
Abstract

k-SAT is the very well studied restriction of the SAT problem which has
attracted much attention due to its NP-complete complexity and close relation
to many practical problems in Artificial Intelligence. Inherited from its parent,
k-SAT is also NP-complete and many practical problems can be reduced to
it efficiently (i.e. in polynomial time). In this text we introduce a class of
problems, namely {2+p},{3}-SAT, obtained by restricting 3-SAT such that no
variable occurs more than three times in an instance. We show that there is an
efficient transformation which takes every 3-SAT instance to a {2+p},{3}-SAT
instance.

The motivation behind this work is strongly enhanced by our intuition that
the more we restrict the problem, the easier it will get to reveal the underlying
structure of SAT and in particular, of 3-SAT. Moreover, we investigate whether
there is a gain obtained by transforming instances of 3-SAT to {2+p},{3}-SAT,
in terms of computational cost for satisfiability checking. We later show that
although random {2+p},3-SAT is distinctly easier than random 3-SAT, trans-
formed instances are particularly harder than their originating 3-SAT instances.

Contents

List of Figures ii

1 Introduction 1

2 Algorithms 4

2.1 Completeness . 4
2.2 Complete Algorithms . 4
2.3 Incomplete Algorithms . 6

2.3.1 Randomized Local Search 6
2.3.2 Iterative Repair . 7

3 Explored Distributions 7

3.1 Random 3-SAT . 7
3.2 Random {2+p},{3}-SAT . 12
3.3 The role of bipolar variables in {2+p},{3}-SAT 14
3.4 Random polarized-{2+p},{3}-SAT 19

4 Transforming 3-SAT to {2+p},{3}-SAT 23

5 Two helpful distributions: exact-{2+p},{3}-SAT and {3},{3}-

SAT 27

6 A guide to {2+p},{3}-SAT 31

7 Computational cost issues 37

7.1 Computational cost of {2+p},{3}-SAT and polarized-{2+p},{3}-
SAT . 37

7.2 Computational cost of the random 3-SAT image in {2+p},{3}-SAT 41
7.3 Is it really like that? . 43
7.4 What about the incomplete methods? 44

8 Some well known applications 47

8.1 SAT-encoded ”Flat” Graph Coloring Problems 48
8.1.1 SAT encoding . 48
8.1.2 GCP test-sets . 49

8.2 Backbone-minimal sub-instances 50
8.2.1 The Backbone and Backbone-minimality 50
8.2.2 Instance Generation . 50

8.3 Results . 50

9 Conclusions 52

9.1 Future research . 52

i

List of Figures

1 A possible case of resolution. 5
2 DP62: Based on the Davis-Putnam’s algorithm still inspiring

many others. 6
3 Mean computational cost for 3-SAT as a function of ratio of

clauses-to-variables. 9
4 Median computational cost for 3-SAT as a function of ratio of

clauses-to-variables. 10
5 Phase transition phenomenon in 3-SAT. 11
6 Algorithm we implemented to generate random {2+p},{3}-SAT

instances . 13
7 The figure shows that assigning the polarity of variables by 50%

probability causes at most 75 percent of the variables to occur
bipolarly, hence the rest to occur trivial. 16

8 The phase transition in {2+p},{3}-SAT obtained by using a stricter
distribution. 17

9 The percentage of variables occurring exactly three times against
the ratio of clauses-to-variables, α. 18

10 The percentage of (2,2)-bipolar variables over all bipolar variables
as a function of α. 20

11 Algorithm we implemented to generate random polarized-{2+p},{3}-
SAT instances. 21

12 The new distribution of bipolar variables over different-size clauses.
Percentage of (2,2)-bipolar variables as a function of α. 22

13 The phase transition in random polarized-{2+p},{3}-SAT. . . . 23
14 Average number of variable occurrences against α 25
15 The distribution of parameter p as the α changes. 27
16 The change in the α after transformation. 28
17 The probability of a variable to occur less than three times using

the Possion distribution. 30
18 Algorithm we implemented to generate random exact-{2+p},{3}-

SAT instances. 31
19 Phase transition in exact-{2+p},{3}-SAT. 32
20 The location of the transformed formulas in αp-space is shown. 33
21 The location of the transformed formulas in αp-space is shown

(only unsatisfiable). 35
22 The location of the transformed formulas in αp-space is shown

(only satisfiable). 36
23 A map to the αp-space. 38
24 Computational cost in {2+p},{3}-SAT. 39
25 Computational cost in polarized-{2+p},{3}-SAT. 40
26 Comparison between the random 3-SAT with n = 150 and its

image in {2+p},{3}-SAT. 42
27 Comparison between the random 3-SAT with n = 100 and its

image in {2+p},{3}-SAT. 43

ii

28 Comparison between the random 3-SAT with n = 50 and its
image in {2+p},{3}-SAT. 44

29 Comparison between the random 3-SAT with n = 150 and its
image in {2+p},{3}-SAT for only satisfiable instances. 45

30 Comparison between the random 3-SAT with n = 150 and its
image in {2+p},{3}-SAT for only unsatisfiable instances. 46

31 Comparison between the random 3-SAT with n = 150 and its
image in {2+p},{3}-SAT by running the algorithm 100 times per
instance. 47

32 The computational cost comparison between the random 3-SAT
with n = 150 and its image in {2+p},{3}-SAT with WalkSAT. . 48

33 The success comparison between the random 3-SAT with n = 150
and its image in {2+p},{3}-SAT with WalkSAT. 49

iii

Acknowledgements

Above everything, Breanndán Ó Nualláin has been more than a supervi-
sor to me throughout this journey. I’m grateful for his warm attention and
contributions to me and my work.

The loved ones are Csilla Csukonyi & Taylan Tokmak for always encouraging
me and giving a shoulder in my hard days, whenever I needed, they were there.
Your support is priceless and unique. Thanks for everything.

I can not forget Kenan Ağtaş for his support and comments in solving my
problems. I admire our friendship.

All the Weesperstraat-9 people were so warm and friendly. I find myself
lucky that I got to meet you all.

To my parents
Hüseyin and Ümran

and also
my best friend and my sweet sister

Rahşan

You are my most valuable belongings in life, thanks for always being there.

i

From 3-SAT to {2+p},{3}-SAT

Mehmet Giritli

ILLC, Amsterdam

The Netherlands

November 2001

1 INTRODUCTION 1

1 Introduction

Revolutions cost many human lives combined with huge destruction, boiling
water requires high energy, learning mathematics requires lots of effort, when
recovering from a disease our bodies burn in high fever, the list goes on and on.
It seems like that it is a permanent feature of nature which entails a high cost,
in whatever form of it, for changing global features of its elements from one
state to another. The question whether mankind will ever find a way through
nature to avoid this feature remains unanswered.

In the case of logic, the first reminder of this feature lies in Satisfiability
Problem (SAT). SAT is the NP-hard problem, given a propositional formula
with n variables, to determine whether there is an assignment to its variables
such that the formula is true. Many practical real-life problems can be efficiently
reduced to SAT, hence the importance of the field is outstanding. Among many
others, some popular problems[11] that can be solved in SAT are related to
automated-reasoning, computer-aided design, computer-aided manufacturing,
machine vision, database, robotics, integrated circuit design, computer archi-
tecture design and computer network design.

An instance of the SAT is a Boolean formula that has three components [5]:

1. A set of variables: p1, p2, ..., pn.

2. A set of literals. A literal is a variable (L = x) or a negation of a variable
(L = ¬x).

3. A set of m distinct clauses: C1, C2, ..., Cm. Each clause consists of only
literals combined by just logical or (∨) connective.

So, the goal of the SAT is to determine whether there exists an assignment
of truth variables that makes the following Conjunctive Normal Form (CNF)
formula satisfiable:

C1 ∧ C2 ∧ ... ∧ Cm, (1)

where ∧ is the logical and connective.
A special form of SAT is the class of problems which have a uniform clause

length, that is to say, the SAT instances in which every clause contains a fixed
number of literals, say k. We refer to this class of SAT problems as k-SAT, k
being the uniform clause length.

Usually, when studying SAT, we restrict ourselves to k-SAT without the loss
of complexity since for k > 2, it is known that k-SAT is NP-hard and moreover,
it is NP-complete. For k = 2, k-SAT can be solved in polynomial time [6].
However, it shares some of its features with the other NP-hard problem classes
in which k > 2, as we mention later.

One of the branches of the research in the field is to develop and improve
algorithms which, search for satisfying assignments of a given formula (search
algorithms) or answer whether a given formula is satisfiable (decision methods).
In this context, the most crucial issue is to find challenging k-SAT instances so

1 INTRODUCTION 2

that we can measure how good these algorithms can actually perform. When the
hardness of the real-life problems is considered, it is very obvious that finding
challenging instances is a very important issue of this field. However, the method
in analyzing the search algorithms is in contrast with the usual approach taken in
computer science theory, which is based on the worst-case analysis [13]. In case
of search algorithms, it is favorable to focus on the typical behavior rather than
on a given single problem. Considering our limited knowledge about the nature
of SAT, the best way to do this is to evaluate the algorithms using a randomized
set of problem instances. To supply the necessary, usually random instances are
generated according to a probability distribution, so that we can have an idea
about the on average behavior of the algorithms. We call a randomly generated
set of instances as an ensemble and instead of k-SAT we say random k-SAT to
express the random generation process.

The issue of generating challenging formulas is highly related to the notion
of phase transition[7]. Given an instance t, let n denote the number of distinct
variables occurring in t and let m be the number of clauses in t. Now define
α be the ratio of clauses to variables, α = m

n
. We will use these notations all

the way in this text unless otherwise stated. In almost all random generation
models (we explain this in detail in section 3), the instances are generated as the
value of α is varied. Thus, we observe the properties of random k-SAT as the
value of α is varied. One of the most important property we will be interested
in is the probability of satisfiability. At the low values of α, the probability is
almost always equal to 1. When the α is increased, at some point, it enters to
a region in which the probability starts dropping from 1 towards 0. When α is
increased enough to leave this transition region, the probability of satisfiability is
almost always equal to 0 (fig.5). This change in the probability of satisfiability is
known as the phase transition phenomenon, whereas the phases between which
the transition occurs are the satisfiable and the unsatisfiable phases. Phase
transitions exist in k-SAT, at different locations for different values of k. For
k = 2, its location is theoretically shown to be at α = 1 [6]. Unfortunately so
far nobody could ever succeeded to determine the exact location of the phase
transition for k > 2. Instead, there are several upper and lower bounds trying
to approximate its location. The best bounds we know for random 3-SAT are
3.003 < α < 4.758 [8]. On the other hand, the experiments strongly suggest
that the phase transition in 3-SAT occurs at α ≈ 4.25.

Now, let us enrich this picture with the computational cost issues. In almost
all of the experiments done by many researchers, concerning the computational
cost issues of k-SAT, the location where almost half of the formulas are satisfiable
(i.e. when the probability of satisfiability is roughly 0.5) contributes the hardest
instances of the the ensembles (fig.4). In the other two regions, where the
probability of satisfiability is almost 1 and almost 0, the computational cost
is distinctly lower. Thus, phase transitions characterize the high cost required
when we are changing from one phase of state to another, just like the examples
we gave in the very beginning. Nevertheless, for k = 2, although there is
a phase transition occurring at exactly α = 1, there is no region which its
formulas require exponential cost. Actually, 2-SAT can be solved in polynomial

1 INTRODUCTION 3

time. So, the connection between the phase transition and the problem hardness
holds only when k > 2 (i.e. when the problem is NP-complete).

Given the membership of 3-SAT in the NP-complete problems family, it is
very interesting to consider equivalent problems which 3-SAT can efficiently be
reduced to. The theory of NP-completeness tells us that any efficient solution
to such a problem can be applied to not only 3-SAT but also to all NP-hard
problems.

We define the notion for a problem class {x},{y}-SAT, whereas every member
instance has a clause length of x and no variable occurs more than y times. For
instance, {2},{3}-SAT is the problem class which every member instance has a
clause length of two and no variable occurs more than three times.

Let us use m3, m2 for identifying the number of 3-length and the number
of 2-length clauses in an instance, respectively. Being a NP-complete problem
for 0 < p < 1, {2+p},{3}-SAT is the restriction of 3-SAT whose instances has
m3 = mp, m2 = m −mp and no variable occurs more than three times. Note
that as p is varied in its range from 0 ({2},{3}-SAT) to 1 ({3},{3}-SAT), it
traces all the problem classes between and including {2},{3}-SAT and {3},{3}-
SAT. Interestingly, it is theoretically proven that every instance of {3},{3}-SAT
is satisfiable and can be solved immediately [4].

In section 4, we show that any 3-SAT instance can be efficiently (ie. in
polytime) reduced to a {2+p},{3}-SAT instance by a satisfiability preserving
transformation. We say that a transformation preserves satisfiability if when-
ever the originating instance is satisfiable, the transformed instance is satisfiable
as well and vice versa. In this way we can safely concentrate on the transformed
instances to find a satisfying assignment. This induces the main motivation be-
hind this work. We have at least two perspectives looking at the desired gains
from this transformation. One of them is to see whether the transformation
makes satisfiability testing any easier than for 3-SAT. And the second perspec-
tive is to see whether we can get any insight into the 3-SAT instances, via their
images under this transformation.

As mentioned before, the difference between 3-SAT and {2+p},{3}-SAT is
that in a 3-SAT instance, there is no restriction on the number of occurrences
of variables whereas in a {2+p},{3}-SAT instance, no variable may occur more
than three times. In 3-SAT, it is very likely that one will find variables occurring
more (sometimes much more) than three times. This is especially the case
whenever α > 1 since the average number of occurrences per variable is equal
to 3α. Moreover, as the value of α is increased, the repetitions of the variables
increase. At the high values of α, the average number of occurrences per variable
is much higher than three. In section 4 we introduce the techniques which reduce
the number of occurrences of variables occurring more than three times.

In section 2 we explain the algorithms and their general properties that we
use in this work. Section 3 tells about the probability distributions and the
models we use to generate random sets of formulas. Section 5 is about the
exact-{2+p},{3}-SAT and {3},{3}-SAT classes of problems which can be used
in order to make estimations about the global properties of {2+p},{3}-SAT
problem class. Section 6 discusses the location of the transformed instances from

2 ALGORITHMS 4

3-SAT in the {2+p},{3}-SAT space. Section 7 is dedicated to the computational
cost issues of the {2+p},{3}-SAT and the transformation from 3-SAT. In section
8 we discuss the effects of our transformation on some very well known practical
AI problems. Finally, we summarize in section 9.

2 Algorithms

Satisfiability checking algorithms are divided into two main streams depending
on their approach in solving instances of SAT. Some algorithms always give a
result, which can sometimes be very expensive to achieve, especially when the
complexity of SAT is considered. This disadvantage of the algorithms caused
some researchers to come up with the idea of semi-decision methods, where the
determination of satisfiability is uncertain. In this section, we give a detailed
description of the methods we use for our work in this text.

2.1 Completeness

We say that an algorithm is sound if every “yes, it is satisfiable” output is
actually for a satisfiable input. If a sound algorithm can return “yes, it is
satisfiable” for every satisfiable input then we say that the algorithm is complete.

Besides the popular attention complete algorithms attract, the application
of incomplete algorithms for SAT problems still requires quite a lot of work.
Most of the incomplete applications we have do very poorly in general, when
compared to the complete methods. However there are a couple of exceptions
which keep our hopes alive about this concept. In contrast, these exceptions
perform much better in general than the best-performing complete algorithms
we know. One way to see this difference in performance is via the experiments
done with some well studied benchmark problems. When solving these prob-
lems, these incomplete algorithms perform much better than the all complete
algorithms we know, on almost all of the problems included in the benchmark
set [6, 22].

2.2 Complete Algorithms

Complete Algorithms, as mentioned before, have the advantage of being capable
of determining satisfiability for any given instance in finite time, although it
may require extremely large amount of time. The algorithm of Davis-Putnam
in 1960 [17], which we will refer to as DP60, is actually the main source of
inspiration for most of the algorithms available today. In DP60, a slight variation
of the resolution technique was used. Roughly speaking, DP60 generates all
of the possible resolvents based on a variable and then deletes all the clauses
mentioning that variable. In return, this causes a sub-problem with one less
variable but possibly exponentially more clauses. Only in 2-SAT, at the worst
case scenario, this factor is quadratic.

2 ALGORITHMS 5

Resolution is an important technique widely used in the satisfiability check-
ing algorithms and so we explain it briefly. In a formula, when a variable occurs
negatively in a clause and positively in another clause then we can represent
these two clauses with one single clause built by adding up the rest of the clauses
after the mentioned variable. This newly generated clause is called the resolvent
and it preserves the satisfiability of the first two clauses whereas it has a total
number of variables one less than the total number of variables in both of the
initial clauses. A clause can be used more than once to generate a resolvent and
thus if a variable occurs p times positively and n times negatively, clearly we can
generate pn resolvents. Obviously, an empty resolvent implies that the formula
is unsatisfiable since it can only be generated as a result of a contradiction in the
formula. Figure 1 illustrates a situation where it is possible to apply resolution.
Here, since the variable frequency is small, the negative effect of resolution is
not felt. But, if y were to occur 5 times negatively and 5 times positively, this
would entail 25 resolvents in the first step.

(x ∨ y ∨ z)
(¬y ∨ q ∨ z)
(y ∨ ¬x ∨ p)







⇒
(x ∨ z ∨ q)
(q ∨ z ∨ ¬x ∨ p)

}

⇒ (z ∨ q ∨ p)

Figure 1: A possible case of resolution.

It was noticed that DP60 does very badly on satisfiable instances when com-
pared to other available methods’ performance. The reason behind this is that
DP60 keeps generating lots of clauses in a situation where it is possible to find a
satisfying assignment easily with other available methods. This caused some ex-
tra research on the procedure and in 1962 the improved version of DP60 showed
up [16]. We will refer to this version as DP62. The main change in DP62 from
DP60 was the introduction of the splitting rule (Implicitly mentioned before.
Eliminating a variable at each step via resolution) instead of the elimination
rule. This change in the algorithm causes the generation of two sub-problems
at each step instead of one, but this time each of a smaller size. With this
improvement, the algorithm may find a solution and quit earlier instead of con-
tinually generating clauses as resolution suggests.

Unless otherwise stated, we run DP62 for our evaluation needs in experi-
ments presented in this text. Roughly, DP62 performs a depth-first backtrack-
ing search over the space of all possible assignments by at each step assigning a
truth-value for a variable and simplifying the formula. The basic algorithm of
DP62 is given in figure 2.

2 ALGORITHMS 6

Given a set of clauses S defined over a set of variables V :

• If S is empty, return ”satisfiable”.

• If S contains an empty clause, return ”unsatisfiable”.

• (Unit-Clause Rule) if S contains a unit clause p, assign p the true value,
and return the result of calling DP62 on the simplified formula.

• (Splitting Rule) Select from V a variable v, which has not been assigned
a truth-value. Assign it a value, and call DP62 on the simplified formula.
If this call returns ”satisfiable”, then return ”satisfiable”. Otherwise, set
v to the opposite value, and return the result of calling DP62 on the
re-simplified formula.

Figure 2: DP62: Based on the Davis-Putnam’s algorithm still inspiring many
others.

2.3 Incomplete Algorithms

2.3.1 Randomized Local Search

Given the time-consuming procedure structure as an obstacle for complete meth-
ods, alternative search algorithms keep appearing in the literature. One recent
improvement to the history of satisfiability checking algorithms is the discovery
of randomized local search approach. As a fundamental component of this ap-
proach, a cost function is defined over the set of truth assignments such that the
global minima correspond to the satisfying assignments. The procedure starts
with a initial choice of truth assignment for the formula in consideration (usually
this is a random assignment). Then, the idea is to improve the current choice
of truth assignment with another truth assignment in the neighborhood, such
that it has a lower cost with respect to the cost function defined. Generally, the
cost function is defined such that it takes a truth assignment to the number of
clauses unsatisfied by that assignment.

In the classical notion of randomized local search, a termination occurs in
the algorithm whenever there is no more improving step left. Actually this
behavior is up to the implementation and for instance, GSAT, one of the well-
known algorithms which applies the randomized local search method, keeps
searching even if there is no available move left which can improve the cost (So,
all of the available moves increases the cost).

The main problem with the above described method derives from the pos-
sibility that an algorithm may get stuck at a local minimum of cost function in
the neighborhood of the initial guess. Eventually, such a situation will proceed
with a restart of the algorithm from a different point by making a new guess
for the truth assignment, possibly many times.

3 EXPLORED DISTRIBUTIONS 7

2.3.2 Iterative Repair

The aim in this method is to ’cure’ the unsatisfiable clauses in a formula based
on the approach that, if a formula is unsatisfiable then there must be a wrong
assignment for at least one of the variables mentioned in the clause(s) which are
unsatisfied. The main difference between the iterative repair and the randomized
local search is that the search in iterative repair is based on some known ’ill’
part of the formula and if it exists, a satisfying assignment will eventually always
be found (although this may require a very expensive cost). Whereas in local
search, this is not the case and an algorithm, even it exists, may fail to find a
satisfying assignment within the parameterized bound of the maximum retries
(guesses).

As we mentioned before, some rare implementations of randomized model
finding algorithms perform much better than DP62 and other known complete
methods but one should also keep in mind that the incompleteness of these
algorithms is not always an acceptable trade-off.

3 Explored Distributions

3.1 Random 3-SAT

Probably this is the most studied problem class among the whole family of SAT
problems, it has been under the spot lights for some time now. First of all,
3-SAT is the first NP-hard problem of the k-SAT problem family with smallest
value of k. However, it is the most intractable problem when compared to other
members of the k-SAT family with larger k. Moreover, it is NP-complete and
this implies that any efficient solution to it can be applied to all of the NP-hard
problems we know.

Usually, we generate random 3-SAT instances through the fixed clause-length
model. Some researchers use the constant-density model in order to generate
random 3-SAT formulas but, it is known that this model suffers from the lack
of producing challenging formulas. We will not be using the constant-density
model, hence our concentration on the fixed clause-length model. Given k, fixed
clause-length model needs to be supplied with two parameters, as one of them
characterizes the random k-SAT class which the generated instance will belong
to, the other two are responsible to determine its ’location’ in that class. With
the most common notation these parameters are, n, the number of available
variables, m, the number of clauses and finally k, the uniform clause length. As
the later implies, every clause in a formula generated by this model has a fixed
length, hence the model is called the fixed clause-length model. In constant-
density model, for instance, instead of a parameter for a uniform clause length,
a probabilistic parameter p is considered which stands for the probability of
including a variable into a clause. Now, let us give a description on the instance
generation process with fixed clause-length model.

In the fixed clause-length model, a clause is generated as a disjunction of
k literals where each literal is obtained by first choosing a variable at random

3 EXPLORED DISTRIBUTIONS 8

from the set of n available variables and then negating it with 50% probability.
Repeating this procedurem times gives a random k-SAT formula withm clauses
where each clause has k literals and at most n variables occur in the entire
formula.

Now that we know how to generate random formulas of 3-SAT, we move on
by showing how to pick a suitable ensemble for our experiments. An ensemble
is a pair consisting of a problem together with a probability distribution. Fixing
n and varying m (actually this can be done other way around, by fixing m and
varying n, but we stick to our definition since it is more convenient) and by at
each step (which we sometimes refer to as a data-point) generating a number
of formulas results with a sample. Here, one should pay reasonable attention
to the interaction of parameters and also consider the known features of the
ensemble when defining the borders of a sample. In [8] it is shown that the
literature contains remarkably many studies with inaccurate results caused by
using unsuitable samples for their aims. The validity of an experiment is directly
connected to the ensemble chosen in that experiment. For instance, the larger
the size of each data-point, the better results we get. The same discussion holds
for the size of the steps and the smaller the steps, the better results we get.

Earlier, we mentioned the ratio of clauses to variables, α = m
n
. The semantics

underlying this ratio is extremely important for us. The basic meaning of α is
the average number of variables per clause. So, as the value of α is varied, the
variables become more or less dense in the formula. As they become denser,
the constraints in the formula get stronger. But this has a direct effect on the
satisfiability of the formula. Given this information about it, we observe the
changes in the behaviors (ie. computational cost, probability of satisfiability,
etc.) of the random k-SAT ensemble as a function of α.

First, we present the experiments where we duplicate some situations which
are common to many studies in the literature [7, 8]. Figures 3, 4 and 5 show
the results to these experiments. We used three ensembles, generated by fixing
n = 50, 100, and 150 and then varying m from 100 to 450, 200 to 880 and 300 to
1300 for each n, respectively. In figure 3, each data-point is the mean behavior
of 20 instances. Mean behavior is generally pulled up or down by some instances
which exhibit extreme behavior. To prevent the influence of such instances on
the ensemble, an alternative way of plotting data is to consider the median
behavior instead of the mean as presented in figure 4. This generally gives
a correction to the unexpected abrupt changes in the global properties of the
observed.

As figures 3,4 and 5 show, when the computational cost is observed, at
the low values of α, the instances are pretty easy to decide for satisfiability.
Moreover, at these values almost all of the instances are satisfiable. As the ratio
is increased, we enter to a region in which the computational cost to determine
satisfiability abruptly increases to dramatically high values. In contrast to the
easier region above, here the satisfiable and the unsatisfiable instances are mixed.
This implies that a prediction concerning the satisfiability of instances from the
hard region seems to be very difficult. After a sufficient amount of increase in the
value of α, the computational cost drops back to manageable values (although

3 EXPLORED DISTRIBUTIONS 9

slightly harder than the first region) and moreover, almost all of the instances
are unsatisfiable. The observations we made above and many other studies
suggest an easy-hard-easy pattern as a permanent symptom in random k-SAT
distributions [21, 13, 11, 7]. As the problem size is increased, the computational
cost in the hard region gets larger with an increasing rate of growth and this
makes the instances from that region intractable with the techniques we know on
proving formulas’ satisfiability. Moreover, when the problem size is increased,
the hard region gets narrower and steeper. On the other hand when we are
looking at k-SAT with larger k, the hard region seems to shift to higher values
of α with increased cost. Since this is not the main focus of our work, we do
not present any material about the latter.

n=150
n=100
n=50

α - Ratio of clauses to variables

C
om

p
u
ta
ti
on

al
co
st

(b
ac
k
tr
ac
k
s)

98765432

60

50

40

30

20

10

0

Figure 3: Mean computational cost for 3-SAT as a function of ratio of clauses-
to-variables.

As we explained above, there is a change in the satisfiability of instances
as α increases in which, instances become almost all unsatisfiable after a state
where almost all instances are satisfiable. This well-experienced behaviour is
known as the phase transition phenomenon where the two phases between which
the transition occurs are the satisfiable and the unsatisfiable phases. A phase
transition approaches the shape of a step function as the problem size gets
sufficiently large. It is experimentally observed that the hardest instances in
an ensemble occur at the location where almost the half of the formulas are
satisfiable [20]. Thus, there is an underlying connection between the hard region
of the easy-hard-easy pattern occurring in computational cost and the phase
transition. This also explains that the narrowing of the hard region and the
converging of the phase transition to a step function as the problem size increases

3 EXPLORED DISTRIBUTIONS 10

n=150
n=100
n=50

α - Ratio of clauses-to-variables

C
om

p
u
ta
ti
on

al
co
st

(b
ac
k
tr
ac
k
s)

98765432

70

60

50

40

30

20

10

0

Figure 4: Median computational cost for 3-SAT as a function of ratio of clauses-
to-variables.

is no coincidence. In general, the region where the phase transition occurs is the
most suitable to find challenging formulas. Unfortunately there is no theoretical
proof to the exact location of the phase transition or the hard region when
k > 2. Instead, there are several approaches to determine the higher and the
lower bounds of it. The best known bounds for the phase transition in random
3-SAT are 3.003 < α < 4.758 [7, 8]. A formal definition of the location of phase
transition can be given as follows [21]:

Given k, the phase transition in random k-SAT occurs at αk such that,

lim
n→∞

P (Rk(n, αn)) =

{

0 ; α > αk,
1 ; α < αk.

(2)

whereas Rk(n,m) the set of random k-SAT instances with n variables and m
clauses and, P (x) is the probability of satisfiability of a set of random instances
x.

For 2-SAT, it is theoretically proven that the phase transition occurs at α = 1
[6]. The phase transition seems to be a symptom for k-SAT in general however,
the associated high cost for determining satisfiability only occurs when k ≥ 3
which then the problem is NP-hard (moreover, it is NP-complete) whereas for
k < 3 k-SAT can be solved in polynomial time and thus it is in class P.

The easy-hard-easy pattern in the computational cost figures can be ex-
plained by reasoning about the density of n variables in m clauses or, simply by
reading the α = m

n
. When the ratio is at low values, the formulas are under-

constrained and they enjoy the heaven of satisfying assignments since there are

3 EXPLORED DISTRIBUTIONS 11

n=50
n=100
n=150

α - Ratio of clauses to variables

P
ro
b
ab

il
it
y
of

sa
ti
sfi
ab

il
it
y

98765432

1

0.8

0.6

0.4

0.2

0

Figure 5: Phase transition phenomenon in 3-SAT.

plenty of assignments which can satisfy the formula. Thus a moderate satisfia-
bility checking algorithm can find one of them very easily, most of the time just
by guessing the assignment without any need of backtracking. We will refer to
this location as the easy-SAT region.

As the value of α increases, the number of clauses increases but this on
the other hand, increases the repetitions of the variables in the formula since
the same amount of variables have to build a larger number of clauses this
time. Hence, at the high values of α, the contradictions within the formulas
are quite easy to find. In high values of α, this effect shows itself very precisely
as almost all of the formulas are unsatisfiable. Hence, a moderate satisfiability
checking algorithm can detect (for instance, by generating an empty resolvent)
one contradiction in a relatively short time and return ”unsatisfiable”. We
abbreviate this location as the easy-UNSAT region.

Finally we shed some light over the mysterious hard region and its counter-
part phase transition effect. Since the value of α in this region is relatively large
when compared to the the easy-SAT region, there are not that many satisfying
assignments which can speed up the search procedure. On the other hand, α is
small when compared to the easy-UNSAT region. This means that it is harder
to find contradictions than in formulas in the easy-UNSAT region, which can
help for an early exit from the procedure. As a result of the combination of
these two factors explained, the procedure enters to an exhaustive search pro-
cedure causing a huge search tree and hence an expensive search cost. Thus,
the formation of both the phase transition and the hard region is a result of the
fine balancing between the number of variables n and the number of clauses m.

3 EXPLORED DISTRIBUTIONS 12

3.2 Random {2+p},{3}-SAT

Generating in the same way as 3-SAT but allowing 2-length clauses (clauses
which are build up from disjunction of 2 literals) and restricting the maximum
number of occurrences of variables to 3, one obtains {2+p},{3}-SAT distribu-
tion. As mentioned before, the parameter p, ratio of number of 3-length clauses
to all clauses, determines the location of a {2+p},{3}-SAT distribution between
{2},{3}-SAT and {3},{3}-SAT distributions. It is worthy to mention that one
should be cautious with understanding the big distinction between {2},{3}-SAT,
{3},{3}-SAT distributions and 2-SAT, 3-SAT distributions respectively, which
are common in clause lengths but they are quite distinct distributions due to
the limitation on the number of occurrences of variables in {2+p},{3}-SAT.

Eventually, the restriction on variables in {2+p},{3}-SAT instances to a
limited number of occurrences brings a new shape to the ensembles from what
we were used to with random k-SAT. Note that, allowing identical clauses, the
α dimension of a random k-SAT ensemble can be arbitrarily large whereas in
{2+p},{3}-SAT, the maximum value α can get is 1.5 at p = 0, as we see below.
The factor which leads to this difference is the restriction on the occurrences of
variables in {2+p},{3}-SAT. Since there is no such restriction in random k-SAT,
bounds only appear when the identical clauses are disallowed. Nevertheless, even
in this case, the bounds on the value of α are negligibly large as we show below
in (3). In both random 3-SAT and {2+p},{3}-SAT distributions, the minimum
value α can have is 1

3 since for m clauses the maximum value n can have is 3m.
But in random k-SAT, in general, without any repetition of variables in clauses
and disallowing identical clauses, given n, m and k, the maximum value that α
can have is:

α ≤
(n− 1)!

(n− k)!k!
(3)

In {2+p},{3}-SAT, the restriction of the number of occurrences of a variable
to three means that with n variables one can obtain 3n literals at maximum.
By definition, given m and p, an instance has mp many 3-length clauses and
thus m(1− p) many 2-length clauses. Hence we have the following:

3n ≥ 3mp+ 2m(1− p) (4)

Some arrangements and simplifying gives:

3

p+ 2
≥

m

n
= α (5)

This equation says that α is bounded by a function of parameter p, and
hence gives a perspective on the shape of the αp-space. Since p varies from 0 to
1, substituting them into the above equation gives that α reaches its maximum
value when p = 0, which in that case α ≤ 1.5. As p increases, this upper bound
on α decreases and we get the smallest bound when p = 1, which then α ≤ 1.
This shows that the maximum value of α in random 3-SAT is much larger than

3 EXPLORED DISTRIBUTIONS 13

procedure generate cnf (n m p) returns cnf;

• let stack = generate variables (n);

• return generate cnf with p (mp 3 stack)
⋃

generate cnf with p

((m(1-p)) 2 stack);

procedure generate cnf with p (m k stack) returns cnf;

• let cnf = null;

• for i = 1 to m do {

– let clause = null;

– for j = 1 to k do {

∗ let literal = choose random literal (stack, clause);

∗ let clause = clause
⋃

literal;

∗ let stack = stack - (absolute literal);}

– let cnf = cnf
⋃

clause;}

• return cnf;

procedure generate variables (n) returns list;

• let l = null;

• let l = build a list which contains three copies of each

variable;

• return l;

procedure choose random literal (list l, list c) returns literal;

• let sign be minus with 50% probability, otherwise let it be

plus;

• let index = random (between 0 and length(l));

• let var = element(l, index);

• if var occurs in c then return choose random literal (l, c);

• return (sign var);

Figure 6: Algorithm we implemented to generate random {2+p},{3}-SAT in-
stances

3 EXPLORED DISTRIBUTIONS 14

the one in {2+p},{3}-SAT as we claimed before. Figure 23 at section 4 gives a
good picture of the {2+p},{3}-SAT space.

The first series of experiments we did with this distribution family was a
complete disappointment for our basic expectations, it seem to us that the
results we had were far away from the point we wanted to reach. First we give a
specification of the experiments and then explain what went wrong for us. The
formulas we generated spread over α from 0.5 to about almost 1.5 by first fixing

m1 to 200, 500 and then after setting 0 ≤ p ≤ 1, varying 600p+400(1−p)
3 ≤ n ≤ 400

for the earlier and 1500p+1000(1−p)
3 ≤ n ≤ 1000 for the later value of m. At each

data-point we generated 100 instances.
The main unacceptable negative effect exhibited was the the lack of un-

satisfiable instances in all regions in both experiments, so almost all instances
were satisfiable. Hence, contrary to our expectations for a phase transition ef-
fect, there was no phase of unsatisfiable formulas!. On the other hand, since
we know that random 3-SAT is transformable to {2+p},{3}-SAT with a sat-
isfiability preserving transformation, it follows that we should be able to find
a region where the unsatisfiability reigns or more generally speaking, as many
occurrences of unsatisfiable instances as satisfiable instances.

The results of this preliminary experiment gave us insight into designing a
more focused experiment. From the first experiment where we set problem size
m = 200, there were only two instances which were unsatisfiable, and from the
second experiment, only one. With a very small difference between them, the
value of α for two unsatisfiable instances, one from each experiment, were 1.351
and 1.333. The second unsatisfiable instance from the first experiment had an
α of 1.428. As we will see later, the unsatisfiable instances in {2+p},{3}-SAT
are densely packed in a relatively tiny region and thus in order to explore them,
one needs an experiment with very finely adjusted parameters (with respect to
k-SAT) but moreover, to achieve this, introduction of new parameters will also
be obligatory.

3.3 The role of bipolar variables in {2+p},{3}-SAT

Having missed the UNSAT region in our first series of experiments, we focus on
the definition of the distribution we used. The fact that 3-SAT is transformable
to {2+p},{3}-SAT with a satisfiability preserving map implies the existence of
unsatisfiable instances in {2+p},{3}-SAT. In order to find them, we concentrate
on a factor which we believe to be effective on the discovery of unsatisfiable
instances. The factor we will discuss about in this section is the percentage of
variables which occur both negatively and positively. We call a variable bipolar
if it occurs both negatively and positively in a formula.

When a variable occurs once or more but not bipolar, then we say that
the variable occurs trivially. Obviously, trivial variables cause the formulas

1We mentioned before that in generating random k-SAT, it is convenient to fix n first and

then vary m. However, in {2+p},{3}-SAT, because of the parameter p, it is easier to fix m

first and then vary p. Nevertheless, this is completely safe.

3 EXPLORED DISTRIBUTIONS 15

in which they occur to be easier. Assigning a truth value to such a variable
which evaluates the corresponding literal(s) to true will eventually make all
of the clauses true in which they occur. So, after trivial variables, the search
for a satisfying assignment will be done without the clauses which contained
trivial variables. Actually, this method is implemented in most of the moderate
satisfiability checking algorithms. The rule which cuts the clauses containing
trivial variables off is called the pure literal rule.

Note that in a {2+p},{3}-SAT formula a variable must occur bipolarly in one
of the configurations: (- +), (- + +) or (- - +). Obviously, a single occurrence
is a trivial one.

The figure 7 shows the percentage of bipolar variables over all variables. The
results were taken from our first series of experiments, discussed in previous sec-
tion which we complained about the lack of unsatisfiable instances. Remember
that the random generator we implemented negates any variable with 50% prob-
ability. The figure shows that with this method, one can get at most 75% of
the variables to occur bipolarly (and the rest to occur trivially). Considering
our experience with this method, we suspect that this factor plays an important
role in generating samples with more unsatisfiable instances. With the current
situation in the samples, we feel that the instances are easily satisfiable due to
the vast number of trivial variables contained in them. If we can somehow force
more variables to occur bipolarly then this will cause more constraints over the
instances and hence, we might find more unsatisfiable instances in our samples
in this way.

In figure 7 we see that at every value of α, when the value of p is increased,
the percentage of bipolar variables over all variables gets larger. The obvious
reason behind this is that, in the instances having same amount of variables and
clauses but a different amount of 3-length clauses (hence, different p), because
of the larger number of literals in the instances with larger p, the repetition of
variables is more frequent. Hence, the chance that a variable occurs bipolarly is
higher. Thus, instances generated with distributions of larger p, contains more
bipolarly occurring variables than the ones with a smaller value of p. In the
other dimension of the changes in figure 7, for all p, when the value of α is
decreased, the percentage decreases as well. Actually, this is just the opposite
case of the situation we explained above. When α, ratio of clauses-to-variables
decreases, sincem is fixed, this means that n increases. This increase in n causes
the variables to occur less repetitively and hence the probability that a variable
occurs bipolarly is also less.

The main hypothesis we form from this picture is that, it is a good possibility
that the unsatisfiable instances are hidden under the role of the bipolarity factor.
With this result, we change our method of generating random {2+p},{3}-SAT
instances. Our procedure this time is as follows: First, we generate maximum
number of literals that could be generated out of n variables, that is 3n literals,
without assigning their polarity. Secondly, we negate one of the each three
occurrences of every variable. At the end, we get a set of literals in which all
of the variables occur bipolarly. Finally, we generate the clauses by choosing
literals from this set at random. In this case, if a formula has a configuration

3 EXPLORED DISTRIBUTIONS 16

p=0.9
p=0.8
p=0.7
p=0.6
p=0.5
p=0.4
p=0.3
p=0.2
p=0.1
p=0

α - Ratio of clauses to variables

o
cc
u
rr
in
g
b
ip
ol
ar
ly

(%
)

A
ve
ra
ge

p
er
ce
n
ta
ge

of
va
ri
ab

le
s

1.51.451.41.351.31.251.21.151.11.051

80

75

70

65

60

55

50

Figure 7: The figure shows that assigning the polarity of variables by 50%
probability causes at most 75 percent of the variables to occur bipolarly, hence
the rest to occur trivial.

in which all of the variables occurs three times, then all of them must occur
bipolarly.

Figure 8 shows the effects of using the new distribution which we described
just above to generate {2+p},{3}-SAT instances. This time we succeeded to
discover the unsatisfiable instances of {2+p},{3}-SAT and indeed, the phase
transition effect. Phase transition occurs at high values of α, around 1.2-1.4,
very close to the maximum value which is 1.5. The story behind the formation
of phase transition is similar to that of random 3-SAT. As α is increased, the
repetitions of variables in the instances increases and this causes the contradic-
tions to become more frequent. Whereas when α is decreased, the repetitions
are less frequent and thus, the contradictions are rare, so most of the formulas
are satisfiable. It seems that, in order to generate unsatisfiable instances of
{2+p},{3}-SAT, forcing all variables to occur bipolarly is obligatory. Other-
wise, given the limit on the number of occurrences of each variable, even the
smallest value of n which causes maximum repetitiveness of variables (which
is when all variables occur three times), can not induce constraints which are
strong enough to make instances unsatisfiable.

Now let us concentrate on the behavior related to the change in parameter
p. It is precisely seen that, as the value of p increases or, in other words, as
the number of 3-length clauses increases, the phase transition effect shifts to
the right, to higher values of α. Since the α dimension in a {2+p},{3}-SAT
space is bounded by 1.5 from above, this means that the unsatisfiable region

3 EXPLORED DISTRIBUTIONS 17

p = 0.36
p = 0.28
p = 0.2

p = 0.14
p = 0.1

p = 0.06
p = 0

α - Ratio of clauses to variables

P
ro
b
ab

il
it
y
of

sa
ti
sfi
ab

il
it
y

1.51.41.31.21.110.90.8

1

0.8

0.6

0.4

0.2

0

Figure 8: The phase transition in {2+p},{3}-SAT obtained by using a stricter
distribution.

gets narrower as p increases. But this is not all. Consider equation (5), in
which we saw that the maximum value of α is determined by a function of p,
which decreases with increasing p. This implies that an increase in the value of
parameter p causes a decrease in the highest value α can get. Hence, this makes
the narrowing of unsatisfiable region even faster when p is increased. On the
other hand, this shows that after some threshold value of p, we should expect the
unsatisfiable region and the phase transition to disappear in {2+p},{3}-SAT,
which is exactly what we see in the graph.

Now let us look at the shift of phase transition with varying p from another
perspective. Exact-{2+p},{3}-SAT is the distribution which has the same prop-
erties with {2+p},{3}-SAT except that, with this distribution, every variable
occurs exactly three times. We will get back to exact-{2+p},{3}-SAT later in
detail but since it is not the primary issue here, we do not give any more de-
tails yet. Consider the {2+p},{3}-SAT instances which have a high value of α,
where the number of variables is relatively small and repetitions are many and
thus, most of the variables occur three times. But, as we just mentioned, exact-
{2+p},{3}-SAT instances differ from {2+p},{3}-SAT instances only by the fact
that all variables in exact-{2+p},{3}-SAT instances occur exactly three times.
Thus, at high values of α, there is a close similarity between the instances gen-
erated with these two distributions, and we expect them to share almost the
same global behaviors.

Now, consider exact-{3},{3}-SAT distributions(i.e. exact-{2+p},{3}-SAT
with p = 1). Here, all variables occur exactly three times and in addition to

3 EXPLORED DISTRIBUTIONS 18

p = 0.36
p = 0.28
p = 0.2

p = 0.14
p = 0.1

p = 0.06
p = 0

α Ratio of clauses to variables

ex
ac
tl
y
th
re
e
ti
m
es

P
er
ce
n
ta
ge

of
va
ri
ab

le
s
o
cc
u
rr
in
g

1.51.41.31.21.110.90.8

100

90

80

70

60

50

40

30

20

10

Figure 9: The percentage of variables occurring exactly three times against the
ratio of clauses-to-variables, α.

this, all clauses have a clause length of three. The interesting thing about this
distribution is that, it is theoretically proved that, every instance generated
with this distribution is satisfiable [4]. So, in {2+p},{3}-SAT, as we increase
p → 1, the instances generated with a high value of α should be very similar
to exact-{3},{3}-SAT instances. Thus, we should expect them to be almost all
satisfiable. This gives another confirmation to the behavior observed in phase
transition effect with increasing p.

But even with this shape, retrieving random {2+p},{3}-SAT distributions
is problematic for us. As we will see later, when we transform instances from
random 3-SAT to {2+p},{3}-SAT, we know that all instances are mapped at
and around p = 0.25. So, we are very much interested in the ensembles of
random {2+p},{3}-SAT generated at around p = 0.25. But figure 8 implies
that the threshold value for p after which the unsatisfiable phase disappears, is
smaller than 0.25, the last time we see an unsatisfiable instance is at p = 0.2.
But this contradicts the observation that our transformation maps random 3-
SAT instances to around 0.25. So, the threshold can not be as proposed by
figure 8. In the next section we introduce a new distribution which causes the
threshold on p to be corrected and with which, we can retrieve ensembles similar
to the ones resulting from transforming random 3-SAT, in terms of satisfiability.

3 EXPLORED DISTRIBUTIONS 19

3.4 Random polarized-{2+p},{3}-SAT

In this section, we try to alter the distribution method we used so that we
can generate ensembles more similar to the random 3-SAT images obtained by
our transformation method. This suggests that, since we need a longer lasting
phase transition effect as p increases, here we need a distribution which can
generate more constrained instances of {2+p},{3}-SAT. On the other hand, the
last option that can cause more constraints for {2+p},{3}-SAT is the possible
manipulations we can make with the polarity of the variables.

Now consider the following: If a variable is bipolar, then the two occurrences
with opposite polarity may occur both in 3-length clauses, both in 2-length
clauses or they may occur separately, each in a different size clause. Intuitively,
we suspect that the second case, where the occurrences of opposite polarity are
contained in 2-length clauses, causes more constraints on the instances rather
than the rest of the options. The reason behind this is simple. In other two
situations, since there is a three length clause which contains one (or both)
occurrence, it is easier to escape a conflict. To justify this hypothesis, we inves-
tigate how the bipolar variables are distributed over different-sized clauses with
our current random {2+p},{3}-SAT distribution method.

Figure 10 shows the percentage of the bipolar variables that has at least
two of its occurrences in 2-length clauses to all bipolar variables. Let us call
the bipolar variables having at least c occurrences in k-length clauses as (k,c)-
bipolar. At p = 0, obviously all of the bipolar variables are in 2-length clauses
since there is no 3-length clauses for this value of p. As p increases, the number of
2-length clauses decreases and because of this, the percentage of (2,2)-bipolars
decreases. This causes the distinct lines for each value of p as we see in the
figure.

In general, when the value of α is increased, the number of bipolar variables
increases overall. From the figure it seems that when the value of α is increased,
the number of (2,2)-bipolars increase faster than the other bipolar variables.
This is reflected in the figure by the slope in the lines for every value of p. Note
that the latter behavior is only the case for when p < 0.5, when most of the
clauses are 2-length.

As mentioned earlier, we are mainly interested in the situation around p =
0.25 since we know that our transformation method maps random 3-SAT for-
mulas at and around this location. In figure 10 we see that at this location,
only about 50% of the bipolar variables are (2,2)-bipolar. This implies that, if
our intuition about the distribution of bipolar variables over clauses is correct,
then we should expect quite a different behavior in {2+p},{3}-SAT ensemble
when the current distribution of bipolar variables is altered such that more of
them occur in 2-length clauses (i.e. more of them are (2,2)-bipolar). More-
over, in the instances transformed from random 3-SAT, we know that exactly
one of the variables in the 2-length clauses occurs negatively. This means that
another similarity between the transformed instances and randomly generated
{2+p},{3}-SAT instances can be induced in this way.

To explore the validity of the above, we modify our distribution method and

3 EXPLORED DISTRIBUTIONS 20

p = 0.36
p = 0.28
p = 0.2

p = 0.14
p = 0.1

p = 0.06
p = 0

α Ratio of clauses to variables

to
al
l
b
ip
ol
ar

va
ri
ab

le
s.

P
er
ce
n
ta
ge

of
(2
,2
)-
b
ip
ol
ar

va
ri
ab

le
s

1.51.41.31.21.110.90.8

100

90

80

70

60

50

40

30

Figure 10: The percentage of (2,2)-bipolar variables over all bipolar variables
as a function of α.

force more (2,2)-bipolar variables. The procedure can be described as follows:
We first generate 3-length clauses and then the 2-length clauses at a certain
number such that the ratio of 3-length clauses to all clauses is equal to p. First,
we change our random variable selecting method. We generate three copies of
the set of variables in which every variable occurs exactly one time, without
assigning any polarity. Then, we select our variables starting from the first set
and switching to the next one, as all of the variables in the current set have
used once. In this sense, the variables chosen from the first set are the first
occurrences of the variables in the generated formula, ones chosen from the
second set are the second occurrences of variables and so on.

We negate the first and the second occurrence of a variable with 50% prob-
ability. As to the third occurrence, we check the polarity of the second occur-
rence. If the second occurrence is negative (positive) then we do not negate (we
do negate) the third occurrence. This causes the second and third occurrences
of a variable to always occur in opposite polarity. Since we first generate the
3-length clauses and then the 2-length clauses and moreover, if we consider the
order we choose variables, we should expect that most of the variables occur
(2,2)-bipolar rather than (3,2)-bipolar. We call the resulting distribution as
random polarized-{2+p},{3}-SAT. Figure 11 shows the algorithm we use in the
generation process.

Note that if the third occurrences are not needed in generation process1 then

1The case in which this might happen is simply when the parameter n has a large value

with respect to m.

3 EXPLORED DISTRIBUTIONS 21

procedure generate cnf (integer n, integer m, float p) returns

cnf;

• define array stack[3];

• for i = 1 to 3 do

– let stack[i] = generate variables (n);

• return generate cnf with p (m*p 3 stack)
⋃

generate cnf with p

((m*(1-p)) 2 stack);

procedure generate cnf with p (integer m, integer k, array stack)

returns cnf;

• let cnf = null;

• for i = 1 to m do {

– let clause = null;

– for j = 1 to k do {

∗ let index = select the smallest value from 1 to 3

which stack[index] is nonempty;

∗ let literal = choose random literal (index,

stack[index], clause);

∗ let clause = clause
⋃

literal;

∗ let stack = stack[index] - (absolute literal);}

– let cnf = cnf
⋃

clause;}

• return cnf;

procedure generate variables (integer n) returns list;

• let l = null;

• let l = build a list which contains one copy of each

variable;

• return l;

procedure choose random literal (integer index, list l, list c)

returns literal;

• let i = random (between 0 and length(l));

• let var = element(l, i);

• if var occurs in c then return choose random literal (l, c);

• select index;

– case 1 or 2: let sign = minus with 50% probability,

otherwise let it be plus;

– case 3: let sign = minus if var has a positive negative

occurrence otherwise plus;

• return (sign var);

Figure 11: Algorithm we implemented to generate random polarized-{2+p},{3}-
SAT instances.

3 EXPLORED DISTRIBUTIONS 22

this method would not work so well. Nevertheless, we are not interested in the
small values of α where n is large w.r.t. m but in the opposite situation where
the n is small w.r.t. m and most of the variables occur three times. Figure 12
confirms what we have just said about the random polarized-{2+p},{3}-SAT
distribution.

As α is increased, at low values, there is a decrease in the value of the
percentage of (2,2)-bipolars among all bipolars. Then, for each value of p at a
different location, there is a minimum point in which the value of the percentage
starts to increase afterwards. The minimum point actually corresponds to the
value of α which after that value, the third occurrences of the variables is used.
When α is smaller than this value, all of the variables occurring in the instances
must occur two times at most and moreover, each occurrence is negated with
50% probability. Thus, when the value of α is increased or in other words, when
the value of n is decreased, the repetitions of variables increases but since there
is no forcing on the polarity of variables at those values of α, bipolar occurrences
mostly occurs in 3-length clauses. This explains the decrease in the percentage
of (2,2)-bipolar variables until the minimum point. As we said above, after
the minimum point, the third occurrences of variables begins to be used. This
means that our method described in this section becomes effective. The forcing
on the polarity of the third occurrences of variables causes the percentage of
(2,2)-bipolar variables to increase. We see that at high values of α the method
is really effective.

p = 0.28
p = 0.24
p = 0.2

p = 0.16
p = 0.1

p = 0.06
p = 0

α Ratio of clauses to variables

m
ix
ed

in
2-
le
n
gt
h
cl
au

se
s

P
er
ce
n
ta
ge

of
m
ix
ed

-v
ar
ia
b
le
s
o
cc
u
rr
in
g
as

1.51.41.31.21.110.90.8

100

90

80

70

60

50

40

30

20

Figure 12: The new distribution of bipolar variables over different-size clauses.
Percentage of (2,2)-bipolar variables as a function of α.

Figure 13 exhibits the change in the satisfiability of random polarized-

4 TRANSFORMING 3-SAT TO {2+P},{3}-SAT 23

{2+p},{3}-SAT and it confirms our intuitions. With random polarized-{2+p},{3}-
SAT, we see that the phase transition effect, again, shifts to the right with in-
creasing p but this time, with much smaller steps. Thus, with random polarized-
{2+p},{3}-SAT, now we have a longer lasting phase transition effect as p in-
creases. Moreover, we see the existence of a phase transition effect in random
polarized-{2+p},{3}-SAT for p = 0.24. Remember that our transformation
maps random 3-SAT instances to values of p which are very close to 0.25.

p = 0.28
p = 0.24
p = 0.2

p = 0.16
p = 0.1

p = 0.06
p = 0

α - Ratio of clauses to variables

P
ro
b
ab

il
it
y
of

sa
ti
sfi
ab

il
it
y

1.51.41.31.21.110.90.8

1

0.8

0.6

0.4

0.2

0

Figure 13: The phase transition in random polarized-{2+p},{3}-SAT.

4 Transforming 3-SAT to {2+p},{3}-SAT

A random 3-SAT instance t may contain at most 3m distinct variables and each
variable may occur at most m times, whereas m is the number of clauses in
t. It is possible to define a satisfiability preserving transformation which takes
every 3-SAT instance to a {2+p},{3}-SAT instance. As we saw in section 2,
no variable in a {2+p},{3}-SAT instance occurs more than three times. Thus,
such a transformation must regulate the number of occurrences of each variable
appearing in the formulas of its domain such that no variable occurs more than
three times and the satisfiability is preserved. Such a mapping can be established
easily by adding fresh variables to the formula in order to decrease the number
of occurrences of variables as we explain below.

We say that two formulas t1 and t2 are SAT-equivalent iff:

t1 is satisfiable if and only if t2 is satisfiable.

4 TRANSFORMING 3-SAT TO {2+P},{3}-SAT 24

Note that the SAT-equivalence is a distinctly different notion than the plain
formula equivalence we know from propositional logic. When two formulas are
SAT-equivalent, it does not necessarily follows that they are equivalent. In
SAT, we are mainly interested in answering whether a formula is satisfiable or
not. Hence, for us, SAT-equivalence is a more suitable notion than the plain
equivalence. Now, we are ready to define our transformation.

Let t be a random 3-SAT instance containingm clauses and n variables. Call
the set of n variables occurring in t Φt and let Φ′t denote a set of fresh variables
(i.e. not in Φt). For any variable p ∈ t, let ∆p,t denote the number of occurrences
of p in t. Partition the set Φt into two such that Φt,≤3 = {p|∆p,t ≤ 3} and
Φt,>3 = {p|∆p,t > 3}. Hence, Φt,≤3 ∪ Φt,>3 = Φt and Φt,≤3 ∩ Φt,>3 = Ø. Now,
let ϕt be a mapping from the set Φt to Φ′t. Given p ∈ Φt, define ϕt as follows:

ϕt(p) :=

{

p if p ∈ Φt,≤3,
Ψt,p if p ∈ Φt,>3.

(6)

where Ψt,p ⊆ Φ′t and |Ψt,p| = ∆p,t.
The main idea of the transformation is to substitute each occurrence of

p ∈ Φt,≤3 in t by an element of Ψt,p. If we do that and ensure the fresh
variables added from Ψt,p for each p are equivalent (i.e. all have the same truth
value) then the resulting formula must be SAT-equivalent with the originating
formula. First we describe the substitution process.

Let pi be an enumeration of the members of the set Ψt,p such that 0 < i ≤
∆p,t. For each p ∈ Φt,>3 and for each occurrence of p in t, if p occurs positively
(negatively) then replace this occurrence of p by a positive (negative) occur-
rence of pi for some arbitrary i and do not use index i for replacing any more
occurrences. Repeat this process until p disappears from t and call the resulting
formula tT . This completes the substitution phase of the transformation. After
this process is completed, next, we ensure that the variables in Ψt,p for each p

are equivalent. If a variable p had n occurrences in t, n > 3, our aim is to add
the following in the transformed formula:

(p1 → p2 → ...→ pn → p1) (7)

which is,

(p1 → p2) ∧ (p2 → p3)... ∧ (pn−1 → pn) ∧ (pn → p1) (8)

Using basic propositional logic it easily follows from here that the above is
equivalent to:

(¬p1 ∨ p2) ∧ (¬p2 ∨ p3)... ∧ (¬pn−1 ∨ pn) ∧ (¬pn ∨ p1) (9)

Moreover, the later is in CNF and thus can be easily appended to tT without
any extra effort. Hence, appending this component to tT for each p results in
a formula which is SAT-equivalent to t and no variable occurs more than three
times. This completes the definition of transformation from random 3-SAT to
{2+p},{3}-SAT.

4 TRANSFORMING 3-SAT TO {2+P},{3}-SAT 25

From above, we see where the 2-length clauses come from and the reason
behind that. It is easily seen that for a variable p, occurring i times, transfor-
mation map introduces i fresh variables and adds i new 2-length clauses. This
shows that a knowledge of the average number of occurrences of variables in
random 3-SAT is crucial.

n=150
n=100
n=50

α - Ratio of clauses to variables

p
er

va
ri
ab

le
A
ve
ra
ge

n
u
m
b
er

of
o
cc
u
rr
en

ce
s

8765432

24

22

20

18

16

14

12

10

8

6

Figure 14: Average number of variable occurrences against α

From figure 14, it is easily seen that the variable occurrences increase linearly
with the α. An increase in α by one causes the average number of variable
occurrences to increase by three. Figure 14 is plotted for three different problem
sizes, for each value of n in 50, 100, and 150. Thus, the figure also confirms
that the algorithm we used to generate random 3-SAT has a uniform strategy
in selecting variables. For a random 3-SAT instance t, which has a α ratio
about 8, transformer introduces roughly 24 fresh variables and same amount of
new 2-length clauses for almost every variable in t. If we were conducting an
experiment using n = 150 variables, transforming an instance which roughly
has α = 8 requires 3600 new variables and 3600 2-length clauses. Using the
average number of occurrences of variables, we can actually make more precise
predictions about the resulting {2+p},{3}-SAT formulas.

One immediate question which rises at this point is whether we can pre-
dict the location of a 3-SAT instance in the αp-space after transforming it to
{2+p},{3}-SAT. Note that equation 6 implies that, when a variable occurs three
or less times then no change is done concerning that variable. Now let t be a
random 3-SAT instance with n variables and assume that each variable in t

occurs exactly r times. Then if m is the number of clauses in t:

4 TRANSFORMING 3-SAT TO {2+P},{3}-SAT 26

m =
nr

3
(10)

Now let tT be the image of t under the transformation map and mT
2 , m

T
3 be

the number of 2-length and 3-length clauses respectively. Call the total number
of clauses in tT mT . Given r > 3, we have that mT

2 = nr, mT
3 = m = nr

3 . Since
mT = mT

2 +mT
3 , from here it easily follows that:

p =
mT

3

mT
=

nr
3

nr
3 + nr

=
1

4
(11)

This gives a good perspective on the expectations for p. Note that we got
to this value by assuming that every variable occurs r times. So, in reality, the
value of p should be somewhat different than 0.25. This is because every variable
does not occur exactly r times. To see how it is, we conduct an experiment by
transforming a random 3-SAT ensemble to {2+p},{3}-SAT. The random 3-SAT
ensemble was generated using n = 150 and α was varied from 2 to 8. The figure
15 shows the change in p against the change in α. Now, we explain the reason
behind the distribution of mapped instances in the αp-space as seen in figure
15.

Obviously, the smallest value n can take in a random 3-SAT instance is 3.
Assume that each of those three variables occurs r times. If r > 3 then we
add 3r new 2-length clauses. This gives a value of 0.25 to p. Now consider
the following: The largest value n can take in a random 3-SAT instance is 3m
which is the case when every variable occurs only once in the entire instance.
In this case, such a formula is already a {2+p},{3}-SAT instance and obviously
the value of p is 1 since mT

3 = mT . This shows that as the variables repeat
less, the value of p increases. But in practice, the case in which p = 1 hardly
occurs since the instances in which all the variables occur once are rare.

It is seen that the value of parameter p is hardly greater than 0.27, which
is the case at the low values of α. Moreover, as the α increases, p strongly
converges to 0.25. The reason behind this is explained later in this section.

Let us refer to the ratio of clauses-to-variables of the transformed instances
as αT . Now we try to make a prediction for the value of αT . Let t be a random
3-SAT instance with m clauses and n variables. Assume that every variable in t
occurs exactly r times and that r > 3. So, all the variables in t will be replaced
by rn many fresh variables and rn many new 2-length clauses will be added
by the transformation process. Since we assumed that the n variables occur
uniformly, we must have m = nr

3 . Thus, we must also have mT = rn
3 + rn.

From here we have:

αT =
rn
3 + rn

rn
=

4

3
= 1.333 (12)

Figure 16 shows the results concerning the change in ratio of clauses-to-
variables in the experiment we mentioned above. Roughly speaking, the broad
scale of α in 3-SAT is mapped to a relatively small region in {2+p},{3}-SAT,
having a width of 0.018. Our prediction for αT above seems to be quite accurate

5 TWO HELPFUL DISTRIBUTIONS: EXACT-{2+P},{3}-SAT AND {3},{3}-SAT27

Ratio of clauses to variables in 3SAT form

p
-
ra
ti
o
of

th
re
e
le
n
gt
h
cl
au

se
s
to

al
l
cl
au

se
s

98765432

0.268

0.266

0.264

0.262

0.26

0.258

0.256

0.254

0.252

0.25

Figure 15: The distribution of parameter p as the α changes.

since we see that most of the instances are gathered around 1.334. This is
especially the case when the value of α is above 4. For α > 4, almost all of the
instances are mapped to almost the same αT in {2+p},{3}-SAT.

Above, we promised to explain more about the shape of figure 15. Actually
the argument about this figure and the last one, figure 16, is the same. What
we have in common for both situations is that, as the value of α gets larger, the
corresponding results get very close or the same with our theoretic predictions.
In figure 15, when α > 4, the value of p is almost always 0.25. As to the figure
16, when α > 4, αT is almost always 1.333. What happens here is that, when
α > 4, there is almost no variables occurring less than three times. As a result,
3-SAT instances are mapped to {2+p},{3}-SAT instances which has almost all
of their variables occur exactly three times, so they occur very uniformly in
number. This explains the reason behind the similarity between the predicted
values and the observed values, when the assumption we made for uniform
variable occurrence, referred by r, is considered.

5 Two helpful distributions: exact-{2+p},{3}-

SAT and {3},{3}-SAT

We have already mentioned in this text several times that exact-{2+p},{3}-
SAT and {3},{3}-SAT might prove useful in a couple of occasions. One of those
occasions was about the shifting of phase transition effect with increasing p and
then disappearing after a threshold value on p. We said that this behavior can be

5 TWO HELPFUL DISTRIBUTIONS: EXACT-{2+P},{3}-SAT AND {3},{3}-SAT28

individual instances
mean value

Ratio of clauses to variables in 3-SAT form

af
te
r
tr
an

sf
or
m
at
io
n

α
T
-
ra
ti
o
of

cl
au

se
s
to

va
ri
ab

le
s

98765432

1.334

1.332

1.33

1.328

1.326

1.324

1.322

1.32

1.318

1.316

Figure 16: The change in the α after transformation.

confirmed by using {3},{3}-SAT distributions as well. In the other occasion, we
claimed that the image of a random 3-SAT ensemble under the transformation
will always be very similar to a exact-{2+p},{3}-SAT ensemble. In this section
we give some insight into these claims and search for proof of their validity.

Letting p = 1 for a {2+p},{3}-SAT distribution results with {3},{3}-SAT
distribution. By definition, all of the clauses in an instance generated using
this distribution has a length of three and no variable occurs more than three
times in the entire formula. Although it is obtained easily from {2+p},{3}-SAT
by just letting p = 1, this distribution has some other features not offered by
{2+p},{3}-SAT when p < 1. The first nice thing about {3},{3}-SAT is that it
can be solved immediately. This rises from the following claim [4]:
Let SAT≤k be any SAT problem in CNF which has the following properties:

1. every clause consists of exactly three literals (ie. clause length is three),

2. no variable occurs more than once in a clause,

3. no variable occurs more than k times in the entire instance.

Then every instance of SAT≤k is satisfiable.
Hence it follows that every instance of {3},{3}-SAT is satisfiable.
Remember that both in random {2+p},{3}-SAT and random polarized-

{2+p},{3}-SAT we experienced a decrease in the size of unsatisfiable region
and moreover, after some threshold value on p the whole unsatisfiable region
disappeared. As p is increased, naturally, both {2+p},{3}-SAT and polarized-
{2+p},{3}-SAT approach {3},{3}-SAT. Hence, as p → 1 the probability of

5 TWO HELPFUL DISTRIBUTIONS: EXACT-{2+P},{3}-SAT AND {3},{3}-SAT29

satisfiability goes to 1. But this is exactly what we see with {2+p},{3}-SAT
and polarized-{2+p},{3}-SAT.

Now let us concentrate on exact-{2+p},{3}-SAT. This is the restriction of
{2+p},{3}-SAT in which every variable occurs exactly three times. Remember
that when we transform instances of random 3-SAT, every variable in the 3-SAT
instance which occurs more than three times gives birth to several new variables
in the image instance which all occur exactly three times. As to the variables
occurring less than or equal to three times, they remain untouched. So, the
number of variables occurring less than three times in the transformed formula
is determined by the number of variables occurring less than three times in the
3-SAT instance.

To get a perspective on this, use the Possion distributions. The Possion
formula which we state just below (equation 13) gives the probability of an
event to occur, given the average frequency of occurrence of that event.

P (n) =
λn

n!eλ
(13)

where λ is the average frequency of occurrence. From here the probability
that a variable occurs less than three times is,

P (a variable occurs < 3 times) = P (1) + P (2)

= λ
eλ

+ λ2

2eλ

= 2λ+λ2

2eλ

(14)

From figure 14 we know that in random 3-SAT, the average number of oc-
currences per variable is about three times the value of the α. Plugging in the
information that λ = 3α, we get the probability of a variable to occur less than
three times as a function of α. Figure 17 shows the probability of a variable to
occur less than three times as a function of α.

Figure 17 shows that in random 3-SAT, except extremely low values of α,
almost no variable occurs less than three times. This shows that the image
of random 3-SAT is actually very close to exact-{2+p},{3}-SAT. Note that for
extremely low values of α, we already know that almost all instances are satis-
fiable. So, this also shows that in terms of satisfiability, the observed behavior
in figure 17 does not cause any distinctions between these problems.

Now consider generating random exact-{2+p},{3}-SAT ensembles. The pro-
cedure for this distribution is a bit different with the other distributions we have
been discussing so far. To see that consider the following:

Given p, m and n, since we know that every variable occurs exactly three
times, we must have 3n literals such that:

3mp+ 2(m−mp) = 3n (15)

with some simplification and substituting α = m
n
, we get

α =
m

n
=

3

p+ 2
(16)

5 TWO HELPFUL DISTRIBUTIONS: EXACT-{2+P},{3}-SAT AND {3},{3}-SAT30

α ≈ 0.45

α - Ratio of clauses to variables

P
ro
b
ab

il
it
y
of

a
va
ri
ab

le
to

o
cc
u
r
<

3
ti
m
es

20151050

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 17: The probability of a variable to occur less than three times using the
Possion distribution.

Equation 16 shows that, in exact-{2+p},{3}-SAT the parameter α is actually
a function of parameter p. Thus, when generating random instances, it is better
to fix m first and then generate instances by varying p. The value of n is
simply pulled out of the equation above. Note that unlike in other distributions
we discussed, the value of α can not be varied when p is fixed. This was our
strategy with those other distributions. We give an update to the algorithm 11
in order to generate exact-{2+p},{3}-SAT instances (figure 18).

Figure 19 shows the probability of satisfiability in an ensemble, generated by
exact-{2+p},{3}-SAT distribution, as a function of p. At low values of p, almost
all of the instances are unsatisfiable. Instances keep being all unsatisfiable until
p = 0.26. After this value, the probability of satisfiability begins to increase
rapidly towards 1. The transition region is quite steep and it ends when p = 0.3.
After p = 0.3, almost all of the instances are satisfiable. It is quite easy to say
why the probability of satisfiability starts with an unsatisfiable region and ends
with a satisfiable region, just opposite of what we used to in other distributions.
As equation (16) shows, α is a function of parameter p and moreover they are
in inverse relation. With this equation we know that a scale for p from 0 to
1 corresponds to a scale for α from 1.5 to 1. So this time we are looking at
the α scale from other way around. Hence the given behavior in figure 19.
At p = 0.26 the corresponding value of α is 1.327 whereas for p = 0.30, α
is 1.304. These are the apparent boundaries of the transition region in figure
19. Considering the location of the transition regions in {2+p},{3}-SAT and
in polarized-{2+p},{3}-SAT ensembles, exact-{2+p},{3}-SAT is very suitable

6 A GUIDE TO {2+P},{3}-SAT 31

procedure find best approximation (integer m, float p) returns

integer;

• if (isInteger ((m * (p + 2)) / 3)) then

– return m;

• else

– find best approximation ((m + 1) p);

procedure generate cnf (integer m, float p) returns cnf;

• let m = find best approximation (m, p);

• let n = ((m * (p + 2)) / 3);

• define array stack[3];

• for i = 1 to 3 do

– let stack[i] = generate variables (n);

• return generate cnf with p (m*p 3 stack)
⋃

generate cnf with p

((m*(1-p)) 2 stack);

Figure 18: Algorithm we implemented to generate random exact-{2+p},{3}-
SAT instances.

to represent these ensembles. Moreover, using exact-{2+p},{3}-SAT, a good
approximation on the value of p which after the unsatisfiable region disappears,
can be made. Figure 19 suggests that after p = 0.3, almost all of the instances
are satisfiable.

6 A guide to {2+p},{3}-SAT

In section 2, we gave a deep analysis of {2+p},{3}-SAT distributions and found
very similar symptoms to random 3-SAT. One of those similarities was that, as
the value of α is increased, the formulas become more constrained and at some
finely balanced ratio of clauses-to-variables, the phase transition phenomenon
occurs in both problems. At low values of α, the formulas are under-constrained
and thus almost all of them are satisfiable. Whereas in the higher values of α,
they are over-constrained and this makes almost all of the formulas unsatisfiable.
Between these two phases of satisfiability, there is an interval of ratios of clauses-
to-variables, α, in which the probability of an instance to be satisfiable is around
0.5. Naturally, we expect this behavior occurring in random 3-SAT to occur in
{2+p},{3}-SAT as well. Moreover, this time we have another player in the

6 A GUIDE TO {2+P},{3}-SAT 32

p = 0.30

p = 0.26

p - Ratio of 3-length clauses to all clauses

P
ro
b
ab

il
it
y
of

sa
ti
sfi
ab

il
it
y

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

Figure 19: Phase transition in exact-{2+p},{3}-SAT.

game, namely the ratio of 3-length clauses to all clauses, p, which is very likely
to affect this behavior.

We noted before that the broad scale of α in 3-SAT is mapped to a relatively
small region in {2+p},{3}-SAT by the transformation. But we never talked
about how the transformed instances are located throughout {2+p},{3}-SAT
space. This is the motivation behind this section.

The figure 20 shows the results of an experiment in which we transform ran-
dom 3-SAT to {2+p},{3}-SAT. Random 3-SAT ensemble was generated using
n = 150 and α was varied from 2 to 8. We transformed instances of random 3-
SAT to {2+p},{3}-SAT, recording the values of α, αT and p for every instance.
The figure shows that the relative order of values of α is preserved under trans-
formation. In other words, we have αT1 < αT2 iff α1 < α2. The lowest value
we get for αT is roughly 1.316, occurring for some rare satisfiable instances. As
to the parameter p, when α is increased, the value of p decreases. The highest
value p gets is 0.266, again, for some rare satisfiable instances. Both αT and p

approach to fixed values when α > 4. The reason behind this is discussed in
detail in section 4.

To get a better insight on the location of mapped formulas, we plot the same
parameters in the above experiment for satisfiable and unsatisfiable formulas
separately (figures 21 and 22). The satisfiable instances are definitely more
divergent than the unsatisfiable instances. This can be easily explained since we
know that unsatisfiable instances occur at high values of α and so, the variables
in those instances are much more uniformly occurring than the lower valued
instances, which are mostly satisfiable. Consistent with this argument, the only

6 A GUIDE TO {2+P},{3}-SAT 33

after transformation
αT - Ratio of clauses to variables

1.334

1.332

1.33

1.328

1.326

1.324

1.322

1.32

1.318

1.316

clauses to all clauses
p, ratio of 3-length

0.268
0.266

0.264
0.262

0.26
0.258

0.256
0.254

0.252
0.25

variables
α - Ratio of clauses to

9
8

7
6

5
4

3
2

Figure 20: The location of the transformed formulas in αp-space is shown.

6 A GUIDE TO {2+P},{3}-SAT 34

divergent instances which are unsatisfiable are from the transition region. But
we know that these are the unsatisfiable instances having the lowest values of
α. A very similar discussion to this one is in section 4.

Now let us step back and look at the big picture of {2+p},{3}-SAT. So far
we gave very little information about the shape of the αp-space of {2+p},{3}-
SAT ensembles. However, there is more to say about it. Figure 23 gives a good
idea as to what it looks like. The αp-space in {2+p},{3}-SAT is bounded from
both above and below. These boundaries can be identified with straightforward
calculations on the parameters. Now consider the following: The maximum
number of variables a {2+p},{3}-SAT instance may has is 2m2 +3m3, which is
the number of literals in the entire formula. From here we get,

α =
m

n
≥

m

2m2 + 3m3
(17)

Moreover we know that,

p =
m3

m
⇒ m3 = mp and m2 = m(1− p) (18)

substituting this in equation (17) we get,

α ≥
m

2m2 + 3m3
=

1

2 + p
(19)

This equation gives the curve on the leftmost side of the figure 23, titled
”lower boundary”. This curve characterizes the lowest values α can get as a
function of p. The construction behind the upper boundary is already done
in section 3.2, equation (5). This gives the upper boundary appearing on the
rightmost side of the figure 23. Parallel to the boundaries, there are two more
curves. The one which occurs right next to the upper boundary is the curve
which traces the exact-{2+p},{3}-SAT instances. To see that, consider the fol-
lowing: Since every variable in a exact-{2+p},{3}-SAT instance occurs exactly
three times, the number of literals must be equal to three times the number of
variables. So,

m2 + 3m3 = 3n (20)

using (18), we get

m(2 + p) = 3n⇒ α =
3

2 + p
(21)

This yields the curve marked ”exact-{2+p},{3}-SAT”. On the other hand,
we wonder where the instances with less repetitive variables are located. To see
this, consider exact-{2+p},{2}-SAT distribution in which every variable occurs
at most two times. Repeating the equations 20 and 21 for this distribution
yields,

m(2 + p) = 2n⇒ α =
2

2 + p
(22)

6 A GUIDE TO {2+P},{3}-SAT 35

after transformation
αT - Ratio of clauses to variables

1.3334

1.3333

1.3332

1.3331

1.333

1.3329

1.3328

1.3327

1.3326

clauses to all clauses
p, ratio of 3-length

0.2507

0.2506

0.2505

0.2504

0.2503

0.2502

0.2501

0.25

variables
α - Ratio of clauses to

9
8.5

8
7.5

7
6.5

6
5.5

5
4.5

4

Figure 21: The location of the transformed formulas in αp-space is shown (only
unsatisfiable).

6 A GUIDE TO {2+P},{3}-SAT 36

after transformation
αT - Ratio of clauses to variables

1.334

1.332

1.33

1.328

1.326

1.324

1.322

1.32

1.318

1.316

clauses to all clauses
p, ratio of 3-length

0.268
0.266

0.264
0.262

0.26
0.258

0.256
0.254

0.252
0.25

variables
α - Ratio of clauses to

5
4.5

4
3.5

3
2.5

2

Figure 22: The location of the transformed formulas in αp-space is shown (only
satisfiable).

7 COMPUTATIONAL COST ISSUES 37

This curve is drawn right in the middle of the two boundaries and is labeled
”exact-{2+p},{2}-SAT”. Note that it is a very natural result that the value of
alpha decreases as the repetitions of the variables become less.

Finally we talk about the region where the images of random 3-SAT formulas
are mapped. In figure 23, the curve labeled ”Mapped 3-SAT” represents the
location of these formulas. Note that the shape of the curve resembles the shape
we encountered in figure 20. However, since we know the range of values of p
and α over which the mapped instances are spread, the region of the curve which
we are interested is marked with arrows. The equation of the curve is obtained
as follows:

Let t be a 3-SAT instance withm clauses and n variables. Assume that every
variable occur exactly r times. Assume that r > 3. Transforming the instance
t into {2+p},{3}-SAT will produce a formula which has mT

3 = m, mT
2 = nr,

mT = mT
3 +m

T
2 = m+nr and nT = nr. From here t has the following parameter

values:

αT =
m+ nr

nr
=

α+ r

r
(23)

p =
m

m+ nr
=

α

α+ r
(24)

From 23 and 24 it easily follows that,

p =
αT − 1

α

T

(25)

which is the equation we are looking for. Note that we do not say that all of
the transformed instances are strictly mapped onto this curve. Since we assumed
that every variable in 3-SAT instance t occurs exactly r times, the situation in
reality is somewhat different. Nevertheless, it is a very good approximation to
the real case and it gives a good idea as to where it occurs.

7 Computational cost issues

7.1 Computational cost of {2+p},{3}-SAT and polarized-

{2+p},{3}-SAT

In this section we handle the computational cost issues of the {2+p},{3}-SAT
and polarized-{2+p},{3}-SAT distributions. Remember that, in {2+p},{3}-
SAT distribution, we choose the polarity of variables at 50% probability without
making any distinctions as to how and where the opposite polarized occurrences
of variables occur. We observed that with this way of generating random formu-
las, it is unlikely to get an unsatisfiable region in the random {2+p},{3}-SAT
ensemble for values of p ≥ 0.2. With the polarized-{2+p},{3}-SAT distribution,
we forced variables to occur bipolar mostly in the 2-length clauses in order to
get a longer lasting unsatisfiable region in the ensembles. We saw that with
this distribution, it is possible to see an unsatisfiable region even for p = 0.25.

7 COMPUTATIONAL COST ISSUES 38

Mapped 3-SAT.
Lower boundary.

exact {2+p},{2}-SAT
exact {2+p},{3}-SAT
Upper boundary.

α - Ratio of clauses to variables

to
al
l
cl
au

se
s

p
=

m
3

m
,
ra
ti
o
of

3-
le
n
gt
h
cl
au

se
s

1.41.210.80.60.40.20

1

0.8

0.6

0.4

0.2

0

Figure 23: A map to the αp-space.

In this section, besides observing the cost issues for each distribution individu-
ally, we will check to see if there is a difference in terms of cost between these
distributions.

In random k-SAT there is a very characteristic behavior occurring in the
computational cost figures for values of k > 2. Remember that the random
k-SAT ensembles are roughly partitioned into three regions. The first of them
is the easy satisfiable region where the computational cost is the lowest of the
entire ensemble. The reason behind this is the existence of numerous satisfying
assignments for formulas in this region. Most of the time a moderate satisfia-
bility checking algorithm will find one satisfying assignment for such a formula
without any need of backtracks, merely by guessing the assignments for the
variables. At the other easy region, where almost all of the formulas are unsat-
isfiable, the computational cost is relatively low, although it is slightly higher
than the cost is the easy satisfiable region. This behavior can be explained by
the frequent existence of contradictions in the formulas of this region. One of
those contradictions can be detected by the algorithms in a relatively short time,
lowering the cost. Finally, in the transition region of random k-SAT ensembles,
we know that the computational cost for determining satisfiability increases to
dramatically high values very quickly. This high difficulty in the middle of two
easy regions is a result of the lack of both factors we mentioned above, namely
the lack of contradictions and satisfying assignments.

Given this background information about the random k-SAT ensembles, we
wonder about the situation in random {2+p},{3}-SAT. As we have seen earlier,
there is a phase transition effect in {2+p},{3}-SAT as well, when p is roughly

7 COMPUTATIONAL COST ISSUES 39

≤ 0.2. In this case, shall we expect the same features of random 3-SAT in the
computational cost for random {2+p},{3}-SAT? To answer these questions we
present two figures (24 and 25) regarding the computational cost to determine
satisfiability in random {2+p},{3}-SAT and random polarized-{2+p},{3}-SAT,
respectively. Each figure represents one of the methods we used to generate
{2+p},{3}-SAT instances. Interestingly, there was no instance generated by
either method which required more than 1 backtrack. Hence, our concentration
on the number of branches as a measure of computational cost.

p = 0.36
p = 0.28
p = 0.2

p = 0.14
p = 0.1

p = 0.08
p = 0.06

p = 0

α Ratio of clauses to variables

C
os
t
-
N
u
m
b
er

of
b
ra
n
ch
es

1.51.41.31.21.110.90.8

14

12

10

8

6

4

2

0

Figure 24: Computational cost in {2+p},{3}-SAT.

Figure 24 is obtained by generating the ensemble with our first distribution
where in its ensembles, the unsatisfiable region disappears rapidly as p increases.
Here, as p is increased, the cost increases accordingly. Moreover, with increasing
p, the rate of growth in the computational cost gets larger. This is one of the
features one can easily observe in random 3-SAT as well.

Now consider the shifting of the phase transition with increasing p as we
see in figure 8, it is precisely the effect of this shifting which we see in figure
24 regarding the computational cost. As the p increases, the computationally
hardest part is shifting to the right together with the transition region. We
explained before that an increase in the value of p causes not only a shift in
the transition region but it also pulls the maximum value of the αT down from
1.5, which is the maximum value of αT occurring at p = 0. When p reaches the
maximum value, the maximum value for αT is 1. This feature is seen in the cost
figures as we see less of the easy-hard-easy pattern with increasing p. The last
value of p in which we can observe the whole easy-hard-easy pattern is roughly
at 0.14. After this value, at p = 0.2, we see the cost until the hard region and

7 COMPUTATIONAL COST ISSUES 40

after that there is no more easy region. This is completely in accordance with
the disappearing of unsatisfiable region when we were investigating the phase
transition. Over 0.2, we do not see even the complete hard region but the only
cost associated with the easy satisfiable region.

p = 0.28
p = 0.24
p = 0.2

p = 0.16
p = 0.1

p = 0.06
p = 0

α Ratio of clauses to variables

C
os
t
-
N
u
m
b
er

of
b
ra
n
ch
es

1.51.41.31.21.110.90.8

11

10

9

8

7

6

5

4

3

2

1

0

Figure 25: Computational cost in polarized-{2+p},{3}-SAT.

The figure 25 concerns the computational cost figures obtained from the
ensembles generated using the polarized-{2+p},{3}-SAT distribution. Again,
the results are in accordance with the general properties of random k-SAT.
Remember that with polarized-{2+p},{3}-SAT, we found that the fast shifting
of phase transition with the first distribution has slowed down and we got to see
more of the unsatisfiable phase as p is increased. Thus, we naturally expect the
reflection of this behavior in the computational cost figures. The figure 25 fully
confirms our expectations. Contrary to the first figure about computational
cost distribution, we got to see the whole easy-hard-easy pattern for values of
p as high as 0.25. However, the figure shows that polarized-{2+p},{3}-SAT is
actually not harder than {2+p},{3}-SAT but the contrary. At every value of p
we tested, the polarized-{2+p},{3}-SAT instances in the transition region are
slightly easier than {2+p},{3}-SAT instances. But this is just a difference by
several branches.

In this section, we covered the computational cost requirements of {2+p},{3}-
SAT distributions. We encountered differences in the shapes of the cost distribu-
tions but not a significant difference in the amount of the cost they require. The
two figures we discussed about shows that with both distributions for generat-
ing random {2+p},{3}-SAT formulas, the hardest formulas required almost the
same cost for determining satisfiability. But in general, the instances of random

7 COMPUTATIONAL COST ISSUES 41

{2+p},{3}-SAT are much easier than the instances of random 3-SAT. As we said
before none of the instances required more than one backtrack, showing that
cost required by the random {2+p},{3}-SAT instances is distinctly easier than
random 3-SAT. As we have these results for random {2+p},{3}-SAT ensem-
bles, we wonder about the hardness of the instances transformed from random
3-SAT. Note that the transformed instances are not ’natural’ in {2+p},{3}-SAT
as they are not randomly generated as random {2+p},{3}-SAT instances but
they are ’engineered’ to represent the instances of random 3-SAT. Well, is this
going to affect the computational cost requirements of the instances belonging
to the very same problem class? We discuss this in the next section.

7.2 Computational cost of the random 3-SAT image in

{2+p},{3}-SAT

First, let’s talk about what the cost figures can be or can not be like. Given
the membership of {2+p},{3}-SAT in the NP-complete class of problems, this
implies that, if one comes up with a efficient solution to it then this solution
can be applied to all of the NP-hard problems entailing P = NP , which ends
the hopes to find a polytime solution to such images of 3-SAT.

In the previous section, we gave computational cost analysis of the {2+p},{3}-
SAT and showed that the random instances of {2+p},{3}-SAT are distinctly
easier than the random instances of 3-SAT. But, does this give a correct insight
into the cost requirements of the formulas obtained by transforming from ran-
dom 3-SAT instances? There is one thing we have to think about before trying
to answer this question. The instances transformed from random 3-SAT are not
natural instances of random {2+p},{3}-SAT. They are instances ’engineered’
to represent the instances of random 3-SAT. Thus, it is very likely that those
instances will be at least as hard as their 3-SAT ancestors.

In order to have an insight on the computational cost distribution of trans-
formed formulas, we conduct an experiment where we measure the cost required
to determine satisfiability for instances of random 3-SAT and the corresponding
images of these instances in {2+p},{3}-SAT. The experiment process can be
roughly described as follows: First, we generate an instance in random 3-SAT
and check for satisfiability, then we record the cost required. Second, we trans-
form the instance to {2+p},{3}-SAT and check the satisfiability of the image
instance. We again record the cost required to determine satisfiability.

The figures 26, 27 and 28 show the results of the experiments we conducted.
Each figure is dedicated to a problem size of n for 50, 100 and 150. It is
easily seen that the transformed instances require a higher cost for determining
satisfiability. The hardness of transformed instances follow the pattern of the
cost distribution required by the 3-SAT instances but they occur at much higher
values. In general, easy-hard-easy pattern is preserved and there is not too much
of a difference in the two easy regions. Especially the formulas belonging to the
easy satisfiable region remain the same in terms of cost. As we start to pick
instances from the transition region, naturally, the cost increases rapidly. But
for the transformed instances, the rate of growth is much higher. As the value of

7 COMPUTATIONAL COST ISSUES 42

After Transformation
Random 3-SAT

α - Ratio of clauses to variables

M
ea
n
co
m
p
u
ta
ti
on

al
co
st

(b
ac
k
tr
ac
k
s)

65.554.543.532.52

140

120

100

80

60

40

20

0

Figure 26: Comparison between the random 3-SAT with n = 150 and its image
in {2+p},{3}-SAT.

α is increased in the transition region, the difference between the required cost
increases dramatically. In figure 26, the difference in the cost at the beginning
of the transition region by about 20 backtracks, jumps to a difference of about
65 backtracks at the peak point, where the hardest instances occur. In general,
the difference in the required cost is around by a factor of 2, in all problem sizes.

In the easy unsatisfiable region, unlike the easy satisfiable region, the trans-
formed instances require a cost which is slightly greater than the 3-SAT in-
stances. As we know in random 3-SAT, the instances from the easy unsatis-
fiable region are more expensive for satisfiability checking than the instances
from easy satisfiable region. The explanation behind this is as follows: When
a procedure searches for a satisfying assignment of a given instance, when it
succeeds to find a satisfying assignment then there is no need to continue on
searching1 and thus, the procedure quits. But, when the instance is actually
unsatisfiable, then all of the search paths have to be checked so that no possible
assignments remain unchecked. This results with a huge search tree and hence
a more expensive cost. This explains the reason behind the relatively large cost
in the unsatisfiable region of random 3-SAT. Because of this fact, the difference
between the 3-SAT instances and their images turns out to be bigger, again,
almost by a factor of 2.

To see with more detail, we separate the satisfiable instances from the un-

1Unless the procedure is forced to find all satisfying assignments. Here, since we are

interested only in the determination of satisfiability, we look for at least one assignment

satisfying the instance.

7 COMPUTATIONAL COST ISSUES 43

After Transformation
Random 3-SAT

α - Ratio of clauses to variables

M
ea
n
co
m
p
u
ta
ti
on

al
co
st

(b
ac
k
tr
ac
k
s)

65.554.543.532.52

25

20

15

10

5

0

Figure 27: Comparison between the random 3-SAT with n = 100 and its image
in {2+p},{3}-SAT.

satisfiable instances in the ensemble of problem size n = 150. The figures 29
and 30 show the cost distribution of random 3-SAT instances and their images
for satisfiable and unsatisfiable instances, respectively. From figure 30, we see
that the highest cost is contributed by the unsatisfiable formulas rather than
the satisfiable ones. In both figures, the difficulty factor between the 3-SAT
instances and their images remain the same.

The picture we drew above is not very positive as to whether such a transfor-
mation from random 3-SAT to {2+p},{3}-SAT is favorable in terms of problem
hardness. Did we actually make everything worse by transforming instances
from random 3-SAT? And, are the transformed instances actually much harder
than the instances of random 3-SAT or is it our satisfiability checking algorithm
that makes everything look worse? We try to answer these questions in the next
section.

7.3 Is it really like that?

There are some studies in the literature concentrated on the question as to
whether the extreme difficulty of some rare formulas, especially when they are
from the easy satisfiable region of 3-SAT, is an inherent property or not [23].
If these formulas are not inherently difficult then this would mean that there is
a way to solve them with almost the same cost as the other formulas coming
from the same region. The results achieved in these studies show that the
extreme difficulty is not an inherent property but just a result of the DP-like

7 COMPUTATIONAL COST ISSUES 44

After Transformation
Random 3-SAT

α - Ratio of clauses to variables

M
ea
n
co
m
p
u
ta
ti
on

al
co
st

(b
ac
k
tr
ac
k
s)

65.554.543.532.52

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

Figure 28: Comparison between the random 3-SAT with n = 50 and its image
in {2+p},{3}-SAT.

systematic problem solving algorithms. In these algorithms, when a decision is
to be taken in order to branch on a variable, a random choice is made among
the available variables unless heuristics can help with the decision. However,
in such a situation, the chosen variable may lead to a bad search path and in
return, requiring more backtracks and hence a higher cost. The work around
of this situation is to run the algorithm on the same instance many times or,
alternatively, restart it after a certain number of backtracks that is believed to
be high for that formula, so that different branching choices will be tested. As
a result, we will have an idea about the real difficulty of the formula.

Figure 31 shows the results of the experiment in which we run the satisfia-
bility checking algorithm 100 times per instance. We do this both for instances
of 3-SAT and their images in {2+p},{3}-SAT under the transformation. Fi-
nally, we compare the average computational cost required to find a satisfying
assignment in 3-SAT and {2+p},{3}-SAT. The cost required by an instance
for deciding satisfiability is calculated by taking the mean of the number of
backtracks appearing at each of the 100 runs.

7.4 What about the incomplete methods?

In this text, we mainly used complete algorithms as our satisfiability checking
method. However it is a very meaningful question to ask how the incomplete
algorithms cope with the transformed instances of random 3-SAT. In this sec-
tion, we give results from an experiment in which the decision for satisfiability

7 COMPUTATIONAL COST ISSUES 45

After transformation
random 3-SAT

α - Ratio of clauses to variables

M
ea
n
co
m
p
u
ta
ti
on

al
co
st

(b
ac
k
tr
ac
k
s)

54.543.532.52

140

120

100

80

60

40

20

0

Figure 29: Comparison between the random 3-SAT with n = 150 and its image
in {2+p},{3}-SAT for only satisfiable instances.

is given by an incomplete algorithm. For an overview about the incomplete
methods refer to section 2.

One of the most popular incomplete algorithms in the literature is WalkSAT
and it is also our choice here, as a representative of the incomplete methods.
In the experiments included in this section, we will be interested in two kinds
of data concerning the performance of WalkSAT. The first kind of data is the
average number of flips which concerns the computational cost issues. WalkSAT
reports the average number of flips until the first satisfying assignment is found.
The search process in WalkSAT is done by flipping the sign of the assignment
to a variable at each step. Hence, these are the data we are interested in to
measure the computational cost required by the algorithm to find a satisfying
assignment. Note that WalkSAT does not report the number of flips when an
assignment could not be found.

Another parameter in WalkSAT is the success rate of the algorithm over
the multiple tries. WalkSAT needs to be supplied with a parameter which tells
the algorithm how many times it shall try to search for a satisfying assignment
using a random initial choice. This is an important parameter for incomplete
methods since they can get stuck within a local minimum occurring in the cost
function of the formula, in which case they need to be restarted using another
initial random assignment. We record the success rate for 10 tries of WalkSAT
on every instance.

Figure 32 is about the computational cost requirements of WalkSAT both
over random 3-SAT and its image in {2+p},{3}-SAT. The very high values of the

7 COMPUTATIONAL COST ISSUES 46

After transformation
random 3-SAT

α - Ratio of clauses to variables

M
ea
n
co
m
p
u
ta
ti
on

al
co
st

(b
ac
k
tr
ac
k
s)

65.554.54

300

250

200

150

100

50

0

Figure 30: Comparison between the random 3-SAT with n = 150 and its image
in {2+p},{3}-SAT for only unsatisfiable instances.

average number of flips made it necessary to plot the data on a log-scale. There
is a huge difference between the cost required by the instances of random 3-SAT
and their images. The image instances seem to follow the same pattern with
their originating instances but appearing at very high levels of computational
cost. Unlike the complete methods, the increase in the cost does not start to
show itself with the transition region but from the earlier values of α. One
common thing that we notice with the complete methods is the existence of
a constant factor between the values of required cost. Here, a factor by 100
seems to be a good approximation to it. The half-cut appearance of the cost
distribution as α increases is caused by the fact that WalkSAT does not report
any measures on number of flips when a satisfying assignment could not be
found.

The figure 33 gives information about the success rate of the WalkSAT on
random 3-SAT and the comparison to its image in {2+p},{3}-SAT. Actually, the
results in figure 32 gave some clues as to what shall we expect from the success
rate comparison. The fall of the success rate in {2+p},{3}-SAT is much earlier
than the fall of success rate in 3-SAT. When the rate for 3-SAT begins to drop,
we see that {2+p},{3}-SAT success rate is already below 10%. This shows that
WalkSAT can not find assignments for satisfying formulas as easily as in 3-SAT.
Looking at the performance of WalkSAT on 3-SAT and comparing to figure 5,
we see that WalkSAT succeeded to find at least one satisfying assignment for
almost all of the satisfiable 3-SAT formulas including the ones in the transition
region. However, it is also seen from the figure 33 that WalkSAT couldn’t find

8 SOME WELL KNOWN APPLICATIONS 47

After transformation
random 3-SAT

α - Ratio of clauses to variables

N
u
m
b
er

of
b
ac
k
tr
ac
ts

54.543.532.52

140

120

100

80

60

40

20

0

Figure 31: Comparison between the random 3-SAT with n = 150 and its image
in {2+p},{3}-SAT by running the algorithm 100 times per instance.

any assignments for the rare satisfiable {2+p},{3}-SAT formulas occurring in
the right of the transition region.

The discussion above concerning the performance of the WalkSAT shows
that, if we regard WalkSAT as a moderate representative to the incomplete
methods, the level of difficulty of the formulas obtained by transforming 3-SAT
instances to {2+p},{3}-SAT is much higher with incomplete methods when
compared to the complete methods.

8 Some well known applications

Given the fact that many practical real-life problems can be encoded into SAT,
we ask the question “What happens to these problems under our transforma-
tion?”. There are numerous problems that can be encoded in SAT but here we
will be exploring only three of them. For more information about SAT-encoded
problems please check [22].

The examples we include here are challenging for most of the known sat-
isfiability checkers. Our interest is to see the performance of the very same
algorithms over the images of these instances under our transformation intro-
duced in section 4 and then make a comparison with the performance exhibited
for the originating instances.

8 SOME WELL KNOWN APPLICATIONS 48

After transformation
random 3-SAT

α - Ratio of clauses to variables

C
om

p
u
ta
ti
on

al
co
st

(m
ed

ia
n
fl
ip
s)

65.554.543.532.52

1e+06

100000

10000

1000

100

10

Figure 32: The computational cost comparison between the random 3-SAT with
n = 150 and its image in {2+p},{3}-SAT with WalkSAT.

8.1 SAT-encoded ”Flat” Graph Coloring Problems

The Graph Coloring Problem (GCP) [22] is a well-known combinatorial problem
from graph theory : Given a graph G = (V,E), where V = v1, v2, ..., vn is the
set of vertices and E the set of edges connecting the vertices, find a coloring
C : V 7→ N , such that connected vertices always have different colors. There
are two variants of this problem: In the optimisation variant, the goal is to find a
coloring with a minimal number of colours, whereas in the decision variant, the
question is to decide whether for a particular number of colours, a coloring of
the given graph exists. The two variants are tightly related, as optimal colorings
can be found by solving a series of decision problems, using, for instance, binary
search to determine the minimal number of colours. In the context of SAT-
encoded Graph Coloring problems, we focus on the decision variant.

8.1.1 SAT encoding

Following earlier approaches in literature, we use a straightforward strategy for
encoding GCP instances into SAT: Each assignment of a color to a single vertex
is represented by a propositional variable; each coloring constraint (edge of the
graph) is represented by a set of clauses ensuring that the corresponding vertices
have different colours, and two additional sets of clauses ensure that valid SAT
assignments assign exactly one colour to each vertex.

8 SOME WELL KNOWN APPLICATIONS 49

After transformation
random 3-SAT

α - Ratio of clauses to variables

S
u
cc
es
s
ra
te

(%
)

65.554.543.532.52

100

80

60

40

20

0

Figure 33: The success comparison between the random 3-SAT with n = 150
and its image in {2+p},{3}-SAT with WalkSAT.

8.1.2 GCP test-sets

The test-sets provided here (table 1) are generated using J.Culberson’s flat graph
generator [14]. They consist of 3-colorable flat graphs the connectivity of which
is adjusted in such a way that the instances are very hard to solve (on average)
for graph coloring algorithms like the Brelaz heuristic [12]. All instances are
satisfiable.

test-set instances vertices edges colors vars clauses

flat30-60 100 30 60 3 90 300
flat50-115 1000 50 115 3 150 545
flat75-180 100 75 180 3 225 840
flat100-239 100 100 239 3 300 1117
flat125-301 100 125 301 3 375 1403
flat150-360 100 150 360 3 450 1680
flat175-417 100 175 417 3 525 1951
flat200-479 100 200 479 3 600 2237

Table 1: SAT-encoded Graph Coloring test-sets (flat random graphs). All in-
stances are satisfiable.

8 SOME WELL KNOWN APPLICATIONS 50

8.2 Backbone-minimal sub-instances

8.2.1 The Backbone and Backbone-minimality

A literal l is entailed by a satisfiable SAT instance C iff C ∧ ¬l is unsatisfiable.
The backbone of a satisfiable SAT instance is the set of entailed literals and so,
the backbone size is the number of entailed literals. An instance C is backbone-
minimal if for each clause c in C there exists a literal l in the backbone of C
such that l is not in the backbone of C − {c} [22].

8.2.2 Instance Generation

Two types of instance are provided (table 2). Firstly, some standard satisfiable
threshold random k-SAT instances. These are generated according to 3 param-
eters: k: the number of literals per clause, n: the number of variables, m: the
number of clauses. Each random k-SAT instance is generated as follows: Gener-
ate m random k-clauses. For each clause: Select at random k distinct variables
from the set of n. Negate each with probability 0.5. These form the literals of
the clause. If the instance is unsatisfiable, restart the generation process.

The second type of instances were generated from the above random k-SAT
instances. For each random 3-SAT instance C, one backbone-minimal sub-
instance of C was found. This was done by removing clauses from C such that
the backbone was unaffected. This was iterated until the resulting instance was
backbone-minimal. At each step the removed clause was selected at random
from those whose removal did not affect the backbone.

[25] used these instances as part of a study which aimed to explain why
cost for local search algorithms was high in the threshold region of random
3-SAT. For the local search algorithm WSAT/SKC, the backbone-minimal sub-
instances had a far higher search cost than the random 3-SAT instances from
which they were derived, even though the sub-instances have fewer clauses, the
same backbone size and at least as many solutions.

test-set instances literals per clause vars clauses

RTI k3 n100 m429 500 3 100 429
BMS k3 n100 m429 500 3 100 varies

Table 2: Random 3-SAT (RTI) and backbone minimal sub-instance (BMS)
test-sets. Each instance in the Random-3-SAT collection has a corresponding
backbone minimal sub-instance in the other collection. All instances are satis-
fiable.

8.3 Results

Tables 4 and 3 show the results of the comparison tests. The instances in
all three applications are first proved using our standard satisfiability checker
and the data concerning computational cost is recorded. Then we applied our

8 SOME WELL KNOWN APPLICATIONS 51

transformation to all of the instances and get instances in which no variables
occur more than three times. Note that the output instances are not necessarily
members of the problem class {2+p},{3}-SAT. The obvious reason behind this
is that the originating instances may include clauses which has length more than
three and most of the time they have. So, the transformer we are using here is
only concerned with the number of occurrences of the variables. Table 4 follows
the pattern in this entire work: The computational cost increases precisely with
the transformation. The difference between the originating instances and the
transformed instances is roughly by a factor of 2.

test-set Number of backtracks

Mean Median Maximum Minimum

original instance

transformed instance

flat30-60 0.05 0.0 2 0
0.0 0.0 0 0

flat50-115 0.26 0.0 4 0
0.03 0 2 0

flat75-180 0.89 0.0 7 0
0.23 0.0 3 0

flat100-239 2.65 2.0 16 0
1.0 1.0 11 0

flat125-301 7.83 4.0 80 0
2.14 1.0 13 0

flat150-360 17.79 10.0 181 0
6.04 4.0 57 0

flat175-417 37.17 21.5 184 0
11.91 8.0 53 0

flat200-479 85.4 56.5 944 0
28.04 16.0 157 0

Table 3: Comparison table for flat graph coloring instances

The surprise comes with the flat graph coloring problem. In contrary to the
pattern we mentioned above, this time the transformation causes an impres-
sive decrease in the computational cost. The maximum number of backtracks
required for the test-set flat200-479 is 944 where as after transformation this
number is 157. This is an improvement by a factor of 6. This improvement can
be clearly seen in all test-sets of the flat graph coloring problem. Besides flat
graph coloring, the same effect exists in the transformation of morphed graph
coloring instances. However, we do not include any work related to morphed
graph coloring problem.

9 CONCLUSIONS 52

test-set Number of backtracks

Mean Median Maximum Minimum

original instance

transformed instance

RTI k3 n100 m429 5.84 5 29 0
11.86 10 52 0

BMS k3 n100 m429 24.76 19 125 0
52.26 42 209 0

Table 4: Comparison table for backbone-minimal sub-instances

9 Conclusions

It has been shown that instances of 3-SAT can be transformed efficiently to in-
stances of {2+p},{3}-SAT. We have given a detailed description of the {2+p},{3}-
SAT problem in terms of both computational cost and the structure. Later we
saw that the instances obtained by transforming 3-SAT instances are distinctly
harder than the hardness of their ancestors in 3-SAT. However, it does not seem
to be possible to generate random {2+p},{3}-SAT instances which are as hard
as the images of 3-SAT instances. Actually, we could not generate any instances
of {2+p},{3}-SAT which required more than 1 backtrack. The reason behind
this difference between the instances of this very same problem is the fact that
the instances which are 3-SAT images are special constructions to represent
their originating instances in 3-SAT.

When the structural issues are reviewed, we see that with the transformation
from 3-SAT to {2+p},{3}-SAT, there is a big difference in the dimensions of
the space of parameters of {2+p},{3}-SAT. We gave a map of the αp space and
show that both parameters are strictly bounded and moreover, both the upper
and the lower bounds of alpha is determined by the value of p. On the other
hand the instances transformed from the 3-SAT are encapsulated in a small
piece of this bounded space.

We saw that there are relations between the phase transition effect in {2+p},{3}-
SAT and the parameter p, ratio of 3-length clauses to all clauses. As the value
of p is increased, the phase transition effect shifts to higher values of α in the
corresponding ensemble. Moreover, considering that the upper bound on the
value of α decreases with increasing p, after some value of p the phase transition
effect disappears. Using the exact-{2+p},{3}-SAT distribution, we estimated
that the highest value which we can still see some change in the probability of
satisfiability is 0.3. Given the fact that every instance of exact-{3},{3}-SAT is
satisfiable, this behavior in {2+p},{3}-SAT with increasing p is quite natural.

9.1 Future research

As mentioned before, the image of 3-SAT in {2+p},{3}-SAT is quite dense. For
instance, most of the unsatisfiable instances and especially the ones from the

9 CONCLUSIONS 53

unsatisfiable region have the same value of ratio of clauses-to-variables. This
fact may turn out to be very useful in the investigation of the properties of
these instances. It might prove useful to study the transformed instances to
understand the 3-SAT instances themselves. One open question which lies here
is whether the image of 3-SAT can give us any clues about the satisfiability of
the instances in the transition region. One other is whether we can improve the
our current theoretical knowledge about the location of the phase transition in
3-SAT.

We have used the common satisfiability checking algorithms available. But
the fact that the instances resulting from transforming 3-SAT instances are
unnatural makes us to think that more optimistic performance results can
be achieved by implementing a special search algorithm for 3-SAT images in
{2+p},{3}-SAT. There are examples of this in the literature where special al-
gorithms are coded to achieve success in individual problem forms [15]. Also
there are some other algorithms which we wonder about their performances on
the transformed instances [19].

One other source of curiosity concerns the disappearing of the phase tran-
sition effect in {2+p},{3}-SAT with increasing p. We are suspicious whether
the result which says that every instance of {3},{3}-SAT is satisfiable can be
extended [4]. Our results suggest that every instance of {2+p},{3}-SAT with
p > 0.3 is satisfiable. The validity of the later should be investigated and a
theoretic proof should be given if it is applicable.

The results we achieved with graph coloring problems point out that extra
research on some other applications is essential. The transformation method
seems to have different effect on different problem structures. The studies for
the transformation’s effect on different applications should reveal the reasons
behind its success on particular problems.

REFERENCES 54

References

[1] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking
without bdds. In the Proceedings of the Workshop on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS99), 1999.

[2] B.Selman, H. Levesque, and D. Mitchell. A new method for solving hard
satisfiability problems. Proceedings of the 10th National Conference on
Artificial Intelligence, AAAI, pages 440–446, 1992.

[3] B.Selman and S.Kirkpatrick. Critical behaviour in the satisfiability of ran-
dom boolean formulae. Racah Institute of Physics and Center for Neural
Computation, Hebrew University, Israel, 1993.

[4] C.H.Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[5] S.A. Cook. The complexity of theorem-proving procedures. Proceedings of
the third ACM symposium on Theory of Computing, pages 151–158, 1971.

[6] S.A. Cook and D.G. Mitchell. Finding hard instances of the satisfiability
problem: A survey. Dimacs Series in Discrete Mathematics and Theoretical
Computer Science, 35, 1997.

[7] D.Mitchell, B.Selman, and H.Levesque. Hard and easy distributions of
sat problems. Proceedings on the 10th National Conference on Artificial
Intelligence, AAAI, pages 459–465, 1992.

[8] D.Mitchell and H.Levesque. Some pitfalls for experimenters with random
sat. Proceedings on the 10th National Conference on Artificial Intelligence,
AAAI, 1992.

[9] Ian P. Gent and Toby Walsh. Easy problems are sometimes hard. Artificial
Intelligence, pages 335–345, 1994.

[10] I.P. Gent and T. Walsh. The search for satisfaction. Department of Com-
puter Science University of Strathclyde, Scotland, 1999.

[11] Jun Gu, Paul W. Purdom, John Franco, and Benjamin W. Wah. Algo-
rithms for the satisfiability (sat) problem: A survey. Dimacs Series in
Discrete Mathematics and Theoretical Computer Science, 1997.

[12] Tad Hogg. Refining the phase transition in combinatorial search. Artificial
Intelligence, 81:127–154, 1996.

[13] Tad Hogg, Bernardo A. Huberman, and Colin P. Williams. Phase tran-
sitions and the search problem, editorial. Artificial Intelligence, 81:1–15,
1996.

[14] J.Culberson. Joe Culbersons’s Graph Coloring Page.
http://web.cs.ualberta.ca/ joe/Coloring/Generators/flat.html.

REFERENCES 55

[15] Chu Min Li. Integrating equivalency reasoning into davis-putnam proce-
dure. Proceedings of AAAI, 2000.

[16] M.Davis, G.Logemann, and D.Loveland. A machine program for theorem
proving. Comms. ACM, 5:394–397, 1962.

[17] M.Davis and H.Putnam. A computing procedure for quantification theory.
Journal of the Association for Computing Machinery, pages 201–215, 1960.

[18] D. Mitchell, B.Selman, and H.Levesque. Hard and easy distributions of
sat problems. Proceedings on the 10th National Conference on AI, pages
459–465, 1992.

[19] Matthew W. Moskewicz, Conor F. Madigan, and Ying Zhao et al. Chaff:
Engineering an efficient sat solver. 2001.

[20] P.Cheeseman, B.Kanefsky, and W.M.Taylor. Where the really hard prob-
lems are. Proceedings of the 12th International Joint Conference on Arti-
ficial Intelligence, pages 331–337, 1991.

[21] Ian P.Gent and Toby Walsh. The sat phase transition. Proceedings of 11th
ECAI, pages 105–109, 1994.

[22] Satlib. Benchmark instances and descriptions on the web.
http://www.satlib.org/benchm.html, 2000.

[23] B. Selman and S. Kirkpatrick. Critical behaviour in the computational cost
of satisfiability testing. Artificial Intelligence, 81:273–295, 1996.

[24] Ofer Shtrichman. Tuning sat checkers for bounded model checking. In E.A.
Emerson and A.P. Sistla Eds, Proceedings of Computer Aided Verification
2000 (CAV2000), 2000.

[25] Josh Singer, Ian Gent, and Alan Smaill. Backbone fragility and the local
search cost peak. Journal of Artificial Intelligence Research, 12:235–270,
2000.

