterpart in M2

• W1\X ∪A

Notice how the conditions on X and X ′ enforce the property of A: an element
in A cannot have a counterpart in X ′, or otherwise would be already in X; an
element of A cannot have a modally equivalent counterpart in W2\X ′ or X itself
would violate the first precondition. A symmetric partition can be defined on
the model M2, switching the roles of X and X ′; we will indicate with A′ the
corresponding region in M2.

Since the image of X under Z lies within X ′, we know that the elements in
X are not modally equivalent to the elements outside X ′, thus the elements in
X ∪A are also not modally equivalent to the elements outside X ′. Since we are
dealing with finite models we can enumerate the elements in X ∪A, call them
x1, . . . , xn, and the elements in W2\X ′ ∪W1\X ∪ A, call them y1, . . . , ym. By
our assumptions and definition of the partition we know that for each i and j,
with 1 ≤ i ≤ n and 1 ≤ j ≤ m, there is a formula ψij such that xi � ψij and
yj 6� ψij . We can thus construct a formula

γ :=
∨

1≤i≤n

∧
1≤j≤m

ψij

that is true at each xi in X ∪A and false at each yj in (W2\X ′) ∪ (W1\X ∪A).
Symmetrically, there must be a formula γ′ that is true at X ′ ∪A′ and false at

5



W1\X ∪W2\X ′ ∪A′. Now consider the formula

α := γ ∨ γ′

Let us have a closer look at the extension of α in M1. We have that γ′ is false
outside X, hence its extension lies within X. As for γ, we know it is true at
X ∪D and false in W1\X ∪ A. Thus the extension of γ ∨ γ′, and therefore of
the formula α itself, is X ∪ A. We can make an analogous argument to show
that the extension of α in M2 is X ′ ∪A′.

Say now that (w,w′) ∈ Z and reasoning by contradiction suppose Z does
not satisfy the bisimulation property for sets X and X ′. This means that there
is an x ∈ f(w,X) such that for all y ∈ f ′(w′, X ′) we have (x, y) 6∈ Z.

Consider a generic element x′ in f(w, JαKM1). Since f(w, JαKM1) ⊆ JαKM1

by the first property of selection functions, we know that x′ must be either in X or
in A. If there is an element x′ ∈ f(w, JαKM1

) in A, since we know that elements
in A are not modally equivalent to any element in W2, we can build a formula
β that is false at x′ and true everywhere in W2, thus a fortiori in f(w′, JαKM2

).
This gives us the contradiction that we want: w � ¬(α  β) and w′ � α  β.
We can thus assume that f(w, JαKM1) ⊆ X. This is enough to apply the second
property of selection functions and conclude that f(w, JαKM1) = f(w,X).

This ensures that the element x ∈ f(w,X) for which the condition fails is
indeed also in f(w, JαKM1

). If we now look at the set f ′(w′, JαKM2
), repeating

a reasoning similar to the one just outlined we can conclude that the elements
in f ′(w′, JαKM2

) are either in f ′(w′, X ′) or in A′. Note that in this step we use
the other inclusion of the second property. By assumption we have that x is
not modally equivalent to any y ∈ f ′(w′, X ′) and by definition x is not m.e. to
any element in A′ (because elements in the latter set have no m.e. counterpart
in the first model). We can thus build a formula β that is false at x and true
everywhere in f ′(w′, JαKM2

); this gives us the contradiction w � ¬(α β) and
w � α β.

2.1 Back to unary modalities

The reader may now wonder if and how these results hold for the un-conditional
version of such modalities. Each selection function f : W × ℘(W ) → ℘(W )
specifies a unary modality when we fix the second input to W . Indicating the
unary modality with > φ, we get the semantic clause

M, w � > φ iff f(w,W ) ⊆ JφKM

Accordingly, the precondition on subsets trivializes and the correct notion of
bisimulation becomes

Definition 2.5 (Unary bisimulation). Given two conditional models M1 and
M2, a unary bisimulation is a non-empty relation Z ⊆ W1 ×W2 such that if
(w,w′) ∈ Z then

• for all p ∈ At, p ∈ V (w) iff p ∈ V (w′),
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• for every x ∈ f(w,W ) there exists a y ∈ f ′(w′,W ′) (where f ′ is the
selection function in M2) such that (x, y) ∈ Z, and viceversa.

We then obtain analogous version of the previous results.

Theorem 2.6 (Bisimilarity entails modal equivalence). Given two conditional
modelsM1 andM2, if (w,w′) ∈ Z ⊆W1×W2, where Z is a unary bisimulation,
then w and w′ are modally equivalent with respect to the logic containing only
the unary modality.

Proof. Proved via a straightforward induction on the structure of the formula.

Now that we are free from preconditions, however, we can generalize the
other direction.

Theorem 2.7 (Modal equivalence entails bisimilarity). Given two conditional
models M1 and M2 such that

• f(w,W ) is finite for all w ∈W

• f ′(w′,W ′) is finite for all w′ ∈W ′

if w and w′ are modally equivalent in the language of the unary modality then
(w,w′) ∈ Z ⊆W1 ×W2, where Z is a unary bisimulation.

Proof. This proof essentially follows the original idea of the Hennessy-Milner
result. Suppose modal equivalence is not a unary bisimulation, then there is,
say, x ∈ f(w,W ) such that for all y ∈ f ′(w′,W ′) we have (x, y) 6∈ Z. Since
f ′(w′,W ′) = {y1, . . . , yn} we have finitely many formulas ψi, with 1 ≤ i ≤ n,
such that x 6� ψi and yi � ψi. Then w 6� ∨1≤i≤nψi and w′ � ∨1≤i≤nψi,
contradiction.

This last result clarifies why the finiteness conditions that we have in the
conditional case can be relaxed in the un-conditional case, allowing for wider
classes of models. We will see in section 5 how this result specializes to the
original Hennessy-Milner theorem.

2.2 Closure under union and relational composition

In this section we display some properties of the newly defined notion of bisi-
mulation: closure under arbitrary unions and, restricted to grounded models,
closure under relational composition.

Proposition 2.8. Conditional bisimulations are closed under unions.

Proof. Given a family of conditional bisimulations {Zi ⊆W1 ×W2}i∈I , consider
their union

⋃
i∈I Zi. Suppose (w,w′) ∈

⋃
i∈I Zi and two sets X ⊆ W1 and

X ′ ⊆W3 are such that

1.
⋃
i∈I Zi[X] ⊆ X ′,
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2.
⋃
i∈I Z

−1
i [X ′] ⊆ X,

To establish that
⋃
i∈I Zi is a conditional bisimulation we need to show that

for every x ∈ f(w,X) there is y ∈ f ′(w′, X ′) such that (x, y) ∈
⋃
i∈I Zi. Notice

that from (w,w′) ∈
⋃
i∈I Zi we can deduce that there is an index i for which

(w,w′) ∈ Zi. We also know that

1. {y|∃x ∈ X(x, y) ∈ Zi} = Zi[X] ⊆
⋃
i∈I Zi[X] ⊆ X ′,

2. {x|∃y ∈ X ′(x, y) ∈ Zi} = Z−1i [X ′] ⊆
⋃
i∈I Z

−1
i [X ′] ⊆ X,

ThereforeX andX ′ also satisfy the preconditions for the relation Zi: applying the
property of conditional bisimulation we obtain that for every x ∈ f(w,X) there is
y ∈ f ′(w′, X ′) such that (x, y) ∈ Zi. But the latter fact entails (x, y) ∈

⋃
i∈I Zi,

we are done. The converse direction is proved symmetrically.

Definition 2.9. A relation R ⊆ X × Y is total if for every x ∈ X there is a
y ∈ Y such that (x, y) ∈ R and for every y ∈ Y there is an x ∈ X such that
(x, y) ∈ R.

Definition 2.10. A conditional model is grounded if, for all w and {x} in the
domain of the model, f(w, {x}) 6= ∅.

Lemma 2.11. Every conditional bisimulation between two grounded models is
total.

Proof. For M1 and M2 grounded conditional models, suppose Z ⊆ W1 ×W2

is a conditional bisimulation: then there must be a pair (w,w′) ∈ Z. Suppose
moreover that Z is not total, say because there is an x ∈W1 with no counterpart
in W2. Take {x} and ∅ and notice that they fulfill the preconditions of the
property of conditional bisimulation:

• Z[{x}] = ∅ ⊆ ∅

• Z−1[∅] = ∅ ⊆ {x}

Then we must conclude that for every x ∈ f(w, {x}) there is a y ∈ f ′(w′, ∅)
such that (x, y) ∈ Z. Since by assumption f(w, {x}) 6= ∅, there must be
some z ∈ f ′(w′, ∅). However, by the first condition on selection function we
have f ′(w′, ∅) ⊆ ∅, so there cannot be a k ∈ f ′(w′, ∅) such that (z, k) ∈ Z,
contradiction. The other direction is proved analogously.

Proposition 2.12. Restricted to any class of grounded models, the notion of
conditional bisimulation is closed under relational composition.

Proof. SupposeM1,M2 andM3 are three grounded models and Z1 ⊆W1×W2

and Z2 ⊆W2 ×W3 are two conditional bisimulations connecting them. To show
that their relational composition Z1;Z2 is also a conditional bisimulation we
first need to show that it is not empty. By Z1 being not empty we know that
there is (w,w′) ∈ Z1. By the previous Lemma we know that Z1 and Z2 are
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total. The latter fact ensures that there is some w′′ such that (w′, w′′) ∈ Z2,
thus (w,w′′) ∈ Z1;Z2.

For the last property, suppose (w,w′′) ∈ Z1;Z2. By definition this means
that there is a w′ such that (w,w′) ∈ Z1 and (w′, w′′) ∈ Z2. Now consider two
sets X ⊆W1 and X ′′ ⊆W3 such that

1. Z1;Z2[X] ⊆ X ′′,

2. Z1;Z−12 [X ′′] ⊆ X,

What we need to show is that for every x ∈ f(w,X) there is a z ∈ f ′′(w′′, X ′′)
such that (x, z) ∈ Z1;Z2. Define

X ′ := {y ∈W2|∃x ∈ X, (x, y) ∈ Z1 or ∃z ∈ X ′′, (y, z) ∈ Z2}

We check that

• Z1[X] ⊆ X ′,

• Z−11 [X ′] ⊆ X,

The first item holds by definition of X ′. For the second one suppose (x, y) ∈ Z1

and y ∈ X ′. By totality of Z2 we know that there is a z such that (y, z) ∈ Z2,
hence (x, z) ∈ Z1;Z2. By definition of X ′ we can now make a case distinction.
In the first case there is an element x′ ∈ X such that (x′, y) ∈ Z1. We can
then conclude that (x′, z) ∈ Z1;Z2 and thus by assumption 1 we have z ∈ X ′′.
But then by the latter fact and (x, z) ∈ Z1;Z2, coupled with assumption 2, we
can infer that x ∈ X. In the second case we have that there is a z′ ∈ X ′′ such
that (y, z′) ∈ Z2. This gives us immediately that (x, z′) ∈ Z1;Z2 and thus by
assumption 2 we can again conclude x ∈ X.

Since X and X ′ fulfill the preconditions of the property of conditional
bisimulation for Z1, we can deduce that for every x ∈ f(w,X) there is y ∈
f ′(w′, X ′) such that (x, y) ∈ Z1. We can now repeat the same proof strategy for
X ′ and X ′′ and apply the property of Z2 to obtain that for every y ∈ f ′(w′, X ′)
there is z ∈ f ′′(w′′, X ′′) such that (y, z) ∈ Z2. Concatenating this with the
previous result we get the desired conclusion: for every x ∈ f(w,X) there is a z ∈
f ′′(w′′, X ′′) such that (x, z) ∈ Z1;Z2. The converse is proved symmetrically.

Proposition 2.13. Restricted to any class of grounded models, the relation of
bisimilarity defined as

two states w and w′ are bisimilar iff there exists a conditional bisimulation Z
such that (w,w′) ∈ Z

is an equivalence relation.

Proof. We need to show that the relation of bisimilarity is reflexive, symmetric
and transitive. For reflexivity, it is immediate to see that the identity relation
is a conditional bisimulation. The definition of conditional bisimulation is
itself symmetric, hence the converse of a conditional bisimulation is always a

9



conditional bisimulation; the symmetry for bisimilarity follows. As for transitivity,
Proposition 3.9 ensures that if there are two conditional bisimulations Z1 and Z2

such that (w,w′) ∈ Z1 and (w′, w′′) ∈ Z2 then there is a conditional bisimulation
containing the pair (w,w′′), namely the relational composition Z1;Z2.

2.3 Models for non-monotonic logics

In this section we compare our conditions on selection functions with well-known
semantic requirements for the models of non-monotonic logics. In [12] Gabbay
argues that our intuitions about non-monotonic derivations are captured by
consequence relations `NM which satisfy three properties known as Reflexivity,
Cut and Cautious Monotonicity:

• φ `NM φ (Reflexivity)

• φ `NM ψ and (φ ∧ ψ) `NM θ entail φ `NM θ (Cut)

• φ `NM ψ and φ `NM θ entail (φ ∧ ψ) `NM θ (Cautious Monotonicity)

The semantic translation of such properties on selection functions is the following.

• f(w,X) ⊆ X (Reflexivity)

• (f(w, Y ) ⊆ X and f(w,X ∩ Y ) ⊆ X ′ entail (f(w, Y ) ⊆ X ′ (Cut)

• (f(w, Y ) ⊆ X and f(w, Y ) ⊆ X ′ entail f(w,X ∩ Y ) ⊆ X ′ (Cautious
Monotonicity)

It is clear that Reflexivity is exactly our first requirement on conditional models.
The other two properties correspond to the two inclusion of our second condition
on selection functions.

Lemma 2.14. Cut entails the left-to-right inclusion in the second condition on
selection functions. In presence of Reflexivity, the converse also holds.

Proof. Suppose X ⊆ Y and f(w, Y ) ⊆ X. Substitute X ′ with f(w,X) in
the definition of Cut: the premises are now f(w, Y ) ⊆ X, which we have by
assumption, and f(w,X ∩ Y ) = f(w,X) ⊆ f(w,X), which is trivially the case.
By Cut we can then conclude f(w, Y ) ⊆ f(w,X), as desired.

For the other direction, assume (f(w, Y ) ⊆ X and f(w,X ∩ Y ) ⊆ X ′. To
conclude (f(w, Y ) ⊆ X ′ it is enough to derive (f(w, Y ) ⊆ f(w,X ∩ Y ). Notice
now that Y and X ∩ Y satisfy the antecedent of the second condition: one one
hand X ∩Y ⊆ Y by definition, on the other hand (f(w, Y ) ⊆ X ∩Y follows from
our assumption (f(w, Y ) ⊆ X and Reflexivity (f(w, Y ) ⊆ Y . Thus applying the
second condition we obtain (f(w, Y ) ⊆ f(w,X ∩ Y ) and we are done.

Lemma 2.15. Cautious Monotonicity entails the right-to-left inclusion in the
second condition on selection functions. In presence of Reflexivity, the converse
also holds.
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Proof. Suppose X ⊆ Y and f(w, Y ) ⊆ X. Replacing X ′ with f(w, Y ) in the
definition of Cautious Monotonicity we can check that both premises are given:
f(w, Y ) ⊆ X, by assumption, and f(w, Y ) ⊆ f(w, Y ). We can thus conclude
f(w,X) = f(w,X ∩ Y ) ⊆ X ′ = f(w, Y ).

For the converse, assume (f(w, Y ) ⊆ X and f(w, Y ) ⊆ X ′. To obtain
f(w,X ∩ Y ) ⊆ X ′ it is enough to show f(w,X ∩ Y ) ⊆ f(w, Y ). Notice that
we have (f(w, Y ) ⊆ X ∩ Y , by assumption (f(w, Y ) ⊆ X and Reflexivity
(f(w, Y ) ⊆ Y . Coupled with X ∩ Y ⊆ Y , we are in position to use the right-to-
left inclusion in the second condition, thus obtaining f(w,X ∩Y ) ⊆ f(w, Y ).

Thus our conditional models are exactly those satisfying Gabbay’s require-
ments, when those are formulated in terms of selection functions.

2.4 Sphere models for belief revision

Proposed first by Lewis [16] and later modified by Grove [14] the so called ‘sphere
models’ are one of the most important models used in the analysis of conditionals,
belief revision and theory change. In this subsection we show that such models
are an example of our conditional models.

Definition 2.16 (adapted from [14]). A sphere model is a tupleM = 〈W,E, V 〉
with W a non-empty set of worlds, V : W → ℘(At) a valuation function and
S : ℘(W ) → ℘(℘(W )) a function assigning to each set of worlds a so-called
system of spheres satisfying the following requirements for every X ⊆W

1. S(X) is totally ordered by inclusion: if U, V ∈ S(X) then either U ⊆ V or
V ⊆ U ;

2. X is the minimum of S(X);

3. W ∈ S(X);

4. for any subset Y ⊆ W , if there is U ∈ S(X) such that U ∩ Y 6= ∅ then
there is a smallest set V ∈ S(X) with such a property, call it cX(Y ).

Proposition 2.17. Sphere models are conditional models, where f(w,X) =
c{w}(X) ∩X for all w.3

Proof. We need to check that the newly defined f fulfills the prerequisites of
selection functions in Definition 2.1. The first condition is obviously given by
f(w,X) = c{w}(X) ∩X ⊆ X. For the second one, suppose X ⊆ Y , f(w, Y ) =
(c{w}(Y )∩Y ) ⊆ X and take x′ ∈ f(w, Y ). By assumption f(w, Y ) = (c{w}(Y )∩
Y ) ⊆ X we can readily conclude that x′ ∈ X. On the other hand, X ⊆ Y entails
that c{w}(Y ) ⊆ c{w}(X): the smallest set having non-empty intersection with
X also has non empty intersection with Y , and c{w}(Y ) is minimal with such
property. Thus x′ ∈ c{w}(X) and we can conclude x′ ∈ c{w}(X) ∩X = f(w,X).
For the other inclusion consider x′ ∈ c{w}(X) ∩X = f(w,X). Since x′ ∈ X we

3Grove himself suggests such a function in [14] p. 159.
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get x′ ∈ Y . By f(w, Y ) = (c{w}(Y ) ∩ Y ) ⊆ X and the fact that c{w}(Y ) ∩ Y
is non-empty we can infer that X has non-empty intersection with c{w}(Y ),
thus c{w}(X) ⊆ c{w}(Y ), and therefore x′ ∈ c{w}(Y ). This suffices to conclude
x′ ∈ c{w}(Y ) ∩ Y = f(w, Y ).

We have seen that sphere models and selection function models for non-
monotonic reasoning do fall under the scope of our analysis. The language we
were considering was a language with an additional binary operator ψ  φ,
meant to capture conditionals or defeasible entailment. Now we proceed to
show that our notion of conditional modality is general enough to encompass
well-known modal operators with independent origins and motivations, namely
conditional belief and relativized common knowledge.

3 Conditional belief on plausibility models

Plausibility models are widely used in formal epistemology [5, 20], while their
introduction can be traced back at least to [16]. In their simplest form they
come in the shape of a set equipped with a preorder, intuitively representing the
possible scenarios and how an agent ranks them in terms of plausibility, whence
the name.

Definition 3.1. A plausibility model is a tuple M = 〈W,≤, V 〉 with W a
non-empty set of worlds, a reflexive and transitive relation ≤⊆ W ×W and
V : W → ℘(At) a valuation function.

The strict relation < is defined as usual from ≤. Given a set X ⊆W , let

Min(X) = {v ∈ X|¬∃w ∈ X s.t. w < v}

We can think of Min(X) as the set of most plausible worlds in X.4 When
we want to specify the ordering we write Min≤(X).

Among the variety of operators that are studied in the setting of plausibility
models, a prominent part is played by the operator of conditional belief. This
operator is an example of a conditional modality and it is usually written as
Bψφ. The standard belief operator can be defined as B>φ.

The semantics for the propositional part of the language is the usual one,
while for belief and conditional belief we have the clauses:

• M, w � Bφ iff for all v ∈Min(W ) we have M, v � φ

• M, w � Bψφ iff for all v ∈Min(JψK) we have M, v � φ

The notion of bisimulation for the standard belief operator on plausibility
models is the following.

4We mostly omit the parenthesis in Min(X) in what follows.
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Definition 3.2. Given two plausibility models M1 and M2, a plausibility B-
bisimulation is a non-empty relation Z ⊆ W1 ×W2 such that if (w,w′) ∈ Z
then

• for all p ∈ At, p ∈ V (w) iff p ∈ V (w′);

• for every x ∈ MinW1 there is y ∈ MinW2 such that (x, y) ∈ Z, and
viceversa.

The following result is folklore.

Theorem 3.3. Bisimilarity with respect to plausibility B-bisimulation entails
modal equivalence with respect to the language with only the belief operator. On
models having finitely many minimal elements, modal equivalence with respect to
the latter language entails bisimilarity for plausibility B-bisimulation.

3.1 Plausibility CB-bisimulation

To obtain a bisimulation for conditional belief on plausibility models we show
how the latter are an instance of conditional models; this move will indicate a
systematic way to specialize the results of Section 2 to this particular context.

Definition 3.4. A plausibility modelM is well-founded if it contains no infinite
descending chains.5

Proposition 3.5. Well-founded plausibility models are conditional models,
where f(w,X) = MinX for all w.

Proof. We need to check that the newly defined f fulfills the prerequisites of
selection functions in Definition 2.1. The first condition on selection functions
is fulfilled by the very definition of Min. For the second one, suppose X ⊆ Y ,
MinY ⊆ X and take x′ ∈MinY . Since X ⊆ Y , if there is no element below x′

in Y then a fortiori there is no element below it in the subset X, thus in this
circumstance x′ ∈MinX. For the other inclusion take x′ ∈MinX; we show x′

is also minimal for Y . By contradiction, suppose there is z ∈ Y \X such that
z < x′. Since we are in a well-founded model there must be a minimal element
z′ ∈MinY such that z′ ≤ z; but by assumption MinY ⊆ X, hence z′ ∈ X and
z′ < x′, contradicting the fact that x′ is minimal in X.

Notice that, setting f(w,X) = MinX, the definition of the satisfaction
relation for conditional belief becomes an instance of the satisfaction relation
for conditional modalities given in Section 2. With the new f we can see in
retrospect that Theorem 3.3 follows from our framework from the considerations
of Subsection 2.1. We also obtain a new notion of bisimulation for conditional
belief on plausibility models, following the footprint of Definition 2.5.

Definition 3.6. Given two plausibility models M1 and M2, a plausibility CB-
bisimulation is a non-empty relation Z ⊆ W1 ×W2 such that if (w,w′) ∈ Z
then

5Equivalently, assuming choice, if every non empty subsets has minimal elements.
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• for all p ∈ At, p ∈ V (w) iff p ∈ V (w′),

• for all X ⊆ W and X ′ ⊆ W ′ such that R[X] ⊆ X ′ and R−1[X ′] ⊆ X we
have that for every x ∈ MinX then there exists a y ∈ MinX ′ such that
(x, y) ∈ Z, and viceversa.

We can now conclude that this notion of bisimilarity corresponds to modal
equivalence on finite plausibility models. Throughout this section and the
following one we use ‘modal equivalence’ meaning with respect to the language
of conditional belief.

Theorem 3.7. Given two plausibility models M1 and M2, if (w,w′) ∈ Z ⊆
W1 ×W2, where Z is a plausibility CB-bisimulation, then w and w′ are modally
equivalent. On finite models, if w and w′ are modally equivalent then (w,w′) ∈
Z ⊆W1 ×W2, where Z is a plausibility CB-bisimulation.

We can also import the results concerning the closure under union and
relational composition.

Lemma 3.8. Every plausibility model is a grounded model.

Proof. Given a plausibility model M, it is enough to check that, having defined
f(w,X) = MinX, we have f(w, {x}) 6= ∅ for all w, x ∈ W . But clearly
Min{x} = {x}, hence the condition is fulfilled.

Proposition 3.9. The notion of plausibility CB-bisimulation is closed under
arbitrary unions and relational composition.

3.2 Undefinability

In this subsection we put the new notion of bisimulation to use, addressing the
problem of inter-definability between conditional belief and other widely-used
operators. We begin with the operator of safe belief as introduced in [6]:

Safe belief : M, w � [≤]φ iff for all v ≤ w we have M, v � φ.

The dual operator is customarily defined as 〈≤〉φ := ¬[≤]¬φ.

Proposition 3.10. On plausibility models, safe belief is not definable in terms
of the conditional belief operator.

Proof. Suppose 〈≤〉p is definable by a formula α in the language of conditional
belief. Consider the two models depicted on the left and right side of the following
picture. We indicate within parenthesis the propositional atoms that are true at
every world and with Z a CB-bisimulation between the two models (we omit
reflexive arrows):

14



3

1 4

2(p) 5(p)

≤

Z

Z

Z

Given that α is a formula in the language of conditional belief, it will be invariant
between states that are bisimilar according to a CB-bisimulation. However, 〈≤〉p
is true in the second model at 4 but false in the first model at 1; contradiction.

Notice that the CB-bisimulation Z of this counterexample is not a bisimulation
for safe belief, since it fails to satisfy the zig-zag condition: there are worlds 1,
3 and 4 such that (1, 3) ∈ Z and 4 ≤ 3 but no world w such that w ≤ 1 and
(w, 4) ∈ Z.

We now address the case of the strong belief operator, also introduced in [6].

Strong belief : M, w � Sbφ iff there is k ∈W such that M, k � φ and for all
v, v′ if M, v � φ and M, v′ � ¬φ then v ≤ v′.

Proposition 3.11. On plausibility models, strong belief is not definable in terms
of the conditional belief operator.

Proof. Again, suppose Sbp is definable by a formula α in the language of con-
ditional belief. Consider the two models displayed below, where Z a CB-
bisimulation and the propositional variables are attached to worlds as before
(reflexive and transitive arrows omitted):

3(p)

1 4

2(p) 5(p)

≤≤

≤

Z

Z

Z

The formula α in the language of conditional belief will be invariant between
states that are bisimilar according to a CB-bisimulation; nevertheless, Sbp is
true in the first model at 1 but false in the second model at 4, thus α will be
true in one world and not in the other: contradiction.

We now turn our attention to the definability of the conditional belief operator
itself. We first warm up with a definition and two auxiliary observations.
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Definition 3.12. A BSB-bisimulation, a bisimulation for standard belief and
safe belief, is a B-bisimulation satisfying an additional condition, namely the
usual zig-zag condition for the ≤ relation: given two plausibility models M and
M′ and two worlds w and w′ in the respective models, if (w,w′) ∈ Z then

• for every v in M such that v ≤ w there is a v′ in M′ such that (v, v′) ∈ Z
and v′ ≤ w′

• for every v′ inM′ such that v′ ≤ w′ there is a v inM such that (v, v′) ∈ Z
and v ≤ w

Proposition 3.13. On plausibility models, if two states w and w′ are in a
BSB-bisimulation then they are modally equivalent with respect to the language
containing the belief and safe belief operators.

Proof. Straightforward induction on the complexity of the formula.

Proposition 3.14. On plausibility models, conditional belief is not definable in
terms of the language containing the operators of safe belief and standard belief.

Proof. Suppose B¬pq is definable by a formula α in the language of belief, safe
belief and public announcement. Consider the two models displayed below,
where Z a BSB-bisimulation and the propositional variables are attached to
worlds as before:

1(q) 3

2(p) 4(p)

≤≤

Z

Since 2 and 4 are in a BSB-bisimulation, by Proposition 3.13 they are modally
equivalent in the language of belief and safe belief. Thus we can conclude 2 � α
iff 4 � α. But 2 � B¬pq and 4 � ¬B¬pq, contradiction.

Notice that the bisimulation used in this counterexample is not a plausibility
CB-bisimulation.

4 Conditional belief on evidence models

Evidence models, introduced in [23], are structures capturing the evidence
available to an agent in different possible worlds. The evidence available at a
world w is represented via a family of sets of possible worlds: intuitively each
set in the family constitutes a piece of evidence that the agent can use to draw
conclusions at w. They constitute a generalization over plausibility models, but
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can be collapsed to plausibility models by considering the specialization preorder
induced by the sets of evidence, however not without loss of information.6

Definition 4.1. An evidence model is a tuple M = 〈W,E, V 〉 with W a non-
empty set of worlds, a function E : W → ℘(℘(W )) and V : W → ℘(At) a
valuation function. A uniform evidence model is an evidence model where E is
a constant function; in this case we denote it with E .

We indicate with E(w) the set of subsets image of w. We furthermore assume
W ∈ E(w) and ∅ 6∈ E(w) for all w ∈W .

The last requirement ensures that at every possible world the agents has
trivial evidence, namely the whole set W , and does not have inconsistent evidence,
i.e. the empty set.

Definition 4.2. A w-scenario is a maximal family X ⊆ E(w) having the finite
intersection property (abbreviated in ‘f.i.p.’), that is, for each finite subfamily
{X1, . . . , Xn} ⊆ X we have

⋂
1≤i≤nXi 6= ∅. Given a set X ⊆W and a collection

X ⊆ E(w), the latter has the f.i.p. relative to X if for each finite subfamily
{X1, . . . , Xn} ⊆ XX = {Y ∩X|Y ∈ X} we have

⋂
1≤i≤nXi 6= ∅. We say that

X is an w-X-scenario if it is a maximal family with the f.i.p. relative to X.

The semantics for the propositional part of the language is the usual one,
while for belief and conditional belief we have the clauses:

• M, w � Bφ iff for every w-scenario X we have M, v � φ for all v ∈
⋂
X

• M, w � Bψφ iff every w-JψK-scenario X we have M, v � φ for all v ∈⋂
X JψK

The notion of bisimulation for the standard belief operator on evidence
models establishes a connection between the scenarios of two models:

Definition 4.3. Given two evidence models M1 and M2, an evidence B-
bisimulation is a non-empty relation Z ⊆ W1 ×W2 such that if (w,w′) ∈ Z
then

• for all p ∈ At, p ∈ V (w) iff p ∈ V (w′);

• then for every w-scenario X and x ∈
⋂
X there is a w′-scenario Y and

y ∈ Y such that (x, y) ∈ Z, and viceversa.

The following result can be proven via the standard line of reasoning.

Theorem 4.4. Bisimilarity with respect to evidence B-bisimulation entails modal
equivalence with respect to the language with only the belief operator. On finite
models, modal equivalence with respect to the latter language entails bisimilarity
for evidence B-bisimulation.

6See [20, 21] for a discussion on the relationship between the two kinds of models. The
sphere systems of [14] also constitute an example of neighborhood models with a close tie to
relational structures.
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4.1 Evidence CB-bisimulation

We first show that finite evidence models are an example of conditional models
by means of two auxiliary lemmas.

Lemma 4.5. On finite models, suppose Y ⊇ X. Then for every w-X-scenario X
there is a w-Y -scenario Y such that X ⊆ Y. Conversely, for every w-Y -scenario
Y there is a w-X-scenario X such that X ⊆ Y.

Proof. Clearly X already has the f.i.p. relative to Y . Enumerate the sets K
in E(w) (there are finitely many), then proceed following the enumeration: if
K ∈ X or X ∪ {K} has the f.i.p. relative to Y then put K in Y, otherwise not.
Because of the first condition we get X ⊆ Y, while from the second one we
obtain that Y is a w-Y -scenario.

For the second claim, enumerate the sets in Y : K0, . . . ,Km. Construct X in
stages beginning from X0 = ∅ and putting Xn+1 = Xn ∪{Kn} if

⋂
XXn ∩Kn 6= ∅.

Clearly X ⊆ Y. To see that X is maximal with the f.i.p. relative to X suppose
that there is K 6∈ X such that

⋂
XX ∩K 6= ∅. By construction, if

⋂
XX ∩K 6= ∅

and K 6∈ X then K 6∈ Y, hence by the maximality of Y it must be that⋂
YY ∩K = ∅. Since

⋂
XX ⊆

⋂
YY by construction we get a contradiction.

Therefore X is maximal with the f.i.p. relative to X.

Lemma 4.6. On finite models, if Y ⊇ X, then for every w-X-scenario X
and w-Y -scenario Y such that X ⊆ Y if y ∈

⋂
YY then either y ∈

⋂
XX or

y ∈ Y \X. If no element y ∈
⋂
YY is in Y \X then

⋂
XX =

⋂
YY .

Proof. Say y 6∈ Y \X. Then, since y ∈ Y , it must be that y ∈ X. Since
y ∈

⋂
YY we have that y ∈ K for all K ∈ Y, and hence y ∈ K for all K ∈ X ,

so y ∈
⋂
XX . We can thus conclude that if y 6∈ Y \X for all y ∈

⋂
YY then⋂

XX ⊇
⋂
YY . For the other inclusion suppose z ∈

⋂
XX but not in

⋂
YY .

Then there must be K ∈ Y such that K 6∈ X and z 6∈ K. By maximality of X
it must be that K has empty intersection with

⋂
XX . Under the assumption

that no element y ∈
⋂
YY is in Y \X, the latter fact entails that

⋂
YY must be

empty, contradiction. Hence there can be no element z that is in
⋂
XX but not

in
⋂
YY , thus

⋂
XX =

⋂
YY .

Proposition 4.7. Finite evidence models are conditional models, where

f(w,X) =
⋃
{
⋂
XX |for X w-X-scenario}

Proof. The satisfaction of the first property is ensured by the definition of XX :
since each

⋂
XX lies within X, the big union will also be contained in X.

For the second property suppose Y ⊇ X and f(w, Y ) ⊆ X. If x ∈ f(w, Y )
then there is a w-Y -scenario Y such that x ∈

⋂
YY . By Lemma 4.5 we know

there is a w-X-scenario X such that X ⊆ Y . By Lemma 4.6 either x ∈
⋂
XX or

x ∈ Y \X. But the latter cannot be because x ∈ X by assumption, so x ∈
⋂
XX .

Then we can conclude that x ∈ f(w,X).
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Now for the other direction. If x ∈ f(w,X) then there is a w-X-scenario X
such that x ∈

⋂
XX . By Lemma 4.5 there is a w-Y -scenario Y such that X ⊆ Y .

Because f(w, Y ) ⊆ X we can infer that there is no element y ∈
⋂
YY that is in

Y \X (that is,
⋂
YY ⊆ X), so by the second part of Lemma 4.6 we can conclude

that
⋂
XX =

⋂
YY . This gives us x ∈

⋂
YY and thus x ∈ f(w, Y ).

Notice that, setting f(w,X) =
⋃
{
⋂
XX |for X w-W -scenario}, the defini-

tion of the satisfaction relation for conditional belief on evidence models becomes
an instance of the satisfaction relation for conditional modalities given in Section
2. Replacing the new f in Definition 2.5, we obtain a new notion of bisimulation
for conditional belief on evidence models.

Definition 4.8. Given two evidence models M1 and M2, an evidence CB-
bisimulation is a non-empty relation Z ⊆ W1 ×W2 such that if (w,w′) ∈ Z
then

• for all p ∈ At, p ∈ V (w) iff p ∈ V (w′),

• for all X ⊆ W and X ′ ⊆ W ′ such that R[X] ⊆ X ′ and R−1[X ′] ⊆ X we
have that for every w-X-scenario X and x ∈

⋂
XX there is a w′-X ′-scenario

Y and y ∈
⋂
YX′

such that (x, y) ∈ Z, and viceversa.

We can now import the previous results on conditional models. First of
all, bisimilarity in the latter sense corresponds to modal equivalence on finite
evidence models.

Theorem 4.9. Given two evidence models M1 and M2 if (w,w′) ∈ Z ⊆
W1 ×W2, where Z is an evidence CB-bisimulation, then w and w′ are modally
equivalent. On finite models, if w and w′ are modally equivalent then (w,w′) ∈
Z ⊆W1 ×W2, where Z is an evidence CB-bisimulation.

As for plausibility models, we can infer the results concerning the closure
under union and relational composition.

Lemma 4.10. Every evidence model is a grounded conditional model.

Proof. Given an evidence model M, it is enough to check that, having defined
f(w,X) =

⋃
{
⋂
XX |for X w-X-scenario}, we have f(w, {x}) 6= ∅ for all

w, x ∈ W . It is enough to show that there exist a w-{x}-scenario X , then by
the f.i.p. relative to {x} we know that every element of X must contain x, thus
x ∈

⋂
X {x} and f(w,X) is not empty. To find the desired w-{x}-scenario X ,

take the family of all the sets in E(w) containing x. This family is non-empty,
since W ∈ E(w) for every w in the domain of the model. Clearly this family is
maximal with the f.i.p. relative to {x} (not only, it is the only one), so we are
done.

Proposition 4.11. The notion of evidence CB-bisimulation is closed under
arbitrary unions and relational composition.
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4.2 Undefinability

Thanks to the now clearly defined bisimulation for conditional belief, we can
give a precise argument for the undefinability of conditional belief in terms of
standard belief over evidence models.

Proposition 4.12. On evidence models, conditional belief is not definable in
terms of the normal belief operator.

Proof. Suppose Bpq is definable by a formula α in the language of standard belief.
Consider the two models depicted on the left and right side of the following
picture, where we indicate within parenthesis the propositional atoms that are
true at every world and with Z a B-bisimulation between the two models:

1(p, q) 4(p, q)

2(p) 5

3

Z

Z

The evidence available at each world is: E(1) = {{1}, {3}, {2, 3},W1}, E(4) =
{{4}, {5},W2}, E(2) = {W1}, E(3) = {{3},W1}, E(5) = {{5},W2}. The reader
can check that the relation Z is a B-bisimulation. Given that α is a formula in the
language of normal belief, it will be invariant between states that are bisimilar
according to a B-bisimulation. However, Bpq is true in the second model at 4
but false in the first model at 1: there is a 1-JpKM1

-scenario X = {{2, 3},W1}
and 2 ∈

⋂
X JpKM1 such that 2 6� q. Hence we obtain a contradiction.

Note that the relation Z is not an evidence CB-bisimulation: the sets of
worlds satisfying p in the two models satisfy the prerequisites, they are sent into
each other by Z, but fail with respect to the main property, since there is a
1-JpKM1

-scenario X , and an element in
⋂
X JpK, namely 2, that has no bisimilar

counterpart in the second model. Another important operator to describe the
features of evidence models is the so called evidence modality [23].

Evidence modality : M, w � 2φ iff there is K ∈ E(w) such that, for all v ∈ K,
M, v � φ.

It was shown in [23] that, on evidence models, standard belief cannot be
defined in terms of the evidence modality. Since standard belief is definable in
terms of conditional belief, we can conclude that also conditional belief is not
definable via the evidence modality. Here we show that also the converse is the
case.
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Proposition 4.13. On evidence models, the evidence modality is not definable
in terms of the conditional belief operator.

Proof. Suppose 2p is definable by a formula α in the language of conditional
belief. Consider the two models depicted on the left and right side of the following
picture, where we indicate within parenthesis the propositional atoms that are
true at every world and with Z a CB-bisimulation between the two models:

1 3

2(p) 4(p)

Z

Z

We take both models to be uniform, where E1 = {{1}, {2},W1} and E2 = {W2}.
The reader can check that with this evidence the relation Z is a CB-bisimulation.
Given that α is a formula in the language of normal belief, it will be invariant
between states that are bisimilar according to a CB-bisimulation. Nevertheless,
2p is true in the first model at 1 but false in the second model at 3: in the first
model there is an evidence set contained in the extension of p, namely {2}, while
there is no such set in the second model; contradiction.

5 Relativized common knowledge

In this section we depart from the conditional belief operator, to study how
this general framework is also applicable to another conditional modality, the
so-called relativized common knowledge operator, defined in [22] and studied in
[24].

Definition 5.1. A Kripke model is a tupleM = 〈W,R, V 〉 with W a non-empty
set of worlds, a relation R ⊆W ×W and V : W → ℘(At) a valuation function.

Definition 5.2. Given a relation R ⊆W ×W , denote with R∗ its reflexive and
transitive closure.

The operator of relativized common knowledge, denoted with C(φ, ψ), is
meant to capture the intuition that every path which consists exclusively of
φ-worlds ends in a world satisfying ψ. The informal notion of path is captured
in the following definition via the reflexive transitive closure.

M, w � C(φ, ψ) iff M, v � φ for all (w, v) ∈ (R ∩ (W × JφK))∗

where M is a Kripke model. The most direct way to encompass this operator is
to design a selection function for it.

Proposition 5.3. Kripke models are conditional models, where f(w,X) =
{v|(w, v) ∈ (R ∩ (W ×X))∗} for all w.
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Proof. Again we check the prerequisites of selection functions in Definition 2.1.
Clearly all the worlds reachable with a path in X will also lie in X, hence the first
condition on selection functions is given. For the second one, suppose X ⊆ Y ,
f(w, Y ) = {v|(w, v) ∈ (R∩ (W ×Y ))∗} ⊆ X and take x′ ∈ f(w, Y ). Hence there
is a chain of Y -worlds leading to x′. We show x′ ∈ f(w,X) by induction on the
length of the chain. The base case: since (w,w) ∈ f(w, Y ) ⊆ X so we also have
a chain of length 0 contained in X, i.e. (w,w) ∈ f(w,X). For the inductive
step suppose x ∈ f(w,X) for all x ∈ f(w, Y ) reachable with a chain of Y -worlds
of length ≤ n. Now say x′ ∈ f(w, Y ) is reachable with a chain of Y -worlds of
length n+ 1. By x′ ∈ f(w, Y ) ⊆ X we know that also x′ ∈ X, thus the whole
chain is in X and x′ ∈ f(w,X). For the other inclusion, it is straightforward to
see that X ⊆ Y immediately entails f(w,X) ⊆ f(w, Y ).

Setting f(w,X) = {v|(w, v) ∈ (R ∩ (W ×X))∗}, we can repeat the chain of
reasoning from Section 2.

Definition 5.4. Given two Kripke models M1 and M2, a bisimulation for
relativized common knowledge or RCK-bisimulation is a non-empty relation
Z ⊆W1 ×W2 such that if (w,w′) ∈ Z then

• for all p ∈ At, p ∈ V (w) iff p ∈ V (w′),

• for all X ⊆ W and X ′ ⊆ W ′ such that R[X] ⊆ X ′ and R−1[X ′] ⊆ X we
have that for every x ∈ {v|(w, v) ∈ (R ∩ (W ×X))∗} then there exists a
y ∈ {v|(w, v) ∈ (R ∩ (W ×X ′))∗} such that (x, y) ∈ Z, and viceversa.

where the last condition essentially states that for every state reachable via
a X-path in the first model there must be a corresponding state in the second
model reachable via a X ′-path.

We can now derive our previous results for this specific setting. In this section
and the following one we use ‘modal equivalence’ meaning with respect to the
language containing only the usual propositional connectives and the relativized
common knowledge operator.

Theorem 5.5. Given two Kripke modelsM1 andM2, if (w,w′) ∈ Z ⊆W1×W2,
where Z is a RCK-bisimulation, then w and w′ are modally equivalent. On finite
models, if w and w′ are modally equivalent then (w,w′) ∈ Z ⊆W1 ×W2, where
Z is a RCK-bisimulation.

Proposition 5.6. RCK-bisimulations are closed under arbitrary unions.

Lemma 5.7. Every Kripke model is a grounded conditional model for f(w,X) =
{v|(w, v) ∈ (R ∩ (W ×X))∗}.

Proof. By reflexive closure we always have (w,w) ∈ f(w,X) for all X, hence
also (w,w) ∈ f(w, {x}).

Proposition 5.8. RCK-bisimulations are closed under relational composition.
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5.1 Recovering the original Hennessy-Milner Theorem

Now that we are dealing with Kripke models we can finally show how to obtain
the original Hennessy-Milner Theorem in our framework. Given a Kripke model
M, define the selection function for the conditional box 2ψφ as:

f(w,X) = {v|v ∈ X, (w, v) ∈ R}

whose satisfaction relation is clearly

M, w � 2ψφ iff M, v � ψ and (w, v) ∈ R entail M, v � φ

iff f(w, JψK) ⊆ JφK

Proposition 5.9. Kripke models are conditional models, where f(w,X) =
{v|v ∈ X, (w, v) ∈ R} for all w.

Proof. A straightforward check of the conditions of Definition 2.1.

We can thus directly infer all the results from Section 2, as the reader can
expect. It is easy to see that in this case the unary modality is just the usual 2
operator of basic modal logic and the unary bisimulation is the standard notion
of bisimulation for that language. When we instantiate Theorem 2.7 we obtain

Theorem 5.10 (Hennessy-Milner Theorem). Given two Kripke models M1 and
M2 such that

• f(w,W ) = {v|(w, v) ∈ R} is finite for all w ∈W (R is image-finite)

• f ′(w′,W ′) = {v′|(w′, v′) ∈ R′} is finite for all w′ ∈W ′ (R′ is image-finite)

if w and w′ are modally equivalent in the language of basic modal logic then
(w,w′) ∈ Z ⊆W1 ×W2, where Z is a unary bisimulation.

Note that, defining f(w,X) = {v|v ∈ X, (w, v) ∈ R}, we can extract the
precondition X and show that the conditional language is reducible to the
unconditional one:

M, w � 2ψφ iff {v|v ∈ JψK, (w, v) ∈ R} ⊆ JφK
iff {v|(w, v) ∈ R} ∩ JψK ⊆ JφK

iff {v|(w, v) ∈ R} ⊆ JφK ∪ JψK
iffM, w � 2(ψ → φ)

6 Generalization to multi-agent models

We now address the matter: can we extend the analysis of Section 3 to cover
the multi-agent case? Given a set of agents A, the language we are interested in
will look like

φ ::= p | ¬φ |ψ ∧ φ |ψ  a φ
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where  a will denote the modality for agent a. This leads to an easy generaliza-
tion of conditional models.

Definition 6.1. A multi-agent conditional model M is a tuple 〈W,A, {fa}a∈A, V 〉
with W a non-empty set of worlds, A a set of agents, V : W → ℘(At) a valuation
function and for each agent a selection function fa satisfying the conditions
listed in Definition 2.1.

The set of agents is nothing more than a set of labels for different selection
functions, co-existing in the same models but essentially independent from each
other. Depending on the interpretation, such labels may not refer to different
agents but, for example, to different doxastic conditional modalities for a single
agent. The semantics clause for the conditional modalities will be:

M, w � ψ  a φ iff fa(w, JψKM) ⊆ JφKM

for every a ∈ A. Likewise, the bisimulation can also be relativized in the same
fashion.

Definition 6.2 (Multi-agent Conditional Bisimulation). Given two multi-agent
conditional models M1 and M2 based n the same set of agents, a multi-agent
conditional bisimulation is a non-empty relation Z ⊆ W1 × W2 such that if
(w,w′) ∈ Z then

• for all p ∈ At, p ∈ V (w) iff p ∈ V (w′),

• for all X ⊆ W and X ′ ⊆ W ′ such that R[X] ⊆ X ′ and R−1[X ′] ⊆ X
we have that, for every a ∈ A, for every x ∈ fa(w,X) there exists a y ∈
f ′a(w′, X ′) (where f ′ is the selection function in M2) such that (x, y) ∈ Z,
and viceversa.

The proofs of the following results are a straightforward generalization of the
proofs of the analogous single-agent statements.

Theorem 6.3. Given two multi-agent conditional models M1 and M2, if
(w,w′) ∈ Z ⊆W1 ×W2, where Z is a multi-agent conditional bisimulation, then
w and w′ are modally equivalent with respect to the logic of conditionals.

On finite models, if w and w′ are modally equivalent then (w,w′) ∈ Z ⊆
W1 ×W2, where Z is a multi-agent conditional bisimulation.

Proposition 6.4. Multi-agent conditional bisimulations are closed under arbi-
trary unions.

Definition 6.5. A multi-agent conditional model is grounded if, for all w ∈W ,
a ∈ A and {x} in the domain of the model, fa(w, {x}) 6= ∅.

Proposition 6.6. Restricted to any class of multi-agent grounded models, the
notion of multi-agent conditional bisimulation is closed under relational composi-
tion.
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In the following subsection we exemplify multi-agent conditional models by
means of a well-known structure called multi-agent plausibility model or epistemic
plausibility model. The reader will see that an analogous generalization can be
carried over for evidence models and Kripke models, by introducing evidence
functions labelled by agents in the former and by employing relations labelled
by agents in the latter.

We devote another subsection to a further possible generalization, namely
conditional modalities for groups of agents. The prime example here is group
conditional belief.

6.1 Conditional belief on multi-agent plausibility models

The multi-agent generalization of plausibility models, epistemic plausibility
model are widely used in Formal Epistemology to capture knowledge and beliefs
in a multi-agent system.

Definition 6.7. A relation ≤⊆ W × W is a well-preorder if it is reflexive,
transitive and if there exist minimal element for every non-empty subset of W .
Given a reflexive and transitive relation ≤⊆ W ×W , we stipulate ∼ to be its
reflexive closure and, for a given w ∈ W , define its associated comparability
class to be [w]∼ = {v|v ≤ w or w ≤ v}. Call ≤ locally well-preordered if its
restriction to each comparability class is well-preordered.

Definition 6.8. A multi-agent plausibility model or epistemic plausibility model
is a tupleM = 〈W,A, {≤a}a∈A, V 〉 with W a non-empty set of worlds, {≤a}a∈A
a family of reflexive, transitive and locally well-preordered relations ≤a⊆W ×W
indexed by agents and V : W → ℘(At) a valuation function.

This structure is given these two names because in fact the epistemic indis-
tinguishability relation ∼a can be defined as the reflexive closure of ≤a. The
semantics of the belief and conditional belief operators are then relativized to a
specific agent and comparability class:

• M, w � Baφ iff for all v ∈Min([w]∼a) we have M, v � φ

• M, w � Bψa φ iff for all v ∈Min(JψK ∩ [w]∼a
) we have M, v � φ

Proposition 6.9. Multi-agent plausibility models are multi-agent conditional
models, where fa(w,X) = Min≤a(X ∩ [w]∼a).

Proof. We want to ascertain that the newly defined fa fulfills the prerequisites of
selection functions in Definition 2.1. The first condition is again given by the very
definition of Min. For the second one, suppose X ⊆ Y , Min≤a

(Y ∩ [w]∼a
) ⊆ X

and consider a generic element x′ in Min≤a
(Y ∩ [w]∼a

). Clearly from X ⊆ Y
we have X ∩ [w]∼a ⊆ Y ∩ [w]∼a . Thus since x′ ∈ X and then there is no element
below x′ in Y ∩ [w]∼a then a fortiori there is no element below it in the subset
X ∩ [w]∼a

, hence x′ ∈ Min≤a
(X ∩ [w]∼a

). For the other inclusion consider
x′ ∈ Min≤a

(X ∩ [w]∼a
); we show x′ is also minimal within Y ∩ [w]∼a

. By
contradiction suppose this is not the case: then there is z ∈ Y ∩ [w]∼a

such that
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z <a x
′. Since≤a is locally well-preordered, there must be a minimal element z′ ∈

Min≤a(Y ∩[w]∼a) such that z′ ≤a z; but by assumption Min≤a(Y ∩[w]∼a) ⊆ X,
hence z′ ∈ X. This gives us a z ∈ X ∩ [w]∼a

such that z′ <a x
′, contradicting

the fact that x′ is minimal in X ∩ [w]∼a
.

Now that this step is secured, we can reproduce the reasoning of Section 3 to
obtain a definition of multi-agent CB-bisimulation (clearly this latter definition
will have to impose the same requirements on all the fa’s).

Definition 6.10. Given two multi-agent plausibility models M1 and M2, a
multi-agent plausibility CB-bisimulation is a non-empty relation Z ⊆W1 ×W2

such that if (w,w′) ∈ Z then

• for all p ∈ At, p ∈ V (w) iff p ∈ V (w′),

• for all X ⊆ W and X ′ ⊆ W ′ such that R[X] ⊆ X ′ and R−1[X ′] ⊆ X we
have that for every a and x ∈ fa(w,X) = Min≤a

(X ∩ [w]∼a
) then there

exists a y ∈ f ′a(w,X) = Min≤′
a
(X ′ ∩ [w]∼a

) such that (x, y) ∈ Z, and
viceversa (where ≤′a is the relation associated to a in M2).

The results on the correspondence between bisimilarity and modal equivalence,
closure under union and closure under relational compositions do carry over to
this setting. One direction holds by a straightforward generalization of the single
agent case.

Theorem 6.11 (Bisimilarity entails modal equivalence). Given two multi-agent
plausibility models M1 and M2, if (w,w′) ∈ Z ⊆ W1 × W2, where Z is a
multi-agent plausibility CB-bisimulation, then w and w′ are modally equivalent.

The converse can even be generalized to (pre)image finite models.

Definition 6.12. A multi-agent plausibility model M is image finite if every
world has finitely many successors. It is (pre)image finite if every world has
finitely many successors and finitely many predecessors.

An immediate consequence is that in (pre)image-finite multi-agent plausibility
models each information cell [w]∼a is finite.

Theorem 6.13 (Modal equivalence entails bisimilarity on finite models). For
any two (pre)image-finite multi-agent plausibility models M1 and M2, if w and
w′ are modally equivalent then (w,w′) ∈ Z ⊆W1×W2, where Z is a multi-agent
plausibility CB-bisimulation.

Proof. Supposing w and w′ are modally equivalent, we want to show that
modal equivalence (we call it Z for short) is a multi-agent plausibility CB-
bisimulation. Suppose it is not: then there are X ⊆W and X ′ ⊆W ′ satisfying
the requirements, an agent a and x ∈ Min≤a(X ∩ [w]∼a) such that for all
y ∈ Min≤′

a
(X ′ ∩ [w′]∼a) we have (x, y) 6∈ Z. Since the information cells are

finite, both X ∩ [w]∼a
and X ′ ∩ [w′]∼a

will be finite. We can then repeat the
reasoning of Theorem 2.4, considering partitions on [w]∼a

and [w′]∼a
and so on.

In fact, the latter sets play the part of finite models in this proof.
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Proposition 6.14. Multi-agent plausibility CB-bisimulations are closed under
arbitrary unions and under relational compositions.

Proof. Follows from the fact that multi-agent plausibility models are grounded,
as fa(w, {x}) is equal to {x} for all a.

6.2 Group beliefs

As a further question pertaining to the multi-agent realm, we may ask whether
this approach suggests how to handle group beliefs, that is, beliefs of a given
group of agents. Contrary to knowledge, beliefs of different agents may be
mutually inconsistent and thus the problem of aggregating different agents’
beliefs into a consistent set is in general non trivial. We display one solution
and sketch another, arguing that they are all amenable to the analysis that we
showcased in the previous sections.

In the setting of multi-agent plausibility models, one may want to regard
the procedure of belief aggregation as a function F that receives the plausibil-
ity orderings {≤b}b∈G of the agents as inputs and returns as output a single
plausibility ordering F (G) =≤G for the group.7

Definition 6.15. Given a set W , call Σ the set of binary relations on W that
are reflexive and transitive.

Definition 6.16. Given a set of agents G ⊆ A, define ∼G=
⋂
b∈G ∼b, the

intersection of the equivalence relations of the agents in the group.

Definition 6.17. A group plausibility model is a tupleM = 〈W,A, {≤a}a∈A, V, F 〉
such that M = 〈W,A, {≤a}a∈A, V 〉 is a multi-agent plausibility model and
F : ℘(A)→ Σ is a function called doxastic aggregation function such that:

• for all a ∈ A, F ({a}) =≤a

• for all G ⊆ A, F (G) is locally well-preordered with respect to ∼G.

Some concrete proposals for protocols tailored to belief merge were put
forward in [7]. The choice of the aggregator F is natural in some special settings,
for example when we assume that the plausibility orderings of the agents all
originate from a “common prior” ordering ≤, that is, each agent’s plausibility
is just the restriction of ≤ to her information cells. This kind of assumption is
common in situations where we assume a fixed and objective notion of rationality
that dictates the ‘objective’ plausibility ordering ≤ of a set of possible worlds.8

This assumption allows us to intersect the information cells of the agents in the
group B and calculate the resulting group plausibility ≤G with no obstacle of

7This procedure bears some similarities with the aggregation of preferences studied by
Social Choice Theory, although typically in that context preferences are assumed to be linear
orders. See [17] for a classic primer in Social Choice Theory.

8See [4] for a notable example in Game Theory and [13] for a recent application of this idea
to plausibility orderings.
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inconsistent beliefs. Thus in this particular case F (G) is just given by intersecting
the plausibility orderings of the agents in the group.

Once F is fixed, the beliefs of the group are then computed from the plausibil-
ity ordering F (G) =≤G with the usual semantics in terms of minimal elements:

• M, w � BGφ iff for all v ∈Min≤G
(W ) we have M, v � φ

• M, w � BψGφ iff for all v ∈Min≤G
(JψK) we have M, v � φ

We do not dwell on the properties that such an aggregator F should have, but
point out that, as long as the semantics of group beliefs is given in the customary
way from the new relation ≤G, our analysis of the notion of bisimulation can be
extended to cover this case.

Observation 6.18. Group plausibility models are multi-agent plausibility mod-
els.

Proof. Given a group plausibility model relative to a set of agents A, define a
multi-agent plausibility model based on the set of agents ℘(A). This is possible
due to the protocol F , which provides a legitimate plausibility ordering for each
G ⊆ A.

Combining this observation with Proposition 6.9 we immediately obtain for
group plausibility models all the results mentioned in the previous subsection.

Another possibility is to use a multi-agent version of evidence models, where
each agents has a different set of evidences available at each world. To obtain
the group beliefs for the group G ⊆ A we first compute the evidence available to
G at w, simply taking the union of all the evidences possessed by the agents in G
at w: EG(w) =

⋃
a∈GEa(w). The beliefs of the group G can then be computed

from EG using scenarios as in Section 4. Since the information to define EG
is already contained in a multi-agent evidence model and the semantics of the
belief operator is of the same kind, this extension still falls within the scope of
our approach.

7 Related work

We begin by mentioning a conditional modality that does not fall under the
scope of our framework, relevant implication. The proponents of this connective
intend to overcome the counterintuitive properties of material implication by a
notion of entailment that consider the relevance of the antecedent with respect
to the consequent. This particular kind of entailment, that we will denote with
φ⇒ ψ is interpreted on ternary relations with a semantics going back at least
to [19].

M, w � φ⇒ ψ iff ∀v, v′ M, v � φ and (w, v, v′) ∈ R entail M, v′ � ψ.
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A possible selection function for this conditional modality could be

f(w,X) = {v′|∃v(w, v, v′) ∈ R, v ∈ X}

It is not hard to see, however, that such a selection function fails to satisfy the
first requirement on conditional models: there is nothing in the definition of
f(w,X) to ensure that v′ ∈ X. This observation aligns with the intentions of
the advocates of relevant implications, who contemplate the possibility of p⇒ p
failing at some worlds.

Another notion of bisimulation for conditional belief on multi-agent plausi-
bility models is given in [3]. In said paper the authors prove the correspondence
between bisimilarity and modal equivalence, respectively for the languages con-
taining conditional belief and knowledge, safe belief and knowledge, degrees of
belief and knowledge. The approach put forward in this paper has the following
two distinctive features. First, the bisimulation for conditional belief stems from
a general analysis of conditional modalities and it is not tied to a specific model
or operator. As we have showed, despite the level of generality the proofs are
still relatively simple and transparent. Second, the notion of bisimulation for
conditional belief offered here is modular, in the sense that it can be merged
with other conditions when we consider languages with additional operators.
In contrast, some results in the aforementioned paper depend crucially on the
existence of the knowledge operator.9

A notion of bisimulation containing a quantification over subsets has been
proposed originally in [15], adapted in [26] to epistemic lottery models and later
again reshaped to work in the context of epistemic neighborhood models in [25].
Such bisimulations were introduced to deal with probabilities and weights, not
conditional modalities. The main difference with the present approach lies in
the structure of the quantification. In our case the zig and zag conditions both
share the same preconditions, a universal quantification over pairs of subsets
satisfying certain prerequisites. In the aforementioned papers each direction
has a ∀∃ quantification, stating that for each subset in the first model (usually
within the current information cell) there exists a subset in the second model
fulfilling certain properties. The connection between these different notions will
be subject of further work.

8 Conclusion and further work

We have given a general definition of bisimulation for conditional modalities
interpreted on selection functions and proved a HM result, closure under unions
and closure under relational composition. To highlight the generality of this
framework we have considered a series of examples. First, we described how to
specialize the HM result to the case of the unconditional modalities. Second, we
argued that our models encompass both Grove’s sphere models and Gabbay’s

9Conversely, the undefinability result of Proposition 3.10 does not hold if we take knowledge
into account, that is, we restrict the scope of belief to the current information cell.
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models for non-monotonic reasoning. Third, we have shown how this approach
provides a solid definition of bisimulation for conditional belief, remarking
how such notion abstracts away from standard belief in a coherent way across
semantics. Fourth, we treated another conditional operator, relativized common
knowledge, underlining how the same results still hold for a different modality
with a different semantics. Finally, we showed the flexibility of the approach by
generalizing it to multi-agent systems, on one hand encompassing the case of
multi-agent plausibility models and on the other hand suggesting how to cover
group conditional belief.

The first open question along this line of enquiry concerns infinite models:
does modal equivalence entail bisimilarity on some infinite conditional models?
We have seen an example of how, in the case of multi-agent plausibility models,
the particular structure of the model can determine this answer, but we do not
have an answer in the general case yet. We may furthermore ask how many
‘classical’ results of the model theory for basic modal logic we can we obtain in
the setting of conditional modalities. One natural example would be a version
of the Van Benthem characterization theorem.

Another group of question arises from considering the new notion of bisimula-
tion from a category-theoretic point of view. From this perspective bisimulations
(or simulations, if we drop the viceversa condition) can be regarded as the arrows
for a suitable category of models, e.g. the category of plausibility models and
plausibility CB-bisimulations. The closure under relational composition, together
with the obvious fact that the identity relation is itself such a bisimulation, en-
sures that the conditions of a category are met. This enables a comparison
between categories of models, for example between evidence and plausibility
models, allowing for a systematic study of what has been called tracking [21],
namely the matching of corresponding information dynamics in different classes
of models.
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