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Abstract

In this paper, the theory of generic structures is put in a general, unified
framework. The framework is applied to Hrushovski’s [8] universal domains and
Poizat’s [11] bicoloured fields. Of particular interest will be the conditions under
which generic structures are saturated.

Introduction

Generic structures have found wide application in contemporary research in model
theory. Most of it stems from two seminal papers by Hrushovski [6, 7] in which he adapts
Fräıssé’s [4] generic construction to refute conjectures by Lachlan and Zil’ber. More
recently, Hrushovski’s techniques have been adapted by Poizat [11, 12], Baudisch [3],
Baldwin [1], and Baldwin and Holland [2] among others to construct a variety of ω-
stable generic structures.

Fräıssé’s original notion of a generic structure in [4] is that of a countable universal-
homogeneous structure with respect to a class K of finite relational structures.
Hrushovski and his followers replace the substructure relation by stronger relations
(usually denoted by 6) and adapt the definitions of universality and homogeneity ac-
cordingly.

Keuker and Laskowski [9] investigate the theory of generic structures in this context.
Wagner [14] looks at the relation between generic structures and notions of closure,
dimension and independence which are related to the relation 6. In both cases (and
in all cases I’ve come across) attention is restricted to classes of finite structures.

In this paper, the theory of generics is put in a general, unified framework. The
class K is no longer required to contain only finite structures and generic structures
may be uncountable. As the definitions will make clear, genericity will be regarded as
a weaker form of saturation. Unsurprisingly, the conditions under which generics are
actually saturated will be of particular interest.

∗This was a Master’s thesis written at the University of Amsterdam.
†I am hugely indebted to my supervisor Domenico Zambella who spent many hours of his valuable

time discussing problems with me and whose guidance has been invaluable.
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A general notion of morphism is taken as primitive rather than the more restrictive
relation 6 which is treated as derived. In part I, an axiomatisation for morphisms is
provided and many of the standard results regarding generics are generalised to higher
cardinalities. In part II, the nice case of morphisms as ∆-elementary maps for a certain
class of formulas ∆ is considered. It is shown that Hrushovski’s [8] universal domains
are examples of generic structures and conditions for their saturation are investigated.

Part III applies the framework of this paper to a sample of recent research in the
construction of ω-stable structures, viz. Poizat’s [11] bicoloured fields (or - negligibly
more general - bicoloured strongly minimal structures). Constructions of this type yield
very interesting and important results and it is therefore important that our framework
is applicable to them. Aside from this fact, Poizat’s construction is of interest also
purely in the context of this paper, for it provides an example of morphisms which
are not ∆-elementary for some ∆.1 As will become evident, proving the saturation of
generic structures in this context can be far from trivial.

I General theory of generics

After defining the central notions of this paper - that of a morphism and that of a
generic structure - we prove some essential results and give some examples.

Throughout, L will denote a fixed countable language. We also fix a class of L-
structures K closed under isomorphism and elementary substructure. Henceforth, by
‘structure’ - or ‘model’ if K is elementary - we shall mean an element of K.

§1 Morphisms

For each pair M,N ∈ K we associate a set of morphisms MorK(M,N ) (we shall
usually omit the subscript). The sets Mor(M,N ) satisfy the following axioms.

M1 Mor(M,N ) 6= ∅.
M2 Every f ∈ Mor(M,N ) is a partial isomorphism f : M → N .

M3 If f : M → N is a partial elementary map, then f ∈ Mor(M,N ).

M4 If f ∈ Mor(M0,M1) and g ∈ Mor(M1,M2), then gf ∈ Mor(M0,M2).

M5 If f ∈ Mor(M,N ), then f−1 ∈ Mor(N ,M).

M6 If f ∈ Mor(M,N ), then for any set A, the restriction map f ¹A∈
Mor(M,N ).

We write M 6 N if M⊆ N and idM ∈ Mor(M,N ).

1Or are they? See the concluding remarks.
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Remarks

1. M3 and M4 ensure that 6 is reflexive and transitive.

2. The addition of M5 and M6 gives us the following useful properties.

• If f ∈ Mor(M,N ), M 6 M′ and N 6 N ′, then f ∈ Mor(M′,N ′).

• If f ∈ Mor(M,N ), dom f ⊆M′ 6 M and im f ⊆ N ′ 6 N , then
f ∈ Mor(M′,N ′).

• If M⊆ N ⊆ N ′ and M 6 N ′, then M 6 N if and only if N 6 N ′.

3. M1 and M6 ensure that id∅ ∈ Mor(M,N ).

We say f ∈ Mor(M,N ) is an embedding if dom f = M . That is, an embedding is a
total morphism. We shall write f : M→ N for a morphism and f : M ↪→ N for an
embedding. Note that f : M ↪→ N if and only if f : M∼= M′ 6 N for M′ = im f .

§2 Genericity

An infinite structure G is said to be generic if it satisfies the following conditions.

G1 (Homogeneity) Every morphism f : G → G with |dom f | < |G| extends
to an automorphism of G.

G2 (Universality) If M is a structure with |M | ≤ |G|, then there is an
embedding f : M ↪→ G.

We isolate the following useful property which will turn out to be equivalent to gener-
icity.

(1.1) If M is a structure with |M | ≤ |G| and f : M → G is a morphism
with |dom f | < |G|, then f extends to an embedding F : M ↪→ G.

§3 Uniqueness

We will show that two generics of the same cardinality are isomorphic.

Lemma 1.1 If M and N are two structures of the same cardinality satisfying (1.1)
and f : M→N is a morphism with |dom f | < |M |, then f extends to an isomorphism
F : M∼= N .

Proof. First assume that M and N are countable. Let {ai}i<ω and {bi}i<ω be enumer-
ations of M \ dom f and N \ im f respectively. We will construct the isomorphism F
as the limit of a chain of morphisms (fi : i < ω) where |dom fi| is finite for each i. We
put f0 = f . Assume that a chain (fi : i ≤ n) as above has already been constructed.

Suppose n is even. By (1.1), we can extend fn : M → N to an embedding Fn :
M ↪→ N . Let a be the element with least index in M \dom fn. We define fn+1 : M→
N as Fn ¹dom fn∪{a}. By M6, fn+1 is a morphism. Clearly |dom fn+1| is finite.
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Now suppose n is odd. Again, by (1.1), we can extend f−1
n : N → M to an

embedding F ′
n : N ↪→M. Let b be the element with least index in N \ im fn. Define

fn+1 = (F ′
n ¹im fn∪{b})

−1.
Define F =

⋃
i<ω fi which is clearly an isomorphism between M and N .

Now assume that |M | = |N | = κ where κ is an uncountable cardinal. Let {ai}i<κ

and {bi}i<κ be enumerations of M \ dom f and N \ im f respectively. We will need to
construct a chain of morphisms (fi : i < κ) and a family of morphisms {Fi : i < κ} in
parallel.

We define
f0 = F0 = f

Let α < κ be an ordinal and assume that the chain (fi : i ≤ α) and the family
{Fi : i ≤ α} of morphisms have already been constructed satisfying

• Fi ⊆ Fi+1 for each i.

• |dom fi+1 \ dom fi| = 1 and |dom Fi| < κ for each i.

• fi ⊆ Fi for each i and Fδ = fδ =
⋃

i<δ fi at limits δ.

• dom Fβ is the universe of an elementary substructure of M when β is an
odd successor.

• im Fβ is the universe of an elementary substructure of N when β is an even
successor.

Suppose that α is even. Extend Fα to an embedding F ′
α : M ↪→ N by (1.1). Let

a be the element with least index in M \ dom fα and let A ⊇ dom Fα ∪ {a} be the
universe of an elementary substructure of M of cardinality < κ. Define

Fα+1 = F ′
α ¹A and fα+1 = F ′

α ¹dom fα∪{a}

Now suppose α is odd. Extend F−1
α to an embedding F ′′

α : N ↪→M. Let b be the
element with least index from N \ im fα and let B ⊇ im Fα ∪ {b} be the universe of an
elementary substructure of N of cardinality < κ. Put

Fα+1 = (F ′′
α ¹B)−1 and fα+1 = (F ′′

α ¹im fα∪{b})
−1

Finally, let δ < κ be a limit ordinal and assume that the chain (fi : i < δ) and
family {Fi : i < δ} satisfy all the conditions above. We define F∗ =

⋃
i<δ Fi. Clearly

F∗ is a partial elementary map which is a morphism by M3. Put

Fδ = fδ =
⋃

i<δ

fi

Then Fδ, being the restriction of F∗ is also a partial elementary map, hence a morphism.
Moreover, |dom Fδ| < κ.

By putting F =
⋃

i<κ fi we get an isomorphism between M and N as required. ¤
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Remark 4. The above proof would have been much simpler if we had assumed that
|M | was regular or that the union of a chain of morphisms was a morphism. However,
as our proof shows, these assumptions are in fact redundant.

Lemma 1.2 A structure G is generic if and only if it satisfies (1.1).

Proof. (⇒) Assume G is generic. Let M be a structure with cardinality ≤ |G| and let
f : M→ G be a morphism with |dom f | < |G|. By universality, there is an embedding
g : M ↪→ G. So g−1 : G → M is a morphism with domain im g. Consider the
composition morphism fg−1 : G → G. |dom fg−1| = |dom f | < |G|, so by homogeneity
fg−1 extends to an automorphism σ : G ∼= G. Clearly F = σg is the desired embedding.

(⇐) Assume G satisfies (1.1). By putting G = M = N in Lemma 1.1, we see that
G is homogeneous. To see that it’s universal, let M be a structure with |M | ≤ |G| and
extend id∅ : M→ G to an embedding. ¤

Corollary 1.3 Two generics of the same cardinality are isomorphic.

Proof. Let G and G ′ be generic structures of the same cardinality. By Lemma 1.2, they
both satisfy (1.1) and by Lemma 1.1, we can extend id∅ : G → G ′ to an isomorphism.

¤

§4 Elementary equivalence

We will show that any two generics are elementarily equivalent. Here we use the
assumption that K is closed under elementary substructure.

Proposition 1.4 Let M and N be generic structures with |M | ≤ |N |. If f : M →
N is a morphism with |dom f | < |M |, then f extends to an elementary embedding

F : M ≡
↪→ N . In particular, any morphism between generic structures is a partial

elementary map.

Proof. First assume M is countable. Let {ai}i<ω be an enumeration of M \ dom f . Let
odd(ω) be the set of odd numbers in ω and let π : odd(ω)×ω → odd(ω) be a bijection
such that π(i, j) ≥ i.

We will construct an elementary embedding as the union of a chain of morphisms
(fi : M→N )i<ω with |dom fi| finite. We put f0 = f . Assume that a chain (fi : i ≤ n)
as above has already been constructed.

Suppose n is even. Extend fn to an embedding Fn : M ↪→ N . Let a be the element
with least index from M \ dom fn and define

fn+1 = Fn ¹dom fn∪{a}

Now suppose n is odd. Let (ψni : i < ω) be an enumeration of all formulas of
the form ∃xϕ(x, b̄) true in N where b̄ ⊆ im fn. We consider the formula ψjk where
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n = π(j, k). If this formula has a witness in im fn then we simply proceed as in the
even case. However, if ψjk doesn’t already have a witness in im fn, let b be any witness
for ψjk in N \ im fn. By Löwenheim-Skolem downward, there is an N ′ with |N ′| ≤ |M |
s.t. im fn ∪ {b} ⊆ N ′ 4 N . Since K is closed under elementary substructure, N ′ ∈ K.
So by genericity, we can extend f−1

n to an embedding F ′
n : N ′ ↪→ M which can be

written as a morphism F ′
n : N →M. Define

fn+1 = (F ′
n ¹im fn∪{b})

−1

Define F =
⋃

i<ω fi. F is an elementary embedding of M into N since the even
stages ensure totality and the odd stages ensure elementariness.

Now assume M has uncountable cardinality κ and fix an enumeration {ai}i<κ of
M \ dom f . The argument is now similar to that in the proof of Lemma 1.1. Assume
the chain (fi : i ≤ α) and associated family {Fi : i ≤ α} as in Lemma 1.1 have already
been constructed.

If α is even, let a be the element with least index in M \ dom fα and let M′ ∈ K
be an elementary substructure of M containing dom Fα ∪{a} with |M ′| < κ. Let Fα+1

be an embedding of M′ into N extending Fα and put

fα+1 = Fα+1 ¹dom fα∪{a}

If α is odd and im Fα 4 N , simply define Fα+1 = Fα and fα+1 = fα. If im Fα is
not elementary in N , let N ′ ∈ K be an elementary substructure of N containing im Fα

with |N ′| < κ and let F ′
α+1 be an extension of F−1

α to an embedding of N ′ into M. Put
Fα+1 = (F ′

α+1)
−1 and

fα+1 = Fα+1 ¹dom fα∪{b}

where b is any element of dom Fα+1 \ dom fα.
At the limit stage δ < κ we define

Fδ = fδ =
⋃

i<δ

fi

Then we get a partial elementary map Fδ : M → N with |dom Fδ| < κ. At stage κ,
we get the required elementary embedding.

For the ‘in particular’ part, let f : M → N be any morphism between generic
structures M and N . Then, by above, for each finite subset A, f ¹A: M → N is
partial elementary. Hence f itself must be partial elementary. ¤

Corollary 1.5 If G and G ′ are generic structures, then one is elementarily embeddable
in the other. In particular, they are elementarily equivalent.

Proof. By universality, we can always embed one generic into another. By Proposi-
tion 1.4 this embedding must be elementary. ¤
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§5 Saturation

We say that a structure M is weakly saturated if it realises all types p(x̃) over ∅ where x̃
is an infinite tuple of length < |M |. The following two results are true of homogeneous
structures and hence also of generic structures.

Lemma 1.6 Let M be a weakly saturated, homogeneous structure. Then M is satu-
rated.

Proof. Let p(x) be a complete type over ã ⊆ M where `(ã) < |M |. Define

q(x, ỹ) = {ϕ(x, ỹ) : ϕ(x, ã) ∈ p(x)}
Clearly q(x, ỹ) is a type of M over ∅ with `(xˆ̃y) < |M |. By the weak saturation of M,
q(x, ỹ) is realised inM by a tuple (c, b̃). The map f : b̃ 7→ ã defines a partial elementary
map f : M→M. By the homogeneity of M, f extends to an automorphism F : M∼=
M. Hence F (c) realises p(x) in M. ¤
Corollary 1.7 Let M be a homogeneous structure. If ThM is |M |-categorical, then
M is saturated.

Proof. Suppose ThM is |M |-categorical. Let p(x̃) be a type over ∅ with `(x̃) <
|M |. Then p(x̃) is realised in a structure N ≡ M with |N | = |M |. Hence, by |M |-
categoricity, N ∼= M and p(x̃) is also realised in M. So M is weakly saturated and by
Lemma 1.6, M must be saturated. ¤
The following lemmas show that if one generic structure is κ-saturated, then they all
are.

Lemma 1.8 Let G be a κ-saturated generic. If G ′ is generic with |G′| ≤ κ, then G ′ is
saturated.

Proof. Let p(x) be a type of G ′ over a set A ⊆ G′ with |A| < |G′|. By Corollary 1.5,
we may assume that G ′ 4 G. By the κ-saturation of G, p(x) is realised in G by an
element b. By Löwenheim-Skolem downward, there is an M with |M | ≤ |G′| satisfying
A∪{b} ⊆ M 4 G. By the genericity of G ′, there is an embedding f : M ↪→ G ′ fixing A.
We can write f as a morphism f : G → G ′. By Proposition 1.4, f is partial elementary.
Hence f(b) realises p(x) in G ′. I.e., G ′ is saturated. ¤
Lemma 1.9 Let G be a κ-saturated generic. If G ′ is generic with |G′| > κ, then G ′ is
also κ-saturated.

Proof. Let p(x) be a type of G ′ over a set A ⊆ G′ with |A| < κ. By Löwenheim-Skolem
downward, there is a structure M with |M | ≤ κ s.t. A ⊆M 4 G ′. By the universality
of G, there is an embedding f : M ↪→ G which we can write as f : G ′ → G. By
Proposition 1.4, f is partial elementary. By the κ-saturation of G, the conjugate type
f(p) is realised in G by an element b. By Löwenheim-Skolem downward, there is an
N with |N | ≤ κ satisfying f [A] ∪ {b} ⊆ N 4 G. By the genericity of G ′, we can
extend f−1 ¹f [A] to an embedding g : N ↪→ G ′ which we can write as g : G → G ′. By
Proposition 1.4, g is partial elementary, hence g(b) realises p(x) in G ′. ¤
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§6 Amalgamation & existence

A subclass K0 ⊆ K is said to be an amalgamation class if the following amalgamation
property holds.

AP If M,N ∈ K0 and f : M → N is a morphism, then there is an
N ′ ∈ K0 with N 6 N ′ and there is an embedding F : M ↪→ N ′

extending f .

K0 is inductive (in K) if it satisfies the following condition.

IND If Mi ∈ K0 and Mi 6 Mj for each i ≤ j < κ, then
⋃

i<κMi ∈ K
and Mj 6

⋃
i<κMi for each j < κ.

K0 is said to be initial if whenever M ∈ K0 and N ∈ K s.t. |N | < |M |, also
N ∈ K0. K0 is bounded if there is a cardinal κ (an upper bound) s.t. for every M∈ K0,
|M | ≤ κ. An upper bound κ is a strict upper bound if it is an upper bound but no
structure M ∈ K0 satisfies |M | = κ. K0 is strictly bounded if it is bounded and its
least upper bound is strict. K0 is inductively bounded if it is bounded and whenever
M ∈ K has cardinality equal to the least upper bound of K0, M is embedded in the
union of a 6-chain in K0. Finally, we write I(K0) for the number of isomorphism types
in K0.

The following theorem is a generalisation of a construction due to Fräıssé [4].

Theorem 1.10 Let K0 ⊆ K be a bounded, initial, inductive amalgamation class. As-
sume the least upper bound of K0 is a regular cardinal κ which is a strict bound if κ
is uncountable and an inductive bound if κ is countable. Assume further that for all
M,N ∈ K0, |Mor(M,N )| ≤ κ and I(K0) ≤ κ. Then there is a generic structure
G ∈ K of cardinality κ.

Proof. We will construct a 6-chain (Mi : i < κ) in K0 satisfying

(1.2) If A ∈ K0 and f : A →Mi, then there is a j ≥ i and an embedding
F : A ↪→Mj extending f .

Let π : κ × κ → κ be a bijection such that π(i, j) ≥ i and let P be a set containing
exactly one representative for each isomorphism type in K0. We construct the chain
by induction as follows. Let M0 be an arbitrary structure from K0. Assume the
continuous 6-chain (Mi : i ≤ α) in K0 has already been constructed. Enumerate as
((Aαi, fαi) : i < κ) all pairs (A, f) s.t. A ∈ P and f : A → Mα. If α = π(β, γ), we
choose Mα+1 > Mα by AP using the morphism fβγ : Aβγ →Mα.

At limit ordinals δ < κ we simply put Mδ =
⋃

i<δ Mi. By inductiveness, Mδ ∈ K
and for each i < δ, Mi 6 Mδ. As κ is regular and is a strict bound, |Mδ| < κ. As κ is
the least upper bound of K0 and K0 is initial, we must have Mδ ∈ K0.

By induction we get a 6-chain (Mi : i < κ) with Mi ∈ K0 for each i satisfying
(1.2). So if we put G =

⋃
i<κMi, inductiveness yields G ∈ K and Mi 6 G for each

i < κ. Obviously |G| = κ.
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We claim G is generic. To see this, let M be a structure with |M | ≤ κ and let
f : M → G be a morphism with |dom f | < κ. If M ∈ K0, then, by (1.2), we have
taken care to extend f to an embedding of M into G at some stage of the construction.
So we may suppose that M /∈ K0. This implies |M | = κ since K0 is initial.

First assume κ = ℵ0. Since ℵ0 is an inductive bound, M 6 A =
⋃

i<ω Ai where each
Ai ∈ K0 and Ai 6 Aj 6 A for i ≤ j < ω. We’ll construct an embedding F : A ↪→ G
as the limit of a chain of morphisms. F ¹M will then be the required embedding of
M into G. Note that dom f ⊆ Ak for some k. So let fk be the extension of f to an
embedding of Ak into G. Assume that the chain (fi : k ≤ i ≤ n) has already been
constructed where dom fi = Ai for each i. By (1.2), we have already extended fn to an
embedding Fn : An+1 ↪→ G. Put fn+1 = Fn : M→ G. By putting F =

⋃
i<ω fi we get

an embedding of A into G as required.
Now assume κ > ℵ0. Then we can write M =

⋃
i<κAi where each Ai ∈ K0,

Ai 4 Aj for i ≤ j, and dom f ⊆ A0. We can now simply proceed as above, taking
unions at limit stages. ¤

Corollary 1.11 If K is an elementary, inductive amalgamation class and κ is a strongly
inaccessible cardinal, then there exists a generic structure of cardinality κ.

Proof. Put K0 = {M ∈ K : |M | < κ}. Then clearly K0 is an initial, inductive
amalgamation class strictly bounded by κ. So we need only establish that I(K0) ≤ κ
and |Mor(M,N )| ≤ κ.

To see that I(K0) ≤ κ, note that on any set M of cardinality α < κ, there are at
most 2α ways of choosing an interpretation for any nonlogical symbol from L. As L
is countable, there can be at most countably many nonlogical symbols. So there are
at most 2α×ℵ0 = 2α isomorphism types of structure of cardinality α. As κ is strongly
inaccessible, this number is smaller than κ. So there are at most κ×κ = κ isomorphism
types in K0.

Now for |Mor(M,N )| ≤ κ. Let |M | = α and |N | = β. Then |Mor(M,N )| ≤
2α × 2β = 2max{α,β} < κ. This proves the corollary. ¤

§7 Examples

– An unsaturated generic

Let L be the language with a unary function symbol f . Let K be the class of L-
structures M s.t.

For every a ∈ M , there exists an n < ω s.t. fn(a) = a

So every element of M generates a finite cycle

a → f(a) → f 2(a) · · · → fn−1(a) → fn(a) = a

9



Define MorK(M,N ) as the set of partial isomorphisms f : M → N . Then id∅ ∈
Mor(M,N ) since there are no quantifier-free sentences. Define

K0 = {M ∈ K : |M | < ℵ0}
K0 is easily seen to satisfy the hypothesis of Theorem 1.10. We therefore get a countable
generic structure G ∈ K. However, G is not saturated. To see this, put

Φ(x) = {fn(x) 6= x : n < ω}
Φ(x) is easily seen to be a type of G which is omitted.

If we replace ℵ0 by a strongly inaccessible cardinal κ in the definition of K0 we see
that we get a generic structure U ∈ K of cardinality κ. By Lemma 1.8, U is not even
ℵ0-saturated. In fact, U also omits Φ(x).

– A generic countable discrete linear ordering

Let T be the theory of linear orderings and define

K0 = {finite models of T}
Let ∆ be the boolean closure of the set of quantifier free formulas union the set of
formulas

{∃nz(x < z ∧ z < y) : n < ω}
Note that this includes the case n = 0 which says that there are no points between x
and y. Let K be the closure of K0 under unions of 4∆-chains and define

MorK(M,N ) = {partial ∆-elementary maps f : M → N}
It is relatively straightforward to verify that K0 is as in the hypothesis of Theorem 1.10.
Hence, there is a countable generic linear ordering U ∈ K.

We claim that U is discrete and has no end points. Let a ∈ U and let M be the
linear ordering with universe {a, b} s.t. a < b. Then id{a} : M→ U is a morphism and
hence, by the genericity of U , extends to an embedding F : M ↪→ U . Clearly a < F (b)
and there is no z ∈ U s.t. a < z < F (b). Similarly, there is a c ∈ U s.t. c < a and for
no z do we have c < z < a. So U is indeed discrete and has no end points.

We now show that there are only finitely many points between any two points in
U . Let a, b ∈ U s.t. a < b. Since U ∈ K, we can write U =

⋃
i<ω Mi where the Mi

form a 4∆-chain in K0. Let k be the minimum index such that a, b ∈ Mk. Since Mk

is a finite linear ordering, there must be an n s.t. Mk |= ∃nz(a < z ∧ z < b). Hence,
Mk 4∆ U implies U |= ∃nz(a < z∧ z < b). That is, there are only finitely many points
between a and b.

All this means that U ∼= Z. So obviously U is not saturated. Explicitly: U omits
the type

Φ(x, y) = {∃≥nz(x < z ∧ z < y) : n < ω}
So this is yet another example of an unsaturated generic. We will see examples of

saturated generic structures in II and III.
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II Universal domains

In the last example of part I, we considered a class of morphisms that were ∆-elementary
for some ∆. The generic structure that was obtained - the linear ordering of the integers
- was not saturated. In fact, it omitted a ∆-type. In this part, we examine the case of
morphisms as ∆-elementary maps in more detail, restricting our class K to the model
class of a universal theory. In this context, generic structures realise all ∆-types and
we’ll call them universal domains after Hrushovski [8].

It will turn out that there is a natural property - called quantifier separation - which
determines a necessary and sufficient condition on K for the existence of a universal
domain. The conditions for a universal domain to be saturated will also turn out to be
quite natural. We conclude this section by giving some simple examples.

§1 Basic formulas

Throughout this section we let L be a countable language. We fix a set ∆ ⊆ L of basic
formulas closed under subformulas, substitution of variables and boolean combinations.
We assume further that ∆ contains all quantifier-free formulas. We shall write ∆(A)
for the set of basic formulas with parameters from a set A. Π will denote the set of
universal formulas. I.e., formulas of the form ∀x̄ϕ where ϕ ∈ ∆. Similarly, Σ will
denote the set of existential formulas. All standard notation (such as T∀, tp∃(ā), ≡∃,
4∃ etc.) is interpreted in this context. That is, ∀ always refers to the set Π and ∃ to
the set Σ.

A set defined in some L-structure M by a formula from a set Θ over A ⊆ M is a
Θ-set over A. When Θ = ∆ the corresponding sets will be called basic sets. A subset
A of M is called small if |A| < |M |. A collection Φ of formulas from Θ with parameter
set A will be called small if A is small. A collection of Θ-sets defined by a small set of
formulas will also be called small.

We will write x for a single variable, x̄ for a finite tuple and x̃ for an infinite
tuple. We will write xi for element i of the tuple x̄ or x̃. Let ã be a tuple in an
L-structure M. By the (open) diagram of ã, written diag∆ã, we shall mean the set
{ϕ(x̃) ∈ ∆ : M |= ϕ(ã)}. If ã enumerates M we will also sometimes write simply
diag∆M. If a structure N satisfies diag∆ ã at a tuple b̃, then the partial function
f : M → N defined by f(ai) = bi is clearly a partial ∆-elementary map from M to N .

There will be times when we need to consider the full diagram of a tuple ã. This is
simply the set of L(ã) sentences {ϕ(ã) ∈ ∆(ã) : M |= ϕ(ã)}. We will denote this set
by Diag∆ã or Diag∆M when ã enumerates M .

§2 Morphisms

We fix a theory T deciding all basic sentences. We define

K = Mod T∀
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MorK(M,N ) = {partial ∆−elementary maps from M to N}
Axioms M1-M6 are easily seen to hold noting that nonemptiness is guaranteed by the
fact that id∅ : M→N is partial ∆-elementary since T decides all basic sentences.

Trivially, for all M,N ∈ K,

M 6 N ⇔ M 4∆ N

§3 Morleyisation

Let T be an L-theory deciding all basic sentences. Let ∆1 be the set of formulas in ∆
with at least one free variable (i.e., all formulas that are not sentences). If ϕ ∈ ∆1 has
n free variables, we let Rϕ be an n-ary relation symbol and define

L∆ = L ∪ {Rϕ : ϕ ∈ ∆1}

T∆ = T ∪ {∀x̄(Rϕx̄ ↔ ϕ(x̄)) : ϕ ∈ ∆1}
Then it is clear that any basic formula is equivalent modulo T∆ to a quantifier-free
L∆-formula. Obviously, any L-model of T has a unique expansion to an L∆-model
of T∆. The process of expanding the language and theory in this way is known as
Morleyisation.

There is no loss of generality if the discussion of this section is assumed to take
place in an expanded language and expanded theory of this type: I.e., K = Mod (T∀)∆.
We may therefore safely assume that ∆ is the set of quantifier-free formulas, that
morphisms are partial isomorphisms, and that 6 is simply ⊆. Essential uses of this
assumption (e.g. in §8 when discussing existential closure and model completeness) will
always receive explicit mention.

§4 Universal domains

Following Hrushovski [8], we define a universal domain U as an infinite structure sat-
isfying the following properties.

U1 Th∀ U = T∀.

U2 U is homogeneous.

U3 (Compactness) Every small collection of basic subsets of Un (for finite
n) with the finite intersection property has nonempty intersection.

Clearly compactness is equivalent to the following statement.

(2.1) U realises all basic types over a small set of parameters.

We make some useful remarks about homogeneity and prove a lemma on compactness.
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Remarks

1. If an L-structure M is homogeneous, then for any tuples b̄, c̄ ⊆ M and any small
set of parameters A, if tp∆(b̄/A) = tp∆(c̄/A) then tp(b̄/A) = tp(c̄/A).

2. Let M be a homogeneous structure. For any definable set X over ā, if p(x̄) is a
complete ∆-type over ā, then either p(M) ⊆ X or p(M) ⊆ ¬X. This is an easy
consequence of the previous remark: If p(M) * ¬X then there is a b̄ ⊆ M s.t. b̄ ∈
p(M) ∩ X. Now take any c̄ ∈ p(M). This implies p(x̄) = tp∆(b̄/ā) = tp∆(c̄/ā). The
homogeneity of M implies that tp(b̄/ā) = tp(c̄/ā). Hence c̄ ∈ X.

Lemma 2.1 Let U be a compact structure. Σ-sets in U are compact. I.e., any small
basic covering of an Σ-set has a finite subcover.

Proof. Let X be the set defined by the existential formula ∃ȳψ(x̄, ȳ). Let C be a small
basic covering of X so that X ⊆ ⋃

C. Put Φ(x̄) = {¬ϕ(x̄) : ϕ(U) ∈ C}. Suppose
Φ(x̄) ∪ {ψ(x̄, ȳ)} is finitely satisfied in U . Then by compactness, Φ(x̄) ∪ {ψ(x̄, ȳ)} is
realised in U . I.e. X ∩⋂{¬ϕ(U) : ϕ(U) ∈ C} 6= ∅ which is a contradiction. So there are
finitely many formulas ¬ϕ0(x̄), . . . ,¬ϕn−1(x̄) ∈ Φ(x̄) such that {∧i<n ¬ϕi(x̄), ψ(x̄, ȳ)}
is not satisfied in U . I.e., U |= ∀x̄(∃ȳψ(x̄, ȳ) → ∨

i<n ϕi(x̄)). Hence X ⊆ ⋃
i<n ϕi(U). ¤

§5 Genericity

We’ll show that the universal domains are precisely the generic structures. But first a
lemma.

Lemma 2.2 Let U be a universal domain. Let x̃ be an infinite tuple of length ≤ |U |
and Φ(x̃) a small set of existential formulas finitely satisfied in U . Then Φ(x̃) is realised
in U .

Proof. It is enough to prove the lemma for a small set of basic formulas Φ(x̃). For
suppose that Φ(x̃) is a small set of existential formulas as in the hypothesis. Then we
can replace all existentially quantified variables with new free variables, resulting in a
set Θ(x̃, ỹ) finitely satisfied in U with |ỹ| ≤ |U |. Let z̃ be a tuple well-ordering x̃ ∪ ỹ.
Then |z̃| ≤ |U | and we have reduced the problem to a small set of basic formulas Θ(z̃).

So let Φ(x̃) be a small set of basic formulas with parameters from A. Put κ = `(x̃).
Let Φ(ãα) be the result of replacing the first α variables in Φ(x̃) with a sequence ãα

of length α. Suppose a sequence ãα = (ai : i < α) (where α < κ) of parameters have
already been chosen such that Φ(ãα) is finitely satisfiable in U . Let xα be the next free
variable in the tuple x̃. The set

Ψ(xα) = {ϕ(xα) ∈ ∆(A, ãα) : Th∀(U , A, ãα) ∪ Φ(ãα) ` ϕ(xα)}

is small. Each ϕ(xα) ∈ Ψ(xα) is a consequence of finitely many formulas in Th∀(U , A, ãα)∪
Φ(ãα). As Φ(ãα) is finitely satisfied in U (by hypothesis) each ϕ(xα) must be satisfied
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in U . This implies Ψ(xα) is finitely satisfied in U as it is closed under conjunctions. By
compactness, Ψ(xα) is realised in U by some aα ∈ U .

Let ψ(xα, ȳ, ā) be a basic formula with ā ⊆ A ∪ ãα s.t. Φ(ãα) ` ψ(xα, ȳ, ā) and
suppose that U |= ∀ȳ¬ψ(aα, ȳ, ā). By Remark 2 the complete ∆-type p(xα) of aα

over ā satisfies p(U) ⊆ ∀ȳ¬ψ(U , ȳ, ā). So by Lemma 2.1 there is a basic formula
θ(xα, ā) ∈ p(xα) such that ∃ȳψ(U , ȳ, ā) ⊆ ¬θ(U , ā). I.e.,

U |= ∀xαȳ(ψ(xα, ȳ, ā) → ¬θ(xα, ā))

As Φ(ãα) ` ψ(xα, ȳ, ā) this means Th∀(U , A, ãα) ∪ Φ(ãα) ` ¬θ(xα, ā). I.e., ¬θ(xα, ā) ∈
Ψ(xα) and so U |= ¬θ(aα, ā). But this contradicts that θ(xα, ā) ∈ p(xα) = tp∆(aα/ā).
Hence if Φ(ãα) ` ψ(xα, ȳ, ā) then ψ(aα, ȳ, ā) is satisfied in U . But this means that
Φ(ãα) remains finitely satisfied in U if we replace xα with aα.

Let δ ≤ κ be a limit ordinal and suppose that Φ(ãα) is finitely satisfied in U for
each α < δ. Then obviously Φ(ãδ) is finitely satisfied in U . By induction, we get a
realisation ãκ of Φ(x̃). ¤

Proposition 2.3 U is a universal domain if and only if U is generic.

Proof. (⇒) Assume U is a universal domain. We need to establish universality. To
this end, let M ∈ K be s.t. |M | ≤ |U |. Suppose there is a ϕ(x̄) ∈ diag∆M such that
U |= ∀x̄¬ϕ(x̄). Then also M |= ∀x̄¬ϕ(x̄) as M |= Th∀ U . But this is a contradiction.
So diag∆M is finitely satisfied in U . By Lemma 2.2 diag∆M is realised in U . Hence
M ↪→ U .

(⇐) Assume U is generic. We first prove U1. Obviously T∀ ⊆ Th∀ U since U ∈ K.
So we need only establish Th∀ U ⊆ T∀. To this end, Let M |= T∀. Then there is an
elementary substructure N 4 M with |N | ≤ |U | s.t. N ↪→ U . So U V∀ M. Hence
Th∀ U ⊆ T∀ as required.

It now suffices to establish compactness. To this end, let Φ(x̄) be a small collection
of basic formulas over A finitely satisfied in U . There is an elementary extensionM < U
of cardinality |U | realising Φ(x̄). I.e., M |= Φ(ā) for some ā ⊆M. By the universality
of U , there is an embedding f : M ↪→ U . Hence f(ā) ∈ U realises the conjugate type
f(Φ) over f [A]. Since U 4 M, f ¹A: U → U is a morphism. By the homogeneity of U ,
there is a σ ∈ AutU extending f ¹A. So U |= Φ(σ−1f(ā)). ¤

§6 Quantifier separation

Following Hrushovski [8], we say T admits quantifier separation if, whenever ϕ(x̄) is
existential and ψ(x̄) universal such that

T ` ∀x̄(ϕ(x̄) → ψ(x̄))

there is a basic formula θ(x̄) s.t.

T ` ∀x̄(ϕ(x̄) → θ(x̄)) and T ` ∀x̄(θ(x̄) → ψ(x̄))
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Note that the formulas on the right hand side of the above turnstiles are all universal
formulas. The following lemma is immediate from the definitions.

Lemma 2.4 Let U be a universal domain. Then T admits quantifier separation if and
only if whenever X and Y are disjoint Σ-sets of U over ∅, there is a basic set Z over
∅ such that X ⊆ Z and Y ∩ Z = ∅. ¤

Proposition 2.5 Let U be a universal domain. Then
(a) Every Σ-set of U over ā is the intersection of a collection of basic sets over ā (which

is therefore small).
(b) T admits quantifier separation.

Proof. (a) Let X be an Σ-set over ā. Let b̄ ∈ ¬X and put pb̄(x̄) = tp∆(b̄/ā). By
Remark 2 we must have pb̄(U) ⊆ ¬X. So X ⊆ ⋃{¬ϕ(U) : ϕ(x̄) ∈ pb̄(x̄)}. By
Lemma 2.1 there is a basic formula θb̄(x̄) ∈ pb̄(x̄) (as pb̄(x̄) is complete) such that
X ⊆ ¬θb̄(U). So we have X =

⋂{¬θb̄(U) : b̄ ∈ ¬X}.
(b) Let X and Y be disjoint Σ-sets of U over ∅. Then by (a) X =

⋂
C and Y =

⋂
D

where C and D are collections of basic sets over ∅. As
⋂{C,D} = ∅, compactness implies

that there are basic sets X ′ ⊇ ⋂
C and Y ′ ⊇ ⋂

D such that X ′ ∩ Y ′ = ∅. So X ⊆ X ′

and X ′ ∩ Y = ∅. By Lemma 2.4 this means T admits quantifier separation. ¤

Remark 3. Clearly, we also have that ThU admits quantifier separation.

§7 Amalgamation & existence

The property IND from I, §6 is immediately verified on K. We now verify AP.

Lemma 2.6 Assume T admits quantifier separation. Then K is an amalgamation
class.

Proof. Let M,N ∈ K and let f : M → N be a morphism. Let ã, b̃ and c̃ be tuples
enumerating dom f , M \ dom f , and N \ im f respectively. Bear in mind that ã could
be empty. Let

p(x̃, ỹ) = {ϕ(x̃, ỹ) ∈ ∆ : M |= ϕ(ã, b̃)}
and

q(x̃, z̃) = {ϕ(x̃, z̃) ∈ ∆ : N |= ϕ(f(ã), c̃)}
Suppose that T ∪ p(x̃, ỹ) ∪ q(x̃, z̃) is unsatisfiable. Then, by compactness, there are
formulas ϕ(x̄, ȳ) ∈ p(x̃, ỹ) and ψ(x̄, z̄) ∈ q(x̃, z̃) such that T ∪ {ϕ(x̄, ȳ), ψ(x̄, z̄)} is
unsatisfiable. I.e., T ` ∀x̄(∃ȳϕ(x̄, ȳ) → ∀z̄¬ψ(x̄, z̄)}). By quantifier separation this
implies that

T ` ∀x̄(∃ȳϕ(x̄, ȳ) → θ(x̄)) and T ` ∀x̄(θ(x̄) → ∀z̄¬ψ(x̄, z̄))

for some basic formula θ(x̄). Let ā be the tuple from dom f such that M |= ∃ȳϕ(ā, ȳ)
and N |= ∃z̄ψ(f(ā), z̄). Then we have M |= θ(ā) and N |= ¬θ(f(ā)). But this means
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that M |= θ(ā) and M |= ¬θ(ā) which is a contradiction. So there is a structure
N ′ satisfying T ∪ p(x̃, ỹ) ∪ q(x̃, z̃). So N ′ ∈ K and N ′ |= p(d̃, r̃) ∪ q(d̃, s̃) for some
d̃, r̃, s̃ ⊆ N ′. Now define the map g : M → N ′ by g(ai)) = di and g(bi) = ri. Define the
map h : N → N ′ by h(f(ai)) = di and h(ci) = si. Then g : M ↪→ N ′, h : N ↪→ N ′ and
g ¹dom f= hf . By isomorphic correction we can ensure that N 6 N ′. ¤

Remark 4. Note that the proof goes through just as well for K = Mod T . By Remark
3, we have that ThU (or rather, its model class) has the amalgamation property. This
fact will be used in the proof of Proposition 2.10.

By Corollary 1.11 there exists a universal domain of strongly inaccessible cardinality
provided T admits quantifier separation. By Proposition 2.5(b), we get the following
equivalence.

Proposition 2.7 T admits quantifier separation if and only if there exists a universal
domain. ¤

§8 Model completeness

In the following results we make explicit reference to the process of Morleyisation from
§3.

Proposition 2.8 A universal domain is an existentially closed L∆-model of (T∀)∆.

Proof. Let U be a universal domain and M any other model of T∀ such that U 6 M.
Then, by Löwenheim-Skolem downward, there is an N 4 M s.t. |N | = |U | and U 6 N .
By universality, there is an embedding f : N ↪→ U .

If ψ(x̄) is a basic formula, then U |= ψ(ā) if and only if N |= ψ(ā) if and only if
U |= ψ(f(ā)). So for any ā ⊆ U , tp∆(ā) = tp∆(f(ā)) and hence, by the homogeneity
of U (and Remark 1), tp(ā) = tp(f(ā)).

Let ā ⊆ U and ϕ(x̄) be an existential formula s.t. M |= ϕ(ā). Then N |= ϕ(ā) and
so U |= ϕ(f(ā)). This implies, by above, that U |= ϕ(ā).

So we’ve established that U 6 M implies U 4∃ M as required. ¤

The following theorem is due to A. Robinson and will be useful in §9. Its proof can be
found in any introductory text such as [13].

Theorem 2.9 The following are equivalent for any L-theory T .
(i) T∆ is a model complete L∆-theory.
(ii) If M |= T then T ∪Diag∆M is a complete L(M)-theory.
(iii) If M,N |= T and M 6 N , then M 4∃ N .
(iv) If M,N |= T and M 6 N , then M 4 N .

(v) If M,N |= T and f : M ↪→ N , then f : M ≡
↪→ N . ¤
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§9 Elimination & saturation

The following results show how smooth the theory is when morphisms are ∆-elementary
maps.

Proposition 2.10 A universal domain is saturated if and only if ThU admits ∆-
elimination.

Proof. (⇒) We first show that (ThU)∆ is a model complete L∆-theory. Let M,N |=
ThU s.t. M 6 N . Let ϕ(x̄) be an existential formula. By Proposition 2.5(a), ϕ(x̄)
is U -equivalent to a set of basic formulas Φ(x̄). So if ā ⊆ M s.t. N |= ϕ(ā), then
N |= Φ(ā). But this means that M |= Φ(ā) since M 6 N . Let M′ 4 M s.t. ā ⊆ M ′

and |M ′| ≤ |U |. By the saturation of U , there is an elementary embedding f : M′ ≡
↪→ U .

So U |= Φ(f(ā)). But this means U |= ϕ(f(ā)). Hence M |= ϕ(ā). So we’ve established
M 4∃ N . By Theorem 2.9, (ThU)∆ is model complete.

We now show that ThU admits ∆-elimination. We need to show that for any
M |= ThU and any ā ⊆ M , ThU ∪ Diag∆ā is a complete L(ā)-theory. Suppose it
is incomplete. Then there is a formula ϕ(ā) such that both ThU ∪ Diag∆ā ∪ {ϕ(ā)}
and ThU ∪Diag∆ā∪{¬ϕ(ā)} are satisfiable. This means there are N ,N ′ |= ThU and
morphisms e : M → N and f : M → N ′ with dom e = dom f = ā s.t. N |= ϕ(e(ā))
and N ′ |= ¬ϕ(f(ā)). Put g = fe−1 : N → N ′. As ThU has the amalgamation
property, there is an M′ |= ThU s.t. N ′ 6 M′ and g extends to an embedding
F : N ↪→ M′. By Theorem 2.9, the model completeness of (ThU)∆ implies that

N ′ 4 M′ and F : N ≡
↪→ M′. But this implies M′ |= ϕ(f(ā)) ∧ ¬ϕ(f(ā)) which is a

contradiction.
(⇐) Assume ThU admits ∆-elimination. Since U realises all ∆-types, it must

realise all types. So U is saturated. ¤

Proposition 2.11 Let U be a universal domain and assume ThU has a saturated
model of cardinality |U |. Then the following are equivalent.
(i) U is saturated.
(ii) All universal domains are saturated.
(iii) All saturated models of ThU are universal domains.

Proof. (i)⇒(ii) Suppose U is saturated. Then ThU admits ∆-elimination. Let V be
any other universal domain. Then V ≡ U . As V realises all ∆-types it therefore realises
all types.

(ii)⇒(i) Trivial.
(i)⇒(iii) Let M be a saturated model of ThU . We need to establish homogeneity.

To this end, let f : M→M be a morphism with small domain. Once again U saturated
implies ThU admits ∆-elimination. Hence f : M→M is partial elementary. By the
saturation of M, f extends to an automorphism of M.

(iii)⇒(i) By hypothesis, ThU has a saturated model V of cardinality |U |. By
assumption V is a universal domain. Hence, by uniqueness U ∼= V and U must also be
saturated. ¤
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§10 Examples

– The countable random graph

Let L be a language with just one binary relation symbol R. Let T be the universal set
of axioms stating that R is irreflexive and symmetric. Models of T are called graphs.
Put K = Mod T and MorK(M,N ) = {partial isomorphisms f : M → N}. Define

K0 = {finite models of T}
Then K0 is easily seen to satisfy the hypothesis of Theorem 1.10. This gives us a unique
countable generic graph G. G is called the random graph. By Proposition 2.5(b), T
admits quantifier separation.

Seeing as our signature is finite, the open diagram of any finite model of T is logically
equivalent to a single formula. So for each M ∈ K0, we let ϕM(x̄) denote the open
diagram of M . Let Tω be the set of sentences

∀x̄(ϕM(x̄) → ∃ȳϕN (x̄, ȳ))

for all M ⊆ N ∈ K0. It is not hard to see that G |= Tω and any countable M |= Tω

is generic. Hence ThG is ℵ0-categorical. By Corollary 1.7 and Proposition 2.10, G is
saturated and ThG admits quantifier elimination.

The random graph G is characterisable by a nice property: A countable graph M
is the random graph if and only if it satisfies

For any disjoint finite sets of vertices X,Y ⊆ M , there is an element
a /∈ X ∪ Y adjacent to all vertices in X and no vertex in Y .

For a proof of this fact see [5].

– The countable generic partial ordering

Let L be the language with a single binary relation symbol < and let T be the universal
theory of partial orderings: I.e., T states that < is irreflexive and transitive. Define
K, MorK(M,N ) and K0 as above. Reasoning analogously to the above example, we
get a countable generic partial ordering U s.t. ThU is ℵ0-categorical. Hence T admits
quantifier separation, U is saturated and ThU admits quantifier elimination.

For any subsets X, Y of a partial ordering M, we define

X < Y ⇔ for every x ∈ X and y ∈ Y , x < y

X ≮ Y ⇔ for every x ∈ X and y ∈ Y , x ≮ y

X | Y ⇔ X ≮ Y and Y ≮ X

When X = {x} we omit the braces and write simply x < Y (or Y < x). The same
goes for ≮ and |.

We claim that a countable partial ordering M is the generic partial ordering if and
only if it has the following property.
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(2.2) For any disjoint finite sets X,Y, Z ⊆ M , satisfying X < Y , Y ≮ Z
and Z ≮ X, there is a point a /∈ X ∪ Y ∪Z s.t. X < a < Y and a | Z.

To see this, first assume M is the countable generic partial ordering U . Let X, Y , Z
be finite subsets of M as in (2.2). Let a be a point disjoint from X ∪ Y ∪ Z and let N
be the partial ordering with universe X ∪ Y ∪ Z ∪ {a} and s.t. X < a < Y and a | Z.
It is easily verified that N , so defined, is indeed a partial ordering. By the genericity
of M, idX∪Y ∪Z : N →M extends to an embedding F : N ↪→M. Hence F (a) satisfies
the conditions in (2.2).

Now for the other direction. Let M be a countable partial ordering satisfying (2.2).
We need to show thatM is the generic U . To this end, let N be a finite partial ordering
and f : N → M a partial isomorphism with dom f = A. We need to extend f to an
embedding F : N ↪→M. It is enough if we consider the case |N \ A| = 1; the rest is
by induction.

So suppose N \ A = {a}. Define

X = {x ∈ A : x < a}
Y = {x ∈ A : a < x}
Z = {x ∈ A : x | a}

Then X ∪ Y ∪ Z forms a partition of A. By transitivity, we must have X < Y ,Y ≮ Z
and Z ≮ X. So also f [X] < f [Y ], f [Y ] ≮ f [Z] and f [Z] ≮ f [X]. By (2.2), there is a
b ∈ M \ f [A] s.t. f [X] < b < f [Y ] and b | f [Z]. Obviously F = f ∪ (a, b) is the desired
embedding.

The property (2.2) implies some further nice properties. Here are a few examples.

• For any finite X ⊆ M , there are a, b ∈ M \X s.t. a < X < b.

• For any finite set X ⊆ M , there is an infinite set Y ⊆ M which is totally
disconnected from X. I.e., X | Y .

We leave the verifications to the reader.

– The countable dense linear ordering without end points

Let L be the language with a single binary relation symbol < and let T be the (universal)
theory of linear orderings. Define K, MorK(M,N ) and K0 as above. Again, it is easy
to see that K0 satisfies the hypothesis of Theorem 1.10. Hence we get a countable
generic linear ordering U . So T admits quantifier separation.

We claim that U is a dense linear ordering without end points. We first establish
density. Let a1, a3 ∈ U s.t. a1 < a3. Let M be a model with universe {b1, b2, b3} s.t.
b1 < b2 < b3. The map f : (b1, b3) 7→ (a1, a3) defines a partial isomorphism f : M→ U .
By genericity f extends to an embedding F : M ↪→ U . Hence a1 < F (b2) < a3.

We now show that U has no end points. Let a1 ∈ U and let M be a model with
universe {b1, b2} s.t. b1 < b2. The map f : b1 7→ a1 defines a partial isomorphism
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f : M→ U which extends to an embedding F : M ↪→ U . Hence a1 < F (b2). So U has
no right end point. A similar argument shows that U has no left end point either.

By Cantor’s theorem U ∼= Q. Hence ThU is ℵ0-categorical. So U is saturated and
ThU admits quantifier elimination.

– The countable dense linear ordering with a left but no right end point

Let L, T , K and K0 be as above. Let ϕ be the formula

∀y(x = y ∨ x < y)

and define ∆ to be the smallest set of formulas containing ϕ and all quantifier-free
formulas which is closed under boolean combinations and substitution of variables.
Put

MorK(M,N ) = {partial ∆-elementary maps f : M → N}
It is easy to see that if a morphism f : M→ N has the minimal element of M in

its domain, then it maps this element to the minimal element of N . Conversely, any
partial isomorphism which maps minimal elements to minimal elements is a morphism.
Given these facts, it is easy to verify the amalgamation property for K0. (The reader
should also check that K0 is inductively bounded.) As usual, this yields a countable
generic linear ordering U .

We first show that U has a left end point. For letM be the linear ordering consisting
of the single point a. Then by universality there is an embedding f : M ↪→ U . Clearly
f(a) is the left end point of U .

We claim that U is dense. Let a1, a3 ∈ U s.t. a1 < a3. Let M be the linear ordering
with universe {b0, b1, b2, b3} s.t. b0 < b1 < b2 < b3. If a1 is a minimal element of U , then
the map f0 : (b0, b3) 7→ (a1, a3) defines a morphism f0 : M→ U . If on the other hand
a1 is no minimal element of U , then the map f1 : (b1, b3) 7→ (a1, a3) defines a morphism
f : M→ U . In each case we get an extension to an embedding Fi : M ↪→ U . Hence
a1 < Fi(b2) < a3.

Similar reasoning shows that U has no right end point. Hence ThU is the complete
theory of dense linear orderings with a left but no right end point. So ThU is ℵ0-
categorical. Hence U is saturated and ThU admits ∆-elimination.

III Bicoloured strongly minimal structures

We now turn to our main application: bicoloured strongly minimal structures. The
morphisms that we shall need to work with will not have a simple definition in terms
of ∆-elementary maps. Our definition of a morphism will require three other notions
which we’ll need to define and study first: predimension, closure and self-sufficiency.
Once our definition of a morphism has been laid down, we will prove the existence of
both a countable and a strongly inaccessible generic structure. We finish by proving
that all generic models are saturated.
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Throughout, we let T be a strongly minimal theory with quantifier elimination in
a countable language L. We assume moreover that models of T have the following
natural algebraic closure property.

ACP acl(X ∪ {a}) \ acl X is either empty or infinite.

This property is satisfied by algebraically closed fields of any characteristic as well as
any structure in which acl ∅ is infinite. ACP of course implies that T has models of
dimension n for each n ≥ 1.

§1 Predimension

Define L0 = L ∪ {P} where P is a new unary predicate. Let T0 be the L0-theory
axiomatised by T and all sentences of the form

(3.1) ∀y1 . . . ym(∃nxϕ(x, y1, . . . , ym) → ∃≤2mx(Px ∧ ϕ(x, y1, . . . , ym))

where 0 < n, m < ω and ϕ ∈ Lm+1. See Lemma 3.1 for the significance of these
sentences. Following Poizat [11], a model M of T0 will be called a bicoloured strongly
minimal structure and the set P (M) will be its set of black points and ¬P (M) its set
of white points.

Henceforth, M, N , etc. will refer to L0-structures that model T . However, all talk
of algebraic closure (acl) and dimension (dim) will be relative to the language L. So
given a structure M, we define a predimension function δ mapping finite dimensional
subsets X of M to the integers by

δM(X) = 2 dimMX − |P (M) ∩X|
I’ll omit the subscript if the ambient model is clear (this goes for all subsequent defini-
tions). The following lemma links δ with T0.

Lemma 3.1 M |= T0 if and only if for all finite dimensional X ⊆ M , δ(X) ≥ 0.

Proof. (⇒) Suppose M |= T0 and let X ⊆ M s.t. dim X = m. Let A be a basis for X.
Suppose δ(X) < 0. Then |P (M)∩X| ≥ 2m+1. Let B = {b1, . . . , b2m+1} ⊆ P (M)∩X.
B ⊆ acl A so for each 1 ≤ i ≤ 2m + 1 there is an algebraic formula ϕi(x) over
A s.t. bi ∈ ϕi(M). Let ϕ(x) =

∨2m+1
i=1 ϕi(x). Then ϕ(x) is algebraic over A but

|P (M) ∩ ϕ(M)| > 2m contradicting (3.1).
(⇐) Let ϕ(x) be algebraic over an m-tuple ā. Let X = ϕ(M). Then δ(X) ≥ 0

implies |P (M) ∩X| ≤ 2 dim X ≤ 2m. ¤

If X and Y are finite dimensional subsets in M, we put

δM(X/Y ) = δM(X ∪ Y )− δM(Y )

Remark 1. Note that δ(X/Y ) = 2(dim(X∪Y )−dim Y )−|P (M)∩X| = 2 dim(X/Y )−
|P (M)∩X|. So if Z ⊆ Y , then dim(X/Y ) ≤ dim(X/Z) and hence δ(X/Y ) ≤ δ(X/Z).
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§2 Closure

Let M |= T0. For a finite dimensional X ⊆ M we define

dM(X) = min{δM(Y ) : X ⊆ Y ⊆ M, dimMY < ℵ0}

This is the d-rank of X. The following defines the closure of X.

clMX =
⋂
{aclMY : X ⊆ Y ⊆ M, dimMY < ℵ0, δ(Y ) = dM(X)}

Remarks

2. Note that if δ(Y ) = d(X) then also δ(acl Y ) = d(X). For dim Y = dim(acl Y )
implies that δ(acl Y ) ≤ δ(Y ). So by minimality δ(acl Y ) = δ(Y ) = d(X). In particular,
acl Y \ Y ⊆ ¬P (M).

3. If P (M) = ∅, then δ(X) = d(X) and so cl X = acl X.

4. If X ⊆ Y then d(X) ≤ d(Y ).

5. acl(cl X) = cl X, X ⊆ acl X ⊆ cl X, and cl(X) = cl(acl X).

6. If X is an infinite but finite dimensional set, then there is a finite A ⊆ X s.t.
δ(X) = δ(A). Just take A to be (P (M)∩X)∪X0 where X0 is a basis for X. Similarly
if Y ⊆ X then there is a finite A ⊆ X \ Y s.t. δ(Y ∪ A) = δ(X).

Lemma 3.2 Let M |= T0 and X be a finite dimensional subset of M . Then δ(cl X) =
d(X).

Proof. Let cl X =
⋂

i∈I Xi where δ(Xi) = d(X) for each i ∈ I. Fix j ∈ I and let
B be a finite subset of Xj \ cl X. Obviously there must be a k ∈ I s.t. B is disjoint
from Xk. By minimality, δ(B ∪ Xk) ≥ δ(Xk). That is, δ(B/Xk) ≥ 0. By Remark 1,
δ(B/cl X) ≥ δ(B/Xk) ≥ 0. Hence δ(B ∪ cl X) ≥ δ(cl X). As B is arbitrary, by
Remark 6, δ(Xj) ≥ δ(cl X). By minimality, δ(cl X) = δ(Xj) = d(X). ¤

We shall write A ⊆0 X for ‘A is a finite subset of X’.

Lemma 3.3 Let M |= T0. For any finite dimensional X,Y ⊆ M , the following hold.
(a) (Reflexivity) X ⊆ cl X.
(b) (Idempotence) cl(cl X) = cl X.
(c) (Monotonicity) If X ⊆ Y , then cl X ⊆ cl Y .
(d) (Finite Nature) cl X =

⋃{cl A : A ⊆0 X}.

Proof. (a) Obvious.
(b) By Remark 5, cl X is algebraically closed. So we need only check that δ(cl X) =

d(cl X). That is, that d(X) = d(cl X). But this is trivial.
(c) Let X ⊆ Y and suppose cl X * cl Y . Then cl X \cl Y 6= ∅. Put X0 = cl X \cl Y

and Y0 = cl Y \X (Y0 could be empty). Then δ(X0 ∪ Y0 ∪X) = δ(cl X) = d(X). Since

22



X0 ∩ acl(X ∪ Y0) = ∅, we have δ(X0 ∪X ∪ Y0) < δ(X ∪ Y0). Hence δ(X0/X ∪ Y0) < 0
and so also δ(X0/cl Y ) < 0. But this is a contradiction.

(d) As X is finite dimensional, there is an A ⊆0 X with acl A = acl X. So
cl A = cl(acl A) = cl(acl X) = cl X. For the other direction, let A ⊆0 X. Then, by
monotonicity cl A ⊆ cl X. This proves the statement. ¤

Let M |= T0. By Lemma 3.3(d) we can consistently make the following definition for
any infinite set X ⊆ M .

clMX =
⋃
{clMA : A ⊆0 X}

Lemma 3.3 now generalises to infinite (particularly infinite dimensional) sets.

Lemma 3.4 Let M |= T0 and suppose X, Y are infinite subsets of M . Then
(a) (Reflexivity) X ⊆ cl X.
(b) (Idempotence) cl(cl X) = cl X.
(c) (Monotonicity) If X ⊆ Y , then cl X ⊆ cl Y .
(d) (Algebraic Closure) acl(cl X) = cl X.

Proof. (a) X =
⋃

a∈X{a} ⊆
⋃

a∈X cl{a} ⊆ cl X.
(b) Let a ∈ cl(cl X). Then a ∈ cl A for some A ⊆0 cl X. This implies A ⊆

cl B1∪· · ·∪cl Bn for Bi ⊆0 X. By monotonicity and idempotence for finite dimensional
sets, A ⊆ cl(B1∪· · ·∪Bn) and cl A ⊆ cl(B1∪· · ·∪Bn) ⊆ cl X. So a ∈ cl X as required.

(c) Let X ⊆ Y . Then cl X =
⋃{cl A : A ⊆0 X} ⊆ ⋃{cl A : A ⊆0 Y } = cl Y .

(d) Let a ∈ acl(cl X). Then a ∈ acl X0 for some X0 ⊆0 cl X. So a ∈ cl X0 ⊆
cl(cl X) = cl X. ¤

Remark 7. Note that cl X is always a substructure since it’s algebraically closed.

§3 Self-sufficiency

Let N |= T0. We write A 6ss N (A is self-sufficient in N ) if A ⊆ N and clNA = A.

Remarks

8. If M,N |= T0 and M ⊆ N then M 4L N . In general, if M 4L N , then for
any subset X ⊆ M , aclMX = aclNX and dimMX = dimNX. So in such cases we
will be able to omit subscripts when talking about algebraic closure or dimension. In
particular, we can usually omit the subscript from δ without risk of confusion.

9. If M,N |= T0 and clNX ⊆ M ⊆ N , then clNX = clMX. Hence, if A ⊆ M ⊆ N
and A 6ss N , then also A 6ss M.

10. If A 6ss N and B 6ss N , then cl(A∩B) ⊆ cl A∩cl B = A∩B and so A∩B 6ss N .
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Lemma 3.5 Let M,N |= T0 and let f : M → N be a partial map with dom f finite.
If f is elementary w.r.t. existential formulas, then f extends to an isomorphism F :
clM(dom f) ∼= clN (im f).

Proof. Put X = dom f and Y = im f . Clearly δ(X) = δ(Y ). We claim that d(X) =
d(Y ). To see this, suppose that d(X) 6= d(Y ). Without loss, we may assume that
d(X) < d(Y ). Then d(X) < d(Y ) ≤ δ(Y ) = δ(X). So there is a tuple of distinct black
points ā = (cl X \X) ∩ P (M) so that cl X = acl(X ∪ ā). In particular, we must have
δ(ā/X) < 0. I.e., dim(ā/X) < |ā|/2. Note that we also have that for any non-trivial
partition of ā into two disjoint subsets ā1 and ā2, δ(ā2 ∪X) > d(X) = δ(ā ∪X). That
is, δ(ā1/ā2 ∪X) < 0.

Put n = |ā| and m = dim(ā/X). Without loss, we may assume that the first m
elements of ā form a basis for ā over X. Let c̄ be an enumeration of X and define
ϕ(x̄, ȳ) to be a formula s.t. M |= ϕ(ā, c̄) which expresses the following.

• ∧n
i=1 Pxi

• The xi’s are distinct from each other and every yj

• ∧n
i=m+1(∃ki

xψi(x, x1, . . . , xi−1, ȳ)∧ψi(xi, x1, . . . , xi−1, ȳ)) where ψi is an al-
gebraic formula isolating the L-type of ai over {a1, . . . , ai−1} ∪X.

• For any non-trivial partition x̄ = x̄1 ∪ x̄2, dim(x̄1/x̄2 ∪ ȳ) < `(x̄1)/2.

As f preserves existential formulas, N |= ∃x̄ϕ(x̄, f(c̄)). So there is a tuple of distinct
black points b̄ ⊆ N disjoint from Y s.t. dim(b̄/Y ) ≤ dim(ā/X) < |ā|/2 = |b̄|/2. This
implies that δ(b̄ ∪ Y ) ≤ δ(ā ∪X) = d(X) since δ(Y ) = δ(X). I.e. d(Y ) ≤ d(X) which
is a contradiction. So we indeed have d(X) = d(Y ).

If δ(X) = d(X), then cl X = acl X and cl X \X is white. Since d(X) = d(Y ) and
δ(X) = δ(Y ), we must have cl Y = acl Y and cl Y \ Y is also white. Hence, obviously
f extends to an isomorphism F : cl X ∼= cl Y .

Assume now that d(X) < δ(X). Then as above, there is a tuple of distinct black
points ā ⊆ M \X s.t. cl X = acl{X ∪ ā} and a tuple b̄ of distinct black points in N \Y
of the same length s.t. δ(b̄ ∪ Y ) ≤ δ(ā ∪X) = d(X). As d(X) = d(Y ), we must have
δ(b̄ ∪ Y ) = δ(ā ∪X) and so δ(b̄ ∪ Y ) = d(Y ). This means that acl(b̄ ∪ Y ) can contain
no other black point.

Since dim(ā/X) = dim(b̄/Y ), b̄ has a basis over Y of cardinality m. The third
condition on ϕ says that the last n−m elements of b̄ are algebraic over the first m. So
we can take the set {b1, . . . , bm} to be a basis. So by putting f(ai) = bi for 1 ≤ i ≤ m,
we can extend f to a partial isomorphism f : X ∪ {a1, . . . , am} → Y ∪ {b1, . . . , bm}.
Since we have taken the ψi to isolate the types of the ai over {a1 . . . , ai−1}, we can
extend f even further to a partial isomorphism f : X ∪ ā → Y ∪ b̄. It follows that we
can extend f to an isomorphism F : cl X ∼= acl(Y ∪ b̄). We now only need to show that
acl(Y ∪ b̄) = cl Y and we’re done.
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This is where the remaining condition on ϕ comes into play. Whenever we split b̄
into two disjoint subsets b̄1 and b̄2, we have δ(b̄1 ∪ Y ) > d(Y ). Since d(Y ) < δ(Y ), no
tuple of black points d̄ outside acl(b̄∪Y ) can satisfy δ(d̄∪Y ) = d(Y ). So we must have
that cl Y = acl(b̄ ∪ Y ). This establishes the result. ¤

Corollary 3.6 If M 4∃ N |= T0, then also M 6ss N .

Proof. We need to show that for every finite A ⊆0 M , clNA ⊆ M . So let A be any
such finite subset. Since idA : M → N is partial ∃-elementary, Lemma 3.5 implies that
there is an isomorphism f : clMA ∼=A clNA. Since dimN (clNA) = dimN (clMA), we
must have dN (A) = δ(clNA) = δ(clMA). Hence clNA = clMA ⊆ M . ¤

§4 Morphisms

We define
K = Mod T0

MorK(M,N ) =

{
partial maps f : M → N which extend to
an isomorphism F : clM(dom f) ∼= clN (im f)

}

We now verify axioms M1 -M6.

M1: Note that M,N ∈ K implies that M≡L N . Since δ(∅) = 0, clM∅ and clN∅ must
both be white and equal to their algebraic closures. Hence there is an isomorphism
f : clM∅ ∼= clN∅. That is, id∅ ∈ Mor(M,N ).

M2: This is immediate from the definition.

M3: Let f : M → N be a partial elementary map. We may assume that f is idA :
M → N for some set A. By elementary amalgamation, M and N are both elementary
substructures of a larger structure M∗. By Corollary 3.6, M 6ss M∗ and N 6ss M∗.
Hence clM∗A = clMA = clNA. So the required extension of f is simply the identity on
clMA.

M4: Let f : M0 → M1 and g : M1 → M2 be morphisms and put im f = X,
dom g = Y . Without loss, we may assume that dom f,X, Y, im g are all self-sufficient.
We have dom gf = f−1[X ∩ Y ] and im gf = g[X ∩ Y ]. Since X ∩ Y 6ss M1, we must
have dom gf 6ss M0 and im gf 6ss M2 as required.

M5: Immediate.

M6: This is also immediate.

Clearly, for all M,N ∈ K,

M 6 N ⇔ M 6ss N
To simplify notation, we shall henceforth only ever write M 6 N , even when M is a
self-sufficient substructure which isn’t necessarily in K.

The following lemma gives a useful characterisation of types in a generic model.
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Lemma 3.7 Let G be a generic model. For any set A of cardinality < |G| and any
tuples ā, b̄ ∈ Gn, tp(ā/A) = tp(b̄/A) if and only if there is an isomorphism f : cl(A ∪
ā) ∼= cl(A ∪ b̄) s.t. f(ā) = b̄ and f ¹A= id.

Proof. (⇒) If tp(ā/A) = tp(b̄/A), then the map f : ā∪A → b̄∪A fixing A and taking ā
to b̄ is partial elementary. Hence f extends to an isomorphism F : cl(A∪ ā) ∼= cl(A∪ b̄).

(⇐) Let f be as in the hypothesis. Then, by homogeneity, f extends to an auto-
morphism of G. Hence tp(ā/A) = tp(b̄/A). ¤

§5 Amalgamation & existence

We first verify the property IND.

Lemma 3.8 If Mi ∈ K and Mi 6 Mj for i ≤ j < ξ, then for each k < ξ, Mk 6⋃
i<ξ Mi |= T0.

Proof. Define M =
⋃

i<ξ Mi. Clearly M |= T0 since M |= T and every finite subset
X ⊆0 M is contained in some Mi, yielding δ(X) ≥ 0.

Fix a k < ξ. Let A ⊆0 Mk. Since clMA is finite dimensional, clMA ⊆ Mj for some
j > k. Hence clMA = clMj

A. But this means clMA ⊆ Mk since Mk 6 Mj. ¤

We define
K0 = {M ∈ K : dim M < ℵ0}

For convenience, we define K1 = K. We now verify AP for Kσ (σ = 0, 1).
Let M,N ∈ Kσ and let A = M∩N . Suppose further that A 6 M and A 6 N .

We construct the free amalgam of M and N over A in three steps.

Step 1: LetM be a large saturated (or, equivalently, large infinite dimensional) model
of T containing M. Let C ⊆ N \A be independent over A s.t. N = acl(C∪A). Choose
a set C ′ ⊆M \M independent over M with |C ′| = |C|. Put N ′ = acl(C ′ ∪ A).

It is easy to see that N ′ ∩M = A. For suppose that b ∈ (N ′ ∩M) \ A. Let C∗ be
a minimal subset of C ′ s.t. b ∈ acl(A ∪ C∗). Then if c ∈ C∗, b /∈ acl(A ∪ C∗ \ {c}). By
exchange, c ∈ acl(A∪{b}∪C∗\{c}) which contradicts that C ′ was chosen independently
of M .

It is clear that our choice of N ′ ensures that for any X ⊆ N ′ \ A and Y ⊆ M \ A,
dim(X/A) = dim(X/A ∪ Y ) and (by exchange) dim(Y/A) = dim(Y/A ∪X).

Step 2: As N ′ is an infinite algebraically closed subset of M, we must have N ′ 4L M.
In particular, N ′ |= T . As dim(N ′/A) = dim(N/A), it follows that there is an L-
isomorphism f : N ∼= N ′ fixing A. By putting P (N ′) = f [P (N )] we make N ′ a
bicolored strongly minimal structure isomorphic to N . So in particular, A 6 N ′.

Step 3: Let M∗ = aclM(M ∪ N ′). Then M∗ is the universe of an L-elementary sub-
structure M∗ of M. So M∗ |= T . By painting M∗ \ (M ∪ N ′) white, we make M∗

an L0-structure. This is the free amalgam of M and N over A. Clearly M∗ is finite
dimensional if M and N are.
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Lemma 3.9 Let M,N ∈ Kσ s.t. M∩N = A, A 6 M and A 6 N . Then there is
an M∗ ∈ Kσ and N ′ ∼=A N s.t. A = M∩N ′, A 6 N ′, M 6 M∗ and N ′ 6 M∗. In
a picture:

A ³³³³1

PPPPq

M

N ′

PPPPq

³³³³1 M∗
6

6

6

6

Proof. Take M∗ to be the free amalgam of M and N over A and take N ′ to be as in
the above construction. We first need to verify that M∗ is indeed a model of T0. That
is, we need to check that δ(X) ≥ 0 when X ⊆0 M∗.

As M∗ \ (M ∪N ′) ⊆ ¬P (M∗), we have δ(X) ≥ δ(X ∩ (M ∪N ′)) for all X ⊆0 M∗.
So we need only consider finite subsets of M ∪ N ′. Let X be such a finite set. Then
X = Xa ∪Xm ∪Xn where Xa ⊆ A, Xm ⊆ M \ A and Xn ⊆ N ′ \ A. A 6 M implies
that δ(clMXa) ≤ δ(clMXa ∪ Xm). That is, δ(Xm/clMXa) ≥ 0. By the choice of N ′,
δ(Xm/clMXa) = δ(Xm/clMXa ∪Xn). So δ(Xm/Xa ∪Xn) ≥ δ(Xm/clMXa ∪Xn) ≥ 0.
Hence δ(Xa ∪Xm ∪Xn) ≥ δ(Xa ∪Xn) ≥ 0 since N ′ |= T0.

We now need to show that M 6 M∗ (and N ′ 6 M∗, but this case is similar). That
is, we need to verify

For every X ⊆0 M, clM∗X ⊆ M

So fix an X ⊆0 M and put Xa = X ∩ A. Let B be a finite set of black points in
N ′ \ B. Then δ(clMXa ∪ B) ≥ δ(clMXa) since A 6 N ′. I.e., δ(B/clMXa) ≥ 0 and
so δ(B/clMX) = δ(B/clMXa) ≥ 0. But this means that clM∗X = clMX ⊆ M as
required. ¤

Lemma 3.10 Kσ is an amalgamation class.

Proof. Let M,N ∈ Kσ and let f : M→ N be a morphism. We need to extend f to
an embedding F : M ↪→ N ′ > N where N ′ ∈ Kσ.

Put X = dom f and Y = im f . Then, f extends to a partial isomorphism f0 :
clMX ∼= clNY . Put A = clNY . By isomorphic correction, we can find an F0 : M∼= M′

extending f0 s.t. A 6 M′ and M ′ ∩ N = A. By Lemma 3.9, there is an M′′, an
isomorphism F1 : M′ ∼=A M′′, and an N ′ ∈ Kσ s.t. M′′ 6 N ′ and N 6 N ′. The
morphism F = F1F0 : M→N ′ is the required embedding. ¤

Proposition 3.11
(a) There exists a strongly inaccessible generic model.
(b) There exists a countable generic model.

Proof. (a) By Lemma 3.10, K is an inductive amalgamation class. By Corollary 1.11,
there exists a generic model of strongly inaccessible cardinality.
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(b) Again, by Lemma 3.10, K0 is an inductive amalgamation class. K0 is also
obviously initial. So we need only establish that K0 is inductively bounded, that
I(K0) ≤ ℵ0 and that for all M,N ∈ K0, |Mor(M,N )| ≤ ℵ0.

We first show K0 is inductively bounded. That is, we need to show that every
countableM∈ K can be written as the union of a 6-chain of finite dimensional models.
To this end, fix an enumeration {ai}i<ω of M . Let A be any independent subset of M
os size ι(T ) and put M0 = cl A. Suppose the chain M0 6 M1 6 · · · 6 Mn has already
been chosen. If Mn = M we can stop. If Mn 6= M , let a be the element with least
index from M \Mn and put Mn+1 = cl(Mn ∪ {a}).

Now for the number of isomorphism types. For each natural number n ≥ ι(T ),
T has (up to isomorphism) exactly one model of dimension n which necessarily has
cardinality ℵ0. Each of these can be made into a model of T0 in at most ℵ0 ways since
the interpretation of P must be finite. Hence T0 has (up to isomorphism) at most ℵ0

finite dimensional models.
Finally, we show that |Mor(M,N ) ≤ ℵ0. Let M,N be finite dimensional models

of T0. Since every substructure of M is generated by a finite set, there are at most
ℵ0 substructures in M. Similarly, there are at most ℵ0 substructures in N . Since
morphisms are partial isomorphisms, |Mor(M,N )| = the number of morphisms f :
M→N with dom f and im f substructures. Hence |Mor(M,N )| ≤ ℵ0 as required. ¤

§6 Saturation

We will show that all generic models of T0 are saturated. In order to prepare the way,
we first need to analyse minimal extensions.

Define M < N as M 6 N but M 6= N . Further, define M <min N if M < N and
there is no M0 s.t. M < M0 < N . If M and N are finite dimensional s.t. M < N ,
then there is a finite tower M = M0 <min M1 <min · · · <min Mn = N (for if this
tower was infinite, then N would have to have infinite dimension).

We distinguish three types of minimal extension M <min N .

Type 1: N \ M ⊆ ¬P (N ). Take any a ∈ N \ M and put M0 = acl(M ∪ {a}). As
N \M is white, we have δ(M0) = dN (M0). I.e., M0 6 N which implies that M0 = N
since M <min N . So dim(N/M) = 1 and δ(N/M) = 2. This type of extension is called
the white generic extension.

Type 2: (N \M)∩P (N ) 6= ∅ and δ(N/M) 6= 0. This implies δ(N/M) > 0 as M 6 N .
Let a ∈ (N \M)∩P (N ) and put M0 = acl(M ∪{a}). Then δ(M) ≤ δ(M0) ≤ δ(M)+1.
δ(M0) = δ(M) implies that M0 6 N and hence M0 = N by minimality. But this
implies δ(N/M) = 0 which is a contradiction. So we must have δ(M0) = δ(M) + 1.

Suppose M0 6= N . Then there is an X ⊆ N \ M0 s.t. δ(X ∪ M0) = δ(M) since
M0 
 N . So, by putting M1 = acl(X ∪M0) we obtain δ(M1) = δ(M) and M1 6 N .
By minimality, M1 = N . But this implies δ(N/M) = 0 which is a contradiction.

So we have M0 = N . Hence δ(N/M) = dim(N/M) = 1 and N \M contains exactly
one black point. This extension is the black generic extension.
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Type 3: (N \M)∩P (N ) 6= ∅ and δ(N/M) = 0. Let X = (N \M)∩P (N ). We must
have N = acl(M ∪X) since M <min N . Hence dim(X/M) = dim(N/M) = |X|/2 since
δ(N/M) = 0. So we also have δ(X/M) = 0.

Partition X into two nonempty disjoint subsets X0 and X1. Suppose δ(X0 ∪M) =
δ(M). Then, if we put M0 = acl(X0 ∪ M), also δ(M0) = δ(M). But this means
M0 6 N . As X1 ⊆ N\M0 we haveM0 6= N which contradictsM <min N . So we must
have δ(X0 ∪M) > δ(M). I.e., δ(X0/M) > 0. As δ(M) = δ(X ∪M) = δ(X0 ∪X1 ∪M),
we also have δ(X1/X0 ∪M) < 0.

Let M <min N be a minimal extension of the third type. (We shall implicitly work
in some monster model of T .) Let ā be the set of black points in N \M with |ā| = 2n.
Let b̄ be a tuple containing a basis for M and all its black points. Define ϕ(x̄, ȳ) as a
formula s.t. ϕ(ā, b̄) which expresses the following.

• The xi’s are distinct from each other and every yj

• dim(x̄/ȳ) ≤ n1

• For any non-trivial partition x̄ = x̄1 ∪ x̄2, dim(x̄1/x̄2 ∪ ȳ) < `(x̄1)/2.

Now let ψ(ȳ) be a formula which defines the set

{c̄ : RM(ϕ(x̄, c̄)) ≥ n}

where RM stands for Rang de Morley. That this set is indeed definable in a strongly
minimal structure is explained in [10]. It is also explained there that in strongly min-
imal structures we have RM(tp(c̄/A)) = dim(c̄/A). Since dim(ā/b̄) = n, we have
RM(ϕ(x̄, b̄)) ≥ RM(tp(ā/b̄)) = dim(ā/b̄) = n. So we certainly have ψ(b̄). Conversely,
if c̄ ⊆ C is a tuple s.t. ψ(c̄), then there is a complete type p(x̄) over C containing
ϕ(x̄, c̄) s.t. RM(p) ≥ n. Hence there is a tuple ḡ s.t. ϕ(ḡ, c̄) and dim(ḡ/C) ≥ n. But
dim(ḡ/C) ≤ dim(ḡ/c̄) ≤ n. So dim(ḡ/C) = n. We call ḡ the generic realisation of
ϕ(x̄, c̄) over C.

Let T∗ be the set of sentences

∀ȳ(ψ(ȳ) → ∃x̄(ϕ(x̄, ȳ) ∧
∧

Pxi))

for every pair of formulas (ϕ, ψ) as above.
The proof of the following lemma is essentially that of Poizat [11].

Lemma 3.12 If G is a generic model, then G |= T∗. In particular, T∗ is consistent.

1Specifically, we need

2n∧

i=n+1

(∃kixψi(x, x1, . . . , xi−1, ȳ) ∧ ψi(xi, x1, . . . , xi−1, ȳ))

where ψi is an algebraic formula isolating the L-type of ai over {a1, . . . , ai−1} ∪M as in Lemma 3.5.
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Proof. Let c̄ be a tuple in G satisfying ψ(c̄) and put M = clG(c̄). Let ḡ be the
generic realisation of ϕ(x̄, c̄) over M . Assume without loss that ḡ is outside G and let
N = acl(M ∪ ḡ). We add colour to N by painting ḡ black and all points in N \ (M ∪ ḡ)
white. Clearly M <min N |= T0 is a minimal extension of type 3 since dim(ḡ/M) = n
and whenever we split ḡ up into ḡ1 ∪ ḡ2, δ(ḡ1/M) > 0. By the genericity of G, there is
an embedding f : N ↪→ G over M . Obviously f(ḡ) is black and G |= ϕ(f(ḡ), c̄). That
is, G |= T∗. ¤

Proposition 3.13 Let U be a strongly inaccessible generic. Let M ≡ U be an ℵ0-
saturated model satisfying M 6 U . Then M 4 U .

Proof. We need to establish the Tarski-Vaught test. To this end, let χ(x) be a formula
over A ⊆0 M s.t. U |= χ(a) where a ∈ U \M . Put M0 = clUA and N = clU(M0∪{a}).
Since M 6 U , we have M0 ⊆ M . We will try to find an isomorphic copy N ′ of N over
M0 s.t. N ′ ⊆M and N ′ 6 U . By the homogeneity of U , it will then follow that there
is an automorphism σ ∈ AutM0U s.t. σ(a) ∈ M .

Note that we need only consider the case where M0 <min N . For suppose that
M0 <min M1 <min N and we have found anM′

1 ⊆M and an isomorphism f : M1
∼=M0

M′
1 6 U . Then there is a σ ∈ AutM0U extending f . Hence we get M0 <min M′

1 <min

σ[N ] and can continue our argument with the minimal extension M′
1 <min σ[N ].

So let’s assume first of all that M0 <min N is of type 3. Let b̄ be a tuple containing
a basis for M0 and all its black points. Let ā be the tuple of black points in N \M0. Let
(ϕ, ψ) be the tuple from T∗ corresponding to this situation. We clearly have M |= ψ(b̄).
Since M |= T∗, there must be a tuple of black points d̄ in M \ M0 s.t. ϕ(d̄, b̄). This
implies that δ(d̄/M0) ≤ 0. However, since M0 6 U , we must have δ(d̄/M0) = 0 and
acl(d̄∪M0) can contain no other black point. Hence, if we put N ′ = acl(d̄∪M0), there
is an isomorphism f : N ∼=M0 N ′ ⊆ M s.t. f(ā) = d̄. We also have N ′ 6 U since
M0 6 U and δ(N ′/M0) = 0.

Now let’s consider the black generic extension. M has an isomorphic copy of the
black generic extension over M0 if and only if there is a black point b ∈ M \M0 s.t.
acl(M0∪{b}) \ (M0∪{b}) is white and no tuple of black points d̄ outside acl(M0∪{b})
satisfies δ(d̄/M0 ∪ {b}) < 0.

Let c̄ be a tuple containing a basis for M0 and all its black points. We will define a
set of sentences Φ(x) over c̄ s.t. M |= Φ(b) if and only if M0 <min N ′ = acl(M0 ∪ {b})
is of type 2.

Let Q(x, ȳ, c̄) be the formula

∧
i

Pyi ∧
∧

i6=j

yi 6= yj ∧
∧
i,j

yi 6= cj ∧
∧
i

yi 6= x

If ȳ is an n-tuple, we define

ȳ/2 =

{
( ) for n = 1, 2
(y1, . . . , ydn/2e−1) for n ≥ 3
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Now define Γk,ϕ(x) to be the formula

∀ȳ(Q(x, ȳ, c̄) ∧ ∃kzϕ(z, x, ȳ/2, c̄) →
∨

y∈ȳ\ȳ/2

¬ϕ(y, x, ȳ/2, c̄))

The case n = 1 says that acl(M0 ∪ {x}) \ (M0 ∪ {x}) is white. Clearly

Φ(x) = {Px ∧
∧

x 6= ci} ∪ {Γk,ϕ(x) : ϕ ∈ L, k < ω}

is the desired set of sentences. We need to prove that Φ(x) is a type of M. The
ℵ0-saturation of M will then imply that Φ(x) is realised in M.

By ACP, we may assume that N \ M0 is infinite. Fix a Ψ(x) ⊆0 Φ(x). Let b be
the black point in N \ M0 and paint another point b′ in N \ M0 black. We now get
a minimal extension of the third type. So for any tuple ȳ disjoint from N , Γk,ϕ(b) is
satisfied. That is, if ȳ is a counter-example to one of the Γk,ϕ(b)’s in Ψ(b), then ȳ must
include the point b′.

We’ll show that the set of b′ ∈ N \M0 which are included in a tuple ȳ contradicting
some Γk,ϕ(b) in Ψ(b) is finite.

Assume `(ȳ) = 1. Then ȳ = b′. Obviously the algebraic closure of M∪{b} restricted
to the formulas in Ψ(b) is finite. So this case is clear.

If `(ȳ) = 2, then we may assume without loss that ȳ = (b′, y) for some black point
y /∈ N . Hence y is not in the algebraic closure of c̄ ∪ {b} and ȳ cannot be a counter-
example to any Γk,ϕ(b).

Now assume `(ȳ) = n ≥ 3. Suppose that b′ ∈ ȳ/2 and that ϕ(z, b, ȳ/2, c̄) is the
relevant algebraic counter-example. I.e., ϕ algebraises ȳ \ ȳ/2 over ȳ/2 ∪ {b} ∪ c̄. Note
that we can immediately rule out the case b′ = ȳ/2. So we may assume that n ≥ 5.
Let ȳ′ be the result of removing b′ from ȳ. Then it is easy to see that there must be a
formula ϕ′ algebraising ȳ′ \ ȳ′/2 over ȳ′/2 ∪ {b} ∪ c̄. But this is a contradiction.

Suppose now that b′ ∈ ȳ \ ȳ/2 and that ȳ is a counter-example to some Γk,ϕ(b). If
ȳ/2 is not independent over c̄ ∪ {b}, then dim(ȳ/c̄ ∪ {b}) < |ȳ|/2 − 1. Again we let ȳ′

be the result of removing b′ from ȳ. Then

dim(ȳ′/c̄ ∪ {b}) = dim(ȳ/c̄ ∪ {b}) <
|ȳ|
2
− 1 =

|ȳ′|+ 1

2
− 1 =

|ȳ′| − 1

2

But this implies that δ(ȳ′/N) < −1 which is a contradiction. So we may assume that
ȳ/2 is independent over c̄ ∪ {b}. Note that any two such sets have the same L-type
over acl(c̄ ∪ {b}). Hence, if ȳ1 and ȳ2 are two tuples of black points with ȳ1/2 and
ȳ2/2 independent over c̄∪{b}, and ϕ(z, b, ȳ1/2, c̄) is algebraic, then so is ϕ(z, b, ȳ2/2, c̄)
and for all b′ ∈ N \M0, ϕ(b′, b, ȳ1/2, c̄) iff ϕ(b′, b, ȳ2/2, c̄). Hence there are only finitely
many b′’s s.t. ϕ(b′, b, ȳ/2, c̄). So this confirms that there can be only finitely many
counter-examples in N \M0 to Ψ(b).

Now, since we are assuming that N \M0 is infinite, we can paint a b′ ∈ N \M0 black
without contradicting any of the formulas in Ψ(b). As our minimal extension is now
of type 3, M |= T∗ implies that there is an isomorphism f : N ∼=M0 N ′ 6 M. Since
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f extends to an automorphism of U we have U |= Ψ(f(b)). But Ψ(f(b)) is universal,
hence also M |= Ψ(f(b)). So every finite subset of Φ(x) is satisfied in M. By the
ℵ0-saturation of M, Φ(x) is realised in M as required.

Finally, let us consider the white generic extension. Clearly we need to realise the
set

Φ′(x) = {¬Px} ∪ {∃kzϕ(z, c̄) → ¬ϕ(x, c̄) : ϕ ∈ L, k < ω} ∪ {Γk,ϕ(x) : ϕ ∈ L, k < ω}
in M. Fix a white point a ∈ N \M0 and fix a finite subset Ψ(x) of Φ′(x). As with the
black generic extension, we can paint a point b′ ∈ N \M0 black without contradicting
any of the formulas in Ψ(a). As we now have a black generic extension, we get an
isomorphism f : N ∼=M0 N ′ 6 M. Hence M |= Ψ(f(a)) and Φ′(x) is finitely satisfied
in M. ¤

Corollary 3.14 All generic models are saturated.

Proof. Let U be a strongly inaccessible generic. By Lemma 1.8, it suffices to show that
U is saturated. To this end, let p(x) be a type of U over a set of parameters A s.t.
|A| < |U |. Then there is an ℵ0-saturated model M ≡ U with |M | ≤ |U | s.t. A ⊆ M
and M |= p(a) for some a ∈ M . By the genericity of U , we may assume that M 6 U .
Hence, by Proposition 3.13, M 4 U . So U |= p(a). ¤

Concluding remarks

The existence of a saturated strongly inaccessible generic U provides a useful tool for
establishing the stability of ThU : We need only count the types of U .

Poizat [11] proves the following crucial lemma.

Lemma 4.1 If ā ⊆ U and M 6 U with |M | < |U |, then cl(M∪ ā) has finite dimension
over M and contains just finitely many black points. ¤

Let M be as in the hypothesis of the above lemma. In order to show that ThU is
ω-stable, we need to establish

|Sn(M)| = |M |
Given Lemma 3.7, |Sn(M)| = |M | + the number of isomorphism types over M of
substructures cl(M ∪ ā) where ā is an n-tuple. So our task boils down to counting these
isomorphism types.

For each m = dim(cl(M ∪ ā)/M) there is one L-isomorphism type over M . So there
are ℵ0 L-isomorphism types over M in total. As each of these can contain only finitely
many black points in cl(M ∪ ā) \M , the number of full isomorphism types over M is
|cl(M ∪ ā) \M | · ℵ0 = |M | · ℵ0 = |M |. Hence |Sn(M)| = |M |+ |M | = |M | and ThU is
ω-stable.

Poizat [11] verifies that his generic structures have Morley rank ω · 2. Similar
techniques can be applied to construct structures of Morley rank ω · k for arbitrary k.
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It is also possible to construct an ω-stable structure of Morley rank 2 (see [2]) but this
is significantly trickier.

A study which is more in the spirit of this paper is that of identifying the general
conditions under which a generic structure is ω-stable. This is an interesting and useful
question. For more on this, I refer the reader to Wagner’s [14].

There is one obvious question which emerges unanswered from part III.

Is it possible to characterise the morphisms of part III as ∆-elementary
maps for some set ∆? If so what does ∆ look like?

A positive answer to this question would imply that the theory of the generics admits
∆-elimination since all generics are saturated. It would also mean that every saturated
model of the generic theory is a generic model. I leave this question open.
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