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Chapter 1

Introduction

1.1 Preservativity Logic and Provability Logic of HA

This thesis is about the preservativity logic and provability logic of Heyting arithmetic (or HA). It will
be inspiring to us to look at its classical analogue GL first. The theorems of GL contains all tautolo-
gies of the classical propositional logic, contains all distribution axioms, i.e, all sentences of the form
2(A → B) → (2A → 2B), contains Löb’s axiom, i.e. all sentences of the form 2(2A → A) → 2A,
and is closed under modus ponens, substitution and necessitation. It is well-known that GL is modally
complete with respect to all finite, transitive and conversely well-founded frames.

There are three important theorems in the provability logic of PA: Löb’s theorem, Solovay’s theorem
and the fixed point theorem. The landmark paper by Solovay[1976] can be seen as the starting point
of provability logic. But, before we can state these theorems, we need to define some basic notions in
provability logic. As we know, one of Godël’s discoveries is that we can reason about the meta-theories
in their object theories. That is to say, we can arithmetize the informal mathematical theory or, as
Boolos calls it, logicians’s English of syntax of PA in itself. In particular, PA allows a formalization
“being provable in PA”. One can define Proof(x, y) as the statement that x is the code of a finite
sequence of proof in PA of a formula B whose code is y. Prf(x) denotes ∃yProof(y, x). A realization
is a function that assigns each propositional letter an arithmetical sentence such that

p∗ := ∗(p);
⊥∗ := 0 ≡ 1;
For any ◦ ∈ {∨,∧,→}, (A ◦B)∗ := A∗ ◦B∗;
(2B)∗ := Prf(pB∗q).

The provability logic of PA can be defined as the logic of all the modal formulas G that are valid under
any realization, or, PA ` G∗ for any realization *. In short, the provability logic is the logic about the
proof predicate Prf . By Löb’s theorem, it is easy to see that GL ⊆ {G|PA ` G∗ for any realization}.
Moreover, the first Solovay arithmetical completeness theorem tells us that the converse also holds. In
other words, if A∗ is provable in PA for any realization *, then GL ` A.

Compared to the maturity and stability (and hence beauty) of axiomatization and arithmetical com-
pleteness of GL, the provability logic of HA, the intuitionistic counterpart of PA, is still a small child.
Even today, we still don’t know what is the provability logic of HA. But there are many insights
and conjectures about this logic in Iemhoff [2001] (see also Visser[2002]). Just as we have done it for
classical case, we will define a similar notion for HA. ϕ is said to preserve ψ with respect to HA,
if, for all Σ1 sentences θ, it holds that HA ` (θ → ϕ) entails HA ` (θ → ψ). We denote this as

7



8 CHAPTER 1. INTRODUCTION

ϕ ¤ ψ. Correspondingly if x and y are the codes of formulas A and B, respectively, Pres(x, y) is the
formalization of that ‘A preserves B’. Similarly we define a realization as a function from propositional
letters to arithmetic sentences such that

p∗ := ∗(p);
⊥∗ := 0 ≡ 1;
For any ◦ ∈ {∨,∧,→}, (A ◦B)∗ := A∗ ◦B∗;
(A ¤ B)∗ := Pres(pA∗q, pB∗q).

The preservativity logic of HA is the logic of all the L¤ formulas that are valid in HA under any
realization. As we will see, it includes the provability logic. Although we still don’t know what is
exactly the preservativity logic, Iemhoff[2001] has a well-justified conjecture: iPH (we will come up
with it below) is the preservativity logic of HA. In other words, HA ` ϕ∗ for any realization ∗ iff
iPH ` ϕ. One direction or the soundness of iPH has been proved in Visser[2002](see also Iemhoff
[2001]). This logic covers all the preservation principles that are known so far:

The Principles of the preservativity logic of iPH (Iemhoff[2001]);
2A ≡def >¤ A.
Taut: all tautologies in iPC (intuitionistic propositional logic)1

P1 : A ¤ B ∧B ¤ C → A ¤ C

P2 : C ¤ A ∧ C ¤ B → C ¤ A ∧B

Dp : A ¤ C ∧B ¤ C → A ∨B ¤ C

4p : A ¤ 2A

Lp : (2A → A) ¤ A (Löb’s preservativity principle)
Mp : A ¤ B → (2C → A) ¤ (2C → B).
V pn :

∧n
i=1(Ai → Bi) → An+1 ∨An+2) ¤ (

∧n
i=1(Ai → Bi)(A1, · · · , An+2) (Visser’s principles)

V p : V p1, V p2, · · · . (Visser’s schema)
iPH is the logic of all of the above principles closed under modus ponens and the

preservation rule: A → B/A ¤ B.

Since we will not mention Visser’s principles and Visser’s scheme after this in the thesis, we choose
not to give a detailed definition of these complicated rules. Clearly preservativity logic is a natural
extension of the provability logic of HA. It can be shown (Iemhoff [2001]) that both 2(A → B) → A¤B
and A ¤ B → (2A → 2B) are derivable from the above axioms. And the principles of HA have a
more elegant presentation in the setting of preservativity logic. As we have met them only through
preservativity logic, we don’t know the principles of intuitionistic provability logic. As a matter of
fact, the below-defined iH is strictly contained in the intuitionistic provability logic. But iH contains
all the principles about the proof predicate that have been known so far. The principles for iH are as
follows:

K : 2(A → B) → (2A → 2B)
4 : 2A → 22A

L : 2(2A → A) → 2A

Le : 2(A ∨B) → 2(A ∨2B) (Leivant’s axiom)
Ma : 2¬¬(2A → ∨

2Bi) → 2(2A → ∨
2Bi) (Formalized Markov Scheme)

The rules for iH are modus ponens and
necessitation: A/2A.

As Iemhoff [2001] has shown, iH is not the L2 fragment of iPH, not to mention the L2 fragment of
the expected preservativity logic.

1Consult Troelstra and van Dalen [1988].



1.2. CONNECTION BETWEEN PRESERVATIVITY LOGIC AND INTERPRETABILITY LOGIC9

1.2 Connection between Preservativity Logic and Interpretabil-
ity Logic

In order to understand preservativity logic from a broader perspective2, we briefly discuss3 the con-
nection between preservativity logic and interpretability logic and introduce a new principle

W : A ¤ B → (2B → A) ¤ B.

The connection is via a new notion: Π1-conservativity. A theory T is Π1-conservative over T ′ if T ′

proves all the Π1 formulas that T proves. It is easy to see that, for classical theories such as PA,
Π1-conservativity is equivalent to Σ1-preservativity in the sense that ϕ ¤T ψ iff ¬ϕ is Π1 conservative
over ¬ψ.

In interpretability logic, we use a binary connective ¤i. The arithmetical realization of A ¤i B in a
theory T will be that T + A interprets T + B ,or, alternatively, that T plus the realization of B is
Π1-conservative over T plus the interpretation of A. Thus, for PA, ϕ¤PA ψ iff PA plus ¬ψ interprets
PA plus ¬ϕ (or ¬ψ ¤i ¬ϕ). It is well-known that the interpretability logic of PA is ILM . Define
♦A := ¬2¬A.

Axioms of ILM :
L : 2(2A → A) → 2A

J1 : 2(A → B) → A ¤i B

J2 : A ¤i B ∧B ¤i C → A ¤i C

J3 : A ¤i C ∧B ¤i C → (A ∨B) ¤i C

J4 : A ¤i B → (♦A → ♦B)
J5 : ♦A ¤i A

M : A ¤i B → (A ∧2C) ¤i (B ∧2C)
Rules of ILM :
Modus Ponens and necessitation.

Although for PA the notions of interpretability and preservativity are essentially equivalent, they
are different for HA. As we have done for PA, we define a translation t from the L¤i to L¤:
(¬A ¤i ¬B)t := B ¤ A. It is easy to check that all the translations of axioms of ILM are provable in
iPH. But the converse does not hold. The only axiom in iPH that does not hold for classical theories
is the principle Dp.

In this thesis we will introduce a new preservativity principle:
W : A ¤ B → (2B → A) ¤ B.

For classical theories, it is equivalent to the principle
Wi : A ¤i B → A ¤i B ∧2¬A,

which is the reason why we call the new preservativity principle W after the well-known principle Wi

in interpretability logic. To see this, we reason according to the fact that for classical thoeries, ϕ¤PAψ
iff ¬ψ ¤i ¬ϕ. The following principles (or schemas) are equivalent:

A ¤i B → A ¤i B ∧2¬A

¬B ¤ ¬A → ¬(B ∧2¬A) ¤ ¬A

(Take ¬B as A and ¬A as B)
A ¤ B → (A ∨ ¬2B) ¤ B

A ¤ B → (2B → A) ¤ B.

2Moreover, we need the following translation between preservativity logic and interpretability logic in Chapter 4
3For detailed elaboration, see de Jongh and Japaridze [1998] and Iemhoff [2001].
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1.3 Motivation and Overview

Our interests in this thesis are not about iPH or iH itself but about some natural sub-logical systems
of iPH and iH. We attain some conservation results relating these preservativity and provability
logics. Also we show the fixed point theorem for iL and iPL. There is an open question in Iemhoff
[2001]: is there an elegant axiomatization of the L2-fragment of iPH. So if the conjecture that iPH
is the preservativity logic is true, then that axiomatization will be the intuitionistic provability logic,
or the provability logic of HA. Although we will not answer this profound question in this thesis, the
conservation results that we achieve here will contribute to our understanding of the close relation
between the preservativity logic and the provability logic of HA4. In fact, those conservation results
are closely related to some much more intuitive equivalence results.

Here we explain the guiding motivation behind the main equivalence results of this thesis. First we
define two new rules:

DR : 2A → 2B/2(A ∨ C) → 2(B ∨ C)
MoR : 2A → 2B/2(2C → A) → 2(2C → B).

We inherit a notation convention from Iemhoff [2001]. iP is the preservativity logic having as axioms
all tautologies in iPC, the principles P1, P2, Dp, and as rules Modus Ponens and Preservation. iPX is
the logic iP plus the principe X. If the principle is listed in the section 1.1, we will omit the subscript
p. For example. we will write iP4 instead of iP4p for the iP plus the principle 4p. Similarly we can
write iX for the provability logic iK with the provability principle X.

If X is an axiom of the form A ¤ B, then it is likely that the L2 fragment of iPX is the logic iK plus
2A → 2B (because A ¤ B is in iPX) with the extra rule DR (because Dp is in iP and hence is in
iPX), and the L2 fragment of iPXM is the logic iK plus 2A → 2B with the extra rules DR and
MoR (because Mp is in iPXM). We don’t know whether this holds in general. But, in this thesis,
we will see that this is true for many preservativity logics. As an demonstration, we list the following
equivalence results:

The L2 fragment of iP is equivalent to the logic iK with the extra rule DR (Theorem 3.3.16 and
Corollary 3.3.18).

The L2 fragment of iP4 is equivalent to the logic iK4 with the extra rule DR (Theorem 3.1.11).
The L2 fragment of iPL is equivalent to the logic iL with the extra rule DR (Theorem 3.2.3 and

Corollary 3.2.11).
The L2 fragment of iPM is equivalent to the logic iK with the extra rules DR and MoR(Theorems

3.3.21 and 3.3.22).
The L2 fragment of iPW is equivalent to the logic iL with the extra rule DR (Theorem 3.5.7).

In the proofs of these results, especially in those of the admissibility of DR or MoR in the L2 fragment
of the preservativity logic in question, the rule 2A → 2B/A ¤ B will play a dominant role. Take iPL
as an example. iPL2 denotes the L2 fragment of iPL. If we want to show that iPL2 is the logic
iL with the extra rule DR, we have to prove that DR is admissible in iPL2. Instead of showing this
directly, we will detour via the admissibility of the rule 2A → 2B/A ¤ B in iPL 5. If we can show
that iPL is closed under the rule 2A → 2B/A ¤ B, then the admissibility of DR in iPL2 will follow
immediately:

`iPL2
2A → 2B

`iPL 2A → 2B (by the fact that iPL2 ⊆ iPL)
`iPL A ¤ B (by the assumption that iPL is closed under the rule 2A → 2B/A ¤ B)

4We call it analytical. Of course we admit that the sum of the parts are not the whole.
5There are some exceptions: when we show the admissibility of DR and MoR in iK, first we can show instead that

iP is closed under 2A → 2B/2(A → B), which is stronger than the rule 2A → 2B/A ¤ B (lemma 3.3.23).
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`iPL (A ∨ C) ¤ (B ∨ C) (by Dp)
`iPL2

2(A ∨ C) → 2(B ∨ C) (by the lemma 2.3.1)
We will treat the admissibility of MoR in L2 fragments in a similar way.

But, even with the admissibility of DR in iPL2, we only show one direction: the logic iL with the
extra rule DR is contained in iPL2. In order to show the other direction, we need the conservation of
iPL over iLLe with respect to formulas in L2. The conservation will give us a tamable normal modal
logic iLLe instead of the quite elusive iPL2. So it suffices to show that Le is derivable in the logic
iL with the extra rule DR, which is much easier to show than that iPL2 is contained in the logic iL
with the rule DR.

Next we will give an overview of this thesis. In Chapter 2, we will introduce the preliminaries and
tools 6 that are needed in the later chapters. In Chapter 3, we present some conservations results and
their corresponding equivalence results. In Chapter 4, we prove the fixed point theorems for iL, iPL
and iPW .

In addition to the above equivalence results, the main conservation results that we have achieved so
far are:

1. iK is the L2 fragment of iP ;

2. iLe is the L2 fragment of iP4 (in Iemhoff [2001]);

3. iLLe is the L2 fragment of iPL;

4. iK is the L2 fragment of iPM .

5. iLLe is also the L2 fragment of iPW (where iPW is the new preservativity system introduced
in this thesis axiomatized by P1, P2, Dp and the principle:

W : A ¤ B → (2B → A) ¤ B.)

In the meantime, we will show the admissibility and non-admissibility of some important rules in
provability logics:

2A → 2B/A ¤ B, 2A/A,2A → 2B/ ¡ A → B and some others.

In the last chapter we will show the beautiful fixed point theorems for iL, iPL and iPW , and the
interderivability between Beth definability and fixed point properties, which are independent of the
other parts of this thesis.

Our presentation here is impartial: whenever a subject about preservativity logic is dealt with, the
same subject about provability logic follows immediately.

6See Iemhoff [2001].
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Chapter 2

Preliminaries and Tools

In this chapter we will develop the basic notions and propositions which we will need in the thesis.

2.1 Semantics for Preservativity Logic

It is common sense in modal logic that with the completeness and soundness at hand we can show not
only the theoremhood but also the non-theoremhood of any given formula. In provability logic, how-
ever, the modal completeness is more versatile than that because it is the starting point of Solovay’s
proof of arithmetical completeness of GL. Assume that GL 6` A. Then by modal completeness, there
is a finite, transitive and conversely well-founded model M and and a world r in this model such that
M, r 6|= A. By applying a series of amazing techniques, we can arithmetize this situation and find a
realization (*) such that PA 6` A∗. The strategy in classical logic has more or less given us a deep
insight how to find the preservativity logic, which makes our modal analysis of preservativity logics
more cherished. In the meantime, we will pay equal attention to the modal analysis of provability logics.

In the following we will give some basic definitions for the semantics of preservativity logic and intu-
itionistic provability logic.

Definition 2.1.1 A frame F is a triple 〈W,R,≤〉, where W is a nonempty set of possible worlds,
points or nodes, ≤ is a partial order and R is a binary relation satisfying

≤ ◦R ⊆ R.
A model M is a quadruple 〈W,R,≤, |=〉 where 〈W,R,≤〉 is a frame and |= is a forcing relation between
points in W and propositional letters which satisfies the following condition:

(persistence) If x |= p and x ≤ y, then y |= p.
¢

Next we model the whole language by extending the forcing relation |= to relate points to complex
formulae. As for the connectives in IPC, we interpret them in usual manner:

M,w |= A ∧B ≡def M, w |= A and M,w |= B;
M,w |= A ∨B ≡def M, w |= A or M, w |= B;
M,w |= A → B ≡def ∀v ≥ w(M, v |= A implies M, v |= B);
M,w |= > for any w;
M,w 6|= ⊥ for any w.

Define ¬A as A → ⊥. From the above third and fifth clauses and the definition of ¬A as A → ⊥, it is
easy to deduce that

13
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M,w |= ¬A iff ∀v ≥ w(M, v 6|= A).

The most important and characteristic clause is the following one for ¤ formulas:
M,w |= A ¤ B ≡def for any v such that wRv, if M, v |= A, then M,v |= B.

It follows immediately that
M,w |= 2A iff for any v such that wRv, M, v |= A.

The reason why we have defined the clause for A ¤ B in the above way is that we want it to be a
natural extension of our traditional clause for 2 formulas.

It is easy to check (see the following lemma 2.1.2) that
(persistence for all formulas) for any formula A in L¤, if M,w |= A and w ≤ v, then M,v |= A.

As a matter of fact, given the persistence for propositional letters, the condition that ≤ ◦R ⊆ R is a
necessary and sufficient condition to guarantee persistence for all formulas, which is different from the
condition ≤ ◦R ⊆ R◦ ≤ for intuitionistic modal logic.1 We will discuss these in section 2.2.

Lemma 2.1.2 (Persistence) In every model M := 〈W,R,≤, V 〉, for every x, y ∈ W and for every
formula A of L¤,

if x ≤ y and x |= A, then y |= A.

Proof. We prove this by induction on the complexity of A. It is easy to check that it is true for the
base case, conjunction and disjunction. Now we just consider two non-trivial cases.

1. A := B → C. Assume that x ≤ y ≤ z, z |= B and x |= A. It suffices to show that z |= C. Since
x ≤ y ≤ z, x ≤ z. It follows that z |= C.

2. A := B ¤ C. Assume that x ≤ yRz, z |= B and x |= B ¤ C. It suffices to show that z |= C.
Since x ≤ yRz, xRz (by the definition 2.1.1). It follows immediately that z |= C.

qed

Lemma 2.1.3 Let 〈W,R,≤〉 be a frame such that W is a non-empty set, ≤ is a partial order and
(≤ ◦R) 6⊆ R. Then there is a formula A of L¤ and a valuation V such that in 〈W,R,≤, V 〉 for some
x, y ∈ W ,

x ≤ y and x |= A but y 6|= A.

Proof. Since not (≤ ◦R) ⊆ R, there are two worlds x, y ∈ W such that x(≤ ◦R)y but not xRy. That
is to say, there is a world u ∈ W such that x ≤ uRy. Take

V (p) := {z|y ≤ z}; V (q) := {z|z 6≤ y}; V (r) := ∅ for any other propositional letter2 .
It is easy to check that V is a valuation, i.e. it satisfies that

for any propositional letter t, if x ≤ y and x ∈ V (t), then y ∈ V (t).
On one hand, u 6|= p ¤ q. For uRy, y |= p, y 6|= q and hence u 6|= p ¤ q.

On the other hand, x |= p ¤ q. To see this we shall show that if xRz and z |= p, then z |= q. Since
xRz, z 6= y. Moreover, y ≤ z, for z |= p. Therefore y < z. This implies that z 6≤ y and hence z |= q.

So we get that x ≤ u, x |= p ¤ q but u 6|= p ¤ q.
qed

1So the Remark 3.4.1 in Iemhoff [2001] seems mistaken.
2We can easily find the equivalence between the presentation of valuation here and the forcing relation in definition

2.1.1
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A is valid in a model M if for any w ∈ W M, w |= A. A is valid in a frame F if A is valid on any
model M = 〈F, |=〉 on the frame.

2.1.1 Canonicity

The usual method in classical modal logic for obtaining completeness is to construct the required
counter-model by taking the maximal consistent sets as the nodes in the canonical model. But, as
de Jongh-Veltman [1990] pointed out, it can’t be applied in interpretability logic directly. It can’t
generally be applied here either. On the classical side, GL is a good example. Another illustrating
example for this is our completeness proof for iL (we give the proof here as an illustration in Theorem
2.2.7 even though it can be found in Iemhoff [2001]pp. 69). We have to restrict maximal consistent
sets to some finite set of formulae called an adequate set. Since adequate sets are required to deal with
the truth definitions, they have to be closed under subformulas and contain > and ⊥. For specific
logics, they have to meet specific requirements in addition.

Definition 2.1.4 An adequate set X is a set of formulas that is closed under subformulas and contains
> and ⊥. A consistent subset Γ of X is called X-saturated if it satisfies the following two conditions:

For all A ∈ X, if Γ ` A, then A ∈ Γ.
For all A ∨B ∈ X, if A ∨B ∈ Γ, then A ∈ Γ or B ∈ Γ.

If X is the set of all formulas, then an X-saturated set is just called saturated. But also when the
context is clear, we just omit X from X-saturated.

¢

Some notational conventions:

1. For easy reading, we write w ` s ¤ A for w ` ∧
s ¤ A if s is a finite set of formulas.

2. If s is an infinite set, then w ` s ¤ A iff there is a finite subset ∆ of s such that w ` ∧
∆ ¤ A.

3. For simplification, sometimes we write iT ` instead of the standard `iT .

4. Γ `iT A is short for the existence of a deduction from Γ to A without use of the rule of necessi-
tation, in other words, A is derivable from the theorems in iT and the formulas in Γ by modus
ponens.

5. R̄ denotes R◦ ≤.

Definition 2.1.5 For any logic L and any adequate set X, the canonical model M = 〈W,R,≤, |=〉
over X is defined as follows:

1. W consists of all X-saturated sets over X.

2. wRv := for any formula A1, · · · , An, B, if w ` A1, · · · , An ¤B and A1, · · · , An ∈ v, then B ∈ v3;

3. w ≤ v := w ⊆ v

4. w |= p := p ∈ w for any proposition letter p.

¢

3There is a very good reason why we have not defined the accessibility relation as follows: wRv := for any formula
A, B, if A ¤ B ∈ w and A ∈ v, then B ∈ v. Take iP4 for example. With this definition, we can not even show that iP4
is complete with respect to the class of finite gathering frames via the standard method of producing a canonical model
over X for some finite X.
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In order to have an intuition about this definition (compared to what we have done in classical modal
logic), we will demonstrate the completeness proof for iP . Before our proof of completeness, we need
some general tools which will be very important and, in some sense, are indispensable to proofs of
both the completeness for iP and many other completeness proofs in this thesis.

2.1.2 Extendible Properties

Definition 2.1.6 Let iT be a preservativity logic and X be an adequate set. A property ∗(•) on
subsets of X is called an extendible property with respect to X if it satisfies the following conditions:

1. For all A ∈ X: if ∗(x) and x ` A, then ∗(x ∪ {A});
2. For all A ∨B ∈ X: if ∗(x ∪ {A ∨B}), then ∗(x ∪ {A}) or ∗(x ∪ {B}).

If in addition it satisfies
For all A ∈ X: if ∗(x) and y ` x ¤ A, then ∗(x ∪ {A}),

it is called an iT -extensible y-successor property.
¢

We can use the same construction as in Iemhoff [2001] to show that,

1. if ∗ is an iT -extendible property and ∗(x), then there is an X-saturated set v such that x ⊆ v.

2. If if ∗ is an iT -extendible y-successor property and ∗(x), then there is an X-saturated set v such
that x ⊆ v and yRv.

Lemma 2.1.7 4 For any logic iT containing iP , for any formula C ∈ X and for any w, v ∈ W , the
following property is an iT -extendible w-successor property:

∗(x) : w 6` x ¤ C.
If X is additionally closed under disjunction, then the following property is also an iT -extendible
w-successor property:

?(x) : for all D ∈ X, if w ` x ¤ D, then D ∈ v.

It is easy to see that if ∗(x), then there is a saturated set v such that wRv, x ⊆ v and C 6∈ v. And
if ?(x), then there is a saturated set u such that wRu ⊆ v and x ⊆ u. Instead of showing the above
lemma, we will prove a simpler and more-often-used lemma to get used to the above definition of
X-saturated sets.

Lemma 2.1.8 Let Γ be a subset of an adequate set X. If Γ 6` A, then there is a X saturated set w
such that Γ ⊆ w and w 6` A.

Proof. We prove this by Zorn’s lemma. Take S := {s ⊆ X|s 6` A and Γ ⊆ s}. It is easy to see that S
is non-empty because Γ ∈ S. Take any chain C in S: C0 ⊆ C1 ⊆ · · · ⊆ Cn ⊆ · · · .

Claim: S0 :=
⋃

Ci is an upper bound for this chain. To see this, we only need to show that S0 ∈ S.i.e.
Γ ⊆ S0, S0 ⊆ X and S0 6` A. Of course Γ ⊆ S0 and S0 ⊆ X because Ci ∈ X and Γ ⊆ Ci for all
Ci. Suppose that S0 ` A, i.e. there are a finite number of formulas E1, E2, · · · , En in S0 such that
E1, E2, · · · , En ` A. It is easy to see that there is a k such that all E1, E2, · · · , En ∈ Ck. This implies
that Ck ` A. So Ck 6∈ S, which contradicts our assumption that Ck ∈ S. We arrive at a contradiction.
So S0 6` A. Conclude: every chain in S has an upper bound.

4lemma 3.4.3 in Iemhoff [2001]
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By Zorn’s lemma, there is a maximal set S0 in S. It is easy to see that Γ ⊆ S0 and S0 6` A. Claim S0

is an X-saturated set.

1. Assume that S0 ` B and B ∈ X. Suppose that B is NOT in S0. It suffices to show that
S0 ∪ {B} 6` A because it will contradict the fact that S0 is a maximal set in S. Suppose that
this is NOT the case. S0 ∪ {B} ` A. Then it follows from the assumption that S0 ` B that
S0 ` A, which contradicts that S0 6` A.

2. Assume that S0 ` C ∨D for some C ∨D ∈ X. Suppose that C 6∈ S0 and D 6∈ S0, which also
implies that S0 ∪{C} ` A and S0 ∪{D} ` A because S0 is a maxmal set in S . By IPC, we get
that S0, C ∨D ` A. Since S0 ` C ∨D, it follows that S0 ` A, which contradicts that S0 6` A.
So C ∈ S0 or D ∈ S0.

qed

Corollary 2.1.9 If 6`iT A, then there is an X-saturated set w such that A 6∈ w.

Proof. We can just take Γ to be {>}. qed

2.1.3 Completeness of the Base of Preservativity Logic iP

iP is the logic containing all tautologies in IPC, P1, P2 and Dp with the two inference rules: modus
ponens and the preservation rule. After the following completeness theorem5, we will see why iP is
called the base of preservativity logic.

Theorem 2.1.10 iP ` A iff A is valid on all frames iff A is valid on all finite frames.

Proof. First the left-to-right direction. We only check that (A ¤ C) ∧ (B ¤ C) → (A ∨ B) ¤ C
is valid on all finite frames. Given any finite frame F , any model M on this frame and any world
w in this model, it suffices to show that M, w |= (A ¤ C) ∧ (B ¤ C) → (A ∨ B) ¤ C. Take any
point v above w and assume that M, v |= (A ¤ C) ∧ (B ¤ C). That is to say, M,v |= (A ¤ C)
and M, v |= (B ¤ C). Further we take any successor u of v such that M, u |= A ∨ B. We can as-
sume without loss of generality that M,u |= A. Then by the result that M, v |= A ¤ C, we get that
M,u |= C. So M, v |= (A∨B)¤C, which in turn implies that M, w |= (A¤C)∧(B¤C) → (A∨B)¤C.

Now the other and right-to-left direction. As usual, we prove by contraposition. Suppose that iP 6` A.
It is easy to see that there is a finite adequate set X such that A is contained in an X-saturated set
w (Corollary 2.1.9). We define the canonical X-model as prescribed above. It is easy to check that it
is indeed a frame, i.e ≤ ◦R ⊆ R. It remains to show the existence lemma and the truth lemma. Since
the truth lemma for → formulas is just as in IPC, we only consider here the one for ¤ formulas.

Lemma 2.1.11 For any formula A ¤ B ∈ X and w ∈ W , if A ¤ B 6∈ w, then there is a node v in the
X-canonical model such that wRv, A ∈ v but B 6∈ v.

The proof of this is just an application of the lemma 2.1.7. Consider the property ∗:
∗(x) : w 6` x ¤ B.

According to the above lemma 2.1.7, it is a w-successor extendible property. Since A ¤ B ∈ X and
A ¤ B 6∈ w, ∗({A}). By the construction that we just mentioned before lemma 2.1.7, we can get that
there is a node v such that wRv, A ∈ v but B 6∈ v.

As a rule, the existence lemma is the crucial lemma in our proof of the truth lemma.
5As you will find, iP is one of the largest creditors in this thesis.
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Lemma 2.1.12 For any B ∈ X and w ∈ W , w |= B iff B ∈ w.

PROVE this by induction. In fact the proof of the left-to-right direction is about the definition
of canonical X-model. We only treated the right-to-left direction and two non-trivial cases in this
direction: B is in the form of C → D and C ¤ D.

1. If B := C ¤D and C ¤D 6∈ w, then by the above lemma there is a node v such that wRv, C ∈ v
but D 6∈ v, which means, by inductive hypothesis, that v |= C but v 6|= D. So w 6|= C ¤ D.

2. Assume that B := C → D and C → D 6∈ w. Suppose that w,C ` D. It follows that
w ` C → D, which implies that C → D ∈ w because w is a X-saturated set. We have arrived
at a contradiction. So w, C 6` D. By the above lemma 2.1.7, there is an X-saturated set v such
that w∪{C} ⊆ v and D 6∈ v. Of course w ⊆ v. By inductive hypothesis and the fact that w ⊆ v
implies w ≤ v in the canonical model, there is an X saturated set v such that w ≤ v, v |= C and
v 6|= D. So w 6|= C → D.

qed

As we can easily see, iP stands in the same position in preservativity logic as iK does in classical
modal logic. In this sense, it is the base of preservativity logic.

2.2 Semantics for Intuitionistic Modal Logic and Brilliant Mod-
els

2.2.1 Semantics

It is easy to see that the semantics for intuitionistic modal logic should be one part of the above
semantics for preservativity logic because we define 2A to be >¤ A. However, there are two essential
differences: one is in the sufficient and necessary condition for persistence for all formulas; the other
one is in canonical models. The first difference does not make a difference while the second one does.

As Bozic and Dosen [1984] pointed out, given the persistence for propositional letters, the condition
that ≤ ◦R ⊆ R◦ ≤ is a sufficient and necessary condition that guarantee the persistence for all formulas
in L2 (in fact ≤ ◦R ⊆ R implies ≤ ◦R ⊆ R◦ ≤). So it is natural to define frames for intuitionistic
modal logic as follows:

Definition 2.2.1 A frame F is a triple < W,R,≤> where W is a nonempty set of possible worlds,
points or nodes, ≤ is a partial order and R is a binary relation satisfying

≤ ◦R ⊆ R◦ ≤.
A model is defined the same as above definition 2.1.1.

¢

We are not contented with the harmony here. We want uniformity. It is fine to work on the above
defined frames. But it will be better if we can work on the same frames in intuitionistic modal logic as
those that we have defined for preservativity logic, namely those satisfying ≤ ◦R ⊆ R. For we don’t
need to bother with the difference when we deal with close relations between preservativity logics and
provability logics such as the presented conservation results of L¤ over L2. In the following we will
show that we can make a better choice.

Lemma 2.2.2 x |= 2A iff ∀y(x(R◦ ≤)y → y |= A).
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Proof. Left to the reader. qed

Lemma 2.2.3 In the above definition 2.2.1 of frames the condition (≤ ◦R) ⊆ (R◦ ≤) can be replaced
by (≤ ◦R◦ ≤) ⊆ (R◦ ≤).

Proof. Assume that (≤ ◦R) ⊆ (R◦ ≤). Then (≤ ◦R◦ ≤) ⊆ (R◦ ≤ ◦ ≤). By the transitivity of ≤, we
get that (≤ ◦R◦ ≤) ⊆ (R◦ ≤).

Assume that (≤ ◦R◦ ≤) ⊆ (R◦ ≤). It is easy to see that (≤ ◦R) ⊆ (≤ ◦R◦ ≤) by the reflexivity of ≤.
It follows that (≤ ◦R) ⊆ (R◦ ≤). qed

Given any above-defined model M = 〈W,R,≤, |=〉, we define a new model N := 〈W,R2,≤, |=〉 where
R2 ≡ (R◦ ≤).

Lemma 2.2.4 F2 = 〈W,R2,≤〉 satisfies (≤ ◦R2) ⊆ R2 and (R2◦ ≤) ⊆ R2.

Proof. It immediately follows from the above lemma 2.2.3.
qed

One observation: the model N satisfies persistence for all formulas in L2.

Lemma 2.2.5 For any formula A in L2 and any world w in W, M, w |= A iff N, w |= A.

Proof. We prove this by induction on the complexity of A. We will only show the case when A ≡ 2B.

Assume that M,w |= 2B and wR2v. It suffices to show that N, v |= B. Since wR2v, there is a world
u ∈ W such that wRu ≤ v. Then M,u |= B for M, w |= 2B. By inductive hypothesis, N, u |= B. It
follows that N, v |= B by the above observation. For the other direction, assume that N, w |= 2B and
wRv. It suffices to show that M,v |= B. Since wRv, wR2v. It follows that N, v |= B. By induction
hypothesis, we get that M,v |= B.

qed

Given any model M on a frame satisfying (≤ ◦R) ⊆ (R◦ ≤), we can always find another model N
on a frame satisfying (≤ ◦R) ⊆ R which validates the same formulas as the model M . Thus we
have achieved uniformity and hence are assured to give a new and simpler definition of frames in
intuitionistic modal logic:

Definition 2.2.6 A frame F is a triple < W,R,≤> where W is a nonempty set of possible worlds,
points or nodes, ≤ is a partial order and R is a binary relation satisfying

≤ ◦R ⊆ R.
¢

Note that in the following we will work with this definition instead of the above old definition 2.2.1.

Now we define the canonical model for intuitionistic provability logic. For any logic T in L2 and for
any adequate set X, the T -canonical X-model is a quadrable 〈W,≤, R, |=〉 defined as follows:

W consists of X-saturated sets
w ≤ v := w ⊆ v
wRv := for any 2A ∈ w, A ∈ v (*).
w |= p := p ∈ w.

The clause for R is different from that in L¤ for R. According to our previous definition for R in
preservativity logic, the clause for R should have been
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wRv := for all A ∈ X, if w ` 2A, then A ∈ v (**)

The difference between 2A ∈ w and w ` 2A is just of a technical nature (See the completeness proof
of iL). Both clauses (*)and (**) make the canonical model defined in this section satisfy the following
property:

(brilliancy)6 R◦ ≤⊆ R.
To see this, take any two nodes w, v ∈ W and assume that w(R◦ ≤)v. Then there is a world x such
that wRx ≤ v. If 2A ∈ w (or w ` 2A), then A ∈ x. It follows that A ∈ v. So wRv.

However, the canonical model for preservativity logic can’t be brilliant. If the frame were brilliant,
then the principle A ¤ B → 2(A → B) would be valid on this frame. But the principle is NOT
arithmetically valid (and hence, by Iemhoff’s soundness results, is certainly not modally valid). In
contrast, all intuitionistic modal logics iT that we will consider below are complete with respect to
some class of brilliant frames.

Similarly we can show that iK is complete w.r.t the class of finite brilliant frames. It is easy to see that
all the notions and propositions above can be adapted into intuitionstic modal logic automatically.
We will not go into details about that.

2.2.2 iL as an example

Instead iL stands at the center of the stage of this section7. We will give a detailed completeness proof
of iL to get a sense of the above definitions. Consider the big difference between IPC and CPC, we
might think that the completeness proof for iL will be very different from that for GL. As you will see
in the following theorem, this is not the case. The proofs are almost the same. Besides, the proof of
iL will be very instructive and exemplary when we try to show the completeness of iPL, iL’s analogue
in preservation setting.

Theorem 2.2.7 8 In L2,

1. L corresponds to semi-transitivity plus conversely well-foundedness;

2. iL ` A iff A is valid on all finite transitive and conversely well-founded frames9.

Proof. The PROOF of the first proposition is just a routine exercise in Correspondence Theory. We
leave it to the reader and devote ourselves to the much more important completeness proof.

In fact the proof of the left-to-right direction of the second proposition is just an application of the
correspondence result. Now we only show the other direction. We prove this part by contraposition.

Suppose that iL 6` A. According to the above lemma 2.1.8, there are an adequate set X and an
X-saturated set w such that A 6∈ w. We define the canonical model M as prescribed above except
R. It is defined the same as in the classical case (but there is an essential difference between the two
proofs):

wRv := (i) if 2B ∈ w, then both 2B and B are in v; (ii) there is a boxed formula 2E ∈ X such
that 2E ∈ v but 2E 6∈ w.

6Bozic and Dosen [1984] called it strongly condensed
7Behind the stage is the intimidating iPL
8Theorem 4.3.2 in Iemhoff [2001]
9Brilliancy of the canonical model for iL does play a role here: brilliancy plus semi-transitivity implies transitivity.
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As usual, it remains to show the truth lemma:
For any B ∈ X and for any w ∈ W , B ∈ w iff w |= B.

We will prove this by induction on the complexity of B and treat the only non-trivial case: B ≡ 2C.
Assume that w 6|= 2C. Then there is a node v such that wRv and v 6|= C. By inductive hypothesis,
this also means that C 6∈ v. It follows that 2C 6∈ w because otherwise C ∈ v.

Next the other direction. Suppose that 2C 6∈ w. Take ∆ := {2E, E|2E ∈ w}∪{2C}. The mentioned
difference comes here. If {2E, E|2E ∈ w} ∪ {2C} ` C, then {2E,E|2E ∈ w} ` 2C → C. It follows
that

∧
i 2Ei ` 2(2C → C) where 2E1, · · · ,2En is an enumeration of all the boxed formulas in w

(Here we use the fact that the principle 4 is derivable from L as is shown in Theorem 2.4.2). So∧
i 2Ei ` 2C (by Löb’s principle). Since all the 2Ei’s are in w and w is a saturated set, 2C ∈ w,

which contradicts our assumption that 2C 6∈ w. Therefore {2E,E|2E ∈ w} ∪ {2C} 6` C. According
to the above lemma 2.1.8, there is an X-saturated set v such that {2E, E|2E ∈ w} ∪ {2C} ⊆ v and
C 6∈ v. It is easy to see that wRv (by the definition of ∆ and v) and v 6|= C (by inductive hypothesis).
That is to say, w 6|= 2C.

qed

As you can tell, the above proof method for completeness is an alternative to that in the completeness
for iP . In the proof of the completeness for iP , we define the accessibility relation on the canonical
models as general as possible. But in the above proof for iL, we define a new and stronger accessibility
relation, which also means that we have to show the truth lemma differently. We can’t just borrow
the proof of the truth lemma from the proof for iP . In this thesis, we will use these two methods
differently in the completeness proofs for many other logics depending on which logic we are working on.

Compared to the easy-going proofs in iL and GL and their similarity, the completeness proof of iPL
should look much more complicated and quite different.10.

The most successful strategy in the world is always to aim at the best with a peaceful mind to prepare
for the worst. As far as we know, the best possibility for the modal completeness of iPL does not
exist. Now we have to accept the possibility that it is incomplete. To use the same pattern as before,
we will give an example of incomplete logic in intuitionistic modal logic to get an insight about iPL.

Consider the principle Y S : 2(2A ↔ A) → 2A. Let us call H, iKH the system of modal logic K, iK
plus the principle Y S, respectively. A system L is of normal modal logic is called complete if every
sentence that is valid in every frame appropriate to L is derivable in L. A system is called incomplete
if it is not complete. The following lemma is adapted from Boolos [1993].

Lemma 2.2.8 2(2p → p) → 2p and 2(2p ↔ p) → 2p are valid on the same frames.

Proof. It is easy to see that 2(2p ↔ p) → 2p is valid in the frames where 2(2p → p) → 2p is valid.
Now we just show the other direction. We need to show that 2(2p → p) → 2p is also valid on every
frame on which 2(2p ↔ p) → p is valid. Given a frame 〈W,R,≤〉, assume that 2(2p ↔ p) → 2p is
valid in this frame. Consider any w′, w, x ∈ W such that w′ ≤ wRx. Suppose that M,w |= 2(2p → p).
It suffices to show that M, x |= p.

Instead of showing M,x |= p directly, we prove it by detour via a new model. Define N := 〈W,R,≤, U〉
where U is defined as follows:

t ∈ U(p) iff M, t |= 2np for all n ≥ 0.
Next take wRv ≤ y. One observation: M,y |= 2p → p. We will show11 that

10See remarks in Page 68 of Iemhoff [2001]
11The proposition here transcends the barriers between intuitionistic modal logics and classical modal logics.
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N, y |= p iff N, y |= 2p, and hence v |= p ↔ 2p.

The following are equivalent:
N, y |= p
M, y |= 2np for all n ≥ 0
M,y |= 2np for all n ≥ 1 (the direction from this proposition to the above one is by the observation)
For each z such that yRz, M, z |= 2np for all n ≥ 0.
For each z such that yRz, N, z |= p.
N, y |= 2p.

So we have shown that N, v |= 2p ↔ p. Since wRv, N, w |= 2(2p ↔ p). It follows from the assumption
that 2(2p ↔ p) → 2p is valid in the frame 〈W,R,≤〉 that N,w |= 2p. Since wRx, N,x |= p, i.e.
M,x |= 2np for all n ≥ 0. If we take n = 0, then we get that M,x |= p.

qed

Theorem 2.2.9 iKH is incomplete. 2p → 22p is not a theorem of iKH.

Proof. 2p → 22p is not a theorem of iKH. For otherwise `iKH 2p → 22p and hence `H 2p →
22p, which is impossible because it is well-known that 2p → 22p is not a theorem of H12. On the
other hand, 2p → 22p is valid in all the frames in which Y S is valid. Therefore, iKH is incomplete.

qed

How can we make this logic complete by adding some new principles? The cheapest way is to add
4. We will show that in the section 2.4. Moreover, we can also show that (2A → A) ¤ A and
(2A ↔ A) ¤ A are valid in the same frames13.

2.3 Some Basic Propositions in Preservativity Logic

In the following we achieve some basic propositions in preservativity logics that will be very useful to
other sections in this thesis. First we repeat the presentation of the logical system iPH:

Principles of the preservativity logic of HA (Iemhoff [2001]);
2A ≡def >¤ A.
Taut: all tautologies in iPC (intuitionistic propositional logic)
P1 : A ¤ B ∧B ¤ C → A ¤ C
P2 : C ¤ A ∧ C ¤ B → C ¤ A ∧B
Dp : A ¤ C ∧B ¤ C → A ∨B ¤ C
4p : A ¤ 2A
Lp : (2A → A) ¤ A (Löb’s preservativity principle)
Mp : A ¤ B → (2C → A) ¤ (2C → B).
V pn :

∧n
i=1(Ai → Bi) → An+1 ∨An+2) ¤ (

∧n
i=1(Ai → Bi)(A1, · · · , An+2) (Visser’s principles)

V p : Vp1 , Vp2 , · · · . (Visser’s schema)
Inference rules: Modus ponens and preservation rule.

Sometimes we will find that the following principle W (introduced in Chapter 1) is very handy:
W : A ∧2B ¤ B → A ¤ B.

Next we want to find the connection between the natural rule for preservativity logic: preservation
rule and the more common used rule: necessitation rule. iP− is the logic iP minus Dp.

12see theorem 2 in Page 152 of Boolos [1993].
13We confess that we still don’t know whether the logic iP with the extra principle (2A ↔ A) ¤ A is complete or not.
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Lemma 2.3.1 iP− ` 2(A → B) → (A ¤ B)

Proof.14 `iP− 2(A → B) ↔ T ¤ (A → B)
`iP− 2(A → B) → A ¤ (A → B) (because `iP− A ¤>)
`iP− 2(A → B) → A ¤ (A ∧ (A → B)
`iP− 2(A → B) → A¤B (because `iP− (A∧ (A → B)) → B and hence `iP− (A∧ (A → B))¤B)

qed

Theorem 2.3.2 In any preservativity logic iT containing all theorems in iP−, the preservation rule
and the necessitation rule are equivalent15.

Proof. Assume that A → B/A ¤ B is admissible in iT and iT ` A. Then iT ` > → A because
IPC ` A → (> → A). By the preservation rule, we get that iT ` >¤ A, i.e iT ` 2A.

Now for the other direction. Assume that the necessitation rule is admissible in iT and iT ` A → B.
By applying the necessitation rule, we get that iT ` 2(A → B). It follows from the above lemma that
iT ` A ¤ B.

qed

Thirdly we want to prove a substitution lemma which will be very important in our proof of the fixed
point theorem for preservativity logic.

Lemma 2.3.3 iP4 ` ¡(A ↔ B) → (Fp(A) ↔ Fp(B)).

Proof. PROOF by induction on the complexity of F .

1. Base case: F := ⊥, p, q. Immediate. Here we can see why we use ¡ instead of 2.

2. F := C → D. IH: iP4 ` ¡(A ↔ B) → (Cp(A) ↔ Cp(B)) (*) and iP4 ` ¡(A ↔ B) →
(Dp(A) ↔ Dp(B)) (**). You can find the argument in the following: iP4 ` ¡(A ↔ B) →
((Cp(A) → Dp(A)) → (Cp(B) → Dp(A)) (by (*)). And then iP4 ` ¡(A ↔ B) → ((Cp(A) →
Dp(A)) → (Cp(B) → Dp(B)) (by (**)). Similarly we can show the other implication.

3. F := C ∨D. IH: iP4 ` ¡(A ↔ B) → (Cp(A) ↔ Cp(B)) (*) and iP4 ` ¡(A ↔ B) → (Dp(A) ↔
Dp(B)) (**). It follows immediately that iP4 ` ¡(A ↔ B) → (Cp(A) → Dp(B) ∨ Cp(B))
and iP4 ` ¡(A ↔ B) → (Dp(A) → Cp(B) ∨ Dp(B)), both of which together implies that
iP4 ` ¡(A ↔ B) → (Cp(A)∨Dp(A) → Cp(B)∨Dp(B)) or iP4 ` ¡(A ↔ B) → ((C∨D)p(A) →
(C ∨D)p(B)). Similarly we can show the other direction.

4. We can show the case when F := C ∧D similarly.

5. F := C ¤ D. IH: iP4 ` ¡(A ↔ B) → (Cp(A) ↔ Cp(B)) (*) and iP4 ` ¡(A ↔ B) →
(Dp(A) ↔ Dp(B)) (**). It is easy to see that iP4 ` ¡(A ↔ B) → 2(Cp(A) ↔ Cp(B)) and
iP4 ` ¡(A ↔ B) → 2(Dp(A) ↔ Dp(B)). Further it follows form lemma 2.3.1 that iP4 ` ¡(A ↔
B) → (Cp(A)¢¤Cp(B)) and iP4 ` ¡(A ↔ B) → (Dp(A)¢¤Dp(B)). Then iP4 ` ¡(A ↔ B) →
(Cp(A) ¤ Dp(A) → Cp(B) ¤ Dp(B)).i.e. iP4 ` ¡(A ↔ B) → ((C ¤ D)p(A) → (C ¤ D)p(B)).
Similarly we can show the other direction: iP4 ` ¡(A ↔ B) → ((C ¤ D)p(B) → (C ¤ D)p(A)).

qed

14lemma 3.1.1 in Iemhoff [2001].
15This theorem is, in fact, implicit in Lemma 3.1.2 in Iemhoff [2001].
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The following lemma 16 looks very trivial but it is very handy in many of our equivalence proofs in
this thesis.

Lemma 2.3.4 `iP− [(A → C) ∧A] ¤ C
`iP− A ¤ (C → A ∧ C)

Theorem 2.3.5 The following two forms of the Mp principle are equivalent over iP−:

1. A ¤ B → (2C → A) ¤ (2C → B)

2. (A ∧2C) ¤ B → A ¤ (2C → B).

Proof. First the direction from 2 to 1. Reason inside iP−:
[(2C → A) ∧2C] ¤ A (by Lemma 2.3.4)
A ¤ B → [(2C → A) ∧2C] ¤ B (by P1)
[(2C → A) ∧2C] ¤ B → (2C → A) ¤ (2C → B) (by 2)
A ¤ B → (2C → A) ¤ (2C → B)

Next the other direction from 1 to 2. Reason inside iP−:
(A ∧2C) ¤ B → (2C → A ∧2C) ¤ (2C → B) (by 1)
A ¤ (2C → A ∧2C) (by Lemma 2.3.4)
(A ∧2C) ¤ B → A ¤ (2C → B).

qed

Another application of the above trivial-looking lemma is the following equivalence proof for the W
principle.

Corollary 2.3.6 The following two forms of W are equivalent over iP−:

1. A ∧2B ¤ B → A ¤ B

2. A ¤ B → (2B → A) ¤ B

Proof. First the direction from 1 to 2:
((2B → A) ∧2B) ¤ A (by lemma 2.3.4)
A ¤ B → ((2B → A) ∧2B) ¤ B
A ¤ B → (2B → A) ¤ B (by 1)

Next the other and 2-to-1 direction.
A ¤ (2B → A ∧2B) (by Lemma 2.3.4)
A ∧2B ¤ B → (2B → A ∧2B) ¤ B (by 2)
A ∧2B ¤ B → A ¤ B

qed

iPLM is axiomatized over iP by Mp and Lp. iPL is axiomatized over iP by Lp. After the above
lemma 2.3.6 and theorem 2.3.7, we can prove a lemma which will be very useful in Section 3.5:

Lemma 2.3.7 iPLM ` W and iPW ` Lp.

16In fact we have used it in the proof of lemma 2.3.1.
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Proof. First we show that iPLM ` W
iPLM ` (A ∧2B) ¤ B → A ¤ (2B → B) (by Mp)
iPLM ` (A ∧2B) ¤ B → A ¤ B (by Lp)

Next the second one: iPW ` Lp.
iPW ` A ¤ B → [(2B → A) ∧2B] ¤ B (by the trivial lemma)
iPW ` A ¤ B → (2B → A) ¤ B (by W ). After replacing A with B, we get that iPW ` Lp.

qed

In fact the above lemma tells us that iPW is contained in iPLM . As we will show below, this
containment is strict.

Theorem 2.3.8 The following two principles are equivalent in iP :

1. (2A → A) ¤ A;

2. (A ¤ B) → (A → B)) ¤ (A → B)

Proof. If we take A to be >, then we will get the direction from the 2 to 1 immediately. And the
proof of the other direction follows from Lemma 2.3.1. qed

2.4 Some Basic Propositions in Intuitionistic Provability Logic

As we have mentioned above, it is still unknown what the provability logic of HA is. In the following
we will again write the principles that are known so far:

K : 2(A → B) → (2A → 2B)
4 : 2A → 22A
L : 2(2A → A) → 2A
Le : 2(A ∨B) → 2(A ∨2B) (Leivant’s axiom)
Ma : 2¬¬(2A → ∨

2Bi) → 2(2A → ∨
2Bi) (Formalized Markov Scheme)

Inference rules for iH: modus ponens and necessitation.

We call iH the logic with the above principles and rules. Recall that it is NOT the provability logic
of HA.

Similarly we can get a substitution lemma, which will be very important in showing the fixed point
theorem for iL.

Lemma 2.4.1 iK4 ` ¡(A ↔ B) → (Fp(A) ↔ Fp(B))

Proof. The proof is just a sub-proof of the above one for iP4. qed

Theorem 2.4.2 iL ` 2A → 22A for any formula A.

Proof. The proof here is the same as that on the classical side. Reason inside iL:
A → ((22A ∧2A) → (2A ∧A)
A → (2(2A ∧A) → (2A ∧A))
2A → 2(2(2A ∧A) → (2A ∧A))
2A → 2(2A ∧A)
2(2A ∧A) → 22A
2A → 22A.

qed
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The following proposition just as the above one shows that the principle 4 is a very basic principle in
the setting of intuitionistic provability logic.

Theorem 2.4.3 `iLe 2A → 22A

Proof. `iLe 2A → 2(A ∨2A)
`iLe 2A → 2(2A ∨2A)
`iLe 2A → 22A qed

Next we show a theorem that is common to the logics K4, iK4 and iP4 that capture the Löb principle
in the same way: 17.

Theorem 2.4.4 `iK4 2(2(2A → A) → 2A) → (2(2A → A) → 2A)

Proof. Reason inside iK4:
2(2(2A → A) → 2A) → (2(2(2A → A)) → 22A)
2(2(2A → A) → 2A) → (2(2A → A) → 22A)
2(2(2A → A) → 2A) → (2(2A → A) → 22A ∧2(2A → A))
2(2(2A → A) → 2A) → (2(2A → A) → 2A)

qed

The Löb rule is the modal-logical inference rule:
2A → A/A

Let i4LR be the system of modal logic whose axioms are those of iK4 and whose rules are modus
ponens, necessitation and the Löb rule. It will make no difference whether you add the Löb principle
or the Löb rule in to iK4 as the folloing theorem 18 shows.

Theorem 2.4.5 i4LR ` A iff iL ` A for any formula A.

Proof. The left-to-right direction is obvious. We just consider the other direction. According to the
above lemma,

`i4LR 2(2(2A → A) → 2A) → (2(2A → A) → 2A).
By applying LR once, we immediately get that

`i4LR 2(2A → A) → 2A.
qed

It is time to answer the question left in section 2.2: How to make iKH complete. Let us call i4Y R
the logic iK4 with the extra rule Y R: A ↔ 2A/A. As we will show in the following lemma, it makes
no difference adding LR or Y R to the background system iK4.

Lemma 2.4.6 `i4LR A iff `i4Y R A.

Proof. We only need to show that LR is admissible in i4Y R. Reason in i4Y R:
1. 2A → A
2. 22A → 2A
3. 2A → 22A (by 4)
4. 2A ↔ 22A
5. 2A (by Y R)
6. A (by modus ponens of 1 and 5)

qed

17See the folowing lemma 3.2.4.
18You can find a classical counterpart of the following theorem in Boolos [1993].
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Since i4LR is complete (by the above Theorem 2.2.7 and Theorem 2.4.5), i4Y R is complete. It is
easy to see that i4Y R is the same as i4Y S. For, on one hand, i4Y R ⊆ i4Y S; on the other hand,
i4Y S ⊆ iL. So, if we add 4 to iKH, then we will get a complete system, which is the same as iL.

Theorem 2.4.7 19 In L2,

1. 4 corresponds to semi-transitivity;

2. 4 is canonical;

3. `iK4 A iff A is valid on all finite transitive frames.

By the above theorem, we can immediately get that iK4 is NOT closed under the Löb rule. For
otherwise the Löb principle would be valid in all finite transitive frames, which we can easily falsify
by a counterexample.

19Proposition 4.2.1 in Iemhoff [2001].
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Chapter 3

Conservation Results

We are ready to begin the main part of this thesis. In Introduction, we have given the motivation
behind the main results in this thesis. Moreover, it will be inspiring to explain the importance of
conservation results in those equivalence results that we presented in Chapter 1. Again, we will take
iPL as an example. It seems that we can’t show directly that the L2-fragment of iPL is equivalent to
the logic iL with the extra rule DR because we even don’t know whether the logic iL with the extra
rule DR is equivalent to a normal modal logic or not. We will divide the proof into two stages:

1. iPL is conservative over iLLe with respect to formulas in L2 (Theorem 3.2.3)

2. iLLe is equivalent to the logic iL with the rule DR (Theorem 3.2.11) .

The proof of the first is based on a transformation procedure from Le−frames to gathering frames in
Iemhoff [2001]. And the the proof of the second one is a combination of the first one and the admis-
sibility of the rule 2A → 2B/A ¤ B in iPL. This will be a guiding proof pattern of the equivalence
results in the following sections.

As you will see, the rule 2A → 2B/A¤B plays a dominant role in the following sections. This rule is
discussed in Iemhoff [2001] Section 5.2 where a short proof sketch is given for the admissibility of the
rule for iPH. We will give detailed proofs of the admissibility of this rule in many other logics, which
gives an impression that we repeat the same proofs. This is not the case though. Every time we show
the admissibility for a different logic, you will find some additional new ideas in the proof, which will
make our modal analysis richer and more powerful. A good example is our proof of the admissibility
in iPM .

We will divide the presentation of this chapter into several parts according to the results which we
have previously mentioned.

3.1 iLe is Equivalent to the Logic iK4 with the Extra rule DR

First we will give two proofs of the admissibility of this rule in iP4. The reason why we give the
first and more complicated proof is that we want to introduce a handy lemma. But the second one
is simpler and is following a more-often-used pattern. A notational convention: [z) := {w| there is a
sequence of w0S0w1S1w2 · · ·wn = w for some worlds w0, w1, · · · , wn in the model where Si ∈ {R,≤}}.
Put it in another way, [z) stands for the sub-model generated by z.

29
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Definition 3.1.1 A frame F = 〈W,R,≤, |=〉 is gathering if, for any w, v and u in W , wRvRu, then
v ≤ u. ¢

Lemma 3.1.2 1

1. The principle 4p corresponds to gatheringness.

2. The logic iP4 is canonical.

3. `iP4 A iff A is valid on all finite gathering frames.

Lemma 3.1.3 (Generated Submodel Lemma for iP4) Let M be a model on a gathering frame and
x, y be two worlds in this model such that xRy. If y |= A, then, for any z ∈ [y), z |= ¡A.

Proof. First one observation, for any z ∈ [y), y ≤ z. This follows immediately from the fact that M
is on a gathering frame. So z |= A. Take any successor w of z, w |= A because w ∈ [y). So z |= 2A
and hence z |= ¡A.

qed

Lemma 3.1.4 `iP4 A ¤ B iff `iP4 (2A → 2B).

Proof. The direction from left to right is immediate. Now we only need to treat the other direction.
We prove this by contraposition. Suppose that iP4 6` A ¤ B. By the completeness of iP4, it follows
that it is not true at a point w of some finite gathering model M . Then there is a point v such that
wRv and v |= A but v 6|= B. Now we define a new model from the original one and in fact a submodel
of the old one. Take W ′ := {w} ∪ [v), R′ = R ¹W ′ and ≤′=≤¹W ′ . When the context is clear, we will
not distinguish R′,≤′ from R and ≤, which is justified by the definition of M ′. And V ′(p) = V (p) for
any propositional variable p. And it is easy to see that ≤′ ◦R′ ⊆ R′. So M ′ is on a frame.

Fact 1: for any x ∈ [v) and for any formula B in L¤, M ′, x |= B iff M, x |= B.

It is clear that M ′, w 6|= 2B because wRv and M ′, v 6|= B.

By the above lemma, we get that M ′, w |= 2A because R[w] ⊆ [v) and for any x ∈ [v), x |= A. So
M ′, w |= 2A but M ′, w 6|= 2B, i.e. M ′, w 6|= 2A → 2B. By the soundness of iP4, 6`iP4 2A → 2B.

Conclude: `iP4 A ¤ B if `iP4 (2A → 2B)
qed

Proof. (Second and Simpler Proof) The direction from left to right is immediate. Now we only need
to treat the other direction. We prove this by contraposition. Suppose that 6`iP4 A ¤ B. It follows
that it is not true at a point w0 of some finite gathering model M . Then there is a point v such that
w0Rv and M, v |= A but M,v 6|= B. Now we define a new model from the original one. The new one
is NOT necessarily a sub-model of the original one. Here w is a new world.Take W ′ := {w} ∪ [v),
R′ = R ¹[v)

⋃{(w, v)} and ≤′=≤¹[v) ∪{(w, w)}. And V ′(p) = V (p) for any propositional variable p.

Fact 1: for any x ∈ [v) and for any formula B in L¤, M ′, x |= B ⇔ M,x |= B.

It is clear that M ′, w 6|= 2B because wRv and M ′, v 6|= B. First we show that the new frame defined
above is in fact a finite gathering one. Take xR′yR′z. We divide the proof into the following cases;

1See Proposition 4.2.1 in Iemhoff [2001].
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1. w ∈ {x, y, z}. But, according to the above definition of R′, w = x and v = y. Also it is obvious
that w0RyRz. Then it follows that y ≤ z because M is a gathering model. So y ≤′ z because
y, z ∈ [v).

2. w 6∈ {x, y, z}. It follows that x, y, z ∈ [v). Therefore, xRyRz. By the same argument as above,
y ≤ z. Since y, z ∈ [v), y ≤′ z.

It is easy to see that M ′, w |= 2A because v is the only successor of w and M ′, v |= A . So M ′, w |= 2A
but M ′, w 6|= 2B, i.e. M ′, w 6|= 2A → 2B. By the soundness of iP4, 6`iP4 2A → 2B.

qed

Theorem 3.1.5 2In L2,
(i)On finite frames Le corresponds to the Le-property: ∀wv(wRv → ∃x(wRx ≤ v∧∀u(vRu → x ≤

u))).
(ii)`iLe A iff A is valid on all finite brilliant Le-frames.
(iii)`iLLe A iff A is valid on all finite transitive conversely well-founded brilliant Le-frames.

For the sake of completeness, we will repeat the conservation of iP4 over iLe in Iemhoff [2001] though
we give a more transparent presentation. Besides we need again the following procedure (in Lemma
3.1.7) transforming Le-frames to gathering frames in the proof of lemmas 3.2.1 and 3.5.6.

Lemma 3.1.6 Let M := 〈W,R,≤, V 〉 and N := 〈W,R′,≤, V 〉 be two finite frames. If R′ ⊆ R ⊆
(R′◦ ≤), then M, w |= B iff N, w |= B for any formula B in L2 and any world w ∈ W . 3

Proof. Prove by induction on B. We only show the case when B := 2C. Assume that M, w |= B (i.e.
for any v, wRv , M, v |= C). Take any x such that wR′x. Of course wRx. By the above assumption,
M,x |= C. By IH, M ′, x |= C. This implies that M ′, w |= 2C.

Now we show the other direction. Assume that M ′, w |= B (i.e. for any v, wR′v , M ′, v |= C). Take
any x such that wRx. By the above assumption, w(R′◦ ≤)x. That is to say, there is a w′ such that
wR′w′ and w′ ≤ v. So M ′, w′ |= C, which implies that M ′, v |= C. By IH, M, v |= C. This implies
that M,w |= 2C.

qed

Lemma 3.1.7 (Transformation Lemma for Le-Frames) Let M := 〈W,R,≤, V 〉 be a finite Le brilliant
frame. Then there is a finite gathering frame N = 〈W,R′,≤, V 〉 such that R′ ⊆ R ⊆ (R′◦ ≤).

Proof. Assume that M := 〈W,R,≤, V 〉 is a finite Le brilliant frame. Define:
wR′v ≡def wRv and ∀u(vRu → v ≤ u) and N := 〈W,R′,≤, V 〉.

S(x) denotes the property: ∀u(xRu → x ≤ u). Assume that wRv. We need to find the x such that
wR′x ≤ v. That is to say, wRx ≤ v and S(x). By the Le-property, there is a successor x1 of w which
is below v and all its own successors. If x1 = v, then we have found such an x. If x1 6= v, then there
is another successor x2 of w which is below x1 and all its own successors. If x2 = x1, then we have
found such an x. If not, we will repeat the same argument as above. Then we will get a sequence
x1x2 · · · . Since the frame is finite, there are two nodes xn−1 = xn for some n. So xn is the x that we
are looking for.

qed

Lemma 3.1.8 `iP4 2(A ∨B) → 2(A ∨2B)4

2See Proposition 4.4.1 in Iemhoff [2001].
3This lemma is similar to a previous lemma 2.2.5.
4Page 53 of Iemhoff [2001].
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Proof.Reason inside iP4:
A ¤ A, B ¤ 2B
A ¤ (A ∨2B)
B ¤ (A ∨2B)
(A ∨B) ¤ (A ∨2B) (by Dp)
2(A ∨B) → 2(A ∨2B) (by lemma 2.3.1)

qed

Theorem 3.1.9 `iLe A iff A is valid on all finite gathering frames.

Proof. The right-to-left direction follows from the fact that Le is derivable in iP4. Now we just need
to show the other direction.

Suppose that 6`iLe A. Then by the completeness we get that there are a finite brilliant Le model
M = 〈W,R,≤, V 〉 and a world b in this model such that M, b 6|= A. By the above lemma 3.1.7 there
is another new finite gathering model N = 〈W,R′,≤, V 〉 such that R′ ⊆ R ⊆ (R′◦ ≤). By the lemma
3.1.6, it follows that N, b 6|= A.

qed

Corollary 3.1.10 (Conservation) `iP4 A iff `iLe A for all formulas A in L2.

Theorem 3.1.11 iLe is equivalent to the logic iK4 with the extra rule DR (denoted by iK4∗).

Proof. First show that iLe is contained in iK4∗. We only need to show that Le is derivable in the
latter logic. Since iK4∗ ` 2A → 22A, we get by DR that 2A → 22A/2(A ∨ B) → 2(2A ∨ B). It
follows immediately that iK4∗ ` 2(A ∨ B) → 2(2A ∨ B) for any formula A and B in L2, which is
exactly Le.

Now we show the other direction. It is known that 4 is derivable in iLe 5. It suffices to show that DR
is an admissible rule in iLe. Assume that iLe ` 2A → 2B. According to the fact that Le is derivable
in iP4, iP4 ` 2A → 2B. By Lemma 3.1.4, we get that iP4 ` A ¤ B. From the following deduction:

iP4 ` A ¤ B ∨ C ( from the above)
iP4 ` C ¤ B ∨ C
iP4 ` (A ∨ C) ¤ (B ∨ C) (Dp and the above two),

we arrive at the result that iP4 ` 2(A ∨ C) → 2(B ∨ C). By the conservation theorem, iLe `
2(A ∨ C) → 2(B ∨ C).

So DR is admissible in iLe. Conclude: iLe is equivalent to the logic iK4 with the extra rule DR.
qed

3.2 Conservation of iPL over iLLe

3.2.1 Conservation of iPL over iLLe

First we prove an analogue of Proposition 4.4.2 in Iemhoff [2001].

Lemma 3.2.1 iLLe ` A iff A is valid on all finite gathering conversely well-founded frames.

5Theorem 2.4.3
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Proof. First the easier and left-to-right direction. It suffices to show that both L and Le are valid
on all finite gathering conversely well-founded frames. By Prop. 4.4.2 in Iemhoff[2001] or the above
lemma 3.1.5, Le is valid on all finite gathering frames and hence on all finite gathering conversely
well-founded frames. Since L corresponds to semi-transitivity plus conversely well-foundedness and
gatheringness implies semi-transitivity, L is valid on all finite gathering conversely well-founded frames.

Now we show the more difficult direction. Suppose that iLLe 6` A for any A in L2. Since iLLe ` A
iff A is valid on all finite transitive conversely well-founded brilliant Le-frames, there are a model
M = 〈W,≤, R, V 〉 which is finite transitive conversely well-founded brilliant Le-model and some point
b ∈ W such that M, b 6|= A.

We will use the same procedure as that in the above lemma 3.1.76. Define wR′v := wRv and
∀u(vRu → v ≤ u). By the same argument as there, we can get that R′ ⊆ R ⊆ (R′◦ ≤). Define
M ′ = 〈W,R′,≤, V 〉. It is easy to see that M ′ is on a finite gathering frame because we impose this
property through the definition of R′.

Claim : M ′ is conversely well-founded. Suppose NOT. Then there is a loop: w0R
′w1R

′ · · ·R′wnR′w0.
According to the definition of R′, w0Rw1R · · ·RwnRw0, which is impossible because R is conversely
well-founded. So M ′ is on a finite gathering well-founded frame.

It follows immediately from the above lemma 3.1.6 that M ′, b 6|= A. Since M ′ is on a finite gathering
conversely well-founded frame, A is NOT valid on all finite gathering conversely well-founded frames.

qed

Lemma 3.2.2 7The principle Lp corresponds to gatheringness plus converse well-foundedness of the
modal relation.

Theorem 3.2.3 (Conservation) iLLe is the L2-fragment of iPL.

Proof. Suppose that iLLe 6` A. By the above lemma, A is NOT valid on all gathering conversely well
founded frames. It follows that iPL 6` A because B is valid on all gathering conversely well-founded
frames if iPL ` B (A result immediately following from Lemma 3.2.2).

On the other hand, it is easy to see that iLLe is contained in iPL. For both L and Le are derivable
in iPL. To put it more precisely, iPL ` 4p and iP4 ` Le (by the above lemma 3.1.8).

qed

3.2.2 iLLe is Equivalent to iL with the Extra Rule DR

Just like our perfect result about iLe and iP4, it is natural to ask the following question:
Is iLLe equivalent to iL with the extra rule DR? (*)

It is easy to see that iLLe is contained in the logic iL with the extra rule DR 8. For the other direction,
it seems that we need the completeness of iPL to show that 2A → 2B/A ¤ B is an admissible rule
in iPL like what we have shown for iP4. If this were the case, the above aimed question would be
reduced to the following question:

6In fact, Iemhoff’s procedure is quite universal: It can be used to transform almost all Le-frames into gathering frames.
The only thing that we need to check is whether the other frame properties are invariants under the transformations
like the converse well-foundedness above.

7See Proposition 4.3.1 in Iemhoff [2001].
8see the above theorem 3.1.11.
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is it true that iPL ` 2A → 2B iff iPL ` A ¤ B (**).
Unfortunately, like what we have shown for iP4, this question would reduce to our most difficult
question in this thesis:

Is iPL complete with respect to some class of frames? (***)
However, fortunately, we can work out the problem without the completeness of iPL. In the following
we will show that 2A → 2B/A ¤ B is admissible in iPL by detouring via the admissibility of this
rule in iP4 (Lemma 3.1.4).

In the following paragraphes we use two ways to show that
iPL ` 2A → 2B ⇔ iPL ` A ¤ B.

The first is unique for iPL because of the lemma 3.2.4 below. The second one is quite general.
In fact the general result can show besides that iP4Vn and iPLVn are also closed under the rule:
2A → 2B/A ¤ B.

Lemma 3.2.4 iP4 ` 2((2C → C) ¤ C) → (2C → C) ¤ C9

Proof.(Semantic Proof) Suppose that: iP4 6` 2((2C → C) ¤ C) → (2C → C) ¤ C. Then by the
completeness, we get that there is a finite gathering model M and a possible world w0 ∈ W such that

w0 6|= 2((2C → C) ¤ C) → (2C → C) ¤ C
This means that there is a world w1 above w0 such that

w1 |= 2((2C → C) ¤ C) but w1 6|= (2C → C) ¤ C
Further it implies that there is a successor w2 of w1 such that

w2 |= 2C → C but w2 6|= C, which implies that w2 6|= 2C.
Again it will implies that there is a successor w3 of w2 such that:

w3 |= 2C → C but w3 6|= C, which implies that w3 6|= 2C.
Then we will get an infinite line (in fact a loop) such that for any wj in the line:

wj |= 2C → C but wj 6|= C, which implies that wj 6|= 2C
However, since w1 |= 2((2C → C) ¤ C), w2 |= (2C → C) ¤ C. Since w3 |= 2C → C, w3 |= C, which
contradicts our above result that w3 6|= C.

Conclude: iP4 ` 2((2C → C) ¤ C) → (2C → C) ¤ C)
qed

Before we give a syntactic proof of the same lemma, we will show a lemma in iP at first.

Lemma 3.2.5 iP ` 2(A ¤ B) → (2A ¤ 2B)

Proof. We can give a very simple semantic proof to the lemma which is quite similar to that in the
above lemma. We choose to give a syntactic proof. The argument is as follows:

iP ` A ¤ B → (2A → 2B)
⇒ iP ` 2(A ¤ B) → 2((2A → 2B))
⇒ iP ` 2(A ¤ B) → (2A ¤ 2B)

qed

Proof.(Syntactic Proof of Lemma 3.2.4) The argument is as follows:
iP4 ` 2((2C → C) ¤ C) → 2(2C → C) ¤ 2C (by the above lemma)
⇒ iP4 ` 2((2C → C) ¤ C) → (2C → C) ¤ 2C (by 4p)
⇒ iP4 ` 2((2C → C) ¤ C) → (2C → C) ¤ (2C ∧ (2C → C))
⇒ iP4 ` 2((2C → C) ¤ C) → (2C → C) ¤ C

qed

9We have achieved a similar lemma in iK4. See lemma 2.4.4.
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Corollary 3.2.6 The Löb rule (LR) is not admissible in iP4.

Proof. Suppose that LR is admissible in iP4. Then by the above lemma, we would get that Lp
is derivable in iP4, which is impossible. We can easily find a counterexample by giving a gathering
model which is not conversely well-founded such that 4p is valid in this frame but Lp is not.

qed

Lemma 3.2.7 iP4 ` 2 ¡ L ↔ ¡L,↔ 2L where L is (2C → C) ¤ C.

Proof. iP4 ` 2 ¡ L → L ∧2L (by lemma 3.2.4). That is to say,
iP4 ` 2 ¡ L → ¡L;

Now for the other direction.
iP4 ` (L ∧ 2L) → (2L ∧ 22L) (by 4p or 4),i.e.iP4 ` 2 ¡ L ↔ ¡L . Similarly we can show the

second equivalence. qed

Lemma 3.2.8 (Detour Lemma 1) iPL ` A iff there exist C1, C2, · · · , Cn such that iP4 ` 2((2C1 →
C1) ¤ C1) ∧ · · · ∧2((2Cn → Cn) ¤ Cn) → A.

Proof.Let C denote ((2C1 → C1) ¤ C1)∧ · · · ∧ (2Cn → Cn) ¤ Cn)). Then the above proposition can
be put in the following simpler way:

iPL ` A iff there exists C such that iP4 ` 2C → A.

The direction from right to left is obvious. Now we just show the other direction. Assume that
iPL ` A. This also means that there is a finite sequence of proof10of A in iPL: s1s2 · · · sn = A. Let
(2C1 → C1) ¤ C1), · · · , ((2Cn → Cn) ¤ Cn) be the instances of the Löb principle occurring in the
sequence and C denote (2C1 → C1) ¤ C1) ∧ · · · ∧ (2Cn → Cn) ¤ Cn)). It suffices to show that there
is a finite sequence of proof of 2C → A in iP4. In fact this required sequence is based on the original
one for A. Define s′i := 2C → si.

Fact 1: iP4 ` 2C → ¡C. This follows from the lemma 3.2.4.

Claim 2: There is a finite sequence of proof of 2C → A in iP4. Prove by cases: for any si(i ≤ n),

1. if si is an instance of axiom of iP , then s′i is a theorem of iP and hence of iP4 because in fact
si → (2C → si) is a tautology;

2. if si is an instance of Lp, it is easy to see that s′i is then a theorem of iP4 because of the following
reasoning:

iP4 ` 2C → ¡C

⇒ iP4 ` ¡C → si (tautology)

⇒ iP4 ` 2C → si (from the above two)

⇒ iP4 ` s′i

3. if there are sj and sk(j, k < i) such that sj ≡ sk → si, then s′j ≡ 2C → (sk → si) ≡ ((2C →
sk) → (2C → si)) ≡ s′k → s′i;

10Here we will use an equivalent definition of proof in a logic T : We call a finite sequence s is a proof of A if, for any
si, either si is a theorem of T , or there are sj and sk(j, k < i) such that sj ≡ sk → si or there are C, D and sj(j < i)
such that sj ≡ C → D and si ≡ C ¤ D. We use this dense form in our above proof. Absolutely we can make the above
proof more precise. But the above dense presentation is better because it makes us see the woods instead of the trees.
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4. if there are B,D and sj(j < i) such that sj ≡ B → D and si ≡ B¤D, then s′j ≡ 2C → (B → D)
and s′i ≡ 2C → (B ¤ D). Now we show that as a matter of fact we can get s′i from s′j in iP4.
The following is the argument:

iP4 ` s′j
⇒ iP4 ` 2C → (B → D)

⇒ iP4 ` 22C → 2(B → D) (Necessitation and distribution)

⇒ iP4 ` 2C → 2(B → D) (by the fact that iP4 ` 2C → 22C)

⇒ iP4 ` 2C → (B ¤ D) (by the fact that iP4 ` 2(B → D) → (B ¤ D))

It is easy to see that in iP4 there is a finite sequence s′11 · · · s′1i1
(≡ s′1)s

′
21 · · · s′2i2

(≡ s′2) · · · s′n1 · · · s′nin
(≡

s′n ≡ (2C → A)) of proof of 2C → A. Conclude: there exist C1, C2, · · · , Cn such that iP4 `
2((2C1 → C1) ¤ C1) ∧ · · · ∧2((2Cn → Cn) ¤ Cn) → A.

qed

Lemma 3.2.9 For ANY C 11, if iP4 ` 2C → (2A → 2B), then iP4 ` 2C → (A ¤ B).

Proof. Suppose that iP4 6` 2C → (A ¤ B). Then by the completeness of iP4, there is a finite
gathering model M and a world w0 in this model such that M,w0 6|= 2C → (A¤B). There is a world
w1 above w0 such that w0 ≤ w1 and w1 |= 2C but w1 6|= A ¤ B. It follows that there is a world w2

such that w1Rw2 and w2 |= A but w2 6|= B. Of course w2 |= C. Now we construct a new gathering
model M ′:

1. W ′ := {w′1} ∪ [w2)(including w2) where w′1 is a new world;

2. R′ := {(w′1, w2)} ∪R ¹[w2);

3. ≤′:= {(w′1, w′1)}∪ ≤¹[w2)

4. v′(p) := v(p) for all propositional variables.

Fact 1: for any x ∈ [w2) and for any formula B, M,x |= B iff M ′, x |= B.

Fact 2: ≤′ ◦R′ ⊆ R′.

It is easy to check that the new model is on a gathering frame and that w′1 |= 2C, w′1 |= 2A but
w′1 6|= 2B, which also implies that w′1 |= 2C but w′1 6|= (2A → 2B). We are done.

qed

Theorem 3.2.10 iPL ` 2A → 2B iff iPL ` A ¤ B

Proof. The PROOF is just an immediate application of the above two Lemmas 3.2.8 and 3.2.9.
Assume that iPL ` 2A → 2B. Then, according the Lemma 3.2.8, there are some instances of L:
(2C1 → C1)¤C1, · · · , (2Cn → Cn)¤Cn (C denote the conjunction of them ) such that iP4 ` 2C →
(2A → 2B). By Lemma 3.2.9, we get that iP4 ` 2C → (A ¤ B). This implies, according to Lemma
3.2.8, that iPL ` A ¤ B.

qed

Corollary 3.2.11 iLLe is equivalent to the logic iL with the extra rule DR.

11Here C is quantified and has nothing to do with our specified C above and below.
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Proof. By the above theorem, DR is admissible in iLLe because it is the L2 fragment of iPL
(Theorem 3.2.3). qed

Remark: The above lemmas 3.2.7 and 3.2.8 are unique for iPL because Lemma 3.2.4 is unique for
iPL while the following lemma is quite general for any finitely axiomatizable normal logics iP4X12

containing iP4:

Lemma 3.2.12 (Detour Lemma 2)iP4X ` A iff there are some instances of X-principles: X1, · · · , Xn

such that iP4 ` ¡(
∧

Xi) → A.

Proof.The proof of this lemma is very similar to and in fact simpler than the above lemma 3.2.8. qed

As we can easily see, Lemma 3.2.12 is more general than lemma 3.2.8. But for iPL and maybe many
others satisfying lemma 3.2.4, lemma 3.2.8 is stronger than lemma 3.2.12. The following lemma is also
very general13 .

Lemma 3.2.13 For any formula A, B,Ci and Di(i ≤ n), if iP4 ` ∧
¡(Ci ¤ Di) → (2A → 2B),

then iP4 ` ∧
¡(Ci ¤ Di) → (A ¤ B).

Proof. Here we will only treat the case when n = 1. In notation, we will omit the subscripts in the
Ci’s and Di’s. As usual, we will use a semantical proof here. Assume that iP4 6` ¡(C ¤D) → (A¤B).
Then by completeness of iP4, there is a gathering model M and a world w0 ∈ W such that:

w0 6|= ¡(C ¤ D) → (A ¤ B)
That is to say, there is a world w1 above w0 such that

w0 ≤ w1, w1 |= ¡(C ¤ D) but w1 6|= (A ¤ B).

It follows that there is a successor w2 of w1 such that w2 |= A but w2 6|= B. Now we construct a new
model M ′ as follows:

1. W ′ := {w′1} ∪ [w2) where w′1 is a new world;

2. R′ := {(w′1, w2)} ∪R ¹[w2);

3. ≤′:= {(w′1, w′1)}∪ ≤¹[w2);

4. v′(p) := v(p) for any propositional variable.

Observation 1: For any x ∈ [w2) and for any formula B, M, x |= B iff M ′, x |= B.

Observation 2: 〈W ′, R′〉 is a frame which is gathering. We only need to check the cases involving the
new world w′1.

Observation 3: For any x ∈ [w2), M ′, x |= ¡A because M, x |= ¡A, the proof of which is just an
application of Observations 1 and 2.

Observation 4: M ′, w′1 |= 2A, M ′, w′1 6|= 2B and M ′, w′1 |= 2(C ¤ D). For w2 is a successor (for
M ′, w′1 6|= 2B ) and the only successor (for M ′, w′1 |= 2A and M ′, w′1 |= 2(C ¤ D) ) of w′1, and

12Including iP4 because we can treat 4 as an axiom schema instead of a result following from Löb principle.
13It is less general than the above lemma 3.2.12 though because we require that Xi’s are in the form of Ci ¤ Di for

some Ci and Di here. And if C in lemma 3.2.8 is in the form of preservation say L, then we can deduce the following
lemma 3.2.13 from lemma 3.2.8.



38 CHAPTER 3. CONSERVATION RESULTS

M ′, w2 |= A, M ′, w2 |= C ¤ D but M ′, w2 6|= B (by observation 1).

After the four observations, it suffices to show that M ′, w′1 |= C ¤ D. Since w′1 has only one successor
w2, we only need to consider w2. Assume that M ′, w2 |= C. By observation 1, M, w2 |= C. Now
we argue in the original model M . As we saw a moment ago, M, w1 |= ¡(C ¤ D). It follows that
M,w1 |= (C ¤ D). So M, w2 |= D. For w1Rw2 and, as we shown, M, w2 |= C. Applying Observation
1 again, we get that M ′, w2 |= D. Conclude: M ′, w′1 |= C ¤ D. Moreover, M ′, w′1 |= ¡(C ¤ D) (by
Observation 4).

It follows immediately from the above results that M ′, w′1 6|= ¡(C ¤ D) → (2A → 2B). According to
the soundness of iP4, that is to say, iP4 6` ¡(C ¤ D) → (2A → 2B).

qed

It is tempting to generalize the above Lemma 3.2.13 to the following:
for any formula A,B and Ci(i ≤ n), if iP4 ` ∧

¡Ci → (2A → 2B), then iP4 ` ∧
¡Ci → (A¤B).

But this can’t be true. It suffices to show that by giving a gathering countermodel where ¡(2p →
2q) → p¤q is not valid because it is obvious that `iP4 ¡(2p → 2q) → (2p → 2q). The countermodel
is as follows:

1. W := {w, v, u};
2. R := {(w, v), (w, u)};
3. ≤:= {(w, w), (v, v), (u, u)};
4. V (p) := {v}; V (q) := {u}.

It is easy to check that M is on a gathering frame, w |= ¡(2p → 2q) and w 6|= p¤q because wRv, v |= p
but v 6|= q.

That iPL is closed under 2A → 2B/A ¤ B will follow from the above two lemmas immediately.

Theorem 3.2.14 iPL is closed under 2A → 2B/A ¤ B.

Proof. Assume that iPL ` 2A → 2B. Then, according the second detour lemma, there are some
instances of L: (2C1 → C1) ¤ C1, · · · , (2Cn → Cn) ¤ Cn (C denotes the conjunction of them) such
that iP4 ` ¡C → (2A → 2B). By lemma 3.2.13, we get that iP4 ` ¡C → (A ¤ B). This implies,
according to lemma 3.2.8, that iPL ` A ¤ B.

qed

In fact we can get more: For any finitely axiomatizable logic iP4X containing iP4 and X is is in the
form of C ¤ D for some C and D, if iP4X ` 2A → 2B, then iP4X ` A ¤ B. For example, iPL,
iP4Vn and iPLVn are covered by this general result.

In fact, we can show the admissibility of DR in iLLe without that of 2A → 2B/A ¤ B in iPL. The
proof strategy here is similar to the above though. First we give a similar detor lemma:

Lemma 3.2.15 For any formula A in L2, `iLLe A iff `iLe 2C → A where C is the conjunction of
some instances of Löb’s principle.

Proof. Here we only mention that, for any instance C of Löb’s provability principle, `iLLe 2C ↔ ¡C.
qed
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Theorem 3.2.16 DR is admissible in iLLe.

Proof. `iLLe 2A → 2B
⇒`iLe 2C → (2A → 2B) (by the above detor lemma)
⇒`iLe 2(C ∧A) → 2B
⇒`iLe 2((C ∧A) ∨D) → 2(B ∨D) (by the admissibility of DR in iLe)
⇒`iLe 2(C ∨D) → (2(A ∨D) → 2(B ∨D))
⇒`iLe 2C → (2(A ∨D) → 2(B ∨D))
⇒`iLLe 2(A ∨D) → 2(B ∨D) (by the above detor lemma).

qed

3.3 Conservation of iPM over iK

3.3.1 iPM is Complete with respect to a class of finite frames.

Lemma 3.3.1 In any canonical model: vR̄ ⊆ wR̄ iff w2 ⊆ v2 where x2 denotes the set of boxed
formulas in x.

Lemma 3.3.2 14 (i) The principle Mp corresponds to the Mp property:
∀wvu(wR ≤ u → ∃x(wRx ∧ v ≤ x ≤ u ∧ xR̄ ⊆ uR̄).
(ii) The logic iPM is canonical.

In the following section we will show that iPM is complete with respect to the class of finite Mp
frames. But before we begin to prove this statement, we need to define some important notions to the
proof. As we know, the reason why the proof in Proposition 4.5.2 in Iemhoff [2001] did not go through
for the finite case is that 2A → B does not necessarily belong to the adequate set X if the adequate
set is finite. If we had required that the adequate set meet the closure condition that 2A,B ∈ X
implies 2A → B ∈ X, then X would explode15 So, if we have a mechanism to control the tendency
to explode, then we will have the hope that the proof in the thesis will go through. In the following,
we will show that this is manageable.

Definition 3.3.3 Given any finite set X0 that is closed under subformulas and contains > and ⊥, we
enumerate all the boxed formulas in X0 : 2E1, 2E2, · · · ,2En, which are called atomic boxed formulas.
A formula A is called an M -boxed formula if it is a conjunction of atomic boxed formulas in which any
two atomic conjuncts are different. Let X1 be the union of X0 and the set of M -boxed formulas. It is
easy to see that X1 is closed under subformulas and contains > and ⊥. X1 can be divided into two
sets: the set Xb

1 of M -boxed formulas and the set Xn
1 of formulas which are not M -boxed formulas.

Define X2 := {E → B|E ∈ Xb
1, B ∈ X1} and X := X2 ∪X1. Obviously X is closed under subformulas

and contains > and ⊥. We call it adequate.
¢

It is easy to see that the set of M -boxed formulas is finite because it contains less than 2n elements.
If we assume the size of X0 is m, then X1 contains at most 2n + m elements. Obviously the size of
X2 is less than (2n + m)× 2n. So X is finite. We define the iPM -canonical X-model as usual.

One observation: If 2A ∈ X, then 2A is an atomic boxed formula.

14proposition 4.5.2 in Iemhoff [2001]
15This is actually not really true. By Diego’s theorem a finite set of propositional letters generates a finite number of

equivalent formulas if one only uses →. But this number is superexponential (in Hendriks [1996]) and we prefer to stay
in smaller ranges.
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Lemma 3.3.4 The iPM -canonical X-model satisfies the Mp-property.

Proof. Take w, v, u ∈ X. Assume that wRv ⊆ u. It is easy to see that the following property is a
∗-extendible w-successor property:

∗(x) : for all B ∈ X, if w ` x ¤ B, then B ∈ u.
If we can show that ∗(v ∪ u2), then there is a node x ∈ X such that wRx, v ⊆ x ⊆ u and xR̄ ⊆ uR̄.
So it remains to show that ∗(v ∪ u2), i.e.

if w ` v, u2 ¤ B, then B ∈ u.

Assume that w ` v, u2 ¤B. We may assume that u2 consists of 2C1, · · · ,2Cs, all of which are atomic
boxed formulas according to the above observation and are different from each other. We divide the
proof into two cases on whether B is in X1 or in X2:

1. Let B ∈ X1.

w ` (v, 2C1, · · · ,2Cs) ¤ B

w ` v ¤ ((2C1 ∧ · · · ∧2Cs) → B) (by Mp)

Since (2C1 ∧ · · · ∧2Cs) ∈ Xb
1 and B ∈ X1, (2C1 ∧ · · · ∧2Cs) → B ∈ X2. Of course it is in X.

By the definition of accessibility relation on the canonical model and the assumption that wRv,
(2C1 ∧ · · · ∧ 2Cs) → B ∈ v. Of course,(2C1 ∧ · · · ∧ 2Cs) → B ∈ u. Since 2C1, · · · , 2Cs are
also in u, u ` B. B ∈ u because u is saturated and B ∈ X.

2. Let B ∈ X2 and B ≡ Cb → C1 where Cb ∈ Xb
1 and C1 ∈ X1. Define F to be the conjunction

of all the atomic boxed formulas that occur in either 2C1 ∧ · · · ∧ 2Cs or Cb in which any two
conjuncts are different. It is easy to see that F ∈ Xb

1.

w ` (v, 2C1, · · · ,2Cs) ¤ B

w ` v ¤ ((2C1 ∧ · · · ∧2Cs) → B) (by Mp)

w ` v ¤ ((2C1 ∧ · · · ∧2Cs) → (Cb → C1))

w ` v ¤ (F → C1)

Since F ∈ Xb
1 and C1 ∈ X1, F → C1 ∈ X2. Therefore F → C1 ∈ X. It follows that F → C1 ∈ v.

Because v ⊆ u, it implies that u ` (2C1 ∧ · · · ∧ Cs) → (Cb → C1). Since 2C1, · · · ,2Cs ∈ u,
u ` Cb → C1. Then we get that Cb → C1 ∈ u because Cb → C1 ∈ X2 and hence Cb → C1 ∈ X.
So B ∈ u.

Conclude: ∗(v ∪ u2).
qed

Theorem 3.3.5 `iPM A iff A is valid on all finite Mp frames.

Proof.The left-to-right direction follows from the correspondence result. Now we just need to consider
the other direction. Suppose that 6`iPM A. First define Y0 consisting of all sub-formulas of A, > and
⊥. By using the same construction prescribed in the definition 3.3.3, we get a finite adequate set Y .
It is easy to see that there is a saturated set w such that A 6∈ w (by lemma 2.1.8). Then we construct
the iPM -canonical Y model M as usual. As the above lemma shows, M satisfies the Mp property.

It remains to show the truth lemma. Since the accessibility relation on the canonical models is defined
as usual, we can borrow the proof of truth lemma from the completeness proof of iP (Th. 2.1.10). It
follows that M, w 6|= A. So A is not valid on all finite Mp frames.

qed



3.3. CONSERVATION OF IPM OVER IK 41

3.3.2 iK is the L2-fragment of iPM

We can prove that iK is the L2-fragment of iPM directly by the following lemma 3.3.20. But why
should we kill the goose laying golden eggs? We choose to move into the destination slowly but surely.

It is not difficult to give an intuitive proof of the admissibility of rules in iPM . However it is not easy
to give a precise proof of the admissibility. Probably the reason for that lies in the fact that the Mp
property is an existence property. In order to manage it, we have to define some notions to help with
our formalization of the proof16.

Definition 3.3.6 A triple (w, v, u) in a frame is called a problem if it satisfies wRv ≤ u. It is called
an unsolved problem if it additionally satisfies:

there is no x such that wRx, v ≤ x ≤ u and xR̄ ⊆ uR̄.
Such an x is called a solution to the above problem. If such an x exists, then the problem is called a
solved problem.

Let (w, v, u) and (w, v′, u) be two problems. If v ≤ v′, then we denote (w, v, u) ¹ (w, v′, u) and say
(w, v, u) is below (w, v′, u). If v < v′, then we denote (w, v, u) ≺ (w, v′, u).

¢

Lemma 3.3.7 If x ≤ y, then yR̄ ⊆ xR̄. Therefore, if x ≤ y and xR̄ ⊆ yR̄, then yR̄ = xR̄.

Proof. This follows immediately from the fact that (≤ ◦R) ⊆ R.
qed

Lemma 3.3.8 Let (w, v, u) and (w, v′, u) be two problems. If (w, v, u) ¹ (w, v′, u) and x is a solution
to the problem (w, v′, u), then x is also a solution to the first problem (w, v, u).

Proof. This follows immediately from the definition of solutions. qed

Corollary 3.3.9 Let (w, v, u) and (w, v′, u) be two problems. Suppose that (w, v, u) ¹ (w, v′, u). For
any x, y, if both (x, v, y) and (x, v′, y) are problems, then each solution to (x, v′, y) is also a solution
to (x, v, y).

Definition 3.3.10 A problem (w, v, u) is called a dispensable problem if there is another different
problem such that (w, v, u) ≺ (w, v′, u). A problem is called indispensable if it is not dispensable.

¢

Definition 3.3.11 < [x] := {z|x < z}. A point w is called a minimal point in X if there is no point
v such that v < w. min[x] denotes the set of minimal points in the set < [x].

¢

One observation: any problem (w, v, v) is a solved problem.

Lemma 3.3.12 Let F be a frame. If there is no unsolved problem, then F satisfies the Mp property.

Lemma 3.3.13 iPM ` A ¤ B iff iPM ` (2A → 2B).

16Also see the following lemma Theorem 3.4.12.
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Proof. One direction is very clear. Now we just need to show the other direction. Assume that
iPM 6` A ¤ B. Then, by the completeness of iPM (lemma 3.3.5), A ¤ B is falsified at some point
w0 of some model M on some finite frame satisfying the Mp-property. There is a v0 such that
w0Rv0,M, v0 |= A but M,v0 6|= B. In the following we will construct a new Mp-model M ′ satisfying
the requirement that M ′ 6|= (2A → 2B).

One observation: if a problem (x, y, z) is inside [v0), i.e x, y, z ∈ [v0), then it is easy to see that there
is a solution to this problem in [v0). This means that we don’t need to consider the problems in [v0)
because all of them are solved in [v0).

First we define W0 := [v0) ∪ {w}, R0 := R ¹[v0) ∪{(w, v0)};≤0:=≤¹[v0) where w is a new world. Then
enumerate all the elements in min[v0]17: u1

0, u
2
0, · · · , uj0

0 . For the unsolved problem (w, v0, u
1
0), we add

a new world x1
1. After that we define a new frame F 1

1 = 〈W 1
1 , R1

1,≤1
1〉 where W 1

1 := W0 ∪ {x1
1}; R1

1 :=
R0∪{(w, x1

1)}∪{(x1
1, z)|(u1

0, z) ∈ R0};≤1
1:=≤0 ∪{(v0, x

1
1), (x

1
1, u

1
0)}∪{(x1

1, z)|(u1
0, z) ∈≤0}. It is easy to

see that x1
1R̄ = u1

0R̄ and that we can define a new valuation V 1
1 on the frame to guarantee persistence

for all propositional letters. We can just define: x1
1 ∈ V 1

1 (p) iff v0 ∈ V 1
1 (p) for all propositional letters.

It follows that M1
1 , x1

1 |= A.

Now we give some observations here. Since we add a new point, we add new problems. It seems that
we increase the number of the unsolved problems. But this is not the case. The new problems can be
divided into following two cases:

1. Two solved problems (w, v0, x
1
1) and (w, x1

1, u
1
0). The solution to the first problem is x1

1. The
solution to the second one is also x1

1. We no longer consider them because we only care about
the unsolved and indispensable problems.

2. The problems (w, x1
1, z) with z ∈< [u1

0]. It is easy to see that, for each problem (w, v0, z) with
z ∈< [u1

0], there is a problem (w, x1
1, z) with z ∈< [u1

0] such that (w, v0, z) ¹ (w, x1
1, z). In fact

the number of the problems (w, x1
1, z) with z ∈< [u1

0] is the same as that of problems (w, v0, z)
with z ∈< [u1

0]. But, by a previous lemma 3.3.9, a solution to (w, x1
1, z) is also a solution to

(w, v0, z). This implies that we only need to consider the problems (w, x1
1, z) where z ∈< [u1

0].
This in turn implies that the number of the unsolved and indispensable problems, which we need
to consider, decrease by 1 because we have solved the problem (w, v0, u

1
0).

We can similarly solve problems (w, v0, u
k
0) by adding a new world xk

1 such that wRxk
1 and v ≤ xk

1 ≤ uk
0 .

Afterwards define a new frame according to the same procedure as that we have prescribed for x1
1. We

will repeat this argument until there is no unsolved and indispensable problem.

Why will the procedure terminate in a finite number of steps? The reason lies in two facts. The first
one is that, since the frame is finite, the number of the unsolved and indispensable problems is finite.
The second is that every time when we add a new world, we have solved at least one unsolved problem
that we need to consider, which implies that the number of the unsolved and indispensable problems
will decrease every time. Finally we will reach the stage where there is no unsolved problem. So, by
the above lemma 3.3.12, the frame F ′ that we have achieved at that time satisfies the Mp property.

One observation: for any formula C and any world y ∈ [v0), M, y |= C iff M ′, y |= C.

We define a valuation V ′ on the new frame F ′ to guarantee persistence for all propositional letters.
Then it follows that, for all the new worlds y, M ′, y |= A. Since, except for v0, all successors of w are

17The purpose of choosing minimal points is to just to make the construction more efficient.
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new points, M ′, w |= 2A. M ′, w 6|= 2B because M, v0 6|= B (and hence M ′, v0 6|= B) and wR′v0. So,
2A → 2B is not valid on all finite Mp frames. According to the soundness of iPM , 6`iPM 2A → 2B.

qed

Since the above method is quite general, we can extract a very powerful theorem from the proof, which
turns out to be handy when we deal with the admissibility of many other rules in iPM (See the later
theorems 3.4.8 and 3.4.12).

Theorem 3.3.14 (Extension Theorem for iPM) Let M = 〈W,R,≤, V 〉 be a finite Mp model and [v)
be any generated submodel by v. Then there is a new finite Mp model N = 〈W ′, R′,≤′, V ′〉 such that

1. [v) ⊆ W ′;

2. For any world x ∈ [v) and any formula E, M, x |= E iff N,x |= E;

3. There is a world w ∈ W ′ such that

wR′v and

If wR′y and M, v |= A, then N, y |= A.

4. If M,v |= A and M, v 6|= B, then there is a world w′ ∈ W ′ such that w′R′v and N,w′ 6|= 2A →
2B.

Theorem 3.3.15 The logic iK with extra rules MoR and DR is contained in the L2-fragment of
iPM (call it iPM2).

Proof. It is trivial that iK is contained in iPM2. By the same argument as that in Theorem 3.1.11, it
is easy to see that DR is admissible in iPM2. Now we just need to show that MoR is also admissible
in iPM2. The proof is as follows:

iPM2 ` 2A → 2B
⇒ iPM ` 2A → 2B (trivial)
⇒ iPM ` A ¤ B (by the above lemma)
⇒ iPM ` (2C → A) ¤ (2C → B) (Mp-principle)
⇒ iPM ` 2(2C → A) → 2(2C → B) (by lemma 2.3.1)
⇒ iPM2 ` 2(2C → A) → 2(2C → B) (from the definition of iPM2).

qed

In order to show: the L2 fragment of iPM is the logic iK with the extra rules MoR and DR, according
to our usual analysis we only need to show the following conjecture:

iKMD ` A iff A is valid on all finite Mp frames.
PROOF of this should be divided into two directions. The left to right is evident. For the right to
left, it is the main part of the proof. Suppose that the conjecture is true. Now we will show that
the L2 fragment of iPM is the logic iK with the extra rules MoR and DR. Assume iKMD 6` A for
any formula A in L2 . Then it is falsified at some point of some finite Mp frame. It follows from the
completeness of iPM that iPM 6` A. So, for any A in L2, iPM ` A implies iKMD ` A. According
to Theorem 3.3.15 that iKMD ` A implies iPM ` A, we “prove” the proposition:

the L2 fragment of iPM is the logic iK with the extra rules MoR and DR.

But the problem is that the logic iKMD is NOT a normal modal logic. We can not work with the
usual correspondence theory and semantical proof method. Instead we will show this syntactically.

Theorem 3.3.16 iP is conservative over iK with respect to formulas in L2.
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Proof. We can come up with TWO proofs of this theorem: one is semantical one, the other syntactic.
The semantical proof is just an application of the completeness and soundness of iP and iK. For the
syntactic proof, you can find it in the proof of the following lemma 3.3.20.

qed

Lemma 3.3.17 iP ` 2A → 2B iff iP ` A ¤ B.

Proof. The right-to-left direction is trivial. Now we just show the other direction. Assume that
iP 6` A ¤ B. By the completeness result about iP , there are a finite model M and a world w in the
model such that M,w 6|= A¤B. This means that there is a R-successor v of w such that M, v |= A but
M,w 6|= B. Take W0 := {w′|M, w′ |= A and wRw′}. It is easy to see that W0 6= ∅ because v ∈ W0. De-
note

⋃{[w′)|w′ ∈ W0} as W1. Now we define a new model on the original one. Here w0 is a new world.
Define W ′ :=

⋃{[w′)|w′ ∈ W0} ∪ {w0}, R′ := {(w0, w
′)|w′ ∈ W0}

⋃
R ¹W1 ,≤′:=≤¹W1

⋃{(w0, w0)}.
And V ′(p) := V (p) for all propositional variable p.

Fact 1: For any w′ ∈ W1 and for any formula B, M ′, w′ |= B ⇔ M,w′ |= B. Since any R′-successor
w′ of w0 is in W0 and hence in W1, M ′, w0 |= 2A.

Fact 2: M ′, v |= A but M ′, v 6|= B. Therefore M ′, w0 6|= 2B.

Fact 3: ≤′ ◦R′ ⊆ R′;

It follows immediately from the above two facts and another fact that (w0, w0) ∈≤′ that M ′, w0 6|=
2A → 2B. By the soundness of iP , we get that iP 6` 2A → 2B.

qed

Corollary 3.3.18 iK is closed under DR.

Proof. The proof pattern here is the same as before.
iK ` 2A → 2B.
⇒ iP ` 2A → 2B (iK is contained in iP )
⇒ iP ` A ¤ B (by above lemma)
⇒ iP ` (A ∨ C) ¤ (B ∨ C) (Dp)
⇒ iP ` 2(A ∨ C) → 2(B ∨ C)
⇒ iK ` 2(A ∨ C) → 2(B ∨ C) (by Theorem 3.3.16)

qed

Definition 3.3.19 The translation * 18 from formulas in L¤ to those in L2 is inductively defined as
follows:

1. For p, >and ⊥, p∗ = p, >∗ = > and ⊥∗ = ⊥.

2. For ◦ ∈ {∨,∧,→}, (A ◦B)∗ = A∗ ◦B∗.

3. (¬A)∗ = ¬A∗

4. (A ¤ B)∗ = 2(A∗ → B∗).

¢

18As discerning eyes can recognize immediately, the translation here is similar to the well-known Godël-McKinsey-
Tarski translation by which they showed that IPC can be embedded into S4. It looks great!



3.3. CONSERVATION OF IPM OVER IK 45

It is easy to see that after the above lemma we can reduce the original question to
Is the L2 fragment of iPM the logic iK with extra rule and MoR (denote it iKM )?

and that we only need to show the following proposition:
if iPM ` A, then iKM ` A for any formula A in L2.

But we can do better than that:

Lemma 3.3.20 If iPM ` A, then iK ` A for any formula A in L2
19.

Proof. Assume that iPM ` A. Of course we can write A in L¤ according to the definition 2A ≡
(>¤ A). It suffices to show that

iPM ` A ⇒ iK ` A∗. (*)

Please note the following two facts:
Fact 1: For any formula B in L2, B∗ = B. This also justifies our definition of the translation (*).
Fact 2: if we can show the above proposition, then we show that iPM ` A ⇒ iK ` A for any

formula A in L2

We will prove (*) by induction on the finite sequence of the proof of A. Since iPM ` A, there is a
finite sequence s1s2 · · · sn = A of formulas in L¤ such that si is either

1. in the forms of Kp, P1, P2, Dp or Mp.

2. Or si = A1 ¤ A2 and sj = A1 → A2 for some A1, A2, sj ∈ L2 and j < i

3. Or for some sj , sk(j, k < i), sk = sj → si.

Claim: In fact s∗1s
∗
2 · · · s∗n = A∗ of formulas in L2 is a proof of A∗. We only need to check that any

s∗i (i ≤ n) is either

1. a theorem of iK (!!)

2. Or s∗i = 2A∗1 → A∗2 and s∗j = A∗1 → A∗2 for some A∗1, A
∗
2, s

∗
j ∈ L2 and j < i (Application of the

Necessitation Rule)

3. Or for some s∗j , s
∗
k(j, k < i), s∗k = s∗j → s∗i . (Application of Mp)

We prove by cases:

1. If si is an instance of Kp, P1, P2, Dp or Mp, then it is easy to see that s∗i is a theorem of iK. For
example (Mp)∗ is derivable in iK.

2. If si = A1 ¤ A2 and sj = A1 → A2 for some A1, A2, sj ∈ L2 and j < i, then s∗i = 2(A∗1 → A∗2)
and s∗j = A∗1 → A∗2, which is what we need.

3. If for some sj , sk(j, k < i), sk = sj → si, then s∗k = s∗j → s∗i , which satisfies the condition for the
third case.

qed

19The method here is quite general: if we can add a principle X to iP and X∗ is a theorem in iK, we can always
get that the L2-fragment of iPX is iK. According to this result, IP is obviously conservative over iK with respect to
formulas in L2.
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Theorem 3.3.21 iK is the L2-fragment of iPM .

Proof. The proof is just a combination of lemma 3.3.20 and the fact that iK ⊆ iP ⊆ iPM .
qed

To our joy, we get a corollary from the above results:

Corollary 3.3.22 MoR is admissible in iK

Proof. MoR is admissible in the L2 fragment of iPM (Theorem 3.3.15). And iK is the the L2

fragment of iPM (Theorem 3.3.21).
qed

But if we want to just show DR and MR are admissible in iK, we can show these more quickly by
using the following lemma:

Lemma 3.3.23 `iK 2A → 2B iff `iK 2(A → B); `iP 2A → 2B iff `iP 2(A → B)

Proof. We can show these just by the completeness and soundness of iK and iP . qed

Probably it is helpful to note that this rule is stronger than the rule 2A → 2B/A ¤ B. Let’s first
show the admissibility of DR in iK. Reason inside iK:

2A → 2B
2(A → B)
(A → B) ∧ (A ∨ C) → (B ∨ C)
2(A ∨ C) → 2(B ∨ C)

Next we show that iK is also closed under MR. Reason inside iK:
2A → 2B
2(A → B)
(2C → A) ∧ (A → B) → (2C → B)
2(2C → A) → 2(2C → B).

3.4 Admissible Rules: 2A/A, 2A → 2B/ ¡ A → B and others

In the following paragraphes, we will consider the reflection rule: 2A/A.

Theorem 3.4.1 IP is closed under the rule 2A/A

Proof. It is easy to show by using completeness and soundness of iP . qed

Theorem 3.4.2 iP4 is closed under the rule 2A/A

Proof. Suppose that iP4 6` A. Then by the completeness of iP4, there is a gathering model M and
a world w ∈ W such that M, w 6|= A. Now we make a new model M ′ based on the original one M :

1. W ′ := {w′, v′} ∪ [w);

2. R′ := {(w′, v′)} ∪R ¹[w) ∪{(v′, y)|(w, x) ∈ R};
3. ≤′:= {(v′, w), (w′, w′), (v′, v′)}∪ ≤¹[w) ∪{(v′, x)|(w, x) ∈≤};;
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4. v′(p) := v(p) for any propositional letter p.

Observation 1: (W ′, R′) is a gathering frame;

Observation 2: For any x ∈ [w) and for any formula B, M ′, x |= B ⇔ M, x |= B.

Since M,w 6|= A, M ′, w 6|= A. It follows from the fact that v′ ≤′ w that M ′, v′ 6|= A. This implies that
M ′, w′ 6|= 2A because w′R′v′.

qed

Lemma 3.4.3 If iP4 ` 2(C ¤ D) → 2A, then iP4 ` ¡(C ¤ D) → A.

Proof. We use the same strategy as before. Suppose that iP4 6` ¡(C ¤ D) → A. Then by the
completeness of iP4, there is a gathering model M and a world w0 ∈ W such that M, w0 6|= ¡(C¤D) →
A. That is to say, there is w1 such that

w0 ≤ w1, M, w1 |= ¡(C ¤ D) but M,w1 6|= A.

We will build a new model M ′ as follows:

1. W ′ := {w′, w′0} ∪ [w1);

2. R′ := {(w′, w′0)} ∪R ¹[w1) ∪{(w′0, y)|(w1, y) ∈ R};
3. ≤′:= {(w′0, w1), (w′, w′), (w′0, w

′
0)}∪ ≤¹[w1) ∪{(w′0, x)|(w1, x) ∈≤};

4. v′(p) := v(p) for any propositional letter p.

Observation 1: M ′, w1 |= ¡(C ¤ D) and M ′, w1 6|= A.

Observation 2: (W ′, R′) is gathering.

Observation 3: M ′, w′ 6|= 2A;

Claim 4: M ′, w′0 |= 2(C ¤D). Take any x such that w′0R
′x. The it follows that w1Rx. By observation

1, we get that M, x |= ¡(C ¤ D) and hence M, x |= C ¤ D. This implies that M ′, x |= C ¤ D. So
M ′, w′0 |= 2(C ¤ D).

Claim 5: M ′, w′0 |= (C ¤ D). Take any x such that w′0R
′x and M ′, x |= C. Then it follows that

x ∈ [w1), w1Rx and hence M, x |= C. Moreover, since M, w1 |= C ¤ D, M, x |= D. Equivalently,
M ′, x |= D. So, M ′, w′0 |= (C ¤ D).

By the two claims:M ′, w′0 |= ¡(C ¤ D). It follows that M ′, w′ |= 2(C ¤ D). By the soundness of iP4,
iP4 6` 2(C ¤ D) → 2A.

Similarly, we can get the following applicable general form:
If iP4 ` ∧

i 2(C ¤ D) → 2A, then iP4 ` ∧
i ¡(C ¤ D) → A.

qed

Corollary 3.4.4 If iP4 ` ¡((2Ci → Ci) ¤ Ci) → 2A, then iP4 ` ¡((2Ci → Ci) ¤ Ci) → A.
Similarly, iP4 ` ∧

i ¡((2Ci → Ci) ¤ Ci) → 2A, then iP4 ` ∧
i ¡((2Ci → Ci) ¤ Ci) → A
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Proof. The proof is just a combination of lemma 3.2.4 and the above lemma 3.4.3.
qed

Theorem 3.4.5 iPL is closed under the rule 2A/A.

Proof. The proof is a just a combination of lemma 3.4.2 and the above corollary.
qed

Corollary 3.4.6 Both of iLLe, iLe are closed under the rule 2A/A.

Theorem 3.4.7 2A/A is admissible in both iL and iK4

Proof. The proof is the same as the above semantical proof.
qed

Theorem 3.4.8 iPM is closed under the reflection rule.

Proof. Suppose that 6`iPM A. The by the completeness of iPM , there are a finite Mp model M
and a world v in this world such that M,v 6|= A. In other words, M, v |= > and M, v 6|= A. Then by
Extension Theorem for iPM , there are a new Mp model N = 〈W ′, R′,≤′, V ′〉 and a world w in this
new model such that [v) ⊆ W ′, wR′v and M, w 6|= 2> → 2A, which is equivalent to that M, w 6|= 2A.
By the soundness of iPM , 6`iPM 2A.

qed

Corollary 3.4.9 iK is closed under the reflection rule.

Proof. It follows from the conservation of iPM over iK.
qed

Now we consider another rule: 2A → 2B/ ¡ A → B. Of course it is easy to see:

Theorem 3.4.10 iP is closed under the rule 2A → 2B/ ¡ A → B.

However, it is NOT admissible in iP4 or iPL. For iP4, it suffices to show that iP4 ` 2(A ∨ B) →
2(A ∨2B) while iP4 6` ¡(A ∨B) → (A ∨2B). To see this, we use the following model M :

1. W := {w, v, u}
2. R := {(v, u), (w, u)};
3. ≤:= {(w, w), (v, v), (u, u), (w, v)};
4. v(p) := {u, }, v(q) := {v}.

It is easy to see the following list of items: u 6|= q, (⇒)v 6|= 2q, (⇒)v 6|= (p ∨ 2q); u |= p, (⇒)u |=
p ∨ q, (⇒)v |= 2(p ∨ q), v |= p ∨ q, (⇒)v |= ¡(p ∨ q). So w 6|= ¡(p ∨ q) → (p ∨ 2q). Conclude: iP4 is
NOT closed under the rule: 2A → 2B/ ¡ A → B.

We can use the same example to show that iPL is not closed under the rule 2A → 2B/ ¡ A → B
either. For Le is derivable in iPL, the above model M is gathering and conversely well-founded, and B
is valid on all gathering conversely well-founded frames IF iPL ` B for any formula B. The argument
is also applicable for iPLM . So the rule is NOT admissible for iPLM either.
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Corollary 3.4.11 Neither iLLe nor iLe is closed under the rule 2A → 2B/ ¡ A → B while iK and
iP are.

There is another way to show the admissibility of 2A → 2B/ ¡ A → B in iP and iK. Here we
illustrate the proof of the admissibility for iP . Reason inside iP :

2A → 2B
2(A → B) (by lemma 3.3.23)
A → B (by admissibility of reflection rule in iP (lemma 3.4.1))
¡A → B.

Theorem 3.4.12 2A → 2B/ ¡ A → B is admissible in iPM .

Proof. The proof is another application of the Extension Theorem for iPM . Suppose that 6`iPM

¡A → B. By the completeness of iPM , there are a Mp model M and a world v in this world such
that M,v |= A ∧2A but M,v 6|= B. By the Extension Theorem for iPM , there are a new Mp model
N = 〈W ′, R′,≤′, V ′〉 and a world w ∈ W ′ such that [v) ⊆ W ′, wR′v and N, w 6|= 2A → 2B. By the
soundness of iPM , 6`iPM 2A → 2B.

qed

Similarly to what we have shown for iP4 in Lemma 3.1.3, we will show a very handy lemma for iK4.

Lemma 3.4.13 If M is on a finite semi-transitive brilliant frame and M, v |= ¡A, then, for any
x ∈ [v), M,x |= ¡A.

The following theorem is an immediate application of the above lemma.

Theorem 3.4.14 2A → 2B/ ¡ A → B is admissible in iK4 and iL.

It is natural to ask: what conditions should we impose on A and B to make the rule admissible in
iP4 and iPL. The answer is that A is of the form of C ¤ D for some C and D (Lemma 3.4.3 and the
following Theorem 3.4.17).

Theorem 3.4.15 If iP4 ` 2
∧

i(Ci ¤ Di) → 2B, then iPL ` ∧
i ¡(Ci ¤ Di) → B

Proof. The strategy is similar to that in lemma 3.4.3. qed

Theorem 3.4.16 If iP4 ` ¡((2Ci → Ci)¤Ci) → (2(D1 ¤D2) → 2A), then iP4 ` ¡((2Ci → Ci)¤

Ci) → (¡(D1 ¤ D2) → A); More generally, if iP4 ` ¡
∧

i((2Ci → Ci) ¤ Ci) → (2(D1 ¤ D2) → 2A),
then iP4 ` ∧

i ¡((2Ci → Ci) ¤ Ci) → (¡(D1 ¤ D2) → A).

Proof. The proof of the special case to general case is semantical not syntactical. qed

Theorem 3.4.17 iPL is closed under the rule: 2(C ¤ D) → 2B/ ¡ (C ¤ D) → B.

Proof. The proof is just an immediate application of the above theorem and lemma 3.2.12.
qed

For the disjunction property, we have the following theorem:

Theorem 3.4.18 For any L ∈ {iP, iP4, iPL, iPM, iK, iLe, iLLe}, if L ` A ∨ B, then L ` A or
L ` B.
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Proof. The regular method. Maybe we should mention iPM . Suppose that neither iPM 6` A nor
iPM 6` B. Then there are two Mp models M1 and M2 and two worlds w1 ∈ WI and w2 ∈ W2 such
that M1, w1 6|= A and M2, w2 6|= B. The only thing that we want to say is that we add a reflexive new
world w.

qed

We briefly mention the results about the rule 2A → 2B/2(A → B).

Theorem 3.4.19 None of iP4, iK4, iPL, iLe, iLLe and iL is closed under 2A → 2B/2(A → B)
while iK, iP and iPM are.

Proof. It is easy to see that the principle 4 is derivable in all of iP4, iK4, iPL, iLe, iLLe and iL.
Suppose that the rule is admissible in these logics. It follows that 2(A → 2A) is derivable in all of
them, which looks very doubtful. By the fact that all of these logics are closed under the reflection
rule, then A → 2A is admissible in all of them. But it is very easy for us to give a counterexample
for that. So, the rule 2A → 2B/2(A → B) is admissible in none of the above mentioned logics.

As for the proof the admissibility of this rule in iPM , it is again an application of the Extension
Theorem for iPM . We have proved the admissibility for the remaining two logics before.

qed

There are some other interesting propositions about iP4 and iPM :

Theorem 3.4.20 If iP4 ` (C ¤ D) ¤ B, then iP4 ` (C ¤ D) → B. As a corollary, if iP4 ` 2A ¤ B,
then iP4 ` 2A → B.

Theorem 3.4.21 iPM is also closed under the rule 2A¤B/2A → B. Moreover, if iPM ` 2A¤2B,
then iPM ` A ¤ B.

Proof. We can prove the first part through the fact that iPM is closed under the reflection rule.
Suppose that there are some A and B such that iPM ` 2A ¤ B but iPM 6` 2A → B. By Mp, we
get that iPM ` (2A → 2A) ¤ (2A → B). Then iPM ` 2(2A → B). So, by the Theorem 3.4.8,
iPM ` 2A → B, which contradicts our assumption that iPM 6` 2A → B.

The proof of the second part is similar to that for the admissability of 2A → 2B/A ¤ B.20

qed

3.5 W and iPW

3.5.1 Correspondence of W

As we have mentioned, the usual way for completeness like the proof method in the proof of com-
pleteness for iL breaks down for iPL21. It seems that Lp alone gives us too little for its completeness.
With Mp, we can indeed make the usual method go through. But Mp as well as Lp will give us too
much. After several rounds of selection, W looks like the best candidate to make the proof go through.
In the following we will give a correspondence result of W and show that iPW is properly contained
in iPLM .

20In fact we can deduce the admissability of 2A → 2B/A ¤ B in iPM from this theorem.
21See remarks on Page 68 of Iemhoff [2001].
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Lemma 3.5.1 Let F be a finite frame. F |= (A ∧ 2B) ¤ B → A ¤ B iff F is gathering, conversely
well-founded and satisfies the following property:

(∗) : ∀wvu(wRvRu → ∃x(wRx ∧ v < x ≤ u)) (please note that v < x not v ≤ x).

Proof. First the right-to-left direction. Prove by reduction to absurdity. Assume that F is gathering,
conversely well-founded and satisfies the (*) property, and some instance (A ∧ 2B) ¤ B → A ¤ B of
the principle W is not valid in F . Then there is a model M := (W,R,≤, |=) on F and two worlds
w′, w in W such that w′ ≤ w and w |= (A ∧2B) ¤ B but w 6|= A ¤ B. It follows that there is a world
v ∈ W such that wRv and v |= A but v 6|= B. Therefore v 6|= 2B because otherwise v |= B. Then
there is another world u such that vRu, u |= A but u 6|= B.

By (*), there is a world x1 such that wRx1, v < x1 ≤ u. It is easy to see that x1 |= A but x1 6|= B. If
x1 |= 2B, then x1 |= B. Then we get a contradiction. We may assume that x1 6|= 2B. Then there is
a world u1 such that x1Ru1 and u1 6|= B. Since F is gathering, x1 ≤ u1 and hence u1 |= A. By (*),
there is a world x2 · · · . Now we encounter the same situation as above. Since v < x1 < x2 · · · and F is
finite, we will finish this sequence after some finite number of circles. That is to say, there is a natural
number n such that wRxn, xn−1 < xn ≤ un−1, xn |= A, xn 6|= B and, most importantly, xn |= 2B. It
follows that xn |= B. We arrive at a contradiction.

Now the other direction. Assume that the principle W is valid in F . It is easy to see that F has to
be gathering and conversely-well-founded by the correspondence result of Lp and the fact that Lp is
derivable in iPW (lemma 2.3.8). Suppose that F does NOT satisfy the (*) property, i.e.

(∗∗) : ∃wvu(wRvRu ∧ ∀x(wRx ∧ v < x → x 6≤ u)).

It suffices to define a model on the frame to falsify (p ∧ 2q) ¤ q → p ¤ q. Define V (p) := {z|v ≤ z}
and V (q) := {z|z 6≤ u}. Obviously, u |= p, u 6|= q, v |= p, v 6|= q and v 6|= 2q. Of course w 6|= p ¤ q.
Take any other successor x of w than v. If x |= p, then v < x because v 6= x. By (**), we get that
x 6≤ u, which implies that x |= q. In short, for any successor y of w such that y |= p ∧ 2q, y |= q. So
w |= (p ∧2q) ¤ q. Recall that w 6|= p ¤ q. Finally we get that w 6|= (p ∧2q) ¤ q → p ¤ q.

qed

Since the (∗) : ∀wvu(wRvRu → ∃x(wRx ∧ v < x ≤ u)) implies irreflexivity and gatheringness, the
above correspondence result can be simplified to the following:

Theorem 3.5.2 Let F be a finite frame. F |= (A ∧ 2B) ¤ B → A ¤ B iff F satisfies the following
property:

(∗) : ∀wvu(wRvRu → ∃x(wRx ∧ v < x ≤ u)).

Theorem 3.5.3 iPW is strictly contained in iPLM .

Proof. In lemma 2.3.7, we have shown that W is derivable in iPLM . It suffices to show that
6`iPW Mp. The counterexample is as follows:

1. W := {w, v, u, x, y}

2. R := {(w, v), (v, u), (w, x), (x, y), (w, y)}

3. ≤:= {(v, u), (v, x), (x, y), (x, u)}

4. v(p) := {u, y};v(q) := {y}, v(r) := ∅
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We can see that Mp is falsified in the above model. On the other hand, W is valid on the above
frame < W,R,≤> (it is easy to check that the above frame satisfies the above frame properties). This
implies that iPW 6` Mp.

qed

3.5.2 Conservation of iPW over iLLe

Although iPW is a proper extension of iPL (it is easy to give an example to show that), their L2

fragments are the same: iLLe or the logic iL with the extra rule DR.

First we define a notion that will be indispensable in our inductive proof on any finite, transitive,
gathering and conversely well-founded frame.

Definition 3.5.4 Let < W,R > be a finite, transitive, gathering and conversely well-founded (hence
irreflexive) frame. An end point w is a world such that there is no point w′ such that wRw′ or
w ≤ w′.22 It is easy to see that for any w ∈ W , there is a finite sequence s of wn, wn−1, · · · , w0 such
that w = wnSnwn−1 · · ·S1w0 where si is either R or ≤ and w0 is an end point. We define the grade
gs(w) of w in this sequence inductively as follows:

1. gs(w0) := 0

2. If gs(wi−1) = k and Si is ≤, then gs(wi) := k; If gs(wi−1) = k and Si is R, then gs(wi) := k + 1.

Of course, gs(wi) ≤ n for any i ≤ n.

For each w ∈ W , we define the rank r(w) of w as the greatest such gs(w) (we omit the subscript
< W,R > here).

¢

Observation 1: If wRv, then r(w) > r(v).

Observation 2: Let < W,R > be a gathering frame and w, v ∈ W . If wRv and v |= A, then, for any
x ∈ [v), x |= A ∧2A.

Theorem 3.5.5 iPW ` A only if A is valid on all finite gathering, transitive and conversely well-
founded frames.

Proof. It suffices to show that W is valid on all finite gathering, transitive and conversely-well-founded
frame. Given a model M on such a frame < W,R > and any w′, w, v ∈ W such that w′ ≤ wRv, assume
that M, w |= (A ∧ 2B) ¤ B and M, v |= A. We need to show that M,v |= B. It suffices to show that
M,v |= 2B. Suppose that this is NOT the case: M, v 6|= 2B.

Now we consider the v generated submodel M ′. Obviously, M ′, v 6|= 2B, M ′, v |= A and M ′ is on a
finite transitive,gathering and conversely well-founded frame. Then there is a world v′ ∈ W ′ with the
least rank such that M ′, v′ 6|= 2B. This implies that, for any v′′ ∈ W ′ such that v′Rv′′, M ′, v′′ |= 2B
and hence M,v′′ |= 2B. Such a v′′ can always be found because at least every end point makes boxed
formulas true there. It is easy to check that wRv′′ by transitivity and that M ′, v′′ |= A (and hence
M,v′′ |= A) according to the fact that M ′, v |= A and v′′ ∈ [v). Since M,w |= (A∧2B)¤B, M,v′′ |= B
and hence M ′, v′′ |= B. So M ′, v′ |= 2B. We have arrived at a contradiction. Conclude: M,v |= 2B
and hence (A∧2B)¤B is valid on any finite gathering, transitive and conversely-well-founded frame.

qed

22Please note that the definition here is a little different from our ordinary definition of end points.
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But the converse of this lemma is NOT true. On one hand, it is easy to check that (A¤B) → 2(A¤B)
is valid on all transitive frames. On the other hand, it is well-known that this formula is NOT
arithmetically valid in HA. Suppose that the converse were true. Then, according to the converse
proposition, iPW ` (A ¤ B) → 2(A ¤ B), which is impossible because W is a valid principle in HA
while (A ¤ B) → 2(A ¤ B) is NOT. So the converse can NOT be true.

Lemma 3.5.6 `iLLe A iff A is valid on all finite gathering transitive and conversely well-founded
frames.

Proof. In fact the lemma is not new, just an extension of a previous lemma 3.2.1. We only need to
show that transitivity is preserved in the new model N = 〈W,R′,≤, V 〉.

Assume that w, v, u ∈ W and wR′vR′u. Then we need to show that wR′u. Since wR′vR′u, wRvRu
and hence wRu because R is transitive. It remains to show that, for any z such that uR′z, u ≤ z.
This immediately follows from the assumption that vR′u. So wR′u.

qed

Theorem 3.5.7 iLLe or iL with the extra rule DR is the L2 fragment of iPW .

Proof. Since both L and Le are derivable in iPL and iPW is an proper extension of iPL, iLLe is
contained in the L2-fragment of iPW . Now for the other direction. Suppose that 6`iLLe A. By the
completeness of iLLe (Theorem 3.1.5), A is NOT valid on al finite transitive gathering and conversely
well-founded frames. It follows from the above lemma 3.5.5 that 6`iPW A.

Conclude: iPW is conservative over iLLe with respect to formulas in L2.
qed
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Chapter 4

Fixed Point Theorems

As Gauss once put it, mathematics is the queen of the sciences and Arithmetic is the queen of math-
ematics. No sentence can be more appropriate than this one to describe the fixed point theorem in
provability logic: fixed point is the diamond in the crown of provability logic. “The beautiful fixed
point theorem (or de Jongh-Sambin Theorem) for GL is the most striking application of modal logic
to the study of the concept of provability in formal systems.”1. Here we will show the fixed point
theorems for iL and iPL. It turns out that the proof of fixed point for iL is similar to that for
GL; the proof of fixed point for iPL is similar to that for IL 2, the basic interpretability logic (de
Jongh-Visser [1991]). In the last section, we will discuss the interderivability between fixed points and
Beth definability (Definition 4.3.2) in the settings of both intuitionistic provability and preservativity
logics.

A notational convention: AB is the result of substitution of B for p in the formula Ap. First we will
lay (or borrow) a framework3 for our following fixed point iPL. Let SR0 be iL in the propositional
modal logic extended with a binary operator • with the following extra principles:

E1 :` 2(A ↔ B) → (A • C ↔ B • C)
E2 :` 2(A ↔ B) → (C •A ↔ C •B).

We can derive the following propositions immediately from SR0

S1 :` B ↔ C implies ` AB → AC.
S2 :` ¡(A ↔ B) → (FA ↔ FB).
S3 : Suppose that Ap is modalized in p, then ` 2(A ↔ B) → (FA ↔ FB).
LR : Let B be a conjunction of formulas in the form of 2C or ¡C, then ` B → (2A → A) implies

` B → A. The proof of LR is just an application of Lob principle and the principle 4. We have shown
the second substitution lemma (lemmas 2.3.3.and 2.4.1) for both iL and iPL. It is also easy to show
the other two substitution lemmas by induction. Obviously, all the above four propositions also hold
for iL.

Theorem 4.0.8 (Uniqueness Theorem) Suppose that p occurs modalized in A, then `L (¡(p ↔ Ap)∧
1Page 104 of Boolos [1993]. It is very interesting to note the following relation chain from Sciences to the fixed point

theorem:
Sciences⇒Mathematics⇒Arithmetic⇒Provability Logic⇒Fixed Point.

The first two arrows are based on Gauss’s famous sentence. The last one is on Boolos’s remarks. And the third one is
on the very mathematical nature of Provability Logic.

2It is not iL.
3See Smorynski[1985] and de Jongh-Visser [1991]

55
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¡(q ↔ Aq)) → (p ↔ q) where L ∈ {SR0, iL}.

Proof. Reason inside L:
2(p ↔ q)
Ap ↔ Aq (by the substitution lemma S3)
¡(p ↔ Ap) ∧¡(q ↔ Aq) → (2(p ↔ q) → (p ↔ q)).
(¡(p ↔ Ap) ∧¡(q ↔ Aq)) → (p ↔ q) (by LR)

So if `L C ↔ AC and `L D ↔ AD, then `L ¡(C ↔ AC) and `L ¡(D ↔ AD),and hence `L C ↔ D.
qed

In the inductive proof of the fixed point theorem for iPL, we will use the following theorem:4

Theorem 4.0.9 Let U be any extension of SR0 satisfying:
FIX: Every formula Ap of the form 2Bp or Bp • Cp has a fixed point.

For every formula Ap with p modalized, there is a formula J such that p does not occur in J and
`U J ↔ AJ .

Proof. The only essential thing that we should mention is that the proof of Theorem 2.4 in de
Jongh-Visser [1991] did not use classical logic, which means that it is applicable here too. qed

4.1 Fixed Point Theorem for iL(iK with Löb’s Principle)

Theorem 4.1.1 (A Special Case) iL ` 2A(>) ↔ 2A(2A(>)) for all formulas A.

Proof. (Syntactic Proof). iL ` 2A(>) → (> ↔ 2A(>)) (IPC)
iL ` 2A(>) → ¡(> ↔ 2A(>)) (4 is derivable in iL and the following rule is admissible in iK4:

` 2A → B ⇒` 2A → 2B)
iL ` 2A(>) → (2A(>) ↔ 2A(2A(>)) (by substitution lemma shown above)
iL ` 2A(>) → 2A(2A(>)) (IPC)

Now for the other direction. iL ` 2A(>) → ¡(> ↔ 2A(>)) (from above)
iL ` 2A(>) → (A(>) ↔ A(2A(>)). (substitution lemma)
iL ` 2A(>) → (A(>) ← A(2A(>)). (IPC)
iL ` A(2A(>)) → (2A(>) → A(>)). (IPC)
iL ` 2A(2A(>)) → 2(2A(>) → A(>)). (iK)
iL ` 2A(2A(>)) → 2A(>). (Löb’s axiom).

qed

Corollary 4.1.2 Let A(p) := B[2C(p)]. Then iL ` AB(>) ↔ A(AB(>)).

Proof. By the above theorem, (Reason inside iL):
2C(B(>)) ↔ 2CB(2CB(>))
B(2C(B(>))) ↔ B(2CB(2CB(>))) (substitution S1)
A(B(>)) ↔ A(A(B(>))).

qed

In order to give a inductive proof of the following fixed point theorem for the general case we need a
notion:

4See Theorem 2.4 in de Jongh-Visser [1991].
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Definition 4.1.3 A formula ϕ is k-decomposable if for some sequence B1, · · · , Bk of propositional
letters, some formula ξ(B1, · · · , Bk) not containing A but containing all B1, · · · , Bk and some distinct
formulas ϕ1(A), · · · , ϕk(A), each containing A, ϕ = ξ(2ϕ1(A), · · · ,2ϕk(A)). The smallest such a k is
called the decomposition degree of ϕ.

¢

Theorem 4.1.4 If in ϕ(A,B1, · · · , Bn) the propositional letter A occurs exclusively under 2, then
there is a formula δ(B1, · · · , Bn) such that iL ` δ ↔ ϕ(δ,B1, · · · , Bn).5

Proof. There are many versions of proofs available in literature for this induction proof. For the best
one, we refer to the inductive proof for GL in Page 69 of de Jongh and Veltman [1995]. For the sake
of completeness we will repeat it here. Because the variables B1, · · · , Bn plays no essential role in our
following proof but only complicates the notations below, we will omit all of them.

One observation: Since ϕ is modalized in A, it is k-decomposable for some k. Prove by induction on
the decomposition degree k of ϕ. It is easy to see that the proposition is true for the base case when
k = 0. For ϕ is a fixed point of ϕ then.

Next we show the case when k = n. Assume that ϕ(A) is of the form of ξ(2ϕ1(A), 2ϕ2(A), · · · , 2ϕn(A)).
Consider the formula ϕ(A1, A2) = ξ(2ϕ1(A1), 2ϕ2(A2), · · · , 2ϕn(A2)). Applying Corollary 4.1.2 with
respect to A1, we get that there is formula δ1(A2) of the form ξ(2ϕ1(ξ(>, 2ϕ2(A2), · · · ,2ϕn(A2)), 2ϕ2(A2)), · · · ,2ϕn(A2))
such that

(*)`iL δ1(A2) ↔ ξ(2ϕ1(δ1(A2)), 2ϕ2(A2), · · · , 2ϕn(A2)).
Since the formula ξ(2ϕ1(ξ(>, 2ϕ2(A2), · · · ,2ϕn(A2)), 2ϕ2(A2), · · · , 2ϕn(A2)) is modalized in A2 and
it is in fact of the form of ξ′(2ϕ2(A2), · · · ,2ϕn(A2)) of decomposition degree ≤ n− 1 for some ξ′, we
can apply I.H. with respect to A2. Then there is formula δ such that

`iL δ ↔ δ1(δ).

If we substitute δ for A2 in ∗, we will get that
(**)`iL δ1(δ) ↔ ξ(2ϕ1(δ1(δ)), 2ϕ2(δ), · · · , 2ϕn(δ)).

Moreover, since `iL δ ↔ δ1(δ), we are allowed to apply the first substitution lemma to (**) and get
that

`iL δ ↔ ξ(2ϕ1(δ), 2ϕ2(δ), · · · , 2ϕn(δ)),
which means that δ is a fixed point of ϕ(A). Conclude:there is a formula δ such that iL ` δ ↔ ϕ(δ).

qed

4.2 Fixed Point Theorem for iPL

The following proof is similar to the one for interpretability logic in de Jongh-Visser [1991]. To put it
more precisely, the fixed point for the formula A(p)¤B(p) in iPL is a kind of mirror image of that for
the formula A(p) ¤i B(p) in IL. To see this, we can just look at the following Theorem 4.2.3, which
is in fact the crucial part of the following proof if we try to follow the steps in de Jongh-Visser [1991].

Define: A ≡ B :⇔`iPL (A ¤ B) ∧ (B ¤ A).

Lemma 4.2.1 A ≡ A ∧2A ≡ 2A → A.

5This is actually a form of Theorem 4.0.9.
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Proof. As a matter of fact, we only need the first equivalence in our following proof. All the following
reasoning is inside iPL. It is easy to see that A ≡ A ∧2A.

A ¤ 2A and A ¤ A

A ¤ ¡A.
The other direction is clear. Next it is easy to see that

A ≡ 2A → A.
qed

Lemma 4.2.2 If ` 2B> → C, then ` B> ∧2B> ↔ BC ∧2BC.

Proof. For the left-to-right direction we reason as follows:
` 2B> → C,
` 2B> → (> ↔ C),
` 22B> → 2(> ↔ C),
` 2B> → ¡(> ↔ C) (by the fact that 4 is derivable in iPL) ,
` 2B> → (¡B> ↔ ¡BC) (substitution lemma 2.3.3)
` ¡B> → ¡BC

Now for the other direction. Reason inside iPL:
2B> → ¡(> ↔ C) (*)
2(2B> → ¡(> ↔ C))
BC ∧2BC ∧2(2B> → ¡(> ↔ C)) → (BC ∧2(2B> → B>))
BC ∧2BC ∧2(2B> → ¡(> ↔ C)) → (BC ∧2B>)) (by the Löb principle)
BC ∧2BC → (BC ∧2B>))
BC ∧2BC → ¡(C ↔ >) (by (*))
(BC ∧2BC) → (B> ∧2B>) (substitution lemma)

qed

Theorem 4.2.3 If ` 2B> → C, then ` B> ≡ BC.

Proof. It follows immediately from lemmas 4.2.1 and 4.2.2. qed

Corollary 4.2.4 ` B> ≡ B(A2B>¤ B>)

Proof. Since ` A2B> ¤ >, ` 2B> → (A2B> ¤ B>). It follows from the above theorem that
` B> ≡ B(A2B>¤ B>). qed

Lemma 4.2.5 ` 2A2B> → (A2B>¤ B> ↔ 2B>)

Proof. For the left to right direction, the argument is just ` (>¤A2B>)∧(A2B>¤B>) → (>¤B>).
For the right to left direction, it is just the following argument: ` (> ¤ B>) ∧ (A2B> ¤ >) →
(A2B>¤ B>) qed

Theorem 4.2.6 ` 2A2B> → ¡(A2B>¤ B> ↔ 2B>)

Theorem 4.2.7 ` A2B> ∧2A2B> ↔ A(A2B>¤ B>) ∧2A(A2B>¤ B>)
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Proof. The left to right direction:
` 2A2B> → ¡(A2B>¤ B> ↔ 2B>) (from above theorem 4.2.6)
` ¡(A2B> ¤ B> ↔ 2B>) → (A2B> ∧ 2A2B> ↔ A(A2B> ¤ B>) ∧ 2A(A2B> ¤ B>))

(substitution lemma)
` A2B> ∧2A2B> → A(A2B>¤ B>) ∧2A(A2B>¤ B>)

Now the right to left direction: In fact it suffices to show:
` 2A(A2B>¤ B>) → 2A2B> (*)

Because we can then combine (*) and lemma 4.2.3 to get the required result. The argument is similar
to that for the right-to-left direction. We reason inside iPL as follows:

2A2B> → ¡(A2B>¤ B> ↔ 2B>) (theorem 4.2.6)
A(A2B>¤ B>) → (2A2B> → A2B>) (by substitution lemma)
2A(A2B>¤ B>) → 2(2A2B> → A2B>)
2A(A2B>¤ B>) → 2A2B> (by Löb’s principle)

qed

Lemma 4.2.8 A2B> ≡ A(A2B>¤ B>).

Proof.` A2B> ≡ A2B> ∧ 2A2B> (by lemma 4.2.1). ` A2B> ∧ 2A2B> ≡ A(A2B> ¤ B>) ∧
2A(A2B>¤B>) (by theorem 4.2.7). And ` A(A2B>¤B>) ≡ A(A2B>¤B>)∧2(A(A2B>¤B>))

qed

Theorem 4.2.9 (Fixed Point Theorem for A(p) ¤ B(p)) ` A2B> ¤ B> ↔ A(A2B> ¤ B>) ¤

B(A2B>¤ B>)6.

Proof. This is just a combination of lemmas 4.2.4 and 4.2.8. qed

For boxed formulas, the proof of fixed point theorem is the same as that for iL.

Theorem 4.2.10 (A Special Case for Boxed formulas in L¤) `iPL 2A(>) ↔ 2A(2A(>)) for all
formulas A in L¤.

So we have shown the first part of Explicit Definability Theorem.

Theorem 4.2.11 (Explicit Definability Theorem: Part 1) Let Ap be either if the form 2Bp or Bp ¤

Cp, then there is a formula J such that `iPL J ↔ AJ .

We can get a symmetric form of fixed point for formulas Ap ¤ Bp.

Theorem 4.2.12 ` A2B>¤ B> ↔ A2B>¤ B2B>

Proof. Since `iPL 2B> → 2B>, B> ≡ B(2B>).
qed

Theorem 4.2.13 (Explicit Definability Theorem, Part 2) For every formula Ap with p modalized,
there is formula J such that: p does not occur in J , and `iPL J ↔ AJ .

6We can also get an interesting dual result to that `iPL (A>¤ B2A>) ↔ A(B2A>¤ A>) ¤ B(B2A>¤ A>). The
proof of this proposition is similar to the above one.



60 CHAPTER 4. FIXED POINT THEOREMS

Proof.First it is easy to check that
`iPL 2(A ↔ B) → (A ¤ C ↔ B ¤ C)
`iPL 2(A ↔ B) → (C ¤ A ↔ C ¤ B)

So iPL satisfies FIX in the theorem 4.0.9. From this theorem, our theorem here follows immediately.
qed

In iPW , we have a simpler form of fixed point for formulas Ap ¤ Bp.

Theorem 4.2.14 In iPW , the fixed point is A>¤ B>.

Proof. We reason inside iPW as follows:
2B> → (2B> ↔ >)
2B> → ¡(2B> ↔ >)
2B> → (A> ↔ A2B>)
In other words, ` A2B> ∧2B> ↔ A> ∧2B>
In the following we will show that
` A2B>¤ B> ↔ (A2B> ∧2B>) ¤ B> (by W)
` A2B>¤ B> ↔ (A> ∧2B>) ¤ B> (by W )
` A2B>¤ B> ↔ A>¤ B> (by W )

qed

However, in iPL, we can’t get such a simpler form. Consider the following formula p¤q. Suppose that
the fixed point for formulas Ap ¤ Bp were A>¤ B>. Then 2q would be the fixed point of p ¤ q.i.e.
`iPL (2q ¤ q) ↔ 2q. It is easy to see that one direction is correct: `iPL 2q → (2q ¤ q). But the
other direction is NOT correct in iPL. Consider the following counterexample:

1. W = {w, v, u}

2. R := {(w, v), (v, u)}

3. ≤:= {(w, w), (v, v), (u, u), (v, u)}

4. V (q) := ∅.

It is easy to see that the model M := 〈W,R,≤, V 〉 is on a finite gathering conversely well-founded frame
and that M, w 6|= (2q¤q) → 2q. By the correspondence result of Lp, we get that 6`iPL (2q¤q) → 2q.

Actually the fixed point theorem for IL and ILW (de Jongh and Visser [1991]) can be seen as a
consequence of Theorem 4.2.13.

Corollary 4.2.15 For every formula Ap with p modalized, there is formula J such that: p does not
occur in J , and `IL J ↔ AJ .

Proof. Just use the translation as discussed in Section 1.2 and note that the principle Dp has not
been used in the above proof. Clearly ILW can be treated similarly.

qed
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4.3 Beth Definability and Fixed Points

In the following, we will show for a general class of intuitionistic modal logics two theorems (Theo-
rem 4.3.4 and Theorem 4.3.5)about the interderivability between Beth property (Definition 4.3.2) and
fixed point property (Definition 4.3.3), which can be similarly proven to be true for the couterpart of
intuitionistic preservativity logics.

Take any modal formula A(p̄, r) in L2. When convenient, we omit p̄. Define A1(r) as A(r) with >
substituting for all nonmodalized occurrences of r in A(r). It is easy to see that A1(r) is modalized in
r and, more importantly, `IPC (r ↔ r′) → (A(r) ↔ A(r′)). The following lemma is about the relation
between A(r) and A1(r).

Lemma 4.3.1 For any intuitionistic modal logic T ,
`T r ∧A(r) ↔ r ∧A1(r).

Proof. Reason inside T :
r → (r ↔ >)
(r ↔ >) → (A(r) ↔ A1(r)) (by the definition of A1(r))
r → (A(r) ↔ A1(r))
r ∧A(r) ↔ r ∧A1(r)

qed

Definition 4.3.2 (Beth Definability Property) A logic L has the Beth Property iff for all formulas
A(p̄, r) the following holds:

If `L ¡A(p̄, r) ∧¡A(p̄, r′) → (r ↔ r′), then there exists a formula C(p̄) such that `L ¡A(p̄, r) →
(C(p̄) ↔ r)

¢

Definition 4.3.3 (Fixed Point Property) A logic L has the fixed point property iff for any formula
A(p̄, r) which is modalized in r, there exists a formula F (p̄) such that

• (existence) `L F (p̄) ↔ A(p̄, F (p̄))

• (uniqueness) `L ¡(r ↔ A(p̄, r)) ∧¡(r′ ↔ A(p̄, r′)) → (r ↔ r′).

¢

Theorem 4.3.4 (From Beth Definability to Fixed Points) Let L be an intuitionistic modal logic in
which

1. `L 2A → 22A,

2. `L ¡B → (2A → A) implies `L ¡B → A,

3. the Beth theorem holds.

Then L has the fixed point property.

Proof. It is easy to check that the proof for the classical case in Hoogland [2001] is intuitionistically
acceptable. qed

Theorem 4.3.5 (From Fixed Points to Beth Definability) Let L be an intuitionistic modal logic in
which
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1. `L 2A → 22A,

2. `L ¡B → (2A → A) implies `L ¡B → A,

3. the fixed point theorem holds.

Then L has the Beth property.

Proof. The proof here is similar to that in Hoogland [2001]. The only difference is that we will not
use Maksimova’s lemma (see in Hoogland [2001]) to reduce arbitrary formulas to ones that are“largely
modalized” but apply the above lemma directly. Still the main proof procedure in Hoogland [2001]
goes through here. As a matter of fact, Maksimova’s lemma is not intuitionistically acceptable.

Assume that (*): `L ¡A(r)∧¡A(r′) → (r ↔ r′). We need to show that there exists a formula C such
that `L ¡A(r) → (r ↔ C). Take as A1(r) the one prescribed at the beginning of this section.

Since A1(r) is modalized in r, there exists a formula F1 such that
(1) `L F1 ↔ A1(F1), and
(1’) `L ¡(A(r) ↔ r) ∧¡(A(r′) ↔ r′) → (r ↔ r′). Hence
(2) `L ¡(r ↔ A(r)) → (r ↔ F1).

In the following we will show that the F1 is the C that we are looking for. First we show the following
claim:

(3) `L ¡A(r) → [2(A1(r) → r) → (A1(r) → r)].

By the above lemma, we get that `L A(r) → (r → A1(r)) and hence `L 2A(r) → 2(r → A1(r)).
Therefore

(4) `L ¡A(r) ∧2(A1(r) → r) → 2(r ↔ A1(r)).
Let C denote ¡A(r) ∧2(A1(r) → r). From (2) (the uniqueness of fixed point of A1), we get that

(5) `L 2(r ↔ A1(r)) → 2(r ↔ F1).
Combining (4) and (5), we get that

(6) `L C → 2(r ↔ F1).
From (6) follow immediately the following two corollaries:

(7) `L C → 2(A(F1)) (by the definition of C),
(8) `L C → (A1(r) → A1(F1)) (by the fact that A1 is modalized in r).

Since F1 is a fixed point of A1,
(9) `L C → [A1(r) → F1] and hence
(10)`L C → [A1(r) → F1 ∧A1(F1)]

According to the above lemma, it follows that
(11) `L C → [A1(r) → A(F1)],

which together with (7) implies
(12) `L C → (A1(r) → ¡A(F1)).

According to the assumption (*), we get that
(13) `L ¡A(r) ∧¡A(F1) → (r ↔ F1).

Then it follows from the above (12) and (13) that
(14) `L C → (A1(r) → (r ↔ F1)).

Finally the claim (3) follows from (9) and (14). With the claim, we can show the main theorem easily.
From the claim and the second condition on the logic L,

(15) `L ¡A(r) → (A1(r) → r).
From the above lemma it is evident that `L A(r) → (r → A1(r)) and hence
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(16)`L ¡A(r) → ¡(r ↔ A1(r)).

So, with (2) and (16), we achieve our goal:
(17) `L ¡A(r) → (r ↔ F1). That is to say, F1 is the C that we are looking for.

qed

We have shown the fixed point theorem for iL and iPL. Since any extension L of iL or iPL will have
the fixed point property, it should also have the Beth property according to the above theorem.

Corollary 4.3.6 Let T be an extension of iL or iPL (of course in the appropriate language). Then
T has the Beth property.
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Chapter 5

Conclusion

In this thesis, we have investigated some intuitionistic preservativity and provability logics and their
interrelations through the conservation of these preservativity logics over their corresponding prov-
ability logics. In fact these conservation results are interweaved with the equivalence results that we
have mentioned in the Introduction. First let us summarize what we have achieved in this thesis. The
following results are the conservation results that are known so far:

1. iK is the L2-fragment of iP (in Iemhoff [2001]);

2. iLe is the L2-fragment of iP4 (in Iemhoff [2001]);

3. iLLe is the L2 fragment of iPL;

4. iK is the L2 fragment of iPM ;

5. iLLe is also the L2 fragment of iPW ;

Correspondingly we have some equivalence results:

1. The L2 fragment of iP is equivalent to the logic iK with the extra rule DR (Theorem 3.3.16
and Corollary 3.3.18).

2. The L2 fragment of iP4 is equivalent to the logic iK4 with the extra rule DR (Theorem 3.1.11).

3. The L2 fragment of iPL is equivalent to the logic iL with the extra rule DR (Theorem 3.2.3
and Corollary 3.2.11).

4. The L2 fragment of iPM is equivalent to the logic iK with the extra rules DR and MoR(Theorems
3.3.21 and 3.3.22).

5. The L2 fragment of iPW is equivalent to the logic iL with the extra rule DR (Theorem 3.5.7).

In the meanwhile we have shown the admissibility and non-admissibility of two important inference
rules in provability logic: 2A/A and 2A → 2B/ ¡ A → B. Some other rules are also very interesting
in preservativity logic on their own.

The fixed point theorem for iL and iPL is independent of the other parts of the thesis. Its significance
in preservativity logic can be compared to its in interpretability logic (de Jongh-Visser [1991]).
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Although we can show the admissibility of 2A → 2B/A ¤ B by detouring via that in iP4 without
the completeness result of iPL, the completeness problem about iPL has its own importance1. The
prominent open problem about modal completeness is as follows: is iPL complete or not, and, if yes,
is it complete with respect to a class of finite frames. Our conjecture here is that it is incomplete. It
seems that this problem is closely related to the completeness problem of iPW . To see this, we only
need to look at our usual method showing the truth lemma for iPL. Up to now our understanding
is that, if we want to show the truth lemma, the principle W is indispensable. Lp alone gives us too
little for its completeness. We need the principle W to make the proof of the truth lemma go through,
which makes us conjecture that iPL is probably incomplete. What is worse is that iPW is a proper
extension of iPL. It is true that, if we can show the completeness (or incompleteness) of iPW , it will
absolutely help us with the completeness problem with iPL. Unfortunately, the completeness problem
of iPW is as stubborn as that for iPL.

How about conservation results and equivalence results if we put into iP two or more preservativity
principles? For example, what is the L2 fragment of iPLM? Is the L2-fragment equivalent to iL with
extra rules DR and MoR? We still don’t know how to deal with this combined problem. The No. 1
difficulty is with the construction of the expected finite canonical model2. Because with the combined
properties the canonical model has a tendency to explode. We have not found the mechanism to
control that yet.

If we are able to answer the above combined conservation and equivalence problems, we have reached
the level to aim at the ultimate question:

What is the L2 fragment of iPH?
Moreover, if the conjecture in Iemhoff [2001] that iPH is the preservativity logic of HA holds, this
logic will be the provability logic of HA.

1On classical side, we have mentioned the importance of the modal completeness of GL in provability logic for PA.
2The reason why we consider finite canonical models is that Lp is derivable in the logic in question.
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[4] Milan Bozic and Kosta Dȯsen [1984], Models for normal intuitionistic modal logics, Studia Logica,
XLIII, 3, pp. 217-245.

[5] A.Diego [1966],Sur les Algebres de Hilbert, Gauthier-Vilars, Paris.

[6] Alex Hendriks [1996], Computations in Propositional Logic, Ph.D thesis, ILLC-dissertation series,
DS-1996-01, Universiteit van Amsterdam.

[7] Eva Hoogland [2001], Definability and Interpolation, Ph.D thesis, ILLC-dissertation series, DS-
2001-05, Universiteit van Amsterdam.

[8] Rosalie Iemhoff [1998], A modal analysis of some principles of the provability logic of Heyting
Arithmetic, in M, de Rijke, K. Segerberg, H. Wansing and M. Zakharyaschev (eds), Advances in
Modal Logic, 2, CSLI Publications, Stanford.

[9] Rosalie Iemhoff [2001], Provability Logic and Admissible Rules, Ph.D thesis, ILLC-dissertation
series, DS-2001-04, Universiteit van Amsterdam.

[10] Rosalie Iemhoff [2003], Preservativity Logic, Mathematical Logic Quarterly, 49(3), 2003, pp. 1-21.

[11] Dick de Jongh and Frank Veltman [1990], Provability Logics for relative interpretability, in
P.Petkov (ed.), Mathematical Logic, Proceedings of the Heything 1988 Summer School in Varna,
Bulgaria, Plenum Press, New York.

[12] Dick de Jongh and Albert Visser [1991], Explicit Fixed Point in Interpretability logic, Studia
Logica,50,pp. 39-50

[13] Dick de Jongh and Frank Veltman [1995], Intensional Logics, Lecture Notes, Universiteit van
Amsterdam.

[14] Dick de Jongh and Giorgi Japaridze [1998], The Logic of Provability, in Samuel R, Buss (ed.),
Handbook of Proof Theory, Elsevier.
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