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Abstract

In this paper we consider distributive modal logic, a setting in which we may add
modalities, such as classical types of modalities as well as weak forms of negation, to
the fragment of classical propositional logic given by conjunction, disjunction, true, and
false. For these logics we define both algebraic semantics, in the form of distributive
modal algebras, and relational semantics, in the form of ordered Kripke structures. The
main contributions of this paper lie in extending the notion of Sahlqvist axioms to our
generalized setting and proving both a correspondence and a canonicity result for dis-
tributive modal logics axiomatized by Sahlqvist axioms. Our proof of the correspondence
result relies on a reduction to the classical case, but our canonicity proof departs from the
traditional style and uses the newly extended algebraic theory of canonical extensions.
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1 Introduction

In the theory of classical modal logic, an important role is played by what we rather loosely
call Sahlqvist theory ; with this we understand the theory that seeks to identify large classes of
formulas that are both canonical and correspond to an elementary frame condition which can
be effectively obtained from the formula. The value of such a unifying mathematical theory lies
in its applications to for instance completeness results for individual logics, but also in that it
deepens our understanding of the associated algebraic duality theory. When it comes to modal
logics that are based on a weaker than classical propositional logic, (or, algebraically, to classes
of algebras based on not necessarily boolean lattices), general canonicity and correspondence
results could be equally useful, but here it seems to be only fairly recent that theory has
started to take shape in its most general form. The aim of the research that we report on in
this article was to help in filling this gap.

Basically, what we have done is to extend the Sahlqvist canonicity and correspondence
results to the more general setting of Distributive Modal Logic (or dml) in which we may add
modalities (such as weak forms of negation) to the fragment of classical propositional logic
given by conjunction, disjunction, true, and false. Thus our formulas are given as follows:

φ ::= p | ⊥ | > | φ ∧ φ | φ ∨ φ | 3φ | 2φ | �φ | �φ.

Here the modalities 3 and 2 are meant to be disjunction and conjunction preserving modal-
ities, respectively, whereas � turns disjunctions into conjunctions, and vice versa, � turns
conjunctions into disjunctions. Thus the latter modalities can be seen as weak forms of nega-
tion, or as combinations of a classical modality with negation. (Obviously, our results also
apply to settings with various modalities of each kind; the above restricted syntax in which
there is exactly one operator of each kind is just to keep our notation simple and uniform.)
Note that in this non-classical setting tautologies are not sufficient, so we must consider se-
quents to capture the logics; since we are not interested in proof theory here, we will simply
take pairs of formulas, written as α ⇒ β, as our sequents. We can then formally define a
distributive modal logic or dml to be any set of sequents which contains certain axioms and
is closed under certain natural inference rules.

Our setting is thus closely related to that of Positive Modal Logic, or pml, introduced
by Dunn in [15] and studied further by Celani and Jansana in [8, 9]. In many aspects our
setting in fact extends that of pml, since the language of the latter does not allow the order
reversing modalities � and �; in this sense, many results on positive modal logic are covered
by our work. On the other hand, researchers in pml have focused their attention on special
interpretations in which the two modalities, 2 and 3, are closely related, whereas we make
no such assumptions beforehand. For a more detailed discussion of the connection between
our work and that on positive modal logic, the reader is referred to section 6.

As usual, there are two natural ways to study distributive modal logics by semantic means:
a relational and an algebraic one. Starting with the algebraic semantics, we introduce the
notion of a distributive modal algebra or dma as a bounded distributive lattice expanded with
operations 3, 2, � and � satisfying certain laws. For the relational semantics, we define the
notion of a frame for distributive modal logic; it will come as no surprise that just as in the
relational semantics for similar logics, these structures carry, besides a binary relation for each
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of the modalities, also an ordering relation. As we will see, the above mentioned questions
on correspondence, completeness and canonicity find their natural place in the context of
distributive modal logic.

It is also in this area that the main contributions of this paper lie:

• Using a new and careful analysis in terms of signed generation trees, we extend the
definition of Sahlqvist terms to this setting of distributive modal logic, identifying the
notion of a Sahlqvist sequent for distributive modal logic;

• For these Sahlqvist sequents we will prove both a correspondence and a canonicity
result. Taken together, we obtain a general completeness result for distributive modal
logics that are axiomatized by Sahlqvist axioms.

It is important to spend a few words on our proof method here, since it departs from the
style that is most frequently employed in modal logic. The most important divergence from
‘standard modal procedure’ in Sahlqvist theory is that we do not use the correspondence
result when proving canonicity, as is done in for instance [49, 4, 9]. In fact, we will treat
correspondence and canonicity in completely separate ways. (This, and many other aspects,
makes our approach closest to that of Ghilardi and Meloni [21]; we will say more about this
connection in the concluding section of this paper.)

Concerning our proof that Sahlqvist sequents correspond to elementary properties of dis-
tributive modal frames we can be fairly brief. We could have presented a proof which is more
or less analogous to the standard proof presented in for instance [4]; as it happens, however,
we could manage to actually reduce the correspondence result to the classical case. This re-
duction is based on semantic ideas and related to the Gödel translation of intuitionistic logic
into the modal logic S4, cf. Chagrov and Zakharyaschev [10] for an overview.

When it comes to canonicity for Sahlqvist sequents, our proof method takes advantage
of developments within the algebraic theory of canonical extensions of algebraic lattice ex-
pansions (that is, lattices expanded with further operations). This field originates with the
seminal paper by Jónsson and Tarski [32] on boolean algebras with operators; through con-
tributions by Jónsson, Gehrke and others [18, 19, 17, 20], the theory has recently become
applicable in a far wider setting than just boolean algebras with operators.

In this approach, the canonical extension Aσ of an algebraic lattice expansion (ale) A is
defined abstractly rather than using duality theory. The basic idea of this definition is to start
with the canonical extension Lσ of the lattice reduct L of A — without going into details, let
us just mention that Lσ can be defined in terms of a (modulo isomorphism) unique embedding
of L into a complete lattice that satisfies some density and compactness conditions [19]. This
lattice extension can be expanded by an additional operation fσ for each additional operation
f of the original algebra. The elegance of the method lies in the fact that properties of f
(in terms of its interaction with the lattice operations of A) naturally induce similar, or even
better, properties of fσ. This leads to the formulation of transparent criteria under which the
operation (·)σ is functorial, which in its turn allows the identification of large classes of ale

equations that are canonical.
In the particular context of distributive modal algebras, we will see that the canonical

extension Aσ of a dma is what we will call a perfect dma; perfect dmas can be understood
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as frames in algebraic disguise. Part of our proof that the validity of Sahlqvist sequents is
preserved under moving to this canonical extension, stems from the more general theory that
we just described (note however, that we have tried to make the paper selfcontained). But
of course, we also needed to prove a number of new results, for instance, on the behaviour of
certain dma-definable operations under the operation (·)σ and on the rewriting of Sahlqvist
dma-sequents into a certain desirable shape.

Finally, it will be obvious that our results will also have an impact on the duality theory
for distributive lattice expansions. We hope to address this issue more specifically later.

Overview of paper In the next section we will lay out the basic framework of distributive
modal logic, distributive modal algebra, and their connections. In section 3 we give our
definition of what a Sahlqvist sequent is in the context of distributive modal logic, and we
formulate our main results: a canonicity and a correspondence result for Sahlqvist sequents.
Section 4 is devoted to the proof of the correspondence result, while in section 5 we give a
fairly detailed and selfcontained proof of the canonicity result. In section 6 we give a couple of
examples, applying our correspondence theorem to positive modal logic and to a wide range of
logics and algebras with weak forms of negation. The final section contains some conclusions
and question for further research.

2 Distributive Modal Logics and Distributive Modal Algebras

2.1 Distributive Modal Logics

Syntax

In classical modal logic modalities are added to the basic connectives of classical propositional
logic. Here we want to add modalities and weak forms of negation to the fragment of classical
propositional logic given by conjunction, disjunction, true, and false. Thus our connectives
are ∨,∧,⊥,>,3,2,�,�, where ∨ and ∧ are binary, ⊥ and > are nullary (constant), and the
others are unary. The modalities 3 and 2 are meant to be the disjunction and conjunction
preserving modalities, whereas � turns disjunctions into conjunctions, and vice versa, � turns
conjunctions into disjunctions. The latter modalities can be seen as weak forms of negation,
or as combinations of a classical modality with negation.

Given a set X = {x, y, x1, x2, · · · } of (propositional) variables, we may now form terms
or formulas using these connectives. In this non-classical setting tautologies are not sufficient
and we must consider sequents, or pairs or formulas to capture the logics: a (modal) sequent
is simply a pair of distributive modal formulas. Such a pair (α, β) will be written α⇒ β.

Logics

The following formal system based on modal sequents is modified from Dunn [15] where a
modal sequent α⇒ β is called a consequence pair and denoted α ` β.

Definition 2.1 A distributive modal logic (dml) is a set Λ of modal sequents such that
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(Axioms) Λ contains the following sequents:

x⇒ x

⊥ ⇒ x x⇒ >
x ∧ (y ∨ z)⇒ (x ∧ y) ∨ (x ∧ z)
x⇒ x ∨ y y ⇒ x ∨ y x ∧ y ⇒ x x ∧ y ⇒ y

3(x ∨ y)⇒ 3x ∨3y 3⊥ ⇒ ⊥
2x ∧2y ⇒ 2(x ∧ y) > ⇒ 2>
�x ∧�y ⇒ �(x ∨ y) > ⇒ �⊥
�(x ∧ y)⇒ �x ∨�y �> ⇒ ⊥

(Inference rules) Λ is closed under the following inference rules:
α⇒ β β ⇒ γ

α⇒ γ
(cut)

α⇒ β

α(γ/x)⇒ β(γ/x)
(substitution)

α⇒ γ β ⇒ γ

α ∨ β ⇒ γ

γ ⇒ α γ ⇒ β

γ ⇒ α ∧ β
α⇒ β

3α⇒ 3β

α⇒ β

2α⇒ 2β

α⇒ β

�β ⇒ �α

α⇒ β

�β ⇒ �α

Here x, y, z are arbitrary variables and α, β, γ are arbitrary terms.

Remark 2.2 This is clearly a generalization of classical modal logics: if we take for both �

and � the classical negation ¬, then we may identify classical normal modal logics with those
distributive modal logics containing the sequents: �α ⇒ �α, �α ⇒ �α, 3α ⇒ �2 � α,
�2 � α⇒ 3α, > ⇒ α ∨�α, and α ∧�α⇒ ⊥.

Definition 2.3 The minimal distributive modal logic will be called K, and if Γ is a set of
sequents we denote by K.Γ the least distributive modal logic containing Γ.

Relational Semantics

In the case of intuitionistic logic or boolean modal logic, the relational or Kripke-style seman-
tics has been an invaluable tool for analyzing logics. We believe that the relational semantics
for distributive modal logics that we are about to develop, will prove its use as well. It will
come as no surprise that just as in the case of intuitionistic (modal) logic, Priestley duality for
distributive lattices, or Celani and Jansana’s semantics for positive modal logic, our relational
structures carry, besides a binary relation for each of the modalities, also an ordering relation.

Definition 2.4 A Kripke frame for distributive modal logic (in short: frame) is a tuple
F = (W,≤, R3, R2, R�, R�) where W is a nonempty set, ≤ is a partial order on W , and
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R3, R2, R�, R� are binary relations on W satisfying the following conditions (the symbol ◦
denotes relation composition):

≤ ◦ R3◦ ≤ ⊆ R3

≥ ◦ R2◦ ≥ ⊆ R2

≥ ◦ R�◦ ≤ ⊆ R�

≤ ◦ R�◦ ≥ ⊆ R�.

(KF)

A valuation on a frame F is a map V : X → P(W ) from the set of variables to the power set
of the domain of F. Such a valuation is called persistent if V (x) is downward closed for each
variable x; that is, if w ∈ V (x) and v ≤ w then v ∈ V (x). A Kripke model for distributive
modal logic (in short: model) is simply a pair (F, V ) consisting of a frame F and a persistent
valuation V on F.

Given a model M = (F, V ) we define the truth relation  between points and formulas by
the following induction:

1. For x ∈ X we define M, w  x if and only if w ∈ V (x);

2. Suppose  has been specified for terms α and β, then for each w ∈W we put

(a) M, w  α ∨ β if and only if M, w  α or M, w  β;

(b) M, w  α ∧ β if and only if M, w  α and w  β;

(c) M, w  >;

(d) M, w 6 ⊥;

(e) M, w  3α if and only if there is v ∈W with wR3v and M, v  α;

(f) M, w  2α if and only if for all v ∈W with wR2v we have M, v  α;

(g) M, w  �α if and only if for all v ∈W with wR�v we have M, v 6 α;

(h) M, w  �α if and only if there is v ∈W with wR�v and M, v 6 α.

Definition 2.5 A model M validates a sequent α ⇒ β, written M  α ⇒ β, provided for
each w ∈ W with w  α we have w  β. A frame F validates a sequent α ⇒ β, written
F  α⇒ β, provided each model (F, V ) satisfies α⇒ β. A frame F validates a set of sequents
Γ, written F  Γ, provided F  α⇒ β for each sequent α⇒ β ∈ Γ.

Definition 2.6 Given a class of frames C, let Th(C) be the set of sequents that are valid in
(every frame of) C. Conversely, given a distributive modal logic Λ, let Fr(Λ) be the class of
all frames validating Λ.

It is easy to see that the maps Th and Fr form a Galois connection between classes of
frames and sets of formulas. Just as in the case of classical modal logic, the stable sets/classes
will be of interest. First we define the notions of soundness and completeness.

Definition 2.7 A distributive modal logic Λ is called sound with respect to a class C of frames
if Λ ⊆ Th(C) and complete with respect to C if conversely, Th(C) ⊆ Λ. Λ is called complete
if it is complete with respect to the class Fr(Λ).
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Equivalently, Λ is complete iff it is stable with respect to the Galois connection mentioned
above; that is, if Λ = Th(Fr(Λ)). In the other direction, we will call a class C of frames
definable if is stable, that is, if C = Fr(Th(C)), or, equivalently, if C is the frame class of some
set of formulas. We are particularly interested in those definable classes that are elementary
(that is, definable in first order logic), and introduce the notion of correspondence for modal
sequents.

Definition 2.8 Let α ⇒ β be a modal sequent and let φ be a formula in the first order
language of frames for distributive modal logic. We say α ⇒ β and φ correspond to each
other if for all frames F, we have that F  α⇒ β iff F  φ. Similar definitions apply to sets
of sequents and sets of first order formulas.

It is obvious that the above notions are just two out of a vast array of interesting concepts.
Very shortly we will add a third one, canonicity, to the repertoire, but we prefer to introduce
that topic algebraically.

2.2 Distributive Modal Algebras

Introduction

We will now set out to describe the algebraic semantics for distributive modal logic. Consid-
ering each sequent α ⇒ β as an algebraic inequality α 4 β, or equivalently as an algebraic
identity α∧ β ≈ α, we see readily that the distributive modal logics are algebraic. Thus they
are the equational theories of corresponding varieties of algebras, cf. the next subsection for
more details.

The crucial concept on the algebraic side is that of a distributive modal algebra.

Definition 2.9 A distributive modal algebra (dma) is an algebra A = (A,∨,∧,⊥,>,3,2,�,�)
where (A,∨,∧,⊥,>) is a DL (that is, a bounded distributive lattice) and the additional oper-
ations (called modal operators) satisfy

3(x ∨ y) ≈ 3x ∨3y 3⊥ ≈ ⊥
2(x ∧ y) ≈ 2x ∧2y 2> ≈ >
�(x ∨ y) ≈ �x ∧�y �⊥ ≈ >
�(x ∧ y) ≈ �x ∨�y �> ≈ ⊥.

The structure DA = (A,∨,∧,⊥,>) is called the underlying lattice of A, and it is sometimes
convenient to write A = (DA,3,2,�,�).

It is important to realize that one significant difference between this setting and boolean
modal logic is that here, operators of one type are not definable in terms of operators of
another type. (In the boolean case it is easy to see that for instance � has the behavior of a
¬3.) On the other hand it is clear that the four types of operators defined above will display
very similar behavior. In order to make this precise, we will exploit the well known duality
principle which is based on the fact that the class of distributive lattices is closed under taking
order duals. To be well-equipped for this work we need some terminology.
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Definition 2.10 Given a DL A = (A,∨,∧,⊥,>), we let A∂ denote the dual lattice, that is,
the structure A∂ = (A,∧,∨,>,⊥). For technical convenience, we define A1 = A.

An element ε ∈ {1, ∂}n is called an order type; the i-th component of such an ε will be
denoted εi. Given an order type ε ∈ {1, ∂}n, we let Aε denote the algebra Aε1 × . . .× Aεn.

Remark 2.11 Observe that for any ε ∈ {1, ∂}n, the two algebras An and Aε are based on
the same domain, An. When we write ‘let f : An → B be a map’ we implicitly understand
that the domain An and codomain B are part of the definition of f .

For instance, suppose that, given two order types ε and ε′, we consider two maps f :
A
ε → B and g : Aε

′ → B that are set-theoretically identical (that is, f(a) = g(a) for all
a ∈ An). Such maps will be called order variants. For the time being, we will not identify
order variants that are based on differently ordered domains. The advantage of this is that,
for instance, it allows us to say that f is order preserving while g is not.

Canonical extensions of distributive lattices

Since varieties of dmas correspond to distributive modal logics, in order to prove completeness
results algebraically we will need to make some kind of link between dmas and frames. Modal
logicians are used to obtain a frame from a distributive modal algebra using some kind of
duality theory, usually based on either Stone duality for boolean algebras or Priestley duality
for distributive lattices. Here we will work differently; instead of working with the dual frame
directly, we will describe it algebraically as the perfect or canonical extension of the original
algebra, in the tradition of Jónsson and Tarski’s original paper [32]. In the next subsection
then, we will see how to use a different kind of duality to obtain a distributive modal frame
from a dma. The advantage of this approach, which to a modal logician may seem rather
roundabout at first, is that it allows us to apply the powerful algebraic theory concerning
canonical extensions. In the interest of self-containment we give here the basic definitions
needed and prove some key technical results. For other facts and a more in depth treatment
we refer the reader to [18, 19, 17, 20].

We start with the definition of the canonical extension of a bounded distributive lat-
tice (DL). This algebra will be a special distributive lattice in which the original lattice is
embedded in a very specific manner.

Definition 2.12 Suppose A is a (bounded) sublattice of a complete lattice A′. We say that

1. A is dense in A′ if every element of A′ can be expressed both as a join of meets and as
a meet of joins of elements from A.

2. A is compact in A′ if, for all S, T ⊆ A with
∧
S ≤

∨
T in A′, there exist finite sets

F ⊆ S and G ⊆ T such that
∧
F ≤

∨
G.

It can be shown that, given a DL A, one can always find a complete lattice that satisfies
these density and compactness conditions. For instance, readers familiar with Priestley duality
could check that the double dual, that is, the lattice of down-sets of the dual Priestley order
of the lattice, is an instance. Besides this existence condition there is also a uniqueness
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claim: one can show that between any two complete DL extensions of A that satisfy these
two conditions, there must be a unique isomorphism, which reduces to the identity when
restricted to A. This justifies and motivates the following definition.

Definition 2.13 The canonical extension of a DL A is a complete lattice Aσ containing A
as a dense and compact sublattice.

These seemingly very weak conditions have a very strong impact on the properties of Aσ.
To start with, it is a perfect distributive lattice:

Definition 2.14 A distributive lattice A is called perfect or a DL+ if it satisfies one of the
following, equivalent, conditions:

1. A is doubly algebraic (that is, both A and A∂ are algebraic),

2. A is complete, completely distributive and join generated by the set J∞(A) of all com-
pletely join irreducible elements of A (as well as meet generated by the set M∞(A) of
all completely join irreducible elements of A),

3. A is isomorphic to a set-theoretic lattice based on the collection of down-sets of some
partial order.

Concerning the connection between A and Aσ, the density implies that J∞(Aσ) is con-
tained in the meet closure K(Aσ) of A in Aσ and that M∞(Aσ) is contained in the join closure
O(Aσ) of A in Aσ. As mentioned above, one way to obtain the canonical extension of a DL is
to take the poset of all order filters, or up-sets, of its topological dual space. For this reason
we refer to elements of A as clopen elements of Aσ, to elements of K(Aσ) as closed elements,
and to elements of O(Aσ) as open elements.

Taking the canonical extension of a DL is an operation that interacts very nicely with
taking order duals or products. That is, we have

(A∂)σ ∼= (Aσ)∂ ,
(An)σ ∼= (Aσ)n,

and, as a consequence,

(Aε)σ ∼= (Aσ)ε,

for every order type ε. Also, the operation (·)∂ interchanges closed and open elements:
K(A∂σ) = O(Aσ)∂ and O(A∂σ) = K(Aσ)∂ ; similarly, we have that K(Anσ) = (K(Aσ))n, and
O(Anσ) = (O(Aσ))n. In the sequel, we will identify (A∂)σ with (Aσ)∂ , (An)σ with (Aσ)n, and
(Aε)σ with (Aσ)ε, for any order type ε.
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Extending maps

The canonical extension of a distributive modal algebra A = (A,∨,∧,⊥,>,3,2,�,�) will
obviously be an expansion of the canonical extension of the underlying lattice (A,∨,∧,⊥,>).
In order to extend operations on a DL A to its canonical extension, we will consider the case
of maps f : A → B between DLs. (Note that this suffices by the earlier made identification
of (An)σ with (Aσ)n.)

The idea in extending maps is that the value of the extension at a point of the canonical
extension of the domain depends on the value of the original map at ‘nearby’ points. This
can be made precise by introducing a topology on the domain, as was done in [20]. In that
setting one can then see the two extensions given below as the lower and upper envelope of
the original map. Here we give the definition without explicit reference to topology; following
the definition we provide some further explanation.

Definition 2.15 Given a map f : A→ B between DLs, we define two maps fσ, fπ : Aσ → B
σ

by

fσ(u) =
∨
{
∧
{f(a) : a ∈ A and x ≤ a ≤ y} : K(Aσ) 3 x ≤ u ≤ y ∈ O(Aσ)}

fπ(u) =
∧
{
∨
{f(a) : a ∈ A and x ≤ a ≤ y} : K(Aσ) 3 x ≤ u ≤ y ∈ O(Aσ)}.

The idea of the definition is based on an approximation of a point u in Aσ by intervals of
the form [x, y] with x a closed element below u and y an open above it. The ‘nearby’ points
that we mentioned earlier on, are the clopen elements of such intervals; note that since f is
defined on A we already have f -values for these clopen elements. For the definition of fπ,
the contribution of the interval [x, y] is valued as the join

∨
a∈[x,y]A

f(a), where [x, y]A = {a ∈
A | x ≤ a ≤ y} denotes the set of clopens in [x, y]. It is easy to see that this join will shrink
when we move x and y closer to u — simply because we have less joinands. Therefore, it
makes sense to define fπ(u) as the meet of the values obtained from all these closed-open
intervals surrounding u. In particular, since clopen elements are both closed and open, it is
not difficult to show that this definition makes fπ really an extension of f . Obviously, the
definition of fσ can be explained dually.

Remark 2.16 It is important to realize how much of the definition of these extensions of a
map f depends on the structure of the domain and of the codomain. What we mean is the
following.

Let A and B be DLs, and let f : An → B be a map. Observe that the definition of fσ

depends on the lattice structure of An. To make this more precise, consider an order variant
g : Aε → B of f (cf. Remark 2.11). Now the definition of gσ will depend on the lattice
structure of Aε which is different from that of An! So perhaps f and g will be distinct, even
as set-theoretical maps?

No. A closer inspection of the definition of the σ-extension reveals a self-duality in terms
of the domain order. Using this self-duality, one can easily prove that if f and g are order
variants, then so are fσ and gσ; in particular, fσ and gσ are identical as set-theoretical maps.
Of course the same holds for π-extensions. For this reason in the sequel we will not give
different names to order variant maps.
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On the other hand, dualizing the order on the codomain does make a difference. To this
end, given a map f : A→ B, we define f∂ : A∂ → B∂ to be the same set theoretic map as f
but with the order dualized on both domain and codomain. Then it is easy to see from the
definitions of σ- and π-extensions of maps that (f∂)σ = (fπ)∂ and that (f∂)π = (fσ)∂ .

In case the original map is order preserving we can simplify these descriptions:

Remark 2.17 If the DL map f : A→ B is order preserving, then for all u ∈ Aσ,

fσ(u) =
∨
{
∧
{f(a) : x ≤ a ∈ A} : u ≥ x ∈ K(Aσ)},

fπ(u) =
∧
{
∨
{f(a) : x ≤ a ∈ A} : u ≤ y ∈ O(Aσ)}.

Also, for all x ∈ K(Aσ) and y ∈ O(Aσ),

fσ(x) = fπ(x) =
∧
{f(a) : x ≤ a ∈ A},

fσ(y) = fπ(y) =
∨
{f(a) : x ≤ a ∈ A}.

In particular, fσ and fπ agree on closed and open elements, and both operations map closed
elements to closed elements, and opens to opens.

But also in the general setting, these lower and upper extensions have special properties.
These can best be expressed in topological terms. Without going into the details concerning
the topologies involved, we just note that fσ is the largest ‘upper continuous’ (UC) extension
of f , and fπ is the least ‘lower continuous’ (LC) extension of f :

Theorem 2.18 Given a map f : A→ B between DLs, the map fσ : Aσ → B
σ is an extension

of f . In fact, fσ is the largest extension of f to Aσ satisfying:

(UC) For all u ∈ Aσ and for all q ∈ J∞(Bσ), if q ≤ fσ(u) then there exist K(Aσ) 3 x ≤
u ≤ y ∈ O(Aσ) so that q ≤ fσ(v) for all x ≤ v ≤ y.

Here if f is order preserving then so is fσ and the y ∈ O(Aσ) is not necessary.
Similarly, the map fπ : Aσ → B

σ is also an extension of f . In fact, fπ is the smallest
extension of f to Aσ satisfying:

(LC) For all u ∈ Aσ and for all n ∈ M∞(Bσ), if n ≥ fπ(u) then there exist K(Aσ) 3 x ≤
u ≤ y ∈ O(Aσ) so that n ≥ fπ(v) for all x ≤ v ≤ y.

Here if f is order preserving then so is fπ and the x ∈ K(Aσ) is not necessary.

Canonical extensions of distributive modal algebras

Depending on the nature of a map or operation it is convenient to use either its σ- or π-
extension. In general, for maps that send joins or meets in the domain to joins in the
codomain, it is advantageous to pick the σ-extension as this one will then send arbitrary joins
or meets in the domain to arbitrary joins in the codomain. Dually for maps sending joins
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or meets in the domain to meets in the codomain, it is usually more advantageous to work
with the π-extension. Maps for which the two extension agree display, as one would expect,
particularly nice behaviour. These are called smooth. All maps that preserve either joins or
meets, and all maps that turn joins into meets, or vice versa, are smooth. Notice that all
the basic operations of a dma are of this kind. As a consequence, the following definition is
unambiguous.

Definition 2.19 Let A = (D,3,2,�,�) be a distributive modal algebra. The canonical or
perfect extension of A is the algebra Aσ = (Dσ,3σ,2σ,�σ,�σ) = (Dσ,3π,2π,�π,�π).

Just as in the case of distributive lattices without additional structure, these canonical
extensions satisfy some additional nice properties.

Definition 2.20 A distributive modal algebra A = (D,3,2,�,�) is called perfect or a
dma

+ if D is a perfect distributive lattice, while the modal operators satisfy the following
infinitary distribution properties:

3(
∨
X) ≈

∨
3(X)

2(
∧
X) ≈

∧
2(X)

�(
∨
X) ≈

∧
�(X)

�(
∧
X) ≈

∨
�(X).

Observe that the distributive laws of Definition 2.20 are generalizations of the finitary
dma laws for distributive modalities to the case of infinite joins and meets. Perfect dmas are
fairly nice structures to work with: below we will see that they are in fact distributive modal
frames in algebraic disguise. That also explains why it is the following lemma that makes
canonical extensions interesting for logicians.

Lemma 2.21 If A is a dma, then Aσ is a dma
+.

Proof. The fact that the underlying lattice of Aσ is perfect was first proved in [18, Theorem
2.3], and the fact that 3(

∨
X) ≈

∨
3(X) holds in Aσ is the content of [18, Lemma 2.5(iii)].

The properties of the other operations follow using the appropriate order duals. qed

All of this has as consequence that properties that are preserved under moving to the
canonical extension of a distributive modal algebras, are of great interest. Such properties
will be called canonical.

Definition 2.22 A class of distributive modal algebras is canonical if it closed under taking
canonical extensions. An equation, formula, or set of formula, is called canonical, if the class
of dmas defined by the equation, formula, or set of formulas, is canonical.
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2.3 Logic and Algebra

In this section we establish some links between the area of distributive modal logic and that
of distributive modal algebra. We will assume familiarity with the basics of algebraic logic
(such as outlined in [4]), and concentrate on some specific issues. As usual, there will be two
kinds of links between logic and algebra: on a syntactic level, we will see that the notion
of a distributive modal logic corresponds to that of a variety of distributive modal algebras.
The other link is between the logical and algebraic structures. We will start with this second
connection here. That is, we will see how to obtain algebras from frames and vice versa.

Frames and perfect distributive modal algebras

Just as in the case of classical modal logic, there are various ways to move from frames to
algebras and back. The operations that we present here arise naturally if we combine dualities
originating with Birkhoff [3] and Thomasson [53]. Birkhoff duality is a duality between
finite distributive lattices and finite posets: given a finite poset, the downsets form a finite
distributive lattice, and given a finite distributive lattice the join irreducible elements form a
finite poset. Of course, a generalization we will need here is to remove the finiteness restriction;
when doing this one must restrict oneself to DL+s, but one can keep arbitrary posets. In
order to deal with the additional operations on the lattice, we generalize Thomasson’s duality
between frames for classical modal logic and complete and atomic boolean algebras with
completely additive operators. From the perspective of Birkhoff duality, this means that the
dual objects will thus be endowed with additional relations.

Now we turn to the technical details. For a frame F = (W,≤, R3, R2, R�, R�), let D(W )
be the collection of all downward closed sets (or, simply, down-sets) of W . Recall that a
subset S of W is downward closed if u ≤ v ∈ S implies u ∈ S. Now consider, for a relation R
on W , the following operations on subsets of W :

〈R〉S := {u : ∃v(uRv and v ∈ S)}
[R]S := {u : ∀v(uRv → v ∈ S)} (= −〈R〉 − S)
[R〉S := {u : ∀v(uRv → v /∈ S)} (= −〈R〉S)
〈R]S := {u : ∃v(uRv and v /∈ S)} (= 〈R〉 − S) .

We leave it for the reader to verify that D(W ) is closed under the operations 〈R3〉 , [R2] , [R�〉
and 〈R�]; this follows from the conditions (KF) that any distributive modal frame satisfies
by Definition 2.4. Hence, we may correctly define the dual or complex algebra of F as the
structure

F
+ = (D(W ),∪,∩, ∅,W, 〈R3〉 , [R2] , [R�〉 , 〈R�]).

We leave the straightforward verification that F+ is in fact a perfect distributive modal algebra,
as an exercise for the reader.

In order to be able to relate our algebraic results to questions of frame completeness we
need the following lemma:

Lemma 2.23 Let F be a frame and α ⇒ β a sequent. Then F  α ⇒ β if and only if
F

+ |= α 4 β.
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Proof. Straightforward from the definitions — for instance, observe that a persistent valua-
tion on the frame F is nothing but an assignment on the algebra F+. qed

Conversely, for a dma
+
A = (D,3,2,�,�), let J∞(A) (resp. M∞(A)) be the set of

completely join-irreducible (resp. meet-irreducible) elements of the (perfect!) lattice reduct
D of A. Define binary relations on J∞(A) by

uR3v iff u ≤ 3v
uR2v iff κ(u) ≥ 2κ(v)
uR�v iff κ(u) ≥ �v
uR�v iff u ≤ �κ(v)

(DR)

where κ : J∞(A)→M∞(A) is the order isomorphism defined by κ(u) =
∨

(− ↑u). The dual
of A, which we will call the atom structure of A is defined to be the structure

A+ = (J∞(A),≤, R3, R2, R�, R�),

where ≤ is the order on the lattice A restricted to J∞(A). Then one can show that A+

satisfies (KF) given in Definition 2.4. Thus A+ = (J∞(A),≤, R3, R2, R�, R�) is a Kripke
frame for distributive modal logic.

Going back and forth between frames and algebras, we can prove the following results.

Proposition 2.24 Let F be a frame for distributive modal logic. Then (F+)+
∼= F.

To prove this, notice that the completely join irreducible elements of the lattice D(W )
are exactly the principal up-sets ↑u for u ∈ W . The fact that this correspondence is an
isomorphism of relational structures is fairly straightforward to check.

Proposition 2.25 Let A be a dma
+. Then, A ∼= (A+)+.

To prove this, notice that the DL isomorphism η : DA → (DA+)+ is given by η(a) =
J∞(A) ∩ ↓a. The crucial part is that η preserves the modal operators, which we state
separately as follows:

Lemma 2.26 Let A = (DA,3,2,�,�) be a dma
+ and A+ = (J∞(A),≤, R3, R2, R�, R�)

its dual frame. For all a ∈ A and all u ∈ J∞(A),

1. u ≤ 3a iff ∃v(uR3v and v ≤ a)

2. u ≤ 2a iff ∀v(uR2v → v ≤ a)

3. u ≤ �a iff ∀v(uR�v → v � a)

4. u ≤ �a iff ∃v(uR�v and v � a).
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Proof. To show the first statement, suppose u ≤ 3a. As

3a = 3(
∨

(J∞(A) ∩ ↓a))

=
∨

(3(J∞(A) ∩ ↓a))

and u is completely join-prime, there is v ∈ J∞(A) ∩ ↓a with u ≤ 3v. This means ∃v(uR3v
and v ≤ a). The converse is trivial.

To prove the second statement suppose u � 2a. Recall that κ(u) =
∨

(A− ↓u), that is,
u � x if and only if κ(u) ≥ x for x ∈ A. Thus

2a = 2(
∧

(2(M∞(A) ∩ ↑a))

=
∧

(2(M∞(A) ∩ ↑a)).

Now since κ(u) is completely meet prime, it follows that there is m ∈ M∞(A) ∩ ↑ a with
κ(u) ≥ 2m. Let v ∈ J∞(A) with κ(v) = m. Then we have a ≤ κ(v) and κ(u) ≥ 2κ(v),
that is, v � a and uR2v. So u � 2a implies ∃v(uR2v and v � a). Conversely, if there is
v ∈ J∞(A) with uR2v and v � a, then a ≤ κ(v), so 2a ≤ 2κ(v) ≤ κ(u), and therefore
u � 2a.

The other statements are proved similarly. qed

This connection between frames and perfect dmas can in fact be made into a full cate-
gorical duality but this is not our concern here.

Logics and varieties

Given a set Γ of modal sequents, let Γ4 denote the set {α 4 β | α⇒ β ∈ Γ} of corresponding
inequalities. Since any inequality is (or can be seen as) an equation, the following definition
makes sense.

Definition 2.27 For a distributive modal logic Λ, let VΛ be the variety defined by the set Λ4.
VΛ is called the variety corresponding to Λ.

Without proof we mention the following result, which can be obtained by standard tech-
niques from algebraic logic.

Proposition 2.28 The operation Λ 7→ VΛ mapping distributive modal logics to their corre-
sponding varieties is an isomorphism between the lattice of distributive modal logics and the
lattice of varieties of modal algebras.

This motivates the following definition.

Definition 2.29 A distributive modal logic Λ is called canonical if the corresponding set Λ4

of inequalities is canonical in the algebraic sense.

Our logical interest in the notion of canonicity stems from the following result.
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Lemma 2.30 Let Λ be a distributive modal logic. If Λ is canonical, then Λ is complete.

Proof. For a distributive modal logic Λ, let AΛ be the free algebra over a countably infinite
set of propositional variables, in the variety corresponding to Λ; logicians will know AΛ under
the name Lindenbaum-Tarski algebra. We leave it to the reader to verify that for all modal
sequents α⇒ β we have the following equivalence:

α⇒ β ∈ Λ ⇐⇒ AΛ |= α 4 β. (∗)

This equivalence is exactly what it means for AΛ to be free.
Now let α⇒ β be a modal sequent. Then we have

α⇒ β 6∈ Λ ⇐⇒ AΛ 6|= α 4 β

=⇒ A
σ
Λ 6|= α 4 β

⇐⇒ ((AσΛ)+)+ 6|= α 4 β

⇐⇒ (AσΛ)+ 6 α⇒ β.

Here the first equivalence is a rephrasing of (∗); the implication follows from the fact that
AΛ is a subalgebra of AσΛ; the penultimate equivalence follows from Lemma 2.21 and Propo-
sition 2.25; and the last equivalence is exactly the content of Lemma 2.23.

All in all we find that every non-theorem of Λ is refuted on the frame (AσΛ)+. This justifies
the definition of CΛ, the canonical frame, as the structure (AσΛ)+. What we have just proved,
then, is that every distributive modal logic is complete with respect to the singleton class
consisting of its canonical frame.

Now assume that Λ is canonical. Then it follows from (∗) and the canonicity of Λ4 that
A
σ
Λ |= Λ4, so by the Lemmas 2.21 and 2.23 and Proposition 2.25 again, we find that CΛ  Λ.

This means that any non-theorem α⇒ β of Λ can actually be refuted on a Λ-frame, and thus
shows that Th(Fr(Λ)) ⊆ Λ. In other words, it proves the completeness of Λ. qed

3 Sahlqvist sequents and inequalities

It is clear that not all distributive modal logics are canonical since it is not even so for classical
modal logics. We now develop a notion of Sahlqvist sequents which is the most general possible
while still restricting to the original definition in the classical modal logic setting. In the
classical setting, when describing admissible Sahlqvist formulas it is convenient to work with
a normal form in which all occurrences of negation (¬) are moved right in front of the variables.
In our generalized setting this is no longer available. Again, in the classical setting, the main
feature that may make non-Sahlqvist formulas ill-behaved is that the ‘outside’ connectives are
‘universal’ (boxes), while the ‘inside’ connectives are ‘choice connectives’ (that is, diamonds
or disjunction). These are also the features we will need to capture in the generalized setting.
Due to the necessity of considering nestings of connectives including � and �, however, our
description is somewhat more complex.

We assume that the reader is familiar with the notion of a generation tree of a formula or
term. (Our definitions below will refer to dml-formulas but obviously apply to dma-terms as
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well.) Here, with each formula we will associate two generation trees; each of these will be an
expansion of the formula’s generation tree in which every node is signed with either + (plus)
or − (minus). These signings are required to satisfy the following constraints:
• If a node is ∨, ∧, 3, or 2, assign the same sign to its successor nodes.
• If a node is �, or �, assign the opposite sign to its successor node.
Note that by these conditions, the sign of each node is determined by the initial condition,

that is, the sign of the root of the tree. It is thus that with each formula we may associate
two signed generation trees, the positive and the negative one.

Definition 3.1 A node in a signed generation tree of a dml formula is said to be

1. positive if it is signed ‘+’ and negative if it is signed ‘−’;

2. a choice node if it is either positive and labelled ∨,3,� or negative and labelled ∧,2,�;

3. universal if it is either positive and labelled 2 or �, or negative and labelled 3 or �.

Definition 3.2 A dml formula is said to be

1. uniform provided, in a signed generation tree for the formula, there is no one variable
that occurs both with a minus and a plus.

2. left (resp. right) universal if it is uniform and there are no choice nodes in the positive
(resp. negative) generation tree.

3. left (resp. right) Sahlqvist if it is uniform and there are no choice nodes in the scope of
universal nodes in the positive (resp. negative) generation tree.

Remark 3.3 It would be instructive but not exactly straightforward to make a precise com-
parison with the classical case. One of the obstacles is that in the classical case, there is a
multitude of definitions of what a Sahlqvist formula is; however, we can take this situation to
our advantage by selecting a definition that is most convenient for our present purposes. So,
let us work with (a slight adaptation of) the definition given in [2]:

Let φ and ψ be classical modal formulas in normal form; that is, built up from
variables and negations of variables, using >,⊥,∧,∨,2 and 3. Then the formula
φ→ ψ is a Sahlqvist-van Benthem formula if (i) no positive occurrence of a variable
in φ is in the scope of a 3 or a ∨ which itself is in the scope of a 2, and (ii) no
negative occurrence of a variable in ψ is in the scope of a 2 or an ∧ which itself
is in the scope of a 3.

Now if we want to compare our Definition 3.2 to van Benthem’s, we should first look at
the following straightforward translation of a distributive modal logic formula to a classical
one:

tr(xi) = xi
tr(⊥) = ⊥
tr(α ∨ β) = tr(α) ∨ tr(β)
tr(3α) = 3tr(α)
tr(�α) = ¬3tr(α)

tr(>) = >
tr(α ∧ β) = tr(α) ∧ tr(β)
tr(2α) = 2tr(α)
tr(�α) = 3¬tr(α)

17



One problem is that these translated formulas will not be in the above mentioned normal
form for classical modal logics. However, it is not difficult to see that after normalizing for-
mulas (that is, pushing negations downwards, using de Morgan’s laws and for the modalities,
replacing ¬2 with 3¬, etc.), we do obtain classical Sahlqvist-van Benthem formulas. That
is:

if α and β are a left and a right Sahlqvist formula, then norm(tr(α))→ norm(tr(β))
is a Sahlqvist-van Benthem formula.

A formal proof of this fact is in essence straightforward, but technically rather tedious and
involved; details are left for the interested reader.

Using existing results, it is in fact not very difficult to prove that any sequent of the form
α⇒ β, with α a left and β a right Sahlqvist formula, is canonical. But we can do somewhat
better.

For, notice that in the definition of a Sahlqvist-van Benthem formula φ → ψ, there is
no requirement on the formulas φ and ψ being uniform. The only requirement on φ is the
‘path condition’ stating that on no path from a positive occurrence of a proposition letter one
meets a choice node before a universal one; a similar requirement applies to ψ. Obviously,
we may impose the very same conditions on the left- and right hand formulas of a sequent
in distributive modal logic, and we can certainly prove a correspondence and a canonicity
result for such sequents. (The reader is invited to check that this requirement identifies the
(1, . . . , 1)-Sahlqvist sequents as defined below.)

Our ultimate definition is even more general than this. What is at stake here is a subtle
yet crucial difference between distributive and classical modal logic. In the latter case, when
it comes to frame validity, or to axiomatizing a logic, any formula may be replaced by any
of its substitution instances in which we replace some of the variables uniformly with their
negation. It may be the case that such a substitution turns a formula that is not in Sahlqvist-
van Benthem shape into one that is. This is so much the better since it considerably widens
the scope of Sahlqvist theory by providing Sahlqvist-van Benthem equivalents for formulas
that are not in the required shape: the idea is to manipulate a given formula until it is
obviously in a good Sahlqvist form. In the negation free case such ‘preprocessing’ is of course
not allowed, simply because the required substitutions, crucially involving negation, are not
available. However, using the notion of order type, we can instead simply list all the possible
options.

We are now ready to define general Sahlqvist sequents.

Definition 3.4 Let ε ∈ {1, ∂}n be an order type. A formula α(x1 · · · , xn) is ε-left Sahlqvist
(resp. ε-right Sahlqvist) if it satisfies the following two conditions:

1. in the positive (resp. negative) generation tree, for all i with εi = 1, there are no paths
from an occurrence of xi with + to the root along which one meets a choice node before
a universal node, and

2. in the positive (resp. negative) generation tree, for all i with εi = ∂, there are no paths
from an occurrence of xi with − to the root along which one meets a choice node before
a universal node.
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An ε-Sahlqvist sequent is a sequent α ⇒ β such that α is ε-left Sahlqvist and β ε-right
Sahlqvist. A sequent is called simply a Sahlqvist sequent if it is an ε-Sahlqvist sequent for
some order type ε. A distributive modal logic Λ is said to be Sahlqvist provided there is a set
Γ of Sahlqvist sequents so that Λ = K.Γ.

Using the ideas described earlier on, it is now a tedious but straightforward exercise to
show that Sahlqvist sequents restrict to Sahlqvist formulas in the classical setting.

Before we can move on to formulate our main results, there is still a bit of terminology
that we have to introduce.

Definition 3.5 Let ε ∈ {1, ∂}n be an order type. A formula α(x1 · · · , xn) is ε-positive (ε-
negative) if in any generation tree of the formula

1. for all i with εi = 1, all the occurrences of xi have the same (opposite) sign as the initial
condition, and

2. for all i with εi = ∂, all the occurrences of xi have the opposite (same) sign as the initial
condition.

Observe that these notions can be seen as providing more detailed information concerning
uniform formulas, in the sense that every uniform formula is ε-positive for some ε ∈ {1, ∂}n,
and vice versa. In section 5 we will see that this definition can and will be applied as well to
other formulas/terms than those of distributive modal logic.

3.1 Formulation of main results

We are now ready to state the canonicity, correspondence and completeness parts of the
Sahlqvist theorem for distributive modal logics.

Theorem 3.6 (Canonicity for Sahlqvist DML) Every Sahlqvist distributive modal logic
is canonical, and hence, complete.

Theorem 3.7 (Correspondence for Sahlqvist DML) Every Sahlqvist modal sequent cor-
responds to a formula in the first order language of frames for distributive modal logic. This
first order formula can be effectively computed from the modal sequent.

Combining these two theorems, we obtain the following result.

Theorem 3.8 (Sahlqvist Completeness Theorem for DML) Every Sahlqvist distribu-
tive modal logic K.Γ is sound and complete with respect to the elementary class of frames
defined by the (set of) first-order correspondents of the axioms Γ.

We will prove the canonicity for distributive modal logics algebraically: Theorem 5.1 states
that the inequalities corresponding to Sahlqvist sequents are canonical. As we saw in Propo-
sition 2.30, completeness follows from canonicity. This takes care of proving Theorem 3.6.
The correspondence result, Theorem 3.7, will be proved in section 4; the proof is based on
a reduction to the classical case. Finally, the completeness result, Theorem 3.8, is a simple
corollary of the previous two theorems.
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4 Correspondence

The main purpose of this section is to prove:

Theorem 3.7 (Correspondence for Sahlqvist DML) Every Sahlqvist modal sequent
corresponds to a formula in the first order language of frames for distributive modal logic.
This first order formula can be effectively computed from the modal sequent.

Proof. It is already known that this holds in the classical setting, see Blackburn, de Rijke
and Venema [4] or Sambin and Vaccaro [49] for details.

Our result will be based on a reduction to this classical case; the heart of our proof is a
translation from distributive modal logic to classical boolean modal logic, analogous to the
well-known Gödel translation from intuitionistic logic to modal logic, cf. [10]. The semantic
intuition behind this translation is simply that by considering the ordering ≤ of a distributive
modal frame F as just another binary relation on the domain, we may treat F as a frame for
classical (poly-)modal logic. This idea already has a history in the literature on intuitionistic
modal logic, cf. [54] for a recent application and further references.

Special about our approach is that we work with modalities for both the order and its
converse, and that our translation will be indexed by an order type. That is, as its diamonds,
our boolean modal language will have 3≤, 3≥ and 3♥ for each ♥ ∈ {3,2,�,�}. These
modalities will be interpreted in the obvious way. Now for each order type ε we will give a
translation Bε mapping distributive modal formulas/terms to boolean modal formulas/terms
in the language just described. The definition of Bε proceeds by a formula induction, the
interesting part of which is the base clause:

Bε(xi) =
{

2≥xi if εi = 1,
3≤xi if εi = ∂,

while the inductive clauses are completely trivial:

Bε(⊥) = ⊥
Bε(α ∨ β) = Bε(α) ∨Bε(β)
Bε(3α) = 33Bε(α)
Bε(�α) = ¬3�Bε(α)

Bε(>) = >
Bε(α ∧ β) = Bε(α) ∧Bε(β)
Bε(2α) = 22Bε(α)
Bε(�α) = 3�¬Bε(α)

where 2∗ is an abbreviation for ¬3∗¬.
Two claims will together constitute the proof of the correspondence theorem. First we

show that on the level of frame validity, the translation preserves validity:

Claim 1 Let α⇒ β be a dml sequent, and let F be some frame. Then for any order type ε:

F  α⇒ β ⇐⇒ F  Bε(α)→ Bε(β).

For a proof of this claim, fix F and ε. Let Vd and Vb be a distributive (i.e., persistent) and
a boolean valuation on F that are ε-associates in the sense that

Vd(xi) =
{

[≥]Vb(xi) if εi = 1,
〈≤〉Vb(xi) if εi = ∂
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for all variables xi. It follows from a straightforward inductive proof that such valuations
satisfy, for every dml formula φ, and every point s:

F, Vd, s  φ ⇐⇒ F, Vb, s  Bε(φ).

Now let Vd be an arbitrary distributive valuation. It is easy to see that both [≥] and 〈≤〉
leave downsets alone, thus Vd and Vd itself, now seen as a boolean valuation, are ε-associates.
Conversely, if Vb is a boolean valuation then Vd, defined by

Vd(xi) :=
{

[≥]Vb(xi) if εi = 1,
〈≤〉Vb(xi) if εi = ∂

for all variables xi, is easily seen to be persistent. That is, Vd(xi) is a down-set for each
variable xi. And it is obviously an ε-associate of Vb. From this and the previous equivalence
it is easy to derive that

F 6 α⇒ β ⇐⇒ F 6 Bε(α)→ Bε(β),

whence the claim is immediate.

Hence, if we can show that at least one of the Bε-translations preserves Sahlqvistness, we
are done.

Claim 2 A dma term ϕ is ε-left (ε-right) Sahlqvist iff Bε(ϕ) is ε-left (ε-right) Sahlqvist.

We will prove that the classical modal logic term Bε(ϕ) is ε-left (ε-right) Sahlqvist rather
than using some classical version of Sahlqvist. However to do this, we need to say a few words
about the classical negation ¬. Are there occurrences of ¬ that are choice and/or universal
nodes? Recall that, for our weakened negations, some occurrences are choice and some are
universal. But neither negative nor positive nodes are choice nodes for both � and � and
since an ¬ node may be viewed as either kind of node, no ¬ node is a choice node. Similarly
no ¬ node is universal.

Let ϕ = ϕ(x1, · · · , xn) be a dma term and let ε = (ε1, · · · , εn). First observe that
the change of each connective by the transformation Bε does not affect Sahlqvistness. For
example, suppose a node � in ϕ carries a −. Then it is a choice node, and its successor node
must carry a +. Applying Bε, the node � becomes two nodes: ¬ followed by 3�. Since ¬
carries a −, the node 3� must carry a +, and therefore it is a choice node, and its successor
node must carry a +. One can check all other cases similarly. Now suppose εi = 1, then
Bε(xi) = 2≥xi by definition. By the above observation, 2≥ carries the same sign in a signed
generation tree for Bε(ϕ) as xi carries in the signed generation tree for ϕ with the same initial
condition. And because 2≥ is sign preserving, it follows that xi carries the same sign in a
signed generation tree for Bε(ϕ) as xi carries in the signed generation tree for ϕ with the
same initial condition. If an occurrence of xi in ϕ carries a −, then Sahlqvistness makes no
stipulations on occurrences of choice and universal nodes in the path from this occurrence
of xi to the root of a generation tree of ϕ. And thus it doesn’t either in the corresponding
generation tree for Bε(ϕ). On the other hand, if an occurrence xi in a generation tree for ϕ
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carries a +, then so does 2≥ in the corresponding signed generation tree for Bε(ϕ). Thus 2≥
is a universal node. But a universal node just above a variable occurrence, does not affect
Sahlqvistness. Similarly, when εi = ∂, B(xi) = 3≤xi by definition. Here, the interesting case
occurs when xi carries −. But then so does 3≤, and it is again a universal node, which does
not affect Sahlqvistness. This finishes the proof of Claim 2.

Now, using the two claims, one easily derives the correspondence theorem: a Sahlqvist
sequent holds on a frame iff its boolean translation holds on the frame iff the frame satisfies
the first order correspondent of the boolean translation. qed

Remark 4.1 Notice the difference between the two claims in the proof of Theorem 3.7:
whereas the first one holds for all order types, the second one in general only is guaranteed
for the specific order type with respect to which the sequent is Sahlqvist. For example, ϕ = 2x
is 1-left Sahlqvist but B1(ϕ) = 23≤x is not.

Example 4.2 > 4 x ∨�x.
Note that this equation is 1-Sahlqvist. Though we can calculate the correspondent by

using the reduction to the classical result, it is usually easier to calculate it directly, which
we will do here. (We let R�[u] denote the set of points v such that uR�v.)

F
+ � > 4 x ∨�x

iff ∀S ∈ D(W ) : W ⊆ S ∪ 〈R�]S
iff ∀S∀u : u ∈W → u ∈ S ∪ 〈R�]S
iff ∀S∀u : u ∈W → u ∈ S or u ∈ 〈R�]S
iff ∀u∀S : u ∈ − 〈R�]S → u ∈ S
iff ∀u∀S : u ∈ [R�]S → u ∈ S
iff ∀u∀S : R�[u] ⊆ S → u ∈ S
iff(∗) ∀u : u ∈ R�[u]
iff ∀u : uR�u

The key is to eliminate the universal quantifier on elements of D(W ). For (∗), it suffices to
show (∀S ∈ D(W ) : R�[u] ⊆ S → u ∈ S) iff u ∈ R�[u] for all u ∈W . The forward direction
follows since R� ◦ ≥ ⊆ R� implies that R�[u] is a downset and thus we can choose it as an
instance of a down-set containing itself. For the converse, notice that R�[u] is the minimum
down-set containing R�[u]. So u ∈ R�[u] gives u ∈ S.

Notice that the correspondent can be expressed in short form as ∆ ⊆ R� where ∆ =
{(u, u) : u ∈W} is the diagonal.

5 Canonicity of Sahlqvist logics

In this section we show that the validity of Sahlqvist inequalities α 4 β (that is, the inequal-
ities corresponding to Sahlqvist sequents α⇒ β) is preserved when we move to the canonical
extension of a distributive modal algebra. That is, we will prove the following Theorem.
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Theorem 5.1 Every Sahlqvist inequality is canonical for dmas.

In order to explain our approach towards canonicity, suppose that the inequality α 4
β holds in the algebra A. Recall that with each term α(x1, . . . , xn) we may associate a
term function αA : An → A, and that A |= α 4 β simply means that αA ≤ βA (that is,
αA(a1, . . . , an) ≤ βA(a1, . . . , an) for all a1,. . . ,an in A). Likewise, Aσ |= α 4 β means that
αA

σ ≤ βA
σ
. But from αA ≤ βA it is not difficult to infer that (αA)σ ≤ (βA)σ, so if we could

prove (for every algebra A) that αA
σ ≤ (αA)σ and (βA)σ ≤ βA

σ
, we would have established

the canonicity of the inequality α 4 β.
This inspires the following definition, which allows us to formulate the above argument

concisely as follows: if α is a σ-expanding term, and β is σ-contracting, then the inequality
α 4 β is canonical. This definition was first given explicitly in [30]

Definition 5.2 Let α(x1, . . . , xn) be a dma term, and let (·)λ be a uniform way of extending
operations on dmas to operations on their canonical extensions. A dma term α is called
λ-expanding if αA

σ ≤ (αA)λ, and λ-contracting if (αA)λ ≤ αA
σ
. Terms that are both λ-

expanding and contracting are called λ-stable.

We are now ready for the proof of the algebraic canonicity result.

Proof of Theorem 5.1. The proof is based on a combination of the following ideas, each
of which is of interest in its own right, and hence, will be stated as a separate lemma:

Lemma 5.14 Every Sahlqvist inequality α 4 β is equivalent to an inequality of the form
α1 4 γ∨β1, where for some ε, α1 is an ε-positive left Sahlqvist term, β1 is an ε-negative
right Sahlqvist term, and γ is an ε-positive term.

As we will see, it will be much easier to work with the terms α1 and β1 because they are
uniform. The price that we have to pay is the extra term γ, and what complicate matters is
that in order to define γ, we have to extend the similarity type. That is, augment the type
of each dma by a basic binary operation denoted by the operation symbol n, and given by:

nA(a, b) =
{
⊥ if a ≤ b
> if a � b.

(1)

Notice that nA : A × A∂ → A is an operator, that is, it preserves binary joins in the first
coordinate and turns meets into joins in the second coordinate. In particular, nA is a monotone
operation — this will be crucial in proving that the new term γ behaves well.

In general, the fact that we have expanded the similarity type implies that we also have
to formulate and prove some of our lemmas in a slightly more general context.

Lemma 5.10 Left Sahlqvist terms are σ-stable, and, dually, right Sahlqvist terms are π-stable.

Lemma 5.12 If β is ε-negative and γ is ε-positive, for some order type ε, then for any A we
have

(
βA ∨ γA

)σ ≤ (βA)π ∨ (γA)σ.

Lemma 5.5 Uniform, and in particular ε-positive terms, are σ-contracting.
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Altogether this allows us to prove the canonicity of Sahlqvist equations in the following
way. Consider a Sahlqvist inequality α 4 β and let α1, β1 and γ be the ε-positive left
Sahlqvist, the ε-negative right Sahlqvist, and the ε-positive term such that α 4 β is equivalent
to the inequality α1 4 γ∨β1. The theorem is proved by the following sequence of implications
and equivalences:

A |= α 4 β
5.14⇐⇒ A |= α1 4 β1 ∨ γ
⇐⇒ αA1 ≤ (β1 ∨ γ)A

⇐⇒
(
αA1

)σ
≤
(

(β1 ∨ γ)A
)σ

=
(
βA1 ∨ γA

)σ
5.11=⇒

(
αA1

)σ
≤
(
βA1

)π
∨
(
γA
)σ

5.5=⇒
(
αA1

)σ
≤
(
βA1

)π
∨ γAσ

5.10=⇒ αA
σ

1 ≤ βAσ1 ∨ γAσ

⇐⇒ αA
σ

1 ≤ (β1 ∨ γ)A
σ

⇐⇒ A
σ |= α1 4 β1 ∨ γ

5.14&5.15⇐⇒ A
σ |= α 4 β,

where the equivalences without explicit justification follow more or less directly from the
definitions. Note that for the validity of the last equivalence we need that our newly defined
operation n interacts well with taking canonical extensions; that is, in Lemma 5.15 we will
show that the canonical extension nσ of the map n itself satisfies (1). qed

In the remainder of this section, we prove or at least state the technical results needed in
this argument.

The basic fact needed to show that uniform terms are σ-contracting, that is,
(
γA
)σ ≤ γAσ ,

dates back to Ribeiro’s paper [45].

Theorem 5.3 For any DL maps f : A → B and g : B → C if f and g are order preserving
then (gf)σ ≤ gσfσ.

Proof. Since all maps involved are order preserving, by Remark 2.17 we have that

(gf)σ(u) =
∨
{
∧
{gf(a) : x ≤ a ∈ A} : u ≥ x ∈ K(Aσ)},

gσfσ(u) =
∨
{
∧
{g(b) : z ≤ b ∈ B} : fσ(u) ≥ z ∈ K(Bσ)}.

Hence, in order to show that (gf)σ(u) ≤ gσfσ(u) it suffices to prove that each of the joinands
in the first line is below one of the joinands in the second.

Take an arbitrary x ∈ K(Aσ) with x ≤ u. As fσ is order preserving, we have that
fσ(x) ≤ fσ(u), and since fσ(x) is closed, it is actually one of those elements z ≤ fσ(u) in
K(Bσ) that are mentioned in the above characterization of gσfσ(u).
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Hence it suffices to show that
∧
{gf(a) : x ≤ a ∈ A} in the first formula is below the special

joinand
∧
{g(b) : fσ(x) ≤ b ∈ B} in the second. To show this, let fσ(x) ≤ b ∈ B. That is,∧

{f(a) : x ≤ a ∈ A} ≤ b, then by the compactness property of the canonical extension there
are a1, . . . , an with x ≤ ai ∈ A and

∧i=n
i=1 f(ai) ≤ b. But then a =

∧i=n
i=1 ai ∈ A, x ≤ a, and

gf(a) = gf(
∧i=n
i=1 ai) ≤ g(

∧i=n
i=1 f(ai)) ≤ g(b). Thus for each b ∈ B with fσ(x) ≤ b we have∧

{gf(a) : x ≤ a ∈ A} ≤ g(b) and therefore
∧
{gf(a) : x ≤ a ∈ A} ≤

∧
{g(b) : fσ(x) ≤ b ∈

B}. qed

For the proper formulation of the next result, we need to generalize some of our termi-
nology concerning dma terms to the more general context of monotone bounded distributive
lattice expansions, cf. [19].

Definition 5.4 A distributive lattice expansion or dle is any algebra A = (D, {fi}i∈I) con-
sisting of a DL D = (A,∧,∨,⊥,>) and additional operations fi : Ani → A for each i ∈ I.
Such a dle is said to be monotone, and is then called a dlm, provided each basic operation
is monotone, that is, for each i ∈ I, there is an order type εi ∈ {1, ∂}ni so that fi : Aεi → A
is order preserving. The sequence (εi)i∈I is called the monotonicity type of A.

Of course, dmas are special dlms, and so is any dma expanded with the operation n given
in (1).

For dlm terms of some monotonicity type τ = (εi)i∈I we may also define signed generation
trees as we have done for dma terms. Only here, if εi(j) = 1, 1 ≤ j ≤ ni, then the jth child of
a node labelled fi will be given the same sign as the node itself, and if εi(j) = ∂, 1 ≤ j ≤ ni,
then the jth child of the node labelled fi will be given the opposite sign from the one the node
itself carries. Uniform terms as well as λ-contracting and λ-expanding terms are all defined
the same way for dlms of a given monotonicity type as we defined them for dmas.

We formulate and prove the lemma in this setting.

Lemma 5.5 Every uniform dlm-term is both σ-contracting and π-expanding.

Proof. We need to prove (γA)σ ≤ γA
σ

and (γA)π ≥ γA
σ

for a uniform term γ and a dlm

A. We prove it by induction on the complexity of γ. When γ is a constant or a variable,
the conclusion is easily verified as projections extend to the corresponding projections. As an
inductive step, we consider only the case γ = f(γ1, γ2) where fA is order preserving in the
first coordinate and order reversing in the second.

Let x1, . . . xn be a set of variables containing the ones occurring in γ. The fact that γ is
uniform implies that there is an ε ∈ {1, ∂}n so that γ is ε-positive. But now since fA is order
preserving in the first coordinate and order reversing in the second, it follows by the way we
assign signs to nodes that the subterms γ1 and γ2 are ε-positive and ε-negative, respectively.
That is, we have that γA1 : Aε → A is order preserving, γA2 : Aε → A is order reversing, and
thus the order variant

(
γA2
)∂ : Aε → A∂ of

(
γA2
)∂ is order preserving. So (γ)A : Aε → A is

given by the composition

Aε

(
γA1 ,(γA2 )∂

)
−→ A×A∂ fA−→ A
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of order preserving maps. Thus by Theorem 5.3 it follows that(
γA
)σ
≤
(
fA
)σ (

γA1 ,
(
γA2

)∂)σ
and it is a straightforward verification that(

γA1 ,
(
γA2

)∂)σ
=
((

γA1

)σ
,

((
γA2

)∂)σ)
.

As we saw in Remark 2.16 ((
γA2

)∂)σ
=
((
γA2

)π)∂
,

and we may use the inductive hypothesis to obtain that
(
γA1
)σ ≤ γAσ1 and

(
γA2
)π ≥ γAσ2 . Note

that the latter inequality is the same as
((
γA2
)π)∂ ≤ (γAσ2

)∂ . This means that as maps from
Aε to A×A∂ ((

γA1

)σ
,

((
γA2

)∂)σ)
≤
(
γA

σ

1 ,
(
γA

σ

2

)∂)
.

Putting all of this together we get(
γA
)σ

≤
(
fA
)σ (

γA
σ

1 ,
(
γA

σ

2

)∂)
= fA

σ

(
γA

σ

1 ,
(
γA

σ

2

)∂)
= γA

σ

which is exactly what we desired. The fact that γ is π-contracting is proved dually with the
additional step (

γA
)π
≥
(
fA
)π (

γA1 ,
(
γA2

)∂)π
≥
(
fA
)σ (

γA1 ,
(
γA2

)∂)π
,

which holds since the π-extension of any map is greater than the σ-extension of that map.
qed

The two fundamental technical results needed to show that left and right Sahlqvist
terms are stable with respect to σ- and π-extensions, respectively, date back to the origi-
nal Jónsson-Tarski paper [32] and to the Gehrke-Jónsson paper [19], respectively. Since left
and right Sahlqvist terms are uniform by definition, they are σ-contracting and π-expanding
by Lemma 5.5; recall that in the proof of this lemma, we needed Ribeiro’s Theorem 5.3 stating
that for order preserving DL maps f : A→ B and g : B→ C we have that

(gf)σ ≤ gσfσ.

In order to show that left and right Sahlqvist terms are also σ-contracting and π-expanding,
we will need to show the converse inequality. In the Corollaries 5.7 and 5.9 below we will see
that, under additional constraints on f and/or g, we can indeed prove that

gσfσ ≤ (gf)σ,

26



establishing the (conditional) functoriality of (·)σ. In the case of both corollaries this func-
toriality is proved by showing that the ‘additional constraints’ on a map h make that its
extensions hσ and hπ will satisfy some strong continuity principles. The difference between
the corollaries is that in the one case the ‘additional constraints’ are imposed on f (the ‘first’
map), in the other case on g (the ‘second’ map).

The first result states that the canonical extension of an operator is Scott continuous.
(Recall that h : Bn → C is an operator if it preserves joins in each coordinate.)

Theorem 5.6 If the DL map g : Bn → C is an operator then gσ is Scott continuous, i.e.,

(Scott) For all u ∈ Bσn and for all q ∈ J∞(Cσ), if q ≤ gσ(u) then there exists p ∈ J∞(Bσn)
so that p ≤ u and q ≤ gσ(v) for all v ∈ Bσn with p ≤ v.

Proof. See [18, Lemma 4.2 page 213]. qed

The first corollary then is about the composition of two maps of which the second map is
nice:

Corollary 5.7 If f : A → B
n is any map between DLs and g : Bn → C is an operator then

gσfσ ≤ (gf)σ.

Proof. It is straightforward to check that since fσ satisfies (UC) and since gσ satisfies
(Scott), it follows that gσfσ satisfies (UC). Now since (gf)σ is the greatest extension of gf
which satisfies (UC), the result follows. qed

In the second case we look at maps that are meet preserving. Note that in the case of
unary operations, this is the same concept as being a dual operator; for operations of higher
rank, however, preserving meets is a far stronger condition.

Theorem 5.8 If the DL map f : A → B is meet preserving then fσ is ‘strongly upper
continuous’, i.e.,

(SUC) For all u ∈ Aσ and for all z ∈ K(Bσ), if z ≤ fσ(u) then there exist x ∈ K(Aσ) so
that x ≤ u and z ≤ fσ(v) for all v ∈ Aσ with x ≤ v.

Proof. See [20, Theorem 2.27]. qed

The second corollary is about the composition of two maps of which the first maps is very
nice, (and of which the second map is order preserving):

Corollary 5.9 If f : A → B is meet preserving and g : B → C is order preserving, then
gσfσ ≤ (gf)σ.

Proof. It is straightforward to check that since fσ satisfies (SUC) and since gσ satisfies the
one sided version of (UC) which holds for order preserving maps, it follows that gσfσ satisfies
(UC). Now since (gf)σ is the greatest extension of gf which satisfies (UC), the result follows.
qed
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Lemma 5.10 Every left (right) Sahlqvist dma term is σ-stable (π-stable).

Proof. The fact that left (right) Sahlqvist terms are σ-contracting (π-expanding) follows
from Lemma 5.5. We prove the remaining part of the stability by induction. When α is a
constant or a variable, the conclusion is easily seen to hold. For the inductive step, we prove
(αA)σ = αA

σ
for a left Sahlqvist term α. The proof for right Sahlqvist terms is dual.

So suppose that α = f(α1, . . . , αn), n = 1 or 2, and that the lemma holds for each of the
terms αi.

The cases in which f is ∨, ∧, and 3 are similar as f is an operator in all these cases.
We do the case where f is binary. It is clear from the definition of left Sahlqvist that if
α = f(α1, α2) is left Sahlqvist then so are α1 and α2. Now given a dma A, fA is an operator,
and αA = (f(α1, α2))A = fA(αA1 , α

A

2 ), so by Corollary 5.7(
αA
)σ

=
(
fA(αA1 , α

A

2 )
)σ
≥
(
fA
)σ (

(αA1 , α
A

2 )
)σ

.

But
(
fA
)σ = fA

σ
and

(
(αA1 , α

A

2 )
)σ = (

(
αA1
)σ
,
(
αA2
)σ) so the result follows by the induction

hypothesis.
Now if f = �, then the negative generation tree for α1 shows up as the subtree of the

positive generation tree for α; using this and the definition of left and right Sahlqvist terms
the reader can easily verify that α1 is right Sahlqvist. Now consider (�α1)A = �AαA1 . Recall
that left and right Sahlqvist terms are uniform by definition, so there is an ε ∈ {1, ∂}n so
that α is ε-positive, which implies that α1 is ε-negative and we can write (�α1)A as the
composition

Aε
(αA1)∂
−→ A∂

�A−→ A.

This is again an order preserving function followed by an operator and the rest of the argument
is similar to our first case, except that we must use the fact that α1 is π-expanding by the
induction hypothesis and that ((

αA1

)∂)σ
=
((
αA1

)π)∂
.

Now if f = 2, then the very first node is a universal node, and thus if α is left Sahlqvist
it follows that there are no choice nodes anywhere in the signed generation tree for α or in
other words α is what we called a universal term. Analyzing the definition of choice nodes
one may see that having no such means that the term may be viewed as a composition of
meet-preserving maps (with the appropriate flips of coordinates and functions administered).
We leave the inductive proof of this to the reader.

Using this fact we see that αA1 : Aε → A is a meet preserving map and thus by Corollary
5.9 we have

(
αA
)σ =

(
2AαA1

)σ ≥ (
2A
)σ (

αA1
)σ and then

(
2A
)σ (

αA1
)σ ≥ 2A

σ
αA

σ

1 by the
induction hypothesis.

Finally, the case where f = � yields α1 right universal instead of left universal, and this
case is handled as the previous one with the same twist as in the case f = �. We leave the
details to the reader. qed
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The next lemma, which deals with the σ-extension of the join of order preserving and
order reversing maps, is brand new.

Lemma 5.11 If f, g : A→ B are maps between DLs and f is order preserving and g is order
reversing then (f ∨ g)σ ≤ fσ ∨ gπ.

Proof. In order to arrive at a contradiction, suppose that (f ∨ g)σ � fσ ∨ gπ, then for
some u ∈ Aσ, (f ∨ g)σ(u) � fσ ∨ gπ(u). Since Aσ is join generated by the set J∞(Aσ) of all
completely join irreducible elements of Aσ, this means that there is some p ∈ J∞(Aσ) such
that p ≤ (f ∨ g)σ(u), while on the other hand p � fσ(u) and p � gπ(u). Now by definition of
σ-extensions, we have

(f ∨ g)σ(u)

=
∨{∧

{f(a) ∨ g(a) : a ∈ [x, y]A} : K(Aσ) 3 x ≤ u ≤ y ∈ O(Aσ)
}

where we take [x, y]S for a subset S ⊆ Aσ to mean {s ∈ S : x ≤ s ≤ y}. Then by the complete
join irreducibility of p, p ≤ (f ∨ g)σ(u) implies that p must be below one of the joinands; that
is, there must be an interval [x0, y0] with x0 closed and y0 open, such that x0 ≤ u ≤ y0 and
p ≤

∧
{f(a) ∨ g(a) : a ∈ [x, y]A}. As a consequence,

p ≤ f(a) ∨ g(a) for each a ∈ [x0, y0].

On the other hand, turning to fσ(u) and gπ(u), we leave it for the reader to verify that

fσ(u) =
∨
{fσ(x) : u ≥ x ∈ K(Aσ)}

gπ(u) =
∧
{gπ(x) : u ≥ x ∈ K(Aσ)}

(cf. Remark 2.17). We claim that∨
{fσ(x) : u ≥ x ∈ K(Aσ)} =

∨
{fσ(x) : x ∈ [x0, u]K(Aσ)},∧

{gπ(x) : u ≥ x ∈ K(Aσ)} =
∧
{gπ(x) : x ∈ [x0, u]K(Aσ)}.

For the first identity, it is obvious that the right hand side is below the left hand side, since on
the left we take the join of more elements. For the other direction, take an arbitrary joinand
to the left, say fσ(x) with x ∈ K(Aσ) below u. Now consider the element x ∨ x0; this object
clearly belongs to [x0, u]K(Aσ), whence fσ(x ∨ x0) is one of the joinands to the right. But
since fσ is order preserving, we see that fσ(x) ≤ fσ(x∨ x0). This shows that each of the left
joinands is below some of the joinands to the right, and thus proves that the join to the left
is below the join to the rigt. Thus we have established the first of the above two identities;
we leave the second one to the reader.

From the characterization gπ(u) =
∧
{gπ(x) : x ∈ [x0, u]K(Aσ)} and the fact that p � gπ(u)

we may conclude that there is a closed element x1 between x0 and y0 such that p � gπ(x1).

29



Also, from fσ(u) =
∨
{fσ(x) : x ∈ [x0, u]K(Aσ)} we may infer that p � fσ(x) for each

x ∈ [x0, u]K(Aσ); in particular: p � fσ(x1). Since f is order preserving this means

p � fσ(x1) =
∧
{f(a) : x1 ≤ a ∈ A}

=
∧
{f(a) : a ∈ [x1, y0]A} .

The second meet is small enough because, by compactness, for each a ∈ A with x1 ≤ a there
is an a′ ∈ A with x1 ≤ a′ ≤ a and a′ ≤ y0. Thus there is an element a0 ∈ A with x1 ≤ a0 ≤ y0

so that p � f(a0). But we also have that p � gπ(x1), and since g is order reversing this means

p � gπ(x1) =
∨
{g(a) : x1 ≤ a ∈ A} .

That is, for every a ∈ A with x1 ≤ a we have p � g(a) and in particular p � g(a0). But this
means p � f(a0) ∨ g(a0) which contradicts our earlier claim. qed

In the proof of Theorem 5.1 we need the following corollary of this lemma.

Lemma 5.12 Let β and γ be dlm terms such that for some order type ε ∈ {1, ∂}n, β is
ε-negative and γ is ε-positive. Then for any dml A of type τ , we have(

βA ∨ γA
)σ
≤
(
βA
)π
∨
(
γA
)σ

Proof. By Remark 2.16 we may take βA and γA to be maps from A
ε to A. But it is

straightforward to verify that in this light, βA and γA satisfy the conditions of Lemma 5.11.
And therefore the result is immediate. qed

Now we need to construct, from a Sahlqvist inequality α 4 β, the left Sahlqvist term α′,
the right Sahlqvist term β′, and the uniform term γ so that α 4 β is equivalent to α′ 4 γ ∨β.
Recall that in order to do this we first augment the type of each dma by the basic binary
operation denoted by the operation symbol n, and given by:

nA(a, b) =
{
⊥ if a ≤ b
> if a � b.

The following lemma provides the key tool for the rewriting process of an arbitrary Sahlqvist
inequality into an inequality of the shape required in the canonicity proof.

Lemma 5.13 Let α and β be dml terms and s a specific occurrence of a subterm of α. Let
α′ = α(z/s) be the term obtained when replacing s in α by the variable z, where z is assumed
not to occur in α. Then for any dml A we have

1. If s is signed ‘+’ in the positive generation tree for α then

α 4 β holds in A ⇐⇒ α′ 4 n(z, s) ∨ β holds in A.

30



2. If s is signed ‘−’ in the positive generation tree for α then

α 4 β holds in A ⇐⇒ α′ 4 n(s, z) ∨ β holds in A.

3. If s is signed ‘+’ in the negative generation tree for α then

β 4 α holds in A ⇐⇒ β 4 n(z, s) ∨ α′ holds in A.

4. If s is signed ‘−’ in the negative generation tree for α then

β 4 α holds in A ⇐⇒ β 4 n(s, z) ∨ α′ holds in A.

Proof. We prove only the first statement, since the others are similar. First suppose α′ 4
n(z, s) ∨ β holds in A. Then for a1, . . . , an ∈ A we have

αA(a1, . . . , an) = α′A(a1, . . . , an, s
A(a1, . . . , an))

≤ nA(sA(a1, . . . , an), sA(a1, . . . , an)) ∨ βA(a1, . . . , an)
= βA(a1, . . . , an)

and α 4 β holds in A.
Conversely, if α 4 β holds in A, for a1, . . . , an and an+1 ∈ A, we distinguish two cases.

First, if an+1 � sA(a1, . . . , an) then nA(an+1, s
A(a1, . . . , an)) = > and α′ 4 n(z, s)∨β holds at

a1, . . . , an, an+1. Now suppose that an+1 ≤ sA(a1, . . . , an). Since the root of s bears the sign
+ in the positive generation tree for α (that is, z is assigned + in the positive generation tree
for α′), it must be the case that α′A is order preserving in z. So from an+1 ≤ sA(a1, . . . , an)
we may infer that

α′A(a1, . . . , an, an+1) ≤ α′A(a1, . . . , an, s
A(a1, . . . , an))

= αA(a1, . . . , an)
≤ βA(a1, . . . , an)
= ⊥ ∨ βA(a1, . . . , an)

and α′ 4 n(z, s) ∨ β holds in A. qed

Thus we have:

Lemma 5.14 Any Sahlqvist inequality α 4 β can be effectively rewritten into an equivalent
inequality of the form α′ 4 β′ ∨ γ, such that for some ε, α′, β′ and γ are, respectively, an
ε-positive left Sahlqvist term, an ε-negative right Sahlqvist term, and an ε-positive term.

Proof. Note that the slightly curious wording of the previous lemma makes it fairly easy to
see that any Sahlqvist inequality α 4 β can be rewritten step by step into the required form.
In each step of this process, either α or β will be simplified, at the expense of extra terms
n(s, z) or n(z, s) turning up on the right hand side of the inequality. It should be noted that
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in order to rewrite the inequality α 4 β we have to extend the similarity type. Now for the
details.

So let α 4 β be a Sahlqvist inequality and let x1, . . . , xn be the variables occurring in
α 4 β. Then there is an ε ∈ {1, ∂}n so that α is ε-left Sahlqvist and β is ε-right Sahlqvist.
Let s1, . . . , sm be the maximal ε-negative subterms of α whose roots bear the sign + in the
positive generation tree for α. Let t1, . . . , tl be the maximal ε-positive subterms of α whose
roots bear the sign − in the negative generation tree for α. Also for β let s′1, . . . , s

′
m′ be the

maximal ε-positive subterms of β whose roots bear the sign − in the negative generation tree
for β, and let t′1, . . . , t

′
l′ be the maximal ε-negative subterms of β whose roots bear the sign

+ in the negative generation tree for β.
Now introduce new variables z1, . . . , zm, w1, . . . , wl, z′1, . . . , z

′
m′ , and w′1,. . . ,w′l′ , all distinct

from each other and from each of x1, . . . , xn. Let ε ∈ {1, ∂}n+m+l+m′+l′ be given by

εi =


εi if 1 ≤ i ≤ n (x-variables)
1 if n+ 1 ≤ i ≤ n+m (z-variables)
∂ if n+m+ 1 ≤ i ≤ n+m+ l (w-variables)
∂ if n+m+ l + 1 ≤ i ≤ n+m+ l +m′ (z′-variables)
1 ifn+m+ l +m′ + 1 ≤ i ≤ n+m+ l +m′ + l′ (w′-variables)

Then α′ = α(z1/s1, · · · , zm/sm, w1/t1, · · · , wl/tl) is ε-positive and left Sahlqvist, whereas
β′ = β(z′1/s

′
1, · · · , z′m′/s′m′ , w′1/t′1, · · · , w′l′/t′l′) is ε-negative and right Sahlqvist. By successive

applications of the previous lemma, it can be shown that α 4 β is equivalent to the following
inequality:

α(z1/s1, · · · , zm/sm, w1/t1, · · · , wl/tl)
4 β(z′1/s

′
1, · · · , z′m′/s′m′ , w′1/t′1, · · · , w′l′/t′l′)

∨
m∨
j=1

n(zj , sj) ∨
∨l
j=1n(tj , wj) ∨

∨m′

j=1n(s′j , z
′
j) ∨

∨l′

j=1n(w′j , t
′
j)

Here

γ =
m∨
j=1

n(zj , sj) ∨
∨l
j=1n(tj , wj) ∨

∨m′

j=1n(s′j , z
′
j) ∨

∨l′

j=1n(w′j , t
′
j)

is ε-positive and we have rewritten the inequality as desired. qed

Notice that Lemma 5.5 readily applies to the term γ that we have obtained: thus γ is
σ-contracting. Likewise, it follows from Lemma 5.11 that

(
βA ∨ γA

)σ ≤ (βA)π ∨ (γA)σ. The
final result we need is that (nA)σ = nA

σ
for each DL A.

Lemma 5.15 Let A be a DL. For u, v ∈ Aσ we have

nσ(u, v) =
{
⊥ if u ≤ v
> if u � v.
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Proof. Notice that since n is order preserving in the first coordinate and order reversing in
the second coordinate it follows that

nσ(u, v) =
∨
{nσ(x, y) : u ≥ x ∈ K(Aσ) and v ≤ y ∈ O(Aσ)},

and for x ∈ K(Aσ) and y ∈ O(Aσ)

nσ(x, y) =
∧
{n(a, b) : x ≤ a ∈ A and y ≥ b ∈ A}.

Now let u, v ∈ Aσ with u ≤ v. Then for each x ∈ K(Aσ) with x ≤ u and for each y ∈ O(Aσ)
with v ≤ y, we have x ≤ u ≤ v ≤ y. Thus∧

{a ∈ A : a ≥ x} = x ≤ y =
∨
{a ∈ A : a ≤ y}

and by the compactness property of Aσ it follows that there is a0 ∈ A with x ≤ a0 ≤ y. But
then nσ(x, y) ≤ n(a0, a0) = ⊥. Thus for each x ∈ K(Aσ) with x ≤ u and for each y ∈ O(Aσ)
with v ≤ y, we have nσ(x, y) = ⊥ and it follows that nσ(u, v) = ⊥ as desired.

On the other hand, if nσ(u, v) = ⊥ then for each x ∈ K(Aσ) with x ≤ u and for each
y ∈ O(Aσ) with v ≤ y, there are a, b ∈ A with x ≤ a and b ≤ y and n(a, b) = ⊥. But then
x ≤ a ≤ b ≤ y and thus

u =
∨
{x ∈ K(Aσ) : x ≤ u} ≤

∧
{y ∈ O(Aσ) : v ≤ y} = v.

Finally, it is clear from the definition that nσ(u, v) must be either ⊥ or > and the claim
follows. qed

We have now proved all the lemmas that were needed in the proof of Theorem 5.1.

6 Examples

6.1 Positive modal logic

As we mentioned already, Positive Modal Logic (pml) was introduced by Dunn in [15]. In
our terminology, a positive modal logic is a dml with a 3 and a 2 satisfying the so called
interaction axioms

3x ∧2y ⇒ 3(x ∧ y)
2(x ∨ y) ⇒ 2x ∨3y

Dunn also showed that pml is complete with respect to classical Kripke frames in which
R3 = R2. However, in order to get reasonable results on frame completeness for extensions
of pml, ordered Kripke frames were introduced by Celani and Jansana, cf. [8]. They defined
a Kripke frame for positive modal logic (let us call it a P-frame for now) to be a triple
G = (W,≤, R) where (W,≤) is a quasi-ordered set and R is a binary relation on W satisfying

≤ ◦R ⊆ R ◦ ≤
≥ ◦R ⊆ R ◦ ≥.

(P)
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They associate with such a frame the complex algebra G+ = (D(W ), 〈R〉 , [R])1 where 〈R〉,
[R], and D(W ) are defined as we have done it here. Also, satisfaction is defined such that
G  α ⇒ β if and only if G+  α 4 β as we have done here. The fact that they consider
quasi-orders rather than partial orders makes no major difference since we may factor the
equivalence relation corresponding to the quasi-order out of W , ≤, and R and get a partially
ordered frame with isomorphic complex algebra, and thus satisfying the exact same sequents.
For simplicity of comparison we will just work with partially ordered P-frames here. The
significant difference from our approach is that they use only one relation R for defining
both 3 and 2. In fact our frames, let us call them D-frames for now, corresponding to pml

are frames F = (W,≤, R3, R2) where (W,≤) is a partial order, and R3 and R2 are binary
relations on W satisfying

≤ ◦R3 ◦ ≤ ⊆ R3

≥ ◦R2 ◦ ≥ ⊆ R2
(KF)

together with the correspondents for the interaction axioms:

R3 ⊆ (R3 ∩R2) ◦ ≤
R2 ⊆ (R2 ∩R3) ◦ ≥.

(D)

To understand how P-frames and D-frames are related we need an observation which will
be crucial in comparing our frames to others in other examples as well.

Proposition 6.1 Let (W,≤) be a partially ordered set. The operations 〈R〉, [R], [R〉, and
〈R] given by a binary relation R on W are operations on D(W ) if and only if

≤ ◦R ⊆ R ◦ ≤
≥ ◦R ⊆ R ◦ ≥
≥ ◦R ⊆ R ◦ ≤
≤ ◦R ⊆ R ◦ ≥,

(P)

respectively. Furthermore, the largest relations on W for which the operations 〈R〉, [R], [R〉,
and 〈R], respectively, are still on D(W ) are:

≤ ◦R ◦ ≤
≥ ◦R ◦ ≥
≥ ◦R ◦ ≤
≤ ◦R ◦ ≥.

This proposition entails that the relation giving rise to a given dma
+ operation 3, 2, �,

or � on D(W ) is by no means unique. But the ones we are using, which satisfy the conditions
(KF), are the largest.

Returning to positive modal logic, notice that the first order correspondents (D) that
our D-frames satisfy give us a good hint for which single relation to use in their place,

1They actually use the set of up-sets as a universe of the complex algebra. Of course it is equivalent to
what is presented here.
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namely R = R3 ∩ R2. It is straightforward to check that if F = (W,≤, R3, R2) is a D-
frame, then G = (W,≤, R3 ∩ R2) is a P-frame. The original relations can be retrieved as
R3 = (R3 ∩R2) ◦≤ = ≤◦ (R3 ∩R2) ◦≤ and R2 = (R3 ∩R2) ◦≥ = ≥◦ (R3 ∩R2) ◦≥.
From this it follows that F and G have the exact same complex algebras.

As an aside it may be mentioned that this is a special P-frame in the sense that R =
R3 ∩R2 satisfies the extra condition

(R ◦ ≤) ∩ (R ◦ ≥) ⊆ R. (P′)

But one can show that for any P-frame G = (W,≤, R), the operations 〈R〉 and [R] are equal
to 〈(R ◦ ≤) ∩ (R ◦ ≥)〉 and [(R ◦ ≤) ∩ (R ◦ ≥)], respectively, and the relation (R◦≤)∩ (R◦≥)
is the largest on W with this property.

Now for the converse, if G = (W,≤, R) is a partially ordered P-frame, then F = (W,≤, R◦
≤, R ◦ ≥) is a D-frame with the same complex algebra as G.

6.2 DL with an endomorphism

Here we want to consider a situation which may not have so much logical meaning. Nev-
ertheless it will be instructive in making the link between the above example and our later
examples. Consider the theory of DLs endowed with an endomorphism, that is, the theory of
algebras A = (D, h) where h : A→ A is a homomorphism, that is,

h(x ∧ y) ≈ h(x) ∧ h(y) and > ≈ h(>) (M)

h(x ∨ y) ≈ h(x) ∨ h(y) and ⊥ ≈ h(⊥) (J)

There are several ways to approach this. We could think of h as a 3 satisfying the additional
identities given in (M), or we could think of h as a 2 satisfying the additional identities given
in (J). But from the experience with the positive modal logic example we may realize that
it might be interesting to consider this in a slightly different light, namely as an extension of
pml given by the addition of

3x⇒ 2x and 2x⇒ 3x

That is, we may think of it as the theory of dmas A = (D,3,2) satisfying 3x ≈ 2x. It is
clear that this equation implies the interaction axioms.

In this setting the dual frames would be of the form F = (W,≤, R3, R2) where R3 and
R2 satisfy the condition (KF), together with the formulas

∀u∀v ∀w ((uR3v ∧ uR2w)→ v ≥ w)
∀u∃v (uR3v ∧ uR2v),

(E)

which are the first order correspondents of 3x⇒ 2x and 2x⇒ 3x, respectively.
Now from the pml setting we know that we can take frames G = (W,≤, R3 ∩ R2) as

alternate dual frames. Notice that the properties (E) imply

∀u∀v∀w [(u (R3 ∩R2) v ∧ u (R3 ∩R2)w)→ v = w]
∀u∃v (u (R3 ∩R2) v).

(E′)
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That is, R3 ∩ R2 is a function on W . On the other hand it is simple to show, using
R3 = (R3∩R2)◦≤ and R2 = (R3∩R2)◦≥, that the conditions (E′) imply the conditions
(E). Thus alternate semantics for dmas A = (D, h) consisting of a DL and an endomorphism
are frames G = (W,≤, R) where R satisfies

≤ ◦R ⊆ R ◦ ≤
≥ ◦R ⊆ R ◦ ≥
R is functional.

That is, R ⊆W ×W is (the graph of) an order preserving function on (W,≤).

6.3 Negations that reverse join and meet

Many types of weak negation have been studied, but they generally fall into two main groups:
negations that reverse join and meet and negations that are pseudo-complements. Here we
will consider the first kind. These fit in well with our previous examples and they include
several well-known examples, such as Ockham, MS, De Morgan, Kleene, Stone, and boolean
negations.

Ockham negations The weakest of these are Ockham negations, which just reverse join and
meet. That is, algebraically we have the equations:

n(x ∨ y) ≈ n(x) ∧ n(y) and ⊥ ≈ n(>)

n(x ∧ y) ≈ n(x) ∨ n(y) and > ≈ n(⊥)

That is, we are dealing with algebras consisting of a DL with an anti-endomorphism. In
complete analogy to our previous example we may take frames F = (W,≤, R�, R�) satisfying
the condition (KF), together with the formulas

∀u∀v∀w ((uR�v ∧ uR�w)→ v ≤ w)
∀u∃v (uR�v ∧ uR�v),

(O)

where the properties (O) are the first order correspondents of �x ⇒ �x and �x ⇒ �x,
respectively. Now just like in the endomorphism case, we may use semantics based on frames
G = (W,≤, R) where R : W → W is an order reversing function on (W,≤). Also, these
alternate frames are obtained from the distributive modal logic frames by setting R = R�∩R�

whereas the distributive modal logic frames are obtained from the alternate frames by setting
R� = R ◦ ≤ and R� = R ◦ ≥.

MS negations Now MS negations are Ockham negations satisfying the additional sequent
x⇒ ��x whose correspondent is

∀u∃v uR�vR�u,

which in the alternate semantics is equivalent to

∀uR2(u) ≤ u.
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De Morgan negations A De Morgan negation is a negation that is both an MS negation
and a dual MS negation and thus it is easy to see that the alternate frames corresponding
to De Morgan algebras are frames G = (W,≤, R) where R : W → W is an order reversing
involution on (W,≤).

Kleene negations A Kleene negation is a De Morgan negation satisfying the additional se-
quent x ∧�x⇒ y ∨�y whose correspondent is

∀u (uR�u ∨ ∀v (uR�v → u ≤ v)) ,

which in the alternate semantics is equivalent to

∀u (R(u) ≤ u ∨ u ≤ R(u)) .

Stone negations A Stone negation is an Ockham negation satisfying the additional sequent
x ∧�x⇒ ⊥ whose correspondent is

∀u (uR�u) ,

which in the alternate semantics is equivalent to

∀u (R(u) ≤ u) .

This latter property, together with the fact that R is an order reversing map on (W,≤) easily
is shown to imply that R maps each element u of W to the unique minimal element in (W,≤)
below u, thus yielding the well-known characterization of dual spaces of Stone algebras. Notice
that this first order correspondent actually restricts the allowable partial orders to those for
which each element is above a unique minimal element.

Boolean negations A boolean negation is a De Morgan negation which is also a Stone nega-
tion. Thus the alternate dual frames are frames G = (W,≤, R) where R : W → W is an
order reversing involution on (W,≤) with R(u) ≤ u for all u ∈W . But this implies that each
element of W is equal to the unique minimal element below it, that is, ≤ is just equality and
R is the identity map. That is, the dual frames are essentially just arbitrary sets. Notice
that our dual frames F = (W,≤, R�, R�) would also be trivial in this case, in the sense that
≤ would be equality, and both R� and R� would be the diagonal relation.

Notice that this means that our semantics for classical modal algebras agree with the
usual Kripke frames.

7 Conclusions

It will have become obvious to the reader that this paper, although reporting on a coherent
piece of research, is in fact part of an ongoing research program, in which numerous natural
and interesting generalizations of the present framework remain to be studied or studied
further. To mention just two examples: What can be said if we expand our distributive
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lattices with more general kinds of operations? How much of the mentioned results will
stand up if we drop the requirement that (logically) the underlying logic is distributive, or
(algebraically) the lattice reducts of the algebras are distributive? We refer to Gehrke and
Harding [17] for some first explorations concerning the latter question.

But there are, in the context of our distributive modal logic, also a few more specific issues
to be addressed.

To start with, the reader will have observed the striking difference in proof strategies:
correspondence was proved by a reduction to the classical (boolean) case, canonicity was not.
This difference in approach begs a number of questions.

For instance, why didn’t we try to reduce the canonicity proof for Sahlqvist dml sequents
to the classical case as well? We had two reasons for not doing so. First, in our view, our
canonicity proof for distributive modal logics can be seen as one specific outcome of a theory
on canonical extensions, and the classical Sahlqvist canonicity as another such outcome; we see
no reason to believe that the case of classical modal logic (or, algebraically, boolean algebras
with operators), occupies a more fundamental position in this theory, cf. also our discussion
in the previous section. And second, a reduction to the classical result for canonicity seems to
be much harder than for correspondence, due to the following reason. In the correspondence
case, where we are working with perfect dmas, there is an obvious way to connect with
boolean algebras with operators, namely by taking the (boolean) complex algebra of the dual
frame. In the canonicity case however, we would need to embed arbitrary dmas into baos
in a way that would interact nicely with taking canonical extensions, and we do not see a
natural, general way for doing so2.

On the other hand, we do believe that the correspondence proof could be treated much
more algebraically, and also, without a reduction to the classical case. In fact such a treatment,
in the case of dmls whose basic operations are both operators and dual operators (that may
have any arity), is the subject of ongoing research by one of the authors. This approach may
be particularly advantageous later when it comes to the treatment of non-distributive lattice
expansions.

Notice that these questions may be interesting in their own right, but also connect to
a line of recent work addressing the question whether classical modal logic with one single
diamond can ‘simulate all others’, cf. [35, 23]. For, the translations Bε of section 4 can easily
be extended to the level of logics, so as to connect distributive modal logics to classical modal
logics (in the language with 3≤, 3≥, 33, 32, 3� and 3�). One may wonder whether there
is always an order type ε such that Bε induces a simulation of logics, and if so, whether this
simulation would be nice in preserving and/or reflecting interesting properties of logics.

Second, the reader may have wondered why there is no mention of intuitionistic modal
logic (or Heyting algebra based modal algebras) in our paper. It is definitely possible to
handle intuitionistic modal logic in our framework, but we haven’t gone into details here as
this topic fits more naturally in a setting where one allows additional operations of higher
arity than one. Observe that the intuitionistic implication takes meets in the first, and joins
in the second coordinate, to meets in the codomain; this means that Heyting implication is a

2Using a Galois connection one can interpret a dma in a bao, see for instance Harding [29], but this destroys
all readily available canonicity results.
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binary dual operator (with a flip in the second coordinate). Handling such (dual) operators
of higher arity is certainly possible, but a bit more care must be taken, and fewer formulas
will be ‘Sahlqvist’ because these basic operations may be non-smooth, that is, their σ- and
their π-extensions may not agree. In fact, one may show, cf. [20], that this is exactly what
happens for the implication in most infinite Heyting algebras, and the π-extension of the
Heyting implication is the one that makes the canonical extension into a Heyting algebra. To
give some indication where smoothness comes in, notice that smoothness was used in proving
that left and right Sahlqvist terms are stable, cf. Lemma 5.10. Nevertheless, a lot can be said
and done in this case, as witnessed already by Ghilardi and Meloni [21].

Since there are a lot of similarities between the latter paper and ours, the connection
between our work and that of Ghilardi and Meloni is the third and last issue that we will
address. These similarities go much further than that canonicity is treated independently
from correspondence; in particular, the work of Ghilardi and Meloni also crucially involves the
extension of monotone lattice maps to maps between the canonical extension. (Note however,
that their definition uses, as an intermediate level, partial maps on the collection of filters
and ideals of the original lattice; the connection with our approach lies in the correspondence
between filters and ideals on the one hand, and closed and open elements, on the other.) A
seemingly big difference is that these authors work constructively; however, we believe that
our results could most likely be reworked not to depend on the axiom of choice. Apart from
this issue, it is certainly possible to make a more precise comparison between their proof
methods and ours; for instance, we believe that the main results of [21] could be reformulated
in our terminology and proved using our methods. (Of course, since Ghilardi and Meloni
work with a larger set of operations, including intuitionistic implication, this would involve
an extension of our work as indicated above.) For reasons of space limitations, we refrain
from doing so here.

Ghilardi and Meloni show a large class of formulas to be canonical — when it comes to
intuitionistic modal logic, their results are probably the most general available. Restricting to
our language of distributive modal logic, we would like to compare the scope of their results to
that of ours, but this seems to be rather difficult. The authors of [21] do not make any explicit
claims concerning our language, and it is not straightforward to extract results concerning our
language from their work. In any case, we believe that the issue of canonicity is of sufficient
interest that various proof methods could, and in fact should, exist side by side.
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