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Abstract

Arithmetical definability has been extensively studied over the natural numbers. In
this paper, we take up the study of arithmetical definability over finite structures,
motivated by the correspondence between uniform AC® and FO(PLUS, TIMES). We
prove finite analogs of three classic results in arithmetical definability, namely that
< and TIMES can first-order define PLUS, that < and DIVIDES can first-order
define TIMES, and that < and COPRIME can first-order define TIMES.

The first result sharpens the known equivalence FO(PLUS, TIMES) =FO(BIT)
to FO(<, TIMES) = FO(BIT), answering a question raised by Barrington et al.
(LICS 2001) about the Crane Beach Conjecture. Together with previous results
on the Crane Beach Conjecture, our results imply that FO(PLUS) is strictly less
expressive than FO(<, TIMES) = FO(<, DIVIDES) = FO(<, COPRIME). In more
colorful language, one could say this containment adds evidence to the belief that
multiplication is harder than addition.
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1 Introduction

Three classic results in arithmetical definability over the natural numbers are:

e Successor and multiplication can first-order define addition [15]

e Successor and the divisibility relation can first-order define multiplication
15)

e Ordering and the coprime relation can first-order define multiplication [17]
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In this paper, we seek analogues of these results over finite structures —
that is, where the universe and relations are restricted to {0,1,...,n — 1}
for some n in N. Letting PLUS, TIMES, DIVIDES, COPRIME be the finite
restrictions of the usual addition, multiplication, divisibility predicate, and
coprime predicate, we show the following:

e Ordering and TIMES can first-order define PLUS (section 3)
e Ordering and DIVIDES can first-order define TIMES (section 4)
e Ordering and COPRIME can first-order define TIMES (section 5).

We also present two related negative definability results which are analogous
to the situation in the natural numbers, namely that TIMES without order-
ing cannot first-order define PLUS, and that PLUS cannot first-order define
TIMES.

Our interest in definability over finite structures stems from the connection
between logical expressiveness and complexity. Since Fagin’s result [6] that
the complexity class NP coincides with existential second-order logic, most
complexity classes have been given a logical characterization (see Immerman
[10]). Of particular interest in our case is the correspondence between the
circuit class AC® and first-order logic, and more specifically the equivalence
of uniform AC® and FO(PLUS, TIMES). With this equivalence in mind, our
main positive results can be summarized as:

uniform AC® = FO(<, TIMES) = FO(<, DIVIDES) = FO(<, COPRIME).

One application of our work is to the Crane Beach Conjecture. The Crane
Beach Conjecture expresses an intuition about the first-order definability of
languages with a neutral letter. A neutral letter for a language L is a letter e
which can be inserted and deleted from a string without affecting the mem-
bership of that string in L. The idea of the Crane Beach conjecture is that, if
a language L has a neutral letter, then membership in L does not depend on
a specific relationship between positions of letters in the string, only on the
relative positions of these letters. Following this intuition, the Crane Beach
Conjecture is formulated as follows:

If a language with a neutral letter can be defined in first-order logic using some
set N of numerical predicates, then it can be defined using only the ordering
relation.

A recent paper on the Crane Beach Conjecture [2] shows that the Crane Beach
Conjecture is true for {PLUS} — that is any language with a neutral letter
definable in FO(PLUS) is definable in FO(<) — yet false for {PLUS, TIMES}.
These results combined with our Thm (11) imply that FO(PLUS) is strictly
contained in FO(<, COPRIME) = FO(<, DIVIDES) = FO(<, TIMES).



These initial results set up a potentially interesting connection between the
theory of FO(N) over finite structures being decidable, the number of ones a
formula from FO(N) can identify in a string (how high FO(N) can count), and
the Crane Beach Conjecture being true for M. We discuss these connections
further in the conclusions.

2 Preliminaries

2.1 First-Order Logic

We use the standard definitions of a structure and signature, and unless
mentioned otherwise assume structures have a finite universe and a finite
relational signature, that is, finitely many relation symbols. Specifically we
will deal with first-order logic over finite strings from an alphabet A. We
identify a word w = wqg---w,_1, where each w; € A, with the structure
w={{0,...,n—1},0%). Here 0% ={l, :a € A} and I, ={i < n:w; = a}
is a unary predicate containing the positions in w which hold the letter a.

In addition to the predicates I,, we will be considering numerical predicates.
A k-ary numerical predicate P, has, for every n € N, a fixed interpretation
P, C {0,...,n—1}* In other words, the interpretation of numerical predicates
depends only on the size of the input, and not the underlying letters of a string.
A basic numerical predicate is the linear ordering < on the string positions.
Other numerical predicates we will consider are

PLUS(z,y,2) iff t +y = 2

TIMES(z,y,z2) iff x x y = 2

BIT(x, 1) iff the ith bit in the binary representation of x is 1
DIVIDES(z, ) iff z|y

COPRIME(z,y) iff x L y

We use this notation to avoid confusion with the usual arithmetic operations
over the natural numbers—remember in the above that the variables range
over a finite universe n, and so represent numbers in {0,...,n — 1}. In equa-
tions when there is no danger of confusion we will sometimes use the familiar
symbols for these arithmetic operations to save space.

We take equality as a logical constant. Atomic ¢ formulas, then, are of the
form z1 = x5 or P(x1,...,xx), where x1,...,x are variables and P € o is
a relation symbol of arity k. First-order ¢ formulas are built in the usual
way from atomic o-formulas with Boolean connectives V, A, =, and universal
Vz and existential dr quantifiers. For every alphabet and set of numerical



predicates N, we denote as FO(N) the set of first order 04 UN formulas. The
semantics of first-order formulas is defined in the usual way; for a string w € A*
and formula ¢ € FO(N') we write w = ¢ if the structure corresponding to w
is a model of ¢.

Definition 1 We say that a constant a is definable in FO(N) iff there is a
formula ¢ € FO(N) with one free variable such that for all n and z € n

r=a <= ¢(z).
Example 2 The constant 0 is definable in FO(<) by the formula
Vy(zx <yVz=y).

Definition 3 We say that a k-ary numerical predicate P is definable in FO(N)
iff there is a formula ¢ € FO(N') with k free variables such that for all n and
T1,...,2 € nk,

P(.’El,. . .,.Z‘k) <~ QS(.Tl,. ,xk)

Example 4 As an easy example, note that FO(PLUS) can define ordering as
follows:
x < z <= Jy(PLUS(z,y, 2) A =PLUS(y,y,y)).

Thus FO(<, PLUS) and FO(PLUS) have the same expressive power. We will
use this fact, and the more difficult fact that FO(BIT) can define ordering
[5], to our notational convenience by not explicitly listing ordering in a set of
predicates which contains PLUS or BIT. For comparison, note that Thm (18)
says that FO(TIMES) cannot define ordering. O

Example 5 Another construction we will need to use later is that FO(BIT)
can define PLUS—in fact, FO(BIT) can define addition of n-bit integers.

To show this, we use the “carry-look-ahead” algorithm. To compute the ith bit
of X +Y we first see if a carry has been propagated to bit i:

Gearry(X, Y5 1) =35 (j <1 ABIT(X, j) ABIT(Y, j)
AVk(j < k < i — BIT(X, k) vV BIT(Y, k))

The formula ¢earry(X, Y, 7) holds if a carry is generated at a position less than
i and is then propagated through all the intervening positions. Now the i** bit
of X +Y will be one if exactly one of BIT(X, 1), BIT(Y, %), pcarry(2) hold, or if
all three of them hold. The easiest way to express this is with the exclusive or
operation @,

a®f=a+ f
$aad(X, Y, 1) = (BIT(X, ¢) @ BIT(Y, 7)) ® dcarry (X, Y, %)



2.2 Languages and AC®

Let A be an alphabet. A language L C A* is a set of finite strings composed
of letters from A.

A boolean circuit is a directed acyclic graph with input nodes, output nodes,
and nodes labelled AND, OR, and NOT. The input nodes have fan-in zero
and the output nodes have fan-out zero. A circuit C,, with n input nodes and
a single output node computes a boolean function from {0,1}" to {0,1}. We
say that the circuit C,, accepts the word w = wow; ... w,_1 € {0,1}" if C,
outputs 1 on input w.

Definition 6 A circuit family {C, },en recognizes the language L € {0,1}*
iff for all n and w € {0,1}", the circuit C,, accepts w iff w € L.

The circuit family {C,,} has size s(n) if each circuit C,, has at most s(n) nodes;
it has depth d(n) if the length of the longest path from an input node to an
output node is at most d(n). The language L is said to be in AC if it is
recognized by a family of circuits with depth O(1) and size n°(®) consisting of
NOT gates and unbounded fan-in AND and OR gates.

As mentioned earlier, the class AC? is of interest because of its connection
with definability in first-order logic. This is made precise in the next theorem.
The non-uniform version of this theorem is given in Immerman [9, Thm 6.2];
the details needed for the uniform version and a description of DLOGTIME
uniformity, now the most widely accepted uniformity condition for circuit
classes, are given in [3].

Theorem 7 Let L be a language over the alphabet {0,1}. Then the following
are equivalent:

(1) L is recognized by a DLOGTIME uniform family of AC® circuits.
(2) Over the vocabulary o1y there is a sentence ¢ € FO(PLUS, TIMES)
whose set of finite models s L.

2.8 Crane Beach Conjecture
We now state the Crane Beach Conjecture more formally.

Definition 8 Let A be an alphabet and L C A*. A letter e € A is called
neutral for L if for any u,v € A*, it holds that uv € L iff uev € L.



As an example, 0 is a neutral letter for PARITY. As membership in PARITY
only depends on the number of ones a string contains, zeros can be arbitrar-
ily inserted to no effect. Since PARITY is outside of non-uniform AC° [7],
PARITY cannot be expressed in FO(N) for any set of numerical predicates

N.

An example of a language without a neutral letter in {0,1} is {0"1" : n €
N}, as membership in this language depends on a very specific numerical
relationship between the positions of zeros and ones in the string. Though the
language {0"1" : n € N} cannot be defined in FO(<), the fact that the first
half of the string is populated by only zeros and the second half only ones can
be described in FO(PLUS).

The Crane Beach Conjecture expresses an intuition developed by examples
like these.

Definition 9 (Crane Beach Conjecture) Let N be a set of numerical predi-
cates. We say the Crane Beach Conjecture is true for N iff every language
L € FO(<,N) that has a neutral letter is also definable in FO(<).

A useful concept in relation to the Crane Beach Conjecture is counting.

Definition 10 For a nondecreasing function f(n) < n, the logical system
FO(N) is said to count up to f(n) if there is a formula ¢ € FO(N) such that
for alln and w € {0,1}",

w E ¢(c) <= ¢ < f(n) A c=number of ones in w.

It is conjectured in [2] that the Crane Beach Conjecture is true of a set of
numerical predicates N iff FO(N') cannot count beyond a constant.

3 Defining PLUS with TIMES and ordering

Julia Robinson defined addition with multiplication and successor by the fol-
lowing formula:

r+y=2z <= Sx-2)-Sly-2)=8(z-2-S(x-y)). (1)

This formula, however, cannot be naively applied to define addition over finite
structures. When x,y satisfy n'/* < x,4 < n/2 then 2 +y < n and so
PLUS(z, y, z) holds for some z € n. Yet in this case S(z-z)-S(y-z) > n and
thus this product cannot be defined with TIMES.



We proceed by a different method to show that addition can be defined over
finite structures with multiplication and ordering.

Theorem 11 Let 7 be a vocabulary that includes ordering. If TIMES € 1
then PLUS is first-order definable.

PROOF. With ordering, we can define the constant 0 and the successor
relation. Thus we can also define any constant k, in particular the constant
2. Clearly with TIMES we can define the relations, “z divides y” and “y is
prime”. With these we can then define the relation “y is a power of 2”7 as y
is a power of 2 iff all the prime divisors of y are equal to 2. This relation is
denoted pa(y).

We now define the relation BIT'(z,y), which holds iff y = 2° and BIT(z,1).
That is, BIT'(z,2') iff |2/2'] is odd, which we can define in FO(<, TIMES)
as follows:

BIT'(z,y) = pa(y) A Ju(y(S(2u)) <z Az <y(S(S(u))).

With BIT'(z,y) we can define PLUS using the carry-look-ahead method de-
scribed in example (5), over powers of 2. O

Remark 12 Although BIT'(z,y) seems unnatural as an arithmetic predicate,
it 15 1n fact FO equivalent to an extensively studied arithmetical predicate, Pas-
cal’s triangle modulo 2, denoted By(x,y) [see 11, 4]. Ba(x,y) is the binomial

coefficient (z‘;y) modulo 2, and the essence of its definability properties derive

from Lucas’ theorem, which implies that By(x,y) = 0 iff there ezists z such
that BIT'(z, z) and BIT'(y, 2).

We can also define BIT' using By. Let x T y mean that in each position of a
one in the binary representation of x there is a one in the binary representation
of y. This can be defined by

rCy < Vz(Ba(z,2) =0 — By(y,z) =0).

We can now define a predecessor relation < in the partially ordered set formed
by (n; E),
T<y <= zCyA-Tz(zCzAzLCy).

Powers of 2 can now be defined quite simply: x is a power of 2 iff 0 < x. We
can also define carry-free addition by

CFadd(z,y,2) <= By(z,y) ANz C2AyCzAVw(z CwAyCw— 2z C w).



Now we can define BIT'(x,y) by
BIT'(z,y) <= 0 <y A 3z(CFadd(z,y,x)).
O

Theorem 13 FO(TIMES) can first-order define neither PLUS nor ordering.

PROOF. As discussed in [15], multiplication cannot first-order define addi-
tion over the positive integers. This can be seen since isomorphisms preserve
the truth of first-order formulas, yet there are automorphisms of the positive
integers with respect to multiplication which permute the primes in an arbi-

trary way, thus not preserving addition. This method of proof is attributed to
Padoa [12].

Being a bit careful, we can adopt this method of proof to show that FO(TIMES)
cannot define ordering. Note that this implies that FO(TIMES) cannot define
PLUS as well, since PLUS can first-order define ordering. By Bertrand’s Pos-
tulate ! for any m > 1 there is a prime between m and 2m. More recent
results of Pintz [13] that there is always a prime between m and m + m!'7/3!
can be used to show that for m > 7 we can always find two primes be-
tween m and 2m. (Note that by the prime number theorem there are really
about m/logm primes between m and 2m.) Thus we can define an automor-
phism on the structure (n, TIMES) by permuting two primes p;, p, satisfying
n/2 < p1,pa < n. This mapping does not preserve ordering, and by the choice
of these primes, the only relation we must check to see that TIMES is pre-
served is TIMES(1,p12,p12) <= TIMES(L, f(p12), f(p12)), which clearly
holds.

O

As work on the Crane Beach Conjecture has shown that the Crane Beach Con-
jecture is false for FO(PLUS, TIMES), our Thm (11) implies that the Crane
Beach Conjecture is also false for FO(<, TIMES). This has the consequence
that FO(<, TIMES) is strictly more expressive than FO(PLUS).

Corollary 14 FO(PLUS) C FO(<, TIMES)

PROOF. As the Crane Beach Conjecture is false for FO(<, TIMES), there
is a language L with a neutral letter definable in FO(<, TIMES) but not in

1 First proved by Chebychev in 1850. For details, see [8] or the friendly treatment
in The Book [1].



FO(<). But L is not definable in FO(PLUS) as every language with a neutral
letter definable in FO(PLUS) is definable in FO(<). O

4 Defining TIMES with DIVIDES and ordering

We again cannot naively use Julia Robinson’s definition as it breaks down on
finite structures in the same way as her definition of addition in formula (1).

We proceed by first showing that DIVIDES can express simpler predicates like
“z is the least common multiple of x and y”, denoted LCM(z, y, z), and “z is
the greatest common divisor of z and y”, denoted GCD(z, y, z). To conserve
space in equations, we will write DIVIDES with the traditional | symbol.

LCM(z,y, 2) = (z|z Aylz AVZ (2|2 Ayl2' — 2 < 2))
GCD(z,y,2) = (zlz A zly AVZ' (2 |z AN 2|y = 2 < 2))

The key of our approach to defining TIMES is the fact that if the GCD of z
and y is 1, that is if z and y are relatively prime, then the LCM of x and y is
their product, LCM(z, y, zy).

Theorem 15 Let 7 be a vocabulary that includes ordering. If DIVIDES €
7 then TIMES is first-order definable. In particular, FO(<,DIVIDES) =
FO(<, TIMES).

PROOF. Let 2,y € n. We wish to express the product xy using DIVIDES
and ordering. As before we can define 0 in FO(<, DIVIDES), and easily handle
the case where x or y is zero. Now assuming x and y are nonzero, we can break
x uniquely into two parts z; and z; such that x = 2,29 and 2; is the largest
factor of z relatively prime to .

Claim 16 z; and zy are relatively prime.

PROOF. Suppose p is a prime dividing both z; and z,. Either p divides y
or p does not divide y. If p divides y then p cannot divide z; as z; and y are
relatively prime by definition. On the other hand, if p does not divide y then
z1p would be relatively prime to y, contradicting the defininition of z;. O

We also need to check that 2, 2o can be so defined in FO(<, DIVIDES).

z1|x A GCD(z1,y,1) AVz1(21]2 A GCD(z21,y,1) — 21 < 21)



GCD(z1, 22, 1) ALCM(z1, 22, )

We have now reduced the problem to defining the product zyy. As z; is rel-
atively prime to z, and relatively prime to y, it is also relatively prime to
the product zpy. Thus if we can define 25y, then we can define z;2,y as
LCM(z1, 2z2y).

Now 2, does not necessarily divide y, but because of our definition of 2z, every
prime divisor of z5 is also a prime divisor of .

Claim 17 2z, and y + 1 are relatively prime

PROOF. Assume there exists a prime p > 1 such that p|z; and p|y + 1. But
as p is a factor of zy, it is also a factor of y, thus p|y. Then p|(y + 1 — y) which
implies that p divides 1, a contradiction. O

The same reasoning can be used to show GCD(zy,y — 1,1). Thus as z» is
relatively prime to y — 1 and y + 1, we can define the products z(y — 1) =
LCM(z2,y — 1) and 23(y + 1) = LCM(29,y + 1). We use these products to
bookend the product zsy.

Claim 18 2y =t <= 2(y—1) <t < 2(y+1) A2t

PROOF. = 2(y— 1) < 2y < 22(y + 1) and 23|22y
<« Since 29|t there is some k such that ¢t = z,k. By the inequality, we have
2o(y — 1) < 2k < 29(y + 1).

As 2, is not zero,
y—1l<k<y+1.

Thus £ =y, and so t = zoy. O

O

5 Defining TIMES with COPRIME and ordering

In his thesis [17], Alan Woods shows that there is a bounded first-order formula
with ordering and the coprime relation which defines multiplication over the
natural numbers. It turns out that his method also works for our case. We
follow the argument of his proof here, checking that it satisfies our needs.
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Lemma 19 FO(PLUS, COPRIME) can define TIMES.

PROOF. First we note that we can define the relation prime(y), meaning
that y is prime, in FO(PLUS, COPRIME) by

prime(y) <= y#0Ay # 1AVz(0 <z <y — COPRIME(z,y)).

We can define multiplication over primes, as the product of primes pi, ps is
the smallest nonzero number not coprime to both p; and ps.

TIMES(p1,p2,2) <= 1 < z A ~COPRIME(p;, z2) A “COPRIME(ps, z) A
V z(l <z A—-COPRIME(p;, 2) A =COPRIME(pe, 2) = z < z)

To define TIMES in general, we can use the fact that every integer can be
expressed as the sum of fewer than a finite number & of primes [16]. Although
all we require is for k£ to be finite, it is interesting to know that more recent
results of Ramaré [14] show that we can take £ as 7. Thus for z,y > 2, there
exists p1,...,pr and qy, ..., g; where each p;, g; is prime or zero, and such that
x = ¥;p; and y = Y;q;. Then we can define TIMES as the sum of a constant
number (fewer than 50) of products of primes,

TIMES(z,y,2) <= z=)_pig;-
2

O

Theorem 20 Let 7 be a vocabulary that includes ordering. If COPRIME €
7 then TIMES is first-order definable. In particular, FO(<, COPRIME) =
FO(<, TIMES).

PROOF. By Lemma (19) it suffices to define PLUS in FO(<, COPRIME).
Lemma (21) gives a method to define addition, which, as we will see in
Lemma (22), can be formulated in a first-order way. Recall that, for a real
number a the floor function |a| gives the greatest integer < a, and for all real
numbers a, b the following inequality holds:

la| +|b] < |a+b] <|a| +|b] +1. (2)
Lemma 21 z =z +y iff z is the least number such that:
(1) x<zAy<z

(2) z=z+y (mod 6)
(8) For every prime p < z and p # 7, either

11
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PROOF. Clearly, z = x + y satisfies the three given conditions, thus we
must show that for any z < x + y one of these conditions must fail. Suppose
z < x + y satisfies (1) and (2). By (2) we have x +y — z = 6m for some
m > 1. By Bertrand’s Postulate for any n > 1 there is a prime p satisfying
n < p < 2n. Thus with a quick check we see that for any m > 1 there is a
prime p # 7 such that %m < p < 3m. Hence there is a prime p # 7 satisfying
p<z+y—z<dp.

It follows that 2 < [% + 4 - J < 4. Using (2), we obtain

z
p
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and once more gives,

This means that
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Asp<ax+y—2z<z+2z—2z=2z by condition (1), condition (3) fails. O
Lemma 22 PLUS can be defined in FO(<, COPRIME).

PROOF. We show that the three conditions in Lemma (21) can be defined
in FO(<, COPRIME).

Condition (1) is clear.

For condition (2), suppose that z = & (mod 6). To define z+y =z (mod 6)
we notice that this only happens when x =4 (mod 6) and y =j (mod 6)

12



and 7 +j = k (mod 6). We can define x =i (mod6) as z =iV (z >
6A-(2Lxz—i)A=(3Lx—1)). Thus

z+y =2z (mod 6) <— V (=i (mod6)Ay=j (mod6)Az=k (mod 6)).
ij k<5
ik (mod 6)

For condition (3) we can do addition mod 7 similarly to above, thus it is
enough to define

prime(p) Ap # 7TA E—)J =4 (mod7)

in FO(<, COPRIME). We showed how to define prime(p) above. To define
[%J = i (mod 7) notice that z satisfies this condition iff there is a u < z
such that “COPRIME(p, u) A—~COPRIME(7,u) and with there being exactly
i distinct numbers v satisfying v < v < x A-COPRIME(p, v). More explicitly,
that is we have the following picture:

u="Tpw <p(Tw+1) <p(Tw+2) <---p(Tw+1i) <z < p(Tw+1i+1).
As described, this relationship can be specified in FO(<, COPRIME). O

O

6 Further Directions

The results presented here all indicate analogies between definability on finite
structures and the case over the natural numbers. The similarities continue in
what is unknown as well. Similar to the “gap” in undecidability, that is the
rarity of known structures which are undecidable yet unable to define both
multiplication and addition, there is a gap in counting in the finite case—to our
knowledge there are no natural predicates (that is other than purely counting
predicates) known which can count beyond a constant yet which do not have
the full definability of PLUS and TIMES. Perhaps this is only a superficial
resemblence created by our lack of imagination in defining predicates, but
perhaps too there is a deeper connection between decidability, counting, and
the Crane Beach Conjecture.

In this paper we did not consider definability with the successor relation, This
was in part because order seems like a more natural relation on finite struc-
tures and also because in applications to complexity ordering is almost always
assumed to be present. However, the most outstanding open problem in arith-
metical definability, originally posed in [15], involves successor—can successor
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and the coprime relation first-order define multiplication? Alan Woods [17]
furthered interest in this question, which has been coined Robinson’s prob-
lem, by showing a positive answer is equivalent to the existence of a k € N
such that for all pairs (z,y), if z +¢ and y + 7 have the same prime divisors for
all 0 <7 < k then x = y. This last statement is a weakening of a conjecture
made by Erdos, now called the Woods-Erdos conjecture. The finite version
of Robinson’s problem might be interesting to investigate: though a positive
answer is most likely difficult—even a positive resolution of the Woods-Erdos
conjecture is not obviously sufficient—perhaps a negative answer could be
obtained.
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