
Updating Epistemic Uncertainty

—–

an essay in the logic of information change

Master’s thesis

ILLC, University of Amsterdam

Ben Rodenhäuser

August 23, 2001

Contents

1 Introduction 1

2 Epistemic update 5
2.1 The update problem . 5
2.2 Update frames . 7
2.3 Product update . 10
2.4 Product update frames . 12
2.5 Languages . 20

3 The system LBMS 22
3.1 Syntax . 22
3.2 Semantics . 23

4 The system LEDA 26
4.1 Syntax . 26
4.2 Semantics . 27
4.3 Discussion . 30

5 Comparison 35
5.1 Characterizing product update frames 35
5.2 Bisimulations . 40
5.3 Simulating L∗BMS with L∗EDA 46
5.4 Fact change . 50

6 Closure and preservation 54
6.1 Introduction . 55
6.2 Closure . 59
6.3 Preservation . 62

7 Conclusions 68
7.1 Summary . 68
7.2 Further directions . 69

Acknowledgements

In preparing this thesis, I was lucky to have the support of three people who
invested a considerable amount of their time during all stages of writing. I
would like to thank all of them.

My supervisor Johan van Benthem read, and commented on, many ear-
lier versions of the present paper; I am grateful for his numerous suggestions
and inspirations concerning both the contents of the thesis and its organi-
zation; also, I would like to thank him for his patience with my constant
changes of interest, and for his help in finding a clear focus in the end.

Yde Venema generously agreed to discuss several earlier versions of the
thesis with me at the time Johan was in Stanford. His comments and careful
criticism greatly improved the contents and the presentation of the thesis.

My most special thanks, however, go to Alexandru Baltag, for his unin-
terrupted support, and for the enormous amount of time he spent reading my
drafts, and discussing them. His help in technical, conceptual, and personal
matters was essential for me; without this help, I might not have finished
the thesis at all.

I would also like to thank Peter van Emde Boas for his questions at my
defense, and Annette Bleeker, Boudewijn de Bruin, Marie Nilsenová, and
Marc Pauly for their help and friendship.

1 Introduction

This thesis is about the formal analysis of information change, a topic that
has received steadily increasing attention over the past decade.1 A key issue
that has emerged in this line of research is the problem of epistemic up-
date: Given an information state S, representing the knowledge of a group
of agents about each other and the facts of the world, and furthermore,
given a representation A of an action that changes this information state in
some particular way, how can we compute the information state resulting
from applying A at S, using S and A only? This calls for an operation
of epistemic update, taking as input epistemic structures of some kind, and
producing outputs of the same kind, that are intuitively plausible. Once
we have found a particular solution to this problem, “linguistic” update
problems pop up: how do assertions about the new information state for-
mally depend on assertions about the old information state and about the
action that lead from one to the other? For instance, what are necessary
and sufficient conditions for agent i to know φ after action a has been ex-
ecuted? More generally, how does truth of statements before the update
relate to statements afterwards; how much is preserved? and how much
gets changed? Such questions can obviously only be posed in the context of
a logical language devised to talk about information states, and information
change, in some way; in particular, we need a mixed language, apt to analyze
both epistemic and dynamic features of interaction.

A number of modal systems for the analysis of this type of questions
has been proposed in recent years.2 Probably the most general analysis in
this area of research has been given by Baltag, Moss, and Solecki.3 One
of the leading ideas pursued by Baltag et al. is that in order to understand
epistemic change, one has to study the epistemic properties of actions them-
selves. The objective is, to “take actions seriously” and consider them “as
epistemic objects in their own right, in full generality” ([Bal00b]): actions
come endowed with internal structure, most notably they are endowed with
epistemic accessibility relations – in this sense the intuitions behind the
treatment of actions are symmetric to the ideas underlying the usual mod-
elling of uncertainty about states in a Kripke–style possible worlds setting.

1See, for instance, the monographs [G8̈8], [FHMV95], [vB96], [BS97]; for a survey, the

reader may consult [MvBV97], which also references the extensive literature on dynamic

semantics of natural languages.
2See the papers [Pla89], [GG97], [Ger99], [BMS99], [vD00], and the survey article

[vB00b].
3cf. [BMS99], the revised version [BMS01], and the further developments in [Bal00b]

and [Bal00a].

1

Upon reflection, this symmetry is entirely natural: just as the notion of
an action is the dynamic counterpart of the notion of a state, the notion
of learning is the dynamic counterpart to the static notion of knowledge –
and since knowledge, or more generally, belief, is usually represented via a
structured set of possible states, as an epistemic state, why not pair this
with a notion of epistemic action to represent learning, or more generally
beliefs about actions? The formal solution to the update problem [BMS99]
then present, consists in an operation of conditional multiplication of two
Kripke structures, a static one, representing uncertainty about states, and
a dynamic one, representing uncertainty about actions. The authors use
this operation, called product update, to give the semantics of an epistemic
modal language with announcement operators of various types.

On a conceptual level, the work of Baltag et al. seems to be akin in
spirit to a two–level analysis of statics and dynamics as advocated in re-
cent work on logical dynamics, figuring prominently in [vB96] – “declarative
statements and dynamic procedures”, we read there, “both have strong mo-
tivations. There is no need to favor one over the other. Actual reasoning is
a mixture of more dynamic sequential short–term processes and more static
long–term ones, presumably over different representations. Thus, both kinds
of systems must co–exist.” Indeed, some of the developments in the quoted
monograph indicate that a fruitful trend goes not only towards a mere co–
existence of both levels, but in the direction of an integration of static and
dynamic concerns in a unifying, two–sorted architecture, in which two do-
mains interact via suitable “modes” and “projections”. As one good candi-
date for such an integrated approach, [vB96] discusses dynamic arrow logic 4

Dynamic arrow logic combines a language geared towards analyzing arrows,
or actions, with a boolean component intended for interpretation at states,
resulting in a two–sorted language.

Our investigations in this thesis start from two observations. On the one
hand, it is interesting to see that while the intuitions behind the work of
Baltag et al. seem to indicate a symmetry, or at least close analogy between
epistemics of states and actions, their logical implementation of the above
sketched ideas is not that symmetrical: their system does not provide us with
epistemic operators, paralleling the usual knowledge operators on states, and
indeed, their language does not talk about actions at all in the sense that it
does not have evaluation of formulas at the level of the latter.5 Our claim

4See also the earlier papers [vB94], and [Mar96], which themselves build on earlier work

on arrow logic in [Ven91], and [vB91]. [MPM96] is a collection of research papers on the

subject.
5[BMS99] consider an “auxiliary language” interpreted on actions. However, this lan-

2

here is not that this would be a shortcoming of the systems considered by
Baltag et al.; however, we do think that the initial idea of studying actions
as epistemic objects, and the essentially symmetric way in which action
uncertainty is conceived in the approach of [BMS99] on a semantic level,
strongly suggest the explicit analysis of action epistemics via some suitable
language including epistemic operators on actions; it seems thus promising
to explore this direction as well.

Dynamic arrow logic, on the other hand, offers an abstract framework
in which states and actions live on a par. It seems thus both feasible and
promising, to explore the symmetric intuitions indicated above in an exten-
sion of the latter setting, and see in how far one can then recover the work
of Baltag et al. For this purpose, we will introduce a fine–tuned, epistemic
version of dynamic arrow logic, interpreted on general structures which we
call update frames. We think that this approach is interesting for a number
of reasons. First, the overall semantic setting we shall propose is somewhat
different from the “dynamic” product semantics given by [BMS99]. This
allows for possibly illuminating comparison, both on the level of semantic
structures and on the level of the languages themselves, as we shall see in
chapter 2.4, and chapter 5, respectively. Furthermore, the DAL framework
is not tied to any particular notion of update; it is thus of potential use for
other purposes as well, and the greater generality resulting from this may
also serve to understand the specific assumptions embodied in the system
of [BMS99] better. We also think that our framework enables the inves-
tigation of interesting questions concerning the product update operation,
that cannot be addressed in this form otherwise. An example of this is the
entailment problem discussed in the conclusions.

The thesis falls naturally into three parts. Chapters 2 discusses update
from a purely semantic point of view. The next three chapters, chapter
3–5, discuss possible languages for the study of update. Chapter 6 studies
what we believe to be one of the key problems associated with the notion of
epistemic update, both from a purely semantic, and from a logical point of
view.

In a bit more detail, we will proceed as follows. Chapter 2 introduces the
update problem mentioned above more carefully. It furthermore introduces
the ontology we shall use in the remainder of the thesis. Most importantly,

guage lives separate from the main framework presented by the authors. [Bal00b] analyzes

actions with a dynamic logic style language; the dynamic modalities, if one wishes to say

so, do “talk” about actions. But these modalities are terms, rather than formulas; thus

the language of [Bal00b] does not include the classical epistemic operators on the level of

actions.

3

we introduce update frames, and the operation of product update, and com-
pare the two. The operation of product update lies at the heart of the work
of [BMS01], which we shall discuss in chapter 3. The notion of an update
frame will provide the basis for the epistemic version of dynamic arrow logic
we shall introduce in chapter 4. We compare the two languages in chapter 5.
In chapter 6, finally, we turn to one of the “logical update problems” men-
tioned above: which statements are preserved under update, in the sense
that their truth before updating guarantees truth afterwards? Our find-
ings are summarized in 7, which also contains some directions for further
research.

4

2 Epistemic update

The plan of this chapter is as follows. We start with some examples that are
meant to motivate the study of information change induced by actions. We
then formulate the update problem, that naturally arises in this context. In
section 2.2 and 2.3, we introduce the main semantic objects of this thesis:
update frames, and the operation of product update. Update frames provide
an abstract setting to study information change. They will form the se-
mantic base into which we interpret the epistemic dynamic arrow language
LEDA in chapter 4. The operation of product update is a specific solution
to the update problem; it is also the core notion for giving the semantics of
the language LBMS, proposed by [BMS99], which we introduce in chapter 3.
We discuss the relationship between product update and update frames in
some detail in section 2.4. Finally, in preparation of the following chapters,
we discuss possible languages to study epistemic update, and conclude with
a quick overview of things to come.

2.1 The update problem

To introduce the main issues of this paper, we first discuss two examples
highlighting the topic we want to address: Information change. Imagine the
following situation6:

Nature has dealt me an envelope which might either contain an
invitation to attend a lecture on epistemic logic, or an invitation
to a lecture on probability theory (both of which are going to take
place tonight). My friend Bob witnesses this situation. We both
know that the envelope might have either of these two contents.
Now I am asked to open the envelope, without Bob seeing the
contents. I do this. Then I tell Bob what I have learned.

This is a simple example. Nevertheless, there are some important in-
tuitions about information flow attached to it. First, it is clear that upon
opening the envelope I learn where I am going to spend the night, resulting
in me knowing this very fact. Bob, on the other hand, does not obtain this
information. However, he learns something else: He learns that I learned.
As a result, he knows this. Furthermore, I know that he learns that I learned
(and so on . . .). Next, after I told Bob he also knows where I am going to
spend the night. And I know that he knows. (and so on . . .).

Let us now look at the following situation:
6This type of examples was introduced by Johan van Benthem.

5

Nature has dealt both me and Bob an envelope. Both contain a
message to one of us by a fortune–teller. The message is either:
”You are going to be happy tonight.” Or: ”You are going to
be depressed tonight.” We are both asked to open our respective
envelopes without telling the other one what we learn. Now two
things might happen:

1. Both Bob and me open our envelopes.

2. I do not believe in fortune–tellers, but Bob does. I am not
interested in the contents of my envelope (I won’t believe it
anyway), however I want to make fun of Bob. So I exchange
the envelopes without Bob noticing it, before one of us has
opened his envelope. Then both of us open an envelope:
Bob opens the one he thinks is his. I open the one I know
is Bob’s.

Here, the main new feature compared to the first example is the mis-
leading nature of the second scenario. There, my move of exchanging the
envelopes remains unnoticed by Bob, and results in Bob being deceived: af-
ter opening his envelope he acquires a false belief about the world, namely
that the fortune–teller sent him the message that he will be happy tonight,
while to the contrary she wanted to tell him that he will be depressed (or
the other way round). The basic intuition remains the same: I exchange the
envelopes, at the same time Bob thinks that nothing is happening at all,
and, as a result, he believes that nothing happened. Bob opens my enve-
lope, thinking that he opens his envelope, and as a result he believes that
he knows what is in his envelope (while he actually knows – de re what was
in mine).

There are two more general observations to be made here: The first is,
that in both examples (and one might add countless others, cf. for instance
[BMS01] and [vB00b]) there seems to be a systematic relationship between
the information state before some action happening, and the information
state after this very action. In the first example: not knowing what is in my
envelope, opening it and reading the message in it, results in my knowing
what is in the envelope. In the second example: Bob’s not knowing what is
in his envelope, my exchanging the envelopes, and his opening an envelope
that he believes to be his and reading the message in it results in him
believing that he knows what is in his envelope. The second observation is
that in our example scenarios, the specific epistemic appearance of an action
to an agent is essential for the resulting state. If Bob, for instance, would

6

have suspected that I might be exchanging our envelopes at the moment I
was doing just that, then his information state after my exchanging would
have been different: namely, he would still consider the actual world (were
I cheated on him) as one of the possibilities how things might be.

The first observation, that input state and output state are systemat-
ically related, leads to the study of epistemic update of a state with an
action. The second observation, that actions can be, and often are, epis-
temic objects in their own right (cf. [Bal00b]), gives the framework we shall
be concerned with its specific flavor. Namely, according to this observation,
actions that induce changes should themselves come endowed with some
epistemic appearance; they should carry epistemic structure.

What, then, is the update problem? It is just this: given an information
state and an action that has itself some epistemic appearance, how should
the information state resulting from “applying the action at the state” look
like? The study of one particular solution to this problem, the product
update operation, will form the main issue in this thesis.

We first introduce a general setting in which updates may be studied
via what we call update frames. Then, we introduce the product update
operation.

2.2 Update frames

The main semantic objects to be introduced here are update frames. They
consist of three components: a state frame, an action frame, and an access
map. State frames are formal representations of information states, action
frames formally represent actions together with their epistemic appearance;
formally, they will be the same kind of objects: Kripke frames. Access maps
provide a link between states and actions on a dynamic level.

Epistemic frames We start with the notion of an epistemic frame. State
frames and action frames will be special instances of epistemic frames. Epis-
temic frames are nothing else but multi–modal Kripke frames.

Definition 2.1 (Epistemic frames) An epistemic frame is a tuple F =
(F, Ri), where F is a non–empty set, and Ri ⊆ F ×F for each agent i ∈ Ag.
a

The relation Ri in the definition of an epistemic frame F gives the uncer-
tainty of an agent concerning the set of objects in the domain of F . This is
just the standard way of modelling uncertainty in a possible worlds setting:

7

if the present world is w, then according to agent i any world he sees at w

could be the actual world.
State frames and action frames are both the same kind of objects: they

are epistemic frames; this symmetry reflects the general modelling strategy
mentioned in the introduction. However, in order to keep track of the dif-
ferent role actions and states play, we have a special name and a special
notation for both. State frames will be written as tuples S = (S,→i), while
action frames will be represented as tuples A = (A,³i). In a state frame,
for each agent i, the relation →i gives the uncertainty of i about the states
in S. In an action frame, for each agent i, the relation ³i tells us, for
each action a in the domain, which actions i considers possible while a is
happening.

State frames are the formal counterparts of information states, while
action frames formalize the notion of an action with epistemic appearance.
Note, however, that we do not assume epistemic frames to be pointed. Thus,
we should say more accurately, that a state frame, together with a given
state, which we then take to be the actual one, represents a particular in-
formation state; similarly for the case of actions.

As will have become clear by now, we are interested in the interaction
between state frames and action frames. This has two dimensions: we want
to know what new state results from applying an action to an old one, and
eventually, we are also interested in what new uncertainty pattern results
when we combine the epistemics of two inputs in some way. Update frames,
as we shall see, do not give a uniform account of the epistemics; however,
they fix the dynamic part. This is made precise in the concept of an access
map.

Access maps The task of an access map is to tell us which actions are
executable where, and what the result of applying some action at some state
is, on a purely dynamic level.

Definition 2.2 (Access map) Let two non–empty sets S and A be given.
An access map over S and A is a partial function . : S×A → S that satisfies
the following requirements:

1. The relation T = {(s, s′)|s, s′ ∈ S,∃a ∈ A : s.a = s′}) is acyclic, i.e.
for all s ∈ S, (s, s) 6∈ T+.

2. For all s, t ∈ S: if s.a = t.b, then s = t and a = b. a

As we said, access maps provide the link between a state frame and an
action frame. Thus, let us think of the set S as a set of states, and of the

8

set A as a set of actions. The information conveyed in an access map, then,
is the following: for any s, s′ ∈ S, and a ∈ A, we read s.a = s′ as “state s

accesses s′ via a”.
The conditions imposed in definition 2.2 both derive from similar motiva-

tions, related to the idea that we are recording both the passing of time, and
the states and actions we encounter when travelling through time. Condition
(1), acyclicity, basically can be understood as meaning that the “system”
has a built-in clock, and that this clock never confuses the future with the
past. Condition (2) says in words, that every state has a unique predecessor,
and moreover, that for each state there is a unique action that immediately
preceded it and lead to it. Taken together, this means that each state records
the full sequence of past states and events; the “system” never confuses dif-
ferent pasts; time is backwards linear. Two things are worth noting: these
conditions should not be understood epistemically; they express assump-
tions on our modelling of the world, rather than assumptions on the agents’
perception of the world. And furthermore, our use of temporal vocabulary is
meant purely motivational; we shall not encounter in the rest of this thesis
any explicit modelling of time.

Update frames With the notions of state frame, action frame – both be-
ing instances of epistemic frames – and an access map we have all ingredients
to define our “update setting”.

Definition 2.3 (Update frame) An update frame is a triple F = (S,A, .),
where S is a state frame, A is an action frame, and . is an access map over
S and A. a

Update frames provide us with an abstract setting to study the notion
of an epistemic update. They provide information about epistemics both
on the level of states and on the level of actions, and, via the access map,
they give a picture of sequential, dynamic interaction over time. However,
update frames do not incorporate a specific account of information flow:
the interaction between the epistemic relations on the two levels our setting
deals with is left entirely unspecified. Giving a specific such account in our
setting means restricting the class of update frames to those one considers
“well–formed”.

But even though the update frame view on update is not a uniform
one, we observe that each update frame comes equipped with its particular,
internal update notion.

9

Definition 2.4 (F–update) Let F = (S,A, .) be an update frame. Then
S.A, the F–update of S with A is the smallest subframe of S containing
{s.a|s ∈ S, a ∈ A, s.a is defined}. a

Our remark on the lack of a specific account of information flow in the
most general setting sketched so far, is reflected in the fact that the notion
of F–update is not a “well–behaved” one in general – indeed, it is not even
guaranteed that the epistemics depend on the dynamics only: a natural
condition one might wish to impose on F–update is for instance that S.A

actually equals {s.a|s ∈ S, a ∈ A, s.a is defined} – the intuition being that
an agent will not consider actions possible that were not executable at any
of the states he considered possible previously. However, in general, it is not
forbidden that entirely new possible states just “pop up” out of nowhere.
Imposing this constraint, and others, means to consider a subclass of the
class of all update frames, containing those update frames that cohere with
our intuitions about information flow.

In this thesis, we shall be concerned with a particular notion of update,
and its embedding in the present abstract setting: product update. We
present it now and then turn to a comparison.

2.3 Product update

The notion of product update was first introduced in [BMS99]. It gives a
particular answer to the question of how to obtain a new state frame S ′
from two given inputs, a state frame S, and an action frame A. In some
sense, this might be seen as a way of lifting an access map to the level of
epistemics; where the access map “updates” the dynamics only, an epistemic
update operation takes care of the epistemics as well. However, there is one,
apparently slight, but important difference. Namely, the product update
operations is external in the sense, that it “creates” a new object out of two
given ones; this is different from the internal operation of F–update we have
seen in the last section, where updating consisted in making steps within
the given update frame. Set–theoretic operations, however, and the product
update operation is one of them, usually do not act over a pre–given state
space. They just take an input (or an input pair, or countable many inputs)
– and return something else. Thus, the concept of an access map is not the
right one for an external operation of update. What we rather need, is the
following:

Definition 2.5 Let S and A be non–empty sets. An access condition on S

10

and A is a relation C ⊆ S ×A. a

The way one should think of the sets S and A, of course, is as of the
domain of some state and action frame; just as in the case of access maps.
The difference between an access condition and an access map is just the
one between the internal and the external perspective pointed at above –
in update frames, the output of applying an action at a state needs to be
specified in the access map, since it is part of the update frame already. As
the output of the update operation will be an object formally distinct from
the inputs, we do not specify it in advance of the operation itself.

Definition 2.6 (Product update operation) Let S = (S,→i) be a state
frame, let A = (A,³i) be an action frame. Let C be an access condition
on S and A. Then the product update of S with A under C is defined
as S ⊗C A = (C,→i), where for all (s, a), (s′, b) ∈ S ⊗C A we have that
(s, a) →i (s′, b) iff s →i s′ and a ³i b. a

Observe that the reuse of the notation →i in the output cannot give rise
to confusion, since S ⊗C A is disjoint from S.7

What is the idea of this particular update notion? Quoting [BMS99], it
can be described as follows:

We model the update of a state by an action as a partial update
operation, given by a restricted product of the two structures: the
uncertainties present in the given state and in the given action
are multiplied, while the “impossible” combinations of states and
actions are eliminated (by testing the actions’ preconditions on
the state8). The underlying intuition is that the agent’s uncer-
tainties concerning the state and the ones concerning the action
are mutually independent, except for the consistency of the ac-
tion with the state.

7Our presentation of the product update operation as a purely semantic operation on

epistemic frames differs from the one in [BMS01] in that the authors represent what we

call an access condition as a domain function from A to the powerset of S, giving for each

action the set of states where it can be executed; both views are equivalent.
8We have not touched upon the issue of preconditions yet; preconditions, roughly

speaking, will help to determine access conditions. For the present context, the passage

in the quote may be understood as “while the combinations of states and actions that

are not in the access condition are eliminated”. We will formally introduce preconditions

later, when discussing the semantics of [BMS99] in chapter 3

11

If one wants to roughly summarize the epistemic effects of product up-
date in a slogan, a candidate might be the conjunction of “if there is con-
fusion about the input states and the input actions, then there will be con-
fusion about the output states” and “if there is confusion about the output
states, then there has already been confusion about both the input states
and the input actions”. Thus, the update operation has two directions: the
“downwards” direction determines, that (s, a) could be (s′, b) if s could have
been s′ and a could have been b. Thus, if some action does not help you to
distinguish between to situations you could not distinguish before, you will
remain confused. The “upwards” direction says that if (s, a) could be (s′, b),
then s could have been a and s′ could have been b. Thus, no confusion arises
out of nowhere: current ignorance always has a source in previous ignorance.

2.4 Product update frames

How can we characterize the operation of product update in our update
frame setting? What we obviously need first, is a ”product condition” for
update frames.

Definition 2.7 (Product update frame) Let F = (S,A, .) be an update
frame. Then F is a product update frame iff

1. For all i ∈ Ag, for all s, s′ ∈ S, a, b ∈ A such that s.a, s′.b is defined: If
s →i s′ and a ³i b, then s.a →i s′.b.

2. For all i ∈ Ag, for all s ∈ S, for all a ∈ A such that s.a is defined: If
s.a →i t, then t = s′.b for some s′ ∈ S, b ∈ A and s →i s′ and a ³i b.

a

The condition in definition 2.7 translates the relational conditions of the
product update operation to the setting of update frames. It is evident
that this condition establishes a match between update frames and product
update frames on a very global level.

Theorem 2.8 Let F = (S,A, .) be a product update frame. Let S.A be the
F–update of S with A. Let C = {(s, a)|s.a is defined}. Then the following
are equivalent:

1. F is a product update frame.

2. The map F : S.A → C, defined by F (t) = (s, a) iff t = s.a, and s.a is
defined, is an isomorphism from S.A onto S ⊗C A.

12

Proof: Obvious by definition of product update frames. tu

However, this is not all we would like to know. The level of updating
considered in the result is extremely global. Intuitively, however, update
frames represent sequences of updates. This raises the question how product
update and update frame relate, once we focus on a more local, sequential,
and iterative view on update. The remainder of this section is devoted to this
issue. We first introduce a way of obtaining product update frames in a more
constructive manner, by iterating the operation of product update starting
from a given state frame. Next, we introduce the notion of a synchronously
generated update frame. We then go on to compare these two notions.

Induced product update frames

We shall now introduce a canonical way of constructing a product update
frame from a state frame, an action frame, and a collection of access condi-
tions. This construction will be relevant both in the present section and in
chapter 5, where we carry out a comparison between the two languages we
will have introduced by then.

The construction proceeds as follows: we assume we have a state frame
(S,→i) and an action frame (A,³i). We construct a domain of states over
these, by iterating the cartesian product. This enables us to iterate the
product update operation, starting from the given S and A, using some ac-
cess conditions Cω we assume as given as well. Collecting all these updated
frames, we obtain a state frame Sω, constructed according to the prescrip-
tions of the update operation. We then take the union of all our access
conditions and turn this union into an access map. As a result, we have
constructed a product update frame, as we confirm in theorem 2.10 after
the construction.

Construction 2.9
1. Let a state frame S = (S,→i) and an action frame (A, ³i) be given.

Then we define, for each n < ω,

D0 := S

Dn+1 := Dn ×A

Dω :=
⋃
n<ω

Dn

2. For n < ω, let Bn ⊆ Dn ×A be given. Then we define

S0 := S

13

Sn+1 := Sn ⊗Cn A
where Cn is the restriction of Bn to Sn. We let

Sω :=
⋃
n<ω

Sn

3. Finally, we put
Cω :=

⋃
n<ω

Cn

and
.ω := idCω

where idCω is the identity map on Cω. a

Theorem 2.10 Let S be a state frame, let A be an action frame. Let Sω,
and .ω be defined as in construction 2.9, using a given access condition Cω.
Then

(Sω,A, .ω)

is a product update frame, and Sω ⊆ Dω.

Proof: Clear by construction. tu

In the remainder of this chapter we shall need a special case of this
construction. We make use of the fact that any access map . gives rise to
access conditions Cn, for each n, in a natural way.

Construction 2.11 Let (S,A, .) be an update frame; assume G ⊆ S. For
each n < ω, define

Cn := {((. . . ((s, a1), a2), . . .), an)|s ∈ G, s.a1.an is defined}

and put
Cω :=

⋃
n<ω

Cn

a

Corollary 2.12 Let (S,A, .) be an update frame, and let G ⊆ S. Let Sω,
and .ω be defined as in construction 2.9, using (G,→i¹G), A, and Cω, where
the latter is obtained as in construction 2.11. Then

(Sω,A, .ω)

is a product update frame.

14

Proof: Apply theorem 2.10. tu

This motivates the following definition:

Definition 2.13 (Induced product update frame) Let F = (S,A, .) be
an update frame, and G ⊆ S. We call

(Sω,A, .ω)

obtained as in corollary 2.12, the product update frame induced by F and G.
Given F and G, we write FG⊗ for the product update frame induced by F and
G. a

The preceding shows, that given an update frame, and some subset of
its state space, we can always construct an induced product update frame,
using this material alone. The notion of a product update frame induced by
some F and G, then, is what we were looking for: we know now how we can
construct product update frames from local information, namely the given
set G, in a uniform way. Clearly, such induced product update frames have
some special properties, besides their being product update frames, which
we need to account for if we want to match them up with update frames
in general. In particular, they have a specific dynamic structure; namely,
they have a beginning, and everything else comes afterwards. Note that this
does not hold for update frames in general: they might be infinite towards
the past. The purpose of the next section is to capture this feature more
precisely, on the general level of update frames.

Synchronously generated update frames

We need two auxiliary notions. First, we define the notion of precedence.

Definition 2.14 Let F = (S,A, .) be an update frame. For two states
s, s′ ∈ S, we say that s precedes s′ in F, if there exists a sequence of actions
a1 . . . an, where aj ∈ A for 1 ≤ j ≤ n, such that s.a1.an = s′. We write
s ≺F s′ if s precedes s′ in F. We also write s ¹F s′ if s ≺F s′ or s = s′. a

Note that the precedence order ≺F is a strict partial order on any update
frame F; however, ≺F is not necessarily well–founded.

Definition 2.15 (Synchronicity) Let F = (S,A, .) be an update frame.
Let G ⊆ S. We say that G is synchronous in F, if for all s, s′ ∈ G: s 6≺F s′.
a

15

Thus, synchronous sets consist of states that are mutually incomparable
w.r.t. the precedence order. If we cut off their past, we can think of them as
“being of the same time”, thus the name. The following is the key definition.

Definition 2.16 (Synchronously generated update frames) Let F′ =
(S ′,A, .) and F = (S,A, .) be update frames. We say that F is dynamically
generated by G within F′, if S is a subframe of S ′, and S is the smallest set
containing G that is closed under precedence in F′, i.e., for all s ∈ S′: if
s ∈ S, and s ≺F′ s′, then s′ ∈ S.

We say that F is synchronously generated by G within F′, if F is dynam-
ically generated by G within F′, and G is synchronous in F′. a

Update frames F that are dynamically generated within another update
frame F′ can be obtained by starting from some set and closing it off under
the precedence order on F′. Synchronously generated update frames have the
further property that their generating set is required to be synchronous; this
makes for the following special property: synchronously generated update
frames are those for which the order ≺ is well–founded; no state has an
infinite past. We can now assign a height to each element of such an update
frame. By an immediate successor of a state s we mean a state t such that
s.a = t for some action a.

Definition 2.17 (Height) Let F and F′ be update frames. Assume F =
(S,A, .) is synchronously generated by G within F′. Then we inductively
define the height of elements of S. The height of elements of G is 0. The
height of immediate successors of elements of height n is n + 1. a

Note that this is well–defined, since (1) no two distinct elements of G

precede each other, and (2) any element of F has a unique immediate pre-
decessor. Furthermore, any element of S is preceded by some s′ ∈ G; thus
every element of S has a unique height.

We can think of such an update frame F as of a (possibly infinite) col-
lection of trees, where uncertainty links across the trees may occur (“epis-
temic forests”). Important special cases of this are update frames F that
are synchronously generated within themselves, i.e. they are synchronously
generated within F′ = F. A yet more restricted special case is that of an up-
date frame which is synchronously generated within itself and has a unique
minimal element: a tree.9

9Note, however, that the tree picture is not fully accurate, in that there may be actions

which are not executable at any state; “tree–like” would probably be a better word.

16

Dynamics and epistemics

We first observe that the notion of a synchronously generated update frame
captures the dynamics of the construction of a product update frame above.

Definition 2.18 Let F and F′ be update frames. Let F = (S,A, .) be syn-
chronously generated within F′ by G. Let FG⊗ = (Sω,A, .ω) be the product
update frame induced by F and G. Then the map

F : S → Sω

defined by

F (s.a0.an) = ((. . . ((s, a0), a1) . . .), an) iff s ∈ G, s.a0.an is defined

is called the natural map. a

Lemma 2.19 Let F and F′ be update frames. Suppose F = (S,A, .),
F = (S ′,A, .), and F is dynamically generated by G within F′. Let FG⊗
be the product update frame induced by F and G. Then the following are
equivalent:

1. F is synchronously generated within F′ by G.

2. The natural map F : S → Sω is an isomorphism from (S,A, .) onto
(Sω, A, .ω).

Proof: Obvious. tu

In which circumstances is the “dynamic isomorphism” supplied by the
natural map also an “epistemic isomorphism”? The answer lies in the notion
of height. Observe that in an induced product update frame, the epistemic
uncertainty relations are ordered according to the stages of the construc-
tion: it is never the case, that an agent is confused about states that are
constructed at different stages. Intuitively, agents have clocks that never
confuse the system time. This is what we need to capture.

Definition 2.20 (Epistemic height) Let F and F′ be update frames. As-
sume F is synchronously generated within F′ by G. Then F = (S,A, .) is
an update frame with epistemic height if for all s, s′ ∈ S: if s →i s′, then
h(s) = h(s′). F is an update frame with initial epistemic height if for all
s ∈ G, s′ ∈ S: if s →i s′, then s′ ∈ G. a

17

Note that the second part of the definition implies that G is closed under
uncertainty, so to speak: any alternative to a state in s for some agent i is an
element of G. The key observation for us, is that for synchronously generated
product update frames, epistemic height and initial epistemic height collapse.

Lemma 2.21 Let F and F′ be update frames. Assume F is synchronously
generated within F′ by G, and assume furthermore that F is a product
update frame. Then the following are equivalent:

1. F is an update frame with epistemic height

2. F is an update frame with initial epistemic height.

Proof: The non–trivial direction is from right to left. We show by induction
on the height of the states in F that s →i s′ implies h(s) = h(s′). For the
states of height 0, the claim follows by assumption. The inductive step uses
the fact that F is a product update frame. Thus F is an update frame with
epistemic height. tu

Now we can prove the following:

Theorem 2.22 Let F and F′ be update frames. Suppose F = (S,A, .),
F = (S ′,A, .). Suppose that F is dynamically generated by G within F′. Let
FG⊗ = (Sω,A, .ω) be the product update frame induced by F and G. Then
the following are equivalent.

1. F is synchronously generated by G within F′ by G, and F is a product
update frame with initial epistemic height.

2. The natural map F : S → Sω is an isomorphism from F onto FG⊗.

Proof:

(=⇒) Suppose F is a product update frame with initial epistemic height. F

is an isomorphism w.r.t. the structures (S, A, .) and (S′, A, .ω) by 2.19. So it
is enough to show that F is a strong homomorphism w.r.t. the uncertainty
relations on the state frames underlying F and FG⊗. By assumption, F is an
update frame with initial epistemic height, and by lemma 2.21, using that
F is a product update frame, it is an update frame with epistemic height.
Hence for any n, the set of states Sn of height n in F is epistemically closed,
i.e. s ∈ Sn and s →i s′ in F implies s′ ∈ Sn; it is now easy to see that for any
n, the restriction of F to the states of height n is a strong homomorphism;
the claim follows.

18

(⇐=) From the assumption, using lemma 2.19, we infer that F is syn-
chronously generated within F′ by G. It remains to show that F is a product
update frame with initial epistemic height. Both follow easily from the as-
sumption, since, by construction, FG⊗ has these properties. tu

The theorem encompasses a number of interesting special cases. As
a corollary, we have for instance, that for an update frame F, which is
synchronously generated by G within itself, (1) and (2) above coincide. An
instance of this are update frames that are synchronously generated (within
themselves) by a singleton set. Such a tree–like update frame F will be
isomorphic to the product update frame induced by F and its root, given
that the agents know the root, while being at the root, and given that
F is a product update frame. This establishes an interesting connection
to research pursued in game theory. In this field of research, trees with
uncertainty relations on the level of states are used to represent games of
imperfect information; the result makes formally explicit in what sense the
product update operation differs from game theoretic research in the view on
epistemics it provides: since one additionally assumes uncertainty relations
on the level of actions, the whole game can be fixed by just specifying an
initial information state and an action frame, representing possible actions
that may be taken. This is also the view taken in the notion of a rule–based
game in [Bal00a], where an analysis of games in a product update setting
(i.e. without a given tree) is developed.

Allowing for a slightly more general format, we can consider update
frames that are synchronously generated by an epistemically point–generated
set; these are also characterized by the previous result in their relationship
to the product update. Here, one still keeps the requirement that interaction
starts at a certain time, but drops the assumption that there is a specific
world, which is known to everyone at this time.

Thus, under the assumptions of theorem 2.22, update frames and prod-
uct update as an operation coincide. One should, however, be aware of
the intuitive differences between the two settings. First, product update
provides an essentially local view on update: one zooms in on a particular
epistemic situation, and some informational input, and looks what happens
when we bring those two together. Contrary to this, update frames adopt
a global perspective: intuitively, they provide us with information about
whole streams of information and successive changes of information states.
Related to this are the more procedural intuitions attached to product up-
date. Essentially, we may think of it as an algorithm that allows us to
compute a new epistemic structure from some given ones. The focus in

19

update frames, on the other hand, is descriptive. Since all interactions are
already given, we look at them from a bird’s eye view. We may then notice
afterwards that some particular update frame obeys specific laws governing
information change.

2.5 Languages

What are possible languages to study updates? And what are possible se-
mantics for them? In principle, any logical language whose semantic objects
have the right similarity type for update models or epistemic models comes
with its associated “logical update problems”.10 In this thesis, we shall con-
centrate on modal languages for the analysis of update. This suggests itself,
given the modal roots of both epistemic and dynamic logic, and given the
focus of previous work on this topic. However, there are many modal lan-
guages, and correspondingly there are many modal languages that may be
useful to study update. We shall encounter three of them.

The simplest non–trivial language to analyze update is LML, the basic
multi–modal language, with an epistemic interpretation attached to it. LML

is built over a set of proposition letters, using boolean operators, plus a set
of knowledge operators, one for each agent i. Given that we add valuations
both on state frames and action frames, we can interpret statements like
Kiφ on both of them – on the level of states, Kiφ means that i knows that
φ; on the level of actions we read it as i learns that φ.11

What is notable about a language like LML in the present context is that
operations of update are beyond the reach of the language, which allows
statements built from factual and epistemic information only. The language
cannot analyze information change explicitly. This obviously calls for more
elaborate systems, and this is why in most of the chapters of the thesis we
will study extensions of the basic multi–modal language, two of them, to be
precise. In chapter 6, however, when dealing with preservation questions,
we shall consider a simplified setting; there, basic modal logic will be our
system of choice.

The language LBMS of [BMS99], which we discuss in chapter 3, extends
LML with epistemic actions, used to formalize announcements of various
kinds. Shortly, epistemic actions are action frames “plus something else”.

10An update model is an update frame together with a valuation of a set of basic facts.

Similarly, we obtain an epistemic model by adding a valuation to an epistemic frame.
11It should be pointed out, however, that learning that φ does not imply that φ is true

in this thesis, neither does knowing that φ mean that φ is true! We shall not impose any

constraints on the uncertainty relations in the sequel, and it is thus not necessary to adopt

a more refined terminology here.

20

We shall see what this something else is. Such a language can, besides
epistemics, also talk about dynamics. As we shall see, the use of Kripke
structures as syntactic objects will be put to good use semantically. Namely,
it opens up the possibility to build the notion of product update right into
the semantics proper. Roughly speaking, as we will see, [α]φ is true at a state
in a state model M iff the product update of the pair (M, s) with α makes φ

true. The system resulting from this semantics is very general; in particular,
it can be used to analyze various types of announcements in communication
– public ones, in which the contents of some message becomes common
knowledge among all agents; but also more intricate communication acts,
like “starting to believe that some secret communication took place while in
fact nothing took place”. In fact, any kind of information pattern that may
be described by a Kripke frame, can be modelled in this system. [BMS99]
also show, that previous proposals in this area can be treated as special
cases of their logic.

Despite its merits, however, the way uncertainty about actions is treated
in LBMS may also seem somewhat odd. As pointed out in the introduction,
one may also think of studying updates in a more symmetric, two–sorted
fashion. This two–sortedness is, of course, already implicit in the work
of Baltag et al. , however it is does not figure very explicit on the level
of the language they use. The idea behind the language LEDA, which we
shall introduce in chapter 4, is to fully implement this two–sorted nature
of epistemic update. LEDA will extend a language of dynamic arrow logic
with epistemic operators both on the level of states, and on the level of
actions. We will interpret it on update models, i.e. update frames with an
additional valuation. To the best of our knowledge, such a language has
not yet been studied in the literature.12 In line with our earlier remarks
on update frames, for a system of this type, the product update will not
be part of the semantics proper; however, as we shall see, “product update
behavior” may be enforced via frame constraints.

The further structure of the paper is given by the preceding. The lan-
guage LBMS will be introduced briefly in chapter 3, while LEDA will be dis-
cussed in chapter 4. Chapter 5 is devoted to a comparison between the two.
In chapter 6, we turn to one of the “logical update problems” mentioned
in the introduction: preservation. We study it using the simpler language
LML.

12However, the possibility of considering a language similar to the one introduced here

is indicated in [vB00a]. In the latter paper, the operation of product update is studied

using propositional dynamic logic.

21

3 The system LBMS

In this chapter, we give a short introduction to the update semantics of
[BMS99]. We will try to stick to the terminology developed in chapter 2 as
far as this is possible.

3.1 Syntax

We start by defining the vocabulary of the language LBMS.

Definition 3.1 (Vocabulary) The vocabulary of LBMS consists of a count-
able set of proposition letters P , a non–empty finite set of agents Ag, and a
non–empty set of action labels L. The operators are ∧, ¬, and a collection
of operators Ki, one for each i ∈ Ag. a

The definition of the syntax proceeds by simultaneous induction. The
objects to be defined are formulas, and epistemic actions. The following
defines the set of formulas, calling definition 3.3 further down.

Definition 3.2 (Formulas) LBMS is the smallest set satisfying

• If φ ∈ P , then φ ∈ LBMS.

• If φ, ψ ∈ LBMS, and α is an epistemic action over LBMS, then ¬φ,
φ ∧ ψ, [α]φ, Kiφ ∈ LBMS. a

Thus, besides the boolean operators, the language LBMS has both epis-
temic modalities for interpretation at states and action modalities [α]. [α]φ
will mean that executing α at the present state will result in a state that
makes φ true. The distinguishing feature of the semantics is the way it makes
formally precise the phrase “executing α at the present state”. Before going
into this, we need to define epistemic actions.

Definition 3.3 (Epistemic actions) An action frame A over LBMS is an
action frame where A ⊆ L. An action structure (over LBMS) is a pair
(A, PRE), where A is an action frame over L, and PRE : A → LBMS. An
epistemic action (over LBMS) is a triple α = (A, PRE, a), where (A, PRE) is
an action structure, and a ∈ A. a

Note that this definition refers back to 3.2. Indeed, as mentioned above,
the idea is that actions and states are defined simultaneously: we can form
sentences [α]φ using actions α we have already formed previously; similarly,

22

the precondition of an epistemic action α can only be a sentence formed
before. We shall not go into any more detail than this, but refer the reader
to the original paper [BMS99]. It is also of fundamental importance here to
realize that epistemic actions are part of the syntax. Thus, they will appear
in well–formed formulas, although one usually does not go so far as to make
this really explicit in the notation. The usual meta–variables for epistemic
actions will be α and β. Note that a given set of epistemic actions itself
induces an action frame, by putting α →i β iff a →i b, and PRE(α) = PRE(a),
for all epistemic actions α and β, where a is the distinguished token of α,
and b is the distinguished token of β.

What is the idea behind epistemic actions? This is best understood
by looking at the semantic motivations underlying their definition. Action
frames are known already from chapter 2. They are meant to formally
represent epistemic uncertainty concerning actions. Precondition maps will
turn out to be a syntactic solution to the problem of uniformly generating
an access condition for any given state model. The underlying idea is that
the availability of an action at a state should depend on features of the state
itself: thus, an action will be executable at a particular state if the state
makes all its preconditions true. This will be the case for all elements of
an epistemic actions (i.e. of the underlying action frame). The designated
action in an epistemic action tells us of which of the actions in the action
frame we should think as being the current, or actual one. Thus, epistemic
actions model action uncertainty in a more fine–grained way than action
frames do: they include information about the domain of applicability of
each action in the action frame, and about which action in the action frame
is the “actual one”. This, at least, is the way one should think of epistemic
actions, and it is also the way they will get used in the semantics. Since
they are just pieces of syntax, they are really only symbols.

3.2 Semantics

The language will be interpreted on state models. We define a state model
to be a pair (S, V), where S is a state frame, and V : P → P(S), called
valuation.

As with the syntax, the semantics will be defined by simultaneous induc-
tion. The important clause is, of course, the one involving epistemic actions.
The clauses for proposition letters, boolean operators, and knowledge op-
erators are standard. We give them now, and then focus on the product
update and the interpretation of the action modalities.

23

Definition 3.4 Let an epistemic model M = (S, V) be given.

M, s |= p iff s ∈ V (p)

M, s |= ¬φ iff M, s 6|= φ

M, s |= φ ∧ ψ iff M, s |= φ and M, s |= ψ

M, s |= Kiφ iff (∀t ∈ S) : if s →i t then M, t |= φ

The clause for the epistemic action modalities will be interpreted using
the operation of product update. Informally, a state s in a state model
M = (S, V) makes [α]φ true iff the product update of the state model
with the epistemic action α makes φ true at the world (s, a), where a is
the distinguished action in α, given that (s, a) is an element of the updated
model. Note how the definition of truth requires information beyond the
original model we started with here. To be able to define this formally, we
need to know two things: what is the product update assumed to do with the
valuation V on S? And how is the access condition defined? As we shall see,
the second question cannot be answered without giving the remaining clause
of the truth definition at the same time (this is the announced simultaneous
induction). The answer to the first question is in the following definition.

Definition 3.5 Let M = (S, V) be a state model, and let A be an action
frame. Let C be an access condition. Then the product update of M with A
under C is defined as M⊗C A := (S ⊗C A, V ′), where for all (s, a) ∈ S⊗C A:
(s, a) ∈ V ′(p) iff s ∈ V (p). a

This is obviously the simplest choice possible: the update just leaves
the valuation unchanged. The underlying idea is to focus on the purely
epistemic effects of an epistemic action. This is clearly not appropriate for
some situations one might want to model. We note, however, that this type
of update is not the only choice considered by Baltag, Moss, and Solecki
(although they concentrate on this solution to a large extent; see, however,
[Bal00a]). We chose to start with this case to keep things simple at this
point. In chapter 5.4, we will investigate more complex ways of updating
the truth of facts.

How do we obtain access conditions? One choice would be to just stip-
ulate them in some arbitrary fashion. However, while this is arguably not
unnatural in the setting of update frames, it would be a bit odd here. The
solution of [BMS99], as hinted at above, is to use special access conditions,
that are obtained from the precondition map given by the syntax, and the
state model currently at stake: (s, a) will be in the access condition induced

24

by some model and some epistemic action just in case s is in the domain
of the model and makes the precondition of a true, which is an element of
the epistemic action. This obviously involves the notion of truth, and this is
why access conditions cannot be separated from presenting the last clause
of the truth definition.

Definition 3.6 Let M = (S, V) be a state model, and let α = (A, PRE, a)
be an epistemic action. Then we define

1. M, s |= [α]φ iff if (s, a) ∈ CMα , then M⊗CMα A, (s, a) |= φ

2. CMα = {(s, a)|s ∈ S, a ∈ A, (M, s) |= PRE(a)}. a

The first clause assumes that some access condition is given, and defines
truth using it. The second clause defines the access condition as explained
above, using the first clause.13

[BMS99] also consider a larger language, which is obtained by adding
common knowledge operators K∗Gr for groups of agents Gr ⊆ Ag to the
above syntax. The interpretation of these operators is given by taking K∗Grφ

to abbreviate the infinitary conjunction
∧

〈i1,...,in〉∈Gr∗
Ki1 . . .Kinφ

where Gr∗ is the set of all finite sequences of elements of Gr. Since the
empty sequence is such a finite sequence, K∗Grφ logically implies φ.

We shall refer to the larger language, which includes the common knowl-
edge operators, as L∗BMS. The authors present a sound and complete axiom-
atization for both logics, which are also both decidable. They furthermore
show, that the language LBMS, which does not contain common knowledge
operators, can be reduced to standard modal logic. The language L∗BMS,
which does contain common knowledge operators, however, is strictly more
expressive than modal logic with common knowledge operators, but with-
out epistemic action modalities. Formally speaking, thus, the simpler system
LBMS is less interesting than its big brother L∗BMS. However, this does of
course not diminish the philosophical and conceptual interest of the less
expressive system LBMS.

This concludes our short introduction to LBMS and L∗BMS. We will shall
have more to say about it in chapter 5.

13This is similar to the mutual recursion of programs and formulas in dynamic logics

like PDL.

25

4 The system LEDA

In this chapter, we define a logical language for the analysis of information
flow and interpret it on update models. The language takes insights from
a number of well–known modal systems, most prominently dynamic arrow
logic (DAL). DAL is a two–sorted language; formulas are evaluated at both
states and actions. We combine ideas from DAL with the modelling of
[BMS99]: as in LBMS, we will have uncertainty relations both on states and
on actions. However, unlike the latter language, the relations on actions are
interpreted using epistemic operators. Furthermore, we consider additional
operators taking state formulas to action formulas, enabling us to talk about
preconditions and postconditions of actions in ways not available in standard
DAL; these additional operators are in the spirit of a logic of sufficiency,
that has been studied in a number of contexts (cf. the comments in section
4.3). Finally, using ideas from hybrid logic, we endow our system with a
mechanism of naming actions.

The following two sections introduce the system formally. We then have
some further remarks and observations on the set–up of the language in 4.3.

4.1 Syntax

Definition 4.1 (Vocabulary) The vocabulary of LEDA consists of a count-
able set of proposition letters P , a finite, nonempty set of action labels L,
and a finite, nonempty set of agents Ag. We call a triple (P, L, Ag) a signa-
ture. Our state operators are ∧,¬,Ki (for each agent i), and []. Our action
operators are ∧, ¬, Ki (for each agent i), ↑1, ↑2, ↓1, ↓2. a

We shall use the symbols a, b, c, . . . for action labels. As announced
above, these labels will designate semantic actions in a syntactic way. The
distinction between the actions (usually denoted with a, b, c, . . .) and the
labels that denote them is important formally: while the former are semantic
objects, the latter are syntactic symbols. However, the action labels will be
used as names for actions: we assume, that each action label is true at
exactly one state.14 Furthermore, we will require that each action has a
name, that is, some action label is true at each action.

Definition 4.2 (Syntax of LEDA) Let a signature (P,L, Ag) be given. The
language LEDA := SF ∪ AF is the smallest set satisfying

• P ⊆ SF, and
14This is just the usual requirement on valuations known from hybrid logic.

26

• if φ, ψ ∈ SF, α ∈ AF, and i ∈ AG, then ¬φ, φ ∧ ψ, Kiφ, [α]φ ∈ SF.

• L ⊆ AF, and

• if α, β ∈ AF, φ ∈ SF, and i ∈ AG, then ¬α, α ∧ β, Kiα, ↑1φ, ↑2φ, ↓1φ,
↓2φ ∈ AF.

We call elements of SF state formulas and elements of AF action formulas.
a

The operators Ki will, by syntactic ambiguity, be interpreted using the
uncertainty relations ³i on actions and the uncertainty relations →i on
states familiar from the preceding chapters.

[] will be interpreted using the access map: [α]φ will be true at a state
s given that any action executable at s which makes α true leads to a state
where φ hold.

The four operators ↑1, ↑2, ↓1, and ↓2, will also be interpreted using the
access map. All of them are in some way or other related to the notions
of preconditions and postconditions. ↑1φ will be true at an action a if any
state where a can be executed makes φ true. Hence ↑1 talks about necessary
conditions for an action to be executable. ↑2φ, on the other hand, will be
true at an action a if a can be executed at any state that makes φ true. So
↑2 can be used to say something about sufficient conditions for an action to
be executable. ↓1 and ↓2 form a pair in precisely the same way: ↓1φ means
“any state reachable with the current action makes φ true”, while ↓2φ means
that “any state that makes φ true can be reached with the current action”.

Notation 4.3 We denote atomic formulas in P with p, q, r, . . ., and, as
announced, action labels in L with a, b, We use φ, ψ, χ, . . . as meta–
variables for state assertions, and α, β, γ, . . . for action formulas.

We also agree on some abbreviations. > denotes p → p, for some fixed
proposition letter p; by abuse of notation, > is also taken to abbreviate
a ∨ ¬a, for some action label a. ⊥ abbreviates ¬>. We define Ki as ¬Ki¬.
For j ∈ {1, 2}, we define ⇑j as ¬↑j¬, and ⇓j as ¬↑j¬. Finally, we define 〈α〉
as ¬[α]¬. a

4.2 Semantics

The language will be interpreted on update models. Update models are pairs
consisting of an update frame and a valuation. Update frames, in turn, as
introduced in chapter 2, are triples (S,A, .), where S is a state frame, A is

27

an action frame, and . is an access map; we refer the reader to definition
2.3. We will always assume A to have a finite domain, when we use update
frames in connection with the language LEDA.

Definition 4.4 Let F = (S,A, .) be an update frame. A valuation on F is
a function V = VS ∪VA, where VS : P → P(S) and VA : L → A. We require
VA to be total and surjective. a

An update model is defined to be a pair (F, V), where F is an up-
date frame, and V is a valuation on F. Note that the surjectivity of VA

ensures that any action has a name.15 We also write update models as
((S, VS), (A, VA), .), or even ((S, V), (A, V), .), when this is convenient. No
confusion is likely to arise. A pair (S, VS) is called a state model, as in the
previous chapter. A pair (A, VA) is called a labelled action frame.

To state the semantics succinctly, it is useful to make the operations used
to interpret the “links” between the two sorts explicit. Given an update
frame F = (S,A, .), we define for all s ∈ S, and a ∈ A,

1. D(a) = {s|s.a is defined}

2. R(a) = {t|∃s : s.a = t}

3. A(s) = {a|s.a is defined}

We call D the domain function, and R the range function. Note that
the function A, for which we do no introduce a special name, is defined by
abuse of notation. Observe also that these notions depend on F.

We can now define truth of a state formula at a state in an update
model (|= ⊆ M×S×SF) and truth of an action formula at an action in an
update model (|= ⊆ M×A× AF). For this purpose, let an update model
M = (S,A, ., V) be given.

15Observe also, that the requirement that action frames be finite in the context of LEDA

is forced upon us, since we have only finitely many action labels at our disposal.

28

Definition 4.5 (Truth)

M, s |= p iff s ∈ V (p)

M, s |= ¬φ iff M, s 6|= φ

M, s |= φ ∧ ψ iff M, s |= φ and M, s |= ψ

M, s |= Kiφ iff (∀t ∈ S) : if s →i t, then t |= φ

M, s |= [α]φ iff (∀a ∈ A) : if a ∈ A(s) and M, a |= α, then s.a |= φ

M, a |= a iff V (a) = a

M, a |= ¬α iff M, a 6|= α

M, a |= α ∧ β iff M, a |= α and M, a |= β

M, a |= Kiα iff (∀b ∈ A) : if a ³i b, then b |= α

M, a |= ↑1φ iff (∀s ∈ S) : If s ∈ D(a) then M, s |= φ

M, a |= ↑2φ iff (∀s ∈ S) : If M, s |= φ then s ∈ D(a)

M, a |= ↓1φ iff (∀s ∈ S) : If s ∈ R(a) then M, s |= φ

M, a |= ↓2φ iff (∀s ∈ S) : If M, s |= φ then s ∈ R(a)

As usual, we can now also define global truth and validity. For a given
update model M = (F, V), and formulas φ ∈ SF, and α ∈ AF, we say that
φ is globally true in M (notation: M |= φ) iff for all s ∈ S: M, s |= φ.
We say that α is globally true in M (notation: M |= α) iff for all a ∈ A:
M, a |= α. Furthermore, we say that φ is valid in F (notation: F |= φ) iff for
all valuations V : (F, V) |= φ. We say that α is valid in F (notation: F |= α)
iff for all valuations V : (F, V) |= α.

We shall also consider a stronger language, which we will refer to as
L∗EDA, which is obtained by adding common knowledge operators K∗Gr on
states and on actions. Given the symmetry of the language, it is natural for
us to consider common knowledge operators not in isolation, for one sort,
but uniformly for both. Although on the level of actions it might be more
accurate to speak of common learning than of common knowledge, we shall
not be insistent on this point. Let us now give the interpretation of these
infinitary operators. It is completely analogous as in the last chapter.

M, s |= K∗Grφ iff M, s |=
∧

〈i1,...,in〉∈Gr∗
Ki1 . . .Kinφ

where, as in the previous chapter, Gr∗ is the set of all finite sequences of
elements of Gr ⊆ Ag. The interpretation on actions runs exactly parallel.

29

4.3 Discussion

The main inspiration for the basic formal setting of LEDA comes from dy-
namic arrow logic, DAL, as introduced in [Mar96, vB94]. DAL builds on two
major ideas; the first of these is related to the relativization approach to re-
lational algebra (cf. [Mar99]): one assumes a set of abstract objects as given
that need not be representable as the full cartesian product over some un-
derlying set of objects. It has been shown that this move leads to a decrease
in complexity – the undecidability of full relation algebra disappears (see, for
instance, [MPM96]). The second main feature of DAL is the perspective on
actions and states one takes: both kinds of objects are treated essentially on
a par and may interact in various ways. This obviously meshes well with our
general purpose of analyzing updates, with the setting developed in chapter
2, and also with the symmetric intuitions about actions and states we put
forward in the introduction to this thesis. Let us now say something about
the additional features that distinguish the present language from the basic
DAL language.

First, a comment on the features we choose to omit here. In arrow logic,
one usually considers the additional operations of reversal and composition
on the level of actions, which we shall not encounter in the main body of
this thesis. This is mainly for reasons of simplicity. More comments can be
found in the conclusions of the thesis.

Two–level epistemics As to a first difference: the present language is
an epistemic version of dynamic arrow logic. Languages which combine
dynamic and epistemic features are well–known in the literature. The dis-
tinguishing feature here is that we add epistemic operators both on states
and actions, or arrows. Here, the influence of the modelling of Baltag et
al. shows; we have discussed its motivation in earlier chapters. An equal
treatment of states and actions on an epistemic level seems also to be very
much in the spirit of dynamic arrow logic itself, as it started from the idea
of treating actions and states equally.

Action labels Furthermore, our treatment of action labels is different
from standard DAL. Here, we use an adaptation of a technique known from
hybrid logic, which basically consists in requiring that the denotation of
each action label in L is a singleton set, and that furthermore every action
is in the denotation of some action label. The idea here is that we think of
the semantic actions in an action frame as corresponding to generic types
of actions. For instance, we can think of some action a as being the ac-

30

tion of “taking a card”. Now our primary interest is in properties actions
have by virtue of their being of a specific type. This was very obvious in
the last chapter, when we discussed the system LBMS: in this language, the
uncertainty about an action and its preconditions are taken to depend on
its type; both components are made syntactically explicit for easy reference.
A similar thing is happening here. However, we want less: we do not in-
corporate epistemic and precondition features of an action into the syntax
directly; still, we want to be able to refer to actions by syntactic means. To
be able to do this, we need some syntactic mechanism. This mechanism is
provided by the action labels, which give names to actions. Note that we
do not exclude that an action “falls under two different descriptions”: it
is possible to single out actions differently, i.e. a |= a ∧ b is not contradic-
tory. Further features of actions, including their epistemic appearance, and
their preconditions, may be described in our language using the additional
operators discussed above.

Fact 4.6 Let F = (S,A, .) be an update frame. Then F, a |= Kib iff there
exists b ∈ A, such that b ∈ V (b), and a ³i b. tu

Note that this may be seen as a formal counterpart of natural language
expressions like “when he took the knife, I thought it might be that he
actually took the fork”. Here, “taking the knife” is used as a way to single
out some real action; the formal correspondent of such a definite description
would be an action label a, used to designate some action a ∈ A; similar
remarks apply to b, b, and the description “he took the fork”. The difference
between Kib, and “I thought it might be that he took the fork”, is that
the former rather corresponds to “it might be that he actually takes the
fork”, representing an epistemic statement of an agent while an action is
happening. But this is only what we wanted to have: a way of ascribing
epistemic properties to agents while actions are happening.

Pre-/Postconditions As a last addition, we have enriched the dynamic
arrow logic repertoire somewhat, by considering further operators taking
state formulas to action formulas, namely the operators ↑2 and ↓2. These
accompany the operators ↑1 and ↓1, which are standard and well–known
from the literature: ↑1 and ↓1 talk about necessity; ↑2 and ↓2, on the other
hand, talk about sufficiency.16 The interpretation of the duals ⇑2 and ⇓2

16Sufficiency operators of this kind have been studied in various contexts, in an attempt

to overcome the modal bias towards necessity. The state modality usually considered in

this case, is the window operator �. �φ then says that all states where φ is true are

31

runs as follows:

M, a |= ⇑2φ iff (∃s ∈ S) : s 6∈ D(a) and M, s 6|= φ

M, a |= ⇓2φ iff (∃s ∈ S) : s 6∈ R(a) and M, s 6|= φ

The most important feature about the sufficiency operators is, that we
can use them to define iff operators:17

↑φ := ↑1φ ∧ ↑2φ

↓φ := ↓1φ ∧ ↓2φ

We have that a |= ↑φ iff D(a) = {s ∈ S|s |= φ}, and similarly a |= ↓φ
iff R(a) = {s ∈ S|s |= φ}. We shall refer to ↑ as the precondition operator,
and to ↓ as the postcondition operator. Thus, the notion of precondition and
postcondition we adopt here is the following: φ is a precondition (respec-
tively, postcondition) for some action a, if truth of φ at a state s is necessary
and sufficient for s to lie in the domain (respectively, range) of a.

An immediate questions is which models are precondition–based in the
sense that for each each action a, there exists a formula φ such that M, a |=
↑φ.18. A first answer is trivial: namely, for an action label a,

a → ↑〈a〉>

is valid in all update models, and since any action has a name, we have that
for any action a, a precondition of a is given as 〈V (a)〉>, that is, ↑〈V (a)〉>
is true at a. This, however, is not particularly interesting, since it says
nothing more than that for any action a, D(a) = {s ∈ S|a ∈ A(s)}. What
we we would like to see are interesting preconditions, that tell us something
illuminating about the properties of states where an action is executable.
What are interesting preconditions? To give a particular answer, let us call
a state formula pure if it does not contain occurrences of []. A well–known
result in modal logic says that any state s in a finite epistemic model M
can be characterized up to epistemic bisimiliarity by a formula φ of the
basic modal language with common knowledge operators, in the sense that
N , t |= φ iff s and t are epistemically bisimilar, for all models N and states

reachable by a transition from the current state. The reader may consult [GPT87] for

details.
17We can also derive further interesting operators; for instance, a “cross–sort” version

of the existential modality is given by ⇑2¬φ∨⇑1φ, which is true at an arbitrary action iff

there exists a state s such that s |= φ.
18An analogous question, of course, can be raised for the case of postconditions. We

focus on the case relevant for the following

32

t in N . Furthermore, epistemic bisimilarity and modal equivalence coincide
in the case of finite epistemic models.19 Now the basic modal language
with common knowledge operators is just the set of pure state formulas.
To derive a statement about preconditions from this, we need to make the
assumption that the availability of an action in an update model is dependent
on properties of states that are describable by means of pure state formulas.
Given an update model M, we say that the domain of a is closed under
epistemic equivalence, if, for all t ∈ S, if (1) s ∈ D(a), and (2) s |= φ

iff t |= φ for all pure state formulas φ, then t ∈ D(a). We then have the
following:

Fact 4.7 Let M = (S,A, ., V) be a finite update model, and a ∈ A. Sup-
pose the domain of a is closed under epistemic equivalence. Then there
exists a pure state formula φ ∈ L∗EDA, such that M, a |= ↑φ. tu

A question which we leave open here is whether this analysis can be
extended to the case where we allow arbitrary label–free state formulas.

Some validities

We conclude this chapter by discussing some basic validities of the languages
LEDA and L∗EDA. We shall, however, not go into issues of axiomatization
proper.

Principles 4.8
1.

∨
a∈L a

2.
∧

a∈L(a → ↑〈a〉>)

3.
∧

a∈L(〈a〉p → [a]p)

4. [α]φ ∧ [β]φ → [α ∧ β]φ

5. 〈↑1φ〉> → φ

The first principle reflects the finiteness of the label set and our “hyb-
dridness” assumption on valuations. The second principle was discussed
above. The third principle corresponds to the fact that the access map is a
function: given a state and an action, the output is determined, if an output
exists. The next two principles are self–explaining. We also get the usual
distribution principles for the operators [], ↑1, ↓1, and Ki.

19Details on epistemic bisimilarity may be found in section 5.2, where we shall also

re–encounter versions of the mentioned results.

33

Principles 4.9
1. [α]φ ∧ [α]ψ ↔ [α](φ ∧ ψ)

2. Kiφ ∧ Kiψ ↔ Ki(φ ∧ ψ)

3. Kiα ∧ Kiβ ↔ Ki(α ∧ β)

4. ↑1φ ∧ ↑1ψ ↔ ↑1(φ ∧ ψ)

5. ↓1φ ∧ ↓1ψ ↔ ↓1(φ ∧ ψ)

The sufficiency operators ↑2 and ↓2 are not normal modal operators.
However, they validate, a special principle, which is, for the case of ↑2:

Principle 4.10 ↑2φ ∧ ↑2(¬φ ∧ ψ) → ↑2ψ

The analogous principle holds for ↓2. The two operators also validate a
rule which is similar in its structure to the modal rule of necessitation: if φ

is valid in an update frame, then we can conclude that ↑2¬φ is also valid:
since φ is valid, trivially any action can be executed at all ¬φ–states, since
there are none.

Considering the larger language L∗EDA, we also get the usual principles
for the common knowledge operators. We consider only the case of common
knowledge on states, since matters are completely analogous on actions.

Principles 4.11
1. K∗Grφ → φ ∧∧

i∈Gr KiK∗Grφ

2. K∗Grφ ∧ K∗Grψ ↔ K∗Gr(φ ∧ ψ)

Note that we have not made any specific assumptions on the epistemic
frames that form part of update frames. Thus, it comes as no surprise, that,
apart from the distribution laws, none of the above principles mentions
knowledge operators. Indeed, all but the first principle in 4.8 describe the
behavior of the access map.

34

5 Comparison

In chapter 2, an ontology for the study of update was introduced; we have
seen two ways of approaching the subject, the first given by the notion of an
update frame, the second given by the operation of product update. Chap-
ter 2.4 gave an analysis of the relationship between these two approaches.
The present chapter parallels section 2.4, in that we compare here the two
languages, LBMS, and LEDA; each of them was designed to fit one of the
two approaches, and thus a more detailed comparison on a linguistic level
suggests itself.

We carry out our comparison along three dimensions. In section 5.1 right
below, we show that we can give a syntactic condition on update frames,
that is enough to force them to be product update frames. This leads to
some reflection on the way the language mirrors the account of information
flow the update operation gives. Section 5.2 compares the relevant notions
of bisimulation for our languages. Section 5.3 shows how we can simulate
the stronger language L∗BMS with the stronger language L∗EDA. Section 5.4
discusses a topic we have neglected so far: fact change. It is primarily meant
as a preparation for the investigations in the final chapter on closure and
preservation.

5.1 Characterizing product update frames

The question of this subsection is how we can characterize the class of prod-
uct update frames within the class of update frames. The interest of this
question derives, first of all, from the fact that we want to know if the system
LEDA is expressive enough to capture the condition characteristic for prod-
uct update. Second, our characterization provides a further insight in the
algorithmic picture on information flow given by the product update oper-
ation. It is also interesting to relate our principle to other characterizations
of the product update. It is closely related to the action knowledge axiom
used in [BMS99] in their axiomatization of the system introduced in chapter
3; the importance of this particular axiom is also stressed in [Bal00a]. We
also compare our result with the work in [vB00a].

Below, the semantic condition characteristic for product update frames
is repeated. We shall refer to it as the product update principle.

1. For all i ∈ Ag, for all s, s′, a, b such that s.a, s′.b is defined: If s →i s′

and a ³i b, then s.a ³i s′.b.

2. For all i ∈ Ag, for all s ∈ S, for all a ∈ A such that s.a is defined: If
s.a →i t, then t = s′.b for some s′ ∈ S, b ∈ A and s →i s′ and a ³i b.

35

Using our system, we can define the class of update frames satisfying this
condition, the class of product update frames, with the following principle:

Principle 5.1 [a]Kiφ ↔
∧

b∈L(〈a ∧ Kib〉> → Ki[b]φ)

It may be useful to state this in words: if after the current action, agent
i will know φ, then for any alternative to the current action that i considers
possible, i knows for this alternative that φ will hold after its execution.
Conversely, if for any action that is an alternative for agent i to the current
action, i knows that after this alternative φ will hold, then after the current
action i knows φ.

We remark at this point, that this very principle is the reason why we
need to assume our label set to be finite: we need to quantify over the actions
accessible for some agent from a given current one. Note that Baltag et
al. require their epistemic actions to be finite as well – however, they have
potentially countably many of them.

Proposition 5.2 Let F be an update frame. Then the following are equiv-
alent:

1. F is a product update frame.

2. F validates principle 5.1.

Proof:

(=⇒) Assume F is a product update frame. Suppose, for some s ∈ S,
s |= [a]Kiφ. We need to show that s |= 〈a∧Kib〉> → Ki[b]φ for any label b.
By assumption, we know that for all a ∈ A, and for all t ∈ S, if a ∈ V (a), s.a

is defined, and s.a →i t, then t |= φ. Consider now the right side. Assume
that s |= 〈a ∧ Kib〉> for some b. Thus there exist a ∈ A, b ∈ A, such that
a ∈ V (a), b ∈ V (b), s.a is defined, and a ³i b. We need to show that
s |= Ki[b]φ, i.e., we need to prove that for all s′ ∈ S, and for all b ∈ B, if
s′.b is defined, and b ∈ V (b), then s′.b |= φ. Consider some such s′. By the
assumption, we have a unique b ∈ A such that b ∈ V (b), and we know that
a ³i b. Since also s →i s′, by the assumption on F, we see that s.a →i s′.b.
But then by the initial assumption, s′.b |= φ.

Now suppose, for some s ∈ S, s |= ∧
b∈L〈a ∧ Kib〉> → Ki[b]φ. We need

to show that s |= [a]Kiφ. We know from the assumption that for all b ∈ L, if
s.a is defined, a ∈ V (a), and there exists b ∈ B such that b ∈ V (b), a ³i b,
then we can conclude that for all s′ ∈ S such that s →i s′, if s′.b is defined,
then s′.b |= φ. We need to show that if s.a is defined, and a ∈ V (a), then for

36

all t ∈ S: if s →i t, then t |= φ. Suppose that s.a is defined, and a ∈ V (a).
Take some t such that s →i t. By the definition of product update, there
exist s′, and b, such that t = s′.b, s →i s′, and a ³i b. We have b ∈ V (b) for
some b ∈ L, since V is surjective. We can now apply the assumption and
conclude that s′.b |= φ.

(⇐=) Suppose F is not a product update frame. So F violates one of the two
conditions for product update frames. As for the first case, suppose that
there are states s, s′ and actions a, b such that s.a, s′.b are defined, s →i s′

and a ³i b, whereas not s.a →i s′.b. Take such states and actions s, s′, a, b.
Let V be any valuation such that V (p) = S\{s′.b}, a ∈ V (a), and b ∈ V (b).
Then for all t such that s.a →i t: t |= p. So s |= [a]Kip. Furthermore,
s |= 〈a ∧Kib〉>, since a ³i b, and by the choice of V . However, s 6|= Ki[b]p,
since s →i s′, and s′.b 6|= p, again by the choice of V .

As for the other case, suppose there is a state s and an action a such
that s.a is defined, and s.a →i t for some t ∈ S, but there do not exist s′

and b such that t = s′.b and s →i s′, a ³i b. Let s and t and a be such
states and such an action. Take any valuation V such that V (p) = S\{t},
and a ∈ V (a). Then s 6|= [a]Kip. However, we claim that the right side of
the principle is true at s; if we establish this, we are done, since then the
principle cannot be true at s. So take any b ∈ L such that s |= 〈a ∧ Kib〉>.
Then there exists b ∈ A, such that a ³i b and b ∈ V (b). Let s′ be any state
in S such that s →i s′. We need to show that s′ |= [b]p. Suppose s′.b is
defined (otherwise, we are done). We know that s′.b 6= t by assumption. So
by the choice of V , s′.b |= p. Thus, s′ |= [b]p. Since s′ was chosen arbitrarily,
s |= Ki[b]p. Since b was chosen arbitrarily as well, s makes the right side of
the principle true. tu

Observe that principle 5.1 is in Sahlqvist form, so one may also com-
pute the frame condition it defines using the well–known Sahlqvist algorithm
(cf. [BdRV01]).

Note also, that the principle only captures the “frame part” of the prod-
uct update operation. If we wish to add the requirement that the valuation
is kept constant on update frames, we need to add another principle.

Principle 5.3 〈>〉> → (p ↔ [>]p)

It is fairly obvious, that this captures the way valuations were treated
in chapter 3; contrary to principle 5.1 above, however, it is a constraint on
models; we call update models that are based on product update frames,
and which make principle 5.3 globally true, product update models.

37

The proposition on product update frames above shows that the princi-
ple linguistically captures the specific account of information flow given by
the product update: the assertions that hold about an individual agent’s
knowledge at some output state is fully determined by assertions true about
the input state it came from; which also involve the epistemic properties of
the action leading from input to output. The following is a restatement of
proposition 5.2, that makes this explicit.

Corollary 5.4 Let M = (S,A, ., V) be a product update model. Suppose
s ∈ S, a ∈ A, and s.a is defined. Assume that a |= a. Then we have that

s |=
∧

b∈L
〈a ∧ Kib〉> → Ki[b]φ

iff

s.a |= Kiφ

Proof: Follows from proposition 5.2. tu

It is interesting to compare principle 5.1 with the action knowledge axiom
used by [BMS99]:

[α]Kiφ ↔ (PRE(α) →
∧

α→iβ

Ki[β]φ)

The “precondition check” PRE(α) in this axiom corresponds to the “avail-
ability check” 〈a〉 in principle 5.1, while the role of the quantification over the
alternative epistemic actions corresponds to our quantification over action
labels, together with the use of the epistemic operators on actions.

Another analysis of the product update may be found in [vB00a]. It
is cast in the context of an analysis of games using propositional dynamic
logic. We make a brief comparison. The discussion of [vB00a] revolves
around the product update principle applied to “game frames” where all
uncertainty relations are assumed to be equivalences relations. Such game
frames are based on trees, and represent game–like interaction; in particular,
one assumes that players’ interaction is driven by a turn taking schedule,
telling at each state in the frame which player is to move. This is reflected
in special atomic symbols turni, one for each i ∈ Ag, with the meaning that
player i is to move. At each state, one and only one of these symbols can
be true. The principles involved are the following formulas:

1. [a]Kiφ → Ki[a]φ

38

2. ¬turni → (Ki[A]φ → [A]Kiφ)

3. turni → (Ki[a]φ → [a]Kiφ)

4. E(〈a−1〉> ∧ Ki¬〈b−1〉) → U(〈a−1〉Kiφ → Ki[b−1]φ)

Here A is the union of all atomic programs (which are assumed to form a
finite set), and a is an arbitrary atomic program. a−1 denotes the converse
execution of the atomic program a, and E is the existential modality, its
dual being U .20

The first principle expresses, one could say, that knowledge about the
future entails knowledge in the future: if, at s, agent i knows that action
a can only lead to a state where φ holds, then after executing a agent
i will know that φ is the case. The analogue of this principle [a]Kiφ →
Ki[a]φ in the language LEDA is valid on all product update frames where
the actions have reflexive uncertainty relations, as one may easily check.21

Note that it is not valid anymore, if we drop reflexivity, i.e if we want
to account for the possibility of misleading actions. The second and the
third principle correspond to perfect recall type assumptions one usually
makes in game theory: if it is i’s turn to move, then i can distinguish all
actions available, i.e. , formulated for our system, we have that a →i b

iff a = b, given that i is to move at s, and s.a is defined. The same is
not assumed to hold for the moves of other players, which might be non–
transparent for i – thus the weaker principle (3). One may check, that the
LEDA principle Ki[>]φ → [>]Kiφ, corresponding to this third principle, is
valid on all product update frames. The second principle will, as predicted
by the [vB00a] analysis, be valid at specific states in an update frame –
those where some player can distinguish between all available actions. The
fourth condition expresses a “uniformity” condition: if, at some state s,
a is executable, and my be by some agent i with b, then i will always
confuse a with b. That this principle is needed depends on the somewhat
different (relational) setting in PDL. In our system, this principle holds
trivially, and need not be enforced. However, one may also point out that
the PDL analysis shows that it is not unconceivable that action uncertainty
should actually depend on specific instances of actions – as will happen if
one drops principle (4). This reiterates a point we have made earlier: the
update setting we are studying here does not have much to say about specific
instances of actions.

20For details on these additional expressions, the reader may consult [BdRV01].
21It would lead us too far afield to make formally precise what we mean by “analogue”

here.

39

The analysis in [vB00a], then, should probably be seen as a restricted
version of ours for a different system. Our brief comparison also shows that
PDL would have been a less suited basic language than the DAL framework
is: PDL seems less suited to analyze the kind of two–level epistemics we
are interested in here, for the simple reason that it does not have a notion
of uncertainty about actions; it does not seem straightforward to extend it
in that direction, either. This shows also in the fact that it seems hard, if
possible at all, to extend the PDL analysis to the general case of all frames
validating the product update principle. Note furthermore, that already
the above principles use rather heavy machinery: the global modality, and,
additionally, converse execution of programs. Finally, it is not quite in the
spirit of the product update operation, to make its workings dependent on
turn patterns; it is actually not hard to find cases, where players cannot
distinguish moves they take themselves; imagine, for instance, choosing a
card blind–folded – this is an action that will typically not be transparent
to you, even though you execute it yourself.22 The same point is made by
[vB00a]; it is noted there, that one may give a similar analysis, which does
not involve epistemics made dependent on turn patterns.

5.2 Bisimulations

We shall now introduce, and discuss, bisimulations for LBMS and LEDA. This
is instructive by way of comparison; some important differences between the
two systems come out more clearly in this perspective. Generally speaking,
analyzing suitable notions of equivalence for some language is useful if one
wants to get clear on what features of semantic objects one wishes to for-
malize using this language. It is also preparatory for the work of the next
section. To avoid confusion, in the following we shall write |=LBMS

for the
truth predicate of the language LBMS of chapter 3, and |=LEDA

for the truth
predicate of the language LEDA of chapter 4.

The key notion we need is that of an epistemic bisimulation.

Definition 5.5 (Epistemic bisimulation) Let M = (F , V), and M′ =
(F ′, V ′), where F and F ′ are epistemic frames, and V : At → P(F) and
V ′ : At → P(F ′) are valuations on some given set At of sentences. An
epistemic bisimulation between M and M′ is a relation X between states in
M and states in M′ such that

1. for all atomic formulas p ∈ At, w ∈ V (p) iff w′ ∈ V ′(p) (atomic
harmony),

22Note that this may still be modelled within the boundaries of S5.

40

2. if wXw′ and w →i v, then there exists a state v′ such that w′ →i v′

and vXv′ (forth),

3. if wXw′ and w′ →i v′, then there exists a state v such that w →i v

and vXv′ (back).

If X is an epistemic bisimulation between M and M′ such that wXw′, we
write X : M, w ∼ M′, w′. We also write M, w ∼ M′, w′, if there is an
epistemic bisimulation X such that X : M, w ∼ M′, w′. If the models M
and M′ we are comparing are clearly given from the context, we sometimes
write w ∼ w′, if M, w ∼M′, w′. a

This definition naturally applies to both state models and labelled action
frames; in the first case, we assume At to be P , the set of proposition letters,
in the second case we take At to be L, the set of action labels. Indeed,
the definition also applies to epistemic actions: one takes the valuation
function to be the precondition map PRE, and the set At to be LBMS.23 Since
epistemic actions are “model–world pairs”, for them we will also require that
an epistemic bisimulation between two epistemic actions α = (A, PRE, a) and
β = (B, PRE, b) links the two distinguished actions a and b.

Quite obviously, this definition has something interesting to say both
about the language LEDA of chapter 4 and about the language LBMS of
chapter 3. For the latter language, this definition is indeed all we need
to consider, if we want to prove invariance. For the following, fix a set of
epistemic actions.

Proposition 5.6 ([BMS99]) Let M and M′ be state models. If X :
M, s ∼ M′, s′, φ ∈ LBMS, and α = (A, PRE, a) is an epistemic action,
then

1. M, s |=LBMS
φ iff M′, s′ |=LBMS

φ.

2. M⊗CMα S, (s, a) ∼M′⊗CMα S, (s′, a).

Proof: We show (1) and (2) simultaneously. All cases but the one for the
action modalities follow directly. Claim (1) uses (2) in the case of a for-
mula [α]φ: namely, by (2), we can assume that the models obtained by the
product update agree on φ. Claim (2) uses the fact that (1) holds for the
preconditions of α. Note that given X : M, s ∼ M′, s′, and using (1), we

23Since we think that there is no possibility of confusion, we choose to ignore here the

difference between a function mapping a given sentence to a singleton set, and a function

mapping a given sentence to a single object.

41

have for an epistemic action α = (A, PRE, a) that s |= PRE(a) iff s′ |= PRE(a),
and thus (s, a) ∈ Cα iff (s′, a) ∈ Cα. Furthermore, we relate (s, a) and (s′, a)
in the models obtained via product update, just in case sXs′, which gives
us an epistemic bisimulation. tu

To get an analogue of the previous proposition for update models and the
language LEDA, we need to add in more structure: first, we need to account
for the two–sortedness of LEDA. Thus, the clauses (1) and (2) in definition
5.7 below require that there be an epistemic bisimulation both on the level
of state models and on the level of labelled action frames. And second, we
need to ensure coherence between the two sorts to account for formulas of
the form ↑φ, and 〈α〉φ. This is accomplished by the items (3)–(5) in the
below definition.

Definition 5.7 Let M = (S,A, ., V) and M′ = (S ′,A′, .′, V ′) be update
models. A bisimulation between M and M′ is a relation X ⊆ (S × S′) ∪
(A×A′) such that

1. if sXs′, then X : (S, V), s ∼ (S ′, V ′), s′,

2. if aXb, then X : (A, V), a ∼ (A′, V ′), b,

3. if sXs′, and s.a = t, then there exists b such that s′.′b = t′, X :
(A, V), a ∼ (A′, V ′), b, and X : (S, V), t ∼ (S ′, V ′), t′, and vice versa,

4. if aXb, and s ∈ D(a), then there exists s′, such that X : (S, V), s ∼
(S ′, V ′), s′, and s′ ∈ D(b), and vice versa,

5. if aXb, and s 6∈ D(a), then there exists s′, such that X : (S, V), s ∼
(S ′, V ′), s′, and s′ 6∈ D(b), and vice versa,

6. if aXb, and s ∈ R(a), then there exists s′, such that X : (S, V), s ∼
(S ′, V ′), s′, and s′ ∈ R(b), and vice versa,

7. if aXb, and s 6∈ R(a), then there exists s′, such that X : (S, V), s ∼
(S ′, V ′), s′, and s′ 6∈ R(b), and vice versa.

If X is a bisimulation between M and M′ such that xXx′, we write X :
M, x ≡ M′, x′. We also write M, x ≡ M′, x′ if there is a bisimulation X

such that X : M, x ≡ M′, x′. If M and M′ are clearly given by the context,
we write x ≡ x′, if M, x ≡ M′, x′. a

With this definition, we have the following proposition:

42

Proposition 5.8 Let M and M′ be update models. Let X be a bisimulation
between M and M′. Then the following hold, for formulas φ ∈ SF, and
α ∈ AF:

1. If X : M, s ≡ M′, s′, then M, s |=LEDA
φ iff M, s′ |=LEDA

φ.

2. If X : M, a ≡ M′, b, then M, a |=LEDA
α iff M, s′ |=LEDA

α.

Proof: We show the claim by simultaneous induction on the structure of
both state and action formulas. All boolean cases are standard, as are the
cases for epistemic operators. For a state formula of the form 〈α〉, we can
use the induction hypothesis that (2) holds for α. For the last case, suppose
a |= ⇑φ. We have two cases. Suppose there exists s, such that s.a is defined,
and s |= φ. By definition of a bisimulation, there exists s′, such that s ∼ s′,
and s′.′b is defined. By the induction hypothesis concerning (1), s′ |= φ,
so b |= ⇑φ. For the other case, suppose there exists s such that s.a is not
defined, and s |= ¬φ. By definition of a bisimulation, there exists s′ such
that s ∼ s′, and s′.′b is not defined. By the induction hypothesis concerning
(1), s′ |= ¬φ, so b |= ⇑φ. tu

A question that arises immediately is if the notions of bisimulation we
have introduced are the right ones for the languages LBMS and LEDA. One
could imagine that they impose more structure than is needed to prove
modal equivalence. However, for both types of bisimulation, and the corre-
sponding language, it may be established that the class of finite models is
a Hennessy–Milner class, that is: on finite models, bisimulation and modal
equivalence coincide; in particular, this gives us converses for proposition
5.6 and 5.8 for the finite case, thereby showing the adequacy of our notions
of bisimulation. We demonstrate this for the case of LEDA.

Proposition 5.9 Let M and M′ be finite update models, let s and s′ be
states in M and M′, respectively. Suppose that s and s′ make the same
formulas true, i.e. for all φ ∈ LEDA: s |= φ iff s′ |= φ. Then s and s′ are
bisimilar, i.e. M, s ≡ M′, s′. Similarly, if two actions a and b in M and
M′, respectively, make the same formulas true, then a and b are bisimilar:
M, a ≡ M′, b.

Proof: The claim is shown by proving that the relation of modal equivalence
is itself a bisimulation. The proof is the standard one, for which we refer
the reader to [BdRV01]. Let s and s′ be modally equivalent states in M

and M′, and suppose that s and s′ are not bisimilar. We check only that

43

the assumption that no relation between s and s′ satisfies condition (3) in
the definition of a bisimulation leads to a contradiction, the other cases
being similar. Suppose that there exists an action a, such that s.a = t; we
will derive a contradiction from the assumption that there do not exist an
action b, and a state t′, such that a and b, t and t′ satisfy the same formulas,
respectively. There are two cases, that are essentially analogous; we consider
one: assume there is no such action b. Let A′ be the set of actions such that
s′.′b is defined. Since M′ is finite, we can list this set as {a1, . . . , an}. By
assumption, for any ai, there exists a formula αi, such that a |= αi, whereas
ai 6|= αi. Take the conjunction ϑ =

∧
1≤i≤n αi. Then s |= 〈ϑ〉>, whereas

s′ 6|= 〈ϑ〉>, since any ai ∈ A′ makes one of the conjuncts of ϑ false. We have
a contradiction.

Let now a and b be modally equivalent actions in M and M′, and sup-
pose that a and b are not bisimilar. Again, we check one case: suppose
that no relation between a and b satisfies condition (5) in the definition of
a bisimulation leads to a contradiction; the other cases are again similar.
Suppose s 6∈ D(a) and assume there is no s′ 6∈ D(b) such that s and s′ make
the same formulas true. Let T = S′\D(b). By assumption we have that for
all t ∈ T , there exists φt such that t |= φ, and s 6|= φ. Since T is finite,∨

t∈T φt is a formula, and we see that a |= ⇑2

∨
t∈T φt, while b 6|= ⇑2

∨
t∈T φt

(the reader may want to compare the truth conditions for ⇑2 which are given
in chapter 4.3), which yields a contradiction. tu

The analogous proposition may be shown for the case of LBMS and epis-
temic bisimulation, showing that the relationship between structural and
linguistic equvalence is the right one.

Let us turn to the maybe most appalling difference between bisimulation
and epistemic bisimulation: for the system LBMS, we get by with consid-
erably less requirements. Where does this come from? After all, the two
systems are not that different.

Remark 5.10
1. One reason lies in the fact that the epistemic actions of LBMS are not

subject to the definition of bisimulation. They are part of the syntax,
and thus they are fixed up to identity. Thus we need not consider a
notion of bisimilarity of epistemic actions separately (as in condition
(2) in definition 5.7 for LEDA).

2. Furthermore, the fact that the access conditions are defined in terms
of the precondition map implies that the domain of an action is closed
under epistemic bisimulation: if two elements of a state model s and s′

44

are epistemically bisimilar, then (s, a) ∈ Cα iff (s′, a) ∈ Cα (note that
Cα depends on the state model at hand. We shall suppress this in our
notation). This explains the lack of conditions which would correspond
to the last two items, (4) and (5), in definition 5.7 for LEDA, which are
designed to work for the precondition operator of LEDA. In the system
of [BMS99], preconditions are hardwired in the semantics, and there
is no need to mention any conditions governing them.

3. Finally, as pointed out in the proof of proposition 5.6, applying an
epistemic action to bisimilar states yields bisimilar outputs: product
update respects bisimulation. Thus we need not specify that those
outputs are bisimilar (as we did in condition (3) of definition 5.7 for
LEDA), since it follows from the general features of the product up-
date. Taken together, these conditions ensure that if two states in two
state models are epistemically bisimilar, then all the other structural
features needed to prove invariance between the two models match as
well. a

We can indirectly verify these remarks with a simple observation about
LBMS, incorporating the points we mentioned. For two update models M =
(M, (A, VA), .) and M′ = (M′, (A, VA), .′), and an action a ∈ A, we say
that the domain of a ∈ A is closed under epistemic bisimulation if for all
s ∈ S, s′ ∈ S′: M, s ≡M′, s′ and s.a is defined implies s′.a is defined.24

Proposition 5.11 Let M = (M, (A, VA), .) and M′ = (M′, (A, VA), .′) be
product update frames. Suppose for all a ∈ A, the domain of a is closed
under epistemic bisimulation. Then the following are equivalent, for all
s ∈ S, and s′ ∈ S′:

1. M, s ∼M′, s′

2. M, s ≡ M′, s′

Proof: The non–trivial direction is from left to right. Take two update
models M = (S,A, ., V) and M′ = (S ′,A, .′, V ′), and supposeM, s ∼M′, s′.
We need to check the third condition in definition 5.7. So suppose s.a = t is
defined for some a. By the assumption, s′.a = t′ for some t′. Clearly, a and
a are epistemically bisimilar. That s and s′ are epistemically bisimilar is our
assumption; so we can conclude, adapting the observation in the proof of

24Note that this condition is not implied by our definition of a bisimulation in 5.7, since

this definition does not tell us that the same action should have similar structural features

in any way in two update models that are linked by a bisimulation.

45

proposition 5.6, using the fact that M and M′ are product update models,
that u an u′ are epistemically bisimilar as well. tu

In what sense does this proposition capture the informal remarks above?
First, we have made the action frames the same in both update models
(remark (1) above). Second, we have simply stipulated that the domain of
an action should be closed under epistemic bisimulation (remark (2) above).
And third, we have used product update frames. (remark (3) above). The
conjunction of these assumptions leads to a “collapse” of the notions of
epistemic bisimulation and full bisimulation on states.

Another point about LBMS relates to bisimilarity of epistemic actions.
The idea is the following. If we look at the syntax of LBMS, then we see
that epistemic action modalities involve some information that we are not
really interested in: actually, we are only interested in the actions’ precondi-
tions, and in their structural pattern. This suggests to distinguish epistemic
actions only up to bisimilarity. In [BMS99], the following is shown:

Proposition 5.12 ([BMS99]) Let α = (A, PRE, a) and β = (B, PRE′, b) be
epistemic actions, and suppose that α ∼ β. Then for any state models M
and M′, if M, s ∼ M′, s′, then M⊗CMα A, (s, a) ∼ M′ ⊗

CM
′
β
B, (s′, b), and

thus M, s |=LBMS
[α]φ iff N , s′ |=LBMS

[β]φ. tu

The main point of the argument is, again, that product update respects
bisimulation: bisimilar epistemic actions applied to bisimilar states result in
bisimilar outputs.

5.3 Simulating L∗BMS with L∗EDA

This section is about embedding the language L∗BMS in the language L∗EDA.
Thus, we consider the extended languages that we have briefly introduced in
chapter 3 and 4: the extension of LBMS with common knowledge operators,
and the extension of LEDA with common knowledge operators both on states
and actions. The use of the word “embedding” should not be taken too
literally, since both languages are interpreted in different types of structures.
For this reason, we prefer to speak about a simulation of L∗BMS using L∗EDA.
For such a simulation to be possible, we will need a way to make both
languages comparable. For this purpose, we will use a construction similar
to the one we have seen in section 2.4; in fact, the construction in this section
will be a rather straightforward extension of construction 2.9.

We first introduce this construction and the result that comes along with
it. The shortcoming of this result is that it does not make any essential use

46

of action formulas, besides using action labels to refer to individual actions.
However, we designed LEDA and L∗EDA to give us expressivity in describing
epistemic action structure and the domain of applicability of actions. We
put this expressive power to use in the second half of the section, where
we present a translation of L∗BMS into L∗EDA, which works modulo the con-
struction presented in the first half. This translation will map formulas of
L∗BMS to state formulas of L∗EDA, and epistemic actions over L∗BMS to action
formulas of L∗EDA. Formulas of L∗EDA will be equivalent to their translation
(along the construction), while epistemic actions will be characterized by
their translation up to epistemic bisimilarity, in a sense to be made precise
in due course.

While the first half of the section does not depend on the fact that we are
considering the extended languages in an essential way, the second part will
make crucial use of the common knowledge operators L∗EDA has on actions.

For the remainder of this section, fix a finite set of epistemic actions
Act over L∗EDA. Without loss of generality, we assume these actions to be
mutually disjoint.

Construction 5.13 Let a state model M = (S, V) be given. In prepara-
tion of the following, for any given state model N , let CNAct :=

⋃
α∈Act CNα .

Let furthermore AAct be the union of all action frames underlying epistemic
actions in Act. Then we define:

M0 := M

Mn+1 := Mn ⊗CMn
Act

AAct

Mω :=
⋃
n<ω

Mn

Cω :=
⋃
n<ω

CMn
Act

.ω := idCω

In the last clause, idCω denotes the identity map on Cω. To obtain a labelling
of the actions in A with actions labels, we identify the set of labels L of
L∗EDA with the epistemic actions in Act, and for any such epistemic action
α = (A, PRE, a), we put V (α) = a. a

47

Note that construction 5.13 is an extended version of construction 2.9 in
chapter 2.4. We inductively construct an update model using the product
update mechanism given by the semantics of L∗BMS: the action frame is
just given by taking the union of all action frames underlying the epistemic
actions. The state model is given by repeated applications of the product
update. We then collect the access conditions that were generated during
the construction, and turn them into an access map. We finally label each
action in the action frame of the resulting update model with an epistemic
action in Act; namely, V (a) = α iff α = (A, PRE, a). It is easy to see that
this is a total, surjective map. Note that we have chosen our language
L∗EDA depending on the set of epistemic actions Act. As a result, we have
L∗BMS ⊆ L∗EDA.

The construction induces a product update model (Mω, (AAct, V), .ω),
which we call, for a given state model M, the product update model corre-
sponding to M, referring to it with MM⊗ . We now have the following:

Theorem 5.14 Let M be a state model. Let MM⊗ = (Mω, (AAct, V), .ω)
be the product update model corresponding to M. Then

M, s |=L∗BMS
φ iff MM

⊗ , s |=L∗EDA
φ

for all φ ∈ L∗BMS.

Proof: By construction. tu

As pointed out above, this result does not use the expressive power of
L∗EDA on actions in any sense. In effect, we have just turned part of the
syntax of L∗BMS into semantic objects for L∗EDA, and adapted our set of
labels of L∗EDA to the set of epistemic actions at hand.

We now want to describe the epistemic actions, using a translation of
formulas of L∗BMS into L∗EDA. We define, by double recursion, a function Tr,
which maps each formula φ ∈ L∗BMS to a state formula Tr(φ) ∈ L∗EDA, which
will be a state formula, and which furthermore maps each epistemic action
α over L∗EDA, to a translation Tr(α), which will be an action formula. For
the formulas, we define:

1. Tr(p) = p

2. Tr(¬φ) = ¬Tr(φ)

3. Tr(φ ∧ ψ) = Tr(φ) ∧ Tr(ψ)

4. Tr(Kiφ) = KiTr(φ)

48

5. Tr(K∗Grφ) = K∗GrTr(φ)

6. Tr([α]φ) = [Tr(α)]Tr(φ)

We now need to define Tr(α), for an epistemic action α = (A, PRE, a).
A model world pair is a pair consisting of an epistemic model M, and a
distinguished world inM. We can now code the preconditions as proposition
letters. For this purpose, let a total injective map I from the range of
PRE to P , the set of proposition letters, be given. Define for all a ∈ A,
V (a) = I(PRE(a)). This gives us a model world pair (A, V, a). A well–
known fact in modal logic tells us that any finite model world pair can be
characterized by a formula of the standard modal language with common
knowledge operators. Let δ be the modal definition of (A, V, a). This is a
formula, built up from proposition letters p, boolean operators, knowledge
and common knowledge operators. Since δ contains proposition letters, it
is not the formula we want. However, we obtain the desired translation as
follows: consider any proposition letter p occurring in δ. By injectivity of I,
we find a unique formula φ ∈ L∗BMS, such that I(φ) = p. Replace p uniformly
in δ with ↑Tr(φ), where we have Tr(φ by the first part of the definition of
Tr above. Do this for all proposition letters occurring in δ, and call the
resulting formula δ′. This is the translation we want, i.e. we put

Tr(α) = δ′

for each epistemic action α. Note that this is an action formula of the
language L∗EDA.

To state the theorem accompanying the translation Tr, we need a further
piece of notation. Let M = ((S, V), (C, VC), .) and N = ((S, V), (D, VD), .′)
be update models. Let c ∈ C and d ∈ D. We write c ≈ d, if there exists a
relation X ⊆ C ×D, such that cXd, where X satisfies the back and forth
clauses of the definition of an epistemic bisimulation, and mXn implies
D(m) = D(n). So c ≈ d expresses that c and d share the same epistemic
pattern up to bisimilarity, and that furthermore c and d have the same
domain.

Theorem 5.15
Let a state model M be given, and let MM⊗ = (Mω, (AAct, V), .ω) be the
update model corresponding to M. Let N = (Mω, (B, V ′), .) be an update
model.

1. Let s ∈ S and φ ∈ L∗BMS. Then

M, s |=L∗BMS
φ iff MM

⊗ , s |=L∗EDA
Tr(φ)

49

2. Let α = (A, PRE, a), and b ∈ B. Then

a ≈ b iff N, b |=L∗EDA
Tr(α)

Proof: By double induction. tu

Thus we see that, along the construction of associated product update
models, L∗EDA is a conservative extension of L∗BMS. The key to the preceding
theorem lies the possibility of describing both epistemic uncertainty patterns
and preconditions of actions by means of operators of L∗EDA. It can thus be
seen as a verification of the claim that in L∗EDA, mechanisms of describing
actions replace the syntactic use of epistemic actions.

5.4 Fact change

If we have valuations conveying information about specific facts that hold
somewhere, the question arises what happens to these facts when we update.
To study this, we need a notion of sentential update to deal with the phe-
nomenon of fact change. In the previous chapters we have considered only
the simplest case of purely epistemic sentential update, where valuations are
simply copied from input to output state across some action happening. For
this reason, we did not need to consider valuations of facts at actions. In
this section, we shall suggest some more possibilities in some detail. The
present section is meant as a preparation for the investigation of preserva-
tion questions in the next chapter. Also, we want to at least briefly discuss
a topic that we have neglected up until now.

Definition 5.16 A sentential update operation is a function Sen : P(P) ×
P(P) → P(P), where P is the set of proposition letters. a

Thus, an operation of sentential update is supposed to take two sets of
proposition letters, and produce another complete description from them.
The way we interpret the inputs, is, of course, as those proposition letters
true at a state (the first input), respectively at an action (the second input),
while the output of the sentential update operation should give us the set
of proposition letters true at the output state resulting from applying the
action at the state. To build this notion into our setting, we obviously first
need a notion of proposition letters holding at actions.

Definition 5.17 An action model is a pair (A, V), where A is an action
frame, and V : P → P(A) is a function from the set of proposition letters
P to the powerset of the domain of A. a

50

Note that we have not used the term “action model” before, so this does
not give rise to ambiguity. It is obviously also feasible to extend the notions
of a labelled action frame and an epistemic action in order to incorporate
the idea of valuations of proposition letters at actions. We shall write, by
abuse of notation, V (a) = Φ, if Φ is the set of those p such that a ∈ V (p).

Definition 5.18 An epistemic action model is a pair (α, V), where α =
(A, PRE, a) is an epistemic action, and (A, V) is an action model. A labelled
action model is a pair (A, V), where V = V1 ∪ V2, and V1 : A → L is a
valuation on the action labels, and (A, V2) is an action model. a

For the language LEDA, the changes needed to accommodate this new no-
tion of a labelled action model are the obvious ones; we extend the language
by allowing proposition letters as atomic action formulas, and adapt the se-
mantics correspondingly. We trust that the reader can fill in the details. As
we shall see further down, we can then characterize specific sentential up-
date operations by means of frame constraints. For the language LBMS, we
need to say how the product update operation incorporates the new notion
of sentential update.

Definition 5.19 (Sentential Product update)
Let Sen be an operation of sentential update. Let M = (S, V) be a
state model, and (A, V ′) be an action model. Let C be an access condi-
tion on S and A. Then the Sen–update of M with (A, V ′) is defined as
M⊗Sen

C (A, V ′) = (S ⊗C A, V ′′), where for each (s, a) ∈ S ⊗C A: V ′′(s, a) =
Sen(V (s), V ′(a)). a

Thus, each of the sentential update notions to be discussed will lead to
a different semantics for LBMS: two sentential update notions will lead to
different valuations on the states in the state model obtained via the product
update.

These preliminaries out of the way – what should happen to the facts?
Let us look at some proposals.

1. L(Φ, Ψ) = Φ

2. R(Φ, Ψ) = Ψ

3. 4(Φ, Ψ) = (Φ\Ψ) ∪ (Ψ\Φ)

4. 5(Φ, Ψ) = 4(Φ,Ψ)

51

The first proposal is just a way of recovering purely epistemic update as
an explicit notion of sentential update in circumstances where we regard it
as convenient to just ignore the valuation on the action.

The second proposal is based on the intuition that actions bring about
facts (including negative ones). Thus, the action gives us a complete picture
of anything that will be true or false due to its execution. This is arguably
a bit unintuitive if we are dealing with an infinite set of proposition letters,
since we then need to get clear, for each and every fact p, on what we
assume some action a to do with this p. However, this does not seem to be
a principled reason against it, since in modelling real–world interaction, one
will no doubt zoom in on a finite set of relevant facts.

The third proposal focusses on the change induced by actions. The
operation 4(Φ, Ψ) is known as the symmetric difference of the two sets Φ
and Ψ. It includes precisely those elements that were in one of Φ and Ψ but
not in the other. The intuition is that this operation flips truth–values. For
instance, given that p ∈ V (s), and p ∈ V (a), we get that p 6∈ V (s.a), since
we take p ∈ V (a) to mean that action a flips p. However, if p ∈ V (s), and
p 6∈ V (a), then p ∈ V (s.a), since a did not flip p. This proposal is studied
in [Bal00a].

The fourth proposal, defined in terms of the third, is similar, but presents
the idea of change somewhat different: one makes those proposition letters
true at an action of which one assumes that they are not flipped by the
action. One talks about change by saying what is not changed, so to speak.
Consequently, if p ∈ V (s), and p ∈ V (a), then p ∈ V (s.a), while if p ∈ V (s),
and p 6∈ V (a), then p 6∈ V (s.a), since in the first case we assume that
p ∈ V (a) means that a does not change p.

Let us look at some examples.

R(Φ,Ψ): Suppose a is “set the counter to zero”. Assume p means “the
counter is zero”. Take two states s and s′, suppose at s, the counter
is zero, while at s′ it is not zero. Then p will “hold” at a according to
the confirmation interpretation, and at both s.a and s′.a, p will hold
(since the counter at both states will be zero).

4(Φ,Ψ): Suppose there are two cards lying on the table, a blue one, and a
red one. Suppose p means “the left card is the blue one”. Assume p

is true at s (the blue card is left), and not true at s′ (the blue card is
not left). Suppose a is “take the left card and put it to the right side
of the right card”. Then p will “hold” at a according to the change
interpretation, and at s.a, p will not be true (now the blue card is not
left anymore), while at s′.a, p will hold (now the blue card is left).

52

L(Φ, Ψ) 〈>〉> → (p ↔ [>]p)

R(Φ, Ψ) [p]p

4(Φ,Ψ) 〈>〉> → (p ↔ [p]¬p) ∧ (¬p ↔ [p]p)

5(Φ,Ψ) 〈>〉> → (p ↔ [p]p) ∧ (¬p ↔ [p]¬p)

Table 1: Characterizing sentential update operations

5(Φ,Ψ): Any example for 4 can be made into a “dual” example for 5:
consider the same example as in the previous item. Then the only
difference is, that we will evaluate p false at a (because it is changed
by a); the result is the same: at s.a, p will not hold; p will hold at s′.a
(where now we computed the new valuations using 5.

To round this discussion up, we indicate how the relevant notions of
sentential update may be captured in the language LEDA. This is summa-
rized in table 1. Note that the initial tests 〈>〉> we use to check if a state
has available actions is needed in the third and fourth row – otherwise, the
formulas would be inconsistent at states that do not have successors.

53

6 Closure and preservation

One way to study the relationship between the languages we have been
considering, and the update patterns they describe more closely is via an
investigation of preservation questions. The problem of preservation is one
of the “logical update problems” mentioned in the introduction to this the-
sis. The possibility of studying such questions, we think, could be seen as
one of the main contributions model–theory, or logic, can make to the study
of information change. Preservation theorems are ways of characterizing an
operation via the formulas the truth value (or validity) of which it leaves
unaffected. Thus an investigation of this topic promises to yield further in-
sights in the features of the product update operation we have been studying
in the previous chapters. The fact that a formula is preserved has a very
direct interpretation in the context of information change: if φ is preserved,
then the property expressed by φ is “resistent” to change (in some way to be
made precise below). We can then say, that the update operation respects
the property expressed by φ: φ does not become false just because of the
particular way the product update operation processes some given inputs.

There is a multitude of questions revolving around the issues of preser-
vation under product update. In particular, there is a semantic version of the
preservation problem, which we will also discuss: closure. The introduction
to this chapter charts part of this territory, while later sections treat some
of the raised issues in a bit more detail.

But let us first give the setting in which we are going to discuss these
problems. As announced already in chapter 2, we focus in this chapter on a
simple language. We are going to work with the basic multi–modal language.
The basic multi–modal language forms precisely the intersection of the state
formulas and the action formulas of LEDA, extended with proposition letters
on actions, as discussed in the last section of the previous chapter. LML

is also a sublanguage of LBMS; thus, the findings of this chapter will be
relevant to the earlier introduced systems as well. The semantic setting for
the language LML is given by state models, action models, access conditions,
and various operations of sentential product update (cf. section 5.4 above).
We will not always be insistent on the distinction between state and action
models, since the language is interpreted on both in exactly the same way;
and obviously so, since they are the same kind of objects – epistemic models.

54

6.1 Introduction

Suppose a given state frame S has a specific relational property, say, reflex-
ivity (for simplicity, assume for all agents i). In epistemic terms, reflexivity
of the uncertainty relations corresponds to the fact that, at each state s, the
agents consider s itself as one possibility how things might be. Thus they
might be uncertain about the present state of the world, and about other
agents, but they are certainly not mislead: If, at state s, agent i knows φ,
then φ is actually true at s. Now suppose S is updated with some action
frame A. Suppose furthermore, that A itself is also reflexive, i.e. there is
nothing misleading about A. Is it guaranteed that the updated state frame
will still be reflexive? Note that, if this would not be the case, some doubts
about the behavior of the product update operation would arise: for how
can one be mislead if one was not mislead and has not been mislead? For-
tunately, however, updating a reflexive state frame with an reflexive action
frame always results in a new state frame which is itself reflexive. This
statement is actually true for all the familiar S5 properties.

Example 6.1 Let S be a state frame, let A be an action frame. Let C be
an access condition on S and A. Then we have the following:

1. If S and A are reflexive, then S ⊗C A is reflexive.

2. If S and A are symmetric, then S ⊗C A is symmetric.

3. If S and A are transitive, then S ⊗C A is transitive.

For reflexivity, suppose →i and ³i are reflexive relations on S and A.
Let (s, a) be any element of C. Then s →i s and a ³ a by assumption,
and so (s, a) →i (s, a) by definition of S ⊗C A. For symmetry, assume S
and A are symmetric models, and take elements (s, a) and (s′, b) from C
and suppose (s, a) →i (s′, b). By definition of S ⊗C A, s →i s′ and a ³i b.
By assumption, s′ →i s and b ³i a. Again by definition of S ⊗C A, we
have (s′, b) →i (s, a). Transitivity works similar. Thus, as also remarked in
[Bal00a], “updating S5 states with S5 actions yields S5 states”. a

The observation in this example may be formulated in terms of a closure
property, as follows: the class of reflexive epistemic frames is closed under
(product) update, as are the class of transitive and symmetric epistemic
frames: If C is one of these classes, and S and A are elements of C, then
S ⊗C A is also an element of C, for any C.

55

Definition 6.2 Let C be a class of epistemic frames. We say that C is closed
under update, if for all epistemic frames S, A, if S ∈ C and A ∈ C, then
S ⊗C A ∈ C, for all access conditions C on S and A. a

The question then arises how we can capture all and only those classes
of frames that are closed under update. This is the closure problem.

One can also ask in what cases it is “enough” that only one of the input
frames has a specific property. Note that for the cases of symmetry, reflex-
ivity, and transitivity from the above example, this is not the case: if you
are not mislead, and something misleading happens (i.e. the current state
frame is updated with a non–reflexive action frame), you may be mislead af-
terwards – so this makes a difference. Two cases where one input is enough
are given in the following example.

Example 6.3 Let S be a state frame. Let A be an action frame, and let C
be an access condition on S and A. Let i ∈ Ag. Then we have the following:

1. Suppose S is well–founded, i.e. there is no infinite sequence s0, s1, s2, . . .

of elements of S such that . . . sn →in sn1 →in−1 . . . s2 →i s1 →i1 s0

(where ij ∈ Ag). Then S ⊗C A is well–founded as well.

2. Suppose all relational sequences in S have at most length n, i.e. any
sequence (s1, . . . , sm) such that sk →jk

sk+1, jk ∈ Ag, 1 ≤ k ≤ m− 1,
is shorter than some fixed n. Then S ⊗C A has this property as well.

For the case of well–foundedness, suppose S⊗CA is not well–founded. Then
there is an infinite sequence v0, v1, v2, . . . of elements of C such that . . . vn →in

vn−1 →in−1 . . . v2 →i2 v1 →i1 v0 (where ij ∈ Ag). Any element of V is of
the form (s, a) for some s ∈ S and a ∈ A. By definition of product update,
we have that for any elements v1, v2 of V , if v1 = (s1, a1), v2 = (s2, a2),
and v1 →i v2, then s1 →i s2. So the above infinite sequence of elements of
V gives rise to an infinite sequence of elements of S as well, contradicting
the assumption that S is well–founded. We can conclude that S ⊗C A is
well–founded. For the second property, one can argue in a similar fashion.
a

Consider now the following: suppose S has an irreflexive point, i.e. there
is some s ∈ S such that not s →i s for some agent i. Then for any a ∈ A,
such that (s, a) ∈ C, (s, a) will be irreflexive as well. This shows that once
you are mislead, that is, once you do not access the actual world anymore,
you will never access the actual world in the future. However, it is not the

56

case that the class of epistemic frames having an irreflexive point is closed
under update. To see this, just take, in the above example, an epistemic
frame A, and an access map such that for all a ∈ A: (s, a) 6∈ C. Assuming
that s was the only irreflexive point in S, we have a counter–example.

The above observations can again be made precise as a – stronger –
notion of closure.

Definition 6.4 Let C be a class of epistemic frames. We say that C is
strongly closed under update if for all epistemic frames S and A, if S ∈ C,
then S ⊗C A ∈ C, for all access conditions C. a

Again, the question then arises how we can capture all and only those
classes of frames that are strongly closed under update. This is the strong
closure problem.

Turning to epistemic models, we see that, essentially, the same notions
of closure reappear: we can wonder what happens if both inputs to the
update operation have a specific property, and also in which circumstances
one input is “enough” for the output to have it. However, we need to account
for another parameter: the way in which the valuations are changed by the
product update operation. Thus, we need to define our notions of closure in
terms of sentential product update. Furthermore, since some of the notions
of sentential product update we want to consider do not treat states and
actions symmetrical, we need to distinguish two notions of strong closure:
action closure and state closure.

Definition 6.5 Let C be a class of epistemic models. We say that C is closed
under Sen–update, if for all epistemic models M and M′, if M,M′ ∈ C,
then M⊗Sen

C M′ ∈ C, for all access maps C. We say that C is state closed
under Sen–update, if for all epistemic models M and M′, if M ∈ C, then
M ⊗Sen

C M′ ∈ C, for all access maps C. We say that C is action closed
under Sen–update if for all epistemic models M and M′, if M′ ∈ C, then
M⊗Sen

C M′ ∈ C, for all access maps C. a

Note that we have defined a family of closure notions in each case: one
for each operation Sen.

The logical siblings of closure problems are preservation problems – the
task is to determine, for some given logical language, the set of those formu-
las the truth–value, or validity, of which is not affected by performing the
operation of product update. Given our earlier investigations, it is natural
for us to investigate such questions for modal languages, and indeed for the

57

simplest non–trivial fragment of both the languages LBMS and LEDA: the
basic multi–modal language, denoted, as the reader may recall, with LML.
We call formulas φ ∈ LML modal formulas.

By way of example, the discussion of the previous section has shown
that the validity of the reflexivity axiom 2φ → φ is preserved under product
update, in the sense that validity at both inputs entails validity at both out-
puts (and analogously for the case of symmetry and transitivity). Similarly,
the well–known Gödel–Löb axiom 2(2p → p) → 2p, which characterizes
well–foundedness, was shown to be strongly preserved, in the sense that its
validity at one input frame guarantees validity at the output of applying the
product update operation.

Definition 6.6 We say that φ is preserved under update on frames, if for
all epistemic frames S, and A, if φ is valid in S and A, then φ is valid in
S⊗CA, for all access conditions C. We say that φ is strongly preserved under
update on frames, if for all epistemic frames S and A, if φ is valid in S, then
φ is valid in S ⊗C A, for all access conditions C. a

Turning to models, for a modal analysis, it is most natural to consider a
more local preservation problem, relative to a given state at which evaluation
takes place. Note that, as in the case of closure on models above, we carry
along another parameter: the type of sentential update we are performing.

Definition 6.7 We say that φ is preserved under Sen–update on models, if
for all epistemic models M = (S, V) and M′ = (A, V ′), if M, s |= φ and
M′, s |= φ, then M⊗Sen

C M′, (s, a) |= φ, if defined, for all s ∈ S, a ∈ A, and
for all access conditions C. We say that φ is state preserved under update on
models, if for all epistemic models M, and M′, given as above, if M, s |= φ,
then M⊗Sen

C M′, (s, a) |= φ, if defined, for all s ∈ S, a ∈ A, and for all access
conditions C. We say that φ is action preserved under update on models, if
for all epistemic models M, and M′, given as above, if M′, s |= φ, then
M⊗Sen

C M′, (s, a) |= φ, for all s ∈ S, a ∈ A, and access conditions C such
that (s, a) ∈ C. a

Given the discussion in section 5.4, it will be natural for us to consider
the notions of L–update, R–update, 4–update, and 5–update here.

Finally, a remark is in order on the type of preservation and closure
problems considered here. Consider the case of preservation under update
on models. We defined a formula φ to be preserved under update if truth of
φ at an input state s and an action a guarantees its truth at (s, a), for any

58

access condition C containing the latter element (s, a). If we think of the
way access conditions were defined in the framework of LBMS, ultimately one
will also be interested in a more fine–grained preservation problem, where
the access conditions considered are tied to preconditions. Thus, we will
associate each action a with a modal sentence PRE(a), analogous to what we
have seen in chapter 3, and consider access conditions of the form

{(s, a)|s ∈ S, a ∈ A, s |= PRE(a)}

In our simplified setting, we do not consider this more sophisticated type of
preservation.

The structure of the remainder of this chapter will parallel the introduc-
tion. We start by discussing closure, turning to preservation afterwards. In
each case, we discuss frames and models, in this order.

6.2 Closure

Frames

Closure under update on frames can be characterized using the familiar op-
erations of taking subframes and direct products. Note that in the following,
we assume that C is closed under isomorphism.

Theorem 6.8 Let C be a class of epistemic frames. Then C is closed under
update iff C is closed under taking finite direct products and subframes.

Proof:

(=⇒) Let C be a class of epistemic frames, and suppose that C is closed
under update. First, suppose that S ∈ C, and S ′ is a subframe of S. We
have to show that S ′ ∈ C. We update S with itself. To define the access
condition, we put for all s ∈ S: (s, s′) ∈ C iff s = s′ and s ∈ S′. We see
that S ⊗C S is isomorphic to S ′. And since the former is in C, also S ′ ∈ C.
Second, suppose that S,A ∈ C. We have to show that S ×A ∈ C. Define an
access condition by the requirement that (s, a) ∈ C iff s ∈ S, a ∈ A. Then
S ⊗C A = S ×A. So S ×A ∈ C.

(⇐=) Let C be a class of epistemic frames, and suppose C is closed under
taking finite direct products and subframes. Suppose S and A are elements
of C, and let C be an access condition on S and A. We have to show that
S ⊗C A ∈ C. First, consider S × A. We take the subframe S ′ of S × A
defined by the requirement that (s, a) ∈ S′ iff (s, a) ∈ C. Then we have that
S ′ = S ⊗C A ∈ C, which completes the proof. tu

59

Turning to strong closure under update, we observe the following.

Fact 6.9 Let C be a class of epistemic frames. If C is strongly closed under
update, then C is closed under update. tu

Thus the closure conditions we need to characterize strong closure under
update have to be at least as strong as the ones used in the above result.
More specifically, we will use the following notions.

Let S and S ′ be epistemic frames. We say that S ′ is a generalized sub-
frame of S, if S ′ can be obtained from S by taking a subframe of S and
possibly taking a subset of the relations on this subframe.

We say that S is a homomorphic pre–image of S ′, if there is a function
F : S → S′, such that F is a total, surjective strong homomorphism from S
onto S ′.

Equipped with these definitions, we can characterize strong closure under
update on frames.

Theorem 6.10 Let C be a class of frames. Then the following are equiva-
lent.

1. C is strongly closed under update.

2. C is closed under taking generalized subframes and homomorphic pre–
images.

Proof:

(=⇒) Suppose C is strongly closed under update. Suppose S ∈ C and S ′
is a generalized subframe of S. We update S with S ′. We define an access
condition by the requirement that (s, s′) ∈ C iff s = s′ and s ∈ S′. As a
result, S ⊗C S ′ = S ′, which shows that S ′ ∈ C. Assume now that S ∈ C

and S ′ is a strong homomorphic pre–image of S. We have to show that
S ′ ∈ C. Let F be a total, surjective strong homomorphism from S ′ onto S.
We shall update S with S ′. Define an access condition by the requirement
that (s, s′) ∈ C iff s ∈ S, s′ ∈ S′, and F (s′) = s. We claim that S ⊗C S ′
is isomorphic to S ′, which shows that S ′ ∈ C. To show the claim, consider
the map I : C → S ′, defined by I(s, s′) = s′, for all (s, s′) ∈ C. This is
clearly a bijection. Suppose now for some (s, s′), (t, t′) ∈ C, we have that
(s, s′) →i (t, t′). Then by definition of update, s′ →S′

i t′. Conversely, suppose
s′ →i t′ for some s′, t′ ∈ S′. We know that there exist unique s, and t, such
that (s, s′), (t, t′) ∈ C. By definition of C, F (s′) = s, and F (t′) = t, and
since F is a strong homomorphism, we see that s →i t. So by definition of
update, (s, s′) →i (t, t′). Hence S ′ is isomorphic to S⊗C S ′, and thus S ′ ∈ C.

60

(⇐=) Assume that C is closed under taking generalized subframes and homo-
morphic pre–images. Let S,S ′ be epistemic frames, let C be an access condi-
tion, and suppose that S ∈ C. We have to show that S ⊗C S ′ ∈ C. Consider
the frame T , which has as its domain C∪{(s, 0)|s ∈ S,¬∃s′ ∈ S′ : (s, s′) ∈ C},
and the relations of which are defined by setting (s, s′) →i (t, t′) iff s →i s′.
Clearly, T is a strong homomorphic pre–image of S, along the map F defined
by F (s, s′) = s: since we glued in dummy points, F is obviously surjective,
it is also total, and the homomorphic condition is clear by definition. So
T ∈ C. We now restrict the domain of T to C, throwing away the dummies,
which gives us a new frame T ′, which by assumption, is in C. Note that its
domain is the domain of the frame we want to arrive at. Finally, we restrict
the relations by removing those pairs (s, s′) →i (t, t′), such that s′ 6→i t′.
The resulting frame is in C by assumption, and it is just S ⊗C S ′, which
completes the proof. tu

We think that these two result show that the product update fits in
rather nicely with other well–known set–theoretic operations.

Models

In the case of models, we concentrate on two cases, that fit in neatly with
the preceding. Corollary 6.11 below uses the notion of ∩–update, thereby
simply referring to the sentential update operation of intersecting the two
input sets of proposition letters; that is: given Φ and Ψ, ∩(Φ, Ψ) = Φ ∩Ψ.

Corollary 6.11 Let C be a class of epistemic models. Then C is closed
under ∩–update iff C is closed under taking submodels and finite direct
products.

Proof: Adapt theorem 6.8. Since ∩–update behaves exactly like a direct
product, the changes are trivial. tu

∩–update has the somewhat odd feature that it allows for negative fact
change only: facts may become false, but never true. We mention it here
because it naturally extends theorem 6.8 above to the case of models.

Corollary 6.12 Let C be a class of epistemic models. Then C is state
closed under L–update iff C is closed under taking generalized submodels
and strongly homomorphic pre–images.

Proof: Adapt theorem 6.10. Since L–update copies the valuation from state
input to output, the changes are again trivial. tu

61

The preceding corollary deserves some attention, since on the purely
epistemic level, the comparison between product update and other notions
of update suggest itself. One such notion is public update, which consists
essentially in taking a submodel of the present state model. Another one
might be dubbed private update: here one considers the removal of rela-
tional pairs from the present model; our very first example was of this kind:
when I open the envelope, the worlds were I am invited to the lecture on
probability theory and where I am invited to a lecture on epistemic logic,
get disconnected for me, but not for Bob. The preceding corollary now tells
us in which way product update, on the level of purely epistemic update,
generalizes the two by combining them, and by furthermore allowing us to
“boost” models via homomorphic pre–images. Note, however, that this re-
mark should be understood modulo the subtlety that public update does
not consist in taking arbitrary submodels, but in taking submodels consist-
ing of those worlds that make some formula φ true – the formula φ we are
updating with. Thus, the update is ”self–defined“ by the model in which we
perform it (cf. [vB00b]). This is analogous to the case of access conditions
which are defined using preconditions; the reader may compare the above
comment on this issue.

6.3 Preservation

Paralleling the structure of the previous section, we first study preservation
on frames, and then turn to preservation on models.

Frames

As we will see in this section, first–order logic allows for a rather neat char-
acterization of the effects of product update.

Definition 6.13 Let a nonempty set of agents Ag be given. Let Λ(R) be the
first order language with equality which is built over a signature containing
a countable set of variables V ar = x0, x1, . . ., a binary relation symbol Ri

for each agent i ∈ Ag, and the symbols > and ⊥. a

For this language, we need to define a separate notion of preservation:

Definition 6.14 A first–order sentence φ ∈ Λ(R) is preserved under update
iff for all epistemic frames S and S ′, and for all access conditions C: if S
and S ′ are models of φ, then S ⊗C S ′ is a model of φ. a

62

The relevant class of formulas we need in order to characterize preserva-
tion under update is given by the following definition. Here, a strict formula
is a formula which does not contain occurrences of ⊥.

Definition 6.15 Let a first order language Λ be given. The set of universal
Horn formulas of Λ is the least set X such that

1. If φ0 is an atomic formula, then φ0 ∈ X,

2. If n ∈ N, φ0, . . . , φn are strict atomic formulas, and φ is an atomic
formula, then φ0 ∧ . . . ∧ φn → φ ∈ X,

3. If φ, ψ ∈ X, then φ ∧ ψ ∈ X,

4. If φ ∈ X, then ∀xφ ∈ X.

The set of universal Horn sentences is the set of universal Horn formulas
with no free variables. a

Universal Horn formulas form an important class for a number of rea-
sons (for a survey, the reader may consult [Hod92]). For us, the following
characterization is useful:

Theorem 6.16 (Mal’cev) Let φ be a first–order sentence over some sig-
nature. Then φ is preserved under taking finite direct products and sub-
structures iff φ is equivalent to a universal Horn sentences. tu

With theorem 6.8 from the previous section, we get

Corollary 6.17 Let φ be a first–order sentence in Λ(R). Then φ is pre-
served under update iff φ is equivalent to a universal Horn sentence. tu

Note that the examples we discussed as 6.1 all follow from this corollary,
via modal frame correspondences. However, what one would like to have in
the end, of course, is a characterization like this for a modal language.

Open Problem 6.18 Determine the class of basic modal formulas, that
are preserved under update on frames. a

Note that this will involve also second order axioms – as, for instance,
the Gödel-Löb axiom discussed in the introduction. It seems thus unlikely
that a modal characterization of preservation for the frame case could draw
on existing model–theoretic characterizations like Mal’cev’s theorem above.

63

Preservation Action preservation State preservation

4 − − −
5 + − −
R + + −
L + − +

Table 2: Atomic preservation on models

We note also that we are unaware of a characterization of the first–order
formulas that are preserved under homomorphic pre–images and generalized
subframes – which would give us a (first order) characterization of strong
preservation.

Models

On the level of models, we will do two things. We start with a fine structure
analysis of preservation patterns for various notions of sentential update.
We then consider characterizations of (1) preservation under ∩–update, and
(2) state preservation under L–update.

As to the first point, let us start with preservation of atomic formulas.
Here, it is interesting to consider what the different notions of sentential
update discussed in section 5.4 amount to. Our findings are summarized
in table 2. The + signs mean that, using the sentential update operation
of the corresponding row, atomic formulas are preserved in the sense of the
corresponding column. Upon inspection, we see, of course, that each of the
notions of sentential update we discussed, in some sense, is designed for the
notions of preservation it supports. 4 does not care about preservation
at all, since it tells us something about change. R basically says that the
facts true at an action should be preserved to its output states. Similar
remarks may be made for the remaining operations. Given the atomic case
as a basis, we can investigate the closure properties of the set of preserved
formulas, i.e. which logical connectives “preserve preservation”? Here, our
results are collected in table 3. In the table, an occurrence of a logical oper-
ator ♥ indicates that, given that φ and ψ are preserved in the sense of the
corresponding column, then φ♥ψ is also preserved, respectively not neces-
sarily preserved (depending on the row), i.e. , the set of preserved formulas
is closed, respectively not closed under ♥. The case of state and action
preservation are entirely analogous here, for the obvious reason that the
semantics works analogously in both cases. Differences between state and

64

Preservation Action/state preservation

Closed ∧,Ki ∧,∨,Ki

Not closed ¬,Ki,∨ ¬,Ki

Table 3: Closure properties of formulas on models

action preservation arise only in connection with specific sentential update
operations, that assign a different role to propositional facts on states and
on actions in the process of updating.

Let us now turn to the two specific cases. As for the case of preservation
under ∩–update, there is a nice characterization in terms of modal universal
Horn sentences, as introduced in [Stu00].

Definition 6.19 The set of basic modal Horn formulas is the least set B

such that ¬p ∈ B, if p ∈ P , ⊥ ∈ B, and B is closed under disjunction,
conjunction, and applying Ki. The set of modal universal Horn sentences is
the least set X such that

1. B ∪ P ⊆ X.

2. if φ, ψ ∈ X then φ ∧ ψ ∈ X and Kiφ ∈ X.

3. if φ, ψ ∈ X, and φ ∈ B or ψ ∈ B, then φ ∨ ψ ∈ X. a

The following result is due to Sturm:

Theorem 6.20 ([Stu00]) Let φ be a modal formula. Then φ is preserved
under taking submodels and finite direct products iff φ is equivalent to a
modal universal Horn sentence. tu

Sturm’s theorem also works more generally for arbitrary modal similarity
types, with a generalization of definition 6.19. As we have seen, for a class
of frames, ∩–closure under update is equivalent to closure under taking
submodels and finite direct products. Using Sturm’s result, we obtain the
following:

Corollary 6.21 Let φ be a modal formula. Then φ is ∩–preserved under
update iff φ is equivalent to a modal universal Horn sentence.

Proof: By theorem 6.20 and corollary 6.11. tu

65

Let us now consider the case of state preservation under L–update. In
the previous section, we have seen that state closure under L–update is
equivalent to closure under strong homomorphic pre–images and generalized
submodels. There are two observations to be made here. First, any modal
formula is preserved under strong homomorphic pre–images (cf. [BdRV01]).
Second, the modal language cannot make a difference between generalized
submodels and submodels. In the following, by a relational restriction of a
model M we mean a model obtained by removing relation pairs in M.

Proposition 6.22 let φ be a modal formula. φ is preserved under taking
relational restrictions iff φ is preserved under taking submodels.

Proof:

(=⇒) Assume φ is preserved under relational restrictions. SupposeM, s |= φ

and M′ is a submodel of φ containing s. Let M′′ be the model which has
the domain and the valuation of M, and the relations of M′. Then M′′ is a
relational restriction of M, so M′′, s |= φ. However, M′, s ∼M′′, s, so also
M′, s |= φ.

(⇐=) Suppose φ is preserved under submodels. Suppose M, s |= φ and M′

is a relational restriction of M. Suppose M = (S,→S
i , VS). Consider the

unravelling of M around s, i.e. the model N , where N = (U,→U
i , VU) is de-

fined as follows: the domain, U , consists of all finite sequences (s, u1, . . . , un),
where n ≥ 0 and s →i1 u1 . . . un−1 →in un for some i1, . . . , in ∈ Ag. The re-
lations are defined by the requirement that for all i ∈ Ag, (s, u1, . . . , un) →U

i

(s, v1, . . . , vm) iff m = n + 1 and uj = vj for j = 1, . . . , n, and un →S
i vm.

Finally, (s, u1, . . . , un) ∈ VU (p) iff un ∈ VS(p). Now by a standard modal
argument, we have that N , s ∼M, s, so N , s |= φ. Consider now the set U ′

of those (s, u1, . . . , un) ∈ U such that there is a path from s to un in M′.
U ′ determines a submodel N ′ of N , and since φ is preserved under taking
submodels, N ′, s |= φ. However, also N ′, s ∼M′, s, so M′, s |= φ. tu

This gives us the following:

Corollary 6.23 Let φ be a modal formula. Then the following are equiva-
lent:

1. φ is state preserved under L–update.

2. φ is preserved under taking submodels.

Proof: Apply corollary 6.12, and the preceding observations. tu

66

We can now make use of the following:

Theorem 6.24 (van Benthem) Let φ be a modal formula. φ is preserved
under taking submodels iff φ is equivalent to a universal modal formula, i.e. ,
built up from proposition letters, and negated proposition letters, using ∨,
∧, and knowledge operators Ki.

Proof: A proof may be found in [AvBN96]. tu

Using this, we conclude with the following corollary to 6.23.

Corollary 6.25 Let φ be a modal formula. Then φ is state preserved under
L–update iff φ is equivalent to a universal modal formula. tu

67

7 Conclusions

By way of conclusion, we summarize the findings of this thesis and mention
some further directions.

7.1 Summary

The results of this thesis may be summarized as follows. In chapter 2, we
have introduced and motivated a general framework for analyzing informa-
tional update, given by the concept of an update frame; the main topic of
this thesis was the comparison of this setting with what seems to be the most
general proposal for solving the update problem: the operation of product
update, introduced in the work of Baltag, Solecki, and Moss. We stressed
the differences between the two settings: update frames are not tied to a
specific rule of updating, while the product update provides just that. But
even when restricting the class of update frames to those that obey such a
rule, the basic perspective is different: update frames provide a bird’s eye
view on streams of epistemic interaction, while the product operation lo-
cally performs updates in a specific situation. Section 2.4 compared the two
settings, product update, and update frames, focussing on the interplay be-
tween the local and the global level. The main result was a characterization
of the relationship between product update and update frames that applies
to several interesting classes of update frames. On the way, several features
of the product update operation became clear: first and foremost, it encodes
a notion of – what we called – epistemic height, that we recovered in the
setting of update frames. Also, it became clear how the product update
operation generates a stream of information flow in an algorithmic manner.

The next chapter introduced the language LBMS of [BMS99], and the
extension L∗BMS. The main feature of this semantics we stressed is that
it builds the product update operation right into the interpretation of the
language. Chapter 4 introduced a new language, LEDA, drawing upon the
insights of Baltag et al. , but also using tools known from the literature
on dynamic arrow logic and hybrid logic. Its main novelty is the use of
epistemic operators both on the level of states and on the level of actions.
Additional operators enable the study of preconditions and postconditions.

Chapter 5 was devoted to comparing the two approaches. We showed
how to characterize the operation of product update using the system LEDA.
A comparison of the structural notions of bisimulations for the two languages
shed light on the circumstances in which dynamic and epistemic bisimula-
tion “collapse”, in that they mutually imply each other. We then showed

68

how to simulate L∗BMS, the extension of LBMS with common knowledge oper-
ators, using L∗EDA, which itself is obtained by extending LEDA with common
knowledge/learning operators both on states and actions.

Chapter 6 dealt with the closure and preservation problems raised by the
product update operation. We analyzed them using the basic multi–modal
language LML, which is a sublanguage of both systems discussed in the
preceding chapters of this thesis. We established some results concerning the
purely semantic side of the enterprize, closure under update. Linguistically,
we presented a preservation result for first–order logic, and a fine structure
analysis of preservation questions for modal logic on models.

7.2 Further directions

Process like epistemic structure

In chapter 2.4, we have emphasized the interest in the interplay between
the local workings of the update operation and the patterns emerging from
it on a more global level. This line of thinking was not taken up later
on in our logical analysis. However, it is also interesting to explore more
process like structures of update by logical means. In this direction, [Bal00a]
introduces a dynamic logic for product update improving on the work in
[BMS99]; this language is obtained by combining an epistemic logic of belief
and common knowledge with a programming language of epistemic action
terms. One then has formulas of the form [τ]φ, where τ is an inductively
built action term, the denotation of which is an epistemic action, and φ is
a formula. The quoted paper also mentions a complete equational system
for the resulting algebra of epistemic actions. The possibility of adding
further process like structure to LEDA is certainly open to us. Sequential
composition, for instance, is an obvious candidate; indeed, this operation
forms a part of the standard arrow logic repertoire we have neglected here
(cf. the remarks in section 4.3). One can then wonder what properties this
operation of composition should have in the context of epistemic update,
in particular in what way should the epistemic features of actions lift to
actions that are themselves composed of smaller actions? Another operator
the behavior of which has been explored in dynamic arrow logic is the ∗–
operator known from PDL ([vB94],[Mar96]). It might be useful to have it in
a language like LEDA as well, also with an eye towards possible applications
(for instance to games, cf. the remarks further down).

For such an extended language, interesting questions concerning the over-
all structure of information flow may be raised. The focus of a dynamic logic
version of LEDA would be different from the dynamic language of [Bal00a];

69

the latter uses action terms to refer to actions, while with the former we
describe actions using formulas. This makes for different questions; it might
also be interesting to compare two such systems. For instance, one may
wonder what the classes of propositions are, that can be “learned” inter-
changeably – i.e. one may try to find interesting classes of formulas α and
β such that 〈α ◦ β〉 ↔ 〈β ◦ α〉 is valid. An suggestive instance of a formula
that one would be expect to have this interchange property is the following:

〈Ki↑p ◦ Ki↑q〉 ↔ 〈Ki↑q ◦ Ki↑p〉

This might depend on several additional assumptions.
Another question concerns the long–term behavior of product update. It

is easy to see, for instance, that product update is not terminating, not even
on finite models (just iterate the direct product of two epistemic frames; as
we have seen, direct products are a special case of product update). Public
update, on the other hand, is terminating on finite models (see [vB00b]).
For particular types of actions, this may still hold using product update.
Furthermore, notions of confluence seem worth studying. Having executed
two different actions, do the resulting states have a “common future” (up
to bisimilarity, say)?

Complexity analysis

Using the product update operation as a core part of the semantics fixes the
epistemic mechanism driving the system LBMS right from the beginning.
This allows for much more compact, local representations: a given initial
state model will typically be conveniently small–sized, while update models
for LEDA can easily become huge, and, one might suspect, computationally
less efficient to work with (compare [Bal00a] for a similar point). We feel
that it would be interesting to actually compare the devised systems from
this angle: are there complexity differences resulting from the somewhat
different way of modelling? In terms of sizes of representations, this seems
very likely to be the case. But is model checking a given state model less
complex than carrying out the same task for a product update model in
general? This may be suggestive to assume as well; however, it is also worth
keeping in mind, that to determine truth of a LBMS–formula in a state model
one may have to construct and maintain loads of representations of other
updated state models. It might be worthwhile to confirm, or disconfirm,
these conflicting intuitions. Similar questions may of course be asked for
satisfiability – even though a satisfying model for a LEDA formula may be
larger in general than a model for a LBMS formula – is it less costly to find

70

one in the latter case than in the former? Although it may seem far–fetched
to raise such questions before we even have established the decidability of
LEDA, we hope that the spirit of this questions is clear.

Entailment

Maybe our analysis in chapter 6 was to traditional in its focus on the invari-
ances of update – while update, one might argue, is rather about change. On
the other hand, as invariance is a special case of change, one could argue that
our investigation dealt with a special case of the following question, which
asks for a more fine–grained characterization of the logical effects of product
update. Let us restrict attention to purely epistemic product update (using
the sentential update operation L). Let φ and ψ be state formulas, and let
ϑ be an action formula, built up possibly using proposition letters from P .
Then we say that φ entails ψ along ϑ (φ `ϑ ψ), if for every product update
model M = (S,A, ., V) that validates Sen, and for every state s ∈ S, and
action a ∈ A such that s.a is defined, if s |= φ, and a |= ϑ, then s.a |= ψ.

Question 7.1 What are the triples of formulas φ, ψ, and ϑ, such that
φ `ϑ ψ? a

Such questions have been studied in general model theory (cf., for in-
stance, [BvB99]). Many interesting problems are sub–instances of this more
general question. Some of them we have already encountered in this thesis.
For instance, for preserved formulas φ, we have that

φ `φ φ

Principle 5.1, which we used to characterize the class of product update
frames in section 5.1 provides us also with a specific entailment pattern, as
we have seen in corollary 5.4:

∧
b∈L

〈a ∧ Kib〉 → Ki[b]φ `a Kiφ

One can also study restricted versions of this problem. For instance, is
there an interesting entailment calculus of public announcements?

Games

Games of imperfect information have been studied in economic theory for
some decades now, mostly with an emphasis on strategic aspects and so-
lution concepts ([OR94, BB98, BB97]). They are very specific epistemic

71

processes, highlighting the interaction between knowledge and action in a
particular way. In particular, games involve a lot of additional structural
aspects that relate to the epistemic side of interaction in interesting ways.
While in a general analysis, actions are modelled as largely “neutral” ob-
jects that are “happening” in some way or other, in games they are assigned
to specific players that take these actions. This yields new concerns; for
instance, do we want to make sure that a player who is to move knows what
actions are available to him? Moreover, game behavior is usually rule–based.
With the concept of a game, one associates a set of rules governing which
moves are appropriate at which states. But besides the appropriate moves,
there are also those that are not appropriate25 Again, this interacts with
epistemic questions: how much do I know about my opponent’s behavior?
Did he take a non–appropriate move? Is there a chance for me to find out?
Strategies, finally, are complete plans for playing a game; as such, they are
ontologically more complex than actions. The epistemic questions associ-
ated with them are probably the most complex ones: how can we express
things like “player 1 knows that he is currently playing according to strategy
σ”?

25This distinction is usually “modelled away” in game theory by just representing the

“good moves”, not the “bad ones”.

72

References

[AvBN96] Hajnal Andreka, Johan van Benthem, and Istvan Nemeti.
Modal languages and bounded fragments of predicate logic.
Manuscript, 1996.

[Bal00a] Alexandru Baltag. A logic for suspicious players: Epistemic
actions and belief updates in games. CWI Technical Report,
2000. Final version to appear in Bulletin of Economic Research.

[Bal00b] Alexandru Baltag. A logic of epistemic actions (extended ver-
sion). CWI Technical Report, 2000.

[BB97] Pierpaolo Battigalli and Giacomo Bonanno. Synchronic infor-
mation, knowledge and common knowledge in extensive games.
In P. Mongin M. Bacharach, L.A. Gerard-Varet and H. Shin,
editors, Epistemic logic and the theory of games and decisions,
pages 235–263. Kluwer Academic, 1997.

[BB98] Pierpaolo Battigalli and Giacomo Bonanno. Recent results on
belief, knowledge and the epistemic foundations of game theory.
Manuscript, 1998.

[BdRV01] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal
logic. Cambridge University Press, 2001.

[BMS99] Alexandru Baltag, Lawrence S. Moss, and Slawomir Solecki. The
logic of public announcements, common knowledge, and private
suspicions. CWI Technical Report SEN-R9922, Preliminary ver-
sion, 1999.

[BMS01] Alexandru Baltag, Lawrence S. Moss, and Slawomir Solecki. The
logic of public announcements, common knowledge, and private
suspicions. Unpublished Manuscript, Preliminary version, 2001.

[BS97] Jon Barwise and Jerry Seligman. Information flow: the logic of
distributed systems. Cambridge University Press, 1997.

[BvB99] Jon Barwise and Johan van Benthem. Preservation, interpola-
tion, and pebble games. Journal of Symbolic Logic, 64:884–903,
1999.

[FHMV95] Ronald Fagin, Joseph Halpern, Yoram Moses, and Moshe Vardi.
Reasoning about Knowledge. MIT Press, 1995.

[G8̈8] Peter Gärdenfors. Knowledge in flux. MIT Press, 1988.

[Ger99] Jelle Gerbrandy. Bisimulations on planet Kripke. PhD thesis,
University of Amsterdam, 1999.

[GG97] Jelle Gerbrandy and Willem Groeneveld. Reasoning about in-
formation change. Journal of logic, language and information,
6:147–169, 1997.

[GPT87] George Gargov, Solomon Passy, and Tinko Tinchev. Modal envi-
ronment for boolean speculations. In D. Skordev, editor, Mathe-
matical logic and its applications, pages 253 – 263. Plenum Press,
1987.

[Hod92] Wilfried Hodges. Logical features of horn clauses. In Handbook
of logic in artificial intelligence and logic programming. Oxford
University Press, 1992.

[Mar96] Maarten Marx. Dynamic arrow logic. In Maarten Marx, Las-
zlo Polos, and Michael Masuch, editors, Arrow logic and multi-
dimensional logic, pages 109–123. CSLI Publications, 1996.

[Mar99] Maarten Marx. Relativized relation algebras. Manuscript, 1999.

[MPM96] Maarten Marx, Laszlo Polos, and Michael Masuch, editors. Ar-
row Logic and Multi-Modal Logic. CSLI Publications, 1996.

[MvBV97] Reinhard Muskens, Johan van Benthem, and Albert Visser. Dy-
namics. In Johan van Benthem and Alice ter Meulen, editors,
Handbook of logic and language, pages 587–648. Elsevier Science,
1997.

[OR94] Martin Osborne and Ariel Rubinstein. A course in game theory.
MIT Press, 1994.

[Pla89] Jan Plaza. Logics of public communications. In Proceedins 4th
International Symposium on Methodologies for Intelligent Sys-
tems, 1989.

[Stu00] Holger Sturm. Modal horn classes. Studia Logica, 64:301–313,
2000.

[vB91] Johan van Benthem. Language in action. Categories, lambdas,
and dynamic logic. North Holland, 1991.

[vB94] Johan van Benthem. A note on dynamic arrow logic. In Jan van
Eijck and Albert Visser, editors, Logic and information flow,
pages 15–29. MIT Press, 1994.

[vB96] Johan van Benthem. Exploring Logical Dynamics. CSLI Publi-
cations, 1996.

[vB00a] Johan van Benthem. Games in dynamic–epistemic logic.
Manuscript, 2000.

[vB00b] Johan van Benthem. Update delights. Manuscript, 2000.

[vD00] Hans van Dittmarsch. Knowledge games. PhD thesis, University
of Groningen, 2000.

[Ven91] Yde Venema. Many-dimensional modal logic. PhD thesis, Uni-
versity of Amsterdam, 1991.

