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1 Introduction 

In this thesis we extend the semantics of Game Logic and introduce some axioms to allow the description 

of parallel games. Game Logic, introduced by Parikh (1985), is an extension of Propositional Dynamic 

Logic. Game Logic is used to study the general structure of arbitrary determined two-player games. The 

syntax of Game Logic contains the operators of test, choice, sequential composition, duali ty, and iteration. 

In particular, one can find examples of the semantics, syntax and axiomatics of Game Logic in works of 

Parikh (1985) and Pauly (1999). Reasoning about games is similar to reasoning about programs or 

processes behaviour, which is supported by such formalisms as Propositional Dynamic Logic, or Process 

Algebra. However, Game Logic does not accept all operators which are involved, for instance, in Process 

Algebra; in particular, Game Logic does not contain the parallel operators, such as parallel composition, or 

left merge.  Thus, our idea is to introduce parallel operators for Game Logic. To realise this we explore two 

versions of parallelism represented in Process Algebra and Linear Logic.  

Process Algebra was the first system that attracted our attention. It contains alternative and 

sequential compositions in the basic part that closely resemble respectively the operator of choice and 

sequential composition of Game Logic. Besides, general Process Algebra contains several sorts of parallel 

operators which we are looking for. However, it turns out that it is not easy to incorporate these operators 

into Game Logic immediately. There are several difficulties: one of them is that the semantics of Process 

Algebra does not care by which agent the processes execute: this demands a sophisticated technique to 

convert it into the semantics of a two-player game. The other is that the semantics of Process Algebra has a 

poor support of truth-values, that is to say, while one might connect falsum with deadlock, the operator of 

negation or duality has no an analogue. Still, a look at Process Algebra is useful, because the semantics of 

the parallel operators contains some features that do not appear directly in Linear Logic, the next formal 

system which we traced on the matter of parallel operators. Namely, it gives an option to distinguish 

between communicative and non-communicative parallel operators, and among different ways of parallel 

execution. 

Additive Linear Logic resembles a Game Logic without the operators of test, sequential composition 

and iteration. In that sense it looks more removed from Game Logic than Basic Process Algebra. 

Multiplicative Linear Logic brings us a couple of parallel operators: tensor and par, and some operators of 

repetition: ‘of course’ and ‘why not’ . Taking into account that Blass (1992) and Abramsky, Jagadeesan 

(1994) introduced a two-player game semantics for Linear Logic, our problem of translating this semantics 

to Game Logic becomes more evident. However, even in that case there is a difficulty, which appears due 

to the fact that the semantics of Game Logic uses a description in terms of ϕΙ -strategies, whereas the 

semantics of Linear Logic refers to winning strategies. They could be connected with each other in such a 

manner that a ϕΙ -strategy can be considered as a winning strategy as well as a loosing strategy, of one 

player, of the other player or even of both of them. So the use of ϕΙ -strategies gives rise to a more complex 
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structure in game semantics: nevertheless, we introduce an extension of the semantics of Game Logic by 

using analogues of the parallel operators of Linear Logic.  

We explore the extension of Game Logic with parallel operators in the thesis in four chapters, 

besides the introduction (Chapter 1).  In Chapter 2 we consider the models and the definitions of key 

operators of Process Algebra, emphasising the parallel one. Chapter 3 we devote to the semantics of game 

operators for Linear Logic based on the works of Blass (1992) and Abramsky, Jagadeesan (1994). In 

Chapter 4, the main part of the thesis, we introduce the semantics for parallel operators of Game Logic 

based on the analogues of tensor and par of Linear Logic. We also describe standard Game Logic operators 

in terms of the proposed semantics. Moreover, we propose some axioms for the parallel operators and offer 

proofs of soundness. In Chapter 5 the discussion and conclusion can be found. 
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2 Parallel processes in Process Algebra 

The search for new prospects in semantics, syntax, and axiomatics for the operators of Game Logic we start 

by considering the operators of Process Algebra, which contains parallel ones.  

2.1  Introduction 

Programming used to make a division between data and code. Since Basic Process Algebra claims to 

describe the process behaviour, we can note that Basic Process Algebra covers only code and no data 

structure. The models for processes can be represented as by means of graphs as well as algebraically. 

Sometimes it is easier to capture the idea of a process through a graph (if the graph is not too large), while 

an algebraic representation is usually used for manipulations of the processes. 

In this chapter we present some basic concepts of Process Algebra. First, in section 2.2 we give 

definitions of models and axioms of Basic Process Algebra. Then, in sections 2.3 and 2.4 we write 

definitions for parallel operators of Process Algebra without and with communication respectively. 

2.2  Elements of Basic Process Algebra 

Kernel of Basic Process Algebra describes finite, concrete, sequential non-deterministic processes. It could 

be extended by deadlock or recursion but we will not do it because such formalisms lead away from the 

basic concepts of Game Logic, which we would like to extend by analogy with existing models. 

2.2.1  Syntax of terms 

The elementary notion of the Basic Process Algebra is the notion of an atomic action that represents a 

behaviour, which description does not include operators of Basic Process Algebra, i.e. indivisible (has no 

structure) for the language of Basic Process Algebra. That is a single step such as reading or sending a data, 

renaming, removing etc. Let A is a set of the atomic actions. Atomic action is supposed to be internally 

non-contradictory, i.e. each atomic action v also can be considered as an algorithm, which can execute it, 

and always terminates successfully. It could be expressed either by process graph: 

or by the predicate  v →v �
. Here the atomic action in the node (or on the left side of predicate) we can 

consider as a program code, and the atomic action to the left from the arc (above the arrow) as an execution 

or run of that code. We wil l not involve the processes that do not terminate.

The notion of process term is the next inductive level of the formalism of Basic Process Algebra.  

v 

�
 

v 

Figure 2.1 Process graph for an atomic action 
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Definition 2.1 Process term 

1) An atomic action is a process term.  

2) Alternative composition x + y of process terms, that represents the process, which executes either 

process term x or process term y, is also a process term. 

3) Sequential composition x • y of the process terms, that represents the process, which first executes 

the process term x, and than the process term y, is also a process term. 

Each finite process can be represented by such process terms that are called basic process terms. The set of 

the basic process terms defines Basic Process Algebra. 

2.2.2  Semantics  

Intuition that underlies the definition of basic process terms can allow us to construct process graphs that 

correspond to these notions. By analogy with structural operational semantics (Fokkink, 2000) transition 

rules represented in Table 2.1 can be obtained. Here the variables x, y, x’, y’ are from the set of basic 

process terms, while v – from the set of atomic actions. 

Table 2.1 Transition rules of Basic Process Algebra 

  

v →v �
 

 

x →v  
�

 

x + y →v  
�

 

x →v  x �

x + y →v  x � 

y →v  
�

 

x + y →v  
�

 

y →v  y �

x + y →v  y � 

 x →v  
�

 

x • y →v  y

x →v  x � 

x • y →v  x � • y 

 

 a b 

b 

a 

�
 

b 

Figure 2.2 Process graphs of alternative and sequential compositions 

 a + b 

a 

�
 

b 
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The first transition rule expresses that each atomic action can terminate successfully by executing itself. 

The next four transition rules are for alternative composition and show that it executes either x or y.  The 

last two transition rules correspond to sequential composition and show that in that case first the process x 

has to be terminated successfully; only after that the process y can be started. Note that the execution of y 

is probably to involve another transition rule; the rules for sequential composition do not execute second 

term. It is a good support of the idea that the right distributive law does not satisfy to Basic Process 

Algebra. 

2.2.3  Bisimulation Equivalence 

Basic Process Algebra does not conclude that two processes are equal if they can execute exactly the same 

strings of actions (trace equivalence). As a reason we can look at the example of the graphs in Figure 2.1 

that depict the law of right distribution. If we look at an alternative composition such as an example of 

choice function, then it becomes substantial where to make a decision: before the reading of data or after. 

In spite of trace equivalence, bisimulation equivalence also pays attention to the branching structure of the 

processes. 

Definition 2.2 Bisimulation 

A bisimulation relation 
�

 is a binary relation on the processes such that: 

1. if x 
�

y  and  x →v  x' , then  y →v  y'   with x ' 
�

y' 

read (data) read (data) read (data) 

forward (data) forward (data) delete (data) delete (data) 

Figure 2.3 Graph’s analogy of right distributive law. The two graphs are not bisimilar. 

�
 �

 

Figure 2.4 An example of bisimilar process graphs. 

 a b 

b 

a 

�
 

b 

 a b + a (b + b) 

b 

a 

�
 

b 

b + b 

b b 

a 

�
 

�
 

�
 

�
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2. if x 
�

y  and  y →v  y' , then  x →v  x'   with x ' 
�

y' 

3. if x 
�

y  and  y →v  
�

, then  x →v  
�

 

4. if x 
�

y  and  y →v  
�

 , then  x →v  
�

 

2.2.4  Axioms 

Basic Process Algebra has a modulo bisimulation equivalence sound and complete axiomatisation, written 

down in Table 2.2 (Fokkink, 2000). 

Table 2.2 Axioms for Basic Process Algebra 

A1 x  + y = y  +  x 

A2 ( x + y ) +  z = x  +  ( y +  z ) 

A3 x + x = x 

A4 ( x + y ) • z = x • z + y • z 

A5 ( x • y ) • z = x • ( y • z ) 

2.3  Operators of Process Algebra for parallel processes 

Process algebra involves parallelism that is both non-communicative and communicative. There are several 

operators to express the idea of parallelism that can be treated quite widely. At first sight it is possible to 

find a kind of parallelism even in the alternative composition that is one of the operators of Basic Process 

Algebra and represents an action, which can choose an execution of one of the two process terms. However 

alternative composition can be considered as parallel only in stasis that is before choice when we have two 

“parallel” branches – two potentials. But during execution we will have a trace only via one branch, and all 

“parallelism” disappears. 

2.3.1  Free merge or parallel composition 

A new idea (in comparison with Basic Process Algebra) was used in the free merge operator or parallel 

composition introduced by Milner (1980). Free merge allows us to execute two process terms in parallel.  

Table 2.3 Transition rules of Free Merge 

x →v  
�

 

x || y →v  y 

x →v  x �

x || y →v  x � || y

y →v  
�

 

x || y →v  x

y →v  y �

x || y →v  x || y � 
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The operator gives a freedom to switch between the processes during the execution. In spite of the operator 

of alternative composition, both terms have to be executed. In spite of the operator of sequential 

composition, an execution of the right process can be started before the termination of the left one. 

Semantics of free merge can be expressed by the transition rules represented in Table 2.3. Whereas              

x →v  
�

represents a successful termination of the process term x after the execution of an atomic 

action v, x →v  x’  means a partial successful termination of the process term x with the remaining part 

x’ after the execution of an atomic action v.  The variables x, x’, y, and y’ range over the collection of the 

process terms, while v ranges over the set A of the atomic actions.  

Free merge can be treated as a superposition of two operators of left merge, which we will describe 

at the next subsection. Unfortunately, Process Algebra with free merge has not finite sound and complete 

axiomatisation. This fact was proved by  Moller (1990). 

2.3.2  Left merge 

Left merge can be considered only as a decomposition of free merge. It has not an independent semantics. 

Indeed, if we would take an idea of left merge independently from free merge, then we will provide 

semantics already expressed by operator of sequential composition. Transition rules for left merge are in 

the table 2.4.  

Table 2.4 Transition rules of Left Merge 

x →v  
�

 

x ���  y →v  y 

x →v  x �

x ���  y →v  x � || y

From tables 2.1, 2.3 and 2.4 axioms for the free and left merges follow 

Figure 2.5 Process graphs of free merge (a b) || (b a) 

 (a b) || (b a) 

a b 

 b || (b a)  (a b) || a 

b b 

 b a  b || a 

a a 

 b || a a b 

�
 

b a 

  a  b  

b a 

  a  b  

a 

�
 

b 

�
 

b 

�
 

a 

b 

�
 

a 

a 

a 

�
 

b 

b 
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Table 2.5 Axioms for the Free and Left Merges 

FM1  x || y  = x ���  y  +  y ���  x 

LM1 v ���  y = v  • y 

LM2 ( v • x ) ���  y = v  • ( x || y ) 

LM3 ( x + y ) ���  z = x ���  z + y ���  z 

From the axioms of table 2.5 is clear to see that each term of Process Algebra for parallel processes can be 

rewritten by equivalent Basic Process Algebra’s term.  

2.4  Operators of Process Algebra for communicating processes 

Process Algebra for communicating processes contain extension of free merge for parallel processes. The 

new operator we wil l call merge, or parallel composition. Besides the features of free merge it can execute 

two process terms simultaneously. For that purpose communication function will be introduced in 

subsection 2.4.1 , which governs the executions of communication merge. Process algebra for 

communicating processes is sound and complete (Moller, 1990).  

2.4.1  Communication function 

The notion that can explain the mechanism of interaction in Process Algebra and outline the issue of 

communication merge is communication function. This function is a partial mapping γ : A×A→A, where A 

is the set of the atomic actions. It is easier to understand the meaning of the function by the following 

send/read example. 

Send/read communication As follows from the definition the construction of the communication function is 

possible if there are three atomic actions in the atomic action set, such that we can map two of them on to 

the third one. In order to fulfil that condition in case of the send/read communication it is enough to have a 

send action s(d), a read action r(d), and a communication action c(d) for the data d that corresponds to the 

send and read actions and expresses the process of information exchange. Communication function is γ 

(s(d), r(d)) = c(d). I suppose the function was introduced because we prefer to operate with one process 

during one step of time and to stay at one state after the execution, that is a standard intention, and the 

communication function provides the possibil ity to do it. Indeed, it is impossible to follow several branches 

of a graph (by which the parallel processes can be represented) simultaneously and to stay at several states. 

2.4.2  Communication merge 

Communication merge is introduced by following four transition rules. 
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Table 2.6 Transition rules of Communication Merge 

x →v  
�

          y →w  
�

 

x  | y  → )(  w v, γ  
�

 

x →v  
�

          y →w  y �

x  | y  → )(  w v, γ  y �

x →v  x �           y →w  
�

x  | y  → )(  w v, γ  x �

x →v  x �           y →w  y �

x  | y  → )(  w v, γ  x � || y � 

Communication merge is an extension of communication function. It is clear from the following axioms 

a | b = γ (a, b) , if  γ (a, b)  defined,    CF1 

a | b = δ  otherwise.      CF2 

Here δ is a deadlock; that means that the processes have stopped its execution and can not proceed.  

The other axioms for communication merge are represented below. 

Table 2.7 Axioms for Communication Merge 

CM1 v  |  w = γ ( v, w ) 

CM2 v  |  ( w • y ) = γ ( v, w )  • y 

CM3 ( v • x ) | w = γ ( v, w )  • x 

CM4 ( v • x )  |  ( w • y ) = γ ( v, w )  • ( x || y ) 

CM5 ( x + y )  | z = x  | z  +  y  | z 

CM6 x  | ( y + z ) = x  | y +  x  | z 

2.4.3  Merge 

As we mentioned, merge is an extension of free merge and is expressed through represented parallel 

operators by the following axiom. 

M1  x || y =  x ��� y  +  y ��� x  +   x | y 

Merge obviously can be depicted as on the Figure 2.6. 



 13 

 

2.5  Conclusion 

As is apparent from this chapter, Process Algebra has an interesting realisation of the concept of 

parallelism. Since Basic Process Algebra has analogues for two basic operators of Game Logic, it  could rise 

optimistic prospects in the extension of Game Logic by parallel operators of Process Algebra. However, 

Process Algebra does not contain a notion of dual game, and its encapsulation would look unnatural. 

Besides, the possibil ity of expression of true-false values in Process Algebra looks doubtful. Moreover, it 

seems that Process Algebra does not support an ideology of two-player game. So, the encapsulation of 

parallel operators of Process Algebra in the theory of Game Logic is not obvious. However, we will use 

Process Algebra to discuss some properties which are not represented directly in semantics of tensor and 

par operators of Linear Logic described in the next chapter. It is analogues of tensor and par operators we 

wil l use to extend Game Logic on parallel operators. 

Figure 2.6 Process graphs of merge (a b) || (b a). Here c is a communication o f two atomic 

actions from {a, b}. 

 (a b) || (b a) 

a b 

 b || (b a)  (a b) || a 

b b 

 b a  b || a 

a a 

 b || a a b 

�
 

b a 

  a  b  

b a 

  a  b  

a 

�
 

b 

�
 

b 

�
 

a 

b 

�
 

a 

a 

a 

�
 

b 

b 

c 

 b || a 

b a 

  a  b  

�
 

b 

�
 

a 

c 

�
 

c 

�
 

c 
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c 
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�
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3 Parallel games in L inear Logic 

As explained, Linear Logic can have a game theoretical interpretation. The semantics given by Blass 

(1992) relates to Affine Logic. Affine Logic can be obtained from Linear Logic by adding the structural 

rule of weakening. His semantics was criticised by Abramsky and Jagadeesan (1994), who introduced 

another game semantics sound and full complete with respect to multiplicative fragment of Linear Logic. 

Since we consider the games merged by the multiplicative operators as parallel, the conceptual similarity 

between semantics for additive fragment of Linear Logic and Game Logic allows us to predict the 

possibil ity of extension of Game Logic by means of analogues of multiplicative operators of Linear Logic. 

3.1  Introduction 

In this chapter, the basic features of the games involved by Blass and Abramsky, Jagadeesan are listed in 

section 3.2 . Since we are going to use the properties of multiplicative operators to enrich the language of 

Game Logic, in section 3.3 we fulfil in special manner an interpretation of Linear Logic connectives by 

operations on games. For this purpose we took the basic ideas from Blass and Abramsky, Jagadeesan 

semantics. 

3.2  The game semantics for L inear Logic  

Abramsky and Jagadeesan oppose their semantics to that of Blass because they argue with him about the 

completeness theorem. In any case, we have not need to follow this line because we can not convert a 

semantics of Linear Logic to the semantics of Game Logic without changes. It is enough to look at the 

definition of ϕΙ-strategy (Chapter 4), which is used in Game Logic instead of notion of winning strategy of 

Linear Logic. Thus, we can try to make a quintessence of the two semantics and postpone the restrictions 

on the moment of definition of soundness and completeness inside a model of Game Logic. 

3.2.1  The or igin of Blass’s game semantics for L inear Logic 

The Blass’s (1992) game semantics for Linear Logic arose over reconsideration of Lorenzen’s (1959) game 

semantics for Propositional and First Order (Classical) Logic. Lorenzen’s game semantics includes 

procedural conventions, which bring asymmetry between players. There is a reason to avoid such structural 

difference between axiomatics and semantics: logical connectives have a symmetrical status in the axioms 

and rules of inference, whereas Lorenzen' s game semantics has the asymmetrical conventions. In Table 3.1 

there is a brief description of updates, which Blass (1992) offered to avoid the asymmetry of Lorenzen’s 

procedural conventions. One of the asymmetry eliminates by introduction of undetermined games. 

Definition 3.1 Undetermined games 

We will call a game undetermined if and only if there is no winning strategy for either player. 
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Table 3.1 Blass's elimination of the players’ asymmetr y 

Lorenzen’s procedural 

convention 
Blass’s transformations 

Proponent may only assert an 

atomic formula after Opponent 

has asserted it 

Every atomic game has to be 

undetermined 

Permission or restriction on re-

attack  (re-defence) 

Add extra sort of conjunction 

(disjunction) 

 

The other asymmetry disappears by using the expressive power of the language of Linear Logic. In Linear 

Logic there are two sorts of conjunction and disjunction: additive and multiplicative. In Blass’s game 

semantics additive conjunction (disjunction) does not allow to re-attack (re-defence), whereas 

multiplicatives do allow this. 

3.2.2  Basic notions of Game Semantics 

There are two basic notions in game semantics: game and winning strategy. We give key moments of their 

definitions, which we constructed according to the general view of Blass and Abramsky, Jagadeesan. 

Below we summarise the main properties of the involved games. 

1. 2-players: Proponent (P), and Opponent (O) 

2. Zero-sum (strictly competitive - either P or O wins) 

3. Undetermined atomic games; we can get it by: 

− infinite branches (in Blass (1992) semantics) 

− imperfect information (in Abramsky and Jagadeesan (1994) semantics; they operate with  

history-independent strategies (a current move depends only from the previous one)) 

Definition 3.2 Game 

A game A depicted by game tree drawn in Figure 3.1 is a quadruple (MA , λλλλA , PA , WA ), where  

1) MA  = {αααα0, αααα1, …, αααα7 } - the set of possible moves in game A, where α3, α5, α6, α7 may or may 

not be the last moves of the game in Figure 3.1. A Greek letter at state on the tree is a name of the 

last executed move (α0 is a name for an empty move). 

2) λλλλA : MA  → { P,O} - labelling function distributing the set of possible moves in game A between 

the players. A square or circle at a state of the tree shows who has to move at the next turn. 

3) PA  - the set of valid positions (bold drawn states of the tree in Figure 3.1) of game A. A 

position denotes the finite unique combination of moves. I.e. at each state we can determine the 

admissible moves (stressed by bold arrows). The uniqueness of the combination of moves means 
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that we can not reach a position by the different branches of a tree. That is why the graph has no 

loops.  

4) WA  - the winning branches, by which Proponent can achieve a victory (drawn in dash) 

Definition 3.3 Strategies  

Strategy of a player in game A is a function σσσσ into MA , from the set of all positions where the 

player has to move. The strategy σσσσ is a winning one if all branches of σ are in WA . 

Eventually, a player can have winning branches and no winning strategy. However, if the player has a 

winning strategy then she has winning branches. 

3.2.3  Winning strategies in Blass' s semantics 

Important feature of Blass semantics is an absence of winning strategies for the atomic games. It gives the 

following results (that you can find out from section 3.3 ). 

1) Games without multiplicative connectives and repetitions do not contain winning strategies for 

either player. And hence we can not distinguish such games if we would include an outcome of 

game in game definition 

2) If we add a multiplicative part to games then we can obtain winning strategies 

3) The known winning strategies are only different sorts of copy strategy 

4) When we wil l refer during following discussion that, for instance, in game A ∨∨∨∨ B one of the 

players has a winning strategy in game A, it will mean that A is not an atomic game and contain 

multiplicative connectives together with a copy strategy for that player 

5) Without copy strategy (even if we suppose winning strategies in atomic formula) multiplicative 

operators on games would not distinguished from additive one.  

αααα0 

αααα1 αααα2 

αααα3 

Figure 3.1. A game tree with the set of po ssible moves { αααα0, αααα1, …, αααα7 }. The set o f moves of 

Proponent is pointed out by s quares, of Opponent - by c ircles. The set of valid posit ions 

(admissible moves) stressed by bold, whereas winning b ranch for Propon ent by dash. 

α5 αααα4 

αααα7 αααα6 
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3.3  Game interpretation of the operators of L inear Logic 

Since the goal of the introduction of the game semantics is its adaptation to the Game Logic, we wil l make 

the following definitions on the special manner that could be considered as transitional. 

Definition 3.4 Negation  

¬¬¬¬ A  = ( MA ,λλλλ A , PA , ∞
AP \ WA ) 

Here we change only scheduling and the goals by switching between two-player. 

Winning strategies 

A winning strategy (if it exists) of one of the players in game A becomes the winning strategy of another 

player in dual game ¬¬¬¬ A. 

Definition 3.5 Additive conjunction 

A ∧∧∧∧ B = ( MA ∧∧∧∧ B , λλλλ A ∧∧∧∧ B  , P A ∧∧∧∧ B , W A ∧∧∧∧ B ) 

Where: 

• MA ∧∧∧∧ B = MA  + MB + { 0,1} (if 0 then choose component A, if 1 then choose component B) 

• λλλλ A ∧∧∧∧ B = λλλλ A + λλλλ B + (0, O) + (1, O) , i.e. Opponent choose which game to play 

• P A ∧∧∧∧ B is the union of the sets P A and P B through prefix position such that: 

1) The restriction to moves in MA (respectively MB ) is in PA (respectively PB ) 

2) Opponent has to choose in the prefix position which game to play 

• W A ∧∧∧∧ B is the union of the sets W A and W B through prefix position 

Winning strategies 

Proponent has a winning strategy in compound game if she has winning strategies in both components. 

Opponent has a winning strategy if he has it in one of the components. 

Definition 3.6 Additive disjunction 

A ∨∨∨∨ B = ¬¬¬¬ (¬¬¬¬ A ∧∧∧∧ ¬¬¬¬ B )  

It gives the switching of roles between Opponent and Proponent 

Winning strategies 

Proponent has a winning strategy in compound game if she has winning strategies in one of the 

components. Opponent has a winning strategy if he has it in both components. 

The general significant difference of semantics' description for multiplicative connectives compared 

to the additive one is that we will use multi-states to express a compound game. 

Definition 3.7 Multiplicative conjunction (Tensor) 

Tensor is the game combination A ⊗⊗⊗⊗ B = ( MA ⊗ B , λλλλ A ⊗ B , PA ⊗ B , WA ⊗ B ), where: 
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Figure 3.2. The set of all possible moves in compound g ame with a multiplicative 

connective is the following partial Cartesian product of t he two component games 
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 A ⊗⊗⊗⊗ B 

Figure 3.3 The way by which parameters of the two component games ar e transformed in 

the resulting tensor game 
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• MA ⊗ B  is the partial Cartesian product of two possible moves' sets MA and MB, as is shown in 

Figure 3.2. It is constructed as follows. Take the initial states of the component games (proto-

states) and make from them an initial complex state. Construct the complex states of the next level 

by fixing consecutively each of the proto-state of initial complex state and taking successors of 

another one from the component game. By applying that procedure to each complex state we can 

construct a multiplicative tree of the set of possible moves. 

• λλλλ A ⊗ B labelling function: it is Opponent’s turn to move if and only if it is her turn to move in both 

games, otherwise it is Proponent’s turn to move 

• PA ⊗ B is the set of valid positions (admissible moves) that constructed as follows: 

1) If it is Opponent’s turn to move she can move in any possible direction (during her turn she is 

allowed to move in both components, and hence she can always switch the game) 

2) If it is Proponent’s turn to move he can move only in the component where it is his turn to 

move (note that if he has turn to move in both components, he can switch the games) 

• WA ⊗ B is the set of all winning for Proponent branches that equal to intersection of the winning 

branches of the component games (i.e. Proponent has to win in both components of the resulting 

multiplicative branch). 

Winning strategies 

Proponent has a winning strategy in compound game if he has winning strategies in both components. 

Opponent has a winning strategy if she has it in one of the components. Besides, Opponent can have a 

winning strategy in compound game even if nobody has winning strategies in component games and, at the 

same time, she can apply one of the copy strategies. For instance, a copy strategy can be applied by 

Opponent (she can switch between two games and hence to copy moves from one to another) if we have a 

compound game A ⊗⊗⊗⊗ ¬¬¬¬ A .     Another opportunity of applying a winning strategy for Opponent is a game 

A ⊗⊗⊗⊗ A over nonprincipal ultrafil ter on the set of natural numbers (see, for instance, Blass 1992). 

Definition 3.8 Multiplicative disjunction (Par) 

Par – is the game combination A ⊕⊕⊕⊕ B = ¬¬¬¬ (¬¬¬¬ A ⊗⊗⊗⊗ ¬¬¬¬ B  ) , where (see Figure 3.3): 

• MA ⊕ B  = MA ⊗ B 

• λλλλ A ⊕ B labelling function: Proponent has to move if and only if he has to move in both games, 

otherwise Opponent has to move 

• PA ⊕ B is the set of valid positions (admissible moves) constructed as follows: 

1) If it is Proponent’s turn to move he can move in any possible direction (during his turn he is 

allowed to move in both components, and hence he can always switch the game) 

2) If it is Opponent’s turn to move she can move only in the component where it is her turn to 

move (note that if it is her turn to move in both components, she can switch the games) 
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• WA ⊕ B is the set of all winning for Proponent branches that equal to union of the winning branches 

of the component games (i.e. for Proponent enough to win in one of the components of the 

resulting multiplicative branch). 

Winning strategies 

Proponent and Opponent switch the roles in comparison with the tensor games.  

3.4  Games with several multiplicative operators 

The multiplicative operators yield complex states that were considered in previous section. It can give rise 

to the following questions: 

− how to determine who has to move in such games, 

− in which components the player can switch. 

The first question has quite an evident answer: we have to count from the lowest level of sub-games whose 

turn it is to move according to atomic game schedule and multiplicative connectives. An example of such a 

counting is depicted in Figure 3.4. 

The next question is easier to find out now we have an answer to the first one. A player can make a switch 

to those atomic games where both she/he has a move and in each subformula of main formula that include 

this game she/he also has to move. See Figure 3.5. 

 

 

 

( ) ( )BBAA ¬⊕⊗¬⊕  

O       P         P       O 

O                  O 
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Figure 3.4 Labell ing function for games with several multiplicative operators 

( ) ( )( ) ( )BBAABB ¬⊕⊗¬⊗⊕⊕¬  
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    O                P                   O 

O                 . 

              O 

Figure 3.5 Admissible atomic plays for switcher 

Game: 

λλλλ A , λλλλ ¬¬¬¬ A , λλλλ  B , λλλλ¬¬¬¬ B : 

λλλλ A ⊕ ¬ A , λλλλ B ⊕ ¬ B : 

λλλλ (A ⊕ ¬ A) ⊗ (B ⊕ ¬ B) : 
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4 An extension of Game Logic with Parallel Operators 

Linear Logic has two-player game semantics, and contains multiplicative operators: tensor and par. Game 

Logic arose from Propositional Dynamic Logic and was introduced by Parikh (1985) as a language to 

explore games. 

The language of Game Logic has two constituents, formulas (propositions) and games. A set of 

atomic games Π 0 and a set of atomic formulas Φ  0 are at the basis over which we can define games π and 

formulas ϕ (Pauly, 1999): 

π := g | ϕ ? | π ; π | π ∪ π | π* | πd  

ϕ := ⊥ |  p  | ¬ϕ | ϕ ∨ ϕ | 〈π〉 ϕ 

where  p∈Φ 0 and g ∈Π 0. Also the following equations are valid 

�
:= ¬⊥ , 

[π]ϕ := ¬〈π〉 ¬ϕ , 

ϕ ∧ ψ := ¬(¬ϕ ∨ ¬ψ), 

ϕ → ψ := ¬ϕ ∨ ψ. 

In the chapter we introduce semantics, syntax and axiomatics of parallel operators for Game Logic, basing 

on definitions for multiplicative operators of Linear Logic. 

4.1  Preliminar ies 

This section contains general mathematical definitions, which will be used in this chapter.  

Multiset is a set-like object in which order is ignored, but multiplicity is explicitly significant. 

Therefore, multisets  { 1, 2, 3} and { 3, 1, 2} are equivalent, but { 1, 2, 3} and {1, 1, 2, 3} differ. Given a set 

S, the power set of S is the set of all subsets of S. The order of a power set of a set of order n is 2n. The 

power set of S can be denoted as 2S or P(S). 

List is a data structure consisting of an ordered set of elements, each of which may be a number, 

another list, etc. A list is usually denoted (a1, a2, ..., an) or 〈a1, a2, ..., an〉, and may also be interpreted as a 

vector. Multiplicity matters in a list, so (1, 1, 2) and (1, 2) are not equivalent. Proper List is a prefix of list, 

which is not the entire list. For example, consider a list 〈1, 2, 3, 4〉. Then 〈1, 2, 3〉 and 〈1〉 are proper subsets, 

while 〈1, 2, 3, 4〉and 〈1, 2, 5〉 are not. If p and q are the lists, then q < p will denote that q is a proper list of 

p. The notation q �  p is conventionally used to denote that q = p, or q < p. A list x of the set of lists S is a 

maximal list of the set of lists if and only if it is not a proper list of any list from the set. 

A tree is a mathematical structure, which can be viewed as either a graph or as a data structure. The 

two views are equivalent, since a tree data structure contains not only a set of elements, but also 

connections between elements, making up a tree graph. A tree graph is a set of straight-line segments 

connected at their ends containing no closed loops (cycles). In other words, it is a simple, undirected, 

connected, acyclic graph. A tree with n nodes has n - 1 edges. Conversely, a connected graph with n nodes 
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and n - 1 edges is a tree. Maximal Sub-Tree for given node of tree is a sub-tree that contains all sub-

branches, starting from the given node of the initial tree. 

4.2  Game model and game structures 

In this section we define a game structure. It is a formal general definition of game. The definition is 

adapted to application with the parallel operators. For this purpose we involved specified mask function. 

Besides, we discuss the differences between winning strategy and ϕΙ-strategy, which is an extension of 

winning strategy for a game model of Game Logic. At the end of the section we define the game model for 

Game Logic with Parallel Operators. 

4.2.1  Game structure 

We consider the games between Proponent (P) and Opponent (O), and define a game tree as a following 

game structure. 

Definition 4.1 Game structure 

A game structure G is defined by the tuple ( � , � , χ, λ, R,µP, µO ), where 

1) �  = { s0, s1, …, sn } is a finite set of states 

2) �  = { m0, m1, …, mk} is a finite set of all possible atomic moves 

3) R = { q0, q1, …, qh}  is a set of admissible sequences of moves (histories, or branches) ;  

a sequence of moves is a list 

If q ∈ R and p �  q then p ∈ R 

4) χ: R  → �  is a trace function defining a state that we can achieve by fixed history 

5) λ: �   → { P, O, E} is a scheduling function, which determines for each state who has to move at 

the next turn; for all final states f, which have no successors: λ( f )= E  

6) µP: �   → { � , � } is a specified mask function for Proponent 

7) µO: �   → { � , � } is a specified mask function for Opponent 

A part of a sequence of moves we will call a segment if only one player has moves inside this part. 

We may define an atomic game. In spite of atomic statements used in Logic and atomic moves in 

Game Theory, atomic games have an internal structure, which nevertheless is simplest among the other 

types of games. The structure has an influence on the winning strategies of the players. An atomic game is 

considered to contain only such game structures for which specified mask function of Proponent coincides 

with that of Opponent. The statement is true also for game structures of all non-parallel games. The reason 

for this we explain in the third clause of remark to the Definition 4.14 for tensor game. 

 



 23 

Example of a game tree. 

In Figure 4.1 we depict a general example of game tree. Game structure in this case has the following 

content. 

1) �  = { s0, s1, s2, s3, s4}  

2) �  = { m0, m1, m2}  

3) R  = { 〈 〉, 〈m0〉, 〈m1〉, 〈m0, m2〉, 〈m1, m0〉, 〈m1, m1〉}  

4) χ(〈 〉) = s0; χ(〈m0〉) = s2; χ(〈m1〉) = s1; χ(〈m0, m2〉) = s3; χ(〈m1, m0〉) = s3; 

χ(〈m1, m1〉) = s4 

5) λ (s0 ) = P; λ (s1 ) = O; λ (s2 ) = O; λ (s3 ) = E; λ (s4 ) = E 

6) µP(s3) = � ; µP(s0) = � ; µP(s1) = � ; µP(s2) = � ; µP(s4) = �  

7) µO(s4) = � ; µO(s0) = � ; µO(s1) = � ; µO(s2) = � ; µO(s3) = �  

Game structure can be applied to the different types of game. Later on we will present axioms for given 

semantics, but the axioms are not valid for all types of game. Below we express necessary types through the 

given game structure. 

Besides, during further discussion, we wil l call a taken sequence of moves x, such that ∃p: (px∈Rπ) 

∧ (χπ(p)=s) ∧ (λπ(χπ(x))=E), a play of game π from given state s. 

Definition 4.2 ϕϕϕϕΙΙΙΙ -zero-sum game 

A game π is a ϕΙ -zero-sum from given state s = χπ(p) if and only if 

∀ q ∈ Rπ ( ((p ≤ q) ∧ (λ(q) = E)) →  

(∃r ∈ Rπ ((p ≤ r) ∧ (r ≤ q) ∧ ((µP
π(χπ(r)) = � ) ∨ (µO

π(χπ( r )) = � )))))

Remark. Why ϕϕϕϕΙΙΙΙ -zero-sum 

We call such type of games ϕΙ -zero-sum because it seems to use an ideology of zero sum game 

taken from the games which use a terminology of winning strategies and applied to the games with 

language of ϕΙ-strategy (see Definition 4.7 below). The idea is that two-player can not loose or 

m0 

s0 

s1 

s3 

s2 
m1 

m2 

Figure 4.1 A game tree.  The set of states is represented by circles (with Oppo nent turn to 

move), squares (with Proponent turn to move), and p oints (nobo dy has to move). Arrows 

represent the set of moves. Bold arrows s how Proponent’s ϕϕϕϕΙΙΙΙ-strategy.  

m0 

s4 s3 

m1 

µP µP µO 



 24 

win simultaneously, but may have a draw. In our case, we consider reaching a state where ϕ is 

valid for either player (or in other words, that function µ is determined for both players) as a draw 

that is quite naturals. Therefore we follow the idea of zero-sum games. 

Definition 4.3 Determined and undetermined games 

A game π is determined from given state s if and only if it is possible, starting from that state, to 

present a ϕΙ-strategy (see Definition 4.7 below) for one player or a ψΙ-strategy for the other 

(ψ=¬ϕ). Otherwise the game is undetermined from given state s.  

4.2.2  Winning branch and winning strategy 

The notion of winning strategy plays key role in the semantics of game theory. For given game structure γ 

it is possible to determine a set of winning states or a set of winning sequences of moves for each player: 

Wγ
P, Wγ

O. Player can achieve a winning position (state) of a game under the influence of different reasons. 

If it happens because her/his competitor made a mistake during the game, then we can say that the winner 

has a winning branch, which he followed at the game. If the player can achieve a winning position 

irrespective of mistakes of the competitor then we can say that the player has a winning strategy. 

Game structure, defined in subsection 4.2 , allows us to play games not only from the initial state; 

for instance, in chess we have an opportunity to decide endgame problems. It can be useful, because even if 

we could not find a winning strategy for either player in full chess game, we can find a winning strategy in 

most of chess endgames. Therefore, below we give precise definitions of the ‘strategic’ notions, which can 

be considered from the given state of a game. 

Definition 4.4 Winning branch for the given state s 

Player N∈{ O, P} has a winning branch in the game γ starting from state s if and only if there is a 

sequences of moves p in game γ such that s = χ (p) and there is x such that 〈 px 〉 ∈ Wγ
N. 

Definition 4.5 Winning strategy for the given state s 

Player N∈{ O, P} has a winning strategy in game γ starting from state s if and only if 

∃ p ∈ R (χ(p)=s ∧ ∃T = { x: 〈px〉 ∈ Rγ   ∧  ∀ y < x (λ(χ(〈py〉)) = N   →   (∃m1, m2 ∈ � γ ∀ z1, z2 

(〈ym1z1〉 ∈ R ∨ 〈ym2z2〉 ∈ R) → x = (〈ym1z1〉 ∨ 〈ym2z2〉)))} ∀x ((x∈T ∧ λ(χ(〈x)) = E) →             

〈px〉 ∈ Wγ
N)) 

The subtree T is a winning strategy for the given state. 

If a game has a winning strategy for given state s, Definition 4.6 gives description of it in terms of subtree 

that corresponds to the winning strategy. The definition also shows whether the winning strategy exists. 

The subtree of winning strategy can be obtained from the tree that corresponds to the game starting from 

state s by eliminating some (but not all for each node) of its subtrees that start with moves of player N. All 

of the remaining outcomes of the constructed subtree have to be in the striving for N states. 
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Consider apart the formula given in Definition 4.6. We begin a game from state s =χ(p) that has to 

be reached by admissible sequence of move p. We are looking for the tree T that starts from state s and 

copies all admissible sequences of moves of subtree 〈px〉 ∈ Rγ except in those which are the alternatives for 

the player N moves λ(χ(〈py〉)) = N → (∃m1, m2 ∈ � γ ∀ z1, z2 (〈ym1z1〉 ∈ R ∨ 〈ym2z2〉 ∈ R) → x = (〈ym1z1〉 

∨ 〈ym2z2〉)). Besides, all maximal sequences of moves of the tree has to be in winning set of player N: ∀x 

((x∈T ∧ λ(χ(〈x)) = E) → 〈px〉 ∈ Wγ
N)). 

4.2.3  ϕϕϕϕΙΙΙΙ-strategy 

For application in game models we have to extend the notion of winning strategy to the notion of ϕΙ-

strategy. But first we determine the notion of X-strategy. 

Definition 4.6 X- strategy for the given state s 

Player N∈{ O, P} has an X-strategy in game γ starting from the state s if and only if it is possible 

to construct a winning strategy for the player from the state s, which all outcome states would 

belong to X, where X is a set of states. 

Definition 4.7 ϕϕϕϕI- strategy for the given state s 

Player N∈{ O, P} has an ϕΙ-strategy in game γ starting from the state s for model I if and only if 

she/he has an X-strategy, and for all states s∈X and all their successor states (if their exists):          

I, s � ϕ. 

Notion of ϕΙ-strategy plays key role in definition of game model and hence in validity of axioms. Therefore, 

consider how ϕΙ-strategy can occur at the games.  

Each player can have in a game π ϕΙ-strategy, or ψΙ-strategy (where ψ=¬ϕ), or both of them, or 

nothing. 

Definition 4.8 Strategy couple 

Determine a strategy couple as (X, Y) π

0
s , where X is a set of strategies which has Proponent in 

game π, starting from the state s0 (namely ϕΙ-strategy, or ψΙ-strategy (where ψ=¬ϕ), or both of them, 

or nothing), and Y – for Opponent. 

However, not all of the combinations are represented in given types of games. Thus we have to examine all 

possible cases. 
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Definition 4.9 Shadow of strategy couple 

We wil l call a Boolean quadruple shadow of strategy couple if it is the following projection of the 

strategy couple: 
�

first element of tuple is true if Proponent has a ϕΙ-strategy; otherwise it false, 
�

second element is true if Proponent has a ψΙ-strategy; otherwise it false, 
�

third element is true if  Opponent has a ϕΙ-strategy; otherwise it false, 
�

fourth element is true if Opponent has a ψΙ-strategy; otherwise it false. 

First, consider the cases when a game starts from the last node. We assume that in each state of the 

game either function ϕ is valid or its negation, but not both of them. We supposed that ψ=¬ϕ; then we have 

to check only the combinations of states where the functions are valid and of the players moves as it is 

depicted in Figure 4.2.  In game α Proponent has ϕΙ-strategy { 〈m0〉} ϕ, and ψΙ-strategy { 〈m1〉} ψ, whereas 

Opponent has none (the shadow of strategy couple for this game is ( � , � , � , � )). In game β the picture is 

opposite (the shadow of strategy couple for this game is ( � , � , � , � )). Games γ and δ (as ε and ι) are 

equal in this sense. In γ Proponent has ϕΙ-strategy { 〈m0〉, 〈m1〉} ϕ and Opponent has the same (the shadow of 

strategy couple for this game is ( � , � , � , � )). In ε Proponent has ψΙ-strategy { 〈m0〉, 〈m1〉} ψ and Opponent 

has the same (the shadow of strategy couple for this game is ( � , � , � , � )). 
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Next, examine the general case. Consider the nodes, which lead to the games with shadows of 

strategy couples as we had in Figure 4.2. Let us check whether any combination of such games gives a new 

shadow of strategy couple.  In Figure 4.3 we draw up a sufficient amount of graphs to see that any 

combination of games does not give a new shadow of strategy couple∗. For instance in game π1 Proponent 

has a ϕΙ-strategy { 〈m0〉Xϕα, 〈m1〉Xϕα} ϕ and ψΙ-strategy { 〈m0〉Xψα, 〈m1〉Xψα} ψ whereas Opponent has none; 

hence, the shadow of strategy couple for this game is ( � , � , � , � ) which is equal to the shadow of strategy 

couple for game α. It is easy to see that we can not obtain a new shadow of strategy couple without special 

assumptions. Now we can make the following claim.  

Claim 4.1 Shadow of strategy couple for determined games 

The shadows of strategy couple for finite determined games have the following values: 

1) ( � , � , � , � ) 

2) ( � , � , � , � ) 

3) ( � , � , � , � ) 

4) ( � , � , � , � ) 

Obviously we can not have a shadow like ( � , � , � , � ) or ( � , � , � , � ) anytime, because it is impossible 

that Opponent would have a ψΙ-strategy whereas Proponent has a ϕΙ-strategy. Indeed, the fact that one 

player has a strategy to achieve a goal entails that the other player can not achieve an opposite goal. 

However, the four represented cases are not enough to express the features of parallel operators 

(section 4.3.2 ) that we will discuss in subsection Claim 4.2. The reason is a copy strategy that players do 

not need if they have any other strategy in the playing game. Thus, to have a reason to apply a copy 

strategy we have to find a way of appearance of shadow in form ( � , � , � , � ). 

Such a shadow can appear in infinite games, like it is shown in Figure 4.4 game α, and in games 

with imperfect information shown in game β. In such games we can also obtain a shadow for which only 

one element is true. In case of α, if we assume that s2 is final state and ϕ is valid in the state then we obtain 

the shadow of strategy couple ( � , � , � , � ). In case of β, if we predetermine that in state s4 ϕ is valid then 

we obtain the shadow of strategy couple ( � , � , � , � ). 

 

 

 

                                                             
∗ Only for the Figure 4.3, dots in the graphs are not the final states, but correspond to the starting states of 

the games pointed out in the leaves. 
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Claim 4.2 Shadow of strategy couple for undetermined games 

The shadows of strategy couple for undetermined games can be equal to one of those of determined 

games or one of the following: 

1) ( � , � , � , � ) 

2) ( � , � , � , � ) 

3) ( � , � , � , � ) 

4) ( � , � , � , � ) 

4.2.4  The role of copy strategy in model distinction of operators 

In this subsection all discussion wil l concern ϕΙ -zero-sum games for parallel operator, which are played 

from the given state. It does not mean that the games, which constitute a parallel game, have to be ϕΙ -zero-

sum. That would be confirmed by the Figure 4.6 if you will predetermine function µP or µO for state s2 of 

game β. 

First of all consider the influence of the assumption that the game structure is determined on the 

semantics of parallel operators. If a game is determined then for a given game we can say in advance 

whether a player has a ϕΙ -strategy for this game or not. This means that we do not need to appeal to the 

peculiarity of parallel operators that lies in switching between the games to find a ϕΙ -strategy. If a player 

knows in which game she/he has a ϕΙ -strategy, she/he can choose the game immediately. Furthermore, it 
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m1 

Figure 4.4 The cases when the shadow of strategy couple is equal to ( �� �� , �� �� , �� �� , �� �� ). 
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wil l mean that we lose all semantic distinctions in game model between operators of choice � , �  and the 

parallel operators ⊗, ⊕ respectively. The opportunity to leave one of the two component games of a parallel 

operator without playing gives rise to the equivalence. 

If we suppose that the involved games are undetermined then the search of ϕΙ -strategy for choice 

operators reminds us of a Russian Roulette: when pulling the trigger you do not know what you will get 

either a bullet or a Muscovite maiden. On the contrary, switching function of parallel operators gives a 

chance to impress the Muscovite maiden without being shot through brains. The chance is based on the 

external, towards the atomic game structure, procedures of constructing ϕΙ -strategy. We wil l call such ϕΙ -

strategies structural. The well-known copy strategy is one of them. Obviously, if Opponent will play 

α⊗¬α when the components of tensor are undetermined games, and if she/he copies moves of one game to 

another then it gives a ϕΙ -strategy, and it is a copy strategy. 

Consequently, we found that the structural ϕΙ -strategies contain peculiarity of parallel operator 

towards the operators of choice. However, the appearance of structural ϕΙ -strategies for semantics of the 

parallel games causes delicacy in definition of the axiomatics. Semantics of game model is supported by 

the notion of an existence of ϕΙ -strategy for the game. Structural ϕΙ -strategies are components of ϕΙ -

strategy; hence they provide an indirect influence on the game model. On the other hand, the structural ϕΙ -

strategies are not completely determined. Nobody can protect against inventions of new structural ϕΙ -

strategies inside the determined structures of parallel games. In this way, even if we will find a sound and 

complete axiomatics for the given structural ϕΙ -strategies, the invention of a new one can not guarantee that 

we will save the completeness of axiomatics.  

4.2.5  Game model 

In the basis we put the game semantics introduced by Pauly (1999) for Game Logic without parallelism. 

Given a game model I = (S,{ G(a, s) | a∈Π 0 and s∈S} , V ) , where S is a set of states, G(a, s) are game 

structures (determined dynamic games) on S, V : Φ 0 → �  (S) is the valuation function, define truth in a 

game model: 

I , s �  p  iff p ∈ Π 0  and  s ∈ V ( p ) 

I , s � ¬ϕ iff I , s � ϕ 

I , s � ϕ ∨ ψ iff I , s � ϕ   or   I , s �  ψ 

I , s ��� π� ϕ iff Opponent has a ϕΙ - strategy in game G(π, s) 

I , s � 〈π〉ϕ iff Proponent has a ϕΙ - strategy in game G(π, s) 

where ϕΙ := {s∈S | I , s � ϕ}. 

Game structure defined above can be included in the definition of game model as follows. In our 

notation G(π, s) is a game π that is played from the given state s, and which is determined by correspondent 
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game structure. States of the model are equal to the states of game π. We can establish the strict connection 

between valuation function V : Φ 0 → �  (S) and specified mask functions for Proponent µP: �   → { � , � } 

and another one for Opponent (depending on whose ϕΙ -strategy we would like to explore). For instance, 

suppose that player N has a winning strategy in game G(π, s). If we will choose a valuation function V : ϕ 

→ �  (S) such that it is determined for at least all states that are outcome states of the winning strategy then 

the player N will have a ϕΙ -strategy in the game. Consequently, the valuation function can be connected 

with outcome states of the winning strategy. The states, in turn, depend on the specified mask functions. 

4.3  Game operators for game structure 

4.3.1  Non-parallel operators 

Below we define some basic operators of Game Logic in terms of game structure determined in previous 

section. 

Definition 4.10 Dual game 

Dual game γ = πd is a game structure, which can be obtained from the structure of game π after the 

switching of functions λ and µ between the players as follows: 

∀s∈� : (λπ(s) = P ↔ λγ(s) = O) ∧ 

  (λπ(s) = O ↔ λγ(s) = P) ∧ 

  (λπ(s) = E ↔λγ(s) = E) ∧ 

  (µP
π (s) ↔ µO

γ (s)) ∧ 

  (µO
π (s) ↔ µP

γ (s))  

Remark. Effect of 〈〈〈〈ππππ〉〉〉〉 ↔↔↔↔ [[[[ππππd]]]] on the expression of winning, ϕϕϕϕΙΙΙΙ -strategies. 

There is a fundamental game theoretic idea that if a player can succeed in a game, then her/his 

competitor can succeed in the dual game. Let us look at the effect of this idea on the expression of 

winning and ϕΙ -strategies, and game structure for non-parallel games. 

1) If we talk in terms of a winning strategy, then in dual game objects of interests of Proponent 

and Opponent remain the same, namely their own win. Meanwhile the states, which 

correspond to these wins, are changed (the players are interchanging by the sets of their 

winning branches). 
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2) If we talk in terms of a ϕΙ -strategy, the object of interest of Proponent in a game becomes the 

object of interest of Opponent in a dual one (and vice versa). This means they are interested in 

achieving a state where ϕ is valid (or not valid). Simultaneously, the states where ϕ is valid is 

not changed. 

From this it is easy to see that in both cases we have the same result, and it is the reason why we 

have a slightly different description of elements relating to winning and ϕΙ -strategies in game 

structure. In Figure 4.5 we depicted the situation of discussed changes in dual game. As you can 

see, ϕΙ -strategies may change from correspondence with winning strategy of a player to her/his 

loosing strategy even inside one model. 

Definition 4.11 Test game∗∗∗∗ 

Test game γ = ϕ? is a game structure, which satisfies to the following properties. 

1) � γ = {s0} 

2) � γ = {〈〉} 

3) Rγ = {〈〉}  

4) χγ(〈〉) = s0 

5) λγ(s0) = E 

6) µP
γ(s0) = �  

7) µO
γ(s0) = �  ↔ I, s0 � ϕ 

Definition 4.12 Union game 

Union game γ = α � β is a game structure, which satisfies to the following properties. 

1) � γ = � α ��� β �  s �  

                                                             
∗ It will not be used in what follows 

Figure 4.5 Changes in game structure for dual game. 
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2) � γ = � α � � β � 0 � 1 

3) Rγ = 〈〉 � 〈0〉Rα � 〈1〉Rβ  

4) ∀p∈ Rα: χγ(〈0〉p) = χα(p) ∧ 

∀p∈ Rβ: χγ(〈1〉p) = χβ(p) ∧ 

χγ(〈〉) = s �  

5) ∀s∈� α: λγ(s) = λα(s) ∧ 

∀s∈� β: λγ(s) = λβ(s) ∧ 

λγ(s � ) = P 

6) ∀s∈� α: µP
γ(s) = µP

α(s) ∧ 

∀s∈� β: µP
γ(s) = µP

β(s) 

7) ∀s∈� α: µO
γ(s) = µO

α(s) ∧ 

∀s∈� β: µO
γ(s) = µO

β(s) 

Definition 4.13 Composition game 

Composition game γ = α;β is a game structure, which satisfies to the following properties. 

1) � γ = � α � � β (the states of β has to be renamed for each new start from α) 

2) � γ = � α � � β (the moves of β has to be renamed for each new start from α) 

3) Rγ = Rα � R ∗α = {p∈ Rα: (λα(χα(p)) = E) ∧ (µP
α(χα(p)) = � ) ∧ (µO

α(χα(p)) = � )}Rβ  

4) ∀p∈ Rα - R ∗α
: χγ(p) = χα(p) ∧ 

∀p∈ R ∗α Rβ: ((Rβ ≠ ∅) → (χγ(p) = χβ(p|
βR
))) ∧ 

((Rβ = ∅) → (χγ(p) = χα(p))) 

5) ∀s∈� α: λγ(s) = λα(s) ∧ 

∀s∈� β: λγ(s) = λβ(s)  

6) ∀s∈� α: µP
γ(s) = µP

α(s) ∧ 

∀s∈� β: µP
γ(s) = µP

β(s) 

7) ∀s∈� α: µO
γ(s) = µO

α(s) ∧ 

∀s∈� β: µO
γ(s) = µO

β(s) 

4.3.2  Parallel operators 

In this section we suppose to extend the existing language of Game Logic to parallel operators. We will 

introduce an analogue of multiplicative operators from Linear Logic, which were described in part 3. We 

have called new operators parallel; one of them is tensor, the other is par.  
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Analogue of Tensor game 

Tensor game is a type of parallel game, in which the component games can be played alternatively and the 

switching between the games is governed by Opponent. 

Definition 4.14 Tensor game 

Tensor game γ = α⊗β is a game structure, which satisfies the following properties. 

1) � γ = { s = (sα , sβ): sα ∈ � α , sβ ∈ � β} is a set of the multiple∗ states; multiple state is a multiset; 

If � α and � β contain equal states, they have to be renamed. 

2) � γ = � α �  � β; if α and β have equal names for some moves, then the moves have to be renamed 

(even if α = β); we need it to know to what game each instantiation belongs to. 

3) Rγ = { q: q |
α

� ∈ Rα    ∧   q |
β

� ∈ Rβ    ∧   ∀ px ( (px �  q   ∧   x∈ � γ ) → 

(λγ (χγ ( p
 )) = λπ (χπ( p

 |
π

�  ))   ↔    p |
π

�  ≠ px |
π

� ))  for π∈{ α, β}  

 (it means that the player who has to move at the current state of game γ can make moves only in 

that component α or β where she/he has current right to move; inequality at the right part of ‘↔’ 

means that the move x is in component π, equali ty at the left part of ‘↔’ means that the player 

who has to move next from the state χγ ( p
 ) of game γ can make a move in component π) 

(qi |
β

� denote projection qi that retains only moves  m ∈ � β);  

note that in spite of multiple states, we do not propose multiple moves  

4) χγ: Rγ → � γ ; 

∀ q ∈ Rγ , sα ∈ � α , sβ ∈ � β: if χα( q
 |

α
� ) = sα and χβ( q

 |
β

� ) = sβ then χγ ( q
 ) = (sα , sβ ) 

5) λγ: � γ   → { P, O} ; 

∀ sα∈ � α , sβ ∈ � β: 

λγ (sα , sβ ) = O ↔ (λα (sα ) = O ∧ λβ (sβ ) = O) ∨ 

  (λα (sα ) = E ∧ λβ (sβ ) = O) ∨ 

  (λα (sα ) = O ∧ λβ (sβ ) = E) 

λγ (sα , sβ ) = P ↔ (λα (sα ) = P ∨  λβ (sβ ) = P) 

λγ (sα , sβ ) = E ↔ (λα (sα ) = E ∧ λβ (sβ ) = E) 

6) µP
γ: � γ   → { � , � } ; 

∀ sα∈ � α , sβ ∈ � β: 

µP
γ (sα , sβ ) = µP

α (sα ) ∧ µP
β (sβ ) 

                                                             
∗ We use the multiple states to save information about the active positions of all i nvolved but abandoned 

games. The positions unambiguously allow returning to the abandoned games. 
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7) µO
γ: � γ   → { � , � } ; 

∀ sα∈ � α , sβ ∈ � β: 

µO
γ (sα , sβ ) = µO

α (sα ) ∨ µO
β (sβ ) 

Remark. Some properties of scheduling and specified mask functions for parallel 

operators. 

1) Scheduling function λ for parallel operators plays the role of switcher. That is, it determines 

where the players have to move. For instance, it specifies, in case of tensor, that if Proponent 

has to move in one of the component games, then she/he has to move in tensor game. 

According to this requirement Proponent can have an option to move in both components only 

at the initial segment of tensor game. At this moment she/he actually may choose which game 

to play, because only the scheduling function controls the switching between games. At the 

other moments of tensor game, when both players can move in component games according 

to the scheduling function, Proponent has to move in the tensor game. However, in such 

moments Proponent can play only in one of the components, and hence she/he wil l not have a 

choice where to play. After her/his playing, when the turns in both components will belong to 

Figure 4.6 Distribution of specified mask function for paralle l games. 
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Opponent, it is Opponent’s turn to move in tensor game. In that situation Opponent wil l have 

the option to choose between two games, because in both of them it is her/his turn to move. 

Evidently the situation in which it is Proponent’s turn to move in both components will never 

happen again. 

It seems paradoxical that Opponent has more freedom for choice with scheduling function 

determined by conjunction (in tensor game) than Proponent with scheduling function 

determined by disjunction, because conjunction supposedly gives bigger restriction than 

disjunction! 

2) When the component games of a parallel operator have a complex internal structure 

(including combinations of parallel operators), scheduling function λ also specifies where a 

player has to move. Thus, if the player can move in given component game and the 

component game has its own internal structure with parallel operators, then the player has to 

choose the main parallel operator of the component game and to apply the reasoning for the 

scheduling function to the level of that operator. If the player can not move in the component 
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game, then she/he can not move in any element of internal structure of that component even if 

she/he has turn to move there. 

3) For atomic games specified mask function µ has to coincide for both players, otherwise it will 

mean that for one player the state validates ϕ whereas for the other this is not the case. 

Meanwhile, we need such an opportunity for the case of parallel operator. It is a reason why 

we determined this function. Parallel operators impose different requirements on the 

achievement of goals for each player. Thus tensor demands that Proponent could win both of 

the component games, whereas for Opponent it is enough to win only one of them. Par 

contains opposite requirements. So, instead of saying that µ corresponds to the states where ϕ 

is valid (it is true only for atomic games), it is more correct to say that µ is valid in the set of 

states which distribution in a game tree gives a task that the player has to complete in the 

considered game. The task of an atomic game for either player is to achieve a state where ϕ is 

valid, and it is a reason why µ coincides with such states. In case of tensor game the task for 

Proponent is to achieve a state where ϕ is valid in both components games, whereas for 

Opponent it is enough to find one such component. Hence domains µO and µP do not coincide 

in this case. In Figure 4.6 we depict an example of the distribution of specif ied mask function 

in different types of game. 

Example of a tensor game tree 

In Figure 4.2 we give an example of tree for tensor game. Game structure in this case has the following 

content (γ = α⊗β). 

1) � γ = { (s0, t0), (s2, t0), (s1, t0), (s0, t2), (s0, t1), (s3, t0), (s2, t2), (s2, t1), (s1, t2), (s1, t1), (s3, t2),      

(s3, t1),} ; when � α = { s0, s1, s2, s3} ; � β = { t0, t1, t2} ; 

2) � γ = { m0, m1, m2, n0, n1}  

3) Rγ = { 〈 〉, 〈m0〉, 〈m1〉, 〈m0, m2〉, 〈m0, n0〉, 〈m0, n1〉, 〈m1, n0〉, 〈m1, n1〉, 〈m0 , n0, m2〉}  

4) χγ(〈 〉) = (s0, t0); χγ (〈m0〉) = (s2, t0); χγ (〈m1〉) = (s1, t0) …  

5) λγ ((s0, t0) ) = P; λγ ((s2, t0) ) = O; λγ ((s1, t0) ) = O; λγ ((s0, t2) ) = P; λγ ((s3, t2) ) = E … 

6) µP
γ (s3, t1) = � ; µP

γ (s3, t2) = �   

7) µO
γ (s1, t0) = � ; µO

γ (s1, t1) = � ; µO
γ (s1, t2) = �  

Analogue of Par game 

Par game is a type of parallel game, in which the component games can be played alternatively and the 

switching between the games is governed by Proponent. 



 38 

Definition 4.15 Par game 

Par game γ = α⊕β is a game structure that is distinguished from the tensor game structure determined 

in definition 4.3 by the description of the following functions: 

1) λγ: � γ   → { P, O} ; 

∀ sα∈ � α , sβ ∈ � β: 

λγ (sα , sβ ) = O ↔ (λα (sα ) = O ∨  λβ (sβ ) = O)  

λγ (sα , sβ ) = P ↔ (λα (sα ) = P  ∧ λβ (sβ ) = P) ∨ 

  (λα (sα ) = E  ∧ λβ (sβ ) = P) ∨ 

  (λα (sα ) = P ∧  λβ (sβ ) = E) 

λγ (sα , sβ ) = E ↔ (λα (sα ) = E ∧ λβ (sβ ) = E) 

2) µP
γ: � γ   → { � , � } ; 

∀ sα∈ � α , sβ ∈ � β: 

µP
γ (sα , sβ ) = µP

α (sα ) ∨ µP
β (sβ ) 

3) µO
γ: � γ   → { � , � } ; 

∀ sα∈ � α , sβ ∈ � β: 

µO
γ (sα , sβ ) = µO

α (sα ) ∧ µO
β (sβ ) 

Further changes in game structure concern function Rγ = Rγ(λγ). 

Lemma 4.1 Stalemate states 

The game structures introduced in this section do not contain stalemate states, in which the game is 

not completed and a player who has to move can not do it because she/he has no admissible moves. 

Proof 

In an atomic game structure we defined the states, which do not contain moves as final. By applying 

parallel operators we do not obtain a stalemate state, because by definition of tensor and par at the final 

states of the game neither player has to move as in atomic game structure. Besides, it is easy to see that we 

can achieve the final states of both component games. Indeed, in parallel games a player has a move if 

she/he has a move in one of the component games, and hence she/he has something to do and deadlock is 

impossible. 

× 

Lemma 4.2 Admissible branches 

The projections of the set of admissible branches of a parallel game on to the moves of component 

games contain all admissible branches of the component games.  
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Proof 

By lemma 4.1 a parallel game does not contain stalemate states, i.e. a deadlock is impossible. 

Because we can finish both components by any branch, all of them have to be encapsulated in the set of 

admissible branches of the parallel game. 

× 

4.3.3  Undeterminacy and lack of information 

In Section 4.2.4 we discussed that the copy strategy has no sense in determined games. Here we introduce 

the axioms for copy strategy, considering lack of information as a reason of undeterminacy. 

Copy strategy axioms: 

(s, s) � [π⊗πd]ϕ    (4.1) 

(s, s) � 〈π⊕πd〉ϕ    (4.2) 

 

Theorem 4.1 Soundness of axioms for finite games with imperfect information 

Axioms (4.1), (4.2) are sound modulo ϕ-strategy (Definition 4.7) with respect to arbitrary 

interpretation of finite games with imperfect information and according to Definition 4.1, Definition 4.10, 

Definition 4.14, and Definition 4.15. For axioms (4.1), (4.2) we demand an extra condition, namely that the 

games π⊗πd and π⊕πd have to be ϕΙ-zero-sum. 

Proof  

 (4.1) (s, s) � [π⊗πd]ϕ 

It is trivial when π⊗πd is ϕΙ-zero-sum games.  It means that by each branch either Proponent or 

Opponent can achieve a state where ϕ is valid and in all successor states (if their exists) ϕ is also 

valid. For Opponent in tensor game it is enough to achieve such a state only in one of the 

components π or πd, and she/he can switch between them. Suppose Opponent wil l play 

alternatively in both components, copying moves from one to another (for that reason π and πd. 

has to be played from the similar state). When the games are finished, Opponent occurs in such a 

multiple state (s1, s2) of game π⊗πd that for state s1: µP
π(s1) = �  whereas for state s2: µO

π(s1) = �  

(or vice versa), because s1 and s2 are equal states of dual ϕΙ-zero-sum games. Hence that is the 

definition of Opponent ϕΙ-strategy. 

 (4.2) Similar to the proof of (4.1) 

× 
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4.4  Axiomatics for parallel operators 

In this section we present some axioms for games α, β, γ, π, and for arbitrary formula ϕ. The axioms for 

three types of games (infinite (two types), and finite determined) follow by proofs of soundness. 

4.4.1  Axioms for infinite games 

 Arbitrary infinite games 

Syntactic axioms: 

� 〈π〉ϕ ↔ [πd]ϕ    (4.3) 

� 〈π〉ϕ ↔ 〈(πd)d〉ϕ   (4.4) 

� 〈π〉ϕ → ¬[π]¬ϕ   (4.5) 

Symmetry and associative axioms for tensor and par: 

� 〈α⊗β〉ϕ ↔ 〈β⊗α〉ϕ   (4.6) � [α⊗β]ϕ ↔ [β⊗α]ϕ   (4.7) 

� 〈α⊕β〉ϕ ↔ 〈β⊕α〉ϕ   (4.8) �
�
α⊕β]ϕ ↔ [β⊕α]ϕ   (4.9) 

� 〈α⊗(β⊗γ)〉ϕ ↔ 〈(α⊗β)⊗γ〉ϕ  (4.10) � [α⊗(β⊗γ)]ϕ ↔ [(α⊗β)⊗γ]ϕ  (4.11) 

m0 

s0 

s1 

s3 

s2 
m1 

m2 

Figure 4.8 Example of copy strategy (stressed by bold arrows) of Opponent in tensor game structure 

ππππ⊗⊗⊗⊗ππππd. Here the states s1 and s2 are in the one information set for both Proponent and Opponent, i.e. 

they can not distinguish the states. 
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� 〈α⊕(β⊕γ)〉ϕ ↔ 〈(α⊕β)⊕γ〉ϕ  (4.12) � [α⊕(β⊕γ)]ϕ ↔ [(α⊕β)⊕γ]ϕ  (4.13) 

Axioms of mutation: 

� 〈(α⊗β)d〉ϕ ↔ 〈αd⊕βd〉ϕ  (4.14) 

� [(α⊕β)d]ϕ ↔ [αd⊗βd]ϕ  (4.15) 

Parallel operators’ reduction axioms: 

� 〈α⊗β〉ϕ → 〈α〉ϕ ∧ 〈β〉ϕ  (4.16)  

� [α⊕β]ϕ → [α]ϕ ∧ 
�
β]ϕ   (4.17) 

Theorem 4.2 Soundness of axioms for arbitrary infinite games 

Axioms (4.3) – (4.17) are sound modulo ϕ-strategy (Definition 4.7) with respect to arbitrary 

interpretation of infinite games and according with Definition 4.1, Definition 4.10, Definition 4.14, and 

Definition 4.15. 

Proof  

(4.3) � 〈π〉ϕ ↔ [πd]ϕ 

→: Assume Proponent has a ϕΙ-strategy U in game π. 

We define a strategy T of dual game πd as T = U. 

If U is a ϕΙ-strategy of Proponent in game π, then T is a ϕΙ-strategy of Opponent in game πd. 

Indeed, dual game contains the same set of admissible branches. In addition, the turns of 

Proponent in game π belong to Opponent in game πd. Also, in the states where specified mask 

function of Proponent is valid in game π, the specified mask function of Opponent is valid in game 

πd. Hence, Opponent will have a ϕΙ-strategy in πd and by construction it is T. 

←: The backward proof is similar. 

(4.4) � 〈π〉ϕ ↔ 〈(πd)d〉ϕ 

It obviously follows from Definition 4.10 of dual game, because π ≡ (πd)d. 

(4.5) � 〈π〉ϕ → ¬[π]¬ϕ 

The states where ϕ is valid, ¬ϕ is not valid (and vice versa). Since Proponent has a ϕΙ-strategy, 

she/he can reach a state where ϕ is valid and for all successor states (if they exists) ϕ is also valid. 

Hence Opponent can not do the same for function ¬ϕ. 

(4.6) � 〈α⊗β〉ϕ ↔ 〈β⊗α〉ϕ 

By definition of tensor game, the game-structures for α⊗β and β⊗α are equal.  

Note that Proponent has a ϕΙ-strategies in tensor games α⊗β and β⊗α if both of the games 

α and β are finite. Indeed, if one of them is infinite, then Opponent can keep playing in that game 
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and hence in the other game Proponent will never reach a state where ϕ is valid (the same for 

successor states). Therefore Proponent will never complete a demand for ϕΙ-strategy in tensor 

game α⊗β for her/him. But it does not confuse equivalence. 

(4.7) � [α⊗β]ϕ ↔ [β⊗α]ϕ 

By definition of tensor game, the game-structures for α⊗β and β⊗α are equal. In case of infinite 

initial segment, Opponent has a ϕΙ-strategy in the tensor games if and only if it her/his turn to 

move in the segment. Otherwise Proponent will keep playing in the segment which can prevent 

Opponent to reach a state where ϕ valid and for all successor states (if their exists) ϕ is also valid. 

But it does not confuse equivalence. 

(4.9), (4.10), (4.13) Similar to the proof of (4.6). 

(4.8), (4.11), (4.12) Similar to the proof of (4.7). 

(4.14) � 〈(α⊗β)d〉ϕ ↔ 〈αd⊕βd〉ϕ 

By definitions of dual, tensor, and par games, the game-structures for (α⊗β)d and αd⊕βd are 

equal. Since the equali ty for the elements of game structures (α⊗β)d and αd⊕βd is not so obvious 

as in case of axiom (4.5), except sets of states and moves, we will show this equality in detail. 

Let π = α⊗β, γ = πd, δ = αd, ε = βd, σ = δ ⊕ ε. 

1) We prove that λγ(sα , sβ) = λσ (sα , sβ ). 

∀ sα∈ � α , sβ ∈ � β: 

Show that λγ (sα , sβ) = P ↔ λσ (sα , sβ ) = P: 

λγ (sα , sβ) = P ↔ 

λπ(sα , sβ) = O ↔ 

(λα (sα ) = O ∧ λβ (sβ) = O) ∨ (λα (sα ) = E ∧ λβ (sβ ) = O) ∨ (λα (sα ) = O ∧ λβ (sβ ) = E) ↔ 

(λδ (sα ) = P ∧ λε (sβ ) = P) ∨ (λδ (sα ) = E ∧ λε (sβ ) = P) ∨ (λδ (sα ) = P ∧ λε (sβ ) = E) ↔  

λσ (sα , sβ ) = P  

Show that λγ(sα , sβ) = O ↔ λσ (sα , sβ ) = O: 

λγ(sα , sβ) = O ↔ 

λπ (sα , sβ) = P ↔ 

(λα (sα ) = P ∨ λβ (sβ) = P) ↔ 

(λδ (sα ) = O ∨ λε (sβ ) = O) ↔ 

λσ (sα , sβ ) = O 

Show that λγ(sα , sβ ) = E ↔ λσ (sα , sβ ) = E: 

λγ(sα , sβ ) = E ↔ 

λπ(sα , sβ ) = E ↔ 

(λα (sα ) = E ∧ λβ (sβ) = E) ↔ 

(λδ (sα ) = E ∧ λε (sβ ) = E) ↔ 
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λσ (sα , sβ ) = E 

2) We prove that µO
γ (sα , sβ ) = µO

σ (sα , sβ ): 

∀ sα∈ � α , sβ ∈ � β: 

µO
γ (sα , sβ ) = µP

π(sα , sβ ) = µP
α (sα ) ∧ µP

β (sβ ) = µO
δ (sα ) ∧ µO

ε (sβ ) = µO
σ (sα , sβ ) 

3) We prove that µP
γ (sα ,  sβ ) = µP

σ (sα , sβ ): 

∀ sα∈ � α , sβ ∈ � β: 

µP
γ(sα , sβ ) = µO

π (sα , sβ ) = µO
α (sα ) ∨ µO

β (sβ ) = µP
δ (sα ) ∨ µP

ε (sβ ) = µP
σ (sα , sβ ) 

4) We prove that Rγ = Rσ (note that Rα⊗β ≠ Rα⊕β, see Figure 4.7): 

Rγ = Rπ = { q: q |
α

� ∈ Rα    ∧   q |
β

� ∈ Rβ    ∧   ∀ px ( (px �  q   ∧   x∈ � π ) → 

(λπ (χπ ( p
 )) = λη (χη( p |

η
�  ))   ↔    p |

η
�  ≠ px |

η
� ))  for η∈{ α, β}  

Rσ = { q: q |
δ

� ∈ Rδ    ∧   q |
ε

� ∈ Rε    ∧   ∀ px ( (px �  q   ∧   x∈ � σ ) → 

(λσ (χσ ( p
 )) = λν (χν( p

 |
ν

�  ))   ↔    p |
ν

�  ≠ px |
ν

� ))  for ν∈{ δ, ε}  

Obviously, by definition of dual game, it follows that 

Rα = Rδ , Rβ = Rε , � α = � δ , � β = � ε ,  

and by definitions of dual, tensor and par games it follows that � π = � σ . 

Thus, to show that Rγ = Rσ , it remains to show that 

∀ p  (λπ (χπ ( p
 )) = λη (χη( p |

η
�  )) ↔ (λσ (χσ ( p

 )) = λν (χν( p
 |

ν
�  )) for η∈{ α, β} , ν∈{ δ, ε}  

From clause (1) of the proof: 

(λπ = P) ↔ (λσ = O) ∧ (λπ = O) ↔ (λσ = P) ∧ (λπ = E) ↔ (λσ = E) ∧ 

(λα = P) ↔ (λδ = O) ∧ (λα = O) ↔ (λδ = P) ∧ (λα = E) ↔ (λδ = E) ∧ 

(λβ = P) ↔ (λε = O) ∧ (λβ = O) ↔ (λε = P) ∧ (λβ = E) ↔ (λε = E) 

Hence, (λπ = λη) ↔ (λσ = λν) such that ((η = α) ↔ (ν = δ)) ∧ ((η = β) ↔ (ν = ε)) 

(4.15) Similar to the proof of (4.14) 

(4.16) � 〈α⊗β〉ϕ → 〈α〉ϕ ∧ 〈β〉ϕ 

Let Proponent has a ϕΙ-strategy T in tensor game α⊗β. 

Define a strategy U of game α as a projection of the ϕΙ-strategy T, which contains only moves of 

game α: U = T |
α

� . Also define a strategy V of game β as a projection of the ϕΙ-strategy T, which 

contains only moves of game β: V  = T |
β

� . 

If T is a ϕΙ-strategy of Proponent in game α⊗β, then U is a ϕΙ-strategy of Proponent in game α, 

and V is a ϕΙ-strategy of Proponent V in game β. 

Indeed, the fact that Proponent has a ϕΙ-strategy in tensor game α⊗β means that she/he can 

achieve independently (because the switch of tensor controls Opponent) α and β states in both 
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games, where ϕ is valid and in all successors (if they exists) ϕ is also valid. Hence Proponent has 

ϕΙ-strategies in both α and β, and by construction they are U and V respectively. U belongs to the 

set of admissible branches of game α and V belongs to the set of admissible branches of game β, 

because they were buil t by projection from T. In turn T belongs to the set of admissible branches 

of game α⊗β which projection by definition of tensor game belongs to the sets of admissible 

branches of games α and β. 

Note that Proponent has a ϕΙ-strategy in tensor game α⊗β if both of the games α and β are 

finite. Indeed, if one of them is infinite, then Opponent can keep playing in that game and hence in 

the other game Proponent wil l never reach a state where ϕ is valid (the same for successor states). 

Therefore Proponent will never complete a demand for ϕΙ-strategy in tensor game α⊗β for 

her/him. 

(4.17) Similar to the proof of (4.16) 

× 

 Infinite games with finite initial segment 

Parallel operators’ reduction axioms. 

� [α]ϕ ∨ 
�
β]ϕ → [α⊗β]ϕ   (4.18) 

� 〈α〉ϕ ∨ 〈β〉ϕ → 〈α⊕β〉ϕ  (4.19) 

Theorem 4.3 Soundness of axioms for infinite games with finite initial segment 

Axioms (4.3) – (4.19) are sound modulo ϕ-strategy (Definition 4.7) with respect to arbitrary 

interpretation of infinite games with finite initial segment and according to Definition 4.1, Definition 4.10, 

Definition 4.14, and Definition 4.15. 

Proof  

(4.18) � [α]ϕ ∨ 
�
β]ϕ → [α⊗β]ϕ 

→: Assume Opponent has a ϕΙ-strategy U in game α or a ϕΙ-strategy V in game β. 

We define a strategy T of tensor game α⊗β as T = U if Opponent has a ϕΙ-strategy in α, otherwise 

as T = V. 

If U is a ϕΙ-strategy of Opponent in game α or V is a ϕΙ-strategy of Opponent V in game β, then T 

is a ϕΙ-strategy of Opponent in game α⊗β. 

Indeed, because the Opponent has the choice of which game to play in tensor game, she/he 

can follow according to where she/he has a ϕΙ-strategy by the moves of the ϕΙ-strategy of that 

game (α or β). This allows Opponent to achieve a state where ϕ is valid in one of the games. 

According to definition of tensor game it is enough for her/him to have a ϕΙ-strategy in tensor 
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game α⊗β, and by construction it is T. By lemma 4.2 since U and V belong to the sets of 

admissible branches of component games α and β, T has to belong to the set of admissible 

branches of tensor game. 

The axiom may not be valid if an initial segment of the game where Opponent does not 

have ϕΙ-strategy is infinite, and it is Proponent’s turn to move there, hence in the tensor game also. 

Therefore Opponent will never reach a state where ϕ is valid and in all successor states (if their 

exists) ϕ is also valid, and it means that she/he does not have a ϕΙ-strategy in this case. 

(4.19) Similar to the proof of (4.18) 

× 

4.4.2  Axioms for finite determined games 

Syntactic axiom: 

� 〈π〉ϕ ↔ ¬[π]¬ϕ   (4.20) 

Parallel operators’ reduction axioms: 

� 〈α〉ϕ ∧ 〈β〉ϕ ↔ 〈α⊗β〉ϕ  (4.21)  

� [α]ϕ ∧ [β]ϕ ↔ [α⊕β]ϕ  (4.22) 

Deterministic axioms: 

� 〈π〉ϕ ∨ 〈πd〉¬ϕ ∨ 〈π〉¬ϕ ∨ 〈πd〉ϕ  (4.23) 

� [π]ϕ ∨ 
�
πd]¬ϕ ∨ [π]¬ϕ ∨ 

�
πd]ϕ  (4.24) 

Deterministic axiom is stronger than for the copy strategy: 

� (〈π〉ϕ ∨ 〈πd〉¬ϕ ∨ 〈π〉¬ϕ ∨ 〈πd〉ϕ)→((〈π⊕πd〉ϕ ∨ 〈π⊕πd〉¬ϕ)∧([π⊗πd]ϕ ∨ 
�
π⊗πd]¬ϕ))  (4.25) 

Deterministic axiom changes the axioms (4.18) and (4.19) (in this case we have no distinction between 

operators of choice and parallel operators!): 

� (〈π〉ϕ ∨ 〈πd〉¬ϕ ∨ 〈π〉¬ϕ ∨ 〈πd〉ϕ)→(([α]ϕ ∨ 
�
β]ϕ ↔ [α⊗β]ϕ)∧(〈α〉ϕ ∨ 〈β〉ϕ ↔ 〈α⊕β〉ϕ)) (4.26) 

 

Theorem 4.4 Soundness of axioms for finite determined games 

Axioms (4.3) – (4.26) are sound modulo ϕ-strategy (Definition 4.7) with respect to arbitrary 

interpretation of finite determined games and according to Definition 4.1, Definition 4.10, Definition 4.14, 

and Definition 4.15. 
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Proof  

(4.20) � 〈π〉ϕ ↔ ¬[π]¬ϕ 

→: According to the axiom (4.5) 

←: If the game is determined and finite then the players can have a shadow of strategy 

couple according to Claim 4.1. Furthermore, if Opponent does not have ψΙ-strategy (where ψ = 

¬ϕ) then the shadow of strategy couple can be either ( � , � , � , � ) or ( � , � , � , � ), and hence 

Proponent would have a ϕΙ-strategy. 

(4.21) � 〈α〉ϕ ∧ 〈β〉ϕ ↔ 〈α⊗β〉ϕ 

→: Assume Proponent has a ϕΙ-strategy U in game α and a ϕΙ-strategy V in game β. 

We define a strategy T = T(U, V ) of game α⊗β as a set of sequences of moves which is 

constructed according to the clauses (3) and (5) of tensor structure applied to admissible branches 

U and V of games α and β. 

If U is a ϕΙ-strategy of Proponent in game α, and V is a ϕΙ-strategy of Proponent V in game β, then 

T is a ϕΙ-strategy of Proponent in game α⊗β. 

Indeed, although Proponent has no choice which game to play in tensor game, she/he can 

follow where she/he has to play by the moves of ϕΙ-strategy of that game. Since Proponent has ϕΙ-

strategy in both α and β, and it follows from lemma 4.1 that deadlock is impossible, and since the 

games are finite, she/he can achieve states where ϕ is valid in both these games. This is enough for 

Proponent to have ϕΙ-strategy in tensor game α⊗β and by construction it is T.  

The axiom may not be valid if either of game α or β is infinite. Since Opponent can switch 

the tensor she/he can keep playing in that game and hence in the other game Proponent will never 

play and will never reach a state where ϕ is valid (the same for successor states). Therefore 

Proponent wil l never complete a demand for her/his ϕΙ-strategy in tensor game α⊗β. 

←: By axiom (4.16) 

(4.22) Similar to the proof of (4.21) 

 (4.23) � 〈π〉ϕ ∨ 〈πd〉¬ϕ ∨ 〈π〉¬ϕ ∨ 〈πd〉ϕ 

Obviously follows from the Claim 4.1 for finite games. 

(4.24) Similar to the proof of (4.23) 

(4.25) � (〈π〉ϕ ∨ 〈πd〉¬ϕ ∨ 〈π〉¬ϕ ∨ 〈πd〉ϕ)→(〈π⊕πd〉ϕ ∧ [π⊗πd]ϕ ) 

(i) (〈π〉ϕ ∨ 〈πd〉¬ϕ ∨ 〈π〉¬ϕ ∨ 〈πd〉ϕ)↔([π]ϕ ∨ 
�
πd]¬ϕ ∨ [π]¬ϕ ∨ 

�
πd]ϕ) by (4.3) 

(ii) (〈π〉ϕ ∨ 〈πd〉¬ϕ ∨ 〈π〉¬ϕ ∨ 〈πd〉ϕ)→〈π⊕πd〉ϕ   by (4.19) 

(iii) ([π]ϕ ∨ 
�
πd]¬ϕ ∨ [π]¬ϕ ∨ 

�
πd]ϕ)→[π⊗πd]ϕ    by (4.18) 

(iv) (〈π〉ϕ ∨ 〈πd〉¬ϕ ∨ 〈π〉¬ϕ ∨ 〈πd〉ϕ)→(〈π⊕πd〉ϕ ∧ [π⊗πd]ϕ )  from (i), (ii), (iii) 

 (4.26) � (〈π〉ϕ ∨ 〈πd〉¬ϕ ∨ 〈π〉¬ϕ ∨ 〈πd〉ϕ)→(([α]ϕ ∨ 
�
β]ϕ ↔ [α⊗β]ϕ)∧(〈α〉ϕ ∨ 〈β〉ϕ ↔ 〈α⊕β〉ϕ)) 
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We wil l prove (〈π〉ϕ ∨ 〈πd〉¬ϕ ∨ 〈π〉¬ϕ ∨ 〈πd〉ϕ)→(〈α〉ϕ ∨ 〈β〉ϕ ↔ 〈α⊕β〉ϕ), the rest of the proof 

has an idea similar to the proof of axiom (4.25). 

〈α〉ϕ ∨ 〈β〉ϕ → 〈α⊕β〉ϕ is an axiom (4.19). 

Consider 〈α⊕β〉ϕ → 〈α〉ϕ ∨ 〈β〉ϕ.  

Suppose Proponent has a ϕΙ-strategy in α⊕β and has none in either α or β. Then according to 

Claim 4.1 Opponent has ψΙ-strategy (where ψ = ¬ϕ) in both α and β. Hence by (4.22) [α]ϕ ∧ 
�
β]ϕ 

↔ [α⊕β]ϕ. We reach a contradiction: two-player can never have ϕΙ and ψΙ strategies 

simultaneously in one game, including α⊕β.  

× 
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5 Discussion 

5.1  Structural strategies for parallel games 

In the previous chapter we determined only one structural strategy, namely copy strategy for parallel 

operators. However, Linear Logic contains operators of repetition which we have not considered. The 

operators allow the determination of other copy strategies. It would spread out the semantics of Game 

Logic if we had taken it into account in the previous chapter. It is not even clear how many structural 

strategies exist for given operator. Besides, in this section we offer an structural ϕΙ -strategy for operators of 

repetition, which we also determine below. It is possible to extend Game Logic with operators of repetition, 

but we only sketch the idea. 

5.1.1  Operators of repetition 

In this subsection we introduce the operators of repetition, which contains in Linear Logic. 

Definition 5.1 Repetition "of course"∗∗∗∗ 

R(A) = ( MR(A) , λλλλ R(A), P R(A) , W R(A) ) 

Where: 

• MR(A) is the partial Cartesian product of the possible moves' set MA : MA ×…× MA, as it shown 

in Figure 5.1. It is constructed as follows.  

1) Take the initial state of game A as an initial state of the game with repetition. 

2) The other states of the game with repetition can be in complex form, obtained by adding 

extra-opened play of game A. 

3) A state of a game can have the following successors: 

− states, whose components are equal to components of the predecessor state, except 

one, that is substituted by successor state in initial game 

− state, whose components are equal to components of the predecessor state, but which 

has one extra component, that is equal to the initial state of the initial game. 

• λλλλ R(A) labell ing function: It is Opponent’s to move if and only if it is his turn to move in all 

opened games, otherwise it is Proponent’s turn to move (note that if Proponent would have a 

first move in the initial game then Opponent will not have a winning strategy, because 

Proponent can continuously open a new game) 

                                                             
∗ By Girard' s  (1987) notation 
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• P R(A) is the set of valid positions (admissible moves) that is constructed as follows: 

1) If it is Opponent’s turn to move then he can move in any possible direction (during his turn he 

is allowed to move in all of the components, and hence he can always switch the game) 

2) If it is Proponent’s turn to move then she can move only in the components where it is her 

turn to move (note that if it is her turn to move in several components then she can switch the 

games and open a new game) 

• W R(A) is the set of all winning for Proponent branches that equal to intersection of the winning 

branches of the initial game (i.e. to win the game, Proponent has to win in all of the opened 

components of the resulting repetitive branch). 

Winning strategies 

Here a crucial role has the fact: who starts an initial game. Indeed, if Proponent starts an initial game, then 

she can continuously open a new copy of the initial game and hence to keep the rights on move infinitely 

long. Of course, in that case Opponent can not have a winning strategy in the compound game (but that  

also does not give a winning strategy for Proponent). If Opponent would have a winning strategy at the 

initial game (together with first move) then obviously he will have it in the compound game. In short 

α0 

α1 α2 

α3 

1
0α  

 

Figure 5. 1. The set of all poss ible moves in compou nd game with a multiplicative 

repetition is the following p artial Cartesian product of the initial game (superscript is the 

number of the opened game, sub script is the number of move in the game) 
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instruction for that operator Blass (1992) wrote that for Opponent enough to win one of the opened game, 

whereas Proponent has to win all of them.  

Proponent has a winning strategy in compound game if she has the first move and has a winning strategy in 

the initial game. 

Definition 5.2 Repetition "why not" 

R (A) = ( M R (A) , λλλλ R (A), P R (A) , W R (A) ) 

Where: 

• M R (A) = MR(A) 

• λλλλ R (A) labell ing function: it is Proponent’s turn to move if and only if it is her turn to move in 

all opened games, otherwise it is Opponent’s turn to move (note that if Opponent would have 

a first move in the initial game, that Proponent will not have a winning strategy, because 

Opponent can continuously open a new game) 

• P R (A) is the set of valid positions (admissible moves) that constructed as follows: 

1) If it is Proponent’s turn to move then she can move in any possible direction (during her 

turn she is allowed to move in all of the components, and hence she can always switch 

the game) 

2) If it is Opponent’s turn to move then he can move only in the components where it is his 

turn to move (note that if it is his turn to move in several components then he can switch 

the games and open a new game) 

• W R (A) is the set of all winning for Proponent branches that equal to union of the winning 

branches of the initial game (i.e. to win the game for Proponent enough to win in one of the 

components of the resulting multiplicative branch). 

Winning strategies 

Proponent and Opponent switch the roles in comparison with the repetition "of course" games. 

5.1.2  Trial-mistake strategies 

Copy strategy discussed in the previous chapter is based on the possibili ty to switch the games, which is 

hidden in game structure in construction of the set of admissible sequences of moves. The possibili ty of 

communication between the games is also important. 

Trial-mistake strategy – another example of structural ϕΙ -strategy – is based on the idea of 

searching through the game tree. Trial-mistake strategy also concerns undetermined games. If we have 

parallel game α⊗α⊗…⊗α (or α⊕α⊕…⊕α) with amount of opened games α close to the number of final 

states of the game α, then we can describe trial-mistake strategy of Opponent (Proponent) as instruction for 

an unique playing of game α in each opened game α. Hence trial-mistake strategy allows combing the 

game tree and finding the winning branches. 
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As it is easy to see the combination α⊗α⊗…⊗α (α⊕α⊕…⊕α) could be changed by the parallel 

game with repetition operator “of course” (“why not” ). It would be interesting to adapt these operators 

within the game model. 

5.2  Parallelism of Linear Logic and of Process Algebra 

In previous chapters we analysed operators governing of parallel processes in Linear Logic and Process 

Algebra, and introduced the operators for Game Logic. In this section have a short discussion focussing on 

switching that is a form of communication.  

5.2.1  Non-communicative processes 

In Linear Logic we can call i nstantiation of parallel operator non-communicative if it does not use any type 

of interactions between the games like copy strategy. As we saw, Process Algebra outlines such types of 

processes precisely. 

First of all it is seems that the Process Algebra can better express one-player games as opposed to 

two-player games. We will keep different point of view, and assume that Process Algebra can describe two-

player games, which are played by one player. However, since one-player games are the simplest, we begin 

the description of non-communicative instantiation of tensor and par from such type of game. 

It is clear that tensor (par) in a game where only Opponent (Proponent) has moves can be 

expressed by free merge. Suppose that in games α and β depicted in Figure 4.2 all the moves are performed 

by Opponent only, then tensor game α⊗β can be written through free merge if we will change the 

description level from names of games α and β to the names of moves m0, m1, m2, n0, n1.  In this instance 

tensor game can be understood as (m0 + m1) m2 || (n0 + n1). 

In two-player tensor (par) game Proponent (Opponent) can not switch between the games. It 

means that for rewriting of her/his moves we can not use free merge because it would allow her/him to 

switch. Moreover, if we would rewrite the moves of Opponent (Proponent) by using free merge, then by 

axioms of Process Algebra we have to execute her/his moves in both subgames, but it is non-convenient. 

Besides, we would have problems to point out that Proponent (Opponent) has to make her/his next move in 

active game. However, alternative and sequential compositions can describe non-communicative 

instantiation of two-player game. It is easy to see if look at tensor (par) game tree. 

5.2.2  Communicative processes 

In Linear Logic we can call instantiation of parallel operator communicative if it use any type of 

interactions between the games like copy strategy. In Process Algebra communicative merge allows 

transmitting data between the processes.  

 In copy strategy Proponent and Opponent plays symmetrical roles as in tensor so in par. So, to 

express tensor or par moves through communication merge we have to decompose the games on moves and 
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then to write mirrored moves from different sides of communication merge. The draw of game wil l look 

like a chain of communication merges connected by sequential composition. 

5.2.3  Extension of communication merge 

In case of compound games we would have to connect more than two games. For this purpose we have to 

extend communication function and communication merge on multiple process problems. Previousely they 

described only interaction of send/read type similar to copy strategy in Linear Logic.  

We redefine communication function, which connects several processes in one. It is the partial 

mapping γ: A×…×A→A, where A is the set of the atomic actions. As an example of such kind of 

interaction we can give screen picture. Consider light flows on a computer screen. To make a composed 

colour on the screen we have to combine three different colours at one moment. 

5.3  Laws of Multiplicative Linear Logic and proposed semantics  

Abramsky and Jagadeesan (1994) introduced sound and complete calculus for their game semantics. In this 

section we explore if these laws are sound to our semantics of finite determined games. The laws can be 

rewritten by axioms (5.1) – (5.6). In Linear Logic semantics there is no ϕΙ-strategy. The laws apply to the 

winning strategies of Proponent. Therefore, during the proof of soundness we can refer to the axioms 

introduced in chapter 4, all of which constituents have a form 〈π〉ϕ, and keep in mind that we have a deal 

with winning strategies but not ϕΙ-strategy. It is a reason why we will talk about analogues of the axioms 

during the proof of soundness. 

�  α⊕αd     an analogue of Identity law  (5.1) 

�  (γ⊕δ) → (δ⊕γ)   an analogue of Exchange law  (5.2) 

�  (γ⊕(δ⊕ε)) → ((γ⊕δ)⊕ε)  an analogue of Exchange law   (5.3) 

�  ((γ⊕α) ∧ (δ⊕β)) → (γ⊕(δ⊕(α⊗β))) an analogue of Tensor law   (5.4) 

�  ((γ⊕α) ∧ (δ⊕αd)) → (γ⊕δ)  an analogue of Cut law    (5.5) 

�  (γ ∧ δ) → (γ⊕δ)   an analogue of Mix law    (5.6) 

Theorem 5.1 

Axioms (5.1) – (5.6) are sound modulo ϕΙ-strategy with respect to arbitrary ϕΙ-zero-sum 

interpretation of game structures given in the previous chapter. 

Proof  

(5.1) �  α⊕αd 

Proponent has a winning strategy in such a par game. For Proponent it is enough to win only one of 

the subgames. Defined game structure allows Proponent to play both subgames; then if she/he wil l choose 

the same track of play in both components, it will guarantee a winning exactly of one of them. 
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(5.2) �  (γ⊕δ) → (δ⊕γ) 

Analogue arguments as in proof of axioms (4.8) 

(5.3) �  (γ⊕(δ⊕ε)) → ((γ⊕δ)⊕ε) 

Analogue arguments as in proof of axioms (4.12) 

(5.4) �  ((γ⊕α) ∧ (δ⊕β)) → (γ⊕(δ⊕(α⊗β))) 

(i) ((γ⊕α) ∧ (δ⊕β)) ↔ ((γ⊕α) ⊗ (δ⊕β)) by an analogue of (4.21) 

(ii) (γ⊕(δ⊕(α⊗β))) ↔ ((γ⊕δ⊕α) ⊗ (γ⊕δ⊕β)) by an analogues of (4.21), (4.22), and (4.26) 

(iii ) (γ⊕α) → (γ⊕δ⊕α) if Proponent has a winning strategy in (γ⊕α) then she/he can avoid to 

play δ, and hence to win (γ⊕δ⊕α) 

(iv) ((γ⊕α) ∧ (δ⊕β)) → (γ⊕(δ⊕(α⊗β))) from (i), (ii ), (iii ) 

(5.5) � ((γ⊕α) ∧ (δ⊕αd)) → (γ⊕δ) 

((γ⊕α) ∧ (δ⊕αd)) means that Proponent has to win both (γ⊕α) and (δ⊕αd). Further we have to 

consider three cases: 

(i) Suppose Proponent has a winning strategy in α. Then she/he has no a winning strategy in 

αd. Then to win (δ⊕αd) she/he has to have a winning strategy in δ, or δ has to be equal α 

to apply a copy strategy. But we assumed that Proponent has a winning strategy in α, 

then in any case under the assumption Proponent wil l have a winning strategy in δ and 

hence in (γ⊕δ). 

(ii) The case with a winning strategy for Proponent in αd is similar. 

(ii i) Assume Proponent has no winning strategies either in α or in αd, then to win (γ⊕α) and 

(δ⊕αd) she/he has to have winning strategies for γ and δ, and hence for γ⊕δ, or to have 

copy strategies in both (γ⊕α) and (δ⊕αd). This last means that γ is equal to αd, and δ is 

equal to α. Hence in (γ⊕δ) Proponent has a winning strategy. It is a copy strategy. 

(5.6) �  (γ ∧ δ) → (γ⊕δ) 

Follows from an analogue of (4.19) 

× 

5.4  Conclusion 

In the thesis we introduced an Extension of Game Logic with parallel operators, which we constructed by 

analogues with multiplicative operators tensor and par of Linear Logic. 

As we found, it is not so easy, as it seems at first sight, to extend Game Logic with the parallel 

operators of Linear Logic, and especially of Process Algebra, even without a proof of completeness. The 

main reason is that if Linear Logic has a kind of classical or extensional semantics, then Game Logic has an 

intensional one. Distinction between these two semantics is comparable to the distinction between winning 

and ϕΙ-strategies. Thus, when we are in the game model of Linear Logic, it is impossible that both players 
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would have winning strategies at some of the states, because it would mean that a formula is true and false 

simultaneously.  Whereas, for the model of Game Logic, it is possible that both players would have ϕΙ-

strategies at some state, because it would just express that neither player can achieve a state where ϕ is not 

valid. This gives different validities of axioms for Game Logic as opposed to Linear Logic.  

Moreover, we found that finite perfect information games do not add anything new to the 

semantics. Tensor and par in that case are equal to the known operators of choice!  The power of 

parallelism can be achieved only for infinite or imperfect information games. On the other hand, this 

resembles the situation in Process Algebra, where in the finite case, non-communicative parallel 

composition can be reduced to alternative and sequential ones. 
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