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1 Introduction

The idea that proofs are objects capable of being treated by a mathematical
theory is due to Hilbert. Proofs are represented as derivations, or deductions,
i.e. finite and labeled trees which are build up according to a set of rules; these
rules are provided by a formal system and change from one system to another.

Structural Proof Theory studies the properties of deductions as combinato-
rial structures, and the relations between formal systems.

The best known formal systems studied in literature are the Natural Deduc-
tion systems N and the sequent calculi (Gentzen systems) G (see [8]).

There is a very interesting metamathematical feature of the rules of G-
systems: besides their intended interpretation in the construction of the deduc-
tion trees of G, they can be seen as instructions for constructing derivations of
N.

In this perspective, the rules in G systems might be seen as non-trivial
reformulations of the rules of N systems, where the left rules are much more
restricted than the corresponding elimination rules; for example the L→ rule

Γ⇒ A,∆ Γ, B ⇒ ∆

Γ, A→ B ⇒ ∆

corresponds to the→E rule restricted to those cases in which the major premise
is an open assumption.

The equivalence that holds between G and N systems is much easier to
prove with the aid of the Cut rule (cf. [8] 3.3.1), which Gentzen [2] proved to
be a derived rule of G (Cut elimination theorem, or Hauptsatz).

The proof of the Cut elimination theorem gives a procedure to obtain, in a
finite number of steps, a Cut free deduction in sequent style from a deduction
which may contain Cuts.

This procedure resembles the one used in the normal form theorem for N
which transforms any deduction of N into a normal one.

The notion of normality is very natural, so to speak, for deductions in N:
the rules of N allow the construction of prooftrees in which there might be the
occurrence of some unnecessary detours; the normalization procedure identi-
fies the unnecessary detours caused by the introduction of formulas which are
immediately afterwards eliminated, and removes them.

Cut elimination could be seen as the corresponding notion of normality on
the G systems, because by removing the Cut rule one avoids the possibility of
introducing a formula at some node of the prooftree and eliminating it imme-
diately afterwards.
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These and other remarks on how a Cut free deduction in G can be translated
into a normal deduction of N (see [5]) may lead to think that Cut free deductions
in G are the perfect counterparts to normal deductions in N, but it turns
out that it is not so: in the first place, there are many Cut free deductions
which correspond to the same deduction in G+Cut, namely, when we run the
Cut elimination procedure on a deduction, we might obtain different outcomes
depending on the choice of the transformation rule by which an application of
the Cut rule is eliminated (see [8], 4.1.3).

This does not happen to the normal form procedure in N: normal form is
unique, i.e. the normalization procedure is deterministic.

Moreover, a normal natural deduction can be intuitively associated to several
Cut free deductions in G, and they can be obtained one from the other by the
permutation of some applications of the L→ rule.

Finally, there exist strategies for Cut elimination for Gentzen systems which
cannot be seen as the “translation” of a normalization strategy in the corre-
sponding natural deduction systems (cf. [8], 5.1.9, 6.7.2, 6.8.3).

So this leaves open the problem of defining a suitable notion of normal de-
ductions for the G systems, whose corresponding normal form theorem gives a
procedure that transforms any deduction in the G system into a unique normal
deduction with the same conclusion. This notion of normal form for G systems
should also reflect the intuitive notion of normality for natural deductions (i.e.
the straightforwardness of normal natural deductions); this requirement is guar-
anteed by the construction of a natural correspondence (a “good translation”)
between normal deductions in G and normal deductions in N.

As for the intuitionistic case, a notion of normality and a correspondence
between normal Gentzen deductions and normal natural deductions has been
proposed first by Howard [3] and then by Mints [4] and Troelstra [10]; in Mints’
work the correspondence between normal Gentzen deductions and normal nat-
ural deductions is defined via the isomorphism between lambda terms and nat-
ural deductions. In the work of Troelstra, no term labels are involved and
correspondingly a version of →Ni obeying the Complete Discharge Convention
is used; moreover, a direct one-to-one correspondence is constructed between
normal Gentzen deductions and natural deductions in long normal form, i.e.,
natural deductions in normal form that also satisfy another condition (see defi-
nition 2.4).

In this thesis I define the notion of normality for deductions in a Gentzen
system for the classical case (section 3); I prove the normalization theorem for
this notion (section 3) and I build two direct correspondences (sections 6 and
7)

Gn −→ N∗

N∗ −→ Gn

between normal Gentzen deductions and natural deductions in ∗-normal form,
i.e., natural deductions in normal form that also satisfy other conditions (section
5). The definitions of normal deductions for Gentzen systems and of natural
deductions in ∗-normal form are motivated by the well-definedness of the two
correspondences: namely, the conditions stated in the definition of normal de-
ductions for Gentzen systems are sufficient conditions for the well-definedness
of the correspondence from G to N, and the conditions stated in the definition
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→Nc

[A]u

D
B → I, u

A→ B

D1

A→ B

D2

A
→ E

B

[¬A]u

D
⊥ ⊥c, u
A

→Gc
Axiom 1 : Γ, A⇒ A,∆

Axiom 2 : Γ,⊥ ⇒ A,∆

Γ, A⇒ B,∆
R→

Γ⇒ A→ B,∆

Γ⇒ A,∆ Γ, B ⇒ ∆
L→

Γ, A→ B ⇒ ∆

Table 1: The systems →Nc and →Gc

of natural deductions in ∗-normal form are sufficient conditions for the well-
definedness of the correspondence from N to G. In section 8 I sketch the proof
of a ∗-normalization theorem, i.e. I give a procedure for transforming a normal
deduction of →Nc into a suitable deduction in ∗-normal form.

I chose to restrict the presentation of these results to the implication frag-
ment of classical logic, because the most interesting phenomena occur in this
fragment, and still things remain easy to read.

I also chose to use the version of →Nc that obeys to the CDC (Complete
Discharge Convention, see [8], 2.1.5), because, from the point of view of the
correspondence, deductions of→Gc with the contraction rule absorbed seem to
be more naturally translatable into natural deductions under CDC, and this is
analogous to what Troelstra pointed out for the intuitionistic case in [10].

2 The intuitionistic case

Let us consider the following system →Gi :

Axiom 1 : Γ, A⇒ A

Axiom 2 : Γ,⊥⇒ A

Γ, A⇒ B
R→

Γ⇒ A→ B

Γ, A→ B ⇒ A Γ, B ⇒ C
L→

Γ, A→ B ⇒ C

Definition 2.1. Let D be a deduction in →Gi . D is normal iff the active
antecedent formula of any application of the L→ rule in D is a principal formula
(either of an axiom or of another application of the L→ rule).

Proposition 2.2. (Normalization theorem for Gi) Let D be a deduction in
→Gi , whose conclusion is Γ ⇒ X; then there exists a procedure which trans-
forms D into a normal derivation with the same conclusion.

Proof. The proof is analogous to the one of proposition 3.3.

Remark 2.3. Let D be a normal deduction in→Gi . We can transform D into
a pruned deduction, i.e. a normal deduction whose conclusion is of the form
Γ⇒ A with Γ a set (therefore there are no multiple occurrences of formulas in
Γ ), and such that there is no formula A that occurs in the antecedent of every
sequent and is not active in any of the axioms.
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Definition 2.4. Let D be a deduction in →Ni . D is in long normal form if
D is normal and all the formulas that occur at any minimal position of D are
atomic.

Remark 2.5. The definition of formula occurrence at minimal position for the
implication fragment is equivalent to the following one: a formula occurrence A
is said to be in minimal position in a deduction D iff A is the conclusion of an
application of →E , and at least one of the following conditions hold:

(i) A is the premise of an application of →I , or

(ii) A is the conclusion of D , or

(iii) A is the minor premise of an application of →E .

Proposition 2.6. (Correspondence from Gi to Ni) There is a one-to-one cor-
respondence between pruned deductions in→Gi (with axioms restricted to atomic
active formulas) and deductions in →Ni under the Complete Discharge Con-
vention in long normal form.

Proof. The proof is straightforward and is done by induction on the size of the
prooftree.

3 Normal deductions in →Gc

Definition 3.1. Let D be a deduction in →Gc. D is normal iff D satisfies the
following two conditions:

(a) the active antecedent formula of any application of the L→ rule in D is
a principal formula (either of an axiom or of another application of L→
rule);

(b) the conclusion of D is not of the following kind1:

Γ,¬A⇒ A,∆.

Lemma 3.2. (Inversion lemma) In →Gc , with active formulas in axioms
atomic, there exists an operation φ such that

if D`n Γ⇒ A→ B,∆, then φ(D) `n Γ, A⇒ B,∆.

φ does not increase the number of violations of the condition (a) of the definition
3.1.

Proof. Let D be a deduction in →Gc (with active formulas in axioms atomic),
whose conclusion is Γ⇒ A→ B,∆.

1The condition (a) of def. 3.1 is the only requirement stated in the definition of normal
Gentzen deductions for the intuitionistic case in [10]. It is a sufficient condition to the well-
definedness of the correspondence from →Gc to →Nc . Condition (b) will play a role in a
further developement of this work, namely in the characterization of the class of deductions
of →Gc for which the composition of the two correspondences is the identity map. I in-
cluded it in def. 3.1 because the normalization theorem for this definition has a non-standard
formulation and a non-trivial extra step (cf. normalization theorem in [10]).
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– if A→ B is a side formula at every node of D, then φ(D) is the deduction
obtained by removing A → B at every node of D in which A → B
occurs and weakening at those nodes with A in the antecedent and B in
the succedent; if in this operation some new axioms are created, then we
remove the subdeduction immediately above each new axiom.

– if A → B has been introduced at some node of D with an application of
R→ , then D has the following shape:

D1

Π, A⇒ B,Σ

Π⇒ A→ B,Σ

D2

Γ⇒ A→ B,∆

and A → B is side formula at every node of D2, so we can transform D2

into a deduction D2
∗ following the procedure described in the previous

case; then φ(D) is the following deduction:

D1

Π, A⇒ B,Σ

D2
∗

Γ, A⇒ B,∆

This procedure does not increase the number of violations to the condition (a)
of the definition 3.1(this is easily seen by inspection).

Proposition 3.3. (Normalization theorem for →Gc ) Let D be a deduction in
→Gc (with axioms restricted to atomic active formulas), whose conclusion is
Γ⇒ ∆; then there exists a procedure which transforms D into a unique normal
derivation with the same conclusion, if D already satisfies condition (b), and
into a unique normal derivation whose conclusion is Γ,⇒ A,A,∆, if D does
not satisfy condition (b).

Proof. We will prove the proposition in three steps: with the first step we will
transform D into a deduction which satisfies condition (b); with the second step
we will transform D into a deduction D’ which satisfies the following condition:

(iii) for every application of L→ in D’:

D1

Γ1 ⇒ A,∆

D2

Γ1, B ⇒ ∆

Γ1, A→ B ⇒ ∆

the last rule applied in D2 is not R→ ;

with the third step we remove the remaining violations to the condition (a), and
we will transform D’ into a normal deduction.

First step: let us suppose that D is a deduction of →Gc whose conclusion
is of the following kind:

Γ,¬A⇒ A,∆.
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then two cases may occur:

(i) ¬A is side formula at every node of D;

(ii) ¬A has been introduced with an application of L→ .

If (i), then we transform D into the deduction D’ which is obtained from D by
removing every occurrences of ¬A and by weakening with A at every node in
the succedent.

If (ii), then D has the following shape:

D1

Γ1 ⇒ A,Σ Γ1,⊥ ⇒ Σ

Γ1,¬A⇒ Σ

D3

Γ,¬A⇒ A,∆

where ¬A is side formula at each node of D3. We transform D into the following
deduction:

D1

Γ1 ⇒ A,Σ

D3
∗

Γ⇒ A,A,∆

Where D3
∗ is obtained from D3 by removing every occurrence of ¬A in D3 and

by weakening with A at every node in the succedent.
Second step: Let us suppose that D satisfies condition (b) and let us trans-

form it into a deduction D’ with the same conclusion as D and which also
satisfies condition (iii). By induction on the number n of violations to the
condition (iii).

• Basis: If n = 0 trivial.

• Induction: let us suppose that n ≥ 1; therefore D has the following shape:

D1

Γ1 ⇒ A,C → D,∆1

D3

Γ1, B, C ⇒ D,∆1

Γ1, B ⇒ C → D,∆1

Γ1, A→ B ⇒ C → D,∆1

D4

then we transform it into the following deduction D’:

φ(D1)

Γ1, C ⇒ A,D,∆1

D3

Γ1, B, C ⇒ D,∆1

Γ1, A→ B,C ⇒ D,∆1

Γ1, A→ B ⇒ C → D,∆1

D4

where φ(D1) is obtained applying the procedure described in the previous lemma
to D1. We notice that the number of violations to the condition (iii) in D1 (and
so in φ(D1)) and in D3 is smaller than n, therefore we can apply induction
hypothesis on D1

∗ and on D3 and suppose that D’ contains no violation to the
condition (iii).
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Third step: let us suppose that there are no violations in D to the conditions
of the first and of the second step; therefore D has the following shape: for every
application of L→ in D:

D1

Γ1 ⇒ A,∆

D2

Γ1, B ⇒ ∆

Γ1, A→ B ⇒ ∆

either the conclusion of D2 is an axiom or it is the conclusion of an application
of L→ .

Therefore we notice that the applications of L→ always appear in D “ in
blocks ”:

Dn
Dn−1

D1 Γ0 ⇒ ∆

Γ1 ⇒ ∆
n ≥ 1 applications of L→

Γn−1 ⇒ ∆

Γn ⇒ ∆

where Γ0 ⇒ ∆ is an axiom.
We will transform D into a normal deduction by induction on the number

n of violations to the normality conditions in D.

• Basis: if n = 0 trivial.

• Induction: Let us suppose that n ≥ 1; thereforeD has at least an application
of L→ which violates the normality condition. Since D satisfies the condition of
step one, the offending application of L→ is placed in a rightmost branch of D ,
at a certain distance from the top node of this branch, labelled with an axiom.
We continue the proof by induction on the distance of the offending application
of L→ from the top node of the rightmost branch on which it is placed.

• Basis: Let us suppose that the offending application of L→ is the one imme-
diately under the axiom; then two cases may occur:

(a) the axiom is of the first kind;

(b) the axiom is of the second kind.

if (a), then the offending application of L→ has the following shape:

D1

Γ1, C ⇒ C,A,∆1 Γ1, B, C ⇒ C,∆1

Γ1, A→ B,C ⇒ C,∆1

We notice that, either in the case that C = A or in the case that C 6= A, the
conclusion of this application of L→ is an axiom, of which C is the principal
formula, therefore the application of L→ is redundant. So we can remove it and
leave the conclusion:

Γ1, A→ B,C ⇒ C,∆1

and we obtain a deduction whose number of violations to the normality condition
is n− 1, therefore we can apply induction hypothesis on it and suppose that it
has already been transformed into a normal deduction.

If (b), then D has the following shape:
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D1

Γ1,⊥⇒ A,∆ Γ1, B,⊥ ⇒ ∆

Γ1, A→ B,⊥ ⇒ ∆

We notice that the conclusion of D is an axiom, of which ⊥ is the principal
formula, therefore the application of L→ is redundant. So we can remove it and
leave the conclusion:

Γ1, A→ B,⊥ ⇒ ∆

and we obtain a deduction whose number of violations to the normality condition
is n− 1, therefore we can apply induction hypothesis on it and suppose that it
has already been transformed into a normal deduction.

• Induction: Let us suppose that we have a block of n applications of L→
such that only the last one violates the normality condition:

Dn
Dn−1

D1 Γ, C,B1 ⇒ ∆

Γ, C,B2 ⇒ ∆

.

..

Γ, C,Bn−1 ⇒ ∆

Γ, C,Bn ⇒ ∆

Γ, Bn, An → C ⇒ ∆

(1)

where Γ, C,B1 ⇒ ∆ is an axiom, the conclusion of Dn is Γ, Bn ⇒ An,∆ and
for i = 1, . . . , n− 1 the conclusion of Di is Γ, C ⇒ Ai,∆, and Bi+1 = Ai → Bi.
Since, for j = 1, . . . , n, the number of violations to the normality condition in
Dj is surely smaller than the number of violations to the normality condition in
D, we can apply induction hypothesis on Dj and suppose that they have been
already transformed into normal deductions. We transform this block into the
following deduction:

D1
∗∗

Γ⇒ An, An−1,∆

Dn−1

Γ, C ⇒ An−1,∆

Γ, An → C ⇒ An−1,∆

D0
∗∗

Γ, Bn−1 ⇒ An,∆

D”

Γ, C,Bn−1 ⇒ ∆

Γ, Bn−1 , An → C ⇒ ∆

Γ, Bn, An → C ⇒ ∆

where D0
∗∗ and D1

∗∗ are obtained from Dn in the following way:

– if Bn is a side formula at every node of Dn, then D0
∗∗ is the deduction

obtained by removing Bn at every node of Dn in which Bn occurs and
weakening at those nodes with Bn−1 in the antecedent; if in this operation
some new axioms are created, then we remove the subdeduction immedi-
ately above each new axiom; D1

∗∗ is the deduction obtained by removing
Bn at every node of Dn in which Bn occurs and weakening at those nodes
with An−1 in the succedent; if in this operation some new axioms are
created, then we remove the subdeduction immediately above each new
axiom.

– if Bn := An−1 → Bn−1 has been introduced at some node of Dn with an
application of L→ , then Dn has the following shape:
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D0

Π⇒ An−1,Σ

D0,0

Π, Bn−1 ⇒ Σ

Π, Bn ⇒ Σ

D2

Γ, Bn ⇒ An,∆

and Bn is side formula at every node of D2, so D0
∗∗ is the following

deduction:

D0,0

Π, Bn−1 ⇒ Σ

D2
∗

Γ, Bn−1 ⇒ An,∆

whereD2
∗ is obtained by D2 by removingBn at every node of D2 in which

Bn occurs and weakening at those nodes with Bn−1 in the antecedent;
if in this operation some new axioms are created, then we remove the
subdeduction immediately above each new axiom. D0

∗∗ is the following
deduction:

D0

Π⇒ An−1,Σ

D2
∗∗

Γ⇒ An, An−1,∆

where D2
∗∗ is obtained by D2 by removing Bn at every node of D2 in

whichBn occurs and weakening at those nodes with An−1 in the succedent;
if in this operation some new axioms are created, then we remove the
subdeduction immediately above each new axiom.

Let us consider the following deduction:

D0
∗∗

Γ, Bn−1 ⇒ An,∆
D”

ΓC,Bn−1 ⇒ ∆

Γ, Bn−1, An → C ⇒ ∆

the rightmost branch of this deduction consists of a block of n−1 applications
of L→ such that only the last one violates the normality condition, therefore we
can apply induction hypothesis on it and transform it into a normal deduction
D∗∗ with the same conclusion. So we transform the block (1) into the following
deduction:

Dn−1
∗

Γ′n−1, An → C ⇒ An−1,∆
D∗∗

Γ, Bn−1, An → C ⇒ ∆

Γn+1, Bn, An → C ⇒ ∆

where Dn−1
∗ is the following deduction:

D1
∗∗

Γ⇒ An, An−1,∆

Dn−1

Γ, C ⇒ An−1,∆

Γ, An → C ⇒ An−1,∆
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3.1 Example

Let us consider the following Gentzen deduction:

(A → D) → C,B ⇒ B,C

B, A⇒ A,C,D

A,B ⇒ B, C,D A,B,C ⇒ C,D

A,B,B → C ⇒ C,D

A,B,A→ (B → C)⇒ C,D

B,A→ (B → C)⇒ A→ D,C B, A→ (B → C), C ⇒ C

B,A→ (B → C), (A → D) → C ⇒ C

(A→ D) → C, B,B → [A→ (B → C)] ⇒ C

(A→ D) → C, B → [A→ (B → C)] ⇒ B → C

This is not a normal deduction, because of the first application of L→ going
from bottom to top.

By the normalization procedure, the deduction above is transformed into
the following normal deduction:

A,B ⇒ B,C,D

B,A⇒ A,C,D

A,B ⇒ B, C,D A,B, C ⇒ C,D

A,B, B → C ⇒ C,D

A,B, A→ (B → C) ⇒ C,D

A,B,B → [A→ (B → C)]⇒ C,D

B,B → [A→ (B → C)] ⇒ A→ D,C B,B → [A→ (B → C)], C ⇒ C

(A→ D) → C, B,B → [A→ (B → C)]⇒ C

(A → D) → C,B → [A→ (B → C)]⇒ B → C

By the correspondence G−→N the normal deduction above is transformed
into the following natural deduction in ∗-normal form:

[¬C]v
(A→ D)→ C

[¬C]v

B → [A→ (B → C)] [B]u

A→ (B → C) [A]z

B → C [B]u

C

⊥
Dz

A→ D

C

⊥v
Cu

B → C

4 Basic ideas on the correspondences

Deductions in sequent calculus style in the classical case are characterized by
the occurrence of a multi-succedent sequent at some node of the prooftree;
deductions in natural deduction system in the classical case are characterized
by the occurrence of an application of the ⊥c rule.

It seems natural to try to connect these two things in some way.
As a consequence of the occurrence of multi-succedent sequents, one can

“switch” from one formula to another in successive applications of R-rules; this
will be better explained with an example:

A,C ⇒ A,B

C ⇒ A→ B,A

⇒ A→ B,C → A

(2)
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Here, the main formula of the first application of R→ is a side formula in the
second application of R→ . In a sense, this is also what happens in the following
deduction:

A⇒ B,A

⇒ A→ B,A
(3)

Indeed, if we think of an axiom as an R-rule with no premises, then we have
that the right occurrence of A, which is the main formula in the application of
the “Axiom”-rule, is side formula in the application of the successive R-rule.
This suggests that these two things can be treated in a similar way.

The main idea for a correspondence in the classical case is described by the
following way of associating 2 and 3: we associate 3 to the following deduction:

¬A [A]v

⊥ u
B v

A→ B

(4)

and 2 to the following deduction:

¬(A→ B)

[¬A]w [A]x

⊥ v
B x

A→ B

⊥ w
A u

C → A

(5)

i.e., we translate a switch of principal formula (from X to Y , going down in the
deduction) on the right side with an application of the ⊥c rule whose conclusion
is Y , and whose premise is the conclusion of an application of→E , whose major
premise is rule applied in 2.

We also notice that in the natural deductions that we have associated to
2 and to 3 there are some applications of →E rule that do not correspond to
any application of L→ rule in 2 and 3. So if we try to formalize this empirical
association into a general procedure, we have to take into account the fact that
some applications of the →E rule will correspond to no application of L→ , but
to a “switch” of principal formula in two successive applications of R-rules.

This will be taken into account by the introduction of a special multiset ¬Σ
of all the open assumptions of the form X = ¬Y which are the major premises
of an application of →E ; so we will associate the following deduction of →Nc :

Γ,¬Σ

D
A

to the following deduction of →Gc :

D′
Γ⇒ A,Σ

Γ being the multiset of the open assumptions of D that do not belong to ¬Σ.
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5 Natural deductions in ∗-normal form

Let us consider the following system →Nc :

[A]u

D
B → I, u

A→ B

D1

A→ B

D2

A → E
B

[¬A]u

D
⊥ ⊥c, u
A

Definition 5.1. Let D be a normal deduction of →Nc ; D is in ∗-normal form
iff:

1. If ⊥ occurs in D as a nonempty class of open assumptions, then D has
the following shape:

⊥ ⊥c, u
A

2. the leftmost branch of D and the leftmost branch of every subdeduction D′
of D such that the conclusion of D′ is the minor premise of an application
of →E rule in D have the following shape:
going from the root to the leaves there are

• n ≥ 0 applications of →I ;

• a ≤ 1 applications of ⊥c;
• m ≥ 0 applications of →E .

3. For every occurrence of the following subdeduction in D:

[¬Y ]v
D1

Y

⊥ ⊥c, u
A

(6)

such that Y 6= A, either the class of assumptions [¬A]u is not an open
class of assumptions of D1, or, if it is open, the assumption [¬A]u always
occurs in D1 as the major premise of an application of →E .

4. For every occurrence of the following subdeduction in D:

[¬C]u
D1

C

⊥ → I, u
¬¬C

(7)

the class of assumptions [¬C]u is not an open class of assumptions of D1

(so, either it is discharged, or it does not occur as an assumption in D1).
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5. For every occurrence of the following subdeduction in D:

[¬B]u

[¬B]u

D1

B

⊥ ⊥c, u
B

(8)

then

(a) the class of assumptions [¬B]u is open and nonempty in D1; more-
over,

(b) the class of assumptions [¬B]u always occurs in D1 as the major
premise of an application of →E rule:

[¬B]u

[¬B]u

[¬B]u

D2

B

⊥ v 6= u, and so X 6= B for (a)
X
D3

B

⊥ u
B

(c) the last rule applied in D3 is →E .

Remark 5.2. The conditions stated in the definition above are sufficient con-
ditions to the well-definedness of the correspondence from deductions in →Nc
to deductions in →Gc .

6 Correspondence Nc−→Gc

Proposition 6.1. Let D be a deduction in →Nc in ∗-normal form, whose
conclusion is A; let ¬∆′ be an arbitrary (possibly empty) subset of the multiset
¬Σ of all the open assumptions of D of the form X = ¬Y , which are the major
premises of an application of →E in D; let Γ be the multiset of the (nonempty)
classes of open assumptions of D which do not belong to ¬∆′ and which are
different from ¬A; let us suppose that if ¬X occurs in ¬∆′ with multiplicity ≥ 1
then the multiplicity of ¬X in Γ is 0, i.e., if an assumption belongs to ¬∆′, then
all the occurrences of that assumptions in D belong to ¬∆′. Let ∆ be a finite
(possibly empty) multiset of formulas.

There exists a procedure which associates – for every choice of ∆ and ¬∆′ –
D to a unique normal deduction D’ of →Gc whose conclusion is the sequent
Γ⇒ A,∆′,∆.

Proof. By induction on depth (D).

• Basis: If depth (D) = 1 then D reduces to the single-node deduction

A

13



So, A is the conclusion and an open assumption of D. We notice that A 6∈ ¬Σ =
∅, therefore A ∈ Γ, and so we associate it to

A⇒ A,∆

• Induction: Let us suppose that depth (D) > 1. Our Induction Hypothesis
says:

for every deductionD1 in ∗-normal form s.t. depth (D1) < depth (D),
for every subset ¬∆′1 of the multiset ¬Σ1 of all the open assump-
tions of D1 of the form X = ¬Y , which are major premises of an
application of→E in D1 (we suppose that, if ¬X ∈ ¬∆′1 then all the
occurrences of ¬X in Σ1 belong to ¬∆′1.), for every (possibly empty)
set ∆1 of formulas, we know how to associate to D1 a unique deduc-
tion D′1 of →Gc whose conclusion is the sequent Γ1 ⇒ A1,∆

′
1,∆1.

Here, A1 is the conclusion of D1 and Γ1 is the set of the open as-
sumptions of D1 that are not in ¬∆′1.

Let us suppose that →I is the last rule applied in D; therefore D has the
following shape:

Γ, [A]u,¬∆′

D1

B u
A→ B

We notice that all the occurrences of [A]u are discharged in D, therefore [A]u

will never belong to ¬∆′, whereas [A]u is open for D1 (it can be empty or not).
Two cases may occur:

– B 6= ⊥

– B = ⊥

If B 6= ⊥ then we associate D to the following deduction of →Gc :

D′1
Γ, [A]⇒ B,∆′,∆

Γ⇒ A→ B,∆′,∆

Here we have applied the Induction Hypothesis on D1 choosing:

¬∆′1 := ¬∆′

∆1 := ∆

therefore Γ1 = Γ if the assumption [A]u is empty in D1, and Γ1 = Γ +A if [A]u

is nonempty in D1.
If B = ⊥ then we continue the proof by induction on depth(D1):

• Basis: if depth(D1) = 1 then ⊥ is an open assumption of D, then we associate
Dto the following deduction:

⊥ ⇒ ¬A

14



• Induction: if depth(D1) > 1 then ⊥ is not an open assumption ofD, therefore
⊥ is the conclusion of an application of →E and so D has the following shape:

D3

¬Y

[A]u

D2

Y
⊥ → I, u
¬A

By induction on depth(D3):

• Basis: if depth(D3) = 1 then ¬Y is an assumption of D:

[¬Y ]v

[A]u

D2

Y

⊥ → I, u
¬A

then two cases may occur:

(a) ¬Y 6= A;

(b) ¬Y = A.

If ¬Y 6= A , then [¬Y ]v is an open assumption of D, then two cases may occur:

(a1) ¬Y ∈ ¬∆′;

(a2) ¬Y 6∈ ¬∆′.

If ¬Y ∈ ¬∆′ , then we will associate D to the following deduction:

D′2
Γ, [A]⇒ ⊥,∆′,∆
Γ⇒ ¬A,∆′,∆

Here we have applied the Induction Hypothesis on D2 choosing:

¬∆′2 := ¬∆′ − ¬Y
∆2 := ∆ +⊥

therefore Γ2 = Γ if the assumption [A]u is empty in D2, and Γ2 = Γ +A if [A]u

is nonempty in D1.
If ¬Y 6∈ ¬∆′ , then ¬Y belongs to Γ, then we will associateD to the following

deduction:

D′2
Γ1, [A]⇒ Y,⊥,∆′,∆ Γ1, [A],⊥⇒ ⊥,∆′,∆

Γ1,¬Y, [A]⇒ ⊥,∆′,∆
Γ1,¬Y,⇒ ¬A,∆′,∆

Here we have applied the Induction Hypothesis on D2 choosing:

15



¬∆′2 := ¬∆′

∆2 := ∆ +⊥

therefore Γ2 = Γ1 if the assumption [A]u is empty in D2, and Γ2 = Γ1 + A if
[A]u is nonempty in D2, and Γ = Γ1 + ¬Y .

If ¬Y = A, then any occurrence of [¬Y ]v is discharged in D, therefore ¬Y
belongs neither to Γ nor to ¬∆′; but since D is in ∗-normal form, D satisfies
condition 4. of definition 5.1, therefore [¬Y ]v is not an open assumption of D2,
and so ¬Y belongs neither to ¬Σ2 nor to Γ2, then we will associate D to the
following deduction:

D′2
Γ⇒ Y,⊥,∆′,∆ Γ,⊥ ⇒ ⊥,∆′,∆

Γ,¬Y ⇒ ⊥,∆′,∆
Γ,⇒ ¬¬Y,∆′,∆

Here we have applied the Induction Hypothesis on D2 choosing:

¬∆′2 := ¬∆′

∆2 := ∆ +⊥

• Induction: If depth(D3) > 1, then ¬Y is the conclusion of some rule applied
in D3;

– ¬Y is not the conclusion of an application of →I , since D, and so D3, is
normal;

– ¬Y is not the conclusion of an application of ⊥c, since D is in ∗-normal
form (see the condition 2. of definition 5.1);

therefore ¬Y must be the conclusion of an application of →E ; we can reason
in the same fashion for the major premise of this other application of →E and
so on; after m− 4 steps (m ≥ 4) we have:

Bm

Γm,¬∆′m
Dm
Am

Bm−1

B4

Γ4,¬∆′4
D4

A4

¬Y

Γ2,¬∆′2
D2

Y
⊥ → I, u
¬A

we will associate D to the following deduction:

D′m

D′m−1

D′4

D′2 ⊥ ⇒ ⊥,∆′,∆
Γ2,¬Y, [A]⇒ ⊥,∆′,∆

Γm−2 , . . . ,Γ2, Bm−2 , [A]⇒ ⊥,∆′,∆
Γm−1 , . . . ,Γ2, Bm−1 , [A]⇒ ⊥,∆′,∆

Γm, . . . ,Γ2, Bm, [A]⇒ ⊥,∆′,∆
Γm, . . . ,Γ2, Bm ⇒ ¬A,∆′,∆
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where D′i has as conclusion Γi, [A] ⇒ Ai,⊥,∆′,∆, for i = 2, . . . ,M . Here
we have applied the Induction Hypothesis on Di, i = 2, 4, . . . ,m, choosing:

¬∆′i := ¬∆′ ∩ Σi
∆i := ∆ +⊥+ (¬∆′ − ¬∆′i)

therefore Γi = Γ if the assumption [A]u is empty in Di, and Γi = Γ + A if [A]u

is nonempty in Di.
Let us suppose that →E is the last rule applied in D; therefore D has the

following shape:

D1

A→ B

D2

A
B

by induction on depth (D1):

• Basis: If depth (D1) = 1, then A → B is an open assumption of D, and D
has the following shape:

A→ B

D2

A
B

two cases may occur:

– B 6= ⊥;

– B = ⊥;

if B 6= ⊥, we associate D to the following deduction:

D′2
Γ⇒ A,B,∆′,∆ B ⇒ B,∆′,∆

Γ, A→ B ⇒ B,∆′,∆

Here we have applied the Induction Hypothesis on D2 choosing:

¬∆′2 := ¬∆′

∆2 := ∆ +B.

If B = ⊥, then A → B = ¬A is an open assumption of D, and is the major
premise of an application of →E , therefore two cases may occur:

– ¬A ∈ ¬∆′;

– ¬A 6∈ ¬∆′.

If ¬A ∈ ¬∆′, then we associate D to the following deduction:

D′2
Γ⇒ ⊥,∆′,∆

Here we have applied the Induction Hypothesis on D2 choosing:

¬∆′2 := ¬∆′ − ¬A
∆2 := ∆ +⊥.
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If ¬A 6∈ ¬∆′, then, since ¬A is an open assumption of D, ¬A ∈ Γ, therefore we
associate to D the following deduction:

D′2
Γ1 ⇒ A,⊥,∆′,∆ ⊥ ⇒ ⊥,∆′,∆

Γ1,¬A⇒ ⊥,∆′,∆
Here we have applied the Induction Hypothesis on D2 choosing:

¬∆′2 := ¬∆′

∆2 := ∆ +⊥.

• Induction: Let us suppose that depth (D1) > 1; therefore A → B is the
conclusion of an application of a rule.

– A→ B is not the conclusion of an application of →I , since D is normal;

– A→ B is not the conclusion of an application of ⊥c, since D is in ∗-normal
form (see the condition 2. of definition 5.1);

therefore A→ B must be the conclusion of an application of→E ; we can reason
in the same fashion for the major premise of this other application of →E and
so on; in the general case we have:

Bm

Γm,¬∆′m
Dm
Am

Bm−1

B3

Γ3,¬∆′3
D3

A3

B2

Γ2,¬∆′2
D2

A2

A1

where B1 = A1, Bi = Ai → Bi−1, i = 2 . . .m;
we associate it to the following deduction:

D′m

D′m−1

D′3

D′2 A1 ⇒ A1∆′,∆

Γ2, B2 ⇒ A1,∆′,∆

Γm−2, . . . ,Γ2, Bm−2 ⇒ A1,∆′,∆

Γm−1, . . . ,Γ2, Bm−1 ⇒ A1,∆′,∆

Γm, . . . ,Γ2, Bm ⇒ A1,∆′,∆

where D′i has as conclusion Γi ⇒ Ai, A1,∆
′,∆ for i = 2, . . . ,m. Here we

have applied the Induction Hypothesis on Di, i = 2, . . . ,m, choosing:

¬∆′i := ¬∆′ ∩ Σi
∆i := ∆ +A1 + (¬∆− ¬∆i)

Let us suppose that ⊥c is the last rule applied in D; thereforeD has the following
shape:

D3

⊥ u
A

18



by induction on depth (D3):

• Basis: if depth (D3) = 1, then D reduces to the following deduction:

⊥
A

then we associate it to the following deduction:

⊥ ⇒ A,∆

• Induction: If depth (D3) > 1, then ⊥ is not an assumption of D, therefore ⊥
must be the conclusion of an application of →E , so D has the following shape:

Γ1,¬∆′1
D1

¬Y

Γ2,¬∆′2
D2

Y
⊥ u
A

by induction on D1:

• Basis: If depth (D1) = 1, then D has the following shape:

¬Y

[¬A]u,Γ,¬∆′

D2

Y
⊥ u
A

Two cases may occur:

(c) Y 6= A;

(d) Y = A.

If Y 6= A, then [¬Y ]v is an open assumption of D, and it is the major premise
of an application of →E ; so two cases may occur:

(c1) ¬Y 6∈ ¬∆′;

(c2) ¬Y ∈ ¬∆′;

If ¬Y 6∈ ¬∆′, then ¬Y ∈ Γ, therefore we associate D to the following deduction:

D′2
Γ1 ⇒ Y,A,∆′,∆ ⊥ ⇒ A,∆′,∆

Γ1,¬Y ⇒ A,∆′,∆

Here we have applied Induction Hypothesis on D2 choosing:

¬∆′2 := ¬∆′

∆2 := ∆ +A

If ¬Y ∈ ¬∆′ then ¬Y 6∈ Γ and by condition 3. of definition 5.1 either the
assumption ¬A is not open for D2 or it belongs to ¬Σ2, therefore we associate
D to the following deduction:
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D′2
Γ⇒ A,∆′,∆

Here we have applied Induction Hypothesis on D2 choosing:

¬∆′2 := ¬∆′ ∩ ¬Σ2

∆2 := ∆ +A+ (¬∆′ − ¬∆′2)

if the assumption ¬A is not open for D2 or

¬∆′2 := ¬∆′ + ¬A− ¬Y
∆2 := ∆

if the assumption ¬A is open for D2. If Y = A, then every occurrence of
the assumption [¬Y ]v = [¬A]u is discharged in D, therefore ¬A cannot occur
neither in ¬∆′ nor in Γ, whereas, since D is in ∗-normal form, D meets the
conditions 5(a) and 5(b) of definition 5.1, therefore [¬A]u occurs in D2 as an
open assumption and the major premise of an application of→E rule; moreover
it also satisfies condition 5(c) of definition 5.1, therefore it has the following
shape:

[¬A]u

Bm

Dm
Am

Bm−1

B4

D4

A4

A

⊥ u
A

and there exists at least one index j ∈ {4, . . . ,m} such that [¬A]u occurs in Dj
as an open assumption which is the major premise of an application of the →E
rule; we will associate D to the following deduction:

D′m
Γm ⇒ Am, A,∆′,∆

D′4
Γ4 ⇒ A4, A,∆′,∆ A⇒ A,∆′,∆

Γ2, B4,⇒ A,∆′,∆

Γm−1 , . . . ,Γ2, Bm−1 ⇒ A,∆′,∆

Γm, . . . ,Γ2, Bm ⇒ A,∆′,∆

Here we have applied the Induction Hypothesis onDi, i = 4, . . . ,m, choosing:

¬∆′h := ¬∆′ ∩ ¬Σh
∆h := ∆ +A+ (¬∆′ − ¬∆′h)

for every index h ∈ {4, . . . ,m} such that [¬A]u is an empty class of assumptions
for Dh, and

¬∆′j := (¬∆′ ∩ ¬Σj) + ¬A
∆j := ∆ + (¬∆′ − ¬∆′j)

for every index j ∈ {4, . . . ,m} such that [¬A]u is a nonempty class of assump-
tions for Dj .
• Induction: Let us suppose that depth (D1) > 1; therefore ¬Y is the conclu-
sion of an application of a rule.
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– ¬Y is not the conclusion of an application of I →,since D is normal;

– ¬Y is not the conclusion of an application of ⊥c, since D is in ∗-normal
form, therefore it meets the condition 2. of definition 5.1;

therefore ¬Y must be the conclusion of an application of→E ; we can reason
in the same fashion for the major premise of this other application of →E and
so on; after m steps (m ≥ 1) we have:

Bm

Γm,¬∆′m
Dm
Am

Bm−1

A3 → ¬B

Γ3,¬∆′3
D3

A3

¬B

Γ2,¬∆′2
D2

B
⊥ u
A

We associate it to the following deduction:

D′m
Γm ⇒ Am, A,∆′,∆

D′3
Γ3 ⇒ A3, A,∆′,∆

D′2
Γ2 ⇒ B,A,∆′,∆ ⊥ ⇒ A,∆′,∆

Γ2,¬B,⇒ A,∆′,∆

Γ3,Γ2, A3 → ¬B ⇒ A,∆′,∆

Γm−1, . . . ,Γ2, Bm−1 ⇒ A,∆′,∆

Γm, . . . ,Γ2, Bm ⇒ A,∆′,∆

Here we have applied the Induction Hypothesis onDi, i = 2, . . . ,m, choosing:

¬∆′i := ¬∆′ ∩ ¬Σi
∆i := ∆ +A+ (¬∆′ − ¬∆′i).

Corollary 6.2. Let D be a deduction in →Nc whose conclusion is A; let ¬Σ
be the multiset of the open assumptions of D of the form X = ¬Y such that X
is the major premise of an application of E →; let Γ be the multiset of the open
assumptions of D which do not belong to ¬Σ.

There exists a procedure which associates D to a unique deduction D′ of
→Gc whose conclusion is the sequent Γ⇒ A,Σ.

Proof. The procedure is the one described in the proposition above for ∆ =
∅,¬∆′ = ¬Σ.

7 Correspondence Gc −→ Nc

Proposition 7.1. Let D be a normal deduction in →Gc whose conclusion is
Γ⇒ ∆.

There exists a non-trivial procedure which associates – for every X ∈ ∆ –
D to a deduction D’ in →Nc in ∗-normal form, whose conclusion is X and
whose set of open assumptions is a subset of Γ ∪ (¬∆ \ {¬X}).
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Proof. By induction on depth(D).

• Basis: If depth(D) = 1, then the prooftree of D is a single-node labelled with
an axiom.

We associate

Γ1, A⇒ A,∆1

to the single-node natural deduction

A

if X = A, or to

[¬A]u A

⊥ ⊥c, x
X

if X 6= A. We associate

Γ1,⊥⇒ ∆

to the following natural deduction:

⊥ ⊥c, x
X

for every X ∈ ∆.
All these deductions are in ∗-normal form and the sets of their open assump-

tions are subsets of Γ ∪ (¬∆ \ {¬X}).
• Induction: Let us suppose that depth(D) > 1, and that R→ is the last rule
applied in D. Then D will have the following shape:

D1

Γ1, A⇒ B,∆1

Γ1 ⇒ A→ B,∆1

We associate D to the following deduction:

Π
D′1
B

A→ B

if X = A→ B (Here, by induction hypothesis, Π ⊆ Γ1 ∪ {A} ∪ ¬∆1), or to the
following deduction:

¬(A→ B)

Π
D′1
B

A→ B

⊥ ⊥c, x
X

if X 6= A→ B.
All these deductions are in ∗-normal form and the sets of their open assump-

tions are subsets of Γ ∪ (¬∆ \ {¬X}).
Let us suppose that L→ is the last rule applied in D. Then D has the

following shape:
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D1

Γ1 ⇒ A,∆

D2

Γ1, B ⇒ ∆

Γ1, A→ B ⇒ ∆

Since D is normal, D meets condition (a) of the definition 3.1, therefore the
antecedent active formula B is itself principal formula (of an axiom or of another
application of the L→ rule.).

Let us suppose that B is the principal formula of an axiomAx (so depth(D2) =
1); then two cases may occur:

(a) Ax is Γ1, B ⇒ B,∆1;

(b) Ax is Γ1,⊥⇒ ∆ (so B = ⊥).

If (a), then we associate D to the following deduction:

A→ B

Π
D′1
A

B

if X = B, and ¬B is not an open assumption of D′1, or to the following deduc-
tion:

¬B
A→ B

Π
D′1
A

B
⊥ ⊥c, x
X

in any other cases.
If (b), then we associate D to the following deduction D’:

¬A

Π
D′1
A

⊥ ⊥c, x
X

for every X ∈ ∆. We notice that, since D is normal, D meets the condition
(b) of definition 3.1, therefore A 6∈ ∆, and so in this case the assumption ¬A is
open in D’.

Let us suppose that B is the principal formula of an application of L→ ; so
D has the following shape:

Dn−1

D2 Ax
n ≥ 2 applications of L→

Γn−1, . . . ,Γ2, Bn−1 ⇒ ∆

Γn, . . . ,Γ2, Bn ⇒ ∆

where the conclusion of Di is Γi ⇒ Ai,∆ for i = 2, . . . , n; moreover, A1 = B1 is
the principal antecedent formula of Ax, and Bi+1 = Ai+1 → Bi for i = 1, . . . , n.

Then two cases may occur:

(a) Ax is Γ1, B1 ⇒ B1,∆1;

(b) Ax is Γ1,⊥⇒ ∆.
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If (a), then we associate D to the following deduction:

Bn

Πn

D′n
An

Bn−1

...
B2

Π2

D′2
A2

B1

if X = B1, or to the following deduction:

¬B1

Bn

Πn

D′n
An

Bn−1

...
B2

Π2

D′2
A2

B1

⊥ ⊥c, x
X

if X 6= B1. In both cases, by induction hypothesis, Πi ⊆ Γi∪¬∆ for i = 2, . . . , n.
If (b), then B1 = ⊥ and B2 = ¬A2; we associate D to the following deduc-

tion:

Bn

Πn

D′n
An

Bn−1

...
¬A2

Π2

D′2
A2

⊥ ⊥c, x
X

for every X ∈ ∆.
All these deductions are in ∗-normal form and the sets of their open assump-

tions are subsets of Γ ∪ (¬∆ \ {¬X}).

7.1 Some examples

7.1.1

[¬¬A]v

[¬A]u [A]z

⊥ I →, z
¬A

⊥ u
A v¬¬A→ A
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is associated to

A⇒ ⊥, A
⇒ ¬A,A ⊥ ⇒ A

¬¬A⇒ A
⇒ ¬¬A→ A

7.1.2

[¬A]v
[(A→ B)→ A]u

[¬A]v [A]y

⊥ w
B y

A→ B

A

⊥ v
A u

((A→ B)→ A)→ A

is associated to

A⇒ B,A

⇒ A→ B,A A⇒ A

(A→ B)→ A⇒ A

⇒ ((A→ B)→ A)→ A

7.1.3

[¬(A→ ¬B)]u

[¬A]z [A]y

⊥ x¬B y
A→ ¬B

⊥ z
A v

B → A u¬(A→ ¬B)→ (B → A)

is associated to

B,A⇒ ¬B,A
B ⇒ A→ ¬B,A B⊥ ⇒ A

¬(A→ ¬B), B ⇒ A

¬(A→ ¬B)⇒ B → A

⇒ ¬(A→ ¬B)→ (B → A)
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7.1.4

[¬A]w

[(A→ C)→ (B → A)]u

[¬A]w [A]z

⊥ x
C z

A→ C

B → A

[¬B]y [B]v

⊥ y
B

A

⊥ w
A v

B → A u
[(A→ C)→ (B → A)]→ (B → A)

is associated to

A,B ⇒ A,C

B ⇒ A→ C,A

B ⇒ B,A A,B ⇒ A

B → A,B ⇒ A

(A→ C)→ (B → A), B ⇒ A

(A→ C)→ (B → A)⇒ B → A

⇒ [(A→ C)→ (B → A)]→ (B → A)

8 The ∗-normalization theorem

In this section I give the procedure for transforming a normal deduction in→Nc
into a deduction in ∗-normal form. The procedure consists of seven transforma-
tion steps: at each step, D is transformed into a deduction which satisfies all
the conditions of def. 5.1 satisfied by D, plus a new one.

Definition 8.1. Let D be a deduction of →Nc . A ∗-cut in D is a sequence
of occurrences B0 . . . Bn of formulas at nodes of D such that:

1. Bi is the major premise of an application of →E , i = 1 . . . n;

2. B0 is not the major premise of an application of →E ;

3. Bi is the conclusion of the application of →E of which Bi is the major
premise,i = 0 . . . n− 1;

4. Bn is introduced with an application of ⊥c.

The ∗-cutformula of a ∗-cut B0 . . . Bn is Bn.
The ∗-cutrank of a ∗-cut B0 . . . Bn is the complexity of the formula Bn.

Lemma 8.2. Let D be a normal deduction of →Nc whose set of open assump-
tions is Γ and whose conclusion is A.
There exists a normal deduction D′ which satisfies condition 2. of definition
5.1, whose set of open assumptions is Γ′ ⊆ Γ and whose conclusion is A.

Proof. By induction on (a(D), b(D), c(D)), where:

• a(D) is the maximum ∗-cutrank of a ∗-cut of D;

• b(D) is is the number of ∗-cuts of maximum ∗-cutrank;
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• c(D) is the maximum depth of a subdeduction of D whose conclusion is
a ∗-cut formula of maximum ∗-cutrank.

•Basis: If (a(D) = 0, then there are no ∗-cuts in D, and so D satisfies condition
2.
• Induction: Suppose (a(D) ≥ 1 : then D has the following shape:

D0

⊥ ⊥c, u
Bn

Dn
An

...n ≥ 0 applications of →E
B1

D1

A1

B0

...

where B0 . . . Bn is a ∗-cut of maximum ∗-cutrank, and such that depth(D0,0) =
c(D) 2, therefore we have that (a(Di) < (a(D) i = 0 . . . n, and so (a(Di), b(Di), c(Di)) <
(a(D), b(D), c(D)) i = 0 . . . n, and so we can suppose by induction hypothesis
that Di satisfies condition 2. i = 0 . . . n.
Two cases may occur:

(a) B0 6= ⊥;

(b) B0 = ⊥.

Case (a): We transform D into the following deduction D∗:
D′0
⊥ ⊥c, u
B0

...

where D0 = D′0 if [¬Bn]u is not an open assumption of D0, otherwise D′0 is
obtained from D0 by substituting every occurrence of [¬Bn]u which is not the
major premise of an application of →E with the following deduction of ¬Bn:

[¬B0]w

[Bn]z
Dn
An

...
B1

D1

A1

B0

⊥ →I , z
¬Bn

(we notice that we are not creating any new ∗-cut with this substitution), and
every occurrence of [¬Bn]u as the major premise of an application of →E :

2D0,0 is the following deduction:

D0

⊥ ⊥c, u
Bn
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3 [¬Bn]u
D′′
Bn

⊥
R

X

with the following deduction of X :

[¬B0]w

D′′
Bn

Dn
An

...
B1

D1

A1

B0

⊥
R

X

(in this case the substitution process will be progressive and will start from
a subdeduction 8 such that in its D′′ there are no open occurrences of the
assumption ¬Bn.) Since D′′ is a subdeduction of D0, D′′ is normal and satisfies
condition 2. If depth(D′′) = 1 or →E is the last rule applied in D′′, it holds
that the subdeduction 8 is normal and no other ∗-cuts are created, therefore
(b(D∗) < (b(D), and so (a(D∗), b(D∗), c(D∗)) < (a(D), b(D), c(D)) , and so, by
induction hypothesis, D∗ satisfies condition 2. Let us suppose that →I is the
last rule applied in D′′: then deduction 8 has the following shape:

[¬B0]w

D′′′
Bn−1 →I
Bn

Dn
An

...
B1

D1

A1

B0

⊥
R

X

where Bn = An → Bn−1. Let us consider the following subdeduction D̃ of 8:

D′′′
Bn−1 →I
Bn

Dn
An

...
B1

D1

A1

B0

(Since D′′′ is a subdeduction of D′′, D′′′ is normal and satisfies condition 2.)
D̃ is not normal. The normalization process applied on D̃ can generate new
∗-cuts 4, but all the ∗-cut formulas of the possible new ∗-cuts generated by the
normalization process are subformulas of An, which is a proper subformula of
Bn, therefore the ∗-cutranks of the new ∗-cuts will be strictly less than a(D),

3R can either be an application of →I or of ⊥c.
4Consider for example the case in which An occurs in D′′′ as an open assumption which

is also the major premise of an application of →E , and moreover the last rule applied in Dn
is ⊥c.
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therefore (a(D̃) < (a(D), and so (a(D̃), b(D̃), c(D̃)) < (a(D), b(D), c(D)) , and
so, by induction hypothesis applied on D̃, D∗ satisfies condition 2.

Let us suppose that ⊥c is the last rule applied in D′′: then deduction 8 has
the following shape:

[¬B0]w

D′′′
⊥ ⊥c
Bn

Dn
An

...
B1

D1

A1

B0

⊥
R

X

Let us consider the following subdeduction D̃ of 8:

D′′′
⊥ ⊥c
Bn

Dn
An

...
B1

D1

A1

B0

(Since D′′′ is a subdeduction of D′′, D′′′ is normal and satisfies condition 2.) It
holds that (a(D̃) ≤ (a(D) and (b(D̃) ≤ (b(D), but we have that the following
deduction:

[¬Bn]u

D′′′
⊥
Bn

R
X

is a subdeduction of D0,0, and so c(D̃) = depth(D′′′) ≤ depth(D0,0) − 2 <

depth(D0,0) = c(D) therefore (a(D̃), b(D̃), c(D̃)) < (a(D), b(D), c(D)) , and so,
by induction hypothesis, D∗ satisfies condition 2.

Case (b): same fashion.

Lemma 8.3. Let D be a normal deduction of →Nc whose set of open assump-
tions is Γ and whose conclusion is C; let us suppose that ⊥ 6∈ Γ and that D
satisfies condition 2. of definition 5.1.

There exists a normal deduction D′ whose set of open assumptions is Γ′ = Γ,
whose conclusion is C and that satisfies conditions 2. and 3. of definition 5.1.

Proof. By induction on the number n of violations to the condition 3. in D.

• Basis: If n = 0 trivial.

• Induction: Let us suppose that n ≥ 1; then D has the following shape:
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[¬Y ]v

[¬A]u

D1

Y

⊥ ⊥c, u
A
D2

where Y 6= A and [¬A]u is an open assumption of D1 and there is at least
one occurrence of the assumption [¬A]u as the minor premise of an application
of →E in D1 or as the premise of an application of →I in D1. Then we will
transform D substituting every occurrence of the assumption [¬A]u as the minor
premise of an application of →E in D1 or as the premise of an application of
→I in D1 with the following deduction whose conclusion is ¬A:

[¬A]u [A]v

⊥ → I, v
¬A

(9)

and we obtain a deduction D′ whose conclusion is C and whose set of open
assumptions is Γ; moreover D′ is normal, satisfies condition 2. and the number
of violations to condition 3. in D′ is n − 1, therefore we can apply induction
hypothesis to D′, and suppose that D′ has already been transformed into the
deduction which we were looking for.

Lemma 8.4. Let D be a normal deduction of →Nc whose set of open assump-
tions is Γ and whose conclusion is A; let us suppose that ⊥ 6∈ Γ and that D
satisfies conditions 2. and 3. of definition 5.1.

There exists a normal deduction D′ whose set of open assumptions is Γ′ = Γ
and whose conclusion is A, which satisfies conditions 2., 3. and 4. of definition
5.1.

Proof. By induction on the number n of violations to the condition 4. in D.

• Basis: If n = 0 trivial.

• Induction: Let us suppose that n ≥ 1; then D has the following shape:

[¬C]u

[¬C]u

D1

C

⊥ → I, u
¬¬C
D2

where [¬C]u is an open assumption of D1. Then we will transform D into the
following deduction:
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[¬C]u

[¬C]u

[¬C]u

D1

C

⊥ ⊥c, u
C

⊥ → I, u
¬¬C
D2

and we obtain a deduction D′ whose conclusion is A and whose set of open
assumptions is Γ; moreover D′ is normal, satisfies condition 2. (because we join
pieces of deductions together putting them on the minor premise of →E ); it
satisfies condition 3. (because with this transformation we are not introducing
new occurrences of 6) and the number of violations to condition 4. in D′ is
n− 1, therefore we can apply induction hypothesis to D′, and suppose that D′
has already been transformed into the deduction which we were looking for.

Lemma 8.5. Let D be a normal deduction of →Nc whose set of open assump-
tions is Γ and whose conclusion is A; let us suppose that ⊥ 6∈ Γ and that D
satisfies conditions 2., 3. and 4. of definition 5.1.

There exists a normal deduction D′ whose set of open assumptions is Γ′ = Γ
and whose conclusion is A, which satisfies conditions 2., 3.,4. and 5(a) of
definition 5.1.

Proof. By induction on the number n of violations to the condition 5(a) in D.

• Basis: If n = 0 trivial.

• Induction: Let us suppose that n ≥ 1; then D has the following shape:

[¬B]u
D1

B

⊥ ⊥c, u
B
D2

where [¬B]u is not an open assumption of D1.
We notice that B 6= ⊥, because B is the conclusion of an application of a ⊥c
rule.
We will transform D into the following deduction:

D1

B
D2

and we obtain a deduction D′ whose conclusion is A and whose set of open
assumptions is Γ; moreover D′ is normal,it satisfies condition 2. (because we
join pieces of deductions together putting them on the minor premise of →E or
on the premise of→I ); it satisfies condition 3. (because, since B 6= ⊥, with this
transformation we are not introducing new occurrences of 6), it satisfies condi-
tion 4. (because, since B 6= ⊥, with this transformation we are not introducing
new occurrences of 7), and the number of violations to condition 5(a) in D ′ is
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n− 1, therefore we can apply induction hypothesis to D′, and suppose that D′
has already been transformed into the deduction which we were looking for.

Lemma 8.6. Let D be a normal deduction of →Nc whose set of open assump-
tions is Γ and whose conclusion is A; let us suppose that ⊥ 6∈ Γ and that D
satisfies conditions 2., 3., 4. and 5(a) of definition 5.1. There exists a procedure
which transforms D into a normal deduction D′ whose set of open assumptions
is Γ′ = Γ and whose conclusion is A, which satisfies conditions 2., 3., 4., 5(a)
and 5(b) of definition 5.1.

Proof. By induction on the number n of violations to the condition 5(b) in D.

• Basis: If n = 0 trivial.

• Induction: Let us suppose that n ≥ 1; then D has the following shape:

[¬B]u

[¬B]u

D1

B

⊥ ⊥c, u
B
D2

where [¬B]u is an open assumption of D1, and there is at least one occurrence
of the assumption [¬B]u as the minor premise of an application of →E in D1 or
as the premise of an application of →I in D1.
We notice that B 6= ⊥, because B is the conclusion of an application of a ⊥c
rule.

Then we will transform D substituting every occurrence of the assumption
[¬B]u as the minor premise of an application of →E in D1 or as the premise
of an application of →I in D1 with the following deduction whose conclusion is
¬B:

[¬B]u [B]v

⊥ → I, v
¬B

(10)

and we obtain a deduction D′ whose conclusion is A and whose set of open
assumptions is Γ; moreover D′ is normal, it satisfies condition 2. (because we
join pieces of deductions together putting them on the minor premise of →E or
on the premise of→I ); it satisfies condition 3. (because with this transformation
we are not introducing new occurrences of 6), it satisfies condition 4. (because
with this transformation we are not introducing new occurrences of 7), it satisfies
condition 5(a) (because with this transformation we are not introducing new
occurrences of 8) and the number of violations to condition 5(b) in D′ is n− 1,
therefore we can apply induction hypothesis to D′, and suppose that D′ has
already been transformed into the deduction which we were looking for.

Lemma 8.7. Let D be a normal deduction of →Nc whose set of open assump-
tions is Γ and whose conclusion is A; let us suppose that ⊥ 6∈ Γ and that D
satisfies conditions 2., 3., 4., 5(a) and 5(b) of definition 5.1.
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There exists a procedure which transforms D into a normal deduction D′
whose set of open assumptions is Γ′ = Γ and whose conclusion is A, which
satisfies conditions 2., 3., 4., 5(a), 5(b) and 5(c) of definition 5.1.

Proof. By induction on the number n of occurrences in D of a piece of deduction
of the following kind:

[¬B]u B

⊥ u
B

• Basis: If n = 0 trivial.

• Induction: Let us suppose that n ≥ 1; then D has the following shape:

[¬B]u

[¬B]u

D1

B

⊥ ⊥c, u
B
D2

and, as D satisfies conditions 5(a) and 5(b), [¬B]u is an open assumption of
D1, and the assumption [¬B]u always occurs inD1 as the major premise of an
application of E → rule.

Let us prove that the last rule applied in D1 is E → by induction on the
complexity of B.

• Basis: If B is atomic, the last rule applied in D1 is →E : indeed,

– B cannot be the conclusion of an application of I →, because B is atomic;

– B cannot be the conclusion of an application of ⊥c, because otherwise
[¬B]u would have been discharged in D1.

• Induction: Let us suppose that B is not atomic (so B 6= ⊥) and that the
last rule applied in D is not→E ; then the last rule applied in D is→I , because
otherwise [¬B]u would have been discharged in D1. Therefore, B = A1 → B1

and D has the following shape:

[¬B]u

[¬B]u

D4

B1 → I, w
B

⊥ ⊥c, u
B
D2

Two cases may occur:

– B1 6= ⊥;

– B1 = ⊥.
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If B1 6= ⊥, then we will consider every occurrence of the assumption [¬B]u in
D4 as the major premise of an application of →E :

[¬B]u
D′′
B

⊥
R

X

(11)

and substitute [¬B]u with the following deduction whose conclusion is ¬B:

[¬B1]z
[B]v [A1]w

B1

⊥ → I, v
¬B

(12)

and we obtain the following deduction D0:

[¬B1]z
[B]w [A1]v

B1

⊥ → I, w
¬B

D′′
B

⊥
R

X

which in general is not even normal; we apply the normalization procedure to
D0 and we obtain a deduction D0,N whose conclusion is X and whose open
assumptions are among the open assumptions of D0 (therefore ¬B1 might be an
open assumption of D0,N , but surely ¬B is not an open assumption of D0,N .).

We apply – one by one – all the above lemmas to D0,N and we obtain a
normal deduction D′0 whose conclusion is X and whose open assumptions are
among the open assumptions of D0,N ; moreover D′0 satisfies conditions 2., 3.,
4., 5(a) and 5(b).

We will transform D substituting every occurrence of a subdeduction of
the kind 11 in D4 with the corresponding deduction D′0 obtained applying the
procedure described here above, and we obtain the following deduction D∗:

[¬B]u

[¬B1]z

D′4
B1 → I, w
B

⊥ ⊥c, u
B
D2

which is normal, its conclusion is A, its open assumptions (with maybe the
exception of ¬B1) are among the open assumptions of D (so ⊥ is not an open
assumption of D∗), and satisfies conditions 2., 3. and 4.

Since [¬B]u is not an open assumption of D′4, D∗ has a violation of condition
5(a); we apply lemma 8.5 to D∗ and we obtain the following deduction D ′:

D′4
B1 → I, v
B
D2
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Two cases may occur:

– [¬B1]z is not an open assumption of D′4;

– [¬B1]z is an open assumption of D′4.

If [¬B1]z is not an open assumption of D′4, then D′ has the same conclusion
as D′, its open assumptions are among the open assumptions of D, it satisfies
conditions 2., 3., 4., 5(a) and 5(b) and the number of occurrences of 8 in D ′ is
n− 1. Therefore we can apply our induction hypothesis to D′ and suppose that
D′ has already been transformed into the deduction we were looking for.

Let us suppose that [¬B1]z is an open assumption of D′4; then we will trans-
form D′ into the following deduction D′∗:

[¬B1]z

[¬B1]z

D′4
B1

⊥ ⊥c, z
B1 → I, v
B
D2

Since the complexity of B1 is smaller than the complexity of B, we can apply
our induction hypothesis to D∗′, and suppose that the last rule applied in D′4
is →E .

If B1 = ⊥, then D has the following shape:

[¬¬A1]u

[¬¬A1]u

D3

⊥ → I, v
¬A1

⊥ ⊥c, u¬A1

D2

where [¬¬A1]u is an open assumption of D3 and the assumption [¬¬A1]u always
occurs in D3 as the major premise of an application of →E .

Since ⊥ 6∈ Γ, we have that depth(D3) > 1, therefore D has the following
shape:

[¬¬A1]u

D5

¬Y
D6

Y
⊥ → I, v
¬A1

⊥ ⊥c, u¬A1

D2

and we have that [¬¬A1]u is an open assumption of D5 or of D6 and the as-
sumption [¬¬A1]u always occurs in D5 and in D6 as the major premise of an
application of →E .
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Then we will consider every occurrence of the assumption [¬¬A1]u in D5

and in D6 as the major premise of an application of →E :

[¬¬A1]u
D′′
¬A1

⊥
R

X

(13)

and substitute [¬¬A1]u with the following deduction whose conclusion is ¬¬A1:

[¬A1]w [A1]v

⊥ I →, w
¬¬A1

(14)

and we obtain the following deduction D0,0:

[¬A1]w [A1]v

⊥ → I, w
¬¬A1

D′′
¬A1

⊥
R

X

which in general is not even normal; we apply the normalization procedure to
D0,0 and we obtain a deduction D1,N whose conclusion is X and whose open
assumptions are among the open assumptions of D0,0 (therefore ¬¬A1 is not an
open assumption of D1,N .).

We apply – one by one – all the above lemmas to D1,N and we obtain a
normal deduction D′0,0 whose conclusion is X and whose open assumptions are
among the open assumptions of D1,N ; moreover D′0,0 satisfies conditions 2., 3.,
4., 5(a) and 5(b).

We will transform D substituting every occurrence of a subdeduction of the
kind 13 in D5 and in D6 with the corresponding deduction D′0,0 obtained apply-
ing the procedure described here above, and we obtain the following deduction
D ∗ ∗:

[¬¬A1]u

D′5
¬Y

D′6
Y

⊥ → I, v
¬A1

⊥ ⊥c, u¬A1

D2

which is normal, its conclusion is A, its open assumptions are among the open
assumptions of D (so ⊥ is not an open assumption of D ∗ ∗), and satisfies
conditions 2., 3. and 4.

Since [¬¬A1]u is neither an open assumption of D′5 nor an open assumption
of D′6, D ∗ ∗ has a violation of condition 5(a); we apply lemma 8.5 to D ∗ ∗ and
we obtain the following deduction D′:
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D′5
¬Y

D′6
Y

⊥ → I, v
¬A1

D2

D′ has the same conclusion as D, its open assumptions are among the open as-
sumptions of D, it satisfies conditions 2., 3., 4., 5(a) and 5(b) and the number of
occurrences of 8 in D′ is n−1. Therefore we can apply our induction hypothesis
to D′ and suppose that D′ has already been transformed into the deduction we
were looking for.

Proposition 8.8. Let D be a normal deduction of →Nc whose set of open
assumptions is Γ and whose conclusion is A.

There exists a procedure which transforms D into a deduction D′ in ∗-normal
form whose set of open assumptions is Γ′ ⊆ Γ and whose conclusion is A.

Proof. If ⊥ ∈ Γ then we transform D into the following deduction:

⊥ ⊥c, u
A

which is a deduction in ∗-normal form whose set of open assumptions is {⊥} ⊆ Γ.
Therefore we can assume that ⊥ 6∈ Γ (i.e., the condition 2. is always satis-

fied).
We apply – one by one – all the lemmas here above to D and we obtain the

deduction D′ we were looking for.

9 Conclusions and further developments

The main results in this thesis are:

– The definition of normality for deductions in a Gentzen system for the
classical case.

– The proof of the normalization theorem for this definition.

– The definition of natural deductions in ∗-normal form.

– The construction of two direct correspondences

Gn −→ N∗

N∗ −→ Gn

between normal Gentzen deductions and natural deductions in ∗-normal
form.

I recall that the conditions stated in the definitions of normal deductions for
Gentzen systems and of natural deductions in ∗-normal form are sufficient con-
ditions for the well-definedness of the correspondence from G to N and of the
correspondence from N to G, respectively. I also sketched the proof of the
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“∗-normalization theorem”, i.e. I gave a procedure for transforming a normal
deduction of →Nc into a unique deduction in ∗-normal form.

Further developments of this work will be a deeper investigation of the class
of ∗-normal deductions, the characterization of the classes of natural deductions
and of Gentzen deductions for which the composition of these two maps is the
identity map, and the discussion about similar questions for some other proof
systems such as the one described by Cellucci in [1] and the one-sided Gentzen
systems GS (see [8], 3.5.2).
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