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Modal definability in topology

Abstract

This thesis is mainly concerned with the definability issue when
modal logic is interpreted on topological spaces. A topological analo-
gon of Goldblatt-Thomason theorem is proved. Some new topological
constructions are introduced. One of them, namely the notion of com-
pact extension, is a generalization of the concept of Stone-Čech com-
pactification known in topology. The preservation of modal validity
with respect to suitable topological operations is presented.

Keywords: Modal Logic, semantics, topology, definability.

Introduction

This work deals with the topological semantics of modal logic. We con-
sider the interpretation of the modal diamond as a closure operator. Sev-
eral interpretations of the modal diamond as an operator over a topological
space are possible. Two of them, namely diamond-as-closure-operator and
diamond-as-limit-operator, have been pioneering in the semantics of modal
logic as far back as in 1944, in the celebrated paper of McKinsey and Tarski
[McKinsey and Tarski 1944]. The topological semantics has proved rather
useful, providing nice completeness results for such well-known modal sys-
tem(s) as (extensions of) S4. However, after the discovery of what is now
known as the Kripke semantics for modal logic, the latter has become the
heaviestly used modal semantical tool, leaving the topological interpretations
in the shadow. This is probably due to the more intuitive and illustrative na-
ture of the Kripke semantics. Frames are easier to picture and operate upon,
while topological spaces can be quite mysterious even on the basic level.
Nevertheless, spatial intuitions behind the topological structures provide a
quite startling view on modal logic, and the latter appears a good medium
for reasoning about spaces. This summarizes two possible approaches. One
approach is originating from modal logic. The abstract syntactic entities,
formal theories like modal logic ask for the meaning, for the realization. Col-
lection of symbols and the rules of operating on them seek semantics. The
Glass Bead Game needs a board to be played on after all. Topology is one
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such board for modal logic. One among others, but first and unique. The
spatial intuitions granted to humans by recurrent experiencing of the space
and time gave birth to topology. Topology gave a meaning to modal logic.
The abstract syntactic objects come to denote some spatial phenomena, and
trigger our intuition to draw conclusions which can be expressed in the same
modal symbolism. Thus the first approach is roughly topological decoration
of modal logic. The second approach originates in spatial reasoning. What
is the suitable language for reasoning about spaces? We would like to have a
rich enough stock of resources to code at least the most relevant topological
properties. We would like to find out what kind of logical rules govern the
space. We need a formal system to reason. At the same time the resulting
system should be transparent, decidable, finitary accessible, in short - fea-
sible in one or another way. Where is the golden middle? In attempts of
accomplishing these tasks, among others, modal logic comes into play. We
may want to reason about regions and their interrelations, or about metric
spaces, Euclidean spaces, connected spaces, etc. Modal logic offers a clear,
accessible paradigm of formal reasoning and a great flexibility to fine-tune the
expressive power of the language+interpretation to meet the particular spa-
tial needs. The second approach in general terms takes modal logic as a rea-
soning tool for topological spaces. These two streams interplay greatly and,
it is our fine belief, that is were the beauty shines through. There is of course
no strict distinction, but every paper where modal logic meets topology can
be classified to belong in one of these categories, if not in both. For exam-
ple, works like [McKinsey and Tarski 1944], [Shehtman 1999], [Mints 1998],
[Bezhanishvili and Gehrke 2001] fall more in the first category, while the pa-
pers [Goldblatt 1980], [Shehtman 1983], [Aiello and van Benthem 2001] be-
long more to the second. We leave it to the reader to classify this paper.

The main contribution of this thesis is the topological Goldblatt-Thomason
theorem. It answers the question: ”which classes of topological spaces can
be defined by a modal formula in the basic modal language?”. In order to
approach this issue, we developed the construction called the Alexandroff
extension - the topological analogon of the ultrafilter extension for a frame.
Another interesting construction - the compact extension is introduced as
well. These two constructions appear to be tightly connected. At the same
time, the former is the crucial in the main result of the thesis, while the latter
is the generalization of the well-known topological notion of the Stone-Čech
compactification. In conclusion, invariance of modally expressible topologi-
cal properties under certain topological transformations is summarizing the
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results obtained in the thesis.
The material is organized as follows. In the first part we bring in necessary

definitions both from logic and topology, introduce the semantics interpret-
ing the modal diamond as a closure operator, prove soundness and strong
completeness of S4 with respect to the topological semantics and build a
bridge between Kripke frames and Alexandroff topologies; in the second part
we address the definability issue, develop four basic operations on topologi-
cal spaces and prepare the algebraic duality to prove the main result of this
part - a topological Goldblatt-Thomason theorem; in the third part several
enriched languages are discussed, the generalization of the notion of Stone-
Čech compactification is presented and the results of the earlier parts are
summarized in terms of topological invariance.
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1 Topological semantics and completeness

Most of the results presented in this part have already been established in the
works of various authors either implicitly or explicitly. The main aim for the
present chapter is to carefully lead the reader into the modal world of topo-
logical spaces, or rather, the topological world of modal logic. The necessary
topological definitions have been taken from [Engelking 1977] mostly, while
for modal logic we used [Blackburn et al. 2001] as the dominating reference.

1.1 Preliminaries

We will define the topological semantics for modal logic and present the
soundness result in this section.
First of all, let us specify what kind of structure is a topological space.

Definition 1.1.1 A Topological Space T = (X,Ω) is a nonempty set X
with a collection of its subsets Ω satisfying the following:

T1 ∅ ∈ Ω and X ∈ Ω,

T2 If O1 ∈ Ω and O2 ∈ Ω then O1 ∩O2 ∈ Ω,

T3 If Oi ∈ Ω for all i ∈ I, with I some index set, then
⋃
i∈I
Oi ∈ Ω.

The elements of Ω are called opens. So, the empty set and the universe
are opens, opens are closed under finite intersections and under arbitrary
unions. If x ∈ O ∈ Ω then we say that O is an open neighbourhood of x.
Informally, open neighbourhoods of the given point tell us which points are
”close” to the chosen one. It is known that the set O ⊆ X is open iff every
point in O has an open neighbourhood included in O. The universe is the
(biggest) open neighbourhood of all of its points. The complements of opens
are called closed and with the de Morgan rules in mind, it does not take long
to see that arbitrary intersections, as well as finite unions of closed sets are
closed, as are the universe and the empty set. There are many equivalent
means of defining topological structure on a set (fixing the family of closed
sets is one of them) and we will see some further on in this paper, but what
we said so far is enough to define the topological semantics for the modal
language with the single box operator.

Definition 1.1.2 The basic modal language consists of countable stock of
proposition letters p, p1, p2, .. the constant truth >, boolean connectives ∧,¬
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and the modal operator 2. Modal formulas are denoted by Greek letters and
are built in the following way:

φ ::= pi | > | φ ∧ ψ | ¬φ | 2φ.

Now we are ready to define topological models for the basic modal lan-
guage. The valuation on the topological space will be the function assigning
a subset of the topological space to each propositional letter.

Definition 1.1.3 A topological model M is a triple (X,Ω, ν) where T =
(X,Ω) is a topological space and the valuation ν sends propositional letters
to subsets of X. The notation M, x |= φ (or simply x |= φ) will read ”the
point x of the model M makes the formula φ true”; if A is a subset of X,
A |= φ will mean that x |= φ for all x in A. The definition of truth proceeds
like this:

x |= pi iff x ∈ ν(pi),
x |= > always,

x |= φ ∧ ψ iff x |= φ and x |= ψ,

x |= ¬φ iff x 6|= φ,

x |= 2φ iff ∃O ∈ Ω : x ∈ O |= φ.

The definitions of the model validity and the space validity are standard.
In words the above definition says that if we associate formulas with the
set of points making this formula true, then the abstract operations ¬ and
∧ become set-theoretic complement and intersection operations respectively.
The last part of the truth definition is not that explicit - it says that formula
2φ is true at x, just when φ is true at all the nearby points - everywhere
in some open neighbourhood of x, that is. Taking a closer look, ν(2φ),
defined as the set of points making the formula 2φ true, consists of all the
points having an open neighbourhood O ⊆ ν(φ). This is nothing else but
the interior part of ν(φ) - a topologist will say. More formally, here comes
another definition from general topology:

Definition 1.1.4 For A subset of the topological space, the interior of A,
denoted I(A) is the union of all open sets included in A, or, equivalently, the
biggest open subset of A.

To make the picture complete, we recall the following proposition from
[Engelking 1977]:
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Proposition 1.1.5 The point x belongs to I(A) iff there is an open neigh-
bourhood O of x such that O ⊆ A.

In the light of the latter definition and proposition, it should be clear that
ν(2φ) = I(ν(φ)). So the abstract 2 operator becomes the interior operator
over the subsets of the topological space in our interpretation. We would like
to mention the topological equivalents for other logical connectives definable
in our language. It is rather obvious that the boolean connectives obtain their
traditional set-theoretic meaning, but what is the topological interpretation
of the modal 3? A simple derivation shows that ν(3φ) = −I−(ν(φ)) where
− stands for set-theoretic complement operation. Recalling that −I(−A)
with A subset of the topological space is nothing else than the closure set
of A, we conclude ν(3φ) = C(A). Here C denotes the topological closure
operator, assigning to each subset A of the topological space the smallest
closed set containing this subset - the intersection of all closed sets which
extend A, in other words.

Now, we know more about the I and C from general topology - they
satisfy certain conditions. In fact, given the set equipped with the operator
working on its subsets, imposing the interior- or closure- conditions on this
operator is another way of defining the topological structure on the set. Let
us have a look at these conditions and see what they oblige our 2 to be like.

Proposition 1.1.6 Let (X,Ω) be any topological space, I and C the interior
and closure operators defined by topology, then the following holds for any
subsets of X:

(I1) I(X) = X (C1) C(∅) = ∅
(I2) I(A) ⊆ A (C2) A ⊆ C(A)
(I3) I(A ∩B) = I(A) ∩ I(B) (C3) C(A ∪ B) = C(A) ∪ C(B)
(I4) I(I(A)) = I(A) (C4) C(C(A)) = C(A)

It is not difficult to notice that the conditions (I1),..,(I4) when read with 2

instead of I look like the axioms for the modal system S4! Dually, conditions
(C1),..,(C4) look like S4 axioms written with 3. In fact, as we will see
shortly, any topological model makes the modal logic S4 valid, turning S4
into the smallest normal modal logic of topological spaces. Let us put all
these in precise mathematical form.

Definition 1.1.7 The modal logic S4 is the smallest set of modal formulas
which contains all the classical tautologies, the following axioms:
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(N) 2>

(T) 2p→ p

(R) 2(p ∧ q) ↔ 2p ∧ 2q

(4) 2p→ 22p

and is closed under modus ponens, substitution and monotonicity (from
φ→ ψ derive 2φ→ 2ψ).

The above axioms are not exactly the standard way of defining S4, but
equivalent to it and the best for our present needs they are. We claim that
every topological space validates all the modal formulas in S4 thus proving
the soundness of S4 with respect to the topological semantics.

Theorem 1.1.8 The theorems of S4 are valid on every topological space.

Proof: That the axioms (N), (T), (R) and (4) are valid on any topological
space is an easy observation after comparing to the conditions (I1), (I2), (I3),
(I4). That the derivation rules preserve the validity is a trivial exercise. a

McKinsey and Tarski prove even more in [McKinsey and Tarski 1944],
namely that S4 is the complete logic of topological spaces. We will approach
this matter in the next section via the Kripke completeness for S4.

1.2 Frames and Completeness

In this section we will build the connections between the topological and the
Kripke semantics. We will consider S4-frames and see that they come in
one-to-one correspondence with the special class of topological spaces, called
Alexandroff spaces. This correspondence often facilitates some completeness
proofs, showing that for the modal logics above S4 the topological semantics
is a generalization of the frame semantics. Concluding this section, we will
consider the modal logics S4.1 and S4.2 and see what class of topological
spaces they characterize.
We have seen in the previous section that every topological model is a model
for S4. This is not the case in the Kripke semantics. The frame is validating
S4 iff the relation on the frame is reflexive and transitive.

Definition 1.2.1 The structure F = (W,R) is called a qo-set (quasi-ordered
set) if W is a nonempty set and R is a reflexive and transitive relation on
W .
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Such frames are also enough to refute any non-theorem of S4, as it is
well-known.

Proposition 1.2.2 The modal logic S4 is sound and strongly complete with
respect to the class of all qo-sets.

To illustrate the connection with the topological semantics, let us examine
upward closed subsets of a qo-frame F = (W,R). The subset A ⊆ W is
upward closed, if together with any point w it contains all of its successors:
w ∈ A & Rwv ⇒ v ∈ A. It is not difficult to check that an arbitrary union or
intersection of upward closed sets is again upward closed. This is sufficient
for upward closed sets to form a topological structure of open sets on W .
Of course, the topology obtained in this way is of a special kind - opens
become closed under arbitrary, rather then finite, intersection. This sort of
topological spaces are known from general topology:

Definition 1.2.3 A topological space is called Alexandroff space (A-space for
short) if either of the following equivalent conditions hold:
1. Arbitrary intersections of opens are open.
2. Every point has a least open neighbourhood.

The second condition in the above definition opens the way from A-spaces
to qo-sets. To define a reflexive-transitive relation on an A-space, we simply
say that Rxy holds iff y is included in the least open neighbourhood of x1.
Reflexivity of such a relation is immediate, for transitivity note that if y is a
member of the least open neighbourhood Ox of x, then Ox becomes an open
neighbourhood of y as well and thus includes in itself all the members of the
least open neighbourhood of y. It is worth mentioning that if we perform the
A-space-qo-set transformation both ways starting from either one, we will
get the initial structure back.

Well then, we have seen how any qo-set becomes an A-space, but why
treat upward closed sets as opens, why not closed sets? They will happily
satisfy the conditions imposed on the collection of closed sets for topology,
will they not? The reason lies behind our definition of the interpretation of

1One could define a quasi-order on any topological space by saying that xRy holds iff y

is included in every open neighbourhood of x or, equivalently, x is included in the closure
of the singleton {y}. This is called a specialization order in the literature and in the case
of A-spaces is clearly identical to the one defined above.
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modal formulas. Indeed, the structures of a qo-set and the corresponding
A-space are very much the same - just seen through different mathematical
glasses, but what about the modal models built on them? Are they the same
in any sense? The following theorem sheds light on these questions.

Theorem 1.2.4 Let F = (W,R) be a qo-set and T = (W,Ω) corresponding
A-space. For any valuation ν on W , for any point w ∈ W and for any modal
formula φ, we have:

F , ν, w |= φ iff T , ν, w |= φ.

Proof: The proof goes by induction on the length of φ. The propositional
case and the case for the boolean connectives are trivial. Recalling that the
R-successors of any point constitute precisely the least open neighbourhood
of this point; and that in A-space 2φ is true at a point iff φ is true in the
least open neighbourhood of this point, we observe that F , ν, w |= 2φ iff
T , ν, w |= 2φ, which finishes the proof. a

With the help of the latter theorem we can now prove the topological
completeness of S4.

Theorem 1.2.5 S4 is strongly complete with respect to the class of all topo-
logical spaces.

Proof: Take any S4-consistent set of formulas Σ. We know that Σ can
be satisfied in a model of which the underlying frame is a qo-set. Take the
A-space corresponding to this qo-set, keeping the valuation. This will be a
topological model where Σ is satisfied. a

All we have done so far in this section shows that for S4 and its extensions
the topological semantics is more general then the Kripke semantics. If the
modal logic containing S4 is (strongly) complete with respect to some class
of frames (qo-sets, in fact), then this logic is (strongly) complete with respect
to the corresponding class of A-spaces. Certainly the most interesting topo-
logical spaces fail to have Alexandroff structure (although note that all finite
topological spaces are clearly A-spaces), but we can still exploit A-spaces for
completeness results. Witness, for example, the following picture: take any
S4-consistent set of formulas Γ; surely Γ defines some class K of topological
spaces which make all the formulas in Γ valid. If, in addition, S4 + Γ is
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Kripke (strongly) complete, then it will be topologically (strongly) complete
with respect to K, or, indeed, with respect to any subclass of K containing
enough A-spaces to refute non-theorems of S4+Γ - thanks to theorem 1.2.4.
This is quite a general and vague statement, but we are going to illustrate it
in the following section.

Before proceeding to the next section though, we would like to address one
interesting question concerning the topological semantics. Namely, is there
a Kripke-incomplete extension of S4, which is topologically complete? In
other words, is the topological semantics really more general than the frame
semantics, from the completeness point of view? The answer is affirmative. In
[Gerson 1975] the extension of S4 is presented which is complete with respect
to the neighbourhood semantics, but incomplete with respect to the Kripke
semantics. We can prove that for S4 and its extensions, the neighbourhood
semantics is equivalent to the topological semantics (cf. [Shehtman 1998]).
It follows that the example given by Gerson will also work for proving that
the topological semantics is strictly more general then the Kripke semantics.

1.3 Some more topological completeness

If the topological semantics is more general than Kripke semantics, we could
just take any of the extensions of S4 known to be Kripke complete and
automatically get their topological completeness, as outlined at the end of
the previous section. In case we have an extension of S4 axiomatizable with
Sahlqvist formulas, we would even get strong completeness! More challenging
seems the question which topological property will then the logic in question
define. We start with investigating the modal system S4.2.

Definition 1.3.1 The modal logic S4.2 is the extension of S4 with the axiom
(.2) 32p→ 23p.

It is known that the frames for S4.2 are strongly directed, i.e. any two
worlds having a common predecessor must share a successor, too. The for-
mula (.2) being in a Sahlqvist form, gives strong Kripke completeness, and
therefore strong topological completeness - with respect to the class of topo-
logical spaces characterized by (.2). To describe this class in topological
terms, we will need the following definition:

Definition 1.3.2 The topological space is extremally disconnected if any of
the following two equivalent conditions hold:
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1. The closure of any open is open.
2. The closures of any two disjoint opens are disjoint.

Extremally disconnected spaces were defined in [Stone 1937] and have
been around in general topology ever since. As it appears, (.2) characterizes
the class of extremally disconnected topological spaces. This statement seems
to be known to scholars working in the field. However we could not find the
exact reference who first established it. Here is the proof of this fact:

Theorem 1.3.3 S4.2 defines the class of extremally disconnected topological
spaces.

Proof: That S4 is valid on any topological space is already known, let us
check that the formula (.2) is valid on a topological space T = (X,Ω) iff T
is extremally disconnected.
It is an easy exercise to prove that in S4 the axiom (.2) can be written in
an equivalent way as 32p ↔ 232p. Now just replace the modal operators
with their topological interpretations in this equivalent form of (.2) and get
CI(P ) = ICI(P ) with P an arbitrary subset of X. This is exactly to say that
the closure of every open is open (note that if P denotes an arbitrary subset,
I(P ) will denote an arbitrary open subset). Thus to say T is extremally
disconnected is to say T validates (.2). a

As an easy consequence we obtain that extremally disconnected A-spaces
are in one-to-one correspondence with strongly directed Kripke frames!
Summarizing all about S4.2 we have accomplished here, we get the following:

Theorem 1.3.4 S4.2 is sound and strongly complete with respect to the class
of extremally disconnected topological spaces.

Proof: Soundness is the consequence of the previous theorem, for complete-
ness we use the Kripke completeness of S4.2. Indeed, any Kripke frame
validating S4.2 gives rise to an A-space which validates S4.2 by theorem
1.2.4 and is, thus, extremally disconnected by the previous theorem. Then
any consistent set of modal formulas Σ can be satisfied in the A-space cor-
responding to the frame underlying the S4.2-Kripke-model for Σ. a

We were quite lucky with the formula (.2) - it defined a well-known, topo-
logically valuable class. Our next example shows that finding the topologi-
cally transparent property characterizing the modally defined class of spaces
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is not always possible. There are plethora of consistent extensions of S4
around (uncountably many, even) and no wonder some of them define rather
bizzare topological properties. Nevertheless, if not entirely transparent and
immediate to the intuition, some of the modal formulas still define interesting
classes of spaces. A good example is the McKinsey formula 23φ → 32φ.
This formula first appeared in [McKinsey 1945] where the author baptized
the corresponding extension of S4 as S4.1.

Definition 1.3.5 The modal logic S4.1 is the extension of S4 with the axiom
(.1) 23p→ 32p.

It is known that in the presence of transitivity the McKinsey formula
means atomicity for frames, i.e. every point sees a reflexive maximum:
∀x∃y(Rxy & ∀z(Ryz → y=z)). The topological counterpart of this property
can be defined in various equivalent ways, giving different intuitive grasp of
what (.1) really says spatially. The following definition is inspired by the
notion used in [Esakia 1979] for the analysis of the system S4.1.

Definition 1.3.6 Let T = (X,Ω) be a topological space and A ⊆ X its any
subset. Define the frontier set for A to be the set C(A) ∩ C(−A). Call the
operator Fr defined by the equation Fr(A) = C(A) ∩ C(−A) the frontier
operator.
Call the topological space atomic if the frontier of any subset has an empty
interior, i.e. IFr(A) = ∅ for any A.

To say but a bit more, in atomic spaces no open set can be included in
the frontier of some other set. We will demonstrate that (.1) characterizes
the class of atomic spaces.

Theorem 1.3.7 S4.1 is the logic of atomic spaces.

Proof: We have to prove that for any T = (X,Ω), T |= 23p → 32p iff T
atomic.
Let us again give the interpretation to modal connectives. T validates (.1)
means for any subset P we have IC(P ) ⊆ CI(P ) ⇔ IC(P )∩−CI(P ) = ∅ ⇔
IC(P )∩−−I−−C(−P ) = ∅ ⇔ IC(P )∩IC(−P ) = ∅ ⇔ I(C(P )∩C(−P )) =
∅ ⇔ IFr(P ) = ∅. The last equation in this chain of equivalent statements is
expressing that T is an atomic space. a

For topological strong completeness witness the following:
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Theorem 1.3.8 S4.1 is sound and strongly complete with respect to all
atomic spaces.

Proof: Soundness follows from the previous theorem, for strong complete-
ness we use the analogous result with respect to Kripke frames for S4.1
proved in [Lemmon and Scott 1966]. a

While (.2) defined the essential topological property, spaces characterized
by (.1) seem to receive minor attention in the topological literature. As
we already mentioned, this is likely to happen with the most topological
properties defined by modal formulas in the basic language. This is only
one side of the coin though - taking modal formulas and tackling with the
corresponding topological property to make some spatial sense of it. Another
approach would be to take a topologically sensible class and see which modal
formulas may describe it. Or indeed, when is a class of topological spaces
definable at all? What are the conditions to impose on the class of topological
spaces to be sure that this class can be characterized by a modal formula?
We address this issue in the next part of this work.
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2 Definable spaces

This part deals with the question of space definability. When is a class of
topological spaces modally definable? In the case of the Kripke semantics the
Goldblatt-Thomason theorem has an answer. Something similar for topolog-
ical spaces would have been useful. Let us recall this theorem:

Theorem (Goldblatt-Thomason) A class of frames, closed under taking
ultrafilter extensions, is modally definable, if and only if it is closed under
the formation of bounded morphic images, generated subframes, and disjoint
unions, and reflects ultrafilter extensions.

In the first part we have defined topological models, translated frame
structure into the topological one, but we did not mention which topological
operations preserve space validity. The analogs for bounded morphism, gen-
erated subframe and disjoint union will be of a major importance in space
definability; the first section of this chapter is devoted to developing this
kind of topological tools. In the second section we will prepare some alge-
braic apparatus and work out algebraic duality to approach the definability;
all of the latter will allow us to prove the topological Goldblatt-Thomason
theorem in the third section, with the help of the new notion of Alexandroff
extension, the topological equivalent of ultrafilter extensions for frames.

2.1 Validity preserving operations

We have built the bridge between Kripke frames and Alexandroff spaces in
the first chapter. Certain operations on frames preserve the validity of modal
formulas. Such operations - bounded morphisms, generated subframes and
disjoint unions, become crucial when dealing with the frame definability. No
wonder we need similar notions for the topological semantics and that is what
we are about to bring in this section.

While we need to rethink in topological terms the notions of bounded
morphism and generated subframe, the formation of disjoint union appears
to have the straightforward topological equivalent. Here is the definition:

Definition 2.1.1 For a family of disjoint topological spaces Ti = (Xi,Ωi),
i ∈ I, their topological sum is the topological space T = (X,Ω) with X =⋃
i∈I
Xi and Ω = {O ∈ X|∀i ∈ I : O ∩Xi ∈ Ωi}.
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It is easy to observe that when restricted to A-spaces, this operation will
yield the structure corresponding to the disjoint union of respective frames.
This means we are on the right track, and the following theorem, proving
that the topological sum of topological spaces preserves the validity of modal
formulas, justifies our choice.

Theorem 2.1.2 Let (Ti)i∈I be a family of disjoint topological spaces and let
φ be a modal formula such that Ti |= φ holds for each i ∈ I. Then for
T =

⋃
i∈I

Ti we have T |= φ.

Proof: Suppose T 6|= φ for the sake of contradiction. This means there is a
valuation ν and a point x ∈ X such that T , ν, x 6|= φ. Obviously, x ∈ Xi for
some i ∈ I. Define the valuation νi as described: νi(p) = ν(p)∩Xi. An easy
induction argument shows that:

Ti, νi, xi |= ψ iff T , ν, xi |= ψ,

for all xi ∈ Xi and all modal formulas ψ. This gives the desired contradic-
tion, because we get Ti, νi, x 6|= φ. a
NB In fact an easy argument shows that the converse holds as well - each
member of a family of spaces validates some modal formula, if their topolog-
ical sum does so.

This already allows us to show that certain topologically interesting prop-
erties (or rather, their corresponding classes) are not definable by (sets of)
modal formula(s) in the basic modal language. Our examples are connect-
edness and compactness.

Definition 2.1.3 For a topological space T = (X,Ω) we say that:
(i) T is connected if X can not be presented as the union of two disjoint
open subsets.
(ii) T is compact if any family (Fi)i∈I of closed subsets of X with the finite
intersection property has a non-empty intersection.

Connected and compact topological spaces play the starring role in gen-
eral topology. Unfortunately, neither of these properties can be defined in
our language. Witness the following:

Theorem 2.1.4 The class of connected topological spaces and the class of
compact topological spaces are not modally definable.
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Proof: The following example serves for both reasons: consider countably
many disjoint sets Xi = {i} with the corresponding topologies Ωi = {∅, Xi},
i ∈ I = {1, 2, ..}. These are one-point sets with the only possible topology.
All of them are compact (any finite topological space clearly is), and con-
nected. If connectedness (compactness) were definable by a modal formula φ,
all Ti = (Xi,Ωi) would validate φ and, by the preservation of modal validity
under the formation of topological sum, so would T =

⋃
i∈I

Ti. This would

imply that T is connected (compact), which it is not. To observe why, note
that by the definition of topology on the topological sum of spaces, T is just
a countable set equipped with the discrete topology2. In particular, every
cofinite set is closed. The cofinite sets form a family of closed sets with the
finite intersection property, but their intersection is empty. This shows T
is not compact. Any cofinite set different from the universe, together with
its complement, form a disjoint couple of opens giving the universe in union.
Thus connectedness of T holds wrong as well. a

This is rather unfortunate. We will see how the enriching of the modal
language with the global diamond will help us to define connectedness in the
last chapter of this work, but compactness (being essentially higher-order
property) will still remain wild in this sense. We leave this issue till later and
go on to see the topological equivalents for other basic frame operations.

Next comes the notion of generated subframe in our agenda. Recall that
a generated subframe is based on a subset of a frame which together with
any of its members contains all of its successors. But this is exactly what
we called ”upward closed sets” in the first chapter and we saw that the
topological notion of open subset is the equivalent for that. At least this
was the case with A-spaces - upward closed sets constituted the topology
when forming the A-space from a qo-set. The following theorem shows that
open subspaces of topological spaces inherit the validity of modal formulas
thus proving that open subspaces are the right topological substitute for the
notion of generated subframe.

Theorem 2.1.5 Let U be the open subset of the topological space T = (X,Ω)
and φ be a modal formula. If T |= φ and TU = (U,ΩU) is the topological space
with ΩU = {O ⊆ U |O ∈ Ω}, then TU |= φ.

2Discrete is the topology where every subset is open (and closed).
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Proof: For any valuation ν on U let ν ′ be any extension of ν to all of X,
agreeing with ν on U . We will prove by induction on the length of modal
formulas that for any point u ∈ U , any modal formula ψ:

T , ν ′, u |= ψ iff U, ν, u |= ψ,

which readily implies the claim of the theorem.
Since the propositional letters and boolean connectives need not any special
care, consider the case ψ = 2ψ1.
⇒ T , ν ′, u |= 2ψ1 means there is an open neighbourhood O of u, such that
T , ν ′, O |= ψ1. By the definiton of topology on U and the induction hypoth-
esis, we get U, ν, O∩U |= ψ1 with O∩U the open neighbourhood of u in ΩU .
This means U, ν, u |= 2ψ1.
⇐ U, ν, u |= 2ψ1 means there is an open neighbourhood OU of u in U such
that U, ν, OU |= ψ1. From the definition of ΩU it follows that OU ∈ Ω. By
induction hypothesis then T , ν ′, OU |= ψ1 with OU open neighbourhood of u
in T , which yields T , ν ′, u |= 2ψ1. a

The class of disconnected topological spaces is that of complementing
the class of connected topological spaces. We have shown the latter to be
modally undefinable. The former appears to be undefinable as well. Just
consider the two-point space with discrete topology - it is disconnected, but
the one-point open subspace of it is clearly connected. As open subspaces
preserve validity, disconnectedness can not be modally defined.

So open subspaces are the topological twins of generated subframes. The
difference should be mentioned though - in frames, if A is any subset of a
frame, there always exists the least upward closed set containing A - the
A-generated subframe. This is the case with Alexandroff spaces as well, but
not generally. In an arbitrary topological space we can always take some
open subspace surrounding the given subset A, but one can not always find
the smallest open of this kind.

With this correspondence in hand, it is not hard to find out what the
topological notion of bounded morphism should be. Look what a bounded
morphism does with upward closed sets - the forth condition in the defini-
tion of a bounded morphism is just a monotonicity requirement saying that
bounded-morphic preimages of the upward closed sets are upward closed. In
topological terms this would mean that preimages of opens are open. Such
maps are called continuous in general topology:
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Definition 2.1.6 The map f : T1 → T2 between topological spaces T1 =
(X1,Ω1) and T2 = (X2,Ω2) is said to be continuous if whenever O2 ⊆ X2 is
open in T2, the set f−1(O2) is open in T1, i.e.:

O2 ∈ Ω2 implies f−1(O2) ∈ Ω1.

The back condition in the definition of bounded morphism, when slightly
rephrased, is claiming that the images of upward closed sets are upward
closed. This corresponds to the definition of open maps in topology.

Definition 2.1.7 The map f : T1 → T2 between topological spaces T1 =
(X1,Ω1) and T2 = (X2,Ω2) is called open if it sends open sets to open sets,
i.e.:

O1 ∈ Ω implies f(O1) ∈ Ω2.

A map is called an interior map, if it is both open and continuous.

The latter definition and our earlier remarks suggest interior maps play
the same role in the topological semantics as bounded morphisms do in the
Kripke semantics. The following theorem proves this suggestion correct.

Theorem 2.1.8 Let T1 = (X1,Ω1) be a topological space and f an interior
map from T1 onto T2 = (X2,Ω2). For any modal formula φ, T1 |= φ implies
T2 |= φ.

Proof: Again, for any valuation ν2 on T2 define the valuation ν1 as follows:
ν1(p) ≡ f−1(ν(p)). We claim for any modal formula ψ and any x ∈ X1 the
following holds:

T1, ν1, x |= ψ iff T2, ν2, f(x) |= ψ.

This will then yield the desired validity preservation result, exploiting the
surjectiveness of f . The proof proceeds by induction, with propositional and
boolean cases straightforward. Assume ψ = 2ψ1:
⇒ From T1, ν1, x |= 2ψ1 it follows that T1, ν1, Ux |= ψ1 for some open neigh-
bourhood Ux of x. It is by openness of f that we get f(Ux) is an open
neighbourhood of f(x). By induction hypothesis, T2, ν2, f(Ux) |= ψ1 and we
arrive at T2, ν2, f(x) |= 2ψ1.
⇐ Same as above, with f−1 instead of f . The continuity of f ensures f−1(O2)
to be open in T1 provided O2 is open in T2. a
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We are almost done with finding the topological equivalents for basic
validity-preserving operations on frames. The only one left is the formation
of ultrafilter extension and we will postpone the definition of the analogous
topological construction till the last section of this chapter. Before that, let us
put the constructions we have already defined above to work. In particular,
our immediate aim is to show that the separation axioms are not definable by
the modal formula. The definitions of higher separation axioms employ some
involved topological terminology, which we would like to avoid here. The ax-
ioms T0 and T1 are defined in the last part of the work. For our present pur-
poses it is sufficient to know (cf. [Engelking 1977]) that the real line with its
usual topology obeys the separation axioms T0, T 1

2

, T1, T2, T3, T3 1

2

, T4, T5, T6.
Unlucky as it is, none of these separation axioms can be defined by the modal
formula, not being preserved under interior maps. Here is the evidence:

Theorem 2.1.9 The separation axioms Ti with i ≤ 6 are not definable in
the basic modal language.

Proof: Consider the interior map from the reals with their standard
topology to X = {1, 2} equipped with antidiscrete topology3, sending ra-
tionals to 1 and irrationals to 2. It is easy to verify that the reals obey all
separation axioms, while X obeys none. As interior maps preserve the valid-
ity, none of the separation axioms could be defined by a formula in the basic
modal language. a

Note that this example also exhibits non-compactness to be undefinable.
Again, we can gain a little by enriching the language we are working with,
and we address this issue in the third part of the present work, where we will
see how nominals can help to define some lower separation axioms.
We would like to make a few remarks on the constructions developed in this
section before going on to the next one.

Other topological constructions: In some cases well-known topological
constructions give rise to natural interior maps. The validity preservation
automatically transfers to these constructions. As an example we briefly dis-
cuss the topological product of spaces and the quotient of the topological
space.

3Antidiscrete topology (also called trivial topology in the literature) consists solely of
empty set and the universe.
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The product of topological spaces can be defined in two ways. We would like
to avoid bringing in the respective definitions, but in both cases the natural
projections are interior maps. This means that if the product of topological
spaces validates some modal formula, then the components must validate
this formula as well. For the quotient of a topological space note that any
equivalence relation defined on the universe of the space determines a quo-
tient space with the natural topology on it (so that the natural quotient map
becomes continuous). Under the (necessary and sufficient) condition that for
any open set O the union of all the equivalence classes intersecting with O is
open, the natural quotient map becomes an interior map. This would mean
that whenever the above condition is satisfied for a space and an equivalence
relation on it, and the space validates the modal formula φ, the quotient
space validates φ as well. For the exact definitions of these topological con-
structions we refer to [Engelking 1977].

Topo-bisimulations: We would like to mention that the three validity-
preserving operations are manifestations of the notion of topo-bisimulation,
first introduced in [Aiello and van Benthem 2001] as a generalization of the
notion of bisimulation between Kripke models to topological models. Topo-
bisimulations are a powerful tool for a modal reasoning about topological
spaces. Each of the constructions - topological sum, open subspace and inte-
rior image give rise to natural topo-bisimulations between the corresponding
models. The validity preservation results presented above can be proved
through a more general theorem from [Aiello and van Benthem 2001] claim-
ing that topo-bisimulation implies modal equivalence. The interested reader
is referred to [Aiello and van Benthem 2001] and [Aiello et al. 2001] for re-
sults concerning topo-bisimulations.

Topological invariance: Say P is a topological property which our modal
language is powerful enough to express. It is worth mentioning that the
results of this section imply P is invariant for the formation of topological
sums, open subspaces and interior images. This obvious consequence of the
earlier theorems bears topologically interesting insight. Consider, for exam-
ple, atomicity. It is straightforward from the modal point of view that being
an atomic space is a topological property which is invariant under topolog-
ical sums, open subspaces and interior images. This is easy to establish by
direct topological proof, but still not entirely obvious. Describing invariance
of properties under various topological transformations is the major task of
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general topology. For modally definable properties and three basic validity-
preserving topological operations the invariance is automatic, witness the
earlier theorems of this section. The same holds for extremal disconnected-
ness. We will say a bit more about extremal disconnectedness in the last
chapter and get back to the topological invariance in the concluding remark
of the thesis.

In the meantime, we are going to proceed to the next section of this
chapter. We choose to approach the desired definability result via algebraic
machinery and the next section is devoted to developing such techniques.
Let us conclude this section with the remark that when restricted to A-
spaces, the topological notions of topological sum, open subspace and interior
map coincide with the frame-theoretic notions of disjoint union, generated
subframe and bounded morphism respectively, applied on corresponding qo-
sets.

2.2 Interior algebras

First introduced by McKinsey and Tarski, Interior Algebras are BAOs with
the topological operator. Actually, the pioneering completeness proof for
modal logic has been carried out with the help of Interior Algebras and their
topological interpretations. Here we repeat some of the basic definitions and
prepare the firm grounds to base our definability result upon. An Abstract
Interior Algebra is just a boolean algebra with S4-operator, as formally stated
below:

Definition 2.2.1 An Interior Algebra is a pair (B,2) where B is a boolean
algebra, 2 is an operator, assigning to each element a of B element 2a ∈ B,
such that the following holds:

(I1) 2(a ∧ b) = 2a ∧ 2b,

(I2) 2a ≤ a,

(I3) 22a = 2a,

(I4) 2> = >.

An obvious example of such an algebra would be the full set algebra over
any topological space, with I operator. Indeed, any set algebra over the topo-
logical space, closed under I, will do. Following the route of the celebrated
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Stone Representation Theorem, we can actually embed any abstract Interior
Algebra into the power set algebra over some topological space. The carrier
of the topology, as in the case of boolean algebras, is the set of all ultrafilters
of the algebra. The topology on this set can be defined in various ways,
giving rise to different structures. Our aim favours the definition where the
representation space has an Alexandroff topology. As we will see shortly, this
can be done in a natural way. Namely, we declare the set of ultrafilters over
an abstract Interior Algebra to be open, if it consists of all the ultrafilters
extending some open filter.

Definition 2.2.2 We call a filter F of an interior algebra (B,2) an open
filter if for any a ∈ B we have that a ∈ F implies 2a ∈ F .
We call an element a of an interior algebra open, if a = 2a.

Before checking this definition of the topology to be correct, it should
be mentioned ahead that the representation space for an interior algebra
A we are about to bring turns out to be the A-space obtained from the
ultrafilter frame of A by declaring upward-closed sets open. This means our
next theorem, although topologically flavoured, is simply building up the
ultrafilter frame - in topological terms.

Theorem 2.2.3 Any Interior Algebra A = (A,2) is isomorphic to subalge-
bra of all subsets of some A-space.

Proof: Consider the set A∗ ≡ Uf(A) of all ultrafilters of A. For arbitrary
filter F of the algebra by F ∗ we will denote the set of all ultrafilters extending
F . In case F is generated by an element a of the algebra, F = {b ∈ A|b ≥ a},
it is clear that F ∗ consists of all ultrafilters having a as an element. In this
case we may also use the notation a∗ ≡ {u ∈ A∗|a ∈ u}.
Let O be any open filter, consider the set O∗ of all ultrafilters which extend
O. An easy argument shows that the collection of all O∗ will qualify for the
base of topology. Denote the resulting topological space A∗ = (A∗,Ω∗) and
call it the Alexandroff extension of A.
To show that Ω∗ is an Alexandroff topology, it suffices to prove that any
ultrafilter has the smallest open neighbourhood. Let u be an arbitrarily cho-
sen ultrafilter of A, consider the set of all open elements from this ultrafilter
O1

u ≡ {o ∈ u|o = 2o}, which is closed under finite meets according to (I1)
and thus generates the filter Ou ≡ {a ∈ A|a ≥ o ∈ O1

u} which obviously is
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an open filter. From the fact that u is an extension of Ou it follows that O∗

u

is an open neighbourhood of u, it is also the smallest such, as all the open
filters contained in u are also contained in Ou.
Now consider the sets a∗ = {u ∈ A∗|a ∈ u} for each a ∈ A. By Stone’s
representation theorem, family of subsets (a∗)a∈A of A∗ is a boolean algebra
isomorphic to A. Now, showing that A is a subalgebra of (℘A∗, I∗), where
I∗ stands for the interior operator defined by Ω∗, boils down to showing that
(2a)∗ = I∗a∗ for each a ∈ A:
First observe that (2a)∗ is an open set in Ω∗. Indeed, as we already men-
tioned, (2a)∗ coincides with the set of all ultrafilters extending the filter
generated by 2a. This filter is open because 2a ≤ b implies 2a ≤ 2b by (I1)
and (I3). The derivation u ∈ (2a)∗ ⇒ 2a ∈ u⇒ a ∈ u⇒ u ∈ a∗ shows that
(2a)∗ ⊆ a∗. We thus proved that (2a)∗ is an open set included in a∗. To
complete the proof we will show that (2a)∗ is the biggest open set included
in a∗.
Indeed, take any open set O ⊆ a∗, from the definition of Ω∗ we retrieve
O =

⋃
i∈I
O∗

i with O∗

i an open filter for each i ∈ I. It is straightforward that

O∗

i ⊆ a∗ for each i ∈ I. This means that an ultrafilter extending Oi must
contain a and by ultrafilter theorem this is precisely to say a ∈ Oi. Thus
2a ∈ Oi by openness of Oi for each i ∈ I, whence O∗

i ⊆ (2a)∗, for each
i ∈ I. But then O =

⋃
i∈I
O∗

i ⊆ (2a)∗. Since O was the arbitrary open set

included in a∗, we conclude that (2a)∗ is the greatest open contained in a∗.
So (2a)∗ = I∗a∗. a

To get a grasp of what the above construction really does, consider the
following.

Definition 2.2.4 For an Interior Algebra A = (A,2) define the relation R∗

on A∗ as follows:
R∗uv iff v ∈ Ou.

Where Ou denotes the smallest open neighbourhood of u in Ω∗.

We will show now that R∗ coincides with the relation R+ of the ultrafilter
frame for A, thus linking the Alexadroff space we have just built with the
ultrafilter frame of the respective algebra.

Theorem 2.2.5 Let A = (A,2) be any Interior Algebra. The frame (A∗, R∗)
coincides with the ultrafilter frame A+ of A.
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Proof: Let us first turn A into BAO by means of defining the operator
3 ≡ −2− on the boolean algebra A. This is merely another way of looking
at A. Now of two arbitrary ultrafilters u and v the following holds:

R∗uv iff 3a ∈ u for all a ∈ v.

This is to say that the relation R∗ coincides with the relation R+ of the ul-
trafilter frame of A. The proof is as follows:
⇒ Assume R∗uv and for some a ∈ v, 3a 6∈ u. Since u is an ultrafilter
−3a ∈ u⇒ −−2−a ∈ u⇒ 2−a ∈ u. 2−a is an open element, recall form
the proof of the previous theorem that v is some extension of the open filter
of all open elements from u, therefore 2−a ∈ v and as far as 2−a ≤ −a and
v is an ultrafilter, −a ∈ v which contradicts the assumption a ∈ v.
⇐ Now let 3a ∈ u hold for all a ∈ v and assume R∗uv fails; then v must lack
at least one open element from u, or, putting it more precisely, there exists
o ∈ u such that o = 2o and o 6∈ v. By the properties of ultrafilters, then,
−o ∈ v and by our assumption 3−o ∈ u. An easy verification shows that
3−o = −2−−o = −2o = −o, so −o ∈ u and again, we find a contradiction
with o ∈ u. a

To make the picture complete, we just need some duality results con-
cerned with homomorphisms and products. In the light of the last theorem
we could just mention that the homomorphism between two interior algebras
gives rise to the bounded morphism between respective ultrafilter frames and
thus, the interior map between their Alexandroff extensions (the correspon-
dence established in the first chapter). We supply the proof of this fact in
the terms of theorem 2.2.3 for interested reader. First let us define how to
lift the homomorphism between algebras to the map between corresponding
Alexandroff extensions.

Definition 2.2.6 Let h : A1 → A2 be a homomorphism of Interior Algebras.
Define h∗ : A∗

2 → A∗

1 as follows:

h∗(u2) = {a1 ∈ A1|h(a1) ∈ u2} .

A simple verification shows that h∗ is defined correctly (it maps ultrafilters
to ultrafilters). Topologically, it also appears an interior map. We prove this
fact below.
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Theorem 2.2.7 If h : A1 → A2 is a homomorphism of Interior Algebras,
then h∗ : A∗

2 → A∗

1 is an interior map between topological spaces. Addition-
ally, if h is injective (surjective) then h∗ is surjective (injective).

Proof: h∗ can be easily checked to be sending ultrafilters to ultrafilters, sur-
jectively if h is injective and injectively if h is surjective. The only non-trivial
part to prove remains h∗ being interior (that is, open and continuous). This
suffices to be checked just on the elements of the respective bases (provided
we first establish continuity and then openness), as it is known from general
topology (cf. [Engelking 1977], section 1.4). Let us proceed towards this aim.
To prove the continuity of h∗ consider O∗

1 ∈ Ω∗

1 element of the base generated
by the open filter O1 and take h∗−1O∗

1 which consists of all such ultrafilters of
A2 h

∗-images of which contain O1 as a subset, or, in other words, all ultrafil-
ters of A2 which contain the set h(O1). Although h(O1) may not be a filter,
it is closed under finite meets because O1 was closed under finite meets and
h respects the boolean operations. Hence the set of all ultrafilters containing
h(O1) will coincide with the set of all ultrafilters containing the smallest filter
generated by h(O1). This filter is an open filter, because O1 was an open
filter and h respects the 2. So we obtain h∗−1O∗

1 = (h(O1))
∗ ∈ Ω∗

2.
For openness of h∗ we take an element of the base of Ω2 denoted O∗

2 and
consider the set h∗(O∗

2). A typical representative of this set has the form
h∗(u2) where u2 is such that O2 ⊆ u2. Since h∗(u2) = {a1 ∈ A1|h(a1) ∈ u2},
it is immediate that h−1(O2) ⊆ h∗(u2). For h is a homomorphism and O2 is
an open filter, it follows that h−1(O2) is an open filter of A1 and this means
nothing but h∗(O∗

2) = (h−1(O2))
∗ ∈ Ω∗

1. a

Concluding this section, we show how to deal with the products of the
set interior algebras.

Proposition 2.2.8 Let Ti be the collection of topological spaces indexed with
the set I. Denote by (Ti)∗ the power set algebra over Ti with respective inte-
rior operator. (Ti)∗ are clearly interior algebras, and the following holds:

∏

i∈I

(Ti)∗ ∼= (
⋃

i∈I

Ti)∗ .

With ∼= standing for IA-isomorphism and
⋃

for the topological sum of topo-
logical spaces.
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Proof: Define the map f :
∏
i∈I

(Ti)∗ → (
⋃
i∈I

Ti)∗ as follows:

For (ai)i∈I ∈
∏
i∈I

(Ti)∗ note that each ai ∈ (Ti)∗ corresponds to the subset

Ai ⊆ Ti. Then define f((ai)i∈I) = (
⋃
i∈I
Ai)∗. In other words, take the topo-

logical sum of all Ai and send f((ai)i∈I) to corresponding element of Interior
Algebra of all subsets of

⋃
i∈I

Ti. It is a subject of a routine check that f is

an isomorphism of interior algebras. To clarify why f commutes with the
interior operator, note that on the product of algebras interior operator is
defined componentwise; on the topological sum of topological spaces interior
operator also works componentwise. a

2.3 Topological Goldblatt-Thomason theorem

We have exhibited the topological equivalents for basic frame operations of
disjoint union, generated subframe and bounded morphic image. The fourth
crucial operation on frames is formation of the ultrafilter extension. We
still lack the topological equivalent for that. Since A-spaces are in one-
to-one correspondence with S4-frames, such an equivalent should yield the
ultrafilter extension of corresponding frame when applied to an A-space.
But then we already have one implicit candidate that will do this job! Just
take the interior algebra of all subsets of topological space and consider the
Alexandroff extension of it - when starting from an A-space, this procedure
will result in the ultrafilter extension for this frame. This entire section
is the justification of this choice, with application to topological version of
Goldblatt-Thomason theorem.

Definition 2.3.1 For a given topological space T = (X,Ω) define its Alexan-
droff extension to be the A-space T ∗ ≡ (℘(X)∗,Ω∗) of the interior algebra of
all subsets of X.

In other words, just take the upward-closed set topology on the ultrafilter
frame for the power set algebra of T and define the standard valuation on it
as follows:

Definition 2.3.2 If M = (T , ν) is a topological model, define the standard
valuation ν∗ on the T ∗ as follows:

u ∈ ν∗(p) iff ν(p) ∈ u.
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This definition will help us to show that Alexandroff extension anti-preserves
the modal validity. We could use the relational, rather than topological,
structure on T ∗ in the proof, reproducing the analogous result about ultra-
filter extension of a frame, but the presented proof is shorter and fits better
in the framework of this chapter.

Theorem 2.3.3 Let T = (X,Ω) be a topological space, M = (T , ν) a topo-
logical model based on it, T ∗ the Alexandroff extension of T and ν∗ the stan-
dard valuation, then the following holds for any modal formula φ:

u ∈ ν∗(φ) iff ν(φ) ∈ u.

Proof: We proceed by induction on the length of φ. The propositional case
is taken care of by the definition of ν∗, the cases of the boolean connectives
are rather obvious, so we only address the modality case. Consider a formula
of 2φ form:
⇒ By definition u ∈ ν∗(2φ) means that u has an open neighbourhood (re-
strict to the element of the base without loss of generality) O∗

u such that
v |= φ holds for all v ∈ O∗

u. In other words, Ou ⊆ v implies v |= φ. By the
induction hypothesis this can be rephrased as Ou ⊆ v implies ν(φ) ∈ v for
all v. This indicates that ν(φ) is an element of Ou, for if ν(φ) 6∈ Ou were
the case, by ultrafilter theorem we could find an ultrafilter extending Ou and
still leaving ν(φ) aside. So ν(φ) ∈ Ou. Hence, Ou being an open filter yields
I(ν(φ)) ∈ Ou and since u extends Ou, we arrive at I(ν(φ)) ∈ u.
⇐ Suppose ν(2φ) ∈ u, this means I(ν(φ)) ∈ u. Consider any ultrafilter
v from the smallest open neighbourhood of u. Any such ultrafilter contains
all the open elements from u. Thus I(ν(φ)) ∈ v because I(ν(φ)) is an open
element of u. Then I(ν(φ)) ⊆ ν(φ) implies ν(φ) ∈ v. By the induction
hypothesis v ∈ ν∗(φ). As v was arbitrarily chosen from the smallest open
neighbourhood of u, we get u ∈ ν∗(2φ). a

We are finally in the position of presenting the main result of this chapter:
a topological version of Goldblatt-Thomason theorem about definable classes.

Theorem 2.3.4 (Topological Goldblatt-Thomason) The classK of topo-
logical spaces which is closed under formation of Alexandroff extensions is
modally definable iff it is closed under taking opens subspaces, interior im-
ages, topological sums and it reflects Alexandroff extensions.
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Proof: We only deal with the right to left direction, as the other direction
appears trivial given the earlier theorems 2.1.2, 2.1.5, 2.1.8 and 2.3.3.
Assume that K is any class of spaces satisfying the conditions of the theorem
and let T = (X,Ω) be a space validating the modal theory of K, then the
Interior Algebra of all subsets of X, denoted T∗, is validating the equational
theory of algebras corresponding to the spaces from K. Thus by Birkhoff’s
theorem, T∗ is isomorphic to HSP of such algebras. So there are algebras
H, S and mappings h, s such that:

(1) h : H → T∗ is onto IA-homomorphism.

(2) s : H → S is injective IA-homomorphism.

(3) S =
∏
i∈I

(Pi)∗ where Pi ∈ K and (Pi)∗ is the Interior Algebra of all

subsets of Pi for each i ∈ I .

From (3), definition of Alexandroff extension and the proposition 2.2.8
we obtain that S = (

⋃
i∈I

Pi)∗ and denoting P =
⋃
i∈I

Pi we get P ∈ K by the

closure under the formation of topological sum. So S = P∗.
Now we exploit (2) lifting up s to Alexandroff extensions, and as far as s is
injective IA-homomorphism, we find that s∗ : (P∗)

∗ → H∗ is an onto interior
map. Note that (P∗)

∗ is nothing else but the Alexandroff extension of P and
thus belongs to K by the conditions we imposed on this class; but then so is
H∗ being the interior image of the space from K. So H∗ ∈ K.
Finally we treat (1), again lifting up h to Alexandroff extensions and obtain-
ing h∗ : (T∗)

∗ → H∗ where h∗ in now an injective interior map, so h∗((T∗)
∗)

is an open subset of H∗ and, by closure conditions, h∗((T∗)
∗) ∈ K. Note that

h∗ : (T∗)
∗ → h∗((T∗)

∗) is bijective interior map (homeomorphism). This im-
plies (T∗)

∗ ∈ K. We just have to mention that (T∗)
∗ is simply an Alexandroff

extension of T , so, by K reflecting Alexandroff extensions, (T∗)
∗ ∈ K readily

implies desired T ∈ K. a

As an immediate consequence, we get that the class of Alexandroff spaces,
obviousely closed under the formation of Alexandroff extensions, is not modally
definable - it clearly does not reflect Alexandroff extensions!

Unlike the three basic topological validity-preserving operations, the Alexan-
droff extension is a somewhat new concept to topology. Topological sums,
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open subspaces and interior maps are part of the general topology folklore.
Alexandroff extensions, although having a natural topological structure, are
brought into life for logical reasons. They helped us to prove the topological
Goldblatt-Thomason theorem, but if we are to put this theorem to work, we
need a better topological understanding of the Alexandroff extension. One
possible way to describe the structure of a new construction is to connect
it somehow with already known and well-investigated constructions. In the
case of the Alexandroff extension, it turns out that the topological notion
of the Stone-Čech compactification is destined to play this role. We will
present in the next chapter the construction which we call the compact ex-
tension. Compact extension is a generalization of the well-known notion of
Stone-Čech compactification. We will show that Alexandroff extension is
the smallest Alexandroff topology containing the topology of the compact
extension.
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3 Further directions and conclusions

3.1 Enriching the language

As promised in the earlier chapters, we will show in this section how ex-
tending the modal language helps us to define some of otherwise undefinable
topological properties/classes. We will consider adding the global modality,
the difference operator and the nominals. The case with global modality
has already been considered in [Shehtman 1999] where connectedness is ex-
pressed as well. Let us consider all these options in turn.

Global Modality: Add to the language with topological box operator
the global modality. We could even view the global box (written A) as a
special kind of topological box with the fixed antidiscrete topology interpre-
tation! The global modality combined with the topological one gives rise to
the logic S4 ∗ S5 and the connectedness becomes expressible by the modal
formula A(3φ → 2φ) → (Aφ ∨ A¬φ), as shown in [Shehtman 1999]. We
would like to add that the example displayed in the theorem 2.1.9 still shows
non of the separation axioms can be expressed even in this richer language -
interior maps preserve validity here too.

What happens with definability when we add the global diamond to our
language? In the case of the Kripke semantics we know that two of the closure
conditions in the Goldblatt-Thomason theorem drop out. Namely the closure
under disjoint unions and generated subframes, for those no longer preserve
the validity of modal formulas in the enriched language. This of course
implies that the topological sum and the open subspace do not preserve the
modal validity in the language with additional global modalities. However,
interior images and Alexandroff extensions still do. We sketch the proofs
below.

Theorem 3.1.1 Let T1 = (X1,Ω1) be a topological space and f an interior
map from T1 onto T2 = (X2,Ω2). For any modal formula φ in the language
with additional global modality, T1 |= φ implies T2 |= φ.

Proof sketch: Note that the mere fact that f is a surjective mapping en-
sures that f is still an interior map when we equip X1 and X2 with the
antidiscrete topologies. Use the theorem 2.1.8 thinking of A as a topological
box with the fixed antidiscrete interpretation. a
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Theorem 3.1.2 Let T = (X,Ω) be a topological space, M = (T , ν) a topo-
logical model based on it, T ∗ the Alexandroff extension of T and ν∗ the stan-
dard valuation, then the following holds for any modal formula φ in the modal
language with additional global modality:

u ∈ ν∗(φ) iff ν(φ) ∈ u.

Proof sketch: Proving by induction on the length of formulas, witness the
following chain of equivalent statements: u ∈ ν∗(Aφ) ⇔ ∀v(v ∈ ν∗(φ)) ⇔
∀v(ν(φ) ∈ v) ⇔ ν(φ) = X ⇔ ν(Aφ) = X ∈ u. a.

These prove the easy direction of the following suggestion:

Conjecture 3.1.3 A class K of topological spaces which is closed under
taking Alexandroff extensions is modally definable in the language with addi-
tional global diamond iff K is closed under taking the interior images and it
reflects Alexandroff extensions.

Next in our agenda is the difference operator.

The difference operator: Enrich the basic modal language with the new
diamond D saying something is true somewhere else. The global diamond is
definable in this language by the formula Eφ↔ φ∨Dφ. It follows readily that
connectedness is expressed as well. We can do even better - the separation
axioms T0 and T1 become modally definable. Let us first give the topological
definition of these axioms.

Definition 3.1.4 We say that a topological space T obeys the T0 separation
axiom if for any two distinct points x and y, one of them has an open neigh-
bourhood not containing the other.
We say that a topological space T obeys the T1 separation axiom if for any
two distinct points x and y, each of them has an open neighbourhood not
containing the other.

The following is how the separation axioms T0 and T1 can be defined in
the modal language enriched with the difference operator.
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Theorem 3.1.5 Consider the basic modal language enriched with the differ-
ence operator D and with the diamond interpreted as a closure operator. The
following two formulas define the T0 and T1 separation axioms respectively:

t0 = Up ∧DUq → 2¬q ∨D(q ∧ 2¬p),

t1 = Up → A(p↔ 3p).

Where Up is defined as p ∧ ¬Dp and Ap is defined as p ∧ ¬D¬p.

Proof: First recall that Up is true at a world x in a model iff p is true at x
and only there.
T0 ⇒ t0 Take a T0 topological space T = (X,Ω) and any valuation ν on it.
If some point x1 makes the antecedent of t0 true, this proves ν(p) = {x1}
and ν(q) = {x2} for some x2 6= x1. At least one of the points x1 or x2 has
an open neighbourhood not containing the other one, which is exactly what
the consequent of t0 needs to be true.
t0 ⇒ T0 If T |= t0 then it does so for any valuation and any substitution
instance of t0. For any two distinct points x1, x2 ∈ X consider the valuation
ν(p) = {x1}, ν(q) = {x2} and employ x1 |= Up∧DUq → 2¬q∨D(q∧2¬p).
Antecedent is true (we designed the valuation for it) and the consequent
must be true as well, which means either x1 |= 2¬q or x1 |= D(q ∧ 2¬p).
If x1 |= 2¬q is true, then x1 obtains the open neighbourhood with ¬q true
throughout. Thus none of the points in this neighbourhood can be x2. If
x1 |= D(q ∧2¬p) is the case, for some x3 ∈ X we have x3 |= q ∧2¬p. Since
q is only true at x2, from x3 |= q we get x3 = x2. Thus x2 |= 2¬p, which
means x2 has an open neighbourhood making ¬p true. Hence x2 has an open
neighbourhood disjoint from x1.
T1 ⇒ t1 Recall that T1 spaces are precisely those where singletons are closed,
or equivalently, where the closure of every point is this point itself. If T is
such a space and ν any valuation on it, consider any point x making the
antecedent of t1 true. This means ν(p) = {x} and by T1 also ν(3p) = {x}
implying that the consequent is true as well.
t1 ⇒ T1 If T |= t1 and x ∈ X is any point, take the valuation ν(p) = {x}
and exploit x |= Up → A(p ↔ 3p) bearing in mind that x |= Up by the
definition of ν. We get ν(3p) = {x} = C {x} which is to say T is T1-space
given x was arbitrary. a
See [de Rijke 1992] for a thorough survey of the modal languages with dif-
ference operator. Some aspects are discussed in [Blackburn et al. 2001] also,
where a hybrid languages are considered as well.
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Hybrid language: Consider the basic modal language equipped with count-
ably many additional propositional letters denoted i, j, .. and meant to be sent
to exactly one point with the valuation, topologically interpreted 2 and the
satisfaction operators @i for each nominal with the interpretation

x |= @iφ iff ν(i) |= φ.

Again, we can express T0 and T1 separation axioms as stated below:

Theorem 3.1.6 Consider the following formulas in the hybrid modal lan-
guage with @ operator:

t0 = @i¬j → @j2¬i ∨ @i2¬j,

t1 = i↔ 3i

(i) The topological space T = (X,Ω) is a T0-space iff T |= t0.

(ii) The topological space T = (X,Ω) is a T1-space iff T |= t1.

Proof: (i) Recall that the T0 separation axiom requires one of the any two
distinct points to have an open neighbourhood not containing the other.
t0 ⇒ T0 If T |= t0, then for any two distinct points x, y ∈ X with valua-
tion ν such that ν(i) = {x} , ν(j) = {y}, T , ν, x |= @i¬j. Then T , ν, x |=
@j2¬i ∨ @i2¬j, which means that either T , ν, x |= 2¬j or T , ν, y |= 2¬i.
This is precisely to say that either x has an open neighbourhood not con-
taining y or vice versa.
T0 ⇒ t0 If T is not a T0-space, then it has two distinct points x, y such that
they are inseparable by an open set. Take any valuation which sends i to x
and j to y, then T , ν, x |= @i¬j and at the same time, as every open neigh-
bourhood of x (y) contains y (x), we have X, x |= 3j and X, y |= 3i. This
means X, x 6|= 2¬j and X, y 6|= 2¬i. In other words, X, x 6|= @j2¬i∨@i2¬j
and X 6|= t0.
(ii) The formula t1 says every singleton is closed (the diamond is interpreted
as the closure operator), which is equivalent way of expressing T obeys the
T1 separation axiom. a

This hybrid topological language seems quite promising in expressing
some topological properties the closure-diamond alone could not afford.
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3.2 Compactness and compactifications

In this section we will discuss the compactness phenomenon in topology.
We have already mentioned that defining this property in modal terms is
not something we should expect. The equivalent definition of compactness
requires any open cover of a space to have a finite subcover. This is a higher
order statement and unless we allow infinite disjunctions in our formulas, it is
unlikely to allow itself being modally captured. Nevertheless, definability is
not the only way of looking at things after all. We will show how to embed any
Interior Algebra in the full set algebra over some compact topological space.
This construction will allow us to generalize the topological notion of Stone-
Čech compactification. We will also show that the new notion of compact
extension anti-preserves modal validity. The Alexandroff extension will be
characterized in terms of topologically more intuitive compact extension.

To start with, let us exhibit what does compactness mean for Kripke
frames when we consider them topologically. In other words, how does com-
pactness reflect on Alexandroff spaces? Recall that Alexandroff spaces are
those topological spaces where every point has the smallest open neighbour-
hood. Alexandroff spaces are in one-to-one correspondence with quasi or-
dered Kripke frames. We will call a Kripke frame F = (W,R) finitely rooted
if the finite set F of worlds can be found such that every other world is acces-
sible from one of the members of F . The corresponding Alexandroff spaces
will have the similar property spelled out in the next theorem.

Theorem 3.2.1 Alexandroff space (X,Ω) is compact iff it is ”finitely rooted”,
i.e. if it can be covered by the smallest open neighbourhoods of finite number
of its points.

Proof: Denote by Ox the smallest open neighbourhood of a point x.
⇒ Suppose (X,Ω) is a compact A-space. Consider the open cover (Ox)x∈X .
By compactness, there exists a finite subcover Ox1

, .., Oxn
, which is to say

that (X,Ω) is finitely rooted.
⇐ Take a finitely rooted A-space (X,Ω). Let x1, .., xn be the points small-
est open neighbourhoods of which cover X. Any open cover (Os)s∈S of X
has to capture each of the points x1, .., xn, so for some s1, .., sn we will have
x1 ∈ Os1

, .., xn ∈ Osn
. As each of Osi

is bigger than the smallest open neigh-
bourhood of the corresponding xi, the collection of opens Os1

, .., Osn
is a

cover of X. It follows that X is compact. a
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So qo-sets corresponding to the compact Alexandroff spaces are finitely
rooted. In case a qo-set is of a finite depth, compactness becomes equivalent
to having a finite minimum. Let us now turn to interior algebras and their
connections to compact topological spaces.

That every Interior Algebra is isomorphic to a set algebra over some com-
pact topological space has already been established in [Aiello et al. 2001].
The authors use the topological canonical model techniques to approach the
matter. They prove a rather pretty result that the topology of their topo-
logical canonical model is an intersection of the Stone and Kripke topologies
naturally arising on the same set. This implies compactness, as Stone spaces
are known to be compact and subtopologies inherit this property. Here we
present yet another proof of this fact, using the machinery very similar to
the one presented in the second chapter of this work where we embedded
Interior Algebras into set algebras over Alexandroff spaces. As both proofs
follow the same reasoning thread, we omit some details below for the sake of
readability.

Theorem 3.2.2 An abstract Interior Algebra A = (A,2) is isomorphic to
a subalgebra of all subsets of some compact topological space.

Proof: Desired topological space is a modification of Stone’s construction.
More concretely, take the collection of all ultrafilters of A, denoted Uf(A)
and for each o ∈ A such that o = 2o (we called such elements open), define
the set o# = {u ∈ Uf(A)|o ∈ u}. Straightforward verification shows that the
collection (o#)2o=o∈A will form a base for topology. Call the resulting topol-
ogy Ω# and the resulting topological space A# = (Uf(A),Ω#) the Compact
Extension of A. We claim that A# is a compact topological space and the
interior algebra of all subsets of A# contains A as its subalgebra. Let’s first
prove compactness:
Take any family (Fi)i∈I of closed subsets of Uf(A) which has the finite in-
tersection property and consider F ≡

⋂
i∈I
Fi. For each i ∈ I we have Fi =

Uf(A)\Oi where Oi is open. This means Oi =
⋃

∈Ji

o
#
j , by de Morgan, Fi =

⋂
j∈Ji

Uf(A)\o#
j . Now, by definition, f#

j ≡ Uf(A)\o#
j = {u ∈ Uf(A)|oj 6∈ u}.

Using the properties of ultrafilters, denoting fj ≡ −oj, we obtain f
#
j =

{u ∈ Uf(A)|fj ∈ u}. Taking J ≡
⋃
i∈I
Ji allows us to obtain F =

⋂
j∈J

f
#
j .

Clearly, family (f#
j )j∈J still has the finite intersection property which now

39



also means that (fj)j∈J , collection of elements from A, has a finite meet
property and thus is included in some ultrafilter of A; call this ultrafilter f .
It is obvious that f ∈ F , which confirms the compactness of A#.
All what is left to show is that the interior operator I# induced by Ω# co-
incides with 2 when sets a# ≡ {u ∈ Uf(A)|a ∈ u} are considered for each
a∈A. This is just as in theorem 2.2.3. More formally, we have to prove that
I#a# = (2a)# for arbitrary a ∈ A. This proceeds as follows:
First observe that (2a)# is an open set. The derivation u ∈ (2a)# ⇒ 2a ∈
u ⇒ a ∈ u ⇒ u ∈ a# shows that (2a)# ⊆ a#. Now take any open O ⊆ a#,
from the definition of Ω# we retrieve O =

⋃
i∈I
o
#
i with 2oi = oi ∈ A for each

i ∈ I. Note that properties of the ultrafilters ensure that oi ≤ a for each
i ∈ I. Take now any ultrafilter u ∈ O ⊆ a#, for some i ∈ I we have then
u ∈ o

#
i , or, in other words oi ∈ u, as oi ≤ a and 2oi = oi, we get (using (I1))

2oi ≤ 2a, thus 2a ∈ u, therefore u ∈ (2a)#. This shows that (2a)# is the
biggest open contained in a#, completing our proof. a

The reader might have noticed that the topology Ω# is contained in the
topology Ω∗ of the theorem 2.2.3. Indeed, in the base for Ω# we included all
the ultrafilters sharing the same open element from the algebra, while Ω∗ was
based on the sets of ultrafilters sharing the same open filter. Moreover, as we
will show shortly, Ω∗ is the coarsest Alexandroff topology containing Ω#. In
general Ω# is not an Alexandroff topology, but if we would like to add open
sets to Ω# so that it would become closed under arbitrary intersections, we
would have to take all of Ω∗ in. The next result is a formalization of this
statement:

Theorem 3.2.3 Let A be an interior algebra, A# = (Uf(A),Ω#) its compact
extension and Ω an Alexandroff topology on Uf(A) such that Ω# ⊆ Ω; then
Ω∗ ⊆ Ω holds, with Ω∗ standing for the topology of the Alexandroff extension
of A.

Proof: It is sufficient to show that for any ultrafilter u ∈ Uf(A), the small-
est open neighbourhood Ou of u in Ω∗ is an element of Ω. Recall that Ou

consists of all the ultrafilters having all open elements from u. This means
Ou =

⋂
2o=o∈u

o∗. Recall from the theorem 2.2.3 that o∗ can be viewed in two

equivalent ways. One is that o∗ consists of all the ultrafilters extending the
open filter generated by the element o. Another one is that o∗ includes all
the ultrafilters having o as an element. The latter means that o∗ denotes the

40



same set as o#. Then we have Ou =
⋂

2o=o∈u
o#. Each o# is open in Ω by the

assumptions and Ω is closed under arbitrary intersections, so Ou ∈ Ω. a

The above theorem connects the two notions: the Alexandroff extension
and the compact extension. We will continue to explore the topological
nature of the compact extension to get a better insight of both structures.
If we exploit the construction of compact extension in the same way as the
Alexandroff extensions were used in the section 2.3, we will obtain a compact
topological space from an arbitrary one. Here is the corresponding definition:

Definition 3.2.4 For a given topological space T = (X,Ω) define its Com-
pact Extension to be the compact extension T # ≡ (Uf(℘X),Ω#) of the inte-
rior algebra over all subsets of X.

The similarities between two constructions go further, unleashing the
modal nature of the compact extension. We can show that the compact
extensions, like Alexandroff extensions, anti-preserve modal validity.

Let us consider a topological model (T , ν). We can naturally lift up the
valuation to the Compact Extension as follows:

u ∈ ν#(p) iff ν(p) ∈ u.

We can prove that this correspondence enlarges to all formulas, just like in
the earlier theorem 2.3.3, as stated below.

Theorem 3.2.5 For arbitrary modal formula φ, the following takes place:

u ∈ ν#(φ) iff ν(φ) ∈ u.

Proof: We proceed by induction on the length of φ. Propositional case is
taken care of by the definition of ν#, boolean connectives employ apparent
properties of ultrafilters and the modality step goes as follows (I and I#

stand for the interior operators in respective spaces):
ν(2φ) ∈ u ⇒ I(ν(φ)) ∈ u ⇒ u ∈ (I(ν(φ)))# ∈ Ω#. Take now any
v ∈ (I(ν(φ)))c ⇒ I(ν(φ)) ∈ v, I(ν(φ)) ⊆ ν(φ) ⇒ ν(φ) ∈ v and from
here by induction hypothesis u |= φ and as v was arbitrarily chosen from the
open neighbourhood of u, we get to u |= 2φ.
For the other direction, let u |= 2φ, this means for some open neighbourhood
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of u (we may take an element of the base), O# |= φ, by induction hypothesis
O |= φ, as O is open in X, this implies O ⊆ I(ν(φ)), now recall u ∈ O#,
which means, by definition, O ∈ u and thus, I(ν(φ)) ∈ u. a

It follows that the Compact Extensions anti-preserve modal validity. In
words, if the Compact Extension of a space validates some modal formula in
the basic modal language, then so does the space itself. To tie the ends up, we
exhibit that our Compact Extension is a case of the well-known topological
construction called Stone-Čech compactification. We bring in the notion
of compactification generalizing that of accepted in general topology. Note
that a homeomorphism between topological spaces is the interior bijection,
or in other words, the one-to-one onto map which is continuous together
with its inverse. Homeomorphic embedding of one space into another is the
injective map which turns out to be a homeomorphism when restricted to
the map from domain to the image of domain in codomain. The subset A
of a topological space is said to be dense in it, if the closure of A gives the
universe.

Definition 3.2.6 The pair (T1, c) is called a compactification of the topo-
logical space T if T1 is a compact space, c : T → T1 is a homeomorphic
embedding and c(T ) is dense in T1.

In general topology compactifications are considered only when the space
T1 is a T2-space in addition, i.e. when any two distinct points from T1 have
the respective disjoint open neighbourhoods. It is a fact in general topology
that only spaces having such compactifications are the ones satisfying the T3 1

2

separation axiom. Such spaces are also referred as Tychonoff spaces. When
Tychonoff spaces are considered, all compactifications of a given space can
be naturally ordered and there is always the biggest, called the Stone-Čech
compactification. The Stone-Čech compactification has a certain universality
property, which we reproduce here for the further reference.

Proposition 3.2.7 If T is a Tychonoff space, (T1, c) is its compactification
with T1 a T2-space and any continuous map from T to arbitrary compact T2-
space T2 can be continuously extended to the map from T1 to T2, then (T1, c)
is equivalent to the Stone-Čech compactification of T .

This is one of the central properties of the Stone-Čech compactification.
The word ”equivalent” in the above proposition has the natural topolog-
ical meaning, which we would like to omit in this section, already being
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overloaded by numerous topological terms. What matters to our present
purposes is that the definition of the compact extension introduced in this
section will turn out to be a compactification, equivalent to the Stone-Čech
compactification when applied to a Tychonoff space. That is precisely what
we meant by saying that the notion of the compact extension is generalizing
that of the Stone-Čech compactification.

Theorem 3.2.8 Let T be a topological space. The pair (π, T #) where π is
a natural map sending points to the corresponding principal ultrafilters, is a
compactification. If additionally T is a Tychonoff space, then the space T #

is equivalent to the Stone-Čech compactification of T .

Proof: First we prove that the compact extension of the space T = (X,Ω) is
a compactification. We already know that T # is a compact space. We have
to show that the map π is a homeomorphic embedding and that π(X) is dense
in T #. Recall that π sends points to corresponding principal ultrafilters, i.e.
π(x) = {A ⊆ X|x ∈ A}. Consider the subspace of all principal ultrafilters
F (X) in T #. Every basic open in Ω# is of the form O# where O ∈ Ω. Of
course O# contains all the principal ultrafilters corresponding to the points
x ∈ O. This proves the density of F (X) in T #, as every open set in Ω#

contains a basic open and with it, an ultrafilter from F (X). To prove that
F (X) with induced topology is homeomorphic to T observe that the only
principal ultrafilters contained in arbitrary basic open O# are those generated
by the elements x ∈ O ⊆ X.
Now we show that for any compact T2-space T1 = (Y,Ω1) and any continuous
map f : T → T1, f can be extended to continuous f# : T # → T1. This will
prove that when T happens to be a Tychonoff space, T # will coincide with
the Stone-Čech compactification of T by the proposition 3.2.7. The map f#

is defined as follows:
f#(u) =

⋂

A∈u

C(f(A))

Where C is the closure operator of T1.
First, f# is well-defined. Indeed, the family (C(f(A)))A∈u is a family of
closed sets having the finite meet property. This is because the collection
of all sets from any ultrafilter has the finite intersection property and the
f -image of this collection will clearly inherit it, while the closure of a set is
always bigger then the set itself. Since T1 is compact, the intersection will
be non-empty. We have to show that the intersection is a singleton. Assume
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y1, y2 ∈ f#(u). As T1 is a T2-space, any two distinct points have the disjoint
open neighbourhoods. Let O1 and O2 be such neighbourhoods of y1 and y2 re-
spectively. Consider the sets f−1(O1) and f−1(O2). They are clearly disjoint.
Then at least one of the sets −f−1(O1) or −f−1(O2) belongs to the ultrafil-
ter u, because otherwise two disjoint sets f−1(O1) and f−1(O2) will have to
fall in u, contradicting the fact that u is an ultrafilter. Say −f−1(O1) ∈ u.
Since y1 ∈ f#(u), we derive that y1 ∈ C(f(−f−1(O1))). This means that
any open neighbourhood of y1 intersects with the set f(−f−1(O1)). O1 is
an open neighbourhood of y1, so O1 ∩ f(−f−1(O1)) 6= ∅. This is a contra-
diction. Hence f#(u) consists of one and only one point for each ultrafilter
u. This implies that f# is a well-defined mapping. We claim that it is con-
tinuous as well. Indeed, take any open set O ∈ Ω1. Consider the ultrafilter
u ∈ f# −1(O). This means f#(u) ∈ O. Since T1 is a compact T2-space, we
can claim that f#(u) has an open neighbourhood O1 such that C(O1) ⊆ O.
Consider the set f−1(O1). This set is open in Ω by continuity of f . Then
(f−1(O1))

# is an open neighbourhood of u. We claim that every ultrafilter
from this open set will be mapped inside O by f#. This will prove the con-
tinuity of f#. Indeed, take v ∈ (f−1(O1))

#. This means f−1(O1) ∈ v. Then
f#(v) ∈ C(f(f−1(O1))) = C(O1) ⊆ O, which completes our proof. a

Now we can say more about the Alexandroff extensions. In the light
of this section, Alexandroff extension of a Tychonoff space is the coars-
est Alexandroff topology containing the Stone-Čech compactification of this
space. Stone-Čech compactifications date back to 1937 and the problems in-
volving this construction are known to be among the most interesting topo-
logical questions. Stone-Čech compactifications of discrete spaces are closely
related to set theory and present an independent logical interest. All this
suggests that Alexandroff extensions are not as alien to topology as they
might seem. Arising from logical purposes, the notion of Alexandroff exten-
sion has a clear topological meaning in terms of the well-established notion
of the Stone-Čech compactification.
Some more topological flavour is hidden here. Consider the Stone-Čech com-
pactification βT of the topological space T . If βT validates the formula (.2),
then by the anti-preservation result, T |= (.2) holds as well. This means that
if the Stone-Čech compactification of a space is extremally disconnected, then
the space itself is extremally disconnected. This is a well-known topological
fact. We brought the almost trivial modal proof to illustrate our next point.
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Proposition 3.2.9 Let P be a topological property expressible in the basic
modal language, then:
P is invariant with respect to the formation of topological sums, open sub-
spaces and interior images.
P is inverse-invariant with respect to the formation of Alexandroff extensions,
compact extensions and StoneČech compactifications.

Proof: Trivial given the earlier (anti-)preservation results. a

This proposition is just a straightforward consequence of what we have
displayed in this work. Nevertheless, it provides a nice perspective on how
modal logic can help to obtain automatic invariance results of some class of
spatial properties with respect to certain transformations.
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