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Abstract

The Extensible Markup Language (XML) was designed to describe the content of a document and
its hierarchical structure. The XML Path language (XPath) is a language for selecting elements
from XML documents. We propose and implement a linear embedding of the query evaluation
problem for Core XPath, the navigational fragment of XPath, into the model checking problem for
Computation Tree Logic (CTL). We extend the embedding to XCPath, an extension of Core XPath
that is as expressive as first-order logic on sibling-ordered trees. This allows us to evaluate XCPath
queries by exploiting a model checker for CTL. We report on experiments with the state-of-the-art
model checker NuSMV, and compare our results with alternative academic XPath processors.
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Chapter 1

Aperitif

1.1 The Query Evaluation problem for XML

The Extensible Markup Language (XML) is a standard adopted by the World Wide Web Con-
sortium (W3C) [16] that was designed to describe the content of a document, and its hierarchical
structure. It is becoming a major standard for exchanging structured or semistructured data on
the web [1].

XML query evaluation problem is the problem of selecting elements that meet particular re-
quirements from an XML document. XML query evaluation is widely studied from the perspective
of storing large databases as XML documents. As Buneman et al [8] observe, “whether we shall
store large XML document as databases (as opposed to using conventional databases and employ-
ing XML just for data exchange) depends on our ability to find specific XML storage models that
support efficient querying of XML”.

XML path language (XPath) [17] is a language proposed by the World Wide Web Consortium
(W3C) for querying XML documents. XPath is already widely used as XML query language,
and it there are several implementations of XPath retrieval systems. The XPath query evaluation
problem is known to be solvable in polynomial time (polynomial in the combined size of the query
and the document) [20]. Surprisingly, it was observed by the same authors that the existing XPath
query evaluation processors, both the commercial and the academic onces, implement a naive,
exponential-time algorithm. Since then, several new algorithms have been proposed. At present
there are academic implementations of polynomial time algorithms for XPath query evaluation
and linear time algorithms for smaller fragments of XPath, in particular Core XPath [20, 21]. Core
XPath is simply the navigational part of XPath language.

In this thesis we focus on the query evaluation problem for Core XPath. We introduce and
test a new method for solving this problem. Our algorithm also works for XCPath, a recently
introduced extension of Core XPath that is expressively complete for first-order logic [25].

1.2 The Model Checking problem for CTL

Model checking is the algorithmic verification that a given logical formula holds in a given structure.
This concept is meaningful for most logics and classes of models, but it has been investigated most
extensively for the case of temporal logic. During the last two decades, an active research field
has emerged that focuses around the use of temporal logic model checking for the verification
of software specifications. One temporal logic that has received much attention in this area is
Computation Tree Logic (CTL) [15]. There are several implementations of efficient model checking
algorithms for CTL, among which NuSMV [12].

While the computational complexity of the CTL model checking problem is very low (it can
be performed in linear time), a lot of research has been directed at optimizing the existing model
checking techniques. The reason is that in general, verification of computer systems requires that
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formulas are checked on very large models, since the models essentially describe the entire state
space of the program to be verified. It is therefore crucial to use an efficient representation of the
model. Efficient in the sense that the representation is small, and in the sense that the model
checking of temporal formulas can be performed efficiently given that the model is represented
in this way. One technique that is often used to achieve this (and that is used among others by
NuSMV) is symbolic model checking. Symbolic model checking algorithms avoid explicitly storing
and manipulating the entire state space by using Ordered Binary Decision Diagrams (OBDDs).
This model checking algorithm is called symbolic because it is based on manipulation of Boolean
formulas.

1.3 Our proposal: Query Evaluation via Model Checking

The main idea that drives this thesis is to perform query evaluation via model checking: if we think
of an XPath query as a modal formula, and of an XML document as a model, query evaluation is
nothing more than checking which elements of the model satisfy the formula. This thesis is meant
to test if this approach to query evaluation is feasible, both theoretically and in practice.

The idea of XML query evaluation via model checking is sensible for the following reason. One
of the main concerns in the area of model checking is finding an efficient representation of models
that admits efficient model checking. Various optimization techniques have been developed and
implemented for exactly this purpose (in particular symbolic model checking). We might expect
that these techniques work well also in the case of XML.

In Chapter 3, we establish a linear time reduction from the query evaluation problem of Core
XPath to the model checking problem for CTL. In Chapter 4, we discuss an implementation of
this translation, i.e., a Core XPath query evaluation system that works by translation to CTL. The
system uses the CTL model checker NuSMV. Chapter 4 also contains a discussion of experimental
results.

Our contributions can be summarized as follows.

• We present a linear time translation from the query evaluation problem of Core XPath to
the model checking problem for CTL. This shows that query evaluation for Core XPath is in
linear time. As a theoretical result, this was already known [20]. However, our translation
can be used for practical implementation.

• We have implemented a Core XPath query evaluation system, XCheck, based on our transla-
tion. XCheck translates the XML query into CTL, and runs the CTL model checker NuSMV
to evaluate it.

• We have performed experiments to analyze the practical efficiency of our proposal. Our first
experimental results are not very positive. They show that there is a clear bottleneck in our
approach, namely in representing the XML document symbolically, as input for the model
checker. A more efficient symbolic representation of the XML document is needed in order
to take full advantage of the model checking techniques.

• Our translation not only work for Core XPath, but also for a recently introduced extension
of it, XCPath.

XCPath has the property that it is expressively complete with respect to first-order logic.
While our implementation only accepts Core XPath input, it is very easily extended to full
XCPath, thus leading to the first implementation of a query evaluation system for XCPath.

1.4 Previous work

Since the mid-1990s there has been a lot of work on the interface of computational logic and
semistructured data, making use of a wide variety of logical tools and techniques. For instance, [7]
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uses simulations and morphisms, [2] concentrate on regular expressions, and [10] make the con-
nection with description logic. Early work in the area was (necessarily) mostly concerned with
proposals for data models and query languages for semistructured data. After the introduction of
XML and XPath, this is where much of the research converged.

The relation between model checking and query processing has been extensively explored in
the setting of structured data. We refer to [22] as a good entry-point to the area. The relation
between model checking and query processing for semistructured data goes back at least to [3],
where it was formulated in terms of suitable modal-like logics. Quintarelli [28] embeds a fragment
of the graphical query language G-Log into CTL, and she sketches a mapping for subsets of other
semistructured query languages, like Lorel, GraphLog and UnQL. De Alfaro [5] proposes the use
of model checking for detecting errors in the structure and connectivity of web pages. Alechina et
al. [4] discuss the use of Propositional Dynamic Logic (rather than CTL) to obtain decidability
and complexity results for checking path constraints on semistructured data (rather than query
evaluation). Calvanese et al. [10] use description logics for similar purposes. Finally, Miklau and
Suciu [27] and Gottlob et al. [19] sketch an embedding of the forward looking fragment of XPath
into CTL, but they do not test the practical effectiveness of this approach.

As noticed by Gottlob et al. [20], many available commercial engines implement XPath pro-
cessing adopting a naive exponential-time strategy even though the query processing problem for
XPath admits a polynomial-time algorithm, and it can be solved in linear time in case of Core
XPath, the navigational fragment of XPath. A number of Core XPath processors have so far been
implemented. In particular, in [20] the authors propose an algorithm that embeds a Core XPath
query into an algebraic expression over sets of nodes of the tree representing an XML document,
and that evaluates the algebraic expression in order to process the query. Later, Buneman et
al. propose an algorithm for Core XPath processing on compressed XML files [8]. The core idea
here is to compress the XML tree into a directed acyclic graph sharing common subtrees, and to
evaluate the query directly on compressed XML documents. Moreover, Koch [23] embeds a query
into a tree automaton and runs the resulting tree automaton in order to process the query. A
different approach to process XPath on XML files is to embed XML documents into relational
databases, to rewrite XPath queries as SQL ones, and to run an SQL engine to retrieve the answer
set of the original XPath query (see, e.g., [31]). The advantage of such an approach is clear: the
exploiting of existing relational database query processing technology, like index structures.
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Chapter 2

The ingredients

2.1 Extensible Markup Language (XML)

The Extensible Markup Language (XML) is a standard adopted by the World Wide Web Con-
sortium (W3C) [16] that was designed to describe the content of a document, and its hierarchical
structure. It is becoming a major standard for exchanging structured or semistructured data on
the web [1]. An example of XML document is shown in Figure 2.1.

The basic component in XML is the element, that is, a piece of text bounded by matching tags
such as <book> and </book>. Inside an element we may have raw text or other elements. There
are composite and atomic elements. Each atomic element consists of (1) a tag, (2) a possibly
empty list of attributes of the form name=value, and (3) a possibly empty string of text called
Parsed Character Data (PCDATA). Each composite element consists of a tag and an attribute list
as above, and a list of subelements. For instance, consider the atomic element from Figure 2.1:

<title language="English"> Database Systems </title>

The tag of this element is title, the attribute list contains only the pair language="English",
and the PCDATA is Database Systems.

Next, consider the following composite element from Figure 2.1:

<book>

<author> Cassio </author>

<title> Data Production </title>

</book>

The tag is book, the attribute list is empty, and the list of subelements contains the two atomic
elements with tags author and title respectively.

There exists always a main element, called the root element, in an XML document. The root
element of the XML document in Figure 2.1 is the element with tag biblio. The attribute list
of an element may contain a special attribute called object identifier, that can be used to identify
the object uniquely. The object identifier is a special attribute with name id, the value of which
must be uniquely identify the element.

An XML document may contain different elements with the same tag. However, attribute
names have to be unique for the same element (i.e., the attribute list of an element cannot contain
two different attributes with the same name). There is a document order between elements in
an XML file, which is induced by the order in which the tags appear in the file. For instance,
in Figure 2.1, <author> Roux </author> comes before <author> Combalusier </author>. We
follow [8] in using the word skeleton to refer to what remains when all PCDATA is stripped off
from an XML document.

The skeleton of an XML document can be represented as a finite sibling ordered node-labeled
tree. Each element is represented as a node with all the subelements as its children. The root
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<biblio>

<book>

<author> Roux </author>

<author> Combalusier </author>

<title language="English"> Database Systems </title>

<date format = "YYYY"> 1999 </date>

</book>

<book>

<author> Smith </author>

<title> Database Systems </title>

<date> 1999 </date>

</book>

<paper>

<author> Cassio </author>

<title> Data Production </title>

</paper>

</biblio>

Figure 2.1: An XML document

element is the root of the tree, composite elements correspond to internal nodes, and atomic ones
correspond to leaf nodes. The tree is sibling ordered in the sense that the children of a node, if
any, are ordered (first child, second child, and so on) according to the document order. Finally,
each node is labeled with its element tag, as well as with its attributes. Figure 2.2 contains the
tree representation of the skeleton of the XML document in Figure 2.1. For simplicity, in this
picture, the attribute information of the elements is not represented, and each node is labeled
with a number to indicate the document order.

Throughout this thesis, we will only consider skeletons of XML documents. Moreover, we will
ignore all attribute information, focusing only on the hierarchical structure of the document and
the tags of the elements. The reason for this is that the XML query languages we will consider
are not capable of describing more than just this part of the XML document.

We will now give a precise definition of the tree representation of XML documents that we will
use in the next sections.

Definition 2.1.1 (XML Trees) Let Σ be a set of labels corresponding to XML tags. An XML
tree is a finite sibling ordered node-labeled tree T = (N,R↓, R→, L), where N is the set of nodes,
R↓ ⊆ N × N is the set of edges of the tree, R→ ⊆ N × N is a functional relation associating
each node with its immediate right sibling (if any) and L : Σ → ℘(N) is a node-labeling function
associating to each label a set of nodes.

This definition is arguably too liberal: it does not prohibit cases in which an element satisfies
two XML tags. None of the results in the rest of this thesis depend in any way on this simplification.

2.2 XML Path Languages

XML path language (XPath) [17] is a language proposed by the World Wide Web Consortium
(W3C) for querying XML documents. Using XML queries, one can select elements from an
XML document that meet particular requirements. XPath is already widely used as XML query
language, and it there are several implementations of XPath retrieval systems.

XPath queries describe paths through an XML document. The queries are always of the
form locationstep/locationstep/. . . /locationstep or /locationstep/locationstep/. . . /locationstep (no-
tice the intuitive similarity with Unix directory paths). In its unabbreviated form, each location
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step is of the form axis :: l, where axis is an axis such as child, parent or descendant, and l is an
XML tag. For example, child::book returns all subelements that have the XML tag book. In
addition, predicates can be used to put additional requirements on the elements. For instance,
descendant::toy[attribute::color = "red"] returns all subelements that have tag toy and
that have attribute color="red".

Being designed for practical use, XPath offers a range of numerical and string operations that
can be used in formulating the queries. For example,

/child::biblio/child::book [attribute::date > 1998]

returns all books from the XML document in Figure 2.1 that have a date attribute with value
higher than 1998. Similarly,

/child::biblio/child::book [string-length(child::title) > 3]/child::author

extracts form our example document the authors of all books that have a title consisting of more
than three characters.

Rather than giving a formal definition of the full XPath language, we will proceed and consider
two fragments of it, namely Core XPath and XCPath.

2.2.1 Core XPath

Core XPath [20] is the clean logical core of XPath. The only objects that are manipulated by
Core XPath are sets of nodes. No arithmetical or string operations are available. Hence, only
the skeleton of the XML documents is considered in queries. The PCDATA and the attribute
information of the elements is not manipulated.

The crucial notions of Core XPath language are axes, location steps and location paths.
There are eleven axes: self, child, parent, descendant, ancestor, descendant or self,
ancestor or self, following sibling, preceding sibling, following, and preceding. Each
axis corresponds to a binary relation on the set of nodes of the tree. For instance, in the example
of Figure 2.2, the axis following relates the node 7 with the nodes 11, 12, and 13, that is with
the set of XML elements following the second book element in the XML document in Figure 2.1.

A location path is an arbitrary long sequence of location steps separated by the symbol /,
where a location step has the form axis :: l or axis :: l[pred], where axis is one of the eleven
axes, l an XML tag and pred a predicate. The location step axis :: l is interpreted as a binary
relation on the set of nodes of the tree that relates (n,m) if m is reachable from n through axis
and the label of m is l. For example, the pair of nodes (7, 13) belongs to the relation identified by
following::title.

The location step axis :: l[pred] introduces additional constraints on node selection. The
location step axis :: l[pred] is interpreted as a binary relation on the set of nodes of the tree
that relates (n,m) if m is reachable from n through axis, the label of m is l and m satisfies the
predicate pred. The predicate pred is a Boolean combination of locations paths. For instance, the
pair of nodes (1, 2) belongs to child::book [child::author].
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Finally, a location path locationpath/locationstep is interpreted as the concatenation of the
relation for locationpath with the relation for locationstep. For example, the pair (1, 3) belongs
to child::book/child::author.

Location paths can be absolute or relative. Absolute location paths start with the symbol /
and are evaluated from the root of the tree. Relative location paths miss the symbol / in the
beginning and are evaluated at any node of the tree. A Core XPath query q is an absolute or
relative location path and the result of the evaluation of q is the set of nodes that can be reached
through the corresponding relation starting at the tree root or at any node of the tree, respectively.

We now we give the formal definition of the syntax of Core XPath [20].

Definition 2.2.1 (Core XPath Language) Let Σ be a set of labels corresponding to the XML
element tags. An Core XPath query is a formula generated by the first clause of the following
inductive definition.

cxp = locationpath | /locationpath
locationpath = locationstep(/locationstep)∗

locationstep = χ :: l | χ :: l[pred]
pred = pred and pred | pred or pred | not pred | cxp

χ = child | parent | descendant | ancestor |
descendant or self | ancestor or self | following sibling |
preceding sibling | following | preceding

where l ∈ Σ ∪ {∗}.

The label ∗ acts as a wildcard (i.e., denotes any possible XML element tag). Instead of stating
the semantics for Core XPath directly, we will first discuss a more expressive variant of it, namely
XCPath [25], and we will show how Core XPath can be embedded into XCPath. In this way, we
implicitly give the semantics for Core XPath.

2.2.2 XCPath

XCPath is a more expressive variant of Core XPath that was defined and proved to be expressively
complete with respect to first-order logic on XML trees in [25]. In the same paper the author
proves that model checking for this language can be performed in linear time on both query and
model size, by means of a translation to Propositional Dynamic Logic.

The syntax of XCPath is as follows.

Definition 2.2.2 (XCPath Language) Let Σ be a set of labels corresponding to XML element
tags. An XCPath query is a formula generated by the first clause of the following inductive defi-
nition.

locationpath ::= /locationstep | locationstep | locationpath/locationstep
locationstep ::= axis :: l | axis :: l[pred]

pred ::= pred and pred | pred or pred | not pred | locationpath
axis ::= ε | d | d∗ | (d[pred])∗ | ([pred]d)∗

where l ∈ Σ ∪ {∗} and d ∈ {↑, ↓,←,→}.

Core XPath is contained in XCPath, because the 11 axes of Core XPath can be defined in terms of
those of XCPath, cf. Table 2.1. On the other hand, XCPath is more expressive then Core XPath
[25].

For any binary relation R, let R−1 denote its inverse1 and let R∗ denote its transitive reflexive
closure2. The semantics of an XCPath query over an XML tree T is given by the following

1R−1 = {(m,n) | (n,m) ∈ R}.
2R∗ is the smallest transitive reflexive relation that contains R.
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Table 2.1: Traditional XPath axes vs. XCPath axes

self :: l[pred] ≡ ε :: l[pred]
child :: l[pred] ≡ ↓:: l[pred]

parent :: l[pred] ≡ ↑:: l[pred]
descendant :: l[pred] ≡ ↓:: ∗/ ↓∗:: l[pred]

ancestor :: l[pred] ≡ ↑:: ∗/ ↑∗:: l[pred]
descendant or self :: l[pred] ≡ ↓∗:: l[pred]

ancestor or self :: l[pred] ≡ ↑∗:: l[pred]
following sibling :: l[pred] ≡ →:: ∗/→∗:: l[pred]
preceding sibling :: l[pred] ≡ ←:: ∗/←∗:: l[pred]

following :: l[pred] ≡ ↑∗:: ∗/→:: ∗/→∗:: ∗/ ↓∗:: l[pred]
preceding :: l[pred] ≡ ↑∗:: ∗/←:: ∗/←∗:: ∗/ ↓∗:: l[pred]

three simultaneously inductively defined functions: [{·}]T that, given an XCPath query, returns the
corresponding binary relation on the set of nodes of T , [[·]]T that, given a predicate, returns a set
of nodes of T that satisfy the predicate, and [〈·〉]T that, given an axis, returns the corresponding
binary relation on the set of nodes of T .

Definition 2.2.3 (Semantics of XCPath [25]) Let T = (N,R↓, R→, L) be an XML tree
(cf. Definition 2.1.1). Let R↑ = (R↓)

−1, R← = (R→)−1 and let L(∗) = N . Let root ∈ N be
the root of the tree T . We define the semantics of XCPath as follows.

[{axis :: l}]T = {(n,m) ∈ [〈axis〉]T | m ∈ L(l)}
[{axis :: l[pred]}]T = {(n,m) ∈ [〈axis〉]T | m ∈ L(l) and m ∈ [[pred]]T }
[{/locationstep}]T = {(n,m) | n ∈ N and (root,m) ∈ [{locationstep}]T }

[{locationpath/locationstep}]T = {(n, k) | ∃m.(n,m) ∈ [{locationpath}]T and (m, k) ∈ [{locationstep}]T }

[[pred1 and pred2]]T = [[pred1]]T ∩ [[pred2]]T
[[pred1 or pred2]]T = [[pred1]]T ∪ [[pred2]]T

[[not pred]]T = N \ [[pred]]T
[[locationpath]]T = {n | ∃m.(n,m) ∈ [{locationpath}]T }

[〈ε〉]T = {(n, n) | n ∈ N}
[〈d〉]T = Rd
[〈d∗〉]T = R∗d

[〈(d[pred])∗〉]T = {(n,m) ∈ Rd | m ∈ [[pred]]T }
∗

[〈([pred]d)∗〉]T = {(n,m) ∈ Rd | n ∈ [[pred]]T }
∗

The result of evaluation of an XCPath query q on a tree T is the set Result(T, q) = {m | ∃n.(n,m) ∈
[{q}]T }. Notice that, given a query q = /q′, the result of the absolute query q and that of the relative
one q′ may differ.

2.3 Computation Tree Logic

Computation Tree Logic, or CTL for short, is a very expressive temporal logic, often used for
proving the correctness of the computer systems via model checking [15]

Let Σ be a set of propositional variables whose elements are usually denoted by l, a, b, c, . . . .

Definition 2.3.1 (CTL Language) The formulas of CTL language are inductively defined by:

α ::= true | l | α ∧ α | α ∨ α | ¬α | EXα | EU(α, α) | AU(α, α)
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Table 2.2: Intuitive readings of the temporal connectives of CTL

EXα : on somE path, α is true in the neXt state
AXα : on All paths, α is true in the neXt state

EFα : on somE path, in some Future state α is true
AFα : on All paths, in some Future state α is true

EGα : on somE path, in all future states(Globally) α is true
AGα : on All paths, in all future states(Globally) α is true

EU(α1, α2) : on somE path, α1 is true Until α2 is true
AU(α1, α2) : on All paths, α1 is true Until α2 is true

where l ∈ Σ.

In Definition 2.3.1, ∧ , ∨ and ¬ are standard logical connectives. The connectives EX, EU, AU
are called temporal connectives and using them we can obtain five other temporal connectives:
AXα = ¬EX¬α, EFα = EU(true, α), AFα = AU(true, α), EGα = ¬AF¬α, and AGα =
¬EF¬α. The temporal connectives have the readings given in Table 2.2.

A CTL formula is interpreted over node-labeled, graphs G = (N,E,L), where N is a set of
nodes, E ⊆ N × N is a set of edges and L : Σ → ℘(N) is a node-labeling function. Hence, only
the nodes are labeled, and not the edges. G must is a total with respect to E, meaning that for
every m ∈ N there is an n ∈ N such that (m,n) ∈ E.

A successor of a node n ∈ N is a node m ∈ E with (n,m) ∈ N . A path in G is an infinite
sequence n0, n1, . . ., such that (ni, ni+1) ∈ E, for all ni, ni+1 in the sequence.

We specify the semantics of CTL by means of the inductively defined function [[·]]G that, given
a CTL-formula, returns the set of nodes from a given model G that satisfy the formula.

Definition 2.3.2 (Semantics of CTL [15]) Let α be a CTL-formula and G = (N,E,L) be a
model for CTL. We define the semantics of CTL as follows:

[[true]]G = N
[[l]]G = L(l), l ∈ Σ

[[α1 ∧ α2]]G = [[α1]]G ∩ [[α2]]G
[[α1 ∨ α2]]G = [[α1]]G ∪ [[α2]]G

[[¬α]]G = N \ [[α]]G
[[EXα]]G = {n ∈ N | (n,m) ∈ E for some m ∈ [[α]]G}

[[EU(α1, α2)]]G = {n ∈ N | there is a path π = n0, n1, . . . such that n0 = n and
there is an nj ∈ π with nj ∈ [[α2]]G and ni ∈ [[α1]]G, for all 0 ≤ i < j}

[[AU(α1, α2)]]G = {n ∈ N | for all paths π = n0, n1, . . . such that n0 = n,
there is an nj ∈ π with nj ∈ [[α2]]G and ni ∈ [[α1]]G, for all 0 ≤ i < j}

The following theorem by [14, 6] is discussed in [30].

Theorem 2.3.3 (CTL Model Checking) The model checking problem for CTL can be solved
in time O(|G| · |α|)

Throughout this thesis, we will not make use of theAU modality. In particular, the translation
from XCPath to CTL we present in the next chapter never produces CTL formulas in which AU
occurs. It turns out that the fragment of CTL without AU is contained in Propositional Dynamic
Logic (PDL). Since PDL will not play any major role in this thesis, we will not define it here.
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However, to see that CTL without the AU modalities is a fragment of PDL it suffices to note that
EXα and EU(α1, α2) can be written in PDL as 〈a〉α and 〈(?α1; a)

∗〉α2 respectively, for some fixed
action a.

2.3.1 Many dimensional CTL

We will also use a many dimensional variant of Computation Tree Logic, which we will refer to as
CTL∆.

Definition 2.3.4 (The language of many dimensional CTL) Let Σ be a set of node-labels,
and let ∆ be a finite set of edge-labels. The formulas of CTL∆ are inductively defined by:

α ::= true | l | α ∧ α | α ∨ α | ¬α | EXdα | EUd(α, α) | AUd(α, α) | EU
′
d(α, α)

where l ∈ Σ, d ∈ ∆.

CTL∆ formulas are interpreted over ∆-labeled graphs G = (N, (Ed)d∈∆, L), where N is a set of
nodes, each Ed ⊆ N × N is a set of edges, L : Σ → ℘(N) is a node-labeling function. G must
be total with respect to

⋃

d∈∆Ed. The semantics is a straightforward generalization of that for
one dimensional CTL. The EU′d is added to the language for technical reasons: it will allow us to
formulate our translation from XCPath to CTL more smoothly.

Generalizing the uni-relational case, a path in G is now an infinite sequence n0, n1, . . ., such
that (ni, ni+1) ∈

⋃

d∈∆Ed, for all ni, ni+1 in the sequence.

Definition 2.3.5 (Semantics of Many Dimensional CTL) Let α be a CTL∆ formula and
G = (N, (Ed)d∈∆, L) be a CTL∆ model. We define the semantics of many dimensional CTL
formulas as follows:

[[true]]G = N
[[l]]G = L(l)

[[α1 ∧ α2]]G = [[α1]]G ∩ [[α2]]G
[[α1 ∨ α2]]G = [[α1]]G ∪ [[α2]]G

[[¬α]]G = N \ [[α]]G
[[EXdα]]G = {n ∈ N | (n,m) ∈ Ed for some m ∈ [[α]]G}

[[EUd(α1, α2)]]G = {n ∈ N | there is a path π = n0, n1, . . . such that n0 = n and
there is an nj ∈ π with nj ∈ [[α2]]G and ni ∈ [[α1]]G, (ni, ni+1) ∈ Ed
for all 0 ≤ i < j}

[[EU′d(α1, α2)]]G = {n ∈ N | there is a path π = n0, n1, . . . such that n0 = n and
there is an nj ∈ π with nj ∈ [[α2]]G and ni ∈ [[α1]]G, (ni, ni+1) ∈ Ed
for all 0 ≤ i < j}

[[AUd(α1, α2)]]G = {n ∈ N | for all paths π = n0, n1, . . . such that n0 = n,
there is an nj ∈ π with nj ∈ [[α2]]G and ni ∈ [[α1]]G, (ni, ni+1) ∈ Ed
for all 0 ≤ i < j}

Note that we used the same function [[·]]G for the semantics of plain and many dimensional
CTL. We assume that it will always be clear from the context which language we mean.

In the next chapter we will use CTL∆ as an intermediate step in translating XCPath into CTL.
We will prove that XCPath query evaluation problem can be reduced in linear time to CTL∆ with
four dimensions and for finite ∆, CTL∆ model checking can be reduced in linear time to model
checking for CTL. Therefore, Theorem 2.3.3 also holds to CTL∆ (for finite ∆) and from this it
follows that XCPath query evaluation can be solved via our translation in linear time.
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Chapter 3

The recipe

3.1 Embedding XCPath into CTL

In this section, we give a linear time reduction from XCPath query evaluation (hence from Core
XPath) to CTL model checking. Using Theorem 2.3.3, we conclude that XCPath query evaluation
can be performed in linear time. As a theoretical result, this was already known [25]. However,
our reduction to CTL is suitable for practical implementation.

The reduction proceeds in two steps. First, we linearly reduce XCPath query evaluation to
model checking for many dimensional CTL with four dimensions. Next, we show that many
dimensional CTL can be linearly reduced to CTL.

3.1.1 Embedding XCPath into many dimensional CTL

In this section, we translate the models and queries for XCPath into models and formulas for many
dimensional CTL. We reduce XCPath query evaluation to model checking for many dimensional
CTL. First, we convert an XML tree model into a many dimensional CTL model.

Definition 3.1.1 (From XML trees to CTL{↑,↓,←,→} models) Let T = (N,R↓, R→, L), with
L : Σ → ℘(N) be an XML tree (cf. Definition 2.1.1). We define the translation of T to be
the labeled graph µ1(T ) = (N, (Ed)d∈{↓,↑,←,→}, L), with E↓ = R↓, E→ = R→, E↑ = (R↓)

−1,
E← = (R→)−1

Remark 3.1.2 The obtained model µ1(T ) is in almost all cases total with respect to
⋃

d∈{↓,↑,←,→}Ed, thus we are allowed to talk about paths in the model. The only exception

is the model µ1(T ), where T is an XML tree with a single node. In this thesis we will not consider
this trivial case.

Notice that the size of µ1(T ) is linear in the size of T , and that µ1(T ) can be obtained from T
in linear time.

Given an axis axis, let axis−1 be its inverse, i.e. ε−1 = ε, (←)−1 =→, . . . and (d∗)−1 = (d−1)∗.
Finally, for l ∈ Σ ∪ {∗}, let l′ = true in case l = ∗ and l′ = l otherwise.

Definition 3.1.3 (From XCPath queries to CTL{↑,↓,←,→} formulas) Given a XCPath query
q, we define its translation into many dimensional CTL formula τ1(q) as in Table 3.1, where
root = ¬EX↑true.

One can easily see that the cases we consider for translating a predicate, although they do not
follow the recursive definition of a location path, are exhaustive and deterministic. Also notice
that the length of τ1(q) is linear in the length of q, and that τ1(q) can be obtained from q in linear
time.
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Table 3.1: Translation from XCPath into CTL{↑,↓,←,→}

τ1(axis :: l) = l′ ∧ 〈axis−1〉true
τ1(axis :: l[pred]) = l′ ∧ 〈axis−1〉true ∧ ω1(pred)

τ1(/axis :: l) = l′ ∧ 〈axis−1〉root
τ1(/axis :: l[pred]) = l′ ∧ 〈axis−1〉root ∧ ω1(pred)

τ1(locationpath/axis :: l) = l′ ∧ 〈axis−1〉τ1(locationpath)
τ1(locationpath/axis :: l[pred]) = l′ ∧ 〈axis−1〉τ1(locationpath) ∧ ω1(pred)

ω1(pred1 and pred2) = ω1(pred1) ∧ ω1(pred2)
ω1(pred1 or pred2) = ω1(pred1) ∨ ω1(pred2)

ω1( not pred) = ¬ω1(pred)

ω1(axis :: l) = 〈axis〉l′

ω1(axis :: l[pred]) = 〈axis〉(l′ ∧ ω1(pred))

ω1(/locationpath) = EF↑(root ∧ ω1(locationpath))
ω1(axis :: l/locationpath) = 〈axis〉(l′ ∧ ω1(locationpath))

ω1(axis :: l[pred]/locationpath) = 〈axis〉(l′ ∧ ω1(locationpath) ∧ ω1(pred))

〈ε〉α = α
〈d〉α = EXdα
〈d∗〉α = EUd(true, α) = EFdα

〈(d[pred])∗〉α = EU′d(ω1(pred), α)
〈([pred]d)∗〉α = EUd(ω1(pred), α)

14



Intuitively, one can view the axis in a location step of a query as a CTL modality ”looking in
opposite direction”, while the axis in a location step of a predicate can be seen as an ”identical
direction” CTL modality. The reason behind this is that the CTL translation of a query charac-
terizes the nodes that lie on the end of a path satisfying the query, whereas the CTL translation
of a predicate characterizes the nodes that lie on the start of such a path. The length of a query
is nothing else then the depth of a the coresponding CTL formula.

Example 3.1.4 Consider the absolute XPath query:

q = /child::book [child::author [following sibling::author]]/child::title

Its equivalent in our notation is:

q = /↓::book [↓::author [→::∗ /→∗::author]]/↓::title

It selects the title node of all the books with at least two authors. In the tree in Figure 2.2, the
query q retrieves the node 2. Its translation τ1(q) is the following many dimensional CTL formula:

title ∧ EX↑(book ∧ EX↑root ∧ EX↓(author ∧ EX→(true ∧ EF→author))

which is equivalent to:

title ∧ EX↑(book ∧ EX↑root ∧ EX↓(author ∧ EX→EF→author)

Theorem 3.1.5 (Correctness) Let T be a XML tree with more than one node, q an XCPath
query, pred an XCPath predicate and α a many dimensional CTL formula. Then,

1. Result(T, q) = [[τ1(q)]]µ1(T )

2. [[pred]]T = [[ω1(pred)]]µ1(T )

3. [[〈axis〉α]]µ1(T ) = {m | there is an n ∈ [[α]]µ1(T ) such that (m,n) ∈ Raxis}.

Proof. By simultaneous induction on the length of q, pred and axis. Let T = (N,R↓, R→, LT ),
where LT : N → Σ, and µ1(T ) = (N, (Ed)d∈{↓,↑,←,→}, L), where L : Σ→ ℘(N). For convenience,
let L(∗) = N .

Consider q of the form /axis :: l[pred]. The cases where q = axis :: l[pred], q = /axis :: l,
q = axis :: l are similar.

m ∈ Result(T, q)
iff (root,m) ∈ Raxis and m ∈ L(l) and m ∈ [[pred]]T
iff (IHP ) (root,m) ∈ Raxis and m ∈ [[l′]]µ1(T ) and m ∈ [[ω1(pred)]]µ1(T )

iff (m, root) ∈ Raxis−1 and m ∈ [[l′]]µ1(T ) and m ∈ [[ω1(pred)]]µ1(T )

iff (IHP ) m ∈ [[l′ ∧ 〈axis−1〉root ∧ ω1(pred)]]µ1(T )

iff m ∈ [[τ1(q)]]µ1(T )

Consider the case where q is of the form locationpath/axis :: l[pred]. The case where q =
locationpath/axis :: l is similar.

m ∈ Result(T, q)
iff ∃n.n ∈ Result(T, locationpath) and (n,m) ∈ [{axis :: l[pred]}]T
iff ∃n.n ∈ Result(T, locationpath) and (n,m) ∈ Raxis and m ∈ L(l)

and m ∈ [[pred]]T
iff (IHP ) ∃n.n ∈ [[τ1(locationpath)]]µ1(T ) and (n,m) ∈ Raxis and m ∈ [[l′]]µ1(T ) and

m ∈ [[ω1(pred)]]µ1(T )

iff ∃n.n ∈ [[τ1(locationpath)]]µ1(T ) and (m,n) ∈ Raxis−1 and m ∈ [[l′]]µ1(T ) and
m ∈ [[ω1(pred)]]µ1(T )

iff (IHP ) m ∈ [[l′ and 〈axis−1〉τ1(locationpath) and ω1(pred)]]µ1(T )

iff m ∈ [[τ1(q)]]µ1(T )
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We now proceed with part 2. of the theorem. We will skip the Boolean cases, which are trivial.
Consider the case where pred is of the form axis :: l[pred′]. The proof for the case pred = axis :: l
is similar.

n ∈ [[pred]]T
iff ∃m.(n,m) ∈ [{axis :: l[pred′]}]T
iff ∃m.(n,m) ∈ Raxis and m ∈ L(l) and m ∈ [[pred′]]T
iff (IHP ) ∃m.(n,m) ∈ Raxis and m ∈ [[l′]]µ1(T ) and m ∈ [[ω1(pred

′)]]µ1(T )

iff (IHP ) m ∈ [[〈axis〉(l′ and ω1(pred))]]µ1(T )

iff m ∈ [[ω1(pred)]]µ1(T )

Let pred be of the form axis :: l[pred′]/locationpath. The pred = axis :: l/locationpath case is
similar.

n ∈ [[pred]]T
iff ∃m.(n,m) ∈ [{axis :: l[pred′]}]T and m ∈ [[locationpath]]T
iff ∃m.(n,m) ∈ Raxis and m ∈ L(l) and m ∈ [[pred′]]T and m ∈ [[locationpath]]T
iff (IHP ) ∃m.(n,m) ∈ Raxis and m ∈ [[l′]]µ1(T ) and m ∈ [[ω1(pred

′)]]µ1(T ) and
m ∈ [[ω1(locationpath)]]µ1(T )

iff (IHP ) n ∈ [[〈axis〉(l′ ∧ ω1(pred
′) ∧ ω1(locationpath))]]µ1(T )

iff n ∈ [[ω1(pred))]]µ1(T )

Let pred be of the form /locationpath.
n ∈ [[pred]]T

iff root ∈ [[locationpath]]T
iff (IHP ) root ∈ [[ω1(locationpath)]]µ1(T )

iff n ∈ [[EF↑(¬EX↑true ∧ ω1(locationpath))]]µ1(T )

iff n ∈ [[ω1(pred))]]µ1(T )

Finally, we proceed with part 3. of the theorem. Let axis be of the form ([pred]d)∗. The other
cases are similar.

m ∈ [[〈axis〉α]]µ1(T )

iff m ∈ [[EUd(ω1(pred), α)]]
iff there is a path π = n0, n1, . . . such that n0 = m, and there is an nj ∈ π with

nj ∈ [[α]]µ1(T ) and ni ∈ [[ω1(pred)]]µ1(T ), (ni, ni+1) ∈ Ed for all 0 ≤ i < j
iff (IHP ) there is a path π = n0, n1, . . . such that n0 = m and there is an nj ∈ π with

nj ∈ [[α]]µ1(T ) and ni ∈ [[pred]]T , (ni, ni+1) ∈ Ed for all 0 ≤ i < j
iff there is a node nj ∈ [[α]]µ1(T ) such that (m,n) ∈ Raxis

qed

3.1.2 Embedding many dimensional CTL into one dimensional CTL

We will encode CTL∆ into plain, one dimensional CTL, for finite ∆. First, we transform a CTL∆
model into a simple, one dimensional CTL model.

The idea of the translation is based on the following intuition. For every node n and direction

d ∈ ∆, we create a new node (n, d). Next, we replace every transition of the form n
d
−→ m by

(n, d)→ (m, d). In this way, replace the edge-labels by node-labels.

Definition 3.1.6 (From CTL∆ models to CTL models) Let G = (N, (Ed)d∈∆, L) be a CTL∆
model, with L : Σ → ℘(N). We rewrite G into a node-labeled graph µ2(G) = (N ′, E′, L′), with
L′ : Σ ∪∆ ∪ {a} → ℘(N ′), where a is a new label different from all d ∈ ∆ and l ∈ Σ, such that:

• N ′ = N ×∆;

• E′ = {((u, a), (u, d)), ((u, d), (u, a)) | u ∈ N, d ∈ ∆} ∪ {((u, d), (v, d)) | (u, v) ∈ Ed, d ∈ ∆};

• L′(l) = {(u, a) | u ∈ L(l)}, for l ∈ Σ
L′(d) = {(u, d) | u ∈ N}, for d ∈ ∆
L′(a) = {(u, a) | u ∈ N}
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Notice that, for a fixed, finite ∆, the size of µ2(G) is linear in the size of G, and that µ2(G) can
be obtained from G in linear time.

Definition 3.1.7 (From CTL∆ formulas to CTL formulas) The translation τ2 from CTL∆ to
CTL is given as follows, where α, α1 and α2 are CTL∆ formulas.

τ2(true) = true
τ2(l) = l

τ2(α1 ∧ α2) = τ2(α1) ∧ τ2(α2)
τ2(α1 ∨ α2) = τ2(α1) ∨ τ2(α2)

τ2(¬α1) = ¬τ2(α1)
τ2(EXdα1) = EX(d ∧ EX(d ∧ EX(a ∧ τ2(α1))))

τ2(EUd(α1, α2)) = EXEU(d ∧ EX(a ∧ τ2(α1)), d ∧ EX(a ∧ τ2(α2)))
τ2(AUd(α1, α2)) = EXAU(d ∧ EX(a ∧ τ2(α1)), d ∧ EX(a ∧ τ2(α2)))
τ2(EU

′
d(α1, α2)) = EX(d ∧ EXEU(d ∧ EX(a ∧ τ2(α1)), a ∧ τ2(α2)))

Again, notice that the length of τ2(α) is linear in the length of α, and that τ2(α) can be obtained
from α in linear time and the operator depth can grow at most 4 times bigger. Given a set S of
nodes of µ2(G), we define ⇓a(S) = {n | (n, a) ∈ S}.

Theorem 3.1.8 (Correctness) Let G = (N, (Ed)d∈∆, L) be a CTL∆ model and α be a CTL∆
formula. Then,

[[α]]G = ⇓a[[τ2(α)]]µ2(G)

Proof. Let µ2(G) = (N ′, E, L′). To prove the theorem, it suffices to prove the following equivalent
statement:

n ∈ [[α]]G iff (n, a) ∈ [[τ2(α)]]µ2(G)

The proof goes by induction on the structure of α.

• The atomic cases: Let α = true. We have that n ∈ [[true]]G = N iff (n, a) ∈ [[true]]µ2(G) =
N ′. Let α = l. We have that n ∈ [[l]]G = L(l) iff by the definition of µ2(G), (n, a) ∈
[[l]]µ2(G) = L′(l).

• The Boolean cases are simple.

• Let α = EXdα
′. We have that n ∈ [[EXdα

′]]G iff there is anm such that (n,m) ∈ Ed and m ∈
[[α′]]G. By IHP and by definition of µ2(G), the latter holds iff there is a node (m, a) in µ2(G)
such that ((n, a), (n, d)), ((n, d), (m, d)), ((m, d), (m, a)) are in E and (m, a) ∈ [[τ2(α

′)]]µ2(G),
which holds iff (n, a) ∈ [[EX(d ∧ EX(d ∧ EX(a ∧ τ2(α

′))))]]µ2(G) = [[τ2(α
′)]]µ2(G).

• Let α = EUd(α1, α2). The case for α of the form AUd(α1, α2) is similar. We have
that n ∈ [[α]]G iff for some path in G, n0, n1, n2, . . ., with n0 = n, there is some nj
on the path, such that nj ∈ [[α2]]G and ni ∈ [[α1]]G, (ni, ni+1) ∈ Ed for all i < j.
By definition of µ2(G) and by IHP, the latter holds iff there is a corresponding path
(n0, a), (n0, d), (n1, d), (n1, d), (n2, d), · · · , (nj , d), (nj , a) in µ2(G) with n0 = n, such that we
have (nj , a) ∈ [[τ2(α2)]]µ2(G) and (ni, a) ∈ [[ τ2(α1)]]µ2(G) for all 0 ≤ i < j. This holds iff
(n, a) ∈ [[EXEU(d ∧ EX(a ∧ τ2(α1)), d ∧ EX(a ∧ τ2(α2)))]]µ2(G) = [[τ2(α)]]µ2(G).

• Let α be of the form EU′d(α1, α2). We have that n ∈ [[α]]G iff for some path in G,
n0, n1, n2, . . ., with n0 = n, there is some nj on the path, such that nj ∈ [[α2]]G and ni ∈
[[α1]]G, (ni, ni+1) ∈ Ed for all 1 ≤ i ≤ j. By definition of µ2(G) and by IHP, the latter holds
iff there is a corresponding path (n0, a), (n0, d), (n1, d), (n2, d), · · · , (nj , d), (nj , a) in µ2(G)
with n0 = n, such that we have (nj , a) ∈ [[τ ′2(α2)]]µ2(G) and (ni, a) ∈ [[ τ ′2(α1)]]µ2(G) for all
1 ≤ i ≤ j. The latter holds iff there is a path (n0, a), (n0, d), (n1, d), (n2, d), · · · , (nj , d), (nj , a)
in µ2(G) with n0 = n, such that we have (nj , d) ∈ [[d ∧ EX(a ∧ τ ′2(α2))]]µ2(G) and
(ni, a) ∈ [[ a ∧ τ ′2(α1)]]µ2(G) for all 1 ≤ i ≤ j. This holds iff (n, a) ∈ [[EX(d ∧ EXEU(d ∧
EX(τ ′2(α1)), a ∧ τ ′2(α2)))]]µ2(G) = [[τ ′2(α)]]µ2(G).
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qed

Corollary 3.1.9 For finite ∆, there is a linear time (both on query size and model size) reduction
from CTL∆ model checking to CTL model checking.

Theorem 3.1.10 (Main) Let T be a XML tree and q be a XCPath query. Then,

Result(T, q) = ⇓a[[τ2(τ1(q))]]µ2(µ1(T ))

Proof. Follows from Theorem 3.1.5 and Theorem 3.1.8 qed

Corollary 3.1.11 There is a linear time (both on query size and model size) reduction from
XCPath query evaluation to CTL model checking. Thus, by Theorem 2.3.3 it follows that XCPath
query evaluation problem is solved in linear time.

A worked-out example of the document translation can be found in Section 4.1.1.
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Chapter 4

Cooking and Tasting

One advantage of our approach to query evaluation is that it is easily implemented. By using
an existing CTL model checker, we reduce our task to implementing the query and document
translations presented in Chapter 3 and the translation from the model checker output back to
the world of XML.

We have indeed followed this approach, and the resulting implementation is called XCheck. We
performed several experiments to analyze the behavior of XCheck, and to compare it to two other
Core XPath query evaluation systems. The present chapter reports on XCheck, its implementation
and on the obtained experimental results.

First, we will discuss the model checker that we used, NuSMV. We motivate our choice, discuss
the features of NuSMV and describe its input requirements. We will also report on a small
modification that we needed to make in order to use NuSMV for our purposes. Next, we provide
a detailed description of our implementation, including the source code, which is written in Perl.
Finally, we discuss the experiments that we performed and their outcome.

4.1 NuSMV model checker

NuSMV [13] is a state-of-the-art model checker for CTL and several other temporal logics. It is
generally considered to be among the best model checkers currently available. It performs symbolic
model checking [26]. Recall from Chapter 1 that symbolic model checkers cleverly avoid the need
to represent the entire state space of the program by the use of ordered binary decision diagrams
[15]. Moreover, NuSMV incorporates several model partitioning methods [9]. For programs with
a large state space, this gives rise to a considerable improvement in the efficiency of the model
checker.

Apart from this, NuSMV is open source, modularly structured and well documented, all of
which make it attractive for our purposes. NUSMV is available at http://nusmv.irst.itc.it/.
Its documentation can be found on the same website [11].

In spite of all its virtues, NuSMV lacks one feature that is necessary in order for us to be able
to use it. Being designed for the verification of computer software, NuSMV only allows for local
model checking, i.e., given a formula, a model and a state in that model, test whether the formula
is satisfied or not. For our purposes, we need to solve a slightly more general task: given a formula
and a model, list the states that satisfy the formula. Luckily, this functionality is easily obtained
by making a small modification to the source code of NuSMV.

In the remainder of this section, we discuss NuSMV’s input language, in which the model is
specified, and the modification that was made in order allow for global model checking.
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Figure 4.1: The CTL model

4.1.1 Model specifications

Since NuSMV is a symbolic model checker, it takes as input not a model and a formula, but a
program specification and a formula. By taking as input a program specification, NuSMV avoids
representing the full state space (i.e., the full model). Rather, it uses the program to construct
a symbolic representation of the model. For this reason, we are forced to present our model to
NuSMV in the form of a program specification. The specification language NuSMV uses is called
SMV [26].

We have chosen to specify our model in a way that allows us to take advantage of the model
partitioning methods implemented in NuSMV. For example let us consider the following XML file:

<A>

<B> </B>

<B> </B>

</A>

Via our translation the skeleton of this XML document becomes the CTL model given in Figure
4.1. The specification of this model in the NuSMV input language is given in Figure 4.2. We will
briefly explain the basic elements in this specification, in order to give the reader a sense of what
is going on.

The model description that we feed to NuSMV is described using Boolean formulas. The
set of states of the model is determined by the declaration of the state variable s. s is the
scalar variable that takes a value from 0,1,2. These values are the node identifiers in our
model. With the help of the variable labels we describe the set of labels A,B. The vari-
able d runs over the symbols _a_,_up_,_down_,_left_,_right_ that represent the auxiliary
labels a, ↑, ↓,←,→ in our CTL model. Each transition of the model is described by a pair
consisting of a current state and a next state. Whether the pair is in the relation is again
determined by a Boolean formula. For example the pair ((0, a)(0, d)) is in the relation if
( s = 0 & d = _a_ -> (next(s) = 0 & next(d) != _a_)) holds. The transition relation of
the model is expressed by a conjunction of such formulas, one for each pair. Finally, the labeling
function of the model is described by the variable l, which specifies for each value of the variable
s a set of values of labels.

While this seems to be a reasonable, and certainly linear encoding of the models, we were
confronted with the problem of excessively big model descriptions. We believe that this can
be avoided by directly preprocessing the model corresponding to the XML document into the
internal NuSMV OBDD (Ordered Binary Decision Diagram) structures. OBDD structures have
been argued to be on average logarithmically smaller then the models they describe [15].
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MODULE main

VAR s : 0..2;

d : {_up_, _down_, _left_, _right_, _a_};

labels : {A,B};

TRANS

( s = 1 & d = _a_ -> (next(s) = 1 & next(d) != _a_) ) &

( s = 1 & d = _up_ -> ( (next(s) = 1 & next(d) = _a_) |

(next(s) = 0 & next(d) = _up_) ) ) &

( s = 1 & d = _left_ -> (next(s) = 1 & next(d) = _a_) ) &

( s = 1 & d = _down_ -> (next(s) = 1 & next(d) = _a_) ) &

( s = 2 & d = _a_ -> (next(s) = 2 & next(d) != _a_) ) &

( s = 2 & d = _up_ -> ( (next(s) = 2 & next(d) = _a_) |

(next(s) = 0 & next(d) = _up_) ) ) &

( s = 2 & d = _left_ ->( (next(s) = 2 & next(d) = _a_) |

( next(s) = 1 & next(d) = _left_) ) ) &

( s = 1 & d = _right_ -> ( (next(s) = 1 & next(d) = _a_) |

(next(s) = 2 & next(d) = _right_) ) )&

( s = 2 & d = _down_ -> (next(s) = 2 & next(d) = _a_) ) &

( s = 0 & d = _a_ -> (next(s) = 0 & next(d) != _a_) ) &

( s = 0 & d = _up_ -> (next(s) = 0 & next(d) = _a_) ) &

( s = 0 & d = _left_ -> (next(s) = 0 & next(d) = _a_) ) &

( s = 0 & d = _down_ -> ( (next(s) = 0 & next(d) = _a_) |

(next(s) = 1 & next(d) = _down_) |

(next(s) = 2 & next(d) = _down_) ) ) &

( s = 2 & d = _right_ -> (next(s) = 2 & next(d) = _a_) ) &

( s = 0 & d = _right_ -> (next(s) = 0 & next(d) = _a_) );

DEFINE

l := case

s = 0 : A;

s in {1,2} : B;

esac;

Figure 4.2: SMV specification of the CTL model given in Figure 4.1
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4.1.2 Global model checking

NuSMV processing takes several computational steps, which can be activated through various
commands. For instance, read_model instructs NuSMV to read the model (specified in the SMV
specification language). After reading the model, go tells NuSMV to compile the model into its
internal OBDD based representation, after which NuSMV is ready to check the formulas, using
the command check_spec. For a detailed list of all NuSMV commands, see [11].

NuSMV was design to implement local model checking, i.e., given a formula, a model and a
state of the model, check if the formula is satisfied at that particular state. We are interested
in the global model checking problem, i.e., given a formula and a model, return the set of states
that satisfy the formula. The latter is called the truth set of the formula. Internally, NuSMV
has implemented global model checking. However, the interface does not provide the option for
retrieving the truth set. Therefore, we had to extend the NuSMV interface with another command,
global_check_spec, that gives us the truth set of CTL formulas. As will be clear to the reader,
this command is a variant of the existing check_spec command. For reference, we give here the
precise usage of the new command that we added.

usage: global_check_spec [-h] [-m | -o file] [-n number | -p "ctl-expr"]

-h Prints the command usage.

-m Pipes output through the program specified

by the "PAGER" environment variable if defined,

else through the UNIX command "more".

-o file Writes the generated output to "file".

-n number Checks only the SPEC with the given index number.

-p "ctl-expr" Checks only the given CTL formula and prints

out the set of states that satisfies the formula.

4.2 XCheck

XCheck is our prototype implementation of XPath query evaluation via CTL model checking. In
implementing XCheck we aimed to achieve several goals:

• To check the practical feasibility of the translation provided in Chapter 3. We have a
theoretical proof (cf. Theorem 3.1.10) that both translations, XML documents to CTL
models and Core XPath queries to CTL formulas, are linear. However, whether they are
suitable for practical use can only be tested experimentally.

• To evaluate to what extent Core XPath query evaluation gains from all the optimizations
implemented in NuSMV.

• To compare the performance of model checking with that of two existing linear time query
evaluation systems, namely MacMill [8] and XMLTaskForce XPath [20].

XCheck allowed us to perform the tests we were interested in.

4.2.1 Technical specifications

Implementation

XCheck is written in Perl and consists mainly of two translation subroutines, one for translating
the XML documents into NuSMV input format, and another for translating Core XPath queries to
CTL formulas. Besides implementing these translations, XCheck contains a subroutine that runs
NuSMV and a subroutine that interprets the truth set of CTL formula as the result of XML query
evaluation.
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sub translate model This subroutine implements the model translation. It takes as input an
XML document and generates an CTL model conform translation µ1 and µ2 (Definition 3.1.1
and 3.1.6). The resulting model is described in the SMV language (cf. Section 4.1.1). The
subroutine uses the perl module XML::Twig, designed and written be Michel Rodriguez
[29]. We execute a depth first traversal of the XML tree to translate the relation between
the nodes.

sub translate formula This subroutine executes the Core XPath query translation into CTL
formula conform translations τ1, ω1, τ2 and ω2 (Definitions 3.1.3 and 3.1.7, respectively).
Our implementation of the query translation rewrites a Core XPath query directly to a CTL
formula, thus avoiding the intermediate representation in many dimensional CTL. Besides
this, the subroutine follows precisely the theoretical translation. The subroutine calls two
additional ones, sub tau and sub mu, which have the subtasks of translating the location
paths and predicates, respectively.

sub nusmv This subroutine calls NuSMV. It runs the model checker on the generated model
and formula, and returns the truth set of the formula, i.e., the set of states satisfying the
formula.

XCheck keeps track of the CPU time elapsed while running each translation and each NuSMV
command. The source code of above mentioned subroutines is included in Appendix 1.

As it stands, XCheck is not suitable for interactive, real-time XPath query evaluation.

Usage

system_promt> ./XCheck [-tc] [-d doc.xml] [-q "query"]

Options:

-d doc.xml

extracts the skeleton of the XML document doc.xml, and translates it into
doc.smv. doc.xml is any XML document, conform the W3C specifications [16].
doc.smv is the NuSMV specification of the CTL model obtained by using the
translations µ1 and µ2 (Definitions 3.1.1,3.1.6).

-q "query"

translates query into CTL formula conform translation τ1 and τ2 (Definitions
3.1.3,3.1.7).
query is a Core XPath query conform Definition 2.2.1.

-t

reports the elapsed CPU time

-c

must be used in combination with -d doc.xml -q "query". Invokes NuSMV
to build an internal representation of (the translation of) doc.xml, and the to
perform global model checking on the CTL translation of "query".

4.3 Experimental results

We performed four experiments.

Experiment 1 We tested the time of translating the XML document into NuSMV input format.
By Corollary 3.1.11, we know that the translation time should be linear in the size of the
document. The goal of the experiment is two-fold: firstly, to confirm that the implementation
of the translation is indeed linear, and secondly, to see how efficient it is.
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Figure 4.3: The tests models

Experiment 2 We tested the time it takes NuSMV to read the model, and to convert it into its
internal, OBDD based represenation. In practice, this preprocessing of the model (which
also includes the translation mentioned above) can be done beforehand, rather than real-
time. This means that the performance is of less importance than for instance that of
the query translation. However, the efficiency of preprosessing is still of interest, and the
experiment is meant to measure it. At the same time, the experiment also might give us more
information about the behavior of NuSMV, when given as input XML documents according
to our representation.

Experiment 3 We tested the time of translating Core XPath queries into CTL formulas. Again,
by Corollary 3.1.11, we know that the translation time should be linear in the size of the
query. Then, the goals of the experiment are: to confirm that the implementation of the
translation is indeed linear and to see how efficient it is.

Experiment 4 We tested the time it takes NuSMV to perform the actual model checking. This
does not include the time of translating the document and the query, nor the time it takes
NuSMV to compile the model. We tested the two other query evaluation systems (MacMill
and XMLTaskForce XPath) with the same input, in order to compare the running times.

Experimental set-up

For our experiments we use artificially generated data. Our motivation is the following: first, real
XML documents contain a lot of information, while we are interested only in the navigational
part of the document. The skeleton of a typical XML document is about 10% of the size of
the document. It is therefore hard to obtain enough real data to run the tests with preferred
granularity. This is also because there are no benchmarks for testing Core XPath queries (as
opposed to full XPath). By using generated data, we can also systematically test the influence of
particular parameters on the performance (e.g., the branching factor of the XML document).

The queries and document we use are similar to the ones that were used to evaluate XMLTask-
Force XPath. In [20], the authors motivate the use of this type of generated data.

Let i ≥ 0. We are going to use two different parametric documents:

1. Let doc1(i) = 〈a〉〈b/〉
i〈/a〉, where, 〈b/〉0 = ε (the empty document) and, for i > 0, 〈b/〉i =

〈b/〉〈b/〉i−1. Recall that 〈x/〉 is a shorthand for 〈x〉 〈/x〉. Hence, doc1(i) is a tree with i+ 1
nodes: a root labeled with a and i children labeled with b. See Figure 4.3.

2. Let doc2(i) be such that doc2(0) = 〈a/〉 and, for i > 0, doc2(i) = 〈a〉doc2(i−1)doc2(i−1)〈/a〉.
Hence, doc2(i) is a complete binary tree with 2i+1 − 1 nodes all labeled with a. See Figure
4.3.

We will experiment with four different parametric queries, each focusing on different pairs of
opposite axes:
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Table 4.1: Document translation and model compilation time (n=18)

doc1(i) translation reading building
500 0.1403± 0.0059 0.0861± 0.0466 3.1039± 0.3108

1000 0.2850± 0.0166 0.1822± 0.0212 13.5850± 1.0681
1500 0.4276± 0.0233 0.2683± 0.0285 32.3317± 1.1510
2000 0.5764± 0.0197 0.3478± 0.0279 56.6317± 1.2893
2500 0.7149± 0.0303 0.4422± 0.0243 94.4044± 2.0908
3000 0.8560± 0.0474 0.5156± 0.0240 126.3800± 2.4331
3500 1.0427± 0.1003 0.5167± 0.0536 178.1006± 4.7429
4000 1.1727± 0.0584 0.5989± 0.0943 230.6994± 3.5183
4500 1.3014± 0.1315 0.6617± 0.0505 293.7317± 5.4735
5000 1.4168± 0.0739 0.7300± 0.0428 354.5283± 4.4143

doc2(i) translation reading building
5 0.0203± 0.0009 0.0239± 0.0122 0.1022± 0.0201
6 0.0383± 0.0040 0.0300± 0.0206 0.2856± 0.1286
7 0.0751± 0.0047 0.0494± 0.0175 0.9561± 0.0276
8 0.1506± 0.0054 0.0911± 0.0166 3.3428± 0.1680
9 0.3069± 0.0119 0.1739± 0.0156 13.9000± 0.8593

10 0.6183± 0.0249 0.3356± 0.0259 51.7911± 2.2384

1. Let q1(i) = descendant_or_self::A/ path/ . . . /path
︸ ︷︷ ︸

i times

, where

path=child::B/parent::A and i ≥ 0. We will call the number of path steps in a query the
length of the query. The length of the query q1(i) is 2i+ 1.

2. Let q2(i) = /descendant::A/path/ . . . /path
︸ ︷︷ ︸

i times

, where

path=following_sibling::B/preceding\_sibling::B and i ≥ 0. The length of the query
q2(i) is 2i+ 1.

3. Let q3(i) = /descendant_or_self::A/ path/ . . . /path
︸ ︷︷ ︸

i times

, where

path=descendant::B/ancestor::A and i ≥ 0. Hence, q3(i) is a query of length 2i+ 1.

4. Let q4(i) = /descendant::A/ path/ . . . /path
︸ ︷︷ ︸

i times

, where

path=/following::A/preceding::A and i ≥ 0. The query q4(i) has length 2i+ 1.

The experiments are run on a 1.50GHz Intel(R) Pentium(R) 4 machine, with 1,5GB RAM,
running Linux version 2.4.21-ict1. All reported times are in seconds CPU time.

Results

A brief description of each test case follows including the results. In each case, the times are given
in seconds. In the result tables we also included the standard deviation for each of the results, to
indicate the reliability of the results, and n indicates the number of experiments ran.

Experiment 1 and 2 Testing the document translation and model compilation time.

Table 4.1 depicts the translation time of the documents generated by doc1(i) and doc2(j), as
well as the time it took NuSMV to read the model and compile it into its internal, OBDD
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Figure 4.4: Document translation time

Table 4.2: Query translation times (n=10)

i q1(i) q2(i) q3(i) q4(i)
100 0.0008± 0.0002 0.0010± 0.0002 0.0008± 0.0001 0.0012± 0.0004
200 0.0020± 0.0004 0.0029± 0.0009 0.0023± 0.0003 0.0052± 0.0019
300 0.0041± 0.0009 0.0065± 0.0014 0.0049± 0.0011 0.0131± 0.0068
400 0.0077± 0.0013 0.0120± 0.0026 0.0091± 0.0022 0.0272± 0.0126
500 0.0122± 0.0034 0.0196± 0.0046 0.0152± 0.0044 0.0492± 0.0162
600 0.0169± 0.0065 0.0317± 0.0089 0.0228± 0.0090 0.0789± 0.0157
700 0.0267± 0.0083 0.0457± 0.0165 0.0349± 0.0129 0.1107± 0.0183
800 0.0348± 0.0140 0.0617± 0.0187 0.0478± 0.0178 0.1675± 0.0401
900 0.0461± 0.0175 0.0805± 0.0274 0.0625± 0.0195 0.2166± 0.0243

1000 0.0586± 0.0222 0.1073± 0.0362 0.0813± 0.0266 0.2465± 0.0376

based representation. On the Y-axis is indicated the parameter which determines the size of
the generated models.

The translation times are as expected: in both cases, the translation time grows linearly
with respect to the size of the document (cf. Figure 4.4). Note that the size of doc2(i) is
exponential in i.

The time taken by NuSMV to build the internal OBDD-based representation of the model
is high. As we mentioned before, this can be considered part of preprocessing the data.
However, it might suggest that the OBDD-based representation is large. So far, we have not
investigated the size of the OBDD-based representations, but we consider this necessary for
further work on our approach.

During our experiments, we discovered that NuSMV has a limited processing capacity for
large input files. It cannot cope with very large program specifications. In the case of our
experiments, NuSMV could not read and process doc1(i) approximitely of size i ≥ 60000, or
doc2(i) approximitely of size i ≥ 14.

Experiment 3 Testing the query translation time.

The results of our query translation experiment are reported in Table 4.2. On the X-axis, the
different types of queries are given. On the Y-axis, the parameter in given that determines the
size of the queries. Note that the size of the queries is linear with respect to the parameter.
We would therefore expect that the values in the matrix are linear with respect to this
parameter as well.

As can be seen from Figure 4.5, the translation time is quadratic in the size of the input.
This indicates that there is a problem with the implementation of the translation. The
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Figure 4.5: Query translation time

cause might lie in the way Perl implements regular expression matching. The worst-case
complexity of regular expression matching in Perl is exponential in the size of the input, due
to its enriched syntax for regular expressions [18].

Experiment 4 Testing the query evaluation time.

In Table 4.3, 4.4 and 4.5, every cell contains three lines. The first indicates the time NuSMV
needed to check the translated query on the compiled, translated document. The second and
third entries indicate the time needed by MacMill and XMLTaskForce XPath, respectively, to
evaluate the query.

For optimal precision, we performed the model checking 100 times, divided in 10 jobs. Of
every job, the total time was measured, and divided by 10. The average of the resulting 10
numbers is reported in the tables, as well as the standard deviation computed on these 10
numbers.

In the case of MacMill and XMLTaskForce XPath, each experiment was simply performed 10
times.

The model checking time is slightly higher than the time needed by MacMill and XMLTask-
Force XPath to perform the query evaluation. Perhaps this could be explained by the fact
that, while our translation is linear, the size of the translated model is high.

Figure 4.6 contains several graphs that represent the observed model checking times. As one
can clearly see, NuSMV model checking is linear in the size of the query, and almost linear
in the document size.

Incidentally, note the remarkable shape of the curve for model checking q2 queries on doc1
document. Perhaps, some features of NuSMV play a role in this, but we could not tell.

Interpretation of the results and suggestions for improvements

• We noticed that there is a problem with our implementation of query translation. Our im-
plementation runs in quadratic time in the size of the query, although our translation admits
a linear implementation. We suspect that this problem is caused by Perl’s implementation
of regular expression matching that we use in our implementation. We believe that a linear
implementation of the translation is easy to achieve by being more careful in this respect.

• What needs more attention is the setup of our experiments. It is always important to evaluate
theory in practice. So far all the experiments we performed involved artificially generated
XML documents and queries. Testing on real data is essential to get a clear picture of the
performance of XCheck. This remains future work.

• We consider it absolutely necessary to perform more experiments that explicitly measure
the size of the internal OBDD-based representation versus the input XML document.
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Table 4.3: Model checking time for q1(i) queries on doc1(j) documents

doc1(i)\q1(j) 5 10 15 20 25 30 35 40 45

500 0.0025± 0.0014 0.0039± 0.0011 0.0057± 0.0016 0.0067± 0.0021 0.0080± 0.0023 0.0097± 0.0025 0.0116± 0.0023 0.0130± 0.0027 0.0158± 0.0023
0.0010± 0.0001 0.0010± 0.0001 0.0010± 0.0001 0.0010± 0.0001 0.0010± 0.0001 0.0011± 0.0001 0.0011± 0.0001 0.0011± 0.0001 0.0011± 0.0001
0.0125± 0.0006 0.0131± 0.0002 0.0137± 0.0001 0.0147± 0.0006 0.0152± 0.0001 0.0182± 0.0091 0.0169± 0.0001 0.0179± 0.0016 0.0184± 0.0006

1000 0.0028± 0.0021 0.0044± 0.0017 0.0061± 0.0026 0.0081± 0.0022 0.0097± 0.0016 0.0115± 0.0030 0.0132± 0.0013 0.0146± 0.0025 0.0166± 0.0023
0.0009± 0.0001 0.0009± 0.0001 0.0009± 0.0001 0.0009± 0.0000 0.0010± 0.0000 0.0010± 0.0000 0.0010± 0.0001 0.0010± 0.0001 0.0010± 0.0000
0.0145± 0.0006 0.0158± 0.0002 0.0170± 0.0006 0.0185± 0.0007 0.0198± 0.0008 0.0213± 0.0007 0.0225± 0.0002 0.0238± 0.0002 0.0255± 0.0028

1500 0.0034± 0.0034 0.0043± 0.0039 0.0070± 0.0041 0.0089± 0.0038 0.0104± 0.0040 0.0127± 0.0028 0.0149± 0.0036 0.0166± 0.0030 0.0192± 0.0023
0.0009± 0.0001 0.0009± 0.0000 0.0009± 0.0001 0.0010± 0.0000 0.0010± 0.0000 0.0010± 0.0000 0.0010± 0.0000 0.0010± 0.0000 0.0013± 0.0016
0.0163± 0.0001 0.0184± 0.0002 0.0202± 0.0007 0.0224± 0.0008 0.0241± 0.0007 0.0265± 0.0006 0.0284± 0.0008 0.0305± 0.0010 0.0325± 0.0011

2000 0.0038± 0.0052 0.0057± 0.0060 0.0077± 0.0061 0.0098± 0.0054 0.0116± 0.0061 0.0141± 0.0045 0.0161± 0.0053 0.0180± 0.0059 0.0211± 0.0056
0.0009± 0.0000 0.0009± 0.0000 0.0010± 0.0001 0.0012± 0.0012 0.0010± 0.0000 0.0010± 0.0000 0.0011± 0.0000 0.0011± 0.0000 0.0011± 0.0001
0.0182± 0.0003 0.0210± 0.0009 0.0250± 0.0125 0.0258± 0.0002 0.0283± 0.0004 0.0315± 0.0007 0.0363± 0.0127 0.0364± 0.0007 0.0389± 0.0010

2500 0.0044± 0.0083 0.0066± 0.0074 0.0089± 0.0064 0.0113± 0.0076 0.0137± 0.0073 0.0164± 0.0077 0.0174± 0.0078 0.0217± 0.0087 0.0229± 0.0079
0.0009± 0.0000 0.0010± 0.0002 0.0010± 0.0000 0.0010± 0.0000 0.0010± 0.0000 0.0010± 0.0000 0.0011± 0.0001 0.0011± 0.0000 0.0011± 0.0000
0.0205± 0.0001 0.0249± 0.0036 0.0270± 0.0009 0.0307± 0.0009 0.0342± 0.0007 0.0384± 0.0007 0.0418± 0.0013 0.0489± 0.0034 0.0482± 0.0010

3000 0.0056± 0.0116 0.0079± 0.0107 0.0107± 0.0108 0.0130± 0.0114 0.0160± 0.0113 0.0182± 0.0108 0.0210± 0.0101 0.0227± 0.0110 0.0315± 0.0103
0.0010± 0.0000 0.0010± 0.0000 0.0010± 0.0001 0.0010± 0.0000 0.0010± 0.0000 0.0011± 0.0001 0.0011± 0.0000 0.0011± 0.0000 0.0011± 0.0000
0.0223± 0.0002 0.0267± 0.0008 0.0300± 0.0007 0.0349± 0.0044 0.0378± 0.0007 0.0429± 0.0007 0.0470± 0.0008 0.0554± 0.0247 0.0548± 0.0012

3500 0.0087± 0.0290 0.0120± 0.0290 0.0148± 0.0277 0.0174± 0.0295 0.0208± 0.0292 0.0230± 0.0305 0.0264± 0.0288 0.0280± 0.0277 0.0325± 0.0279
0.0010± 0.0000 0.0010± 0.0000 0.0010± 0.0000 0.0010± 0.0000 0.0011± 0.0000 0.0011± 0.0001 0.0011± 0.0000 0.0011± 0.0000 0.0011± 0.0000
0.0249± 0.0003 0.0290± 0.0003 0.0337± 0.0002 0.0377± 0.0008 0.0426± 0.0009 0.0474± 0.0008 0.0531± 0.0010 0.0578± 0.0011 0.0627± 0.0054

4000 0.0099± 0.0360 0.0130± 0.0359 0.0153± 0.0371 0.0181± 0.0372 0.0215± 0.0369 0.0240± 0.0359 0.0266± 0.0368 0.0292± 0.0351 0.0322± 0.0359
0.0014± 0.0018 0.0015± 0.0019 0.0014± 0.0020 0.0011± 0.0000 0.0013± 0.0012 0.0011± 0.0000 0.0011± 0.0000 0.0011± 0.0000 0.0011± 0.0000
0.0268± 0.0006 0.0316± 0.0006 0.0369± 0.0007 0.0414± 0.0009 0.0467± 0.0010 0.0526± 0.0010 0.0589± 0.0015 0.0643± 0.0011 0.0685± 0.0008

4500 0.0111± 0.0400 0.0144± 0.0426 0.0170± 0.0387 0.0202± 0.0378 0.0232± 0.0385 0.0268± 0.0381 0.0297± 0.0396 0.0334± 0.0405 0.0363± 0.0357
0.0010± 0.0000 0.0010± 0.0000 0.0010± 0.0000 0.0011± 0.0001 0.0011± 0.0000 0.0011± 0.0000 0.0011± 0.0000 0.0011± 0.0000 0.0012± 0.0000
0.0293± 0.0001 0.0348± 0.0003 0.0411± 0.0010 0.0466± 0.0036 0.0526± 0.0012 0.0586± 0.0010 0.0666± 0.0030 0.0726± 0.0008 0.0774± 0.0009

5000 0.0117± 0.0438 0.0152± 0.0442 0.0187± 0.0445 0.0239± 0.0549 0.0249± 0.0458 0.0285± 0.0433 0.0333± 0.0462 0.0372± 0.0477 0.0393± 0.0428
0.0010± 0.0000 0.0010± 0.0001 0.0011± 0.0000 0.0011± 0.0000 0.0012± 0.0006 0.0011± 0.0000 0.0011± 0.0000 0.0012± 0.0001 0.0012± 0.0000
0.0312± 0.0005 0.0376± 0.0010 0.0442± 0.0009 0.0495± 0.0006 0.0568± 0.0016 0.0637± 0.0010 0.0719± 0.0014 0.0788± 0.0012 0.0843± 0.0012
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Table 4.4: Model checking time for q2(i) queries on doc1(j) documents

doc1(i)\q2(j) 5 10 15 20 25 30 35 40 45

500 0.0968± 0.0117 0.1009± 0.0143 0.1001± 0.0139 0.1047± 0.0108 0.1122± 0.0136 0.1147± 0.0121 0.1169± 0.0152 0.1229± 0.0101 0.1258± 0.0153
0.0014± 0.0001 0.0014± 0.0001 0.0014± 0.0001 0.0015± 0.0001 0.0015± 0.0001 0.0016± 0.0001 0.0016± 0.0001 0.0017± 0.0001 0.0017± 0.0001
0.0129± 0.0001 0.0142± 0.0006 0.0153± 0.0002 0.0165± 0.0001 0.0179± 0.0008 0.0190± 0.0006 0.0200± 0.0008 0.0211± 0.0002 0.0221± 0.0002

1000 0.1952± 0.0135 0.2064± 0.0117 0.2150± 0.0167 0.2175± 0.0148 0.2225± 0.0152 0.2284± 0.0200 0.2346± 0.0208 0.2324± 0.0196 0.2194± 0.0678
0.0018± 0.0001 0.0018± 0.0000 0.0019± 0.0001 0.0019± 0.0001 0.0019± 0.0001 0.0021± 0.0001 0.0020± 0.0001 0.0022± 0.0000 0.0021± 0.0000
0.0155± 0.0003 0.0174± 0.0001 0.0209± 0.0050 0.0220± 0.0002 0.0245± 0.0008 0.0263± 0.0008 0.0283± 0.0007 0.0307± 0.0006 0.0325± 0.0010

1500 0.4723± 0.0461 0.4885± 0.0416 0.4816± 0.0392 0.5021± 0.0402 0.5172± 0.0342 0.5142± 0.0473 0.5242± 0.0351 0.5283± 0.0445 0.5462± 0.0556
0.0025± 0.0008 0.0025± 0.0001 0.0025± 0.0001 0.0025± 0.0001 0.0026± 0.0001 0.0028± 0.0001 0.0027± 0.0002 0.0030± 0.0013 0.0028± 0.0001
0.0182± 0.0007 0.0210± 0.0009 0.0246± 0.0003 0.0276± 0.0008 0.0309± 0.0009 0.0338± 0.0008 0.0367± 0.0009 0.0403± 0.0007 0.0429± 0.0008

2000 1.0485± 0.0198 1.0367± 0.1094 1.0700± 0.0196 1.0542± 0.1221 1.0920± 0.0507 1.0920± 0.1150 1.1069± 0.0400 1.1432± 0.0648 1.1240± 0.0503
0.0029± 0.0001 0.0030± 0.0001 0.0030± 0.0001 0.0034± 0.0018 0.0032± 0.0003 0.0034± 0.0001 0.0034± 0.0012 0.0038± 0.0013 0.0033± 0.0001
0.0212± 0.0037 0.0243± 0.0002 0.0291± 0.0002 0.0330± 0.0005 0.0374± 0.0005 0.0418± 0.0043 0.0452± 0.0009 0.0501± 0.0009 0.0534± 0.0011

2500 2.7835± 0.0660 2.7570± 0.1348 2.8271± 0.1446 2.8354± 0.1672 2.8596± 0.2039 2.9016± 0.0864 2.9122± 0.0882 2.8389± 0.1351 2.9355± 0.1565
0.0038± 0.0012 0.0036± 0.0001 0.0037± 0.0001 0.0038± 0.0006 0.0037± 0.0001 0.0042± 0.0007 0.0038± 0.0001 0.0041± 0.0001 0.0040± 0.0001
0.0234± 0.0006 0.0285± 0.0010 0.0351± 0.0016 0.0394± 0.0009 0.0454± 0.0008 0.0513± 0.0044 0.0561± 0.0015 0.0683± 0.0024 0.0666± 0.0013

3000 2.4553± 0.1205 2.5365± 0.1615 2.6655± 0.1437 2.6196± 0.0707 2.6129± 0.0632 2.6403± 0.1450 2.6712± 0.0987 2.6622± 0.0685 2.7117± 0.1752
0.0041± 0.0010 0.0041± 0.0001 0.0041± 0.0003 0.0042± 0.0001 0.0043± 0.0001 0.0047± 0.0002 0.0044± 0.0001 0.0047± 0.0002 0.0045± 0.0001
0.0260± 0.0008 0.0321± 0.0009 0.0395± 0.0009 0.0455± 0.0006 0.0526± 0.0015 0.0587± 0.0015 0.0651± 0.0028 0.0725± 0.0021 0.0769± 0.0018

3500 3.2981± 0.1670 3.3360± 0.1666 3.3571± 0.1698 3.3413± 0.1677 3.3557± 0.1200 3.4102± 0.1633 3.4409± 0.2380 3.3729± 0.1647 3.5014± 0.1220
0.0047± 0.0001 0.0047± 0.0001 0.0048± 0.0001 0.0048± 0.0001 0.0048± 0.0001 0.0057± 0.0007 0.0050± 0.0001 0.0051± 0.0001 0.0078± 0.0141
0.0294± 0.0036 0.0360± 0.0007 0.0431± 0.0015 0.0509± 0.0010 0.0592± 0.0034 0.0655± 0.0011 0.0723± 0.0011 0.0824± 0.0042 0.0880± 0.0014

4000 3.5867± 0.1859 3.6363± 0.1408 3.5753± 0.0567 3.5175± 0.0905 3.5677± 0.0899 3.6143± 0.1460 3.5971± 0.1884 3.6208± 0.1990 3.7258± 0.2222
0.0059± 0.0028 0.0064± 0.0033 0.0072± 0.0040 0.0055± 0.0012 0.0058± 0.0019 0.0063± 0.0002 0.0055± 0.0001 0.0056± 0.0001 0.0062± 0.0006
0.0315± 0.0011 0.0394± 0.0008 0.0473± 0.0008 0.0568± 0.0012 0.0654± 0.0013 0.0742± 0.0031 0.0810± 0.0014 0.0918± 0.0016 0.0984± 0.0019

4500 7.6832± 0.2207 7.6246± 0.2760 7.7794± 0.2159 7.6734± 0.1963 7.6409± 0.2151 7.9226± 0.3278 7.8158± 0.4348 7.9990± 0.3123 7.8269± 0.3446
0.0058± 0.0006 0.0057± 0.0002 0.0058± 0.0005 0.0058± 0.0002 0.0058± 0.0002 0.0068± 0.0003 0.0060± 0.0002 0.0061± 0.0002 0.0067± 0.0002
0.0346± 0.0010 0.0438± 0.0011 0.0527± 0.0009 0.0636± 0.0011 0.0735± 0.0008 0.0826± 0.0013 0.0917± 0.0019 0.1044± 0.0021 0.1113± 0.0017

5000 8.2702± 0.2774 8.3485± 0.2064 8.2614± 0.3283 8.2711± 0.3099 8.3545± 0.2226 8.7254± 0.4070 8.4415± 0.4208 8.4225± 0.4608 8.6688± 0.5031
0.0062± 0.0002 0.0062± 0.0002 0.0063± 0.0004 0.0064± 0.0006 0.0063± 0.0004 0.0076± 0.0004 0.0066± 0.0002 0.0067± 0.0003 0.0074± 0.0002
0.0367± 0.0004 0.0470± 0.0010 0.0648± 0.0469 0.0687± 0.0009 0.0798± 0.0012 0.0905± 0.0038 0.0998± 0.0020 0.1143± 0.0042 0.1223± 0.0023
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Table 4.5: Model checking time for q3(i) and q4(i) queries on doc2(j) documents

doc2(i)\q3(j) 5 10 15 20 25 30 35 40 45

5 0.0075± 0.0019 0.0099± 0.0011 0.0126± 0.0021 0.0148± 0.0013 0.0180± 0.0016 0.0210± 0.0025 0.0214± 0.0037 0.0244± 0.0034 0.0272± 0.0043
0.0010± 0.0001 0.0011± 0.0001 0.0011± 0.0001 0.0011± 0.0001 0.0012± 0.0001 0.0013± 0.0001 0.0013± 0.0001 0.0013± 0.0001 0.0014± 0.0001
0.0110± 0.0007 0.0111± 0.0002 0.0115± 0.0003 0.0117± 0.0001 0.0123± 0.0009 0.0125± 0.0009 0.0127± 0.0001 0.0133± 0.0010 0.0134± 0.0002

6 0.0128± 0.0021 0.0159± 0.0020 0.0185± 0.0019 0.0218± 0.0023 0.0254± 0.0021 0.0280± 0.0031 0.0312± 0.0030 0.0343± 0.0033 0.0371± 0.0053
0.0010± 0.0001 0.0012± 0.0006 0.0011± 0.0001 0.0012± 0.0001 0.0012± 0.0001 0.0013± 0.0000 0.0013± 0.0000 0.0014± 0.0002 0.0014± 0.0001
0.0113± 0.0001 0.0119± 0.0009 0.0121± 0.0001 0.0125± 0.0001 0.0132± 0.0008 0.0135± 0.0001 0.0139± 0.0001 0.0144± 0.0002 0.0147± 0.0001

7 0.0247± 0.0013 0.0283± 0.0027 0.0333± 0.0027 0.0353± 0.0030 0.0393± 0.0028 0.0445± 0.0027 0.0467± 0.0035 0.0500± 0.0067 0.0541± 0.0060
0.0011± 0.0001 0.0012± 0.0001 0.0012± 0.0000 0.0012± 0.0001 0.0013± 0.0001 0.0014± 0.0001 0.0014± 0.0000 0.0016± 0.0007 0.0015± 0.0000
0.0119± 0.0006 0.0125± 0.0002 0.0133± 0.0006 0.0146± 0.0035 0.0146± 0.0001 0.0156± 0.0007 0.0161± 0.0002 0.0171± 0.0007 0.0175± 0.0002

8 0.0489± 0.0076 0.0551± 0.0058 0.0667± 0.0143 0.0636± 0.0055 0.0684± 0.0058 0.0785± 0.0072 0.0827± 0.0081 0.0802± 0.0066 0.0805± 0.0564
0.0012± 0.0000 0.0013± 0.0001 0.0013± 0.0001 0.0014± 0.0001 0.0014± 0.0000 0.0015± 0.0000 0.0017± 0.0006 0.0016± 0.0001 0.0017± 0.0001
0.0134± 0.0007 0.0145± 0.0007 0.0156± 0.0002 0.0168± 0.0002 0.0183± 0.0007 0.0197± 0.0007 0.0214± 0.0010 0.0223± 0.0007 0.0237± 0.0008

9 0.1191± 0.0307 0.1248± 0.0282 0.1342± 0.0280 0.1360± 0.0284 0.1430± 0.0282 0.1474± 0.0158 0.1539± 0.0252 0.1599± 0.0259 0.1695± 0.0247
0.0014± 0.0000 0.0014± 0.0001 0.0015± 0.0000 0.0016± 0.0000 0.0017± 0.0001 0.0021± 0.0016 0.0019± 0.0001 0.0019± 0.0000 0.0019± 0.0001
0.0160± 0.0002 0.0183± 0.0002 0.0206± 0.0006 0.0227± 0.0004 0.0260± 0.0011 0.0300± 0.0007 0.0317± 0.0010 0.0343± 0.0009 0.0370± 0.0012

10 0.7312± 0.1016 0.7657± 0.0360 0.7827± 0.0361 0.7771± 0.0274 0.7915± 0.0259 0.7975± 0.0309 0.7821± 0.1070 0.8208± 0.0217 0.8511± 0.0505
0.0021± 0.0000 0.0022± 0.0000 0.0025± 0.0001 0.0026± 0.0001 0.0025± 0.0001 0.0026± 0.0000 0.0027± 0.0001 0.0027± 0.0001 0.0028± 0.0001
0.0224± 0.0013 0.0409± 0.0887 0.0314± 0.0011 0.0364± 0.0006 0.0421± 0.0009 0.0476± 0.0011 0.0519± 0.0006 0.0565± 0.0011 0.0601± 0.0025

doc2(i)\q4(j) 5 10 15 20 25 30 35 40 45

5 0.0154± 0.0021 0.0220± 0.0021 0.0286± 0.0019 0.0352± 0.0031 0.0432± 0.0040 0.0479± 0.0061 0.0540± 0.0112 0.0628± 0.0101 0.0653± 0.0091
0.0012± 0.0001 0.0014± 0.0002 0.0016± 0.0001 0.0018± 0.0007 0.0019± 0.0001 0.0020± 0.0000 0.0061± 0.0245 0.0024± 0.0001 0.0027± 0.0002
0.0111± 0.0001 0.0117± 0.0007 0.0122± 0.0008 0.0127± 0.0001 0.0131± 0.0002 0.0140± 0.0009 0.0144± 0.0001 0.0149± 0.0001 0.0159± 0.0016

6 0.0275± 0.0029 0.0373± 0.0034 0.0442± 0.0034 0.0545± 0.0051 0.0632± 0.0066 0.0710± 0.0074 0.0818± 0.0089 0.0885± 0.0099 0.1003± 0.0145
0.0013± 0.0001 0.0015± 0.0001 0.0017± 0.0000 0.0019± 0.0001 0.0020± 0.0000 0.0022± 0.0000 0.0025± 0.0001 0.0026± 0.0001 0.0028± 0.0002
0.0117± 0.0002 0.0123± 0.0001 0.0134± 0.0009 0.0139± 0.0000 0.0147± 0.0001 0.0157± 0.0006 0.0163± 0.0001 0.0173± 0.0007 0.0179± 0.0002

7 0.0512± 0.0058 0.0637± 0.0035 0.0779± 0.0050 0.0894± 0.0099 0.1004± 0.0077 0.1118± 0.0114 0.1236± 0.0100 0.1432± 0.0161 0.1494± 0.0183
0.0014± 0.0001 0.0016± 0.0000 0.0018± 0.0001 0.0020± 0.0001 0.0023± 0.0001 0.0026± 0.0008 0.0028± 0.0001 0.0029± 0.0001 0.0031± 0.0001
0.0126± 0.0007 0.0138± 0.0006 0.0149± 0.0001 0.0165± 0.0011 0.0177± 0.0006 0.0189± 0.0001 0.0217± 0.0073 0.0221± 0.0007 0.0229± 0.0003

8 0.1105± 0.0181 0.1287± 0.0150 0.1480± 0.0147 0.1654± 0.0161 0.1814± 0.0174 0.1978± 0.0150 0.2138± 0.0184 0.2273± 0.0204 0.2535± 0.0258
0.0017± 0.0001 0.0020± 0.0001 0.0022± 0.0001 0.0025± 0.0001 0.0028± 0.0001 0.0030± 0.0001 0.0034± 0.0001 0.0035± 0.0001 0.0037± 0.0001
0.0148± 0.0031 0.0166± 0.0006 0.0189± 0.0006 0.0210± 0.0007 0.0242± 0.0061 0.0264± 0.0002 0.0283± 0.0008 0.0306± 0.0008 0.0335± 0.0009

9 0.2391± 0.0329 0.2623± 0.0333 0.2844± 0.0312 0.3099± 0.0339 0.3174± 0.0239 0.3575± 0.0344 0.3780± 0.0372 0.4051± 0.0465 0.4250± 0.0443
0.0021± 0.0000 0.0025± 0.0000 0.0029± 0.0000 0.0033± 0.0010 0.0034± 0.0001 0.0038± 0.0006 0.0042± 0.0001 0.0042± 0.0001 0.0045± 0.0001
0.0182± 0.0008 0.0224± 0.0006 0.0264± 0.0002 0.0347± 0.0048 0.0355± 0.0007 0.0420± 0.0011 0.0459± 0.0015 0.0525± 0.0010 0.0526± 0.0014

10 1.4770± 0.0517 1.5096± 0.0395 1.5268± 0.1147 1.5693± 0.1020 1.6329± 0.0709 1.7133± 0.1059 1.7130± 0.0922 1.7681± 0.1253 1.7853± 0.2142
0.0034± 0.0001 0.0039± 0.0001 0.0045± 0.0007 0.0050± 0.0024 0.0049± 0.0001 0.0053± 0.0002 0.0057± 0.0001 0.0057± 0.0001 0.0060± 0.0002
0.0267± 0.0007 0.0355± 0.0010 0.0442± 0.0008 0.0529± 0.0013 0.0627± 0.0016 0.0726± 0.0013 0.0817± 0.0033 0.0905± 0.0025 0.0984± 0.0021
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Figure 4.6: Model checking time
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Chapter 5

Digestives

In this thesis, we presented a new method for XML query evaluation, based on a reduction to CTL
model checking. We provided both the theoretical basis, and a prototype implementation of our
idea.

Our approach is well supported from a theoretical point of view. We have devised a linear
time translation of the query evaluation problem for Core XPath into the model checking problem
for CTL, such that the answer set of a query corresponds to the truth set of its translation. We
also have a linear time translation from XCPath to CTL, satisfying the same condition. The
translations are based on a reduction from many dimensional CTL to one dimensional CTL.

We implemented the translation, using NuSMV as a model checker for CTL. We ran several
experiments to test how well it performs. It turns out that there are practical problems that must
be solved in order for the approach to be of practical use. Our experimental results show that the
implementation fails to take advantage of the qualities of NuSMV.

Speculations on how to improve our approach

The main problem of our approach is the model representation for NuSMV. First, the compilation
time of XCheck, that is, the time taken by NuSMV to translate the document into its internal,
OBDD-based representation, is high. The cause of this disappointing behavior is not NuSMV
itself, but might be the unconventional way in which we used NuSMV. NuSMV is a symbolic
model checker. The symbolic representation of a model is usually much smaller than its explicit
representation, and in some cases its size is logarithmic in the size of the explicit state model. On
the contrary, we provided NuSMV with explicit XML trees whose size is proportional to the size
of the XML file. The encoding of such a tree into OBDD format takes a large amount of time,
and it is currently not manageable by NuSMV in case of relatively large XML documents.

Another problem is that the pure model checking time, without considering the time spent to
encode the model into OBDD format, is still too high compared with the best implementations
currently available. We already indicated some reasons for this. The first one is that both the
translated model and the translated formula are linear but still bigger than the original XML file
and query, respectively. Because of the overhead introduced by the translation of an XML file, we
lost part of the regularity that is implicit in most XML documents, and consequently NuSMV failed
to compact the translated model into a significantly smaller OBDD format. Moreover, the model
checking process uses a pure bottom-up strategy that computes sometimes useless intermediate
results. In particular, a bottom-up model checker computes the truth set of all the subformulas
of the formula to check.

For a competitive system, at least two improvements have to be made. The first one is to
present a much more compact representation of the XML tree to NuSMV. To use the techniques
from [8] seem promising. The second one concerns the translation. This should be optimized,
keeping in mind the way NuSMV checks its models. Especially for absolute queries (which are
evaluated at the root), much better translations are possible.
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Incidentally, CTL is not the only logic that we can translate Core XPath into. In fact, recall
from Section 2.3 that the fragment of CTL that we use for our translation (i.e., the fragment of
CTL without AU operators), lies within the expressive bounds of Propositional Dynamic Logic
(PDL). An alternative would be to translate Core XPath into PDL and invoke a model checker for
PDL. Unfortunately, it seems that the existing PDL model checkers are not at a level at which
they can compete with CTL model checkers such as NuSMV.

Finally, what we need in order to cope with realistic problems is a way to store a potentially
vast XML file in secondary storage, compress it avoiding redundant parts, load parts of it into
main memory, perform some main memory processing and write back the results onto the disk.
This is really far from what a model checker does, but we think this is worth investigating.

Back to full XPath

The results reported here only apply to Core XPath and to its extension XCPath. The aim was to
see if the general idea is feasible and useful. We would ultimately like to use the same techniques
for building an efficient query evaluation system for full XPath. For this, a number of things must
be done.

Firstly, we should extend the language in order to be able to reason about attribute information,
including id attributes, cf. Section 2.2. We do not think that this will pose specific problems,
since Definition 2.1.1 is general enough to incorporate such information, if attribute value pairs
are considered to be elements of the set of node labels Σ.

Secondly, we will have to add the string and arithmetic operations that come with full XPath.
For a general overview of results concerning extending modal logics with arithmetic or string
operations, cf. [24]. If we consider our approach feasible and want to extend it to full XPath,
this will require more work, since we will have to integrate the process of model checking with the
evaluation of string and/or arithmetical expressions.
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Appendix A

Source code

#!/usr/bin/perl5 −w

use Getopt:: Long;
use Time:: HiRes qw(gettimeofday tv interval);
use XML:: Twig;
use globals qw($inverse $axe a $axe t $α $root $atroot $smv template);
require ”globals”;

#

# globals and constants

# query translation

$inverse = { ’self’ ⇒ ’self’,
’child’ ⇒ ’parent’,
’parent’ ⇒ ’child’,
’descendant’ ⇒ ’ancestor’,
’ancestor’ ⇒ ’descendant’,
’descendant or self’ ⇒ ’ancestor or self’,
’ancestor or self’ ⇒ ’descendant or self’,
’following sibling’ ⇒ ’preceding sibling’,
’preceding sibling’ ⇒ ’following sibling’,
’following’ ⇒ ’preceding’,
’preceding’ ⇒ ’following’

};

$α = ’EX (d = a & \α)’;
$root = ’ ! EX (d = up & EX d = up )’;
$atroot = ”EX E[ d = up U d = up & EX ($root & d = a & \α) ]”;
$axe a = { ’self’ ⇒ ’\α’,

’child’ ⇒ ”EX (d = down & EX (d = down & $α))”,
’parent’ ⇒ ”EX (d = up & EX (d = up & $α))”,
’descendant’ ⇒ ”EX (d= down & EX E[ d = down U d= down & $α ])”,
’ancestor’ ⇒ ”EX (d = up & EX E[ d = up U d = up & $α ])”,
’descendant or self’ ⇒ ”EX E[ d = down U d = down & $α ]”,
’ancestor or self’ ⇒ ”EX E[ d = up U d = up & $α ]”,
’following sibling’ ⇒ ”EX (d = right & EX E[ d = right U d = right & $α ])”,
’preceding sibling’ ⇒ ”EX (d = left & EX E[ d = left U d = left & $α ])”,
’following’ ⇒ ”EX E[ d= up U d= up & EX (d = a &EX (d = right & EX

E[ d = right U d = right & EX (d = a & EX E[ d = down U d = down & $α ]) ])) ]”,
’preceding’ ⇒ ”EX E[ d= up U d= up & EX(d= a & EX (d= left & EX

E[ d = left U d = left & EX (d = a & EX E[ d = down U d = down & $α ]) ])) ]”
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};

$axe t = { ’self’ ⇒ ”, # can’t be ommited

’child’ ⇒ ’EX (d = down & EX d = down )’,
’parent’ ⇒ ’EX (d = up & EX d = up )’,
’descendant’ ⇒ ’EX (d = down & EX d = down )’,
’ancestor’ ⇒ ’EX (d = up & EX d = up )’,
’descendant or self’ ⇒ ”, # can’t be ommited

’ancestor or self’ ⇒ ”, # can’t be ommited

’following sibling’ ⇒ ’EX (d = right & EX d = right )’,
’preceding sibling’ ⇒ ’EX (d = left & EX d = left )’,
’following’ ⇒ ’EX E[ d = up U d = up & EX (d = a &

EX (d = right & EX d = right )) ]’,
’preceding’ ⇒ ’EX E[ d = up U d = up & EX (d = a &

EX (d = left & EX d = left )) ]’

};

$smv template = q!
MODULE main
VAR s : < VAR > ;
d : { up , down , left , right , a };
labels : { < LABELS > };

TRANS
< TRANS >

DEFINE
l : =
case
< DEFINE >

esac;
!;

# model translation

my $model = ”;
my $query = ”;
my ($t0,$t1,$mtt,$qtt,$rtt);

my $id = 0; # an auxiliar variable for indexing the tags

my %lab list;

my $trans list;

my $stat;

sub translate model{
#

# XML processing using Twig module

my $model = shift;

my $smv;

$id = 0;

%lab list = ();

$trans list = ”;

$t0 = [gettimeofday]; # processesing CPU elapse time for model translastion

# parse the XML using XML:: Twig module

my $tree = new XML:: Twig(
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# set the id for each tag except #PCDATA

StartTagHandlers ⇒ { ’ all ’ ⇒ \&set id },

# prepare the data to be droped to smv file

TwigHandlers ⇒ { ’ all ’ ⇒ \&to smvformat }
);

$tree→parse( $model ); # process the twig

$t1 = [gettimeofday]; # /processesing CPU elapse time for model translastion

$mtt = tv interval $t0, $t1; # CPU elapse time for model translastion

$smv = parsesmv($id−1,\%lab list,$trans list);

$tree→purge;

return $smv;

} # \sub translate model

sub set id{
#

# set unique object identifier to each tag entry as a new attr id = ’id’

unless( $ [1]→gi eq ”#PCDATA” ) { $ [1]→set id($id++) }

}# \sub

sub to smvformat{
#

# prepare the data to be droped to smv file

my ($tree, $node) = @ ; # the twig and the current element

unless( $node→gi eq ”#PCDATA” ){
my $id = $node→id; # unique object identifier

my $tag = $node→gi; # simple tag

# define VAR, labels, DEFINE

$lab list{$tag} . = $lab list{$tag} ? ”,$id” : $id;

# proceed with TRAN

$trans list . = ”( s = $id & d = a → (next(s) = $id & next(d) 6= a ) ) &\n”;

if( $node→parent ){ # get its parent
my $parent id = $node→parent→id;

$trans list . = ”( s = $id & d = up → ( (next(s) = $id
& next(d) = a ) | (next(s) = $parent id & next(d) = up ) ) ) &\n”;
}else{

$trans list . = ”( s = $id & d = up → (next(s) = $id & next(d) = a ) ) &\n”;

}

if( $node→prev sibling ){ # prev sibling & prev sibling∧−1
my $prev sibling id = $node→prev sibling→id;

$trans list . = ”( s = $id & d = left →( (next(s) =
$id & next(d) = a ) | ( next(s) = $prev sibling id & next(d) = left ) ) ) &\n”;

# next sibling for previous one (i.e. prev sibling∧−1)
$trans list . = ”( s = $prev sibling id & d = right →

( (next(s) = $prev sibling id & next(d) = a ) | (next(s) = $id & next(d) = right ) ) )&\n”;
}else{

$trans list . = ”( s = $id & d = left → (next(s) = $id & next(d) = a ) ) &\n”;

}
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my @children = $node→children;
if( @children ){ # children

@children = map{ $ = $ →id ? $ →id : ”undef”} @children;
my $last child id = $children[$#children];

$trans list . = ”( s = $id & d = down → ( (next(s) = $id & next(d) = a ) ”;

while( @children ){
my $child id = shift @children;

unless( $child id eq ”undef” ){
if( $child id ne $last child id ){

$trans list . = ”| (next(s) = $child id & next(d) = down ) ”;

}else{# last child id

if( !$id ){
$trans list . = ”| (next(s) = $child id & next(d) = down ) ) ) &\n”;
$trans list . = ”( s = $last child id & d = right → (next(s) =

$last child id & next(d) = a ) ) &\n”;
$trans list . = ”( s = $id & d = right → (next(s) = $id & next(d) = a ) );”;

}else{
$trans list . = ”| (next(s) = $child id & next(d) = down ) ) ) & \n”;
$trans list . = ”( s = $last child id & d = right → (next(s) =

$last child id & next(d) = a ) ) &\n”;
}

}# /if not last child

} # unless

}# /while children

}else{ # if @children
if( !$id ){

$trans list . = ”( s = $id & d = down → (next(s) = $id & next(d) = a ) );\n”;
}else{

$trans list . = ”( s = $id & d = down → (next(s) = $id & next(d) = a ) ) &\n”;
}

}

}else{
$node→delete;

}# \unless

}# \sub

sub parsesmv{
#

# parse the smv template

my ($id,$lab,$trans) = @ ;

my $fsm = $smv template;

my $labels = join ’,’, keys %$lab;

my $define = ”;

foreach my $l (keys %$lab){
if( $lab→{$l} = ∼ m/,/ ){

$define . = ”s in {$lab→{$l}} : $l;\n”;
}else{

$define . = ”s = $lab→{$l} : $l;\n”;

}

}

if( $id ){
$fsm = ∼ s/ < VAR > /0\.\.$id/g;

}else{
$fsm = ∼ s/ < VAR > /\{0\}/g;

}
$fsm = ∼ s/ < LABELS > /$labels/g;
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$fsm = ∼ s/ < TRANS > /$trans/g;
$fsm = ∼ s/ < DEFINE > /$define/g;

return $fsm;

} # \sub parsesmv

sub nusmv{
#

# run NuSMV

my ($cmd file,$output file) = @ ;

my $status = system(”NuSMV −int −load $cmd file > $output file”);
die ”NuSMV exited funny: $?” unless $status == 0;

} # \sub running nusmv

sub translate query{
#

# translates Core XPath query into a CTL formula

my $cxp = shift;

my $ppred = {};

# print $cxp;
# arrange the predicates

my $tmp = $cxp;

$tmp = ∼ s/( +)/ /g;
$tmp = ∼ s/\[/\{/g;
$tmp = ∼ s/\]/\}/g;

my $i = 0;

while( $tmp = ∼ s/\{([∧\{]∗?)\}/\[pred $i\]/ ){
$ppred→{”pred $i”} = $1;

$i++;

}
$cxp = $tmp;

return τ($cxp,$ppred);

} # \sub translate query

sub τ{
#

# query translation

my ($query,$ppred) = @ ;

if( $query = ∼ m/∧(.+)\/(.+?):: (.+)\[(.∗?)\]$/ ){
my ($locpath,$tmp,$l,$newpred) = ($1,$axe a→{$inverse→{$2}},$3,$4);
my $α = τ($locpath);

$tmp = ∼ s/\\α/$α/g || die ”error: invalid query1 $query!\n\n”;
if($l eq ”∗”){

return ”d = a & $tmp & ”.ω($ppred→{$newpred},$ppred);
}else{

return ”d = a & l = $l & $tmp & ”.ω($ppred→{$newpred},$ppred);

}

}

if( $query = ∼ m/∧(.+)\/(.+?):: (.+)$/ ){
my ($locpath,$tmp,$l) = ($1,$axe a→{$inverse→{$2}},$3);
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my $α = τ($locpath);
$tmp = ∼ s/\\α/$α/g || die ”error: invalid query2 $query!\n\n”;

if($l eq ”∗”){
return ”d = a & $tmp”;

}else{
return ”d = a & l = $l & $tmp”;

}

}

if( $query = ∼ m/∧\/(.+?):: (.+)\[(.∗?)\]$/ ){
my ($tmp,$l,$newpred) = ($axe a→{$inverse→{$1}},$2,$3);
my $α = $root; # root

$tmp = ∼ s/\\α/$α/g || die ”error: invalid query3 $query!\n\n”;
if($l eq ”∗”){

return ”d = a & $tmp & ”.ω($ppred→{$newpred},$ppred);
}else{

return ”d = a & l = $l & $tmp & ”.ω($ppred→{$newpred},$ppred);

}

}

if( $query = ∼ m/∧\/(.+?):: (.+)$/ ){
my ($tmp,$l) = ($axe a→{$inverse→{$1}},$2);
my $α = $root; # root

$tmp = ∼ s/\\α/$α/g || die ”error: invalid query4 $query!\n\n”;
if($l eq ”∗”){

return ”d = a & $tmp”;
}else{

return ”d = a & l = $l & $tmp”;

}

}

if( $query = ∼ m/∧(.+?):: (.+)\[(.∗?)\]$/ ){
my ($tmp t,$l,$newpred) = ($axe t→{$inverse→{$1}},$2,$3);
my $α = $tmp t ? ”d = a & l = $l & $tmp t & ”.ω($ppred→{$newpred},$ppred) :

”d = a & l = $l & ”.ω($ppred→{$newpred},$ppred);
if($l eq ”∗”){

$α = $tmp t ? ”d = a & $tmp t & ”.ω($ppred→{$newpred},$ppred) :

’d = a & ’.ω($ppred→{$newpred},$ppred);

}

return $α;
}

if( $query = ∼ m/∧(.+?):: (.+)$/ ){
my ($tmp t,$l) = ($axe t→{$inverse→{$1}},$2);
my $α = $tmp t ? ”d = a & l = $l & $tmp t” : ”d = a & l = $l”;

if($l eq ”∗”){
$α = $tmp t ? ”d = a & $tmp t” : ”d = a ”;

}

return $α;
}

die ”error: invalid query $query!\n\n”;

}

#

sub ω{
# predicat translation

my ($pred,$ppred) = @ ;
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if( $pred = ∼ m/([∧\[\]]∗) or ([∧\[\]]∗)/ ){ return ”(”.ω($1,$ppred).” | ”.(ω($2,$ppred)).”)” }
if( $pred = ∼ m/([∧\[\]]∗) and ([∧\[\]]∗)/ ){ return ω($1,$ppred).” & ”.(ω($2,$ppred)) }
if( $pred = ∼ m/∧not ([∧\[\]]∗)/ ){ return ” ! (”.(ω($1,$ppred)).”)” }
if( $pred = ∼ m/∧\/(.+)/ ){

my $α = ω($1,$ppred);
my $tmp = $atroot;

$tmp = ∼ s/\\α/$α/g || die ”error: invalid pred [$pred]!\n\n”;
return $tmp;

}

if( $pred = ∼ m/∧(.+?):: (.+)\[(.∗?)\]\/(.∗)$/ ){
my ($tmp,$l,$newpred,$locpath) = ($axe a→{$1},$2,$3,$4);
my $α = ”l = $l & ”.ω($ppred→{$newpred},$ppred).” & ”.ω($locpath,$ppred);

if($l eq ”∗”){
$α = ω($ppred→{$newpred},$ppred).” & ”.ω($locpath,$ppred);

}

$tmp = ∼ s/\\α/$α/g || die ”error: invalid pred [$pred]!\n\n”;
return $tmp;

}

if( $pred = ∼ m/∧(.+?):: (.+?)\/(.∗)$/ ){
my ($tmp,$l,$locpath) = ($axe a→{$1},$2,$3);
my $α = ”l = $l & ”.ω($locpath,$ppred);

if($l eq ”∗”){
$α = ω($locpath,$ppred);

}

$tmp = ∼ s/\\α/$α/g || die ”error: invalid pred [$pred]!\n\n”;
return $tmp;

}

if( $pred = ∼ m/∧(.+?):: (.+)\[(.∗)\]$/ ){
my ($tmp,$l,$newpred) = ($axe a→{$1},$2,$3);
my $α = ”l = $l & ”.ω($ppred→{$newpred},$ppred);

if($l eq ”∗”){
$α = ω($ppred→{$newpred},$ppred);

}

$tmp = ∼ s/\\α/$α/g || die ”error: invalid pred [$pred]!\n\n”;
return $tmp;

}

if( $pred = ∼ m/∧(.+?):: (.+)$/ ){
my ($tmp t,$tmp,$l) = ($axe t→{$1},$axe a→{$1},$2);

if($l eq ”∗”){
return ’d = a & ’.$tmp t || die ”error: invalid pred [$pred]!\n\n”;

}else{
$tmp = ∼ s/\\α/l = $l/g || die ”error: invalid pred [$pred]!\n\n”;
return $tmp;

}

}

die ”error: invalid pred [$pred]!\n\n”;

}

sub retrieve{
#

# retrieves the XML elements corresponding with the truth set of the

# translated formula

my ($model,$res file) = @ ;

my %res;
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open STS, ”$res file.mc” or die ”can’t open: $res file!”;
while( my $line = < STS > ){

if( $line = ∼ /State/){
$line = < STS > ; # l = C

my $id = (split / = /, < STS > )[1]; # s = 3
$id = ∼ m/(\d+)/;
$id = $1;

$res{$id} = ””;
$line = < STS > ; # d = a
$line = < STS > ; # labels = B

}

}
close STS;

#

# parse the XML using XML:: Twig module

my $id = 0; # an auxiliar variable for indexing the tags

my $tree = new XML:: Twig(

StartTagHandlers ⇒ {
# set the id for each tag except #PCDATA

’ all ’ ⇒ sub{ unless( $ [1]→gi eq ”#PCDATA” ) { $ [1]→set id($id++) } } } );
$tree→parse( $model ); # process the twig

#

# print the retrieved nodes

$t0 = [gettimeofday]; # processesing CPU elapse time for model translastion

$qtt = tv interval $t0, $t1; # CPU elapse time for model translastion

my $num = 1;

open QERES, ” > $res file.qe” or die ”can’t open: $res file!”;
foreach my $id (sort keys %res){

my $node = $tree→elt id($id);

print QERES ” < RES\t$num > \n”;
print QERES $node→sprint.”\n”; # parameter 1 − print only the #PDATA, skip the begin and end tag

print QERES ” < /RES > \n\n”;
$num++;

}
close QERES;

$t1 = [gettimeofday]; # /processesing CPU elapse time for retrieving the results

$rtt = tv interval $t0, $t1; # CPU elapse time for model translastion

$tree→purge;

} # \sub retrieve
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