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1 Introduction

In this thesis we extend the semantics of Game Logic and introduce some axioms to allow the description
of paralel games. Game Logic, introduced by Parikh (1985), is an extension o Propositiona Dynamic
Logic. Game Logic is used to study the generd structure of arbitrary determined two-player games. The
syntax of Game Logic antains the operators of test, choice, sequential composition, duality, and iteration.
In particular, one @n find examples of the semantics, syntax and axiomatics of Game Logic in works of
Parikh (1985) and Pauly (1999). Reasoning about games is smilar to reasoning about programs or
processes behaviour, which is supported by such formalisms as Propositional Dynamic Logic, or Process
Algebra. However, Game Logic does not accept dl operators which are involved, for instance, in Process
Algebra; in particular, Game Logic does not contain the parallel operators, such as parallel composition, or
left merge. Thus, our ideaiisto introduce parallel operators for Game Logic. To redise this we explore two
versions of parallelism represented in Process Algebraand Linear Logic.

Process Algebra was the first system that attracted our attention. It contains alternative and
sequential compositions in the basic part that closely resemble respectively the operator of choice ad
sequential composition of Game Logic. Besides, general Process Algebra antains sveral sorts of parald
operators which we ae looking for. However, it turns out that it is not easy to incorporate these operators
into Game Logic immediately. There are severa difficulties. one of them is that the semantics of Process
Algebra does not care by which agent the processes execute: this demands a sophisticated technique to
convert it into the semantics of a two-player game. The other is that the semantics of Process Algebra has a
poor suppat of truth-values, that is to say, while one might connect falsum with deadlock, the operator of
negation o duality has no an analogue. Still, a look at Process Algebra is useful, because the semantics of
the parald operators contains ©me features that do not appear directly in Linear Logic, the next forma
system which we traced on the matter of pardld operators. Namely, it gives an option to dstinguish
between communicative and nan-communicative parallel operators, and among dfferent ways of parale
execution.

Additive Linear Logic resembles a Game Logic without the operators of test, sequentiad composition
and iteration. In that sense it looks more removed from Game Logic than Basic Process Algebra
Multi plicative Linear Logic brings us a couple of parallel operators: tensor and par, and some operators of
repetition: ‘of course and ‘why not'. Taking into account that Blass (1992) and Abramsky, Jagadeesan
(1994) introduced a two-player game semantics for Linear Logic, our problem of trandating this emantics
to Game Logic becomes more esident. However, even in that case there is a difficulty, which appears due
to the fad that the semantics of Game Logic uses a description in terms of ¢’ -strategies, whereas the
semantics of Linear Logic refers to winning strategies. They could be connected with each ather in such a
manner that a ¢’ -strategy can be mnsidered as a winning strategy as well as a loosing strategy, of one

player, of the other player or even of both of them. So the use of ¢’ -strategies gives rise to a more complex



structure in game semantics. nevertheless, we introduce an extension of the semantics of Game Logic by
using analogues of the parallel operatorsof Linear Logic.

We e«plore the extenson of Game Logic with parald operaors in the thesis in four chapters,
besides the introduction (Chapter 1). In Chapter 2 we @nsider the models and the definitions of key
operators of Process Algebra, emphasising the parallel one. Chapter 3 we devote to the semantics of game
operators for Linear Logic based on the works of Blass (1992) and Abramsky, Jagadeesan (1994). In
Chapter 4, the main part of the thesis, we introduce the semantics for paraléd operators of Game Logic
based on the analogues of tensor and par of Linear Logic. We also describe standard Game L ogic operators
in terms of the proposed semantics. Moreover, we propose some aioms for the paralel operators and dfer

proofs of soundness. In Chapter 5 the discussion and conclusion can be found.



2 Parallel processesin Process Algebra

The seach for new prospects in semantics, syntax, and axiomatics for the operators of Game Logic we start

by considering the operators of Process Algebra, which contains parallel ones.

2.1 Introduction
Programming used to make adivison between data and code. Since Basic Process Algebra daims to
describe the process behaviour, we @n note that Basic Process Algebra @vers only code axd no cata
structure. The models for processes can be represented as by means of graphs as well as algebraicaly.
Sometimes it is easier to capture the idea of a process through a graph (if the graph is not too large), while
an agebraic representation is usually used for manipulations of the processes.

In this chapter we present some basic concepts of Process Algebra. Firdt, in section 2.2 we give
definitions of models and axioms of Basic Process Algebra. Then, in sections 2.3 and 2.4 we write

definitions for parallel operators of Process Algebrawithout and with communication respectively.

2.2 Elements of Basic Process Algebra
Kernd of Basic Process Algebra describes finite, concrete, sequentia non-deterministic processss. It could
be extended by deadlock or recursion but we will not do it because such formalisms lead away from the

basic concepts of Game Logic, which we would liketo extend by analogy with existing models.

2.2.1 Syntax of terms

The dementary nation of the Basic Process Algebra is the notion of an atomic action that represents a
behaviour, which description does not include operators of Basic Process Algebra, i.e. indivisible (has no
structure) for the language of Basic ProcessAlgebra. That is a single step such as reading or sending a data,
renaming, removing etc. Let A is a s&t of the atomic actions. Atomic action is supposed to be interndly
non-contradictory, i.e. each atomic action v aso can be mnsidered as an agorithm, which can execute it,

and always terminates successfully. It could be expressedeither by process graph:

\

Y

Fiqure 2.1 Process araph for an atomic action

or by the predicate v [TY — +/. Here the atomic action in the node (or on the kft side of predicate) we @n

consider as a program code, and the atomic action to the Ieft from the arc @bove the arrow) asan execution
or run of that code. Wewill not involve the processesthat do notterminate.

Thenotion of processtermisthe next inductive level of theformalism of Basic Process Algebra.



Definition 2.1 Process term
1) Anatomicactionisaprocessterm.
2) Alternative mmposition x + y of process terms, that represents the process, which executes either
processterm x or processtermy, isalso a processterm.

3) Sequential compostion x « y of the processterms, that represents the process which first executes

<
O
—~

Figure 2.2 Process graphs of alternative and sequential compositions

the process term X, and than the processtermy, isalso a processterm.
Each finite process can be represented by such process terms that are called basic process terms. The set of

the basic processterms defines Basic Process Algebra.

2.2.2 Semantics

Intuition that underlies the definition d basic process terms can dlow us to construct process graphs that
correspond to these nations. By andogy with structural operationa semantics (Fokkink, 2000) transition
rules represented in Table 2.1 can be obtained. Here the variables X, y, X', y’ are from the set of basic

process terms, while v — from the set of atomic actions.

Table 2.1 Transition rules of Basic Process Algebra

VDjl—>\/

XDjl—>\/ XDjI—>X, yDjl_,\/ yDjl_,y'

x+y Mo v x+y Mo x' x+y Mo v x+y Yoy’

x Y = x MY - x’

xey MY oy xey IV x’ey




The firg trangtion rule epresses that each atomic action can terminate successfully by executing itself.
The next four transition rules are for aternative composition and show that it executes either x or y. The
last two transition rules correspond to sequentid composition and show that in that case first the process x
has to be terminated successfully; only after that the process y can be started. Note that the execution of y
is probably to involve another transition rule; the rules for sequential compasition do nd execute second
term. It is a good support of the idea that the right distributive law does not satisfy to Basic Process
Algebra.

2.2.3 Bismulation Equivalence

Basic Process Algebra does not conclude that two processs are equal if they can execute exactly the same
strings of actions (trace eguivalence). As a reason we can look at the example of the graphs in Figure 2.1
that depict the law of right distribution. If we look a an dternative compasition such as an example of

chaice function, then it becomes substantial where to make a decision: before the reading of data arafter.

read (data) read (data) read (data)

forward (data)( >de| ete(data) forward (dataN / delete (data)
J v

Figure 2.3 Graph’s analogy of right distributive law. The two graphs are not bisimilar.

In spite of trace equivalence, bisimulation equivalence dso pays atention to the branching structure of the

processes.

ab -----——-r ab+a(b+hb)
a a a
t ===::::ZZI:::%;__:::::_'__kl--/——”‘/\-kH b
bt N b//b
R 2 J

Figure 2.4 An example of bisimilar process graphs.

Definition 2.2 Bisimulation

A bisimulationrdation 3B is abinary reation on the processes such that:

1. ifxBy andx OV - x,theny IV = y withx'BY'



2. ifx8Byady [IY - y,then x (1Y - x' withx' By
3 ifxByady OY - +,then x (1Y =

4. ifxByady Oy - +/,then x [0V =/

2.2.4 Axioms
Basic Process Algebra has a modulo bisimulation equivaence sound and complete axiomatisation, written
downin Table 2.2 (Fokkink, 2000).

Table 2.2 Axioms for Basic Process Algebra

Al X+y = y+X

A2 (x+y)+z = x+(y+ z)
A3 X+x = X

A4 (X+y)ez = Xez+tyez
A5 (Xey)ez = Xxe(ye=z)

2.3 Operatorsof Process Algebra for parallel processes

Processalgebrainvolves paralldlism that is both non-communicative and communicative. There ae severa
operators to express the idea of pardldism that can be treated quite widdly. At first sight it is possible to
find akind o paraldism even in the alternative mmposition that is one of the operators of Basic Process
Algebra and represents an action, which can choose an execution of one of the two process terms. However
aternative composition can be mnsidered as paralel only in stasis that is before choice when we have two
“paralel” branches — two potentias. But during execution we will have atrace only via one branch, and al

“paralelism” disappears.

2.3.1 Freemerge or parallel composition
A new idea (in comparison with Basic Process Algebra) was used in the free merge operator or parallel

composition introduced by Mil ner (1980). Free merge dlows usto executetwo process termsin parallel.

Table 2.3 Transition rules of Free Merge

x Y = x MY - x’

xlly M-y x|y @M~ x|y

y Y- y M-y’
x|ly MY - x x|ly @MY - x|y’




The operator gives a freedom to switch between the processes during the execution. In spite of the operator
of aternaive composition, both terms have to be eecuted. In spite of the operator of sequentia
composition, an execution of the right process can be started before the termination o the left one.

Semantics of free merge @n be expressed by the transtion rules represented in Table 2.3. Whereas

x Y - +/ represents a successful termination of the process term x after the execution of an atomic

actionv, x (I — X' means apartia successful termination of the process term x with the remaining part

X’ after the execution of an atomic action v. The variables x, X', y, and y’ range over the collection o the

(ab)|l(ba)
a
\
b||(fm/ (ab)lla
/ N\ / X
ba blla blla ab

I N
aL a¢ b¢ a¢ bL b£

J VY, v

Figure 2.5 Process graphs of free merge (ab) || (b @)

process terms, while v ranges over the set A of theatomic actions.

Free merge can be treated as a superposition of two operators of left merge, which we will describe
a the next subsection. Unfortunately, Process Algebra with free merge has not finite sound and complete
axiomatisation. This fad wasproved by Moaller (1990).

2.3.2 Left merge

Left merge @n be mnsidered only as a decomposition d free merge. It has not an independent semantics.
Indeed, if we would take an idea of left merge independently from free merge, then we will provide
semantics already expressed by operator of sequential composition. Transition rules for left merge are in
thetable2.4.

Table 2.4 Transition rules of Left Merge

x MY = x 1Y o x’

xlly Yoy xly @D x|y

Fromtables 2.1, 2.3 and 2.4 axiomsfor the free and |eft mergesfollow
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Table 2.5 Axioms for the Free and Left Merges

FM1 xIly = xly +ylx
LM1 vily = Vey

LM2 (vex)ly = Vv e(x]ly)
LM3  (x+y)llz = xlz+ylz

From the axioms of table 2.5 is clear to see that each term of Process Algebra for pardld processes can be

rewritten by equivaent Basic ProcessAlgebra s term.

2.4 Operatorsof Process Algebra for communicating processes

Process Algebra for communicating processes contain extension of free merge for parald processes. The
new operator we will cal merge, or paradlel composition. Besides the features of free merge it can execute
two process terms smultaneously. For that purpose cmmunication function will be introduced in
subsection 2.4.1 , which governs the executions of communicaion merge. Process agebra for

communicating processesis ound and complete (Moller, 1990).

2.4.1 Communication function

The notion that can explain the mechanism of interaction in Process Algebra and autline the issue of
communication merge is communication function. This function is apartiad mapping y: AxA - A, where A
is the set of the @omic actions. It is easier to understand the meaning o the function by the following
send/read example.

Send/read comnunication As foll ows from the definition the construction of the communication function is
possible if there ae three @omic actions in the aomic action s&t, such that we @n map two o them on to
the third one. In order to fulfil that condition in case of the send/read communication it is enough to have a
send action s(d), aread action r(d), and a @mmunication action c(d) for the data d that corresponds to the
send and read actions and expresses the process of information exchange. Communication function is y
(s(d), r(d)) = c(d). | suppose the function was introduced because we prefer to gperate with one process
during one step of time and to stay at one dtate dter the execution, that is a standard intention, and the
communication function provides the possibility to do it. Indeed, it isimpossble to follow severa branches

of agraph (by which the parall d processes can be represented) simultaneoudly and to stay at severa states.
2.4.2 Communication merge

Communication mergeisintroduced by followingfour transtion rules.

11



Table 2.6 Transition rules of Communication Merge

x Y- v yOY. v xM- v yO¥-y’
x |y OHEW . v x |y O -y’

x OY -~ x’ yOW. v xOI- x’ y O Sy’

X |y O & x’ X |y mRaSuya x|y’

Communication merge is an extension of communication function. It isclear from thefollowing axioms
al|b=y(a, b),if y(a, b) defined, CF1
a|b =20 otherwise CF2

Here d is adeadlock; that meansthat the processes have stopped its execution and can not proceed.

Theother axioms for communication merge are represented below.

Table 2.7 Axioms for Communication Merge

CM1 viw = y(v,w)

CM2 V]i(wey) = y(v,w) ey
CM3 (vex)|lw = vy(v,w) X
CM4 (vex) [ (wey) = vy(v,w) «(x]y)
CM5 (x+y)lz = xl|z+y]|z
CM6 X | (y+z) = Xx|y+ x|z

24.3 Merge

As we mentioned, merge is an extension of free merge and is expressed through represented pardlé

operators by the following axiom.

M1 xlly=xlly + yll x + x|y
Merge obvioudy can be depicted as on the Figure 2.6.

12



(ab)|l(ba)

AN T A
f “af bi £ J J

Figure 2.6 Process graphs of merge (ab) || (b a). Here c is a communication of two atomic

ba

actions from {a, b}.

2.5 Conclusion

As is apparent from this chapter, Process Algebra has an interesting redisation of the concept of
paralelism. Since Basic Process Algebra has ana ogues for two basic operators of Game Logic, it could rise
optimistic prospects in the extension of Game Logic by paralel operators of Process Algebra. However,
Process Algebra does not contain a notion of dua game, and its encapsulatiion would look unnatural.
Besides, the possibility of expresson o true-false values in Process Algebra looks doubtful. Moreover, it
seems that Process Algebra does not support an ideology of two-player game. So, the encapsulation of
paralel operators of Process Algebra in the theory of Game Logic is not obvious. However, we will use
Process Algebra to discuss some properties which are not represented drectly in semantics of tensor and
par operators of Linear Logic described in the next chapter. It is analogues of tensor and par operaors we

will useto extend Game Logic on parallel operators.
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3 Parallel gamesin Linear Logic

As explained, Linear Logic can have a game theoretical interpretation. The semantics given by Blass
(1992) relates to Affine Logic. Affine Logic can be obtained from Linear Logic by adding the structura
rule of weakening. His ®mantics was criticised by Abramsky and Jagadeesan (1994), who introduced
ancther game semantics ound and full complete with respect to multipli cative fragment of Linear Logic.
Since we monsider the games merged by the multiplicative operators as parald, the mnceptua similarity
between semantics for additive fragment of Linear Logic end Game Logic dlows us to predict the

possibility of extension of Game Logic by means of analogues of multiplicative operators of Linear Logic.

3.1 Introduction

In this chapter, the basic features of the games involved by Blass and Abramsky, Jagadeesan are listed in
section 3.2 . Since we ae going to use the properties of multiplicative operators to enrich the language of
Game Logic, in section 3.3 we fulfil in special manner an interpretation of Linea Logic connectives by
operations on games. For this purpose we took the basic ideas from Blass and Abramsky, Jagadeesan

semantics.

3.2 Thegame semanticsfor Linear Logic

Abramsky and Jagadeesan oppose their semantics to that of Blass because they argue with him about the
completeness theorem. In any case, we have not need to follow this line because we @n not convert a
semantics of Linear Logic to the semantics of Game Logic without changes. It is enough to look at the
definition of ¢'-strategy (Chapter 4), which is used in Game Logic instead of notion of winning strategy of
Linear Logic. Thus, we can try to make aquintessence of the two semantics and postpone the restrictions

on the moment of definition of soundness and completenessinside amoded of Game Logic.

3.2.1 Theorigin of Blass sgame semantics for Linear L ogic

The Blass s (1992) game semantics for Linear Logic arose over reconsideration of Lorenzen’s (1959) game
semantics for Propositiond and Firs Order (Classica) Logic. Lorenzen's game semantics includes
procedural conventions, which bring asymmetry between players. There is a reason to avoid such structura
difference between axiomatics and semantics: logica connedives have a symmetrical status in the aioms
and rules of inference, whereas Lorenzen' s game semantics has the asymmetrical conventions. IImTable 3.1
there is a brief description of updates, which Blass (1992) offered to avoid the asymmetry of Lorenzen's

procedural conventions. One of the asymmetry eliminates by introduction of undetermined games.

Definition 3.1 Undetermined games

Wewill cal agameundetermined if and only if thereis nowinning strategy for eitherplayer.

14



Table 3.1 Blass's elimination of the players’ asymmetr y

Lorenzen’sprocedural ¢ .
. < Blass stransformations
convention ¢
<

Proponent may only assert an % Every aomic game has to be
atomic formula after Opponent ¢ undetermined
has asserted it :

Permisson or restriction o re- < Add extra sort of conjunction
5

attack (re-defence) ¢ (digunction)
5

The other asymmetry disappears by using the expressive power of the language of Linear Logic. In Linear
Logic there ae two sorts of conjunction and disunction: additive and multiplicative. In Blasss game
semantics additive conjunction (digunction) does not allow to reattack (re-defence), whereas
multipli catives do dl ow this.

3.2.2 Basic notions of Game Semantics
There are two basic notions in game semantics. game and winning strategy. We give key moments of their
definitions, which we nstructed according to the general view of Blass and Abramsky, Jagadeesan.
Below we summarise the main properties of theinvolved games.
1. 2-players. Propanent (P), and Opponent (O)
2. Zero-sum (strictly competitive - either P or O wins)
3. Undetermined atomic games,; we can get it by:
— infinite branches (in Blass(1992) semantics)
— imperfect information (in Abramsky and Jagadeesan (1994) semantics; they operate with

hi story-independent strategies (acurrent move cependsonly from the previousone))

Definition 3.2 Game

A game A depicted by gametreedrawn in Figure 3.1 isaquadruple (Ma , Aa , Pa, Wa), where

1) Ma = {ag, ag, ..., a7} - the set of possible movesin game A, where a3, as, O, 07 May or may
not be the last moves of the game in Figure 3.1. A Greek Ietter at state on the tree is a name of the
last executed move (0 is aname for an empty move).

2) Ar:Mp - {P,O} - labelling function digtributing the set of possible movesin game A between
the players. A square or circle at astate of the tree showswho hasto move at thenext turn.

3) P, - the sat of valid postions (bold drawn states of the tree in Figure 3.1) of game A. A
position denotes the finite unique mmbination of moves. |.e. & each state we can determine the

admissible moves (stressed by bold arrows). The uniqueness of the combination of moves means
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that we @an not reach a position by the different branches of atree. That is why the graph has no

loops.
4) W, - thewinning branches, by which Propanent can achieve avictory (drawn in dash)

® @
O E o

Figure 3.1. A game tree with the set of possible moves {qao, ai, ..., a;}. The set of moves of

Proponent is pointed out by squares, of Opponent - by circles. The set of valid positions

(admissible moves) stressed by bold, whereas winning branch for Proponent by dash.

Definition 3.3 Strategies
Strategy of a player in game A is a function g into M, , from the set of al positions where the
player hasto move. Thestrategy @ is awinning oneif all branches of o arein W, .

Eventudly, a player can have winning branches and no winning strategy. However, if the player has a

winning strategy then she has winning branches.

3.2.3 Winning strategiesin Blass' s mantics
Important feature of Blass smantics is an absence of winning strategies for the atomic games. It gives the
foll owing results (that you can find out from section 3.3 ).

1) Games without multiplicative mnnectives and repetitions do nd contain winning strategies for
either player. And hence we @n nat distinguish such games if we would include an autcome of
gamein game definition

2) If weadd amultiplicative part to games then we can obtain winning strategies

3) Theknownwinning strategies are only different sorts of copy strategy

4) When we will refer during following discussion that, for instance, in game A [0 B one of the
players has a winning strategy in game A, it will mean that A is nat an atomic game and contain
multipli cative connectives together with a apy strategy for that player

5) Without copy strategy (even if we suppose winning strategies in atomic formula) multiplicative

operators on gameswould not distinguished from additive ae.
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3.3 Gameinterpretation of the operators of Linear Logic
Since the goal of the introduction of the game semantics is its adaptation to the Game Logic, we will make

thefollowing definitions on the special manner that could be considered as transitional.

Definition 3.4 Negation

= A =(Ma,An,Pa, PO\Wa)

Here we change only scheduling and the goas by switching between two-player.
Winning drategies

A winning strategy (if it exists) of one of the players in game A becomes the winning strategy of another
player in dual game = A.

Definition 3.5 Additive conjunction
AOB=(Mape,Aame sPaos,Waps)
Where:
e Mags=Mja+ Mg +{0,1} (if O then choose cmponent A, if 1 then choose mmponent B)
* Aam=Aa+tAg+(0,0)+(1,0O),i.e. Opponent choosewhich gameto play
*  Papgsistheunion of thesats P , and P g through prefix position such that:
1) Therestriction to movesin M, (respedively Mg ) isin P, (respedively Pg )
2) Opponent has to choosein the prefix position which game to play
W, ggistheunion of the sets W 4 and W through prefix position
Winning strategies

Proponent has a winning strategy in compound game if she has winning strategies in both components.

Opponent has awinning strategy if hehasit in ane of the components.

Definition 3.6 Additive disjunction
ADB:-I(-IAD-I B)
It gives the switching of roles between Opponent and Proponent

Winning strategies

Proponent has a winning strategy in compound game if she has winning strategies in one of the
components. Opponent has awinning strategy if he hasit in both components.

The general significant difference of semantics  description for multiplicative annectives compared
to the aditive one is that wewill use multi-states to express acompourd game.

Definition 3.7 Multiplicative conjunction (Tensor)

Tensor isthegame combination A B =(Mans,Aans,Paos, Wans ), where:
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Figure 3.2. The set of all possible moves in compound game with a multiplicative

connective is the following partial Cartesian productofthe two component games

Y i
s gt

I 1

|(ca, B [(as, B)| (s, Bo)

Figure 3.3 The way by which parameters of the two component games are transformed ir

the resulting tensor game
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e Mapg isthe patial Cartesian product of two possible moves setdviy and Mg, as is drown in
Figure 3.2. It is constructed as follows. Take the initid states of the mmponent games (proto-
states) and make from them an initial complex state. Construct the complex states of the next level
by fixing consecutively each of the proto-state of initia complex state and taking successors of
ancther one from the component game. By applying that procedure to each complex state we can
construct amultipli cative tree of the set of possible moves.

* Aaps labeling function: it is Oppaonent’ s turn to move if and anly if it is her turn to move in both
games, otherwiseit is Propaent’ sturn to move

*  Papggistheset of valid positions (admissible moves) that constructed as follows:

1) IfitisOpponent’sturn to move she can move in any possible direction (during her turn sheis
allowed to movein both components, and hence she can dways switch the game)

2) If it is Proponent's turn to move he an move only in the component where it is his turn to
move (note that if he hestum to movein both components, he @n switch the games)

* W, g isthe st of dl winning for Proponent branches that equa to intersection o the winning
branches of the mmponent games (i.e. Proponent has to win in both components of the resulting
multipli cative branch).

Winning drategies

Proponent has a winning strategy in compound game if he has winning strategies in bah components.
Opponent has a winning strategy if she has it in one of the cmponents. Besides, Opponent can have a
winning strategy in compound game even if nobaody has winning strategies in component games and, at the
same time, she @n apply one of the wpy strategies. For instance, a wpy strategy can be agplied by
Opponent (she @n switch between two games and hence to copy moves from one to another) if we have a
compound game A 0 = A.  Another oppatunity of applying a winning strategy for Opponent is a game
A O A over nonprincipa ultrafilter on the set of natural numbers (see, for instance, Blass 1992).

Definition 3.8 Multiplicative disjunction (Par)

Par — is thegame combination AOB == (= A0 = B ), where (see Figure 3.3):

* Maps=Mans

e Ao labdling function: Proponent has to move if and only if he has to move in both games,
otherwise Oppaonent hasto move

»  Pappistheseat of vaid positions (admissible moves) constructed as follows:
1) If it is Proponent'sturn to move he can move in any possible diredion (during histurn heis

allowed to movein both components, and hence he candways switch the game)

2) If it is Opponent’s turn to move she can move only in the mwmponent where it is her turn to

move (note that if it is her turn to movein both components, she can switch the ganes)
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e W, istheset of al winning for Proponent branches that equal to unionof thewinning branches
of the @mmponent games (i.e. for Proponent enough to win in one of the mmponents of the
resulting multi plicative branch).

Winning strategies

Proponent and Opponent switch therolesin comparison with the tensor games.

3.4 Gameswith several multiplicative operators
The multi plicative operators yield complex states that were considered in previous sction. It can gve rise
to the foll owing questions:

— how to determine who has to movein such games,

— inwhich componentsthe player can switch.
The first question has quite an evident answer: we have to count from the lowest level of sub-games whose
turn it is to move acording to atomic game schedule and multi plicative connectives. An example of sucha
counting is depicted in Figure 3.4.
The next question is easier to find out now we have an answer to the first one. A player can make a switch
to those atomic games where both shefhe has a move and in each subformula of main formula that include
this game she/he dso hasto move. See Figure 3.5.

Game: (Ap-A)o(BO-B)
AA,A_,A,AB,A_,B: (@) P P (@)
Aro-a,ABo-B: @) @]

Apo-AOEO-B): (@]

Figure 3.4 Labelling function for games with several multiplicative operators
-B 0O B A O —|A B O —|B
Pc 0] ?O i

Figure 3.5 Admissible atomic plays for switcher
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4 An extension of Game Logic with Parallel Operators

Linear Logic has two-player game semantics, and contains multipli cative operators: tensor and par. Game
Logic aose from Propostional Dynamic Logic and was introduced by Parikh (1985) as a language to
explore games.

The language of Game Logic has two congtituents, formulas (propositions) and games. A sat of
atomic games 1 o and a set of atomic formulas @  are d the basis over which we can define games tand
formulas ¢ (Pauly, 1999):
m=g|¢ ?|m; w|nd | |Tf
o:=0p [-¢|oT¢ |
where pd® candg 0O/7 o. Also the following equations arevalid

T=-0,

[M¢ = -0k,
oY :=-(=¢ 0y),
¢ - Y=-000.

In the chapter we introduce semantics, syntax and axiomatics of parallel operators for Game Logic, basing
on definiti ons for multipli cative operators of Linear Logic.

4.1 Preliminaries
This section contains general mathematica definitions, which will be used in this chapter.

Multiset is a set-like object in which order is ignored, but multiplicity is explicitly significant.
Therefore, multisets {1, 2, 3} and {3, 1, 2} areequivaent, but {1, 2,3} and {1, 1, 2, 3} differ. Givena &t
S, the power set of Sis the set of al subsets of S. The order of a power set of a set of order nis 2". The
power set of S can be denated as 2° or P(S).

List is a data structure onsisting of an ordered set of elements, each of which may be anumber,
ancther lig, etc. A ligt is usually denoted (ay, ay, .., an) or [, ay, .., a,[J and may aso be interpreted as a
vector. Multiplicity matters in a list, so (1, 1, 2) and (1, 2) are not equivaent. Proper List is aprefix of list,
which is not theentire list. For example,consider alist [1, 2, 3, 40 Then [1, 2, 30and [Cl0are proper subsets,
while 1, 2, 3, 4l@nd (1, 2, 50are not. If p and q are the ligts, then g < p will denote that q is aproper list of

p. The notation g < p is conventionally used to denotethat g = p,or g < p. A list x of the set of lits Sisa
maximal list of theset of ligsif and only if it is not a proper list of any list from the set.

A treeis amathematica structure, which can be viewed as either agraph or as a data structure. The
two views are euivalent, since atree data structure @ntains nat only a set of elements, but aso
connections between elements, making wp a tree graph. A tree graph is a set of draight-line segments
connected at their ends containing no closed loops (cycles). In other words, it is a smple, undirected,

connected, acyclic graph. A tree with n nodes has n - 1 edges. Conversely, a connected graph with n nodes
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and n- 1 edges is a tree. Maximal Sub-Tree for given node of tree is a sub-tree that contains al sub-

branches, arting from the given node of theinitial tree.

4.2 Game model and game structures

In this sction we define a game structure. It is a forma genera definition of game. The definition is
adapted to gpplication with the parald operators. For this purpose we involved specified mask function.
Besides, we discuss the differences between winning strategy and ¢'-strategy, which is an extension of
winning strategy for a game model of Game Logic. At the end of the section we define the game model for
GameLogic with Paralld Operators.

4.2.1 Game structure

We consider the games between Propanent (P) and Opponent (O), and define agame tree & a following

game structure.

Definition 4.1 Game structure

A game structure G is defined by thetuple (S, M, x, A, R,u”, u°), where

1) S={s, S, ..., S} isafinite set of states

2) M={my, my ..., m}isafiniteset of dl posgble atomic moves

3) R={q%q" ..., q" isaset of admissible sequences of moves (histories, or branches) ;
asequenceof movesisalist
IfgORandp<qthenpOR

4) x:R - Sisatracefunction defining a state that we can achieve by fixed history

5 A S - {P, O, E} isascheduling function, which determines for each state who has to move &

the next tum; for al final states f, which haveno successors: A(f)=E
6) S - {T, L} isaspecified mask function for Proponent

7) p%:S - {T, L1} isaspecified mask function for Opponent

A part of aseguence of moveswewill call a ssgment if only one player has movesinsidethis part.

We may define an atomic game. In spite of atomic statements used in Logic and atomic moves in
Game Theory, atomic games have an internal structure, which neverthdessis simplest anong the other
types of games. The structure has an influence on the winning strategies of the players. An atomic game is
considered to contain only such game structures for which specified mask function of Proponent coincides
with that of Opponent. The statement is true dso for game structures of al non-paralel games. The reason

for thisweexplain in thethird clause of remark to the Definition 4.14 for tensor game.
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Example of a game tree.

Figure 4.1 A game tree. The set of states is represented bycircles (with Opponent turn to
move), squares (with Proponent turn to move), and p oints (nobo dy has to move). Arrows

represent the set of moves. Bold arrows show Proponent’s ¢'-strategy.

In Figure 4.1 we depict a general example of game tree. Game structure in this case has the following

content.
1) S={s% % %S}
2) M={my, my, my}
3) R = {00 el g fno, ML) Koy, mol) Ty, my [
4) x(OO = so; X (0ol = sz X () = S35 X ([N, M) = Sg; X ([iNg, Mol) = S3;
X(0g, My = 54
5) AM2)=P;A(8)=0;A(2)=0;A(ss)=E;A(s1)=E
6) H(s)=T;M(2)=L;u(s)= Lin(s) = Lp(s) =1

7) B =T s = Lipo(s) = L () = L p(se) = L

Game structure @n be gplied to the different types of game. Later on we will present axioms for given
semantics, but the akioms are nat valid for al types of game. Below we &press necessary types through the
given game structure.

Besides, during further discussion, we will call ataken sequence of moves x, such that [p: (pxORy)
O (Xx(p)=9) O AA{X«{X))=E), aplay of game 1tfrom given states.

Definition 4.2 ¢'-zero-sum game
A gameTtis a¢’ -zero-sum from given state s = x(p) if and only if
OgORe(((p<a)O(A(a) =E)) -
(0 ORe((pP=1) O(r<q) O((WnlXelr) = T) O (W lXel ) = T)))
Remark. Why ¢'-zero-sum
We cal such type of games ¢’ -zero-sum because it seems to use an ideology of zero sum game
taken from the games which use a terminology of winning strategies and applied to the games with

language of ¢'-strategy (see Definition 4.7 below). The idea is that two-player can rot loose or
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win smultaneoudy, but may have adraw. In aur case, we consider reaching a state where ¢ is
valid for ether player (or in other words, that function i is determined for both players) asa draw

that is quite naturals. Therefore we follow theidea of zero-sum games.

Definition 4.3 Determined and undetermined games
A game 1tis determined from given state s if and anly if it is possible, starting from that state, to
present a ¢'-strategy (see Definition 4.7 below) for one player or a '-strategy for the other

(Y==9). Otherwise the gameis undetermined from given sates.

4.2.2 Winning branch and winning strategy
The notion of winning strategy plays key role in the semantics of game theory. For given game structure'y

it is possible to determine aset of winning states or a set of winning sequences of moves for each player:
W,", W,°. Player can achieve a winning position (state) of a game under the influence of different reasons.
If it happens because her/his competitor made amistake during the game, then we @n say that the winner
has a winning branch, which he followed a the game. If the player can achieve awinning pasition
irrespedive of mistakes of the competitor then we can say that the player hasawinning strategy.

Game structure, defined in subsection 4.2 , alows us to play games not only from the initid state;
for ingtance, in chess we have an opportunity to decide endgame problems. It can be useful, because even if
we ould nat find awinning strategy for either player in full chess game, we @n find a winning strategy in
most of chess endgames. Therefore, below we give precise definitions of the ‘strategic' notions, which can

be considered from the given state of agame.

Definition 4.4 Winning branch for the given state s
Player NO{ O, P} has awinning branch in the game y starting from state s if and only if thereisa
sequences of moves p in gamey such that s = (p) and thereis x such that Cpx 00 W,

Definition 4.5 Winning strategy for the given state s
Player NO{ O, P} hasawinning strategy in gamey starting from state sif and only if
OpOR(X(p)=sOOr ={x: px00OR, O Oy<xA(x(m®y))=N - (Om,mOM, Oz, 2
(ymz00 R O Omz00 R) - x = (mz00 imz0))} Ox (XOT O A(x(X)) = E) -
[px000 W)
Thesubtree T is awinning strategy for the given state.
If a game has a winning strategy for given state s, Definition 4.6 gives description of it in terms of subtree
that corresponds to the winning strategy. The definition aso shows whether the winning strategy exists.
The subtree of winning strategy can be obtained from the tree that corresponds to the game starting from
state s by eliminating some (but not al for each node) of its subtrees that start with moves of player N. All

of the remaining outcomes of the mnstructed subtree haveto be in thestriving for N states.
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Consider gpart the formula given in Definition 4.6. We begin a game from gtate s =x(p) that has to
be reached by admissible sequence of move p. We ae looking for the tree T that starts from state s and
copies dl admissible sequences of moves of subtree [pxC R, except in those which are the dternatives for
the player N moves A(x((pyD) =N - (Om, m; O M, O z, z (IMz,00 R 0 mz00 R) - x = (myz,0
0 ymyz0). Besides, al maxima sequences of moves of the tree has to be in winning set of player N: Ox

(XOT OMX(X)) = E) - Dox W,Y)).

423 ¢'-strategy

For gpplication in game models we have to extend the notion of winning strategy to the notion o ¢
strategy. But first we determinethe notion of X -strategy.

Definition 4.6 X- strategy for the given state s
Player NO{ O, P} has an X-strategy in game y gtarting from the state s if and only if it is possible
to construct a winning strategy for the player from the state s, which all outcome states would
belong to X, where X isaset of sates.

Definition 4.7 ¢'- strategy for the given state s
Player NO{ O, P} has an ¢'-strategy in game y starting from the state s for model | if and anly if
she/he has an X-strategy, and for al states sSCOX and dl their sucoessor states (if their exists):
l,sE= ¢.

Notion of ¢'-strategy plays key role in definition of game model and hencein validity of axioms. Therefore,

consider how ¢'-strategy can occur at the games.

Each player can have in a game 1t ¢'-strategy, or ('-strategy (where y=—¢), or both of them, or
nothing.

Definition 4.8 Strategy couple

Determine astrategy couple as (X, Y)E , Where X is a sat of strategies which has Proponent in
0

game T, starting from the state s, (namely ¢'-strategy, or '-strategy (where Y= ), or both of them,
or nothing), and Y — for Opponent.
However, not al of the mmbinations are represented in gven types of games. Thus we have to examine dl

possible cases.
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Figure 4.2 Occurrences of ¢-strategy and y-strategy (where Yp=-¢) in a game when the

game starts from the last node.

Definition 4.9 Shadow of strategy couple
We will cal a Bodean quadruple shadow of strategy couple if it is the following projection of the
strategy couple:
> first element of tupleis true if Proponent has a¢'-strategy; otherwiseit false,
» second dement istrueif Proponent has a'-strategy; otherwise it false,
> third dementistrueif Opponent hasa ¢'-strategy; otherwise it false,
> fourth element is trueif Opponent hasa'-strategy; otherwise it false.
First, consider the cases when a game starts from the last node. We assume that in each state of the
game either function ¢ is valid or its negation, but nat both of them. We supposed that =-¢; then we hae
to check only the combinations of states where the functions are valid and of the players moves as it is

depicted in Figure 4.2. In game a Proponent has ¢'-strategy { (o} ¢, and '-strategy { [0} v Wheress
Opponent has none (the shadow of strategy couple for thisgameis (T, T, 1, 1)). In game B the picture is

opposite (the shadow of strategy couple for this gameis (L, 1, T, T)). Gamesy and o (as€ and 1) are

equal in this sense. In y Proponent has ¢'-strategy { (el [y} » and Opponent has the same (the shadow of
strategy couple for this gameis (T, L, T, L)). In & Proponent has '-strategy { ino[) [y (3 ,, and Opponent

has the same (the shadow of strategy couple for thisgameis(L, T, L, T)).
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Figure 4.3 Occurrences of ¢-strategy and y-strategy (where Yp=-¢) in a game when the

game starts notfrom the last node.
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Next, examine the genera case. Consider the nodes, which lead to the games with shadows of
strategy couples aswe had in Figure 4.2. Let us check whether any combination of such games givesa new
shadow of drategy couple. In Figure 4.3 we draw up a sufficient amount of graphs to see that any
combination of games does not give anew shadow of strategy couple™. For instance in game T Proponent
has a ¢'-strategy { o X g, MK pa}e and W'-strategy { X ya, X yq}, Whereas Opponent has none;
hence, the shadow of strategy couple for thisgameis (T, T, 1, 1) which isequa to the shadow of strategy

couple for game a. It is easy to seethat we can not obtain a new shadow of strategy couple without specia

assumptions. Now we @an makethefollowing claim.

Claim 4.1 Shadow of strategy couple for determined games

The shadows of strategy couplefor finite determined games have the following va ues:
(T, T,L,1)
2)(L,L,T,T)
3(T,L,T,1)

AH(L,T,L,T)

Obvioudy we @n nat have ashadow like (T, T, L, T) or (T, T, T, T) anytime, because it is impossible
that Opponent would have a\'-strategy whereas Proponent has a ¢'-strategy. Indeed, the fact that one
player has a strategy to achieveagoal entail sthat the other player can not achieve an opposite goal.

However, the four represented cases are not enough to express the features of parale operators
(section 4.3.2 ) that we will discuss in subsection Claim 4.2. The reason is a copy strategy that players do
not need if they have aty other drategy in the playing game. Thus, to have areason to apply a opy
strategy we have to find away of appearance of shadow inform (L, 1, 1, 1).

Such a shadow can appear in infinite games, like it is shown in Figure 4.4 game a, and in games
with imperfect information shown in game 3. In such games we @n dso dotain a shadow for which only

one element is true. In case of a, if we asumethat s, is final state and ¢ is valid in the state then we obtain
the shadow of strategy couple (T, L, 1L, 1). In case of 3, if we predetermine that in state s, ¢ is valid then

we obtain the shadow of strategy couple(L, L, T, 1).

" Only for the Figure 4.3, dots in the graphs are not the final states, but correspond to the starting states of

the games pointed out in the leaves.
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Figure 4.4 The cases when the shadow of strategy couple is equal to (L, 1L, 1, 1).

Claim 4.2 Shadow of strategy couple for undetermined games
The shadows of strategy couple for undetermined games can be ejua to one of thase of determined

gamesor one of the following:
(T, T,L,1)
2)(L,L,T,T)
3(T,L,T,1)

AH(L,T,1,T)

4.2.4 Theroleof copy strategy in model distinction of operators

In this subsection all discussion will concern ¢’ -zero-sum games for parallel operator, which are played
from the given state. It does not mean that the games, which constitute a paral el game, haveto be ¢’ -zero-
sum. That would be confirmed by the Figure 4.6 if you will predetermine function p* or p° for state s, of
game 3.

First of al consider the influence of the assumption that the game structure is determined on the
semantics of parallel operators. If a game is determined then for a given game we @n say in advance
whether a player has a ¢’ -strategy for this game or not. This means that we do nd need to apped to the
peculiarity of paralel operators that lies in switching between the games to find a ¢’ -strategy. If a player
knows in which game she/he has a ¢’ -strategy, she’he @n choose the game immediately. Furthermore, it
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will mean that we lose dl semantic digtinctions in game mode between operators of choice N, U and the
paralel operators O, O respectively. The opportunity to leave one of the two component games of a paralel
operator without playing gives rise to the equivalerce.

If we suppose that the involved games are undetermined then the search of ¢’ -strategy for choice
operators reminds us of a Russian Roulette: when pulling the trigger you do nd know what you will get
either a bullet or a Muscovite maiden. On the contrary, switching function of parallel operators gives a
chance to impress the Muscovite maiden without being shot through brains. The tance is based on the
external, towards the @omic game structure, procedures of constructing ¢’ -strategy. We will call such ¢’ -
strategies structural. The well-known copy strategy is one of them. Obvioudy, if Opporent will play
od-a when the components of tensor are undeterminedgames andif she/he copies moves of one game to
another then it givesa ¢’ -strategy, andit isacopy strategy.

Consequently, we found that the structura ¢' -strategies contain peculiarity of parallel operator
towards the operators of choice. However, the gpearance of structural ¢’ -strategies for semantics of the
paralel games causes delicacy in definition of the aiomatics. Semantics of game model is supported by
the notion of an existence of ¢’ -strategy for the game. Structurd ¢’ -strategies are mmponents of ¢’ -
strategy; hence they provide an indirect influence on the game model. On the other hand, the structurd ¢’ -
strategies are not completely determined. Nobody can protect against inventions of new structural ¢’ -
strategies inside the determined structures of paralld games. In this way, even if we will find a sound and
complete axiomatics for the given structural ¢’ -strategies, the invention of a new one can not guarantee that

we will save the completeness of axiomatics.

4.25 Gamemodel
In the basis we put the game semantics introduced by Pauly (1999) for Game Logic without paral€lism.
Given agame model | = (S{G(a, s) | alllT ¢ and sUS}, V) , where Sis a set of sates, G(a, ) are game

structures (determined dynamic games) on S, V : @ o — P (9) is the vduation function, define truth in a

game model:

l,sEp iff pOdfigand sOV(p)

l,s=-¢ iff I,sE

l,s=¢0Y iff l,s=e¢ or |I,s=U

I,sE [l iff Opponent has a¢’ - strategy in game G(1, s)
I ,sE Ot iff Proponent hasa ¢’ - strategy in game G(1t, 5)

where ¢’ := {sOS|I,s& ¢}.
Game structure defined above can be included in the definition of game model as follows. In our

notation G(1t, ) isagame Ttthat is played from the given state s, and which is determined by correspondent
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game structure. States of the model are equd to the states of game 1t We can establish the strict connection

between valuation function V : @ , — P (S) and specified mask functions for Proponent p™: S - {T, L}
and another one for Opponent (depending on whose ¢’ -strategy we would like to explore). For instance,
suppose that player N has awinning strategy in game G(1t, 9). If we will choose a vauation function V : ¢
— P (S) such that it is determined for at least al states that are outcome states of the winning strategy then
the player N will have a ¢’ -strategy in the game. Consequently, the valuation function can be connected
with outcome states of the winning strategy. The states, in turn, depend on thespecified mask functions.

4.3 Game operatorsfor game structure

4.3.1 Non-parallel operators
Below we define some basic operators of Game Logic in terms of game structure determined in previous

section.

Definition 4.10 Dual game
Dua gamey = 1t is a game structure, which can be obtained from the structure of game Tt after the
switching of functions A and p between the players as follows:
Os0S: A =P - A(9=0) O
A9 =0 & A9 =P) O
A9 =E «A(9=E)O
(Wn(®) = 1%(9) O
(1%(9) « 1Y)

Remark. Effect of i« [1f] on the expression of winning, ¢'-strategies.
There is a fundamental game theoretic idea that if a player can succeed in a game, then her/his
competitor can succeed in the dual game. Let us look at the effect of this idea on the expression of
winning and ¢’ -strategies, and game structure for non-parallel games.
1) If wetak in terms of awinning strategy, then in dual game objects of interests of Proponent
and Opponent remain the same, namey their own win. Meanwhile the states, which
correspond to these wins, are changed (the players are interchanging by the sets of their

winning branches).
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2) If wetalk in terms of a ¢’ -strategy, the object of interest of Proponent in a game becomes the

T % - %
m m,

n
NN M/‘\
bRk o Me, Rk a e,

S e S e S e
¢ 1 P ¢
WP WP we w¥ WP WO WP W°

Figure 4.5 Changes in game structure for dual game.

object of interest of Opponent in adual one (and vice versa). This means they areinterested in
achieving a state where ¢ is valid (or not valid). Simultaneoudy, the states where ¢ is valid is
not changed.
From this it is easy to see that in both cases we have the same result, and it is the reason why we
have a slightly different description of elements relating to winning and ¢’ -strategies in game
structure. In Figure 4.5 we depicted the situation of discussed changes in dual game. As you can
see, ¢' -strategies may change from correspondence with winning strategy of a player to her/his

loosing strategy even inside one modd.

Definition 4.11 Test game”

Test gamey = §?isagame structure, which satisfiesto the following properties.
1) Sy={s}

2) M,={0

3 Ry={

4) XM=

5 M=)=E

6) Wy(s)=1L

7) UWD=T o Ll d

Definition 4.12 Union game

Union gamey = aU is agame structure, which satisfies to the following properties.

1) $,=S,U S U sy

O1t will not be used in what follows
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2)

3)
4)

5)

6)

7)

M,=M,UM;UO0U 1
R, =My DR, U [ARs
OpU Ra: X/((OIP) = Xa(p) O
UpD Re: X(CLIp) = Xa(p) U
Xv(D) = sy

OsOSq: A(S) = Aa(9) O
OsOSg: A(s) = Ag(s9) O
A(sw) =P

O0s0S.: HWs) = We(9) O
OsOSg: u7(9) = (9
Os0S.: HOUS) = u%(s) O
Os0Sg: KOy(S) = ()

Definition 4.13 Composition game

Composition gamey = a;3 is agame structure, which satisfies to the following properties.

1
2)
3)

4)

5)

6)

7)

S, =S, U S; (thestates of B hasto be renamed for each new start from o)
M, =M, U M; (themovesof 3 hasto be renamed for each new start from )
Ry=R, U RGD ={p0 R Aa(Xa(p)) =E) O (p-Pa(Xa(p)) =1)0 (p—oa(Xa(p)) =1)} Rg
OpURa- R 5 X!P) = Xa(p) O

OPUR s Re (Re# 0) — (xlP) = Xe(Pl ¢ ) U

((Rg=0) - (X«(P) = Xa(P)))

OsOSq: A(S) = Aa(9) O

OsOSg: A(s) = Ag(9)

0sOS,: u°(s) = pFu(9) O

Os0Sg: po(s) = uFs()

0SOS,: 1O(S) = u(s) O

OsOSg: HO((S) = u%(9)

4.3.2 Parallel operators

In this sction we suppose to extend the existing language of Game Logic to parald operators. We will

introduce an analogue of multiplicative operators from Linear Logic, which were described in part 3. We

have called new operators parallel; one of them is tensor, the other is par.
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Analogue of Tensor game
Tensor game is a type of parald game, in which the mmponent games can be played aternatively and the

switching between the gamesis governed by Opponent.

Definition 4.14 Tensor game
Tensor gamey = a3 is agame structure, which satisfies the following properties.
1) S,={s= (S, %): % 0S.,s0 S} isaset of the multiple’ states; multiple state is a multiset;
If Sy and S;; contain equa states, they haveto be renamed.
2) M,=M,uU Mg if a and 3 have equal namesfor somemoves, then the moves haweto be reramed

(evenif a = B); we need it to know to what game eah ingantiation belongsto.

3) Ry:{q:q|MaDRa ad q|MBDRB O Opx((px<qg O xOM,) -

A (PN =AXl(Ply ) = Ply #pxl, ) formii{a, B}

(it means that the player who has to move a the aurrent state of game y can make moves only in
that component o or B where she/he has current right to move; inequdity a the right part of * &’
means that the move x is in component 11, equality at the left part of * ~’ means that the player
who has to move next from the state X, ( p ) of game y can make amovein component 1)
| ", denote projection q' that retains only moves m [ Mp);
notethat in spite of multiple states, we do not propose multiple moves

4) xR - Sy;
Da0Ry % 0Sa, $0SpifXa(aly, )=siandxp(al,, ) =sthenx,(a) = (s.5)
5 A\:S, - {P,O};

Os0Sq, s 0Sg:

A (S,5) =0 o (Aa(8:) =0 OAp(s3)=0) O
(Aa(sa) =EUAs($)=0) 0
(Aa(sa) =0 OAp(ss) = E)

A(,%) =P o (Aa(s) =P 0 Ag(s) =P)

A (s,%)=E o (Aa(sa) =EDAp(ss) = E)

6) WS, - {T,1};
Os0Sq, s 0Sg:
Wy (s, 5) = MFa(Se) Opfa(sp)

Y We use the multiple states to save information about the active positions of dl involved but abandoned

games. The positions unambiguoudy allow returning to the abandoned games.



7) Uov:sv -{T,1};
Os0Sq, 0 Sg:
Oy (Sa,8s) = M (sa) OM%(sp)

Remark. Some properties of scheduling and specified mask functions for parallel
operators.

1) Scheduling function A for paralel operators plays the role of switcher. That is, it determines
where the players have to move. For instance, it specifies, in case of tensor, that if Proponent
has to move in one of the mmponent games, then shefhe has to move in tensor game.
According to this requirement Proponent can have an option to move in both components only
at the initial segment of tensor game. At this moment she’he actually may choose which game
to play, because only the scheduling function controls the switching between games. At the
other moments of tensor game, when both players can move in component games according
to the scheduling function, Proponent has to move in the tensor game. However, in such
moments Proponent can play only in one of thecomponents, and hence she/he will not have a

choice where to play. After her/his playing, when the turnsin both components will belong to

u, 1 WO,
¢
a So Be So
m;/\inl Mo n
St e o Sie o2
o P
B, lJ_O’ uP
¢
m=alp = a‘0p?

p° (S0, %) " (S0, %)

@) m m ®.) m
(s1, o) (S2 %) (s1, 50). G
no’/ n nml ny \\nl n(/ \21

sus)® () ° *(®s) ‘(29 bs)°® (1) ° *(2s) ‘(=229
©9  ®) (.4 @0  ©) ()

W u u e uP o’

u W

Figure 4.6 Distribution of specified mask function for parallel games.
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Opponent, it is Opponent’ s turn to movein tensor game. In that situation Opponent will have
the option to choose between two games, because in both of them it is her/his turn to move.
Evidently the situation in which it is Proponent’s turn to move in both components will never
happen again.

It seems paradoxical that Opponent has more freedom for choice with scheduling function
determined by conjunction (in tensor game) than Proponent with scheduling function
determined by digunction, because mnjunction supposedly gives bigger restriction than
disiunction!

2) When the cmponent games of a parallel operator have a complex internal structure
(including combinations of parale operators), scheduling function A aso specifies where a
player has to move. Thus, if the player can move in given component game ad the
component game has its own interna structure with parale operators, then the player has to
choose the main parald operator of the mmponent game and to apply the reasoning for the

scheduling function to the leve of that operator. If the player can not move in the @mponent

a B
.S) to
Mg my No Ny
. ./ \sl\ ) . / \t* P
m, ‘ H H H
S e b
U
adp
m My No n
() g (st to). (S0 t) O (st) O
LA
(S, o) (Sz, t) (2, tl) (51, tz) ° (51, tl)’ (22O (s tz)o (2t)O (s t1)°
(ss, tz) Ve (Ss, tl)' (ss, t) :1 (53, tl) °s (Ss, tz)° (Ss, tl) °p

Figure 4.7 Game tree of a tensor game alp obtained from two games a and B. We add
multiple states to the elements depicted in Figure 4.1. Non-filled boxes, circles, and dots
(together with substitution of Opponent’s move on the place of initial node) correspond to

the par game tree aOp.
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3)

game, then she/lhe can not move in any element of interna structure of that component even if
she/he has turn to move there.

For atomic games specified mask function p has to coincide for both players, otherwise it will
mean that for one player the state validates ¢ whereas for the other this is nat the @se.
Meanwhile, we need such an opportunity for the case of paralldl operator. It is a reason why
we determined this function. Parald operators impose different requirements on the
achievement of goals for each player. Thus tensor demands that Proponent could win both of
the mmponent games, whereas for Opponent it is enough to win only one of them. Par
contains opposite requirements. So, instead of saying that p corresponds to the states where ¢
isvalid (it is true only for atomic games), it is more arrect to say that p is valid in the set of
states which dstribution in a game tree gives a task that the player has to complete in the
considered game. The task of an atomic game for either player is to achieve astate where ¢ is
valid, and it is a reason why U coincides with such states. In case of tensor game the task for
Proponent is to achieve astate where ¢ is vaid in both components games, whereas for
Opponent it is enough to find one such component. Herce domains p° and p” do not coincide
in this case. In Figure 4.6 we depict an example of the distribution of specified mask function
in differenttypesof game.

Example of a tensor game tree

In Figure 4.2 we give an example of tree for tensor game. Game structure in this case has the following
content (y = adp).

1

2)
3)
4)
5)
6)

7)

S, = {(s0 1), (2 1), (S1, to), (S0 1), (S0, 1), (Se, to), (S2 B2), (2 1), (Su, to), (S0, 1), (e, o),
(Ss, t1).}; when S, = {0, S, &, S} Sp = {to, 1, t};

M, = {my, my, my, N, Ni}

R, = { O] [no) [y [ g, my,L) [ng, Nl Cing, nyl) Cing, nolJ) Ciny, my) Cing, no, myL}

XD = (S0, t0); Xy ([l = (2, to); Xy (D) = (S, bo) ..

Ay ((s0,t0) ) =P; Ay((s2: 1) ) = O; Ay((S1, 1) ) = O5 Ay ((So 1) ) =Py Ay (s, 1) ) = E ..

Wy t)=Tiny (s t)=T

O (S t) =T Uy (s, t) = T pOy (su ) = T

Analogue of Par game

Par game is a type of paralel game, in which the component games can be played alternatively and the

switching between the gamesis governed by Proponent.
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Definition 4.15 Par game
Par game y = a0 is a game structure that is distinguished from the tensor game structure determined
in definition 4.3 by the description of the following functions:
) A S, - {P,0O};
Os0Sq, s 0Sg:
A(,%)=0 o (Aa(s:) =0 U Ag(s3) = O)
A (S,8) =P o (Aa(s) =P OApg(s3)=P) O
(Aa(sa) =E OAg(ss)=P) 0
(Aa(sa) =P 0 Ag(s) =E)
A (S,5)=E o (Aa(s) =EOAs(s) =E)
2) WSy - {T, 1}
Os0Sq, s 0Sg:
Wy(Sa, ) = Ha(s) OHB(s)
3) %S, - {T, 1}
008y, 50Sg:
KO8, %) = 1% (s ) Op(s)
Further changes in game structure concern functionR, = R(A,).

Lemma 4.1 Stalemate states

The game structures introduced in this sction do not contain staemate states, in which the game is
not completed and a player who hasto move an notdoit becauseshe/he has no admissible moves.

Pr oof

In an atomic game structure we defined the states, which do not contain moves as final. By applying
paralel operators we do not obtain a stalemate state, because by definition of tensor and par a the find
states of the game neither player has to move & in atomic game structure. Besides, it is easy to see that we
can achieve the final gtates of both component games. Indeed, in parald games a player has a move if
she/he has a move in one of the component games, and hence she/lhe has something to do and deadlock is

impossible.

Lemma 4.2 Admissible branches
The projections of the set of admissible branches of a parale game on to the moves of component

games contain al admissible branches of the component games.
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Pr oof
By lemma 4.1 a paralledl game does not contain stdemate states, i.e. a deadlock is impaossible.
Because we can finish both components by any branch, al of them have to be excapsulated in the set of

admissible branches of the pardle game.

4.3.3 Undeterminacy and lack of information

In Section 4.2.4 we discussed that the copy strategy has no sense in determined games. Here we introduce

the akiomsfor copy strategy, considering lack of information as areason of undeterminacy.

Copy strategy axioms:
(s 9 [t (4.1)
(s 9= O (4.2)

Theorem 4.1 Soundness of axioms for finite games with imperfect information

Axioms (4.1), (4.2) ae sound modulo ¢-strategy (Definition 4.7) with respect to arbitrary
interpretation o finite games with imperfect information and according to Definition 4.1, Definition 4.10,
Definition 4.14, and Definition 4.15. For axioms (4.1), (4.2) we demand an extra condition, namely that the
games i1t and Tt have to be ¢'-zero-sum.

Pr oof

41 (s9= [mOr]
It is trivid when TiTt is ¢’-zero-sum games. It means that by each branch either Propanent or
Opponent can achieve a sate where ¢ is vaid and in al successor states (if their exists) ¢ is dso
valid. For Opponent in tensor game it is enough to achieve such a state only in ane of the
comporents Tt or Tf, and shelhe @n switch between them. Suppcse Opponent will play
aternatively in both components, copying moves from one to another (for that reason 1t and Tt
has to be played from the similar state). When the games are finished, Opponent occurs in such a
multiple state (s, ) of game Tt that for state s;: Px(s1) = T wheress for state 5! po(s) = T
(or vice versa), because s, and s, are equal states of dua ¢'-zero-sum games. Hence that is the
definition of Opponent ¢'-strategy.

(4.2) Similar to the proof of (4.1)
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Figure 4.8 Example of copy strategy (stressed by bold arrows) of Opponent in tensor gamestructure
n7f. Herethe states s; and s, arein the oneinformation set for both Proponent and Opponent, i.e.

they can not distinguish the states.

4.4 Axiomaticsfor parallel operators

In this sction we present some aioms for games a, 3, y, 7 and for arbitrary formula ¢. The aioms for

three types of games (infinite (two types), and finite determined) follow by proofs of soundness.
4.4.1 Axiomsfor infinite games

Arbitrary infinite games

Syntactic axioms:

= @ - [1]0 (4.3)
O - Ort)’o (44)
F O - -[1-¢ (4.5)

Symmetry and associative aiiomsfor tensor and par:

= OB ~ POl (46) = [aOPl¢ - [BOa]d (4.7)
= [@0RY ~ Bhal (48) = [aOB]¢ - [BOa]d (4.9)
F BOEDY0 ~ Qalp)Dyid (4.10) = [aOEOV]$ < [(aOR)OVId (4.11)



= OOEOY)0 - adp)Oyo (412) = [aD@EOY]¢ ~ [(aOR)OVIe (4.13)

Axioms of mutation:
E QoOR) ' ~ [OORM (4.14)
= [(aOB)¢ « [a‘Opo (4.15)

Parallel operators reduction axioms:
E OORHD - [mld 0D (4.16)
= [aOB]¢ - [a]9 O [Rld (4.17)

Theorem 4.2 Soundness of axioms for arbitrary infinite games

Axioms (4.3) — (4.17) are sound modulo ¢-strategy (Definition 4.7) with respect to arbitrary
interpretation of infinite games and according with Definition 4.1, Definition 4.10, Definition 4.14, and
Definition 4.15.

Pr oof
(43) 00 - [0
- Assume Proponent has a¢'-strategy U in game Tt

Wedefine astrategy T of dual gameTf' as T = U.
If U is ad’-strategy of Proponent in game T, then T is a¢'-strategy of Opponent in game Tt

Indeed, dua game mntains the same set of admissible branches. In addition, the turns of
Proponent in game Tt belong to Opponent in game 1. Also, in the states where specified mask
function o Proponent is valid in game 11, the specified mask function of Opponentisvalid in game
1. Hence, Opponent will havead'-strategy in T and by construction itisT.

—: Thebackward proof is similar.

(44 = @H - Q)
It obviously follows from Definition 4.10 of dual game, becausert= ().
(45 & O - -[mM-¢
The states where ¢ is valid, = ¢ is not valid (and vice versa). Since Proponent has a ¢'-strategy,
she/he @n reach a state where ¢ is valid and for al successor states (if they exists) ¢ is dso valid.
Hence Opponent can not do the same for function = ¢.
(46) = WOPRW - BOald
By definition of tensor game, the game-structures for a0 and 0o areequd.
Note that Proponent has a ¢'-strategies in tensor games ap and B0a if both of the games
o and B arefinite. Indeed, if one of them is infinite, then Opponent can keep playing in that game
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(4.7)

and hence in the other game Proponent will never reach a state where ¢ is vaid (the same for
successor states). Therefore Proponent will never complete ademand for ¢'-strategy in tensor

game a P for her/him. But it does not confuse equivalerce.

= [a0B]¢ - [BOa]d

By definition of tensor game, the game-structures for a0 and B0a are ajua. In case of infinite
initial segment, Opponent has a ¢'-strategy in the tensor games if and only if it her/his turn to
move in the segment. Otherwise Proponent will keep playing in the segment which can prevent
Opponent to reach a state where ¢ valid and for al successor states (if their exists) ¢ is dso valid.

But it does not confuse equivalence.

(4.9), (4.10), (4.13) Similar to the proof of (4.6).
(4.8), (4.11), (4.12) Similar to the proof of (4.7).

(4.14)

= QaOp)'® - BORD
By definitions of dua, tensor, and par games, the game-structures for (aJB)? and a0p? are
equal. Sincethe egudlity for the dements of game structures (adB)° and a®0IR" is nat so obvious
asin case of axiom (4.5), except seats of states and moves, wewill show thisequality in detail.
Letmt=a0p,y=1¢,0=0a%e=p% 0=00¢.
1) Weprovethat A\ (S, Ss) = Ao (Su»S3)-

O0s0S8q, 0Sg:

Show that A (S,Sg) =P « As (S, ) = P:

AN (%,8) =P o

AM(%,%)=0

(Aa(Sa) =O OAp(s) =O) U(Aa () =E UAp(55) = 0) UAa () =O UAg(s3) =E) <

As(s) =P OA(s) =P) DQs (%) =E DA () = P) D(As(s) =P UAe () =E)

Ao (Sa,8) =P

Show that A(sy, ) =0 « Ag (S, ) =0

M, S) =0 o

An(S,8) =P

(Aa(s) =P OAg(sg) = P) =

(As(s) =O UAe(s3)=0O) -

Ao (S,5)=0

Showthat A\(Sy, ) = E & Ac(S,S3) = E:

M&, ) =E

Al ) =E <

(Aa(sa) =EDAg(s) = E)

(As(s) =EUA(ss) =E) ~
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(4.15)
(4.16)

Ao(S,8)=E
2) Weprovethat p° (s, $) = K% (S, ):

Os0Sq, 0S8

KOy (Sa,88) = Wr(Su, $) = W () DR (S8) = Mo% () OB (S5) = M (S0, 5p)
3) Weprovetha u°) (s, §) = 1o (S, ):

008y, 0Sg:

MOS0 $) = Mon(Se,5p) = Ko (80) OROp(s) = M () DM (S5) = Mo (S, S)
4) Weprovethat R, = R, (notetha Rynp # Rynp, SeeFigure 4.7):

RV:RH:{q:q|MaDRa ad q|MBDRB O Opx((px<qg O xOMy) -

rXn(P) =Aa Xa(Ply ) = Ply %P, ) fornd{a, B}
RG:{q:q|M5DR5 ad q|MEDR8 O Opx((px<qg O xOM;) -

Moo (PN =A(Ply ) = Ply #PXly ) forvi{s g
Obvioudy, by definition of dua game, it foll ows that
Re=Rs,Rs=R;, My=M; M;=M,,
and by definitions of dual, tensor and par gamesit followsthat M= M.
Thus, to show that R, = Ry, it remainsto show that
0P An(xn(P)) = A (Xn(Plpy )) = AolXe (P))=Av(Xu(P1,, ))for ntia, B}, VI3, &
From clause (1) of the proof:
A=P) & A=0)O0Ax=0) » As=P)0Ax=E) » Ac=E) O
Aa=P) » As=0)0Aa=0) « A:=P)DAa=E) = As=E) U
MN=P) o Ae=0)0Ms=0) o A:=P)TAs=E) o (A\:=E)
Hence, An=An) « (A =Ay) suchtha (N =a) « (v=9)) 0((n=P) ~ (v=¢)
Similar to the proof of (4.14)
= WO — [ald OB
Let Proponent has ad'’-strategy T in tensor game alIp.
Define astrategy U of game o as a projection o the ¢'-strategy T, which contains only moves of

gamea:U=T |M . Also define astrategy V of game B as a projection of the ¢'-strategy T, which
containsonly moves of game3:V =T |M .

B
If T is a ¢'-strategy of Proponent in game ap, then U is a ¢'-strategy of Proponent in game a,
andV isa¢’-strategy of Proponent V in gamep.

Indeed, the fact that Proponent has a ¢'-strategy in tensor game a3 means that shelhe @n

achieve independently (because the switch of tensor controls Opponent) a and B states in both



(4.17)

games, where ¢ is vaid and in al successors (if they exists) ¢ is dso vdid. Hence Proponent has
¢'-strategies in both o and B, and by construction they are U and V respectively. U belongs to the
set of admissible branches of game a and V belongs to the sat of admissible branches of game 3,
because they were built by projection from T. In turn T belongs to the set of admissible branches
of game aldB which projedion by definition of tensor game belongs to the sets of admissble
branches of games a and 3.

Note that Proponent has a ¢'-strategy in tensor game a0 if both of the games o and B are
finite. Indeed, if one of them is infinite, then Opponent can keep playing inthat game and herce in
the other game Proponent will never reach a state where ¢ is valid (the same for succesor states).
Therefore Proponent will never complete a demand for ¢'-strategy in tensor game alp for
her/him.

Similar to the proof of (4.16)

I nfinite games with finite initial segment

Parallel operators reduction axioms.
= [a]¢ O[Blo - [aOP]d (4.18)
E O OMd - OB (4.19)

Theorem 4.3 Soundness of axioms for infinite games with finite initial segment

Axioms (4.3) — (4.19) are sound modulo ¢-strategy (Definition 4.7) with respect to arbitrary

interpretation of infinite games with finite initial segment and according to Definition 4.1, Definition 4.10,
Definition 4.14, and Definition 4.15.

Pr oof

(4.18)

—.

= [alo ORl$ — [abB]d
Assume Opponent has a¢'-strategy U in gamea or ad'’-strategy V in game.
We define astrategy T of tensor game a0 as T = U if Opponent has a ¢'-strategy in a, otherwise
aT=V.
If U is a¢'-strategy of Opponent in game a or V is a ¢'-strategy of Opponent V in game 3, then T
isad'-strategy of Opponent in game aJf.

Indeed, because the Opponent has the choice of which game to play in tensor game, shelhe
can follow according to where shefhe has a ¢'-strategy by the moves of the ¢'-strategy of that
game (a or (). This alows Opponent to achieve astate where ¢ is vaid in ore of the games.

According to definition of tensor game it is enough for her/him to have a ¢'-strategy in tensor



game alB, and by congruction it is T. By lemma 4.2 since U and V beong to the sets of
admissible branches of component games a and B, T has to belong to the set of admissible
branches of tensor game.

The aiom may not be valid if an initial segment of the game where Opponent does nat
have ¢'-strategy is infinite, and it is Proponent’s turn to move there, hence in the tensor game aso.
Therefore Opponent will never reach a state where ¢ is vaid and in al successor gtates (if their
exigts) ¢ isadso vaid, and it means that she/he does not hawve a¢'-strategy in this case.

(4.19) Similar to the proof of (4.18)

4.4.2 Axiomsfor finite determined games

Syntactic axiom:

= O - (10 (4.20)

Parallel operators reduction axioms:
E o OMPY ~ OB (4.21)
= [o]o O[B]¢ ~ [alpB]d (4.22)

Deterministic axioms:
= i OO ¢ OOt ¢ 0000 (4.23)
= [m¢ O[]-¢ O[rd-¢ O[r]e (4.24)

Deterministic axiomis stronger thanfor the copy strategy:

= (Gt 0G5 ¢ OO ¢ 0G0) - (GO 0 GOrE¢)(nO]¢ O [nO1t]-6)) (4.25)

Deterministic axiom changes the aioms (4.18) and (4.19) (in this case we have no distinction between

operators of choiceand paralld operators!):

F (Ot OO ¢ 00 ¢ O0C0) - ([o]¢ OB]¢ « [aOp19) (@ OBD ~ @ORD))  (4.26)

Theorem 4.4 Soundness of axioms for finite determined games

Axioms (4.3) — (4.26) are sound modulo ¢-strategy (Definition 4.7) with respect to arbitrary
interpretation o finite determined games and according to Definition 4.1, Definition 4.10, Definition 4.14,
and Definition 4.15.



Pr oof

(420) = O o ~[1d-¢

o According to the akiom (4.5)

—: If the game is determined and finite then the players can have ashadow of strategy
couple acording to Clam 4.1. Furthermore, if Opponent does not have y'-strategy (where | =
- ¢) then the shadow of strategy couple can be éther (T, T, L, L) or (T, L, T, L), and hence

Proponent would have a ¢'-strategy.

(4.21) & @ 0BD  GOpH

—.

Assume Proponent has a¢'-strategy U in game o and ad'-strategy VV in game.

We define adrategy T = T(U, V) of game aldf as a set of sequences of moves which is
constructed according to the clauses (3) and (5) of tensor structure gplied to admissible branches
U and V of gamesa and 3.

If U is a¢’-strategy of Proponent in game a, and V is a ¢'-strategy of Proponent V in game B, then
T isa¢’-strategy of Proponent in game a .

Indeed, athough Proponent has no choice which game to play in tensor game, shefhe can
follow where shelhe has to play by the moves of ¢'-strategy of that game. Since Proponent has ¢'-
strategy in both a and 3, and it follows from lemma 4.1 that deadlock isimpossible, and since the
games are finite, she/he can achieve states where ¢ is valid in both these games. Thisis enough for
Proponent to have ¢'-strategy in tensor game a P and by construction itis T.

The aiom may not be vaid if either of game a or B is infinite. Since Opponent can switch
the tensor she/he can keep playing in that game and hence in the other game Proponent will never
play and will never reach a state where ¢ is vdid (the same for successor states). Therefore
Proponent wil | never completeademand for her/his ¢'-strategy in tensor game a .

By axiom (4.16)

(4.22) Similar to the proof of (4.21)

(4.23) = Mip OO ¢ OOh¢ OO0

Obvioudy follows from the Claim 4.1 for finite games.
(4.24) Similar to the proof of (4.23)

(425) = (O OO ¢ O ¢ 00 D0) - (GO O[rOné )
() (O OGh¢ OO OGEG) - (Mo O[rf]~¢ O[m~¢ O [rf]9) by (4.3)

(i) (O OO‘'H¢ OO+ O00) - GO by (4.19)
(i) ([rd¢ O[rf]-¢ O[rd-¢ O[rt]9) - [IrE]d by (4.18)
(iv) (O OF'E¢ OOh¢ O00) - (GO O[ndn]é ) from (i), (ii), (iii)

(4.26) F (Ot) 0 I o DEH G OGD) - ((ald DIBIY « [aOPIP) (@D DPBH ~ HORD))



We will prove (Gt O 0Ch¢ O ¢ O GP9) - ([ad 0 P — @IPMD), the rest of the proof
has an ideasimil ar to the proof of axiom (4.25).

folp OB — OB isan axiom (4.19).

Consider [aOR — &l O BLG.

Suppose Proporent has a ¢'-strategy in alJp and has none in either a or . Then according to
Claim 4.1 Opponent has '-strategy (where s = = ¢) in both o and . Hence by (4.22) [a]d O [B]¢
o [aOB]e. We reach a contradiction: two-player can never have ¢’ and ' strategies

simultaneoudly in one game, including aIf3.
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5 Discussion

5.1 Structural strategiesfor parallel games

In the previous chapter we determined only one structural strategy, namely copy strategy for pardlé
operators. However, Linear Logic mntains operators of repetition which we have not considered. The
operators alow the determination of other copy strategies. It would spread ou the semantics of Game
Logic if we had taken it into account in the previous chapter. It is not even clear how many structura
strategies exist for given operator. Besides, in this section we offer an structura ¢’ -strategy for operators of
repetition, which we aso determine below. It is possble to extend Game Logic with gperators of repetition,
but we only sketch theidea

5.1.1 Operatorsof repetition

In this subsection we introduce the operators of repetition, which containsin Linear Logic.

Definition 5.1 Repetition "of course"?

R(A) = ( Mgy, Arpy Pray  Wrey )
Where:
* Mgy isthe partial Cartesian product of the possible moves  seMj : Mj x...x My, asit shown
in Figure 5.1. It isconstructedasfollows.
1) Taketheinitial state of game A asan initid state of the game with repetition.
2) The other states of the game with repetition can be in complex form, obtained by adding
extra-opened play of game A.
3) A state of agamecan havethefollowing successors:
- states, whose @mmponents are egual to components of the predecessor state, except
one, that is substituted by successor statein initial game
- state, whose components are equa to components of the predecessor state, but which
has one extracomponent, that isequal to theinitial stateof the initia game.
*  ARgp) labdling function: It is Opponent’s to move if and only if it is his turn to move in Al
opened games, otherwise it is Proponent’ s turn to move (note that if Proponent would have a
first move in the initid game then Opponent will not have awinning strategy, because

Proponent can continuoudly open anew game)

"By Girard' s (1987) notation



A
o

(04} (0}
'
R(A) or R(A)
aé > (0(1),05) ;(aévagvag)
;\ a; (a1.al) (a;.a?) (a7.al)
1 1 2 1 2

1 2 1 2 1 2
(asvao) (alval) (alyaz)

Figure 5. 1. The set of all possible moves in compound game with a multiplicative

repetition is the following partial Cartesian product of the initial game (superscript is the

number of the opened game, sub script is the number of movein the game)

P rny isthe set of valid positions (admissible moves) that is constructed as foll ows:

1) IfitisOpponent’sturn to movethen he an movein awy possible direction (during his tum he
isallowed to movein al of the cmmponents, and hence he an dways switch the game)

2) If it is Proponent’s turn to move then she can move only in the components where it is her
turn to move (note that if it is her turn to move in several components then she can switch the
games and open anew game)

W gy is the set of dl winning for Proponent branches that equal to intersection of the winning

branches of the initid game (i.e. to win the game, Proponent has to win in dl of the opened

components of the resulting repetitive branch).

Winning drategies

Here acrucia role has the fact: who starts an initial game. Indeed, if Proponent starts an initial game, then

she @n continuoudly open a new copy of the initial game and hence to keep the rights on move infinitely

long. Of course, in that case Opponent can not have awinning strategy in the @mpound game (but that

also does not give awinning strategy for Propanent). If Oppaonent would have awinning strategy at the

initial game (together with first move) then obvously he will have it in the @ompound game. In short
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instruction for that operator Blass (1992) wrote that for Opponent enough to win one of the opened game,
whereas Proponent has to win al of them.
Proponent has awinning strategy in compound game if she has the first move and has awinning strategy in

theinitia game.

Definition 5.2 Repetition "why not"

E(A):(Mﬁ(A),A Re&wPrR® WrR@®)

Where:

* Mg p=Mgy

* A g (n labdling function: it is Proponent’s turn to move if and only if it is her turn to move in
all opened games, otherwise it is Opponent’s turn to move (note that if Opponent would have

a first move in the initid game, that Proponent will not have awinning strategy, because

Opponent can continuously open anew game)

* P gy isthesetof valid positions (admissible moves) that constructed as follows:

1) If it is Proponent’s turn to move then she can move in any possible direction (during her
turn she is dlowed to move in all of the @mponents, and hence she @n aways switch
the game)

2) If it is Opponent’s turn to move then he can move only in the mmponents whereit is his
turn to move (note that if it is his turn to move in several components then he can switch
the games and open anew game)

* W gy isthe sat of dl winning for Proponent branches that equal to union d the winning
branches of the initia game (i.e. to win the game for Proponent enough to win in one of the
components of the resulting multiplicative branch).

Winning drategies

Proponent and Opponent switch the rolesin comparison with the repetition "of course" games.

5.1.2 Trial-mistake strategies

Copy strategy discussed in the previous chapter is based on the possibility to switch the games, which is
hidden in game structure in construction of the set of admissible sequences of moves. The possibility of
communication between the gamesis also important.

Trid-mistake strategy — another example of structural ¢’ -strategy — is based on the idea of
searching through the game tree. Trid-mistake strategy also concerns undetermined games. If we have
paradlel game alal...Oa (or aOad...Oa) with amount of opened games a close to the number of final
states of the game a, then we can describe tria-mistake strategy of Oppaonent (Proponent) as instruction for
an unique playing of game a in each goened game a. Hence trial-mistake strategy allows combing the

gametree and finding the winning branches.
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Asit is easy to see the mombination aOal...Oa (adal...Oa) could be changed by the pardlel
game with repetition gperator “of course” (“why not”). It would be interesting to adapt these operators
within the game modd.

5.2 Parallelism of Linear Logic and of Process Algebra
In previous chapters we analysed operators governing o parale processes in Linear Logic and Process
Algebra, and introduced the operators for Game Logic. In this sction have ashort discussion focussing on

switching that is aform of communication.

5.2.1 Non-communicative processes

In Linear Logic we can call i nstantiation of pardle operator non-communicative if it does not use any type
of interactions between the games like copy strategy. As we saw, Process Algebra outlines such types of
processes precisdly.

First of al it is seems that the Process Algebra @n better expressone-player games as opposed to
two-player games. We will keep different point of view, and assume that Process Algebra @n describe two-
player games, which are played by one player. However, since one-player games are the smplest, we begin
the description of nor-communicative instantiation of tensor and par from such type of game.

It is clear that tensor (par) in a game where only Opponent (Proponent) has moves can be
expressed by free merge. Supposethat in games a and 3 depicted in Figure 4.2 dl the moves are performed
by Opponent only, then tensor game aldf can be written through free merge if we will change the
description level from names of games a and 3 to the names of moves my, my, My, Ny, Ny. In this instance
tensor game @n beunderstood as (Mg + my) M, || (Ng + Ny).

In two-player tensor (par) game Proponent (Opponent) can not switch between the games. It
means that for rewriting of her/his moves we @n ot use free merge because it would adlow her/him to
switch. Moreover, if we would rewrite the moves of Opponent (Proponent) by using free merge, then by
axioms of Process Algebra we have to execute her/his moves in both subgames, but it is non-convenient.
Besides, we would have problemsto point out that Proponent (Opponent) has to make her/his next move in
active game. However, dternative and sequential compositions can describe non-communicative

instantiation of two-player game. It is easy to seeif look at tensor (par) gametree.

5.2.2 Communicative processes
In Linear Logic we @n cal ingantiation of paralel operator communicative if it use awy type of
interactions between the games like mpy srategy. In Process Algebra ommunicative merge dlows
transmitting data between the processes.

In copy strategy Proponent and Opponent plays symmetrica roles as in tensor so in par. So, to

express tensor or par moves through communication merge we have to decompose the games on moves and
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then to write mirrored moves from different sides of communication merge. The draw of game will look

likea dhain of communication mergesconnected by sequential compaosition.

5.2.3 Extension of communication merge
In case of compound games we would have to conned more than two games. For this purpose we have to
extend communication function and communication merge on multiple process problems. Previousely they
described only interaction of send/read type similar to copy strategy in Linear Logic.

We redefine ommunication function, which connects sveral processes in ore. It is the partiad
mapping Y. Ax...xA A, where A is the set of the atomic actions. As an example of such kind of
interaction we @n give screen picture. Consider light flows on a mmputer screen. To make a @mposed

colour on the screen we have to combine three diff erent colours at one moment.

5.3 Lawsof Multiplicative Linear Logic and proposed semantics

Abramsky and Jagadeesan (1994) introduced sound and complete caculus for their game semantics. In this
section we eplore if these laws are sound to our semantics of finite determined games. The laws can be
rewritten by axioms (5.1) — (5.6). In Linear Logic semantics there is no ¢'-strategy. The laws apply to the
winning strategies of Proponent. Therefore, during the proof of soundness we @n refer to the aioms
introduced in chapter 4, dl of which constituents have a form Ttd, and keep in mind that we have aded
with winning strategies but not ¢'-strategy. It is a reason why we will talk about analogues of the aioms

during the proof of soundness.

= ado® an analogue of Identity law (5.1)
= (ydo) — (d4y) an andogue of Exchange law (5.2
= (yd(dOe)) - ((ydoé)de) an andogue of Exchange law (5.3)
= ((yOo) O(00B)) - (yO(od(adp))) an andogue of Tensor law (5.9
E ((yOo) O(30a%) - (yId) an anaogue of Cut law (5.5
E({yOd - (yd9o) an andogue of Mix law (5.6)
Theorem 5.1

Axioms (5.1) — (5.6) are sound modulo ¢'-strategy with respect to arbitrary ¢'-zero-sum

interpretation of game structures givenin the previous chapter.

Pr oof

(51) = alda®

Proponent has a winning strategy in such apar game. For Proponent it is enough to win only one of
the subgames. Defined game structure dlows Proponent to play both subgames; then if shefhe will choose

the sametrack of play in both components, it will guarantee awinning exactly of one of them.
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(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

= (yd9) — (30ly)

Anaogue aguments asin proof of axioms (4.8)
= (yd(3e)) — ((YHO)[le)
Anaogue aguments asin proof of axioms (4.12)

= ((vOa) O(30B)) ~ (vO(8U(allB))

(i)
(i)
(iii)

(iv)

((yOo) O (6CR)) « ((yda) O (d0R)) by an analogue of (4.21)

(YO(dO(@Op))) - ((yddOa) O (yOdOR)) by an analogues of (4.21), (4.22), and (4.26)
(yda) — (yddOa) if Proponent has awinning strategy in (yCla) then she/he canavoid to
play 6, and henceto win (yddOa)

((yDo) T (30B)) — (yH(3L(alp))) from (i), (ii), (i)

F ((yOo) O(30a%) - (yOo)
((yOo) O (300%) means that Proponent has to win both (yOJo) and (30a%). Further we have to

consider three cases:

(i)

Suppose Proponent has awinning strategy in a. Then she/he has no a winning strategy in
a®. Then to win (300 shelhe has to have awinning strategy in 8, or & has to be equal a
to gpply a @py strategy. But we asumed that Proponent has a winning strategy in a,
then in any case under the assumption Proponent will have awinning strategy in & and
hencein (y19).

(i) The case with awinning strategy for Propanent in a® is simil ar.

(iii) Assume Proponent has no winning strategies either in o or in a®, then to win (yJo) and
(30a" shelhe has to have winning strategies for y and 8, and hence for y3, or to have
copy strategies in both (yOa) and (30a®). This last means that v is equal to a®, and 3 is
equal to a. Hencein (yd) Proponent hasawinning strategy. It is acopy strategy.

E(ydd) — (vUd)

Follows from an anal ogue of (4.19)

5.4 Conclusion

In the thesis we introduced an Extension of Game Logic with paralel operators, which we mnstructed by

anal ogues with multipli cative operators tensor and par of Linear Logic.

As we found, it is not so easy, as it seems at first sight, to extend Game Logic with the pardlé

operators of Linear Logic, and especially of Process Algebra, even without a proof of completeness. The

main reason is that if Linear Logic has akind of classical or extensional semantics, then Game Logic hasan

intensiona one. Distinction between these two semantics is comparable to the distinction between winning

and ¢'-strategies. Thus, when we ae in the game model of Linear Logic, it is impossible that both players
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would have winning strategies a some of the states, because it would mean that a formulais true and false
simultaneously. Wheress, for the model of Game Logic, it is possible that both players would have ¢'-
strategies at some stae, because it would just express that neither player can achieve a state where ¢ is not
valid. Thisgives different vai dities of axiomsfor Game Logic as opposed to Linear Logic.

Moreover, we found that finite perfect information games do mt add anything new to the
semantics. Tensor and par in that case ae equa to the known operators of choicel The power of
paralelism can be ahieved only for infinite or imperfect information games. On the other hand, this
resembles the stuation in Process Algebra, where in the finite @se, non-communicative paralel

compaosition can be reduced to alternative and sequentia ones.
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