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1 Introduction

The notion of projective formula was introduced by Ghilardi [8] in 1999.
Let us denote by Pn a set of fixed p1, . . . , pn propositional variables and
by Φn – all equivalence classes of intuitionistic formulas with variables in
Pn. Consider a substitution σ : Pn → Φn and extend it to all of Φn by
σ(φ(p1, . . . , pn)) = φ(σ(p1), . . . , σ(pn)). Now, a formula φ ∈ Φn is called
projective if there exists a substitution σ : Φn → Φn such that ` σ(φ) and
φ ` ψ ↔ σ(ψ), for all ψ ∈ Φn. In this paper we study projective formulas
from the relational and algebraic semantical point of view.

We show a close connection between projective formulas and projective
Heyting algebras (for definition see Section 4). Namely, to each finitely gen-
erated projective Heyting algebra there corresponds a projective formula; to
non-isomorphic finitely generated projective algebras there correspond non-
equivalent projective formulas, but there can be non-equvalent projective
formulas which correspond to isomorphic projective algebras. To a fixed n-
generated projective Heyting algebra H there correspond as many projective
formulas as there are different retractions between H and Φn (Φn being the
free n-generated Heyting algebra and H its retract). We have a one-to-one
correspondence between projective formulas and (H, ir) couples, where H is
a projective algebra, and i, r the retractions.

Ghilardi (together with the results of Dick de Jongh and Albert Visser)
has shown in [8] that projective formulas are (the same as) the exact and
extendible formulas introduced earlier by de Jongh and Visser. A formula
φ ∈ Φn is called extendible if for all finite, rooted modelsM1, . . . ,Mk which
force φ, there can be defined a valuation on the model M – obtained by
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adding a point as a new root to the disjoint union of the Mi’s – in such a
way that M |= φ.

A subset A of the n-universal model Mn (see Section 3) is called admis-
sible if there exists a formula φ ∈ Φn such that A = {w ∈ Mn : w |= φ}. A
set A is called extendible if for any anti-chain in it, A contains at least one
element totally covered by this anti-chain. Now, a formula is extendible iff
its corresponding admissible set is extendible. Then we proceed with charac-
terizing the admissible extendible subsets of the n-universal model. Here the
problem of the characterization of infinite admissible extendible sets seems
rather complicated for n greater than one; we just give an alternative proof
of the fact that there is an infinite number of them.

However, it is easier to approach the finite admissible extendible subsets
of the n-universal model which correspond to the so-called finite projective
formulas. All finite subsets of the n-universal model are admissible (Grigolia
[11], de Jongh [5],[6]) and a necessary condition for them to be extendible is
that their widths should be less than or equal to two and their depths less
than or equal to n+ 1. Using this fact, we write out all the finite extendible
subsets of the 2-universal model – there are 26 such – and present their
corresponding finite projective formulas.

In addition, we give a combinatorial formula which is a counter of the
number of finite projective formulas of n variables. A computer program
which realizes this combinatorial formula is attached to the thesis. We have
conducted calculations for n ranging from 1 to 6. The finite formulas of one
variable were found by Dick de Jongh (see [4]), there are four of them. As
we mentioned above, there are 26 finite formulas of two variables; for n = 3
there are 256 finite formulas; for n = 4: 3386; for n = 5: 55984 and for n = 6:
1110506.
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valuable discussions and important remarks.
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2 Preliminaries

In this section we recall some basic facts on Intuitionistic Propositional Calcu-
lus, which we subsequently denote by IPC, and its (relational and algebraic)
semantics.

The language of IPC consists, as usual, of the propositional variables
p, q, r, . . . and the connectives ∧,∨,→ and ⊥ (>, ¬ and ↔ are introduced
by their usual abbreviations). The formulas will be denoted by φ, ψ, χ, . . ..

We choose the following formulas:

1. φ→ (ψ → φ)
2. φ→ (ψ → χ)→ ((φ→ ψ)→ (φ→ χ))
3. (φ ∧ ψ)→ φ; (φ ∧ ψ)→ ψ
4. φ→ (φ ∨ ψ); ψ → (φ ∨ ψ)
5. φ→ (ψ → (φ ∧ ψ))
6. (φ→ χ)→ ((ψ → χ)→ ((φ ∨ ψ)→ χ))
7. ⊥→ φ

as the only axiom-schemes for IPC.
Modus Ponens:

φ, φ→ ψ

ψ

will be the only rule of derivation for IPC.
As usual, IPC ` φ will mean that φ is a theorem of IPC.

2.1 Kripke semantics

A Kripke frame for IPC is a couple F = (W,R), where W is a nonempty
set, and R is a reflexive partial order on W .

A ⊆ W is said to be upward closed, if w ∈ A and wRv imply v ∈ A.
Denote by ConW the set of all upward closed subsets of W . R(w) = {v ∈
W : wRv} is the upward closed set generated by w. We also denote R(A) =
⋃

w∈AR(w).

A Kripke model for IPC is a couple M = (F , |=), where F is a Kripke
frame, and |= a binary relation onW×P (P the set of propositional variables)
such that

w |= p and wRv imply v |= p
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|= is then extended to all formulas by the following usual clauses:

w |= φ ∧ ψ iff w |= φ and w |= ψ;
w |= φ ∨ ψ iff w |= φ or w |= ψ;
w |= φ→ ψ iff ∀v ∈ R(w)(v |= φ⇒ v |= ψ);
w 6|=⊥.

It follows immediately that

w |= ¬φ iff ∀v ∈ R(w)(v 6|= φ),
w |= φ↔ ψ iff ∀v ∈ R(w)(v |= φ⇔ v |= ψ)
and
w |= >.

A formula φ is forced in w, if w |= φ. φ is forced in a Kripke modelM, if
φ is forced by every world of the underlying set ofM. φ is valid in a Kripke
frame F , if φ is forced in every Kripke model based on F . Finally, φ is valid
in a class C of Kripke frames, if φ is valid in every F ∈ C.

Now we have that IPC is sound and complete with respect to the class
KF of all Kripke frames, that is, IPC ` φ iff φ is valid in KF , and that,
in addition, IPC enjoys the finite model property (f.m.p., for short), that
is, IPC is sound and complete with respect to the class KFFIN of all finite
Kripke frames (see e.g., Fitting [7]).

2.2 Operations on Kripke frames

Given two Kripke frames F = (W,R) and F ′ = (W ′, R′), F ′ is called a
generated subframe of F , ifW ′ is an upward closed subset ofW and R′ is the
restriction of R to W ′. F ′ is called a p-morphic image of F , if there exists a
surjection f : W → W ′ such that

(i) wRv implies f(w)R′f(v);
(ii) f(w)R′f(v) implies that there is a u ∈W such that wRu and f(u) =

f(v).

F and F ′ are called isomorphic if there exists a bijection f : W → W ′

such that wRv iff f(w)R′f(v).

Given a family {Fi}i∈I of Kripke frames, the disjoint union
∐

i∈I Fi is the
frame (W,R), where W is the disjoint union of the sets Wi, and (w, i)R(v, j)
iff i = j and wRiv, for any (w, i), (v, j) ∈ W .
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For any Kripke frame F , denote by Th(F) the set of all formulas (of the
language of IPC) which are valid in F . It is well-known (see e.g. Chagrov
and Zakharyaschev [3]) that IPC ⊆ Th(F), and that Th(F) is closed w.r.t.
Modus Ponens. For every familyM = {Fi}i∈I of Kripke frames, let Th(M) =
⋂

i∈I Th(Fi). Now we have that

1) If F ′ is a generated subframe of F , then Th(F) ⊆ Th(F ′);
2) If F ′ is a p-morphic image of F , then Th(F) ⊆ Th(F ′);
3) If F is the disjoint union of the family M of Kripke frames, then

Th(F) = Th(M) (again consult [3] for a proof);
4) If F and F ′ are isomorphic, then Th(F) = Th(F ′).

2.3 Operations on Kripke Models

Given two Kripke models M = (W,R, |=) and M′ = (W ′, R′, |=′), M′ is
called a generated submodel of M, if the frame (W ′, R′) is a generated sub-
frame of the frame (W,R) and |=′ coincides with |= on the set W ′. M′ is
called a p-morphic image of M, if there exists a p-morphism f from (W,R)
onto (W ′, R′) such that for all w ∈ W and every propositional variable p,
w |= p iff f(w) |=′ p. M and M′ are called isomorphic if there exists an
isomorphism f between the frames (W,R) and (W ′, R′) and for all w ∈ W
and every propositional variable p, w |= p iff f(w) |=′ p.

Given a family {Mi}i∈I of Kripke models, the disjoint union
∐

i∈IMi

is the model (W,R, |=), where (W,R) is the disjoint union of the frames
(Wi, Ri), and (w, i) |= p iff w |=i p.

For any model M, denote by Th(M) the set of all formulas which are
forced in M. Now we have that

1) If M′ is a generated submodel of M, then Th(M) ⊆ Th(M′);
2) If M′ is a p-morphic image of M, then Th(M) = Th(M′);
3) If M is the disjoint union of the family {Mi}i∈I of Kripke models,

then Th(M) = Th(
∐

i∈IMi) =
⋂

i∈I Th(Mi);
4) If M and M′ are isomorphic, then Th(M) = Th(M′).
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2.4 Algebraic semantics

A Heyting algebra H = (H,∧,∨,→, 0) is a distributive lattice (H,∧,∨, 0)
with an additional binary operation→ which satisfies the following condition:
x ≤ a→ b iff a∧ x ≤ b for any a, b ∈ H. (If a, b ∈ H, then ¬a and a↔ b are
defined as a → 0 and (a → b) ∧ (b → a), and 1 is ¬0.) We denote the class
of all Heyting algebras by HA.

A function v : P → H is called a valuation (of the set of propositional
variables P in a Heyting algebra H). v is then extended to all formulas by
the following usual clauses:

v(φ ∧ ψ) = v(φ) ∧ v(ψ);
v(φ ∨ ψ) = v(φ) ∨ v(ψ);
v(φ→ ψ) = v(φ)→ v(ψ);
(v(¬φ) = ¬v(φ));
(v(φ↔ ψ) = v(φ)↔ v(ψ));
v(⊥) = 0;
(v(>) = 1).

For a given H and a given valuation v in H, a formula φ is true in H, if
v(φ) = 1. φ is valid in H, if φ is true in H for every valuation in H. Finally,
φ is valid in a class C ⊆ HA, if φ is valid in every H ∈ C.

Here too, we have that algebraic semantics is adequate for IPC, that is,
IPC ` φ iff φ is valid in HA (and even HAFIN , where HAFIN denotes the
class of all finite Heyting algebras), see e.g., Fitting [7].

2.5 Connection between Kripke frames and Heyting

algebras

There is a close correspondence between Kripke frames and Heyting algebras.
Indeed, with every Kripke frame F is associated the Heyting algebra F+ =
(ConW,∩,∪,→, ∅), where ConW denotes the set of all upward closed subsets
of W and A → B = {w ∈ W : ∀v ∈ R(w)(v ∈ A ⇒ v ∈ B)}. Now we have
that a formula φ is valid in F iff φ is valid in F+.

Conversely, with every Heyting algebra H is associated the Kripke frame
H+ = (W,R), whereW is the set of all prime filters of H, and wRv iff w ⊆ v.
Now we have that, if φ is valid in H+, then φ is valid in H, but the converse
is not true in general (it is true though, if H is finite).
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Further, F is p-morphically embedded in F+
+, H is homomorphically

embedded in H+
+, and F ∼= F++, if F is finite, and H ∼= H+

+, if H is finite
(see e.g., Fitting [7]).

Furthermore, if H2 is a subalgebra of H1, then H2+ is a p-morphic image
of H1+, and if F2 is a p-morphic image of F1, then F

+
2 is a subalgebra of F+1 .

In addition, if H2 is a homomorphic image of H1, then H2+ is a generated
subframe of H1+, and conversely, if F2 is a generated subframe of F1, then
F+2 is a homomorphic image of F+1 .

We will need one more notion in the sequel, namely the notion of a
principal filter. Given a Heyting algebra H and a ∈ H, call the filter [a) =
{b ∈ H : a ≤ b} the principal filter (generated by a).

3 Free algebras and universal models

Recall that for any variety V, A ∈ V and X ⊆ A, A is said to be the X-
generated free algebra over V, if for every B ∈ V, any map h : X → B can
be extended to a homomorphism ĥ : A → B. If this is the case, then we
denote A by F (X).

If |X| = ω, then F (X) is called the ω-generated free algebra over V, and
is denoted by F (ω), and if |X| = n, then F (X) is said to be the n-generated
free algebra over V, and is denoted by F (n).

In the case ofHA we have that the ω-generated free Heyting algebra F (ω)
is (isomorphic to) the algebra Φ/≡ – where Φ denotes the set of all formulas
of the language of IPC, and φ ≡ ψ iff ` φ ↔ ψ – and the n-generated
free Heyting algebra F (n) is (isomorphic to) the algebra Φn/≡ – where Φn

denotes the set of all formulas in n fixed variables. Subsequently we do not
distinguish between the formulas and their equivalence classes. Hence we
simply write Φ for F (ω), and Φn for F (n). Since Φ is a lattice, we have an
order ≤ on Φ. It follows from the definition of→ that for all φ, ψ ∈ Φ, φ ≤ ψ
iff ` φ→ ψ.

As follows from the above, for any n ≤ ω, Φn is embedded into (Φn)+
+.

The description of (Φn)+ can be found in Urquhart [15], Grigolia [11], Sheht-
man [14], Rybakov [13] and Bellissima [2]. Here we will recall the description
of the upper part of (Φn)+, which is usually called the n-universal model,
and which keeps all the information about Φn. We will follow the so-called
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colouring technique of Grigolia [11], closely related to the methods of de
Jongh [1968,1970].

Suppose a frame (W,R) is given. Let x < y mean xRy and x 6= y. For
w, v ∈ W , v is said to cover w, if w < v and there does not exist u such that
w < u < v. A ⊆ W is called an anti-chain of W , if for all w, v ∈ A we have
w 6= v implies (w, v) 6∈ R and (v, w) 6∈ R. We say that A ⊆ W totally covers
w ∈ W , written as w ≺ A, if A coincides with the set of all elements which
cover w. If A = {v} then v is said to totally cover w (written as w ≺ v).
w ∈ W is said to have the depth m, if the length of the maximal <-chain
with the root w equals m.

A colour is defined as any subset of the set {1, . . . , n}. So, for fixed n, we
have 2n colours. Now the n-universal model Mn is constructed recurrently
by levels: the mth level contains the points of depth m, to each of which we
assign a colour. Since we have fixed n, we have n fixed variables p1, . . . , pn;
by assigning a colour to a point w (Col(w)) we set a valuation on w (this
will be defined in the sequel) in the following sense: pi is true in w whenever
i ∈ Col(w). If an anti-chain totally covers two points, we want those two
points to have different colours. Furthermore, if wRv, then we want Col(w) ⊆
Col(v), and if w ≺ v, then Col(w) ⊂ Col(v).

Now the elements of the first level are w1, . . . , w2n , coloured in 2n different
colours. Let W 1

n denote the set of points of the first level, that is, W 1
n =

{w1, . . . , w2n}. The elements of the first level are going to be the maximal
elements of the model.

Further, each element w of the first level totally covers 2|Col(w)|−1 elements
of the second level with the colours Col(v) ⊂ Col(w) (2|Col(w)| − 1 is the
number of proper subsets of Col(w)). Furthermore, let A = {wi1 . . . , wik},

k ≥ 2, be a subset of W 1
n . Then A totally covers 2|

⋂k

j=1
Col(wij

)| elements of

the second level with Col(v) ⊆
⋂k
j=1Col(wij) (2|

⋂k

j=1
Col(wij

)| the number of

all subsets of the set
⋂k
j=1Col(wij)) and two distinct elements have different

colours. These and only these are the elements of the second level, which we
denote by W 2

n .
Now suppose we have constructed Wm

n , m ≥ 2. Each element w of the
level m totally covers 2|Col(w)|−1 elements of the level m+1 with the colours
Col(v) ⊂ Col(w). Let A = {wi1 . . . , wik} ⊆ W 1

n ∪ . . . ∪W
m
n , k ≥ 2, be an

anti-chain of which at least one element is of level m. Then A totally covers

2|
⋂k

j=1
Col(wij

)| elements of the level m + 1 with Col(v) ⊆
⋂k
j=1Col(wij) and
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two distinct elements have different colours. These and only these are the
elements of the level m+ 1, which we denote by Wm+1

n .
Finally, the n-universal model Mn = (Wn, Rn, |=n) is defined as follows:

Wn =
⋃∞
m=1W

m
n ; wRnv iff w = v or there exists a finite sequence (x1, . . . , xm)

of points of Wn such that w = x1, v = xm and xi is covered by xi+1; for fixed
n variables p1, . . . , pn, w |=n pi iff i ∈ Col(w), i = 1, . . . , n.

The underlying frame (Wn, Rn) of the n-universal model Mn is usually
called the n-universal frame. It should be clear from the construction that
every level Wm

n contains only finitely many points.
In order to demonstrate how the construction works we consider the case

of n = 1. Then we only have two colours ∅ and {1}. Hence W 1
1 consists of

two elements of different colours. Further the element of W 1
1 with the empty

colour cannot totally cover anything, while the other element of W 1
1 with

the colour {1} totally covers just one element of W 2
1 with the empty colour.

Furthermore, W 1
1 (as an anti-chain) totally covers another element of W 2

1

also with the empty colour. Now there are two new anti-chains in W 1
1 ∪W

2
1 ,

and each of them totally covers an element with the colour ∅ of W 3
1 , and so

on. The resulting model, the so-called Rieger-Nishimura ladder, is shown in
Fig.1 below.

r
r
r
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∅r
r
r
r

∅

{1}

∅

¡
¡

¡
¡
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¡¡

¡
¡

¡
¡

¡
¡¡

HHHHHHHHHHHHHHHHHHHHH

¡
¡

¡
¡

¡
¡¡

HHHHHHH

p̀ppppp

∅∅

Fig.1

In the case of n = 2 there are four different colours. In Fig.2 a part ofM2

is shown. We have omitted the points covered by the anti-chains with more
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than two elements, since in the characterization of finite projective formulas
of two variables we will not need them. As it will turn out in Section 6,
all the information on finite projective formulas of two variables is already
coded in the part of M2 shown in Fig.2 below.
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Fig.2

Now, after getting acquainted with the construction of the n-universal
model, let us show that they give representations of the n-generated free
Heyting algebras.

Define h : Φn → ConWn by putting h(φ) = {w ∈ Wn : w |=n φ}.
Obviously h is defined correctly. Moreover, h(pi) = {w ∈ Wn : i ∈ Col(w)},
i = 1, . . . , n.

Call a setA ∈ ConWn admissible if A = h(φ) for some φ ∈ Φn. Denote the
set of all admissible upward closed subsets of Wn by AdmWn. We obviously
have AdmWn ⊆ ConWn. Consult Grigolia [11], de Jongh [5],[6] for the fact
that AdmWn ⊂ ConWn and also for the following fact:

Proposition 1 If A ∈ ConWn is finite, then it is admissible.

However, there do exist infinite admissible sets, for example Wn itself
(Wn = h(>)).

Suppose there is given a Kripke frame F = (W,R). Call a valuation |= on
F an n-valuation if |= is defined only for the propositional variables p1, . . . , pn,
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i.e. |= is a binary relation on W × Pn (Pn = {p1, . . . , pn}). An n-valuation
|= gives us a colouring on the model (F , |=) in the following way: for each
w ∈ W , define Col(w) = {i : w |= pi}. Obviously Col(w) ⊆ {1, . . . , n}, for
all w ∈ W . Call (W,R, |=) an n-model if |= is an n-valuation.

Definition 2 Call a finite n-model (W,R, |=) n-generated if for all distinct
w, v ∈ W , from w ≺ v it follows that Col(w) 6= Col(v) and for any finite
anti-chain A ⊂ W , Col(w) 6= Col(v) whenever w, v ≺ A.

Lemma 3 For any finite, rooted, n-model M = (W,R, |=), there exists a
unique rooted, p-morphic imageM′ = (W ′, R′, |=′) which is a generated sub-
model of the n-universal model Mn. Moreover, if M is n-generated, then
there exists a rooted generated submodel of the n-universal model isomorphic
to M.

Proof. We will prove the lemma for finite, rooted n-models using induc-
tion on the depths of the roots of the models.

Suppose there is given a finite, rooted n-model M = (W,R, |=) with the
root w of the depth one. Thus W = {w}. Since M is an n-model, there
exists w′ ∈ W 1

n such that Col(w′) = Col(w). Define a model M′ to be the
one element model {w′}. M′ is obviously isomorphic toM and it is a rooted
generated submodel of the n-universal model Mn.

Now suppose that for each finite, rooted n-modelM with the root w of the
depth less thanm, we have constructed a rooted generated submodel of the n-
universal model which is a p-morphic image ofM (ifM is n-generated, then
suppose we have constructed its isomorphic model). To show the induction
step we prove the following

Claim. Given fi : Mi → M′
i, i = 1, . . . , k, p-morphisms (isomor-

phisms), where M1, . . . ,Mk are finite, rooted n-models (such that if Mi

has common points with Mj (i 6= j), then their intersection is a generated
submodel of both Mi and Mj) and M

′
1, . . . ,M

′
k are generated submodels

of the n-universal model. Then
⋃k
i=1 fi is a p-morphism (isomorphism) from

⋃k
i=1Mi onto

⋃k
i=1M

′
i.

Proof. We will use induction on the depths of the roots ofM1, . . . ,Mk.
The basis follows from the fact that the maximal points of the n-universal
model have different colours. Now suppose that the conditions of the claim
hold for models with the depths of the roots less than or equal tom. Consider
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all the immediate successors of each wi – the root of Mi – and the models
generated by them. The restrictions of fi’s to these models (appropriate
for each i) are also p-morphisms (isomorphisms), and since the induction
hypothesis holds for them, we will easily obtain that

⋃k
i=1 fi :

⋃k
i=1Mi →

⋃k
i=1M

′
i is again a p-morphism (an isomorphism). 2

Now we continue with our lemma. Consider a finite n-model M =
(W,R, |=) with the root w of depth m. Denote by A the set of all immediate
successors of w. By the induction hypothesis, for each v ∈ A, the model R(v)
has its p-morphic (isomorphic) imageMv inMn. Then, by our claim, there
exists a p-morphism (an isomorphism) from R(A) ontoMA =

⋃

v∈AMv. De-
note by A′ the bottom of MA and let us distinguish two cases: A′ contains
more than one point or A′ consists of one point. In the first case, consider a
point w′ in the n-universal model such that w′ ≺ A′ and Col(w′) = Col(w).
Add w′ to MA as the new root and denote the resulting model by M′. In
the second case, let M′ be MA.

Obviously (in both cases) a new modelM′ is the p-morphic (isomorphic)
image ofM and it is a rooted generated submodel of the n-universal model.
Thus we have shown the induction step. 2

Now we have the following representation of Φn:

Theorem 4 (Grigolia [11]) Φn is isomorphic to AdmWn.

Proof. The surjection h : Φn → AdmWn preserves the algebraic operations.
Indeed, w ∈ h(φ ∧ ψ) iff w |=n φ ∧ ψ iff w |=n φ and w |=n ψ iff w ∈
h(φ) and w ∈ h(ψ) iff w ∈ h(φ) ∩ h(ψ). Hence h(φ ∧ ψ) = h(φ) ∩ h(ψ).
Analogously for disjunction, h(φ ∨ ψ) = h(φ) ∪ h(ψ). Let us show now
that h(φ → ψ) = h(φ) → h(ψ). w ∈ h(φ → ψ) iff w |=n φ → ψ iff
∀v ∈ Rn(w)(v |=n φ ⇒ v |=n ψ) iff ∀v ∈ Rn(w)(v ∈ h(φ) ⇒ v ∈ h(ψ)) iff
w ∈ h(φ)→ h(ψ).

To show that h is an injection, assume φ 6= ψ in Φn. Then 6` φ ↔ ψ.
By the finite model property of IPC, there exists a finite, rooted model
M = (W,R, |=) and a w ∈ W such that w 6|= φ ↔ ψ. Without loss of
generality, assume w 6|= φ → ψ. Then there exists v ∈ W such that wRv,
v |= φ and v 6|= ψ. According to Lemma 3, there exists a model (W ′, R′, |=′)
in the n-universal model Mn which is a p-morphic image of M and makes
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the same formulas true. Then there exists a point v′ ∈ W ′ (v′ ∈ Wn), which
corresponds to v, such that v′ |= φ and v′ 6|= ψ. By the definition of h,
v′ ∈ h(φ) and v′ 6∈ h(ψ). So we have that h(φ) 6= h(ψ) and hence h is an
injection. 2

4 Projective algebras and projective formu-

las

Recall that A ∈ V is said to be projective, if for any B,C ∈ V, any surjective
homomorphism f : B → C and any homomorphism g : A → C, there is a
homomorphism h : A→ B such that fh = g.

­
­

­
­­À
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h g
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Fig.3

It is well-known (consult e.g. Grätzer [10]) that an algebra is projective
if and only if it is a retract of a free algebra. Recall that B is a retract of
A, if there exists an injective homomorphism g : B → A and a surjective
homomorphism f : A→ B such that fg = idB (see Fig.4 below).

-¾B A
g

f

Fig.4

Now we recall the notion of projective formulas, originally introduced
by Ghilardi [8], and show a close connection between them and projective
algebras. Let Pn = {p1, . . . , pn}. A substitution σ : Pn → Φn is a func-
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tion assigning to each propositional variable pi a formula of the variables
p1, . . . , pn. Then σ can be extended to an endomorphism σ : Φn → Φn by
putting

σ(φ(p1, . . . , pn)) = φ(σ(p1), . . . , σ(pn)).

Definition 5 A formula φ ∈ Φn is called projective if there exists a substi-
tution σ : Φn → Φn such that ` σ(φ) and φ ` ψ ↔ σ(ψ), for all ψ ∈ Φn.

The following lemmas show the close connection between projective for-
mulas and projective algebras.

Lemma 6 Suppose H is an n-generated projective Heyting algebra. Then
to H there corresponds a projective formula φ of n-variables, such that H is
(isomorphic to) Φn/[φ).

Proof. Suppose H is an n-generated projective Heyting algebra with the
generators a1, . . . , an. Then H is a retract of Φn, and there exist an injective
homomorphism i : H → Φn and a surjective homomorphism r : Φn → H
such that ri = idH . Then it is obvious that ir : Φn → Φn is an endomorphism
of Φn. We will show now that φ =

∧n
j=1(pj ↔ ir(pj)) is a projective formula,

namely, ` ir(φ) and φ ` ψ ↔ ir(ψ) for any ψ ∈ Φn.
Indeed, ir(

∧n
j=1(pj ↔ ir(pj))) =

∧n
j=1(ir(pj) ↔ irir(pj)), and since ri =

idH , we have ir(
∧n
j=1(pj ↔ ir(pj))) =

∧n
j=1(ir(pj) ↔ ir(pj)). Thus ` ir(φ).

Further, for any ψ ∈ Φn, ir(ψ(p1, . . . , pn)) = ψ(ir(p1), . . . , ir(pn)), and since
φ ` pj ↔ ir(pj), j = 1, . . . , n, we have φ ` ψ ↔ ir(ψ).

Now we will prove that H is isomorphic to Φn/[φ). For this recall that
Φn/[φ) is isomorphic to the φ-relativized algebra Φφ

n = {ψ ∈ Φn : ψ ≤
φ}, while (φ ∧ ·) : Φn → Φφ

n corresponds to the natural homomorphism
h : Φn → Φn/[φ). What we want to show is that (φ ∧ ·)i : H → Φφ

n is an
isomorphism. Indeed, it is obvious that it is a homomorphism. Further, since
φ ` ψ ↔ ir(ψ), for any ψ ∈ Φn, φ∧ψ = φ∧ ir(ψ), (φ∧ ·)i(rψ) = φ∧ψ, and
(φ∧·)i is surjective. Furthermore, for any a, b ∈ H, if (φ∧·)i(a) = (φ∧·)i(b),
φ ∧ i(a) = φ ∧ i(b). Hence φ ` i(a) ↔ i(b), ir(φ) ` i(a) ↔ i(b), and since
` ir(φ), we have that ` i(a) ↔ i(b). Thus i(a) = i(b), and since i is an
injection, we have that a = b. Thus (φ ∧ ·)i is injective as well. 2

Now we will recall the definition of a finitely presented algebra. We will
show that every projective algebra is finitely presented. See e.g. Ghilardi
and Zawadowski [9]):
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An algebra H is called finitely presented if
1) H is finitely generated (with the generators a1, . . . , an ∈ H);
2) there exists a finite number of equations

P1(a1, . . . , an) = Q1(a1, . . . , an)
. . .

Pm(a1, . . . , an) = Qm(a1, . . . , an)

holding in H such that any other equation P (a1, . . . , an) = Q(a1, . . . , an)
which holds inH follows from them. (In other words, if Σ denotes the formula
∧m
i=1(Pi(p1, . . . , pn) ↔ Qi(p1, . . . , pn)) and σ – the formula P (p1, . . . , pn) ↔

Q(p1, . . . , pn), then Σ ` σ.)
The following lemma which characterizes finitely presented algebras is

well-known:

Lemma 7 An n-generated Heyting algebra H is finitely presented iff there
exists a principal filter F of Φn such that H is isomorphic to Φn/F .

Proof. Suppose H is finitely presented and n-generated, with the generators
a1, . . . , an ∈ H. Since H is n-generated, it is a homomorphic image of Φn and
hence there exists a filter F of Φn such that H is (isomorphic to) Φn/F . Let
a be

∧m
i=1(Pi(p1, . . . , pn) ↔ Qi(p1, . . . , pn)) and show that F = [a). Indeed,

since the equations Pi(a1, . . . , an) = Qi(a1, . . . , an), i = 1, . . . ,m, hold in H,
we have that Pi(p1, . . . , pn) ↔ Qi(p1, . . . , pn) ∈ F . Hence a ∈ F . On the
other hand, for any b ∈ F , the equality b(a1, . . . , an) = > holds in H, and
hence the formula b(p1, . . . , pn) follows from Σ. Therefore a ≤ b, and F = [a).
Thus F is principal.

Conversely, suppose H is (isomorphic to) Φn/F , where F = [a) is a
principal filter. Then let Σ = {a(p1, . . . , pn)}. Obviously an equality Σ = >
holds in Φn/F , and for any equality P (a1, . . . , an) = Q(a1, . . . , an) holding
in H, P (p1, . . . , pn) ↔ Q(p1, . . . , pn) ∈ F . Hence Σ ` P (p1, . . . , pn) ↔
Q(p1, . . . , pn) and Φn/F is finitely presented. 2

It follows from the above that every finitely generated projective algebra
is finitely presented. Now we will show that projective formulas also give rise
to projective algebras.

Lemma 8 If φ is a projective formula of n variables, then Φn/[φ) is a pro-
jective algebra.
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Proof. Suppose φ is projective. Then there exists a substitution σ : Φn →
Φn such that ` σ(φ) and φ ` ψ ↔ σ(ψ) for all ψ ∈ Φn. Since σ is an
endomorphism of Φn, σ(Φn) is a subalgebra of Φn. We will prove now that
σ(Φn) is a retract of Φn by showing that σ2 = σ. Indeed, since φ is projective,
σ(φ) = 1Φn

, and φ ≤ ψ ↔ σ(ψ). But then σ(φ) ≤ σ(ψ) ↔ σ2(ψ), σ(ψ) ↔
σ2(ψ) = 1Φn

, σ(ψ) = σ2(ψ), and σ2 = σ. Hence σ(Φn) is a retract of Φn.
Now we will show that σ(Φn) is isomorphic to Φn/[φ). For this we need

to show that the restriction of the natural homomorphism h : Φn → Φn/[φ)
to σ(Φn) is an isomorphism. Indeed, if σ(ψ) = σ(χ), then ` σ(ψ) ↔ σ(χ).
Since φ ` ψ ↔ σ(ψ), χ↔ σ(χ), we have φ ` ψ ↔ χ, and hence h(ψ) = h(χ).
Conversely, if h(ψ) = h(χ), then φ ` ψ ↔ χ, σ(φ) ` σ(ψ) ↔ σ(χ), and
from ` σ(φ) it follows that ` σ(ψ) ↔ σ(χ). Hence σ(ψ) = σ(χ). Thus,
σ(ψ) = σ(χ) iff h(ψ) = h(χ), σ(Φn) is isomorphic to Φn/[φ), Φn/[φ) is a
retract of Φn, and hence is a projective algebra. 2

Thus we have the following correspondence between projective formulas
and projective algebras: to each finitely generated projective algebra there
corresponds a projective formula, to two non-isomorphic finitely generated
projective algebras there correspond non-equivalent projective formulas, but
there can be non-equivalent projective formulas which correspond to isomor-
phic projective algebras. Actually, to a fixed n-generated projective algebra
H there correspond as many projective formulas as there are different retrac-
tions between H and Φn. Therefore, we arrive at the following

Corollary 9 There exists a one-to-one correspondence between projective
formulas and (H, ir) couples, where H is a projective algebra, and i : H →
Φn, r : Φn → H are retractions.

Dually principal filters of Φn correspond to admissible upward closed sub-
sets of the n-universal frame Wn. In order to give the dual characterization
of those principal filters of Φn which give rise to projective algebras, we need
the additional definition of an extendible subset of Wn, which is the subject
of next section.
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5 Exact and extendible formulas

Recall from de Jongh [4] that a formula φ ∈ Φn is called exact if there
exist χ1, . . . , χn ∈ Φn such that ` φ(χ1, . . . , χn) and, for any ψ ∈ Φn, if
` ψ(χ1, . . . , χn), then ` φ→ ψ.

Actually, de Jongh just asked for formulas χ1, . . . , χn with any number of
variables, but the results of Ghilardi (see e.g. Theorem 10) and others show
that the definition can be restricted to formulas in Φn.

Theorem 10 If a formula is projective, then it is exact.

Proof. Suppose φ is projective. Then there exists a substitution σ : Φn →
Φn, such that ` σ(φ) and φ ` ψ ↔ σ(ψ), for all ψ ∈ Φn. To prove that φ is
exact we need to construct χ1, . . . , χn such that ` φ(χ1, . . . , χn) and, for any
ψ ∈ Φn, if ` ψ(χ1, . . . , χn), then ` φ→ ψ.

Let χi = σ(pi), i = 1, . . . , n. Then φ(χ1, . . . , χn) = φ(σ(p1), . . . , σ(pn)) =
σ(φ), and hence ` φ(χ1, . . . , χn). Suppose ψ ∈ Φn is such that ` ψ(χ1, . . . , χn).
Then ` σ(ψ). Now, since φ ` ψ ↔ σ(ψ), we have that φ ` ψ and hence φ is
exact. 2

Now we recall the notion of an extendible formula. Suppose there is
given a finite family of finite rooted models M1 = (W1, R1, |=1), . . . ,Mk =
(Wk, Rk, |=k) with the roots w1, . . . , wk, and φ is forced inM1, . . . ,Mk. Now
consider the disjoint union ofWi’s and add to it a new point w as a new root.
Denote the resulting frame by (W,R). Call φ extendible if always in such a
case there exists a valuation |= on (W,R) such that |= agrees with |=1, . . . , |=k

on W1, . . . ,Wk and w |= φ.
Assume that M1, . . . ,Mk are pairwise nonisomorphic and n-models.
In order to describe those admissible subsets of the n-universal model

which correspond to extendible formulas we need the following:

Definition 11 An upward closed subset of the n-universal model, A ∈ ConWn,
is called extendible if for every finite anti-chain B ⊆ A, there exists an ele-
ment w ∈ A such that w ≺ B.

Denote the set of all extendible subsets of Wn by ExtWn.
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Theorem 12 A formula φ ∈ Φn is extendible iff its corresponding admissible
set is extendible.

Proof. Suppose a formula φ ∈ Φn is extendible. Consider the admissible
subset Aφ of the n-universal model Mn = (Wn, Rn, |=n) corresponding to φ
and a finite anti-chain B = {w1, . . . , wk} ⊆ Aφ. We want to show that there
exists w ∈ Aφ such that w ≺ B. Indeed, consider a family of rooted models
M1 = (Rn(w1), RM1

, |=1), . . . ,Mk = (Rn(wk), RMk
, |=k) (where RMi

and
|=i are the restrictions of Rn and |=n to Rn(wi), i = 1, . . . , k). Obviously
the models M1, . . . ,Mk are finite and they force φ. But then φ is forced
in the disjoint union of Mi, i = 1, . . . , k. Add a new point v as a new root
to the disjoint union of the models Mi, i = 1, . . . , k. Since φ is extendible,
there can be defined a valuation |= on v in such a way that v |= φ. Denote
the resulting model by M = (W,R, |=). According to the construction of
the n-universal model, for B = {w1, . . . , wk}, there exists a point w ∈ Wn

such that w ≺ B and Col(w) = Col(v). Define a modelM′ = (W ′, R′n, |=
′
n),

where W ′ =
⋃k
i=1Rn(wi) ∪ {w} and R′n, |=

′
n are the restrictions of Rn, |=n

to W ′. Since there exists a natural p-morphism h from the disjoint union
of M1, . . . ,Mk onto the union of M1, . . . ,Mk, we also have a p-morphism
from M onto M′ defined by adding the couple (v, w) to h. M |= φ, and
henceM′ |=′n φ. Then w |=

′
n φ and therefore w ∈ Aφ. Thus Aφ is extendible.

For the other direction, assume Aφ ∈ ExtWn. Consider any family of
finite, rooted models M1 = (W1, R1, |=1), . . . ,Mk = (Wk, Rk, |=k) such that
φ is forced inM1, . . . ,Mk. By Lemma 3, for eachMi, i = 1, . . . , k, there ex-
ists its p-morphic imageM′

i which is a generated submodel of the n-universal
model. SinceM′

i |= φ, i = 1, . . . , k, W ′
i ⊂ Aφ, i = 1, . . . , k. Denote the roots

of M′
1 . . . ,M

′
k by w1, . . . , wk. If the set {w1, . . . , wk} is not an anti-chain

in Aφ, then form an anti-chain B ⊆ {w1, . . . , wk} by taking B to be the set
{wi1 , . . . , wim} of Rn-minimal elements from {w1, . . . , wk}. We distinguish
two cases, m > 1 and m = 1. First, we cover the case that m > 1. Then,
from the extendibility of Aφ, we have that there exists a v ∈ Aφ such that
v ≺ {wi1 , . . . , wim}. Add a new point w with Col(w) = Col(v) as a new root
to the disjoint union of the modelsM1, . . . ,Mk. Such w exists since, for all
u ∈

⋃k
i=1W

′
i , Col(v) ⊆ Col(u) and, for all i = 1, . . . , k, M′

i is a p-morphic
image of Mi. Denote the new model obtained by adding w as a new root
to the disjoint union of the models M1, . . . ,Mk by M. Denote by M′ the
model obtained by adding v as a new root to the modelsM′

1 . . . ,M
′
k. Since
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there exists a natural p-morphism h from the disjoint union of M1, . . . ,Mk

onto the union ofM′
1, . . . ,M

′
k, we also have a p-morphism fromM ontoM′

defined by adding the couple (w, v) to h. Hence w |= φ and thus φ is an
extendible formula. Next we consider the case that m = 1. Then, we have
B = {wi1}. Add a new point w with Col(w) = Col(wi1) as a new root to
the disjoint union of the models M1, . . . ,Mk. Such w exists since, for all
u ∈

⋃k
i=1W

′
i , Col(wi1) ⊆ Col(u) and, for all i = 1, . . . , k, M′

i is a p-morphic
image of Mi. As before, denote the new model obtained by adding w as a
new root to the disjoint union of the models M1, . . . ,Mk by M. Denote
by M′ the union of M′

1 . . . ,M
′
k. Since there exists a natural p-morphism h

from the disjoint union ofM1, . . . ,Mk ontoM′, we also have a p-morphism
from M onto M′ defined by adding the couple (w,wi1) to h. Hence w |= φ
and, again, φ is an extendible formula. 2

The following result is from Visser [16]. His proof was rather complicated.
Even more complicated is the proof sketched by Ghilardi [8]. We will give a
simple proof that directly uses our knowledge of the n-universal model.

Theorem 13 If a formula is exact then it is extendible.

Proof. Let φ be exact by χ1, . . . , χn. By theorem 12 it is sufficient to prove
the corresponding admissible set Aφ to be extendible. Consider a finite anti-
chain B = {w1, . . . , wk} ⊆ Aφ. We want to show that there exists v ∈ Aφ

such that v ≺ B.
Consider the family of rooted modelsM1 = (Rn(w1), RM1

, |=1), . . . ,Mk =
(Rn(wk), RMk

, |=k) (where RMi
and |=i are the restrictions of Rn and |=n to

Rn(wi), i = 1, . . . , k). Since finite sets in ConWn are admissible (Proposition
1), Rn(w1), . . . , Rn(wk) are admissible, say by the formulas ψ1, ..., ψk. Note
that ψi implies φ in IPC, i = 1, . . . , k. Indeed, we have Rn(wi) ⊂ Aφ.

Consider now the direct successors wi1 , . . . , wiki
of the wi. The sets

Rn(wij) (i = 1, . . . , k, j = 1, . . . , ki) are also admissible, say by the for-
mulas ψi1 , . . . , ψiki

. Now, for each i, ψi → ψi1 ∨ . . . ∨ ψiki
is not deriv-

able in IPC, since this formula is false in wi. With ψi ` φ, the formula
φ→ (ψi → ψi1 ∨ . . .∨ψiki

) is equivalent to ψi → ψi1 ∨ . . .∨ψiki
and hence is

not derivable in IPC either. Then, because φ is exact for χ1, . . . , χn, neither
is derivable ψi → ψi1 ∨ . . . ∨ ψiki

with χ1, . . . , χn substituted for p1, . . . , pn,
which we denote by ψ∗i → ψ∗i1 ∨ . . . ∨ ψ

∗
iki

(i = 1, . . . , k).
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That means that, for each i, a Kripke-model M∗
i exists such that in its

root ψ∗i is forced but ψ∗i1 , . . . , ψ
∗
iki

are not. Consider the modelsM′
1, . . . ,M

′
k

where M′
i has the domain of M∗

i and valuation defined as follows: w |= pi
iff w |= χi in M

∗
i . Thus we have that, for each i, in the root of M′

i ψi is
forced but ψi1 , . . . , ψiki

are not. According to Lemma 3, to each M′
i, there

corresponds a unique rooted, p-morphic image M′′
i which is a generated

submodel of the n-universal model. Let us show that M′′
i coincides with

Mi. Indeed, since M′′
i |= ψi, it is a submodel of Mi. But since ψij is not

forced in the root of M′′
i , j = 1, . . . , ki, it must be that the root of M′′

i

coincides with the root of Mi and thus M′′
i = Mi. So we have that from

each M′
i there exists a p-morphism fi onto Mi.

Add a new root w∗ to the disjoint union of theM∗
i ’s with some arbitrary

forcing defined on it and denote the resulting model by M∗. Do the same
to M′

i’s (with the new root w′) and denote the resulting model by M′. We
have that φ(χ1, . . . , χk) is forced in w∗ (since it is provable by the exactness
of φ) and hence φ is forced in w′. Now extend the disjoint union of Mi’s
by a new root w putting Col(w) = Col(w′) thus obtaining a new model M.
Now join the p-morphisms f1, . . . , fk, add a couple (w′, w) and thus form a
new p-morphism f from M′ onto M. This makes clear that φ is forced in
w. Now, as in the proof of Theorem 12 (the end of the first direction), we
get that there exists a new point v ∈ Aφ such that v ≺ B. Hence Aφ is
extendible and φ is an extendible formula. 2

In order to establish a correspondence between projective, exact, ex-
tendible formulas, admissible extendible sets and projective algebras we need
the following result of Revaz Grigolia from [11].

Theorem 14 An algebra H is projective if and only if H+ is admissible and
extendible.

So we have the following correspondence between projective, exact, ex-
tendible formulas, admissible extendible sets and projective algebras: If
φ ∈ Φn is projective then it is exact, hence it is extendible. Moreover, Aφ is an
extendible (admissible) set and according to Theorem 14, an algebra Φn/[φ)
is projective. Then we have the retractions i : Φn/[φ) → Φn, r : Φn → Φn/[φ)
and hence, the couple (Φn/[φ), ri) gives rise to a (projective formula) φ. Thus,
we can state the following corollary:
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Corollary 15 There is a one-to-one correspondence between projective, ex-
act, extendible formulas, admissible extendible sets and (H, ri) couples, where
H is a projective algebra, and i : H → Φn, r : Φn → H are retractions.

6 Finite projective formulas

Definition 16 (First in de Jongh 1968,1970) A formula φ ∈ Φn is called
finite if its corresponding admissible set in the n-universal model is finite.

The main purpose of the current section is a characterization of the finite
projective formulas of n variables. Recall from Section 3 that every finite
upward closed subset of the n-universal model is admissible. Thus, according
to Theorem 12, we have to characterize the finite extendible subsets of the
n-universal model. First we will show that there is only a finite number of
finite extendible sets, then we will construct a combinatorial formula which
counts the number of the finite extendible sets in the n-universal model and
finally, we will list the finite projective formulas of one and two variables.

6.1 The number of the finite projective formulas of n

variables

In order to characterize finite projective formulas we need some definitions.
Suppose A ∈ ConWn, Am =Wm

n ∩ A = {w ∈ A : depth(w) = m}.

Definition 17 A has the depth m (depth(A) = m) if ∃w ∈ A(depth(w) =
m) and ∀v ∈ A(depth(v) ≤ m).

Definition 18 The width of A is max1≤m≤depth(A)|Am|.

Definition 19 The rank of the colour of w ∈Wn is |Col(w)| and we denote
it by rank(Col(w)).

For example, rank(∅) = 0, rank({1}) = 1, rank({1, . . . , n}) = n. So we
have n+ 1 ranks for 2n colours.

Definition 20 The rank of the levelm in A, rank(Am) = max{rank(Col(w)) :
w ∈ Am}.
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Lemma 21 Suppose A ∈ ExtWn and A is finite, then for no three (distinct)
points w, v, u ∈ A, the sets {w, v} and {w, u} can both be anti-chains.

Proof. Suppose there exist distinct w, v, u ∈ A such that the sets {w, v} and
{w, u} are both anti-chains. Since A is extendible, {w, v}, {w, u}must totally
cover two points v′, u′ respectively in A, i.e. v′ ≺ {w, v} and u′ ≺ {w, u}.
Let us show that v′ and u′ are R-incomparable and at least one of the sets
{u′, v},{v′, u} is an anti-chain of A. Indeed, let us show first that (u′, v′) 6∈ R
(the proof (v′, u′) 6∈ R is analogous). Since u′ is totally covered by {w, u},
u′Rv′ implies wRv′ or uRv′. wRv′ is a contradiction since we have v′Rw
and v′ 6= w. If uRv′, then from v′Rw it follows that uRw which contradicts
the assumption that w and u are incomparable. To show that at least one
of the sets {u′, v},{v′, u} is an anti-chain of A consider two possible cases:
first, u and v are incomparable and second, u and v are not incomparable.
Suppose u and v are incomparable. Since u′ is totally covered by {w, u},
u′Rv implies wRv or uRv and both are not the case by our assumption.
Hence (u′, v) 6∈ R. But (v, u′) 6∈ R as well since, if vRu′, then from u′Rw
we would get vRw which is a contradiction. Thus in the first case {u′, v}
is an anti-chain. Consider the second case, assume vRu. Let us show that
{u′, v} is an anti-chain. (u′, v) 6∈ R, since u ≺ {w, u} and (w, v) 6∈ R and
(u, v) 6∈ R. It is left to show that (v, u′) 6∈ R, but if vRu′, then from u′Rw it
follows vRw which is a contradiction. Analogously for the second case with
the assumption of uRv: we will get that {v′, u} is an anti-chain.

Hence the conditions of the lemma imply that we get at least two new
anti-chains in A with higher level points. The new anti-chains must totally
cover two points in A. Then again we get two anti-chains in A and so forth.
This contradicts the assumption that A is finite. 2

Corollary 22 Suppose there is given a finite A ∈ ExtWn and w, v, u ∈ A.
Then if v and u are incomparable and wRv, then we have wRu.

Proof. Suppose otherwise. Let us show that (u,w) 6∈ R. (w, u) 6∈ R would
get us that w and u are incomparable contradicting the previous lemma.
Indeed, if uRw, then from wRv we get uRv contradicting the assumption
that {v, u} is an anti-chain. 2
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Corollary 23 Suppose there is given a finite A ∈ ExtWn such that width(A) ≤
2. Then each node in Am+1 is covered only by node(s) from Am.

Proof. Consider w ∈ Am+1 and assume w is covered by some u ∈ Al,
l < m. Then, according to the construction, u belongs to some anti-chain
A′ Â w containing some point v ∈ Am; (A is upward closed). But this is
a contradiction since u and v are not incomparable; namely we have vRu.
Indeed, note that, since A is upward closed, according to the construction
of the n-universal model, each node in Ak+1 is covered by at least one node
from Ak. Then if Ak contains two nodes, then, by the previous corollary,
both cover each node in Ak+1. It follows from here that there exists a chain
v < u1 . . . < um−l+1 < u and hence vRu. 2

Now we can state a proposition which characterizes the finite extendible
subsets of the n-universal model. It follows from the proposition that there
is a finite number of finite extendible subsets in the n-universal model and
hence there is a finite number of finite projective formulas of n variables.

Proposition 24 (For an algebraic version see R. Balbes and A. Horn [1]).
Suppose A ∈ ExtWn and A is finite, then depth(A) ≤ n+1 and width(A) ≤
2.

Proof. A is finite, hence it has finite depth. Say depth(A) = k. Note that,
since A is extendible, there is only one point wk ∈ Ak.

If width(A) ≥ 3 then there exist w, v, u ∈ Am (depth(w) = depth(v) =
depth(u) = m). But then from the fact that A is extendible it follows that
there are at least four points of the depth m+ 1 in A totally covered by the
four anti-chains, {w, v, u}, {w, v}, {w, u} and {v, u}, produced by the set
{w, v, u}. Then it is obvious that the number of the elements of the levels
will increase with the growth of the levels. This contradicts the assumption
that A is finite.

To prove that depth(A) ≤ n+1 we will show by induction on the depth of
A that the ranks of the levels in A (with width(A) ≤ 2) decrease (according
to the construction of the n-universal model) with the growth of the levels,
i.e. rank(Am+1) < rank(Am), for all 1 ≤ m < k. Since there are n+1 ranks
we will get that the depth of A may not exceed n+ 1. We start with a



6 FINITE PROJECTIVE FORMULAS 24

Claim It follows from Corollary 23 that if w1, w2 ∈ Am, then Col(w1) 6=
Col(w2), m = 1, . . . , k − 1.

Proof. Indeed, if w1, w2 ∈ A1, then they have different colours. Now
suppose we have shown that if w1, w2 ∈ Al, l ≤ m, then Col(w1) 6= Col(w2).
Then if there is one point w ∈ Am which totally covers two points v1, v2 ∈
Am+1 then v1 and v2 have different colours and if there are two points w1, w2 ∈
Am such that the anti-chain {w1, w2} totally covers two points v1, v2 ∈ Am+1

then, again, the colours of v1 and v2 must be different. Thus we have the
induction step. 2

Suppose now that there is one point w ∈ Am. According to Corollary 23,
there are two cases, either w totally covers one point v ∈ Am+1 or w totally
covers two points v1, v2 ∈ Am+1. In the first case Col(v) ⊂ Col(w) and hence
rank(Am+1) < rank(Am). In the second case at least one of Col(v1), Col(v2)
is a proper subset of Col(w) and hence rank(Am+1) < rank(Am).

Next suppose that there are two points w1, w2 ∈ Am. Again there
are two cases: first, the anti-chain {w1, w2} totally covers one point v ∈
Am+1; second, {w1, w2} totally covers two points v1, v2 ∈ Am+1. In the
first case Col(v) ⊆ Col(w1) ∩ Col(w2), but since Col(w1) 6= Col(w2), we
have that Col(w1) ∩ Col(w2) ⊂ Col(w1), Col(w2) and hence rank(Am+1) <
rank(Am). In the second case Col(v1), Col(v2) ⊆ Col(w1) ∩ Col(w2), but
since Col(w1) 6= Col(w2), we have Col(w1) ∩ Col(w2) ⊂ Col(w1), Col(w2),
and hence rank(Am+1) < rank(Am). Thus the proposition is proved. 2

Corollary 25 The number of finite projective formulas of n variables is fi-
nite.

Proof. Since each Wm
n is finite, from Proposition 24 it follows that the

number of the finite extendible subsets of Wn is finite. Hence there are
finitely many finite projective formulas of n variables. 2

6.2 Combinatorial formulas.

Using Proposition 24 we can count the number of finite extendible subsets of
the n-universal model and thus the number of finite projective formulas of n
variables.
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We will proceed with the construction of a combinatorial formula which
is a counter of the finite projective formulas of n variables for the input n.

First let us count the number of finite extendible subframes of the n-
universal frame.

Denote by SF (n) the number of finite extendible subframes of Fn. Then

SF (n) =
n+1
∑

k=1

F (k),

where F (k) is the number of the finite extendible subframes of the depth
k. According to Proposition 24, k can take the values from 1 to n+1. Now,

F (k) = 2k−1.

Indeed, according to Proposition 24, in each level m = 1, . . . , k − 1 of
the finite extendible set of the depth k there may be one or two points and
there must be one point of level k. Denote the number of points in the level
m by im. It follows from Corollary 22 (see the proof of Corollary 23) that
each point in the level m covers each point in the level m + 1. In addition,
by Corollary 23, nodes in Am+1 are covered only by nodes from Am. Thus,
each of the vectors (i1, . . . , ik), i1, . . . , ik−1 = 1, 2 and ik = 1 determines one
frame. Now, the number of different vectors (i1, . . . , ik), i1, . . . , ik−1 = 1, 2
and ik = 1, is 2k−1. Thus,

SF (n) =
n+1
∑

k=1

2k−1 = 2n+1 − 1.

We will proceed with the construction of the combinatorial formula which
is a counter of the finite projective formulas of n variables for the input n.

As this subsection uses a strict theoretical approach to the computation,
we recommend to consider it along with the appendix which describes the
same calculations in more practical style.

Denote by SM(n) the number of finite extendible sets inMn (the number
of submodels).

SM(n) =
n+1
∑

k=1

M(k),
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where M(k) is the number of admissible extendible sets with the depth
k in Mn. According to Proposition 24, k can take the values 1, . . . , n+ 1.

M(k) =
∑

i1=1,i2,...,ik=1,2

F (i1, . . . , ik),

where F (i1, . . . , ik) is the number of such finite extendible subsets (sub-
models) of Mn which have ij nodes (ij = 1 or 2) on the level k − j + 1
(j = 1, . . . , k). From the definition of the extendible set it follows that i1 = 1
and, according to Proposition 24, each ij, j = 2, . . . , k, can have only the
values 1 or 2.

Fix a frame of depth k. So, we have all values for the parameters
i1, i2, . . . , ik, (i1 = 1). The construction of the n-universal model limits the
number of acceptable colours that a node w1 of the depth k can have. Denote
this number by f i1 (f 1). If we fix some (acceptable) colour for w1, then we
will have a number of possible colours for the nodes of the depth k−1 which
totally cover w1. Denote this number by f i2i1 , (i2 – the number of nodes that

totally cover w1). Analogously, let f
ij
ij−1

be the number of all possible (colours
of) nodes of the depth k − j + 1 which correspond (totally cover) to already
fixed nodes of the depth k − j + 2.

We will see in the sequel, that each of the expressions f
ij
ij−1

, j = 2, . . . , k, is
a sum which uses fixed parameters (the number of nodes in the previous level

and the ranks of their colours) from the sum f
ij−1

ij−2
. Then F (i1, . . . , ik) can be

obtained by multiplying the (nested) sums f i1 , f i2i1 , f
i3
i2
, . . . , f ikik−1

, which we
write in the following way:

F (i1, . . . , ik) = f i1f i2i1 f
i3
i2
. . . f ikik−1

.

Let us agree on the following notation: if there is one node of the depth
k− j+1, then denote it by wj (so e.g. w1 is the unique node of depth k) and
lj = rank(Col(wj)). If there are two nodes of the depth k−j+1, then denote
them by w1j and w2j , l

0
j = rank(Col(w1j )∩Col(w

2
j )) and l

1
j = rank(Col(w1j )),

l2j = rank(Col(w2j )). We denote by Cn
k the choose of k over n. Then

f 1 =
n−k+1
∑

l1=0

Cn
l1
,

Indeed, the rank of the colour of a node w1 of the depth k can vary from



6 FINITE PROJECTIVE FORMULAS 27

0 to n−k+1 and to each possible rank l1 = 0, . . . , n−k+1 there correspond
Cn
l1
different variants (colours).

There are the following four different cases for f
ij
ij−1

:
1. ij−1 = 1, ij = 1;
2. ij−1 = 2, ij = 1;
3. ij−1 = 1, ij = 2;
4. ij−1 = 2, ij = 2.
We will consider each case separately.
1. This is the case when on the each of the levels k− j + 2 and k− j + 1

there is one node. In order for wj to totally cover wj−1 it must be that
Col(wj−1) ⊂ Col(wj). This means lj > lj−1. At the same time, lj ≤ n−k+j.
In Col(wj) lj−1 elements are fixed and there are free lj − lj−1 elements. The
number of elements from which we can choose elements to fill the free places
in Col(wj) is n− lj−1. It follows from the above that:

f 11 (j) =
n−k+j
∑

lj=lj−1+1

C
n−lj−1

lj−lj−1
.

2. This is the case when one node of the depth k − j + 1 totally covers
two nodes of the depth k − j + 2. In order for the node wj to totally cover
the nodes w1j−1, w

2
j−1, it must be that Col(w1j−1)∪Col(w

2
j−1) ⊂ Col(wj) (*),

hence lj can take the values from l1j−1 + l2j−1 − l0j−1 + s to n − k + j, where

s =
{

1, if l1j−1 = l0j−1 or l
2
j−1 = l0j−1

0, otherwise.
.

The value of s forces the strict set theoretical inclusion in (*). For each
{w1j−1, w

2
j−1}, we have l

1
j−1+l

2
j−1−l

0
j−1 fixed elements and lj−(l

1
j−1+l

2
j−1−l

0
j−1)

free elements in Col(wj). The number of elements from which we can choose
elements to fill the free spaces in Col(wj) is n− (l1j−1 + l2j−1 − l0j−1). Thus:

f 12 (j) =
n−k+j
∑

lj=l1j−1+l
2
j−1−l

0
j−1+s

C
n−(l1j−1+l

2
j−1−l

0
j−1)

lj−(l1j−1+l
2
j−1−l

0
j−1)

; s =
{

1, if l1j−1 = l0j−1 or l
2
j−1 = l0j−1

0, otherwise.

3. This is the case when there is one element of the depth k−j+2 totally
covered by two elements of the depth k− j +1. In this case we will consider
two sums. First will be the number of anti-chains {w1j , w

2
j} which totally

cover wj−1 with l1j < l2j . Second will be the number of anti-chains {w1j , w
2
j}

which totally cover wj−1 with l
1
j = l2j .
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In the first sum, l0j can take values from lj−1 to n − k + j − 1. Indeed,
in order for the anti-chain {w1j , w

2
j} to totally cover node wj−1 it must be

that Col(wj−1) ⊆ Col(w1j ) ∩Col(w
2
j ). Here n− k + j − 1 is an upper bound

instead of n− k + j because the colours of w1j and w2j may not coincide. In
Col(w1j ) ∩ Col(w

2
j ) there are fixed lj−1 elements and free l0j − lj−1 elements.

The number of elements from which we can choose elements to fill the free
spaces in Col(w1j )∩Col(w

2
j ) is n− lj−1, hence there are C

n−lj−1

l0
j
−lj−1

such variants

(ranks of possible intersections) for each wj−1. After this, for each possible
w1j , in Col(w1j ) there are fixed l0j elements and free l1j − l0j elements. The
number of elements from which we can choose elements to fill the free spaces
in Col(w1j ) is n− l0j , hence for each l1j , which can take the values from l0j to
n−k+ j−1 (not n−k+ j because this maximal value will be taken by rank

of w2j ), the number of possible w1j ’s for each wj−1 is C
n−lj−1

l0
j
−lj−1

C
n−l0j
l1
j
−l0

j
. After the

node w1j is fixed, in Col(w
2
j ) we get l

0
j fixed elements and l2j − l

0
j free elements.

We can fill the free spaces in Col(w2j ) only using those elements which do
not belong to Col(w1j ). The number of such elements is n− l1j . Hence there

are C
n−l1j
l2
j
−l0

j
possible variants of w2j ’s for the fixed w1j . Since we are considering

our first sum, we must have l2j > l1j and thus the first sum is:

n−k+j−1
∑

l0
j
=lj−1

n−k+j−1
∑

l1
j
=l0

j

C
n−lj−1

l0
j
−lj−1

C
n−l0j
l1
j
−l0

j

n−k+j
∑

l2
j
=l1

j
+1

C
n−l1j
l2
j
−l0

j
. (1)

In the second sum, as in the first, l0j can take values from lj−1 to n−k+j−1

and the number of ranks of possible intersections is C
n−lj−1

l0
j
−lj−1

(for each wj−1).

Since we are considering the case l1j = l2j , we cannot have l1j = l0j (if so, we
would get Col(w1j ) = Col(w2j )); so here l1j ranges from l0j + 1 to n − k + j.
For each w1j , there are l0j elements fixed and n− l0j elements free in Col(w2j ).
We can fill the free spaces in Col(w2j ) only using those elements which do not
belong to Col(w1j ). The number of such elements is n− l1j . Hence there are

C
n−l1j
l1
j
−l0

j
possible variants of w2j ’s for the fixed w

1
j . But now we cannot multiply

the number of possible w1j ’s (which is C
n−l0j
l1
j
−l0

j
) by the number of corresponding

w2j ’s, because, in this way we would get repetitions, i.e. we would count two
anti-chains {w1j , w

2
j} and {w2j , w

1
j} instead of one. In fact, this is the case
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when there is given a set of n1 elements and each element forms (unordered)
pairs with n2 (n2 < n1) other elements of the same set. The number of all
pairs then will be equal to (n1n2)/2; if the product n1n2 is an odd number,
then it means that, for given numbers n1, n2, such pairs cannot be formed
(for example: n1 = 3, n2 = 1). Since in our case we are preserved from the
odd values of Cn−l0

l1−l0C
n−l1
l1−l0, we take our second sum to be:

n−k+j−1
∑

l0
j
=lj−1

n−k+j
∑

l1
j
=l2

j
=l0

j
+1

C
n−lj−1

l0
j
−lj−1

(C
n−l0j
l1
j
−l0

j
C
n−l1j
l1
j
−l0

j
)/2, (2).

Finally:

f 21 (j) = (1) + (2).

4. This is the case when there are two nodes of the depth k− j+1 which
form an anti-chain which totally covers each of the two nodes of the depth
k − j + 2. This case is analogous to the previous case. Here we consider
Col(w1j−1)∪Col(w

2
j−1) instead of Col(wj−1) as in the previous case. Thus we

have:

f 22 (j) =
n−k+j−1
∑

l0
j
=l1

j−1+l
2
j−1−l

0
j−1

n−k+j−1
∑

l1
j
=l0

j

C
n−(l1j−1+l

2
j−1−l

0
j−1)

l0
j
−(l1

j−1+l
2
j−1−l

0
j−1)

C
n−l0j
l1
j
−l0

j

n−k+j
∑

l2
j
=l1

j
+1

C
n−l1j
l2
j
−l0

j
+

+
n−k+j−1
∑

l0
j
=l1

j−1+l
2
j−1−l

0
j−1

n−k+j
∑

l1
j
=l2

j
=l0

j
+1

C
n−(l1j−1+l

2
j−1−l

0
j−1)

l0
j
−(l1

j−1+l
2
j−1−l

0
j−1)

(C
n−l0j
l1
j
−l0

j
C
n−l1j
l1
j
−l0

j
)/2.

Below there is presented the formula SM(n) which gives the number of
the finite projective formulas of n variables in IPC. The computer program
realizing this computation can be found in the appendix.

SM(n) =
n+1
∑

k=1

M(k),

where
M(k) =

∑

i1=1,i2,...,ik=1,2

F (i1, . . . , ik),
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where
F (i1, . . . , ik) = f i1f i2i1 f

i3
i2
. . . f ikik−1

,

where

f 1 =
n−k+1
∑

l1=0

Cn
l1
,

f 11 (j) =
n−k+j
∑

lj=lj−1+1

C
n−lj−1

lj−lj−1
,

f 12 (j) =
n−k+j
∑

lj=l1j−1+l
2
j−1−l

0
j−1+s

C
n−(l1j−1+l

2
j−1−l

0
j−1)

lj−(l1j−1+l
2
j−1−l

0
j−1)

; s =
{

1, if l1j−1 = l0j−1 or l
2
j−1 = l0j−1

0, otherwise.
,

f 21 (j) =
n−k+j−1
∑

l0
j
=lj−1

n−k+j−1
∑

l1
j
=l0

j

C
n−lj−1

l0
j
−lj−1

C
n−l0j
l1
j
−l0

j

n−k+j
∑

l2
j
=l1

j
+1

C
n−l1j+l

0
j

l2
j
−l0

j
+

+
n−k+j−1
∑

l0
j
=lj−1

n−k+j
∑

l1
j
=l2

j
=l0

j

C
n−lj−1

l0
j
−lj−1

(C
n−l0j
l1
j
−l0

j
C
n−l1j
l1
j
−l0

j
)/2,

f 22 (j) =
n−k+j−1
∑

l0
j
=l1

j−1+l
2
j−1−l

0
j−1

n−k+j−1
∑

l1
j
=l0

j

C
n−(l1j−1+l

2
j−1−l

0
j−1)

l0
j
−(l1

j−1+l
2
j−1−l

0
j−1)

C
n−l0j
l1
j
−l0

j

n−k+j
∑

l2
j
=l1

j
+1

C
n−l1j+l

0
j

l2
j
−l0

j
+

+
n−k+j−1
∑

l0
j
=l1

j−1+l
2
j−1−l

0
j−1

n−k+j
∑

l1
j
=l2

j
=l0

j

C
n−(l1j−1+l

2
j−1−l

0
j−1)

l0
j
−(l1

j−1+l
2
j−1−l

0
j−1)

(C
n−l0j
l1
j
−l0

j
C
n−l1j
l1
j
−l0

j
)/2,

We have conducted calculations for n = 1, 2, 3, 4, 5 and 6. As it was
known, there are four finite formulas of one variable. There are 26 finite
formulas of two variables; for n = 3 there are 256 finite formulas; for n = 4:
3386; for n = 5: 55984 and for n = 6: 1110506.
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6.3 Finite projective formulas of one variable

It was shown by D. de Jongh (see [4]) that there are five projective formulas
of one variable in IPC, four of which are finite. Now we will give an easier
proof of this fact using the colouring technique.

So, we restrict ourselves to the case of n = 1. Proposition 24, makes it
possible to write out all of the finite extendible subsets of W1:

s s s s s
ss @

@
@

{1} ∅ {1} {1} ∅

∅∅

Fig.5

W1 is shown in Fig.1. To each of the finite extendible sets in Fig.5. there
corresponds a finite projective formula of one variable. Now we will introduce
a technique by which we can find the projective formulas which correspond
to the given finite extendible sets.

Let us recall an equivalent definition of the algebraic operation →: For
A,B ∈ ConW , A → B = −R−1(A \ B), where R−1(w) = {v : vRw} and
R−1(A) =

⋃

w∈AR
−1(w). Thus ¬A = A → ∅ = −R−1(A) and A ↔ B =

−R−1(A \B) ∩ −R−1(B \ A).
The free algebra Φn is generated by p1, . . . , pn. Hence its isomorphic

algebra AdmWn is generated by Gi = h(pi) = {w ∈ Wn : w |=n pi}, i =
1, . . . , n. Thus, any admissible extendible subset of Wn can be obtained
by applying the algebraic operations ∩,∪,→, ∅ to the sets G1, . . . , Gn. In
the case n = 1, we have G = {w ∈ Wn : Col(w) = {1}}. Denote by p
the propositional variable (free generator of the algebra Φ1). Thus G is the
subset of W1 in every point of which p is forced.

Now we give the finite projective formulas which correspond to the finite
extendible sets shown in Fig.5

φ1 = p; first in Fig.5, which is G itself.
φ2 = ¬p; second in Fig.5, which is −R−1(G).



6 FINITE PROJECTIVE FORMULAS 32

φ3 = ¬φ2; third in Fig.5, which is −R−1(φ2).
φ4 = φ3 → p; fourth in Fig.5, which is −R−1(φ3 \G).

6.4 Finite projective formulas of two variables

Let us restrict ourselves to the case of n = 2. Proposition 24 makes it possible
to write out all of the finite extendible subsets of W2; first we will see the
finite extendible frames (Fig.6) and then all existing models on those frames
(Fig.7):
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Fig.7

M1, φ1 M2, φ5 M3, φ6 M4, φ2

M5, φ7 M6, φ8 M7, φ9 M8, φ3 M9, φ4

M10, φ10 M11, φ11

M12, φ19 M13, φ21 M14, φ20 M15, φ22 M16, φ18 M17, φ12 M18, φ13 M19, φ14

M20, φ23 M21, φ24 M22, φ25 M23, φ26 M24, φ15 M25, φ16 M26, φ17

There are 26 finite extendible subsets of W2 and to each of them there
corresponds a finite projective formula of two variables.

In the case n = 2 we have, G1 = {w ∈ Wn : Col(w) = {1} or Col(w) =
{1, 2}} and G2 = {w ∈ Wn : Col(w) = {2} or Col(w) = {1, 2}}, Denote by
p, q two propositional variables (the free generators of the algebra Φ2). Thus
G1 contains one point in which both p and q are forced and the rest of the
points of G1 make p true and q false. Analogously G2 contains one point in
which both p and q are forced and the rest of the points of G2 make q true
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and p false.
Now we give the finite projective formulas which correspond to the finite

extendible sets shown in Fig.7.

φ1 = p ∧ q; M1, which is G1 ∩G2;
φ2 = ¬(p ∨ q); M4, which is −R−1(G1 ∪G2);
φ3 = ¬(q ∨ φ2); M8, −R

−1(G2 ∪ φ2);
φ4 = ¬(p ∨ φ2); M9, −R

−1(G1 ∪ φ2);
φ5 = φ3 ∧ p; M2, φ3 ∩G1;
φ6 = φ4 ∧ q; M3, φ4 ∩G2;

Define U = ¬(φ2 ∨ φ3 ∨ φ4). In U1 = U ∩W 1
n = {w ∈ U : depth(w) = 1}

there is one point u with the colour {1, 2}, in U2 there are three points which
are totally covered by u and on each next level of U there are only the points
totally covered by the points or anti-chains only from the previous levels of
U . Then,

φ7 = U ∧ p; M5, U ∩G1;
φ8 = U ∧ q; M6, U ∩G2;
φ9 = ¬(φ7 ∨ φ8) ∧ U ∨ φ1; M7, −R

−1(φ7 ∪ φ8) ∩ U ∪ φ1;
φ10 = ((φ8 ∨ φ9)→ φ1) ∧ U ; M10, −R

−1((φ8 ∪ φ9) \ φ1) ∩ U ;
φ11 = ((φ7 ∨ φ9)→ φ1) ∧ U ; M11, −R

−1((φ7 ∪ φ9) \ φ1) ∩ U ;
φ12 = (φ3 → φ5)∧(φ4 → φ6)∧¬(φ1∨φ2); M17, −R

−1(φ3\φ5)∩−R
−1(φ4\

φ6) ∩ −R
−1(φ1 ∪ φ2);

φ13 = ¬(φ1 ∨ φ6) ∧ (φ3 → φ5); M18, −R
−1(φ1 ∪ φ6) ∩ −R

−1(φ3 \ φ5);
φ14 = ¬(φ1 ∨ φ5) ∧ (φ4 → φ6); M19, −R

−1(φ1 ∪ φ5) ∩ −R
−1(φ4 \ φ6);

φ15 = (φ10 → φ7) ∧ (φ11 → φ8) ∧ (φ9 → φ1) ∧ U ; M24, −R
−1(φ10 \ φ7) ∩

−R−1(φ11 \ φ8) ∩ −R
−1(φ9 \ φ1) ∩ U ;

φ16 = (φ10 → φ7)∧(φ8 → φ1)∧U ;M25, −R
−1(φ10\φ7)∩−R

−1(φ8\φ1)∧U ;
φ17 = (φ11 → φ8)∧(φ7 → φ1)∧U ;M26, −R

−1(φ11\φ8)∩−R
−1(φ7\φ1)∧U ;

Define Ū = (φ7 → φ1) ∨ (φ8 → φ1) ∨ (φ9 → φ1). Ū = W2 \ U ∪ {u}, (U
and u were defined above). Then,

φ18 = ¬(φ5 → φ6) ∧ Ū ; M16, −R
−1(φ5 \ φ6) ∩ Ū ;

φ19 = ¬(φ6 ∨ φ2) ∧ Ū ∧ p; M12, −R
−1(φ6 ∪ φ2) ∩ Ū ∩ p;

φ20 = ¬(φ5 ∨ φ2) ∧ Ū ∧ q; M14, −R
−1(φ5 ∪ φ2) ∩ Ū ∩ p;

φ21 = ¬(φ6 ∨ φ2) ∧ Ū ∧ (φ19 → (φ1 ∨ φ5)) ∧ (φ3 → φ5); M13, −R
−1(φ6 ∪

φ2) ∩ Ū ∩ −R
−1(φ19 \ (φ1 ∪ φ5)) ∩ −R

−1(φ3 \ φ5);
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φ22 = ¬(φ5 ∨ φ2) ∧ Ū ∧ (φ20 → (φ1 ∨ φ6)) ∧ (φ4 → φ6); M15, −R
−1(φ5 ∪

φ2) ∩ Ū ∩ −R
−1(φ20 \ (φ1 ∪ φ6)) ∩ −R

−1(φ4 \ φ6);
φ23 = (¬(φ2 ∨ φ6)∧ Ū)∧ (φ21 → (φ1 ∨ φ5))∧ (φ3 → φ5); M20, −R

−1(φ2 ∪
φ6) ∩ Ū ∩ −R

−1(φ21 \ (φ1 ∪ φ5)) ∩ −R
−1(φ3 \ φ5);

φ24 = (¬(φ2 ∨ φ5)∧ Ū)∧ (φ22 → (φ1 ∨ φ6))∧ (φ4 → φ6); M21, −R
−1(φ2 ∪

φ5) ∩ Ū ∩ −R
−1(φ22 \ (φ1 ∪ φ6)) ∩ −R

−1(φ4 \ φ6);
φ25 = (¬(φ2 ∨ φ6)∧ Ū)∧ (φ3 → φ5)∧ (φ23 → φ19); M22, −R

−1(φ2 ∪ φ6)∩
Ū ∩ −R−1(φ3 ∪ φ5) ∩ −R

−1(φ23 \ φ19);
φ26 = (¬(φ2 ∨ φ5)∧ Ū)∧ (φ4 → φ6)∧ (φ24 → φ20); M23, −R

−1(φ2 ∪ φ5)∩
Ū ∩ (φ4 \ φ6) ∩ −R

−1(φ24 \ φ20).

The formulas, φ1, . . . , φ26 were obtained using Fig.2 and Fig.7 and the set
theoretical operations (∪,∩, \ and −) on the sets G1, G2 which correspond
dually to the propositional variables p, q. Already obtained finite formulas
were used for finding new finite formulas so most of the formulas look compli-
cated and can be simplified. The final, simplified, list of the finite projective
formulas of two variables is the following:

φ1 = p ∧ q;
φ2 = ¬p ∧ ¬q;
φ3 = ¬¬p ∧ ¬q;
φ4 = ¬¬q ∧ ¬p;
φ5 = ¬q ∧ p;
φ6 = ¬p ∧ q;
φ7 = p ∧ ¬¬q;
φ8 = q ∧ ¬¬p;
φ9 = (p↔ q) ∧ ¬¬p;
φ10 = ¬¬q ∧ ((p→ q)→ p);
φ11 = ¬¬p ∧ ((q → p)→ q);
φ12 = (p↔ ¬q) ∧ (q ↔ ¬p);
φ13 = ¬q ∧ (¬¬p→ p);
φ14 = ¬p ∧ (¬¬q → q);
φ15 = ¬¬p ∧ ¬¬q ∧ ((p→ q)→ q) ∧ ((q → p)→ p);
φ16 = ¬¬q ∧ (q → p);
φ17 = ¬¬p ∧ (p→ q);
φ18 = (p↔ q) ∧ (¬¬p→ p);
φ19 = p ∧ (¬¬q → q);
φ20 = q ∧ (¬¬p→ p);
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φ21 = (¬¬q → q) ∧ (p↔ (q ∨ ¬q));
φ22 = (¬¬p→ p) ∧ (q ↔ (p ∨ ¬p));
φ23 = ((p→ q ∨ ¬q)→ p) ∧ (¬¬q → q);
φ24 = ((q → p ∨ ¬p)→ q) ∧ (¬¬p→ p);
φ25 = ¬¬p ∧ (¬¬q → q) ∧ (((p→ q ∨ ¬q)→ p)→ p);
φ26 = ¬¬q ∧ (¬¬p→ p) ∧ (((q → p ∨ ¬p)→ q)→ q).

6.5 Number of all projective formulas

Now we proceed with the calculation of the number of all projective formulas
of n variables in IPC. We will construct an infinite number of admissible
extendible sets in the n-universal model from which it follows that there is a
countably infinite number of projective formulas of n variables.

We need the following observation in order to proceed with the construc-
tion of the needed admissible extendible sets:

Proposition 26 Consider w ∈ Wn and A ⊆ Wn a finite anti-chain such
that w ≺ A and there exists v ∈ Wn such that v 6= w and v ≺ A. Then the
set −R−1(w) is extendible.

Proof. Assume −R−1(w) is not extendible. Then there exists a finite anti-
chain B ⊆ −R−1(w) such that, for all u ∈ Wn, from u ≺ B it follows that
u 6∈ −R−1(w). Suppose u ≺ B, then u ∈ R−1(w). Then uRw. Since u ≺ B
and w 6∈ B it must be that u = w. But then B = A. Note that since w ≺ A
and v ≺ A, v ∈ −R−1(w) which contradicts the assumption that all the
points that are totally covered by B belong to R−1(w). 2

Theorem 27 There is an infinite number of projective formulas of n vari-
ables, n ≥ 2.

Proof. We will prove this theorem by constructing countable number of ad-
missible extendible subsets ofWn. Since there is a one-to-one correspondence
between the elements of Φn and admissible sets, the theorem will be proved.

Consider the Rieger Nishimura ladder type infinite subset of Wn (n ≥ 2)
shown on Fig.8.
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This set is generated by two elements of the first level of Wn with the
colours {1, 2} and {1}. The element with the colour {1, 2} totally covers an
element with the colour {1}. Then two elements of the first level totally cover
an element of the second level with the colour {1}. Now, there are two anti-
chains and each of them totally covers an element with the colour {1}. Each
of these anti-chains also covers an element with the colour ∅. In Fig.8 we
show only one such element totally covered by the one of these anti-chains.
If we proceed, we will get the picture shown in Fig.8. Now, the elements with
the colour ∅ in Fig.8 satisfy the conditions of the previous proposition and
hence every such element w gives rise to a unique extendible set −R−1(w).
There is a countable number of such elements. Thus we have constructed
infinitely many infinite extendible subsets ofWn. Consult Grigolia [11] for the
fact that for all w ∈ Wn, −R

−1(w) is admissible. Thus we have constructed
countably many infinite admissible extendible sets in the n-universal model.

2
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Theorem 28 If A ∈ ConWn, then −R
−1(A) ∈ ExtWn.

Proof. The proof is analogous of the proof of Proposition 26. Assume
−R−1(A) is not extendible. Then there exists a finite anti-chainB ⊆ −R−1(A)
such that, for all w ∈ Wn, from w ≺ B it follows that w 6∈ −R−1(A). Sup-
pose w ≺ B, then w ∈ R−1(A). Then wRv for some v ∈ A, which is a
contradiction since B totally covers w and B ∩ A = ∅. 2

For any A ∈ ConWn, −R
−1(A) = −R−1(A1) (where A1 = W 1

n ∩ A).
Hence, each formula of the type ¬φ is projective. The exception is ⊥ (∅ =
−R−1(Wn)) which we do not consider as a projective formula. Since there
are 2n elements in W 1

n , we get that there are 22
n

different subsets of W 1
n and

hence 22
n

− 1 nonequivalent negated projective formulas of n variables.
It also follows from the above that in IPC there are 22

n

nonequivalent
negated formulas of n variables, but this is of course not surprising, since it
is well-known that in IPC negated formulas behave exactly as in classical
logic.

Appendix. Computation of finite extendible subsets of the n-
universal model

Here we give a description of the computation of finite extendible sets in
the n-universal model and a computer program realizing these computations.

We refer to Section 6 (subsection 6.2) for more theoretical details.

If we can count the number M(k) of all possible finite extendible models
of depth k, then we can easily take the sum:

SM(n) =
n+1
∑

k=1

M(k)

to be the number of all finite extendible models (see subsection 6.2).
For a given depth k, different vectors (i1, . . . , ik) (i1, . . . , ik−1 = 1, 2 and

ik = 1) represent the possible (finite) extendible frames which have ik nodes
on the first level, ik−1 nodes on the second level and so on (with i1 = 1 node
as the root). So
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M(k) =
∑

i1=1,i2,...,ik=1,2

F (i1, . . . , ik),

where F (i1, . . . , ik) is the number of such finite extendible sets which have
ij points (ij = 1 or 2) in the level k − j + 1 (j = 1, . . . , k).

To calculate the function F for given parameters i1, . . . , ik, fix a frame
of depth k. The construction of the n-universal model limits the number of
acceptable colours that a node w of the depth k can have. If we fix some
(acceptable) colour for w, then we will have a number of possible colours for
the nodes of the depth k−1 which totally cover w. Then for the fixed (colours
of) nodes of the depth k−1 we have a number of possible (colours for) nodes
of the depth k−2 and so on. This approach brings us to a computational tree
starting from the root and going up which considers all the possible cases of
’moving’ from already fixed colours of the given level to the possible colours
of nodes of the next level.

Let us recall the notation introduced in Subsection 6.2. If there is one
node of the depth k− j+1, then denote by lj the rank of its colour. If there
are two nodes of the depth k− j+1, then denote by l1j the rank of the colour
of the first node, by l2j the rank of the colour of the second one and denote by
l0j the rank of the intersection of their colours. We denote by Cn

k the choose
of k over n. Then the number of possible colours for the root of the fixed
frame of the depth k is:

n−k+1
∑

l1=0

Cn
l1
.

See Subsection 6.2 for the proof. In the comments made in program below
we denote this sum by f1.

Then there are four different cases for computation of the possible (colours
of) nodes which cover the given nodes of the previous level.

1. There is one node on the each of the levels k − j + 2 and k − j + 1;
(f11)

2. There are two nodes on the level k− j +2 covered by one node on the
level k − j + 1; (f21)

3. There is one node on the level k − j + 2 covered by two nodes on the
level k − j + 1; (f12)
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4. There are two nodes on the level k − j + 2 covered by two nodes on
the level k − j + 1; (f22)

See Section 6.2 for the sums that correspond to each of the above cases.
Our computational tree mentioned above consists of nested sums - start-

ing with the sum f1 and having a corresponding sum from the sums f11, f21,
f12 and f22 on each of its levels. Here the word ’corresponding’ is used in the
following sense: since a level in our computational tree means the depth of
the nodes (in a fixed frame) to be coloured (with acceptable valuations), it
depends which case out of our four cases we are dealing with; if, for instance,
a program is about to colour two nodes which cover one node, then it means
that it is dealing with the third case and hence it should use the sum f12 for
its calculations.

The parameter j in the program indicates the level in the computational
tree.

The comments about the computer program can be found in the text of
the program enclosed in {,} brackets.

procedure TMainForm.StartBitBtnClick(Sender: TObject);

var n, k, j, Sn, S, memlines : Integer;

fact : array[0..7] of Integer;

i : array[1..7] of Integer;

C : array[0..7,0..7] of Integer;

{Initializing C matrix, so that computer will not have

to calculate binomials (C[n,m]) every time}

procedure InitC;

var n1, n2 : Integer;

begin

for n1 := 0 to 7 do

for n2 := 0 to 7 do

if n1 < n2 then C[n1,n2] := 0 else

if n1 = n2 then C[n1,n2] := 1 else

C[n1,n2] := fact[n1] div (fact[n2]*fact[n1-n2]);

end;
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{The ’heart’ of the program - recursive procedure}

procedure Rec(l0j,l1j,l2j, P : Integer);

var l0,l1,l2: Integer;

begin

{j indicates the depth of points to be coloured}

Inc(j);

if j = k+1 then

{if we have coloured points of all needed depths then...}

begin

{S is the sum and P is the product (of binomials)}

S := S + P;

Dec(j);

Exit; {Return to the state from where the procedure was called}

end;

{Decision procedure for which a sum (f1, f11, f12, f21 or f22)

must be calculated}

{Here the case of j=1 (the sum f1) should be considered separately,

while the other four cases exclude each other}

if j=1 then

for l1 := l1j to n-k+1 do Rec(l1,l1,l1, P*C[n,l1])

{P becomes a product of binomials}

else begin

if (i[j-1]=1) and (i[j]=1) then

for l1 := l1j+1 to n-k+j do Rec(l1,l1,l1, P*C[n-l1j,l1-l1j]);

if (i[j-1]=1) and (i[j]=2) then

begin

for l0 := l1j to n-k+j-1 do

for l1 := l0 to n-k+j-1 do

for l2 := l1+1 to n-k+j do

Rec(l0,l1,l2, P*C[n-l1j,l0-l1j]*C[n-l0,l1-l0]*C[n-l1,l2-l0]);

for l0 := l1j to n-k+j-1 do

for l1 := l0+1 to n-k+j do

Rec(l0,l1,l1, P*C[n-l1j,l0-l1j]

*((C[n-l0,l1-l0]*C[n-l1,l1-l0])div 2));

end;

if (i[j-1]=2) and (i[j]=1) then
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if (l1j=l0j) or (l2j=l0j) then for l1 := l1j+l2j-l0j+1 to n-k+j do

Rec(l1,l1,l1, P*C[n-(l1j+l2j-l0j),l1-(l1j+l2j-l0j)])

else for l1 := l1j+l2j-l0j to n-k+j do

Rec(l1,l1,l1, P*C[n-(l1j+l2j-l0j),l1-(l1j+l2j-l0j)]);

if (i[j-1]=2) and (i[j]=2) then

begin

for l0 := l1j+l2j-l0j to n-k+j-1 do

for l1 := l0 to n-k+j-1 do

for l2 := l1+1 to n-k+j do

Rec(l0,l1,l2, P*C[n-(l1j+l2j-l0j),l0-(l1j+l2j-l0j)]*C[n-l0,l1-l0]

*C[n-l1,l2-l0]);

for l0 := l1j+l2j-l0j to n-k+j-1 do

for l1 := l0+1 to n-k+j do

Rec(l0,l1,l1, P*C[n-(l1j+l2j-l0j),l0-(l1j+l2j-l0j)]

*((C[n-l0,l1-l0]*C[n-l1,l1-l0])div 2));

end;

end;

Dec(j);

end;

{A counter of models for a fixed frame}

procedure F;

var memcount : Integer;

begin

S := 0; {S - the number of models for a fixed frame}

j := 0;

Rec(0,0,0, 1);

{Sn - the global sum}

Sn := Sn + S;

{Taking care of output}

for memcount := 1 to n+1 do

Memo.Lines[memlines] := Memo.Lines[memlines] + IntToStr(i[memcount])+’,’;

Memo.Lines[memlines] :=

Memo.Lines[memlines] + ’ ’+IntToStr(S);

Inc(memlines);

end;
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Begin

{Initializing the variable n}

n := StrToInt(nEdit.Text);

if n = 0 then

begin

ResultLabel.Caption := ’0’;

for memlines := 0 to 200 do Memo.Lines[memlines] := ’’;

Exit;

end;

{Taking care of output}

for memlines := 0 to 200 do Memo.Lines[memlines] := ’’;

Memo.Lines[0] := ’Frame Number of models’;

memlines := 2;

{Initializing factorials from 1 to 7}

fact[0] := 1; fact[1] := 1; fact[2] := 2; fact[3] := 6;

fact[4] := 24; fact[5] := 120; fact[6] := 720; fact[7] := 5040;

{Initializing binomials}

InitC;

{Initializing the matrix i}

i[1] := 1; i[2] := 0; i[3] := 0; i[4] := 0; i[5] := 0; i[6] := 0; i[7] := 0;

{Initializing Sn}

Sn := 0;

{"Creating frames".

The direct way was prefered to the use of another recursion

which would make the program almost unreadable}

for k := 1 to n+1 do

Case k of

1: F;

{Here begins the manual construction of frames

(without using recursion which would be necessary since k is varying)}

2: begin

i[2]:=1; F;

i[2]:=2; F;

end;

3: begin

i[2]:=1; i[3]:=1; F;
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i[3]:=2; F;

i[2]:=2; i[3]:=1; F;

i[3]:=2; F;

end;

4: begin

i[2]:=1; i[3]:=1; i[4]:=1; F;

i[4]:=2; F;

i[3]:=2; i[4]:=1; F;

i[4]:=2; F;

i[2]:=2; i[3]:=1; i[4]:=1; F;

i[4]:=2; F;

i[3]:=2; i[4]:=1; F;

i[4]:=2; F;

end;

5: begin

i[2]:=1; i[3]:=1; i[4]:=1; i[5]:=1; F;

i[5]:=2; F;

i[4]:=2; i[5]:=1; F;

i[5]:=2; F;

i[3]:=2; i[4]:=1; i[5]:=1; F;

i[5]:=2; F;

i[4]:=2; i[5]:=1; F;

i[5]:=2; F;

i[2]:=2; i[3]:=1; i[4]:=1; i[5]:=1; F;

i[5]:=2; F;

i[4]:=2; i[5]:=1; F;

i[5]:=2; F;

i[3]:=2; i[4]:=1; i[5]:=1; F;

i[5]:=2; F;

i[4]:=2; i[5]:=1; F;

i[5]:=2; F;

end;

6: begin

i[2]:=1; i[3]:=1; i[4]:=1; i[5]:=1; i[6]:=1; F;

i[6]:=2; F;

i[5]:=2; i[6]:=1; F;

i[6]:=2; F;
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i[4]:=2; i[5]:=1; i[6]:=1; F;

i[6]:=2; F;

i[5]:=2; i[6]:=1; F;

i[6]:=2; F;

i[3]:=2; i[4]:=1; i[5]:=1; i[6]:=1; F;

i[6]:=2; F;

i[5]:=2; i[6]:=1; F;

i[6]:=2; F;

i[4]:=2; i[5]:=1; i[6]:=1; F;

i[6]:=2; F;

i[5]:=2; i[6]:=1; F;

i[6]:=2; F;

i[2]:=2; i[3]:=1; i[4]:=1; i[5]:=1; i[6]:=1; F;

i[6]:=2; F;

i[5]:=2; i[6]:=1; F;

i[6]:=2; F;

i[4]:=2; i[5]:=1; i[6]:=1; F;

i[6]:=2; F;

i[5]:=2; i[6]:=1; F;

i[6]:=2; F;

i[3]:=2; i[4]:=1; i[5]:=1; i[6]:=1; F;

i[6]:=2; F;

i[5]:=2; i[6]:=1; F;

i[6]:=2; F;

i[4]:=2; i[5]:=1; i[6]:=1; F;

i[6]:=2; F;

i[5]:=2; i[6]:=1; F;

i[6]:=2; F;

end;

7: begin

i[2]:=1; i[3]:=1; i[4]:=1; i[5]:=1; i[6]:=1; i[7]:=1; F;

i[7]:=2; F;

i[6]:=2; i[7]:=1; F;

i[7]:=2; F;

i[5]:=2; i[6]:=1; i[7]:=1; F;

i[7]:=2; F;

i[6]:=2; i[7]:=1; F;
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i[7]:=2; F;

i[4]:=2; i[5]:=1; i[6]:=1; i[7]:=1; F;

i[7]:=2; F;

i[6]:=2; i[7]:=1; F;

i[7]:=2; F;

i[5]:=2; i[6]:=1; i[7]:=1; F;

i[7]:=2; F;

i[6]:=2; i[7]:=1; F;

i[7]:=2; F;

i[3]:=2; i[4]:=1; i[5]:=1; i[6]:=1; i[7]:=1; F;

i[7]:=2; F;

i[6]:=2; i[7]:=1; F;

i[7]:=2; F;

i[5]:=2; i[6]:=1; i[7]:=1; F;

i[7]:=2; F;

i[6]:=2; i[7]:=1; F;

i[7]:=2; F;

i[4]:=2; i[5]:=1; i[6]:=1; i[7]:=1; F;

i[7]:=2; F;

i[6]:=2; i[7]:=1; F;

i[7]:=2; F;

i[5]:=2; i[6]:=1; i[7]:=1; F;

i[7]:=2; F;

i[6]:=2; i[7]:=1; F;

i[7]:=2; F;

i[2]:=2; i[3]:=1; i[4]:=1; i[5]:=1; i[6]:=1; i[7]:=1; F;

i[7]:=2; F;

i[6]:=2; i[7]:=1; F;

i[7]:=2; F;

i[5]:=2; i[6]:=1; i[7]:=1; F;

i[7]:=2; F;

i[6]:=2; i[7]:=1; F;

i[7]:=2; F;

i[4]:=2; i[5]:=1; i[6]:=1; i[7]:=1; F;

i[7]:=2; F;

i[6]:=2; i[7]:=1; F;

i[7]:=2; F;
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i[5]:=2; i[6]:=1; i[7]:=1; F;

i[7]:=2; F;

i[6]:=2; i[7]:=1; F;

i[7]:=2; F;

i[3]:=2; i[4]:=1; i[5]:=1; i[6]:=1; i[7]:=1; F;

i[7]:=2; F;

i[6]:=2; i[7]:=1; F;

i[7]:=2; F;

i[5]:=2; i[6]:=1; i[7]:=1; F;

i[7]:=2; F;

i[6]:=2; i[7]:=1; F;

i[7]:=2; F;

i[4]:=2; i[5]:=1; i[6]:=1; i[7]:=1; F;

i[7]:=2; F;

i[6]:=2; i[7]:=1; F;

i[7]:=2; F;

i[5]:=2; i[6]:=1; i[7]:=1; F;

i[7]:=2; F;

i[6]:=2; i[7]:=1; F;

i[7]:=2; F;

end;

end;

{Outputting the global sum}

ResultLabel.Caption := IntToStr(Sn);

End;
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