
Rank Consistent Estimation: The DOP Case

Thuy Linh Nguyen tlnguyen@science.uva.nl

Amsterdam, November 1, 2004

Abstract

The goal of an estimator is to approximate the unknown distribution of the
language from its partial evidence. In this thesis, a rank consistent estimator
is defined as an estimator that preserves the ranking frequencies of all the full
parse trees in the treebank proved to be rank consistent with respect to the
training treebank. The rank consistency property adopts Laplace’s Principle of
Insufficient Reason for statistical parsing: a rank consistent estimator assigns the
same probability to all trees that occur the same number of times in the training
data.

This thesis presents the first non-trivial DOP estimator where the treebank
is not only considered as a stochastic generating system but also a sample of
the stochastic process. In this thesis, the existing DOP definitions of probability
and derivation of full parse trees are generalized to subtrees. Fragments in the
treebank’s fragment corpus are assigned weights so that their probabilities are
proportional to their relative frequencies. The estimator is proved to be rank
consistent.

The theoretical property of the model is substantiated by empirical results.
The new estimator outperforms the DOP1 estimator on the OVIS corpus.

Acknowledgements

First of all, I would like to acknowledge my advisor, Khalil Sima’an for being a
very patient advisor and for his guidance and support throughout this thesis. I
enjoyed the hours of thesis discussion as well as the course “Probabilistic Gram-
mars and Data Oriented Parsing” he taught. I am very grateful for having had
the opportunity to learn from him.

I would like to express my gratitude to Professor Dick de Jongth who helped
me to overcome many difficulties during my graduate study in ILLC.

I am grateful to Prof. Remko Scha, Prof. Dick de Jongth and Yoav Seginer
for serving on my qualifying exam committee, especially to Prof. Remko Scha
who provided valuable feedback.

Many thanks to Andreas Zollmann for having always believed in my work,
also for useful thesis suggestions and support during my stay in Amsterdam.

Last but not the least, I want to thank my mother who always loves and cares
for me.

1

Contents

1 Introduction 4

1.1 Problem definition . 6

1.2 Contribution . 6

1.3 Outline . 7

2 Background & Notations 8

2.1 Natural Language Processing Terminologies and Notations 8

2.1.1 Terminologies . 8

2.1.2 Notations . 10

2.2 Data-Oriented Parsing . 10

2.2.1 Fragments . 11

2.2.2 Combination Operator . 12

2.2.3 DOP Probability Estimation 12

2.2.4 Stochastic Tree Substitution Grammar 13

2.2.5 The Shortcomings of DOP1 14

2.3 Some Variants of DOP Estimators 17

2.3.1 DOP Maximum Likelihood Estimator 17

2.3.2 Bonnema DOP . 17

2.3.3 Back-off DOP . 18

2.3.4 A Consistent DOP Estimator 19

2.4 Conclusion . 21

3 Rank consistent estimation 23

3.1 Consistency definition . 23

3.2 Definition of Rank Consistent Estimator 27

3.2.1 The failure of DOP1 . 28

2

3.2.2 A rank consistent estimator versus a consistent estimator . 31

3.3 Conclusion . 36

4 The new DOP estimation - DOPα 38

4.1 Overview . 38

4.1.1 DOPα is rank consistent 43

4.2 Definition of derivation∗ . 43

4.3 DOPα Estimation Procedure . 47

4.4 Determining α . 49

4.5 DOPα and Language Models . 54

4.6 Summary . 55

5 Empirical Results 56

5.1 OVIS treebank . 56

5.2 Testing . 58

5.2.1 Metrics . 58

5.2.2 The DOPα results of a random proportional factor 59

5.2.3 Proportionality Factor selection 61

5.2.4 Learning curve . 62

5.3 Summary . 62

6 Conclusion 64

3

Chapter 1

Introduction

Since its inception, one of the primary goals of Artificial Intelligence has
been the development of computational methods for language understanding
[Brill & Mooney, 1997]. The Natural Language Processing (NLP) field covers
not only lexical and grammatical information but also semantic, pragmatic and
general world knowledge. In order to understand natural language utterances,
one should not solve all of these problems at once but attack each one separately.
The focus of this thesis is the syntactical analysis in NLP.

Syntactic analysis is a sub-field in NLP, it determines the grammatical struc-
ture of a sentence, that is how words are grouped into constituents such as noun
phrase or verb phrase. Because of the syntactic and semantic preferences and
constraints, people rarely notice the ambiguity and quickly settle on the inter-
pretation based on the context. However, computers are unable to capture the
context and the semantics of a sentence as humans do. This makes parsing nat-
ural language a difficult task due to the fact that the number of possible parses
for a sentence increases with the length of the sentence. We want to select a few
parses which are more likely to be correct from the parses which are syntactically
possible.

One example of parsing with ambiguity we often see in the literature is to
determine the parse of the sentence “He saw the dog with a telescope”. There
are at least two possible analyses of the sentence as in Figure (1.1) and the parser
needs to determine tree (a) to be the correct parse tree of the sentence. Using
statistical parsing , the parser can be used to choose from among many parses of
the input sentence which ones are most likely based on their distributional behav-
iors. In statistical parsing, the probability distribution of the data in a language
is determined by a probabilistic grammar . Informally speaking, a probabilistic
grammar consists of a set of rules which are assigned weights to determine the
probabilities of the generated sentence parses and combination operations with
combination probabilities specify how sentence parses are generated.

4

S

NP VP

V NP

N PP

N

saw

the dog

He

VP

V N PP

saw the dog with a telescope

NP

N

He

with a telescope

S

tree(b)tree (a)

Figure 1.1: Examples of parsing with ambiguity

In the early stage of statistical parsing, grammar rules of the parser were built
by linguists. However, this is a very difficult task due to the complexity of human
languages. The grammar rules instead can be projected from the examples of the
language. A collection of such examples of correct parses is referred to as treebank
or corpus .

There are several approaches in statistical parsing. The simplest probabilistic
model is Probabilistic Context Free Grammar (PCFG). PCFG was first studied
in the late 1960s and early 1970s [Booth & Thompson, 1973]. It is simply a Con-
text Free Grammar with probabilities added to the rules, indicating how likely
different alternative rewriting rules are. There has been some work on probabilis-
tic versions of other grammatical frameworks such as History Based Grammar
[Black et al, 1993], Probabilistic Tree Adjoining Grammar [Resnik, 1992].

The probabilistic model described in this thesis is Data-Oriented Parsing
(DOP). DOP was first introduced by [Scha, 1990] and formalized by [Bod, 1992].
It is a probabilistic model that works out statistics over subtrees (or fragments)
in the treebank where the treebank is assumed to present the body of the parses
that one has previously experienced. DOP fits into the statistical parsing frame-
work: each treebank is a representation of a Stochastic Tree Substitution Gram-
mar (STSG) that determines the probability distribution of the language. The
STSG’s rules are the treebank’s fragments. These fragments are assigned weights
between zero and one. Fragments are combined to obtain new parse trees that
do not occur in the treebank. The probability of a parse tree depends on the
weights of fragments that build it up.

5

1.1 Problem definition

The goal of statistical parsing is to approximate the language’s probability dis-
tribution from a treebank as a finite collection of full parse trees. Laplace’s
“Principle of Insufficient Reason” attempts to supply a criterion of choice: two
events are to be assigned the same probability if there are no reasons to think
otherwise. In statistical parsing, the available information of a parse tree is its
frequency in the treebank. A statistical parsing model should meet a necessary
property of a good learner: whenever one tree appears in the corpus with higher
relative frequency than another tree, the model should always assign the former
tree higher probability than the latter tree. In chapter 3, we define this property
as rank consistent.

In Data-Oriented Parsing, the estimator estimates the underlying STSG from
the treebank. Thus the treebank should be considered as a stochastic generating
system (to estimate fragments’ weights) as well as a sample of the estimation’s
result (the treebank is also a representation of the language). However, in all the
existing DOP estimators, the treebank is only used as a stochastic generating
system not as a sample for estimating the underlying stochastic grammar. As a
result, the outcome probability distribution of the estimations are not consistent
with the distributions of trees in the treebank, i.e. they are not rank consistent.
The failure to preserve the ranking of full parse trees in the treebank directly
relates to other shortcomings of the existing models. [Johnson, 2002] proved that
the original DOP model, DOP1, is inconsistent.

1.2 Contribution

This thesis proposes a rank consistent DOP estimator where the treebank is not
only used as a stochastic generative system but also a sample of the estimated
distribution. Perhaps the simplest statistical approach is the DOP maximum
likelihood estimation which assigns probabilities to trees in the treebank as their
relative frequencies and zero probability to all trees outside the treebank. In
term of practicality, assigning all unseen events a zero probability would cause
an overfitting problem which is clearly unsatisfactory.

To satisfy rank consistency and avoid overfitting, in our estimator the tree-
bank is not only regarded as a collection of full parse trees but also a collection of
fragments. To support this new view of the treebank, the DOP’s existing prob-
ability definition and its derivation definition for full parse trees are generalized
for subtrees. The frequency-distributions of fragments are the representations of
their parse tree probabilities. The weights of fragments are calculated such that
parse tree probabilities of fragments are proportional to their relative frequencies.
The new estimator is proved to be rank consistent.

6

This thesis also studies the relationship of a rank consistent estimation and
a consistent estimation as the training corpus size grows to the limit. The con-
sistency is a necessary property in estimation theory. However, the fact that
an estimation is consistent or not depends on the choice of the estimation error
function.

1.3 Outline

In the following chapter, we introduce the basic concepts of statistical parsing
and the Data Oriented Parsing framework. Also, we review the existing DOP
models and their shortcomings which were also presented in previous works.

In chapter 3, we discuss the estimation theory’s consistency property in statis-
tical parsing. Also, we define the rank consistency property of an estimator and
study the relationship between the consistency property and the rank consistency
property.

The new estimator, DOPα, is presented in chapter 4. We present how to
assign weights to fragments such that their probabilities are proportional to their
relative frequencies.

The theoretical property of DOPα is substantiated by the empirical results
in chapter 5.

Finally, chapter 6 gives the conclusion of the thesis and possible directions for
future work.

7

Chapter 2

Background & Notations

In this chapter, the readers first will be made familiar with NLP terminologies
and notations that we are going to use throughout the thesis. In section (2.2),
the Data-Oriented Parsing framework is introduced with a focus on DOP1
[Bod, 1995]. Also, we review some of other DOP variants and their shortcomings,
such as [Buratto, 2003] and [Zollmann, 2004].

2.1 Natural Language Processing Terminologies

and Notations

2.1.1 Terminologies

In formal grammars, words are also referred to as terminal symbols; categories
or constituent labels such as “NP”, “VP”, . . . , are also referred to as nonterminal
symbols. In the set of non-terminal symbols, there is a distinguished sentence
category or start symbol . The start symbol is often denoted as “S”.

In this thesis, when we mention a tree we mean a phrase structure tree where
the root and non-leaf nodes are nonterminal symbols, the leaf nodes can be non-
terminal or terminal symbols.

A full parse tree is a tree such that its root is the start symbol and all its
leaves are terminal symbols.

An utterance or a sentence is a sequence of words. A full parse tree of a
sentence is a full parse tree such that the sequence of its leaves forms the sentence.

For example, the full parse tree of the sentence “I read a book” is

8

S

NP

N

I

VP

V

read

NP

DT

a

N

book

where “I”, “read”, “a”, “book” are terminal symbols; “S”, “NP”, “VP”, “N”,
“V”, “DT” are non-terminal symbols.

A treebank or a corpus is a sequence of full parse trees. The number of occur-
rences of a parse tree in the treebank is significant for the probability estimation
that acts on the treebank.

An example of a treebank that consists of the two parse trees of the sentences
“I read a book” and “He bought the magazine” is given in Figure (2.1).

S

NP

N

I

VP

V

read

NP

DT

a

N

book

,

S

NP

N

He

VP

V

bought

NP

DT

the

N

magazine

Figure 2.1: A treebank example

A probability distribution, PS, over the set S is a function that assigns a
probability to each element in S such that the probabilities of all elements in S

sum up to one.

PS : S → R

∑

a∈S

PS (a) = 1

When the set S is clear from the context, we write the probability of an element
a in the set S as P (a).

A language is a probability distribution over a set of full parse trees. If the
set of full parse trees is Ω, we denote the language as P∗

Ω.

9

An estimator estimates the language from a given treebank. The outcome of
an estimation process is a probability distribution over a set of full parse trees.
Statistical parsing assumes that the language was generated by a probabilistic
grammar. Thus the estimation process actually determines the combination op-
erators, the grammar’s rules and the rules’ weights.

2.1.2 Notations

Throughout this thesis, new notations and definitions are introduced whenever
needed. However, we present here the most commonly used notations.

Let X be a multi-set and x be an element of X. We define

• C (X) as the total number of occurrences of all elements in X.

• CX (x) as the number of occurrences of x in X.

• rf X (x) as the relative frequency of x in X. This means that

rf X (x) =
CX (x)

C (X)

Examples: Let tc be a training corpus. C (tc) is the number of full parse trees
in tc. If t is a full parse tree, C tc (t) is the number of times t appears in tc.

2.2 Data-Oriented Parsing

As mentioned in the previous chapter, DOP was first introduced in [Scha, 1990].
Later, DOP was formalized by [Bod, 1993]. A DOP model consists of:

• a representation of utterance analyses.

• a definition of fragments, the smallest units used for building new utterance
analyses.

• composition operations that define how fragments are combined to new
utterance analyses.

• a probabilistic model.

The DOP framework allows a wide range of instantiations. How the fragments
are combined and how the probability of a new tree is computed from the frag-
ments are left open. The first DOP instantiation, DOP1, was introduced by
[Bod, 1995]. There are several variants of the DOP model improving upon DOP1.

10

[Hoogweg, 2000] enriched DOP1 with an insertion operation to make the model
more robust. [Bonnema et al., 1999] used the assumption that every derivation
of a tree is equally likely and derived the weights of the fragments based on this
assumption. Back-off DOP [Sima’an & Buratto, 2003] considers a derivation of
length two of a fragment as a back-off of the fragment. The weights of the frag-
ments are discounted to the smaller fragments in the derivations of length two in
a way that is similar to Katz’s smoothing algorithm. [Zollmann, 2004] presented
a consistent DOP estimator using the held-out estimation approach.

In the following sections, we present the DOP framework using its first in-
stantiation DOP1 for illustration.

2.2.1 Fragments

DOP captures all the syntactic analyses that appear in the treebank. Each syn-
tactic analysis of a tree is represented by a fragment of the tree. A tree f is a
fragment of tree T if

• f consists of more than one node.

• f is a connected sub-graph of T .

• except for the leaf nodes of f , each node in f has the same daughter nodes
as the corresponding node in T .

For example, “

S

NP

N

VP

V

read

NP

” and “
VP

V NP
” are fragments of the parse

tree “

S

NP

N

I

VP

V

read

NP

DT

a

N

book

”, while “

VP

V

read

” is not a fragment of the tree.

If we extract all fragments of all the trees in the treebank, we get the fragment
corpus of the treebank. A fragment corpus is a multi-set of fragments. The
fragment corpus of treebank tc is denoted as Fragtc. In DOP, often we are
interested in the fragments with the same root, we denote RFragtc(f) as the
collection of fragments in Fragtc that have the same root as f .

11

2.2.2 Combination Operator

A combination operator specifies how fragments in the fragment corpus of a
treebank are combined to create a new tree. DOP1 has only one combination
operator, which is leftmost substitution.

The composition of trees t and u, denoted t ◦ u, is defined iff the root of tree
u is also the leftmost non-terminal leaf of tree t. If t ◦ u is defined, it yields a
copy of tree t in which tree u is substituted on the leftmost non-terminal node of
tree t.

Example:

S

NP

N

VP

V

read

NP

◦
N

I

=

S

NP

N

I

VP

V

read

NP

and

S

NP

N

VP

V

read

NP

◦
NP

DT N
is undefined.

We note that the DOP1 composition operation is not associative, if t, u, v are
subtrees then it is not guaranteed that (t ◦ u) ◦ v = t ◦ (u ◦ v).1

Let t1, t2, . . . , tk be subtrees, t1 ◦ t2 ◦ . . . ◦ tk is a shorthand of (. . . ((t1 ◦ t2) ◦
◦t3) ◦ . . .) ◦ tk)) . . .).

A sequence of subtrees d = 〈t1, t2, . . . , tk〉 is a derivation of a full parse tree T
if t1 ◦ t2 ◦ . . . ◦ tk = T

2.2.3 DOP Probability Estimation

The DOP model assigns weights to fragments, and the probability of a tree
is calculated on the basic of weights of the tree’s fragments. DOP1 uses the
assumption that all fragments are independent; the weight of a fragment is its
relative frequency in the treebank’s fragment corpus.

Let tc be a treebank, Fragtc be the treebank’s fragment corpus, f be a
fragment in the fragment corpus Fragtc. The weight of f according to the DOP1

1If (t ◦ u) ◦ v and t ◦ (u ◦ v) are both defined then (t ◦ u) ◦ v = t ◦ (u ◦ v). A simple proof can
verify this equation.

12

model is

πdop1 (f) = rf RFragtc(f) (f) =
CFragtc

(f)

C (RFragtc(f))

where C (RFragtc(f)) is the number of occurrences of all fragments with the
same root as f in Fragtc and CFragtc

(f) is the number of f ’s occurrences in
Fragtc.

The fragments are considered to be independent, the probability of a deriva-
tion is the multiplication of the weights of fragments involved.

Let d = 〈f1, f2, . . . fk〉; the probability of derivation d is:

PDOP1 (d) = πdop1 (f1) × πdop1 (f2) × . . . × πdop1 (fk)

Let T be a full parse tree, each derivation of T is a combination of fragments
to tree T . Thus the probability of tree T is the sum of the probabilities of its
derivations.

Pdop1(T) =
∑

d is a derivation of T

PDOP1 (d)

2.2.4 Stochastic Tree Substitution Grammar

The DOP model is based on the Stochastic Tree Substitution Grammar (STSG)
formalism [Bod, 1995]. STSG is an extension of Probabilistic Context Free Gram-
mar (PCFG) in which the set of rules is a set of elementary trees, which are
combined with leftmost substitution composition.

A Stochastic Tree Substitution Grammar G consists of a quintuple G =
(VN , VT , S, R, πG)

• VN is a finite set of non-terminal symbols.

• VT is a finite set of terminal symbols; VN ∩ VT = ∅.

• S is a distinguished non-terminal symbol, called start symbol: S ∈ VN .

• R is a finite set of elementary trees whose interior nodes are labelled by
non-terminal symbols in VN and frontier nodes are labelled by terminal
symbols or non-terminal symbols in VN ∪ VT .

• πG is a function that assigns elementary probabilities (or weights) to frag-
ments in R. It yields positive real values not greater than 1: πG : R → R

where 0 < πG(f) ≤ 1 ∀f ∈ R.

If α is a non-terminal in VN then
∑

f :root(f)=α πG(f) = 1.

13

An STSG partial derivation is a sequence of trees 〈t1, t2, . . . , tk〉 such that
the result of their composition in that sequence (t1 ◦ t2 ◦ . . . ◦ tk) is a tree where
non-terminal symbols can appear in the leaves.

An STSG derivation is a sequence of trees 〈t1, t2, . . . , tk〉 such that the result
of their composition in that sequence (t1 ◦ t2 ◦ . . . ◦ tk) is a full parse tree. The
probability of a derivation d = 〈f1, f2, . . . , fk〉 is the multiplication of the weights
of the fragments involved.

PG (d) = πG(f1) × πG(f2) × . . . × πG(fk)

The probability of a full parse tree T is the sum of the probabilities of its
derivations.

PG(T) =
∑

d is a derivation of T

PG (d)

The DOP model uses the assumption that the language is generated by an
STSG. The goal of DOP is to determine the STSG from a given treebank. The
first DOP model, DOP1, assigns weights to fragments as their relative frequencies
in the fragment corpus. Only the DOP estimator in [Hoogweg, 2000] proposed a
new insertion operation to the STSG framework, other DOP estimators focus on
the weight assignments to fragments in the fragment corpus.

2.2.5 The Shortcomings of DOP1

Bias towards big trees

U

V V YV w b

aw w w

Z

A

B C

a b

(a) (b)

(c)

U

X

Y Z

x y

A

UU

U

Figure 2.2: A treebank that shows DOP1’s estimation bias towards big trees

14

[Bonnema, 2003] used the toy treebank in Figure (2.2) to illustrate DOP1’s
bias toward big trees problem.

If we extract all fragments of the treebank we will get 134 different fragments
with root “A”. So according to DOP1 estimation, all these fragments are assigned
the weight 1/134. There are four different fragments with root “X” so their

weights all are 1/4. It turns out that DOP1 assigns the tree

X

Y

a

Z

b

a higher

probability than the tree

A

B

a

C

b

. This contradicts the intuition that the latter

tree which appears in the treebank and should be the preferred parse of the
sentence ”ab”.

Let t be a tree root N and t1, t2, . . . , tl are subtrees of t and ti is the subtree
headed by the i-th immediate daughter node of the root node of t. The number
of t’s subtrees headed by the root of t, denoted σ(t), is

σ(t) =
i=l∏

i=1

(σ(ti) + 1).

So the number of subtrees of a tree grows exponentially with the tree’s depth.
This explains the above counter-intuitive example of DOP1 estimation. In the
example, tree (c) with depth four generates 130 fragments with root A, and tree
(b) generates 4 fragments with root A, though tree (c) and tree (b) both appear
in the corpus once. In DOP1, the big trees contribute high probability mass to
fragments of the same root.

Bias & inconsistency

The data in a language can be assumed to follow a “true” probability distribution.
An estimator is biased if the difference between the estimator’s expected value 2

and the true distribution is different from zero. The estimator is inconsistent if
the estimated distribution does not converge to the true distribution as the size
of the training corpus increases.

The bias and inconsistency of DOP1 estimation were first pointed out by
[Johnson, 2002]. [Zollmann, 2004] proved that an estimation is biased unless it

2If X is a random variable of the set Ω with probability mass function p(x) then the expected
value of X is E(X) =

∑

x∈Ω
xp(x). [Krenn & Samuelsson, 1997]

15

assigns probability zero to all trees that do not appear in the treebank. DOP1
extracts all fragments from the treebank and generates trees outside the treebank.
Hence, DOP1 is biased.

Denote the language as the probability distribution P∗ over the set of full
parse trees Ω. A treebank is a sequence of samples from the set Ω. Let tc be a
treebank with size n: tc ∈ Ωn..

An estimator is a function whose input is a treebank and returns a probability
distribution of the language. Let est denote an estimator and estn denote the
estimator est whose domain is restricted to the treebanks with size n; M is the
set of probability distributions over the set Ω, estn : Ωn → M.

[Johnson, 2002] defines the difference or the loss function between two prob-
ability distributions, P and P∗, by the Euclidean distance metric L(P, P∗)

L(P, P∗) = ‖P − P∗‖2 :=
∑

t∈Ω

P∗(t)(est(tc)(t) − P∗(t))2.

The risk or the estimation error of an estimator est is its expected loss
E(L(est(tc), P∗)). The estimator est is inconsistent if

lim
n→∞

∑

tc∈Ωn

P∗(tc)
∑

t∈Ω

P∗(t)(est(tc)(t) − P∗(t))2 6= 0 (2.1)

where P∗(tc) is the probability of treebank tc size n in the language P∗. If
tc = (t1, t2, . . . tn) then P∗(tc) = P∗(t1) × P∗(t2) × . . . × P∗(tn).

To demonstrate the inconsistency of DOP1, [Johnson, 2002] used the example

of a language P ∗
Ω where Ω consists of two trees t1 =

S

A

a

A

a

and t2 =

S

A

a

with

probability distribution P ∗
Ω(t1) = P ∗

Ω(t2) = 1/2.

A treebank tc of the language P ∗
Ω would generate the following fragments

f1 =

S

A

a

A

a

, f2 =

S

A

a

A , f3 =

S

A A

a

, f4 =
S

A A
,

f5 =

S

A

a

, f6 =
S

A

, f7 =
A

a

16

Further calculation would show that given the treebank tc with size n in-
cluding k trees t1 and (n − k) trees t2, DOP1 would assign tree t1 probability
2k/(n + k) and tree t2 probability (n − k)/(n + k). Apply the DOP1 estimation
values to equation (2.1) to get the inconsistency of DOP1.

2.3 Some Variants of DOP Estimators

2.3.1 DOP Maximum Likelihood Estimator

The DOP Maximum Likelihood Estimator (DOPMLE) attempts to generate the
language such that probability of the input treebank is maximized.

Suppose we have the treebank tc, [Bonnema, 2003] shows that DOPMLE es-
timates probability of a tree in the treebank as its relative frequency in the
treebank. That means

PDOPMLE
(t) = rf tc (t) ∀ t ∈ tc

The probability assignment that maximizes the likelihood of tc assigns zero
probability to trees outside the treebank and non-zero to trees in the treebank.
DOPMLE probability assignment does not use the treebank as evidence to parse
the sentences outside the treebank. DOPMLE does not allow for generalization,
so it is not applicable in practice.

2.3.2 Bonnema DOP

In [Bonnema et al., 1999], each full parse tree is considered as a set of all its
derivations. Thus, the model views the corpus as the set of all of its derivations,
each consisting of a sequence of subtree substitutions. From this different view
of the corpus, the model assigns a weight to a fragment based on the fragment’s
participation in the set of treebank derivations. We omit here the detailed calcu-
lation of weight assignments but present the formula directly:

πBON(f) =
CFragtc

(f)

C tc (root(f))
× 2−N(f)

where N(f) is the function that returns the number of internal nodes of
fragment f .

Using the 2−N(f) factor, the model reserves a high probability mass for the
small fragments and a low probability mass for the big fragments, so it addresses
the original DOP1 problem of bias toward big trees [Bonnema, 1999]. Also, when
the trees in the language are generated by a PCFG, it was proved that Bonnema
estimator is unbiased and consistent.

17

However, [Buratto, 2003] reported a disappointing result when the model was
tested on the OVIS corpus3. We come back to the motivation of the model that
considers all the derivations of a tree equally likely and independent. In that
way, the model looses the dependencies of derivations of a tree. Also, the weight
assignment to fragments does not consider the co-occurrence of fragments in a
derivation that occurs in the treebank.

2.3.3 Back-off DOP

[Sima’an & Buratto, 2003] developed a different approach to parameter estima-
tion for DOP than earlier works.

Each fragment in the fragment corpus is identified as a complex fragment
or an atomic fragment . A fragment f is a complex fragment iff there exist
two fragments f1 and f2 such that f1 ◦ f2 = f ; the derivation 〈f1, f2〉 consti-
tutes a backoff of the fragment f . A fragment is atomic iff it has no backoff.
[Sima’an & Buratto, 2003] uses the backoff relation between a fragment and a
pair of other fragments to form a directed acyclic graph (called backoff graph). A
directed edge of the graph points from a node containing fragment f to another
node containing one of its backoff pairs. One fragment might be in the derivations
of length two of many other fragments, so one fragment can appear in different
nodes of the graph.

The estimation procedure now operates iteratively, top-down over the backoff
graph. In the first step, probabilities of fragments are assigned as their rela-
tive frequencies. In the subsequent steps, the model redistributes probability
mass among DOP fragments by transferring stepwisely probability mass from
complex fragments to their backoffs. The redistribution formula is similar to
the Katz smoothing method [Sima’an & Buratto, 2003]. The Katz smoothing
method helps a system handle the unseen events in the n-gram model. Back-off
DOP, on the other hand, just adapts the Katz formula to transfer probability
mass among fragments. [Zollmann, 2004] gave a review of the model and com-
pared the backoff DOP approach and the Katz smoothing method approach.

We believe that the backoff DOP weight assignment reserves higher proba-
bility mass for short derivations than for long derivations. By applying back-
off between fragments, the model tackles the assumption that derivations are
equally likely and independent which is employed by previous models. Also,
[Sima’an & Buratto, 2003] reported a very good empirical result when testing on
the OVIS corpus.

However, the formula used by [Sima’an & Buratto, 2003] deviates from Katz’s
formula. This makes the model problematic (Sima’an, personal communication).
When a fragment is a backoff of some other fragments, it will receive probability

3The reader can refer to chapter 5 for the description of OVIS corpus.

18

mass transferring several times. Intuitively, this situation does not affect the
above properties of the model since the transferred probability mass is just a
“smoothing” component. The existing work on backoff DOP does not yet provide
its mathematical justification.

2.3.4 A Consistent DOP Estimator

[Zollmann, 2004] proposed the first non-trivial consistent DOP (called DOP∗) es-
timator using held-out estimation. The training corpus is split into two parts:
the extraction corpus (EC corpus) and the held-out corpus (HC corpus). The
fragments of the EC corpus is extracted and assigned weights so that the likeli-
hood of the held-out corpus is maximized. According to [Zollmann, 2004], this
could be achieved by maximizing the joint probability of their shortest deriva-
tions . Fragments in EC are assigned weights based on their participation in the
shortest derivations of the parse trees in the held-out corpus.

The model first determines punkn: an estimate for the probability that a tree
will be unknown during the testing as the relative frequency of trees in held-out
corpus that are not derivable using the fragments of the extraction corpus.

punkn =
CHC ({t ∈ HC | t is not EC-derivable})

C (HC)

To each fragment f in the treebank’s fragment corpus, the model assigns a
weight πdop∗ (f):

πdop∗ (f) = β(f) + βsmooth(f). (2.2)

Readers are referred to [Zollmann, 2004] to see how the functions β(f) and
βsmooth(f) are derived and their detailed formulas. Here, we are interested in
the following properties of the weight assignment formula:

• β(f) 6= 0 if f participates in a shortest derivation of a tree in the held-out
corpus.

β(f) = 0 otherwise.

• βsmooth(f) = 0 if punkn = 0 and there are fragments with the same root as
f participating in a shortest derivation of a tree in the held-out corpus.

βsmooth(f) 6= 0 otherwise.

Thus if punkn 6= 0 then βsmooth(f) 6= 0. So from the weight formula (2.2), it is
clear that when punkn 6= 0, every fragment f in the treebank’s fragment corpus
is assigned a non-zero weight. According to [Zollmann, 2004], DOP∗ only assign

19

nonzero weights to a number of fragments that is linear in the number of depth-
1 fragments contained in the held-out corpus. This property of DOP∗ is only
achieved when punkn = 0. To explain it in another way, the efficiency of DOP∗

is obtained under the condition that every parse tree in the held-out corpus is
derivable from fragments in the extraction corpus. In practice, this condition is
often fails to be fulfilled because of the sparse data problem: even if the extraction
corpus is quite big, the held-out corpus might contain the parse tree of a sentence
with unknown words in the extraction corpus.

Moreover, the efficiency property of DOP∗, when achieved, would bring out
another shortcoming of the model: the coverage of DOP∗ is limited in comparison
with DOP1.

S

N

Peter

V

loves

N

Mary

,

S

N

Peter

V

loves

N

Susan

,

S

N

Mary

V

loves

N

Susan

Figure 2.3: A DOP∗ treebank example

Suppose we are given a treebank that contains the parse trees of three sen-
tences: “Peter loves Mary”; “Peter loves Susan”; “Mary loves Susan” as in
Figure (2.3).

S

N

Peter

V

loves

N

,

S

N V

loves

N

Susan

N

Peter

, N

Mary

, N

Susan

Figure 2.4: The DOP∗ fragments of the treebank example in Figure (2.3)

To maximize the coverage of DOP∗, we successively use each tree in the tree-
bank as the held-out corpus and get the other trees’ fragments that involved
in its shortest derivations. DOP∗ only assigns non-zero weights to fragments in
Figure (2.4). Now we have the sentence “Susan loves Mary” and use the DOP∗

20

model to parse the sentence. Using the fragments in Figure (2.4), the test sen-
tence can not be parsed. However, the sentence is easy to parse using the DOP1
model with the same treebank in Figure (2.3).

[Zollmann, 2004] proved that DOP∗ is consistent. This is a nice property.
The DOP∗’s results would improve with the treebank’s size. However, held-
out estimation is not a unique approach to get a consistent DOP estimator.
According to Sima’an (personal communication), it is possible to devise Back-off
DOP’s weight assignments so that consistency is achieved.

We believe that using held-out estimation as [Zollmann, 2004], in the training
process the held-out corpus probability is maximized. Also, DOP∗ can be always
an efficient DOP estimator if the smoothing component in the weight assign-
ment formula, βsmooth(f), only assigns weights to depth-1 fragments (Zollmann,
personal communication). The weakness of the model is the fact that the β(f)
component in the weight assignment formula only applies to fragments that par-
ticipate in the shortest derivations of the held-out corpus. This would result in a
low coverage of the model as explained in the treebank in Figure (2.3). Further
calculation of DOP∗’s weight assignment on the treebank in Figure (2.3) would
show that the model fails to preserve the frequencies of full parse trees in the
treebank.

2.4 Conclusion

We have introduced some NLP terminologies and the notations that we use in
this thesis. Also, we introduced the Data-Oriented Parsing framework. The first
DOP instantiation, DOP1, achieved state-of-the-art results but has some dis-
turbing properties such as bias toward large trees and bias and inconsistency in
estimation theory. Bonnema’s DOP model addressed the DOP1’s bias toward
big trees problem. Backoff DOP gave a sensible probability estimation to DOP
by structuring the set of fragments according to backoff order, tackling the in-
dependence assumption of previous work. [Zollmann, 2004] proposed the first
consistent DOP estimator using held-out estimation.

DOP estimators use the assumption that the treebank is a representation of
an STSG that generates the language. In all the mentioned DOP estimators, the
treebank is regarded as a grammar generator. The models do not provide any
properties of the estimations’ results on trees in the treebank. For two trees in
the treebank, it is possible that the models return a higher probability to the tree
that appears with the lower frequency.

In the next chapter, we step into parsing models from the estimation theo-
retical point of view. We discuss the consistency property of an estimator and

21

provide the definition of a rank consistent 4 estimator that preserves the ranking
of frequencies in the treebank.

4The details of rank consistent are in chapter 3, section (3.1).

22

Chapter 3

Rank consistent estimation

In this chapter, first we discuss the concept of a consistent estimator in statis-
tical parsing in section (3.1). A consistent estimator gives the intuition that the
estimator’s error tends to zero as the training corpus grows. There are several
definitions of a consistent estimator, the differences between definitions are in
how to evaluate the “estimator error”. We show by example that the consistency
property of an estimator, however, is dependent on the choice of an “estimator
error” function.

In order to help us to decide what is the best estimator to use in any situation,
we have to know about the properties of these estimators and choose those which
have good properties. The consistency property emphases that the difference
between estimator’s result and the true distribution of data in the language should
converge to zero as the training corpus size becomes large. However, in practice
the treebank is finite and the available data is sparse. The consistency property
does not predict the estimator’s performance on finite treebanks. In probabilistic
parsing, we would like to place a ranking on possible parses showing how likely
each one is, or return the most likely parse of a sentence. So it is important for
an estimator to estimate the true ranking probabilities. Section (3.2) will give
a formal definition of a rank consistent estimator that preserves the ranking of
parse trees’ probabilities. We will show that the original data-oriented parsing
model, DOP1, is not a rank consistent estimator.

Also, this chapter studies the relation of a rank consistent estimator and a
consistent estimator as the treebank size grows.

3.1 Consistency definition

Let P ∗
Ω be the probability distribution of the language over the set of full parse

trees Ω. A training corpus tc with size n is a finite sequence of n random data
from Ω. An estimator’s input is a training corpus and its output is a probability

23

distribution P for language Ω. In this thesis, we adopt the formal definition of
an estimator that appears in [Prescher et al., 2004].

Let estn be an estimator of training corpora of size n and let M be the set
of probability distributions over Ω. The estimator estn maps a training corpus of
size n to a probability distribution over language Ω as follows:

estn : Ωn → M tc ∈ Ωn ⇒ estn(tc) = P ∈ M .

range(estn) is the set of probability distributions that estimator estn returns.
Each probability distribution P appears in range(estn) according to the proba-
bility of the training corpus tc in Ωn that generated P .

Estimator est is a consistent estimator if as n grows to infinity, the probabil-
ity distributions in range(estn) approach the true probability distribution P ∗ of
language Ω.

An estimator error function Err(estn, P
∗) maps the estimator estn and prob-

ability distribution P ∗ to a non-negative value that measures the difference of set
range(estn) to the true distribution P ∗.

Thus estimator est is a consistent estimator if

lim
n→∞

Err(estn, P
∗) = 0

There are several ways to define a consistent estimator, and thus there are
several ways to define our estimator error function Err.

One approach is to define a loss function L : M × M → R. If P and P ′

are two probability distributions then L(P ′, P) returns a non-negative real value
that measures the loss of probability distribution P ′ with respect to P . The
estimation error Err(estn, P

∗) function takes into account the loss function value
L(P, P ∗) of all probability distributions P in range(estn).

For example: A possible definition of estimator error function is

Err(estn, P
∗) = max

tc∈Ωn
L(estn(tc), P ∗) .

[Johnson, 2002] proposes the estimator error (or risk function)

Err(estn, P
∗) =

∑

tc∈Ω

PΩn (tc) × L(estn(tc), P ∗)

where the loss function L(P, P ∗) is the mean square error of P to P ∗ over Ω

L(P, P ∗) =
∑

t∈Ω

P ∗(t) (P (t) − P ∗(t))2 . (3.1)

24

Another approach is to define estimator error as the probability mass of a set
of training corpora for which the loss function value is greater than a real value
ε.

Err(estn, P
∗) =

∑

L(estn(tc),P ∗)>ε

P ∗
Ωn(tc)

In [Prescher et al., 2004] L(P, P ∗) := |P − P ∗| thus the estimator error func-
tion is:

Err(estn, P
∗) =

∑

|estn(tc)−P ∗|>ε

P ∗
Ωn(tc) .

In the following example, an estimator est and two estimation error functions
Err1 and Err2 are given. We will show that estimator est is consistent when
estimator error function Err1 is chosen and it is not consistent when Err2 is
chosen.

Example 3.1.1 We define Err1(estn, P
∗) as in [Johnson, 2002]

L1(P
∗, estn(tc))(t) = (estn(tc)(t) − P ∗(t))2

L1(P
∗, estn(tc)) =

∑

t∈Ω

P ∗(t)(estn(tc)(t) − P ∗(t))2

Err1(estn, P ∗) =
∑

tc∈Ωn

P ∗(tc)
∑

t∈Ω

P ∗(t)(estn(tc)(t) − P ∗(t))2

Estimator error function Err2:

If we consider the loss value of probability distribution P ′ w.r.t probability
distribution P as the total probabilities of trees for which probability distribution
P ′ is different than probability distribution P , then the loss function L2(P

′, P)
is defined as follows:

L2(P
∗, estn(tc))(t) =

{
0 if P ∗(t) = estn(tc)(t)
1 if P ∗(t) 6= estn(tc)(t)

=⇒ L2(P
∗, estn(tc)) =

∑

t∈Ω

P ∗(t)L2(P
∗, estn(tc))(t)

Err2(estn, P ∗) =
∑

tc∈Ωn

P ∗(tc)L2(estn(tc), P ∗)

Let Ω be a set of two trees Ω = {t1, t2} and the language P ∗
Ω with distribution:

P ∗
Ω(t1) = P ∗

Ω(t2) = 1
2.

25

Let tc be a training corpus size n of Ωn, estimator estn is defined as follows:

estn(tc)(t1) =
1

2
−

1

n
estn(tc)(t2) =

1

2
+

1

n
.

i) Examine the consistency property of est when the estimation error func-
tion is Err1

L1(estn(tc), P ∗)(t1) = (estn(tc)(t1) − P ∗(t1))
2 = (

1

2
−

1

n
−

1

2
)2 =

1

n2

L1(estn(tc), P ∗)(t2) = (estn(tc)(t2) − P ∗(t2))
2 = (

1

2
+

1

n
−

1

2
)2 =

1

n2

L1(estn(tc), P ∗) =P ∗(t1)L1(estn(tc), P ∗)(t1) + P ∗(t2)L1(estn(tc), P ∗)(t2)

L1(estn(tc), P ∗) =
1

2n2 +
1

2n2 =
1

n2

⇒ Err1(estn, P
∗) =

∑

tc∈Ωn

P ∗(tc)
∑

t∈Ω

P ∗(t)L1(estn(tc), P ∗)(t)

︸ ︷︷ ︸

=1/n2

=
∑

tc∈Ωn

P ∗(tc)
1

n2

=
1

n2

∑

tc∈Ωn

P ∗(tc) =
1

n2

⇒ lim
n→∞

Err1(estn, P
∗) = lim

n→∞

1

n2 = 0.

So est is consistent with estimation error function Err1.

ii) Examine the consistency property of est when the estimation error
function is Err2.

Because ∀n : estn(tc)(t1) 6= P ∗(t1) and estn(tc)(t2) 6= P ∗(t2) so:

∀n : L2(estn(tc), P ∗)(t1) = L2(estn(tc), P ∗)(t2) = 1

⇒ Err2(estn, P
∗) =

∑

tc∈Ωn

P ∗(tc)
∑

t∈Ω

P ∗(t)L2(estn(tc), P ∗)(t)
︸ ︷︷ ︸

=1

=
∑

tc∈Ωn

P ∗(tc)
∑

t∈Ω

P ∗(t) = 1

⇒ lim
n→∞

Err2(estn, P
∗) = lim

n→∞
1 = 1 6= 0.

So est is not consistent with estimation error function Err2.

26

As the training corpus grows to the limit, a consistent estimator’s error tends
to zero. Though the consistency property of an estimator is intuitively appealing,
the above discussion shows that whether an estimator is consistent or not depends
on the definition of estimator error. In this thesis, we use the estimator error
defined by [Johnson, 2002], unless it is explicitly stated otherwise.

The consistency property of an estimator expresses the estimator’s results
when the training corpus size grows to infinity. In practice, the training corpus
is always a finite sequence of trees. Consistency does not give us information
about the estimator when the training corpus size is finite. In the next section,
we introduce the property of rank consistency which means that given a training
corpus, the estimator’s result is always consistent with the ranking frequency of
trees in the training corpus.

3.2 Definition of Rank Consistent Estimator

Let s be a sentence; the parser evaluates the probability of a tree t to be the
parse of s by finding P (t|s). Tree t∗ is the parse of s if

t∗ = arg max
t

P (t|s) = arg max
t

P (t, s)

P (s)
= arg max

t
P (t, s)

Given tree t, sentence s is always determined, thus finding probability P (t, s) is
equivalent to finding probability of the tree, P (t).

The estimator should assign probabilities to all trees in the language using
a finite treebank as the language’s partial evidence. The most famous criterion
for choosing probabilities is Laplace’s Principle of Insufficient Reason (or Indif-
ference Principle) [Guiasu & Shenitzer, 1998]: when one has no information to
distinguish the probabilities of two events the best strategy is to consider them
equally likely. Applying Laplace’s Principle, the estimator should find a proba-
bility assignment that agrees with the information in the treebank. One crucial
constraint is that when two full parse trees appear in the treebank with the same
frequency the estimator should always assign them the same probability. Also,
when one tree appears in the treebank with a higher frequency than another tree,
it should be assigned a higher probability than the other tree.

Let Ω be the language with probability distribution P ∗; let est(tc) be the
estimator induced by training corpus tc. The estimator est(tc) will give the
correct most probable parse of a sentence or a correct priority of trees to be the
parse of the sentence if for any tree t1 and t2 of the language Ω

P ∗(t1) ≤ P ∗(t2) implies est(tc)(t1) ≤ est(tc)(t2).

Let t1 and t2 be two trees in training corpus tc, we have P ∗(t1) ≤ P ∗(t2)
implies rf tc (t1) ≤ rf tc (t2) or C tc (t1) ≤ C tc (t2)

27

We define the concept of rank consistency that adopts the mentioned ranking
preservation property.

Definition 3.2.1 An estimator est is rank consistent if for any training corpus
tc, if tree t1 and tree t2 are in corpus tc with frequency C tc (t1) and C tc (t2) re-
spectively, the estimator est induced by tc will assign tree t1 a greater probability
than t2 if C tc (t1) is greater than C tc (t2) and vice versa. �

Contemplation

The rank consistency is a necessary property of an estimation. It guarantees
that the estimation preserves the trees’ frequencies in the treebank. The rank
consistent estimator should assign its probability in such a way that the unknown
tree’s probability is an adaption of the probabilities of other similar trees that
appear in the treebank.

If we assume that the unknown tree is built up from fragments that appear in
the treebank as in DOP framework, the estimator should not only preserve the
ranking consistency of full parse trees but also preserve the ranking consistency
of fragments that appear in the treebank.

3.2.1 The failure of DOP1

In DOP1, [Bod, 1995] defines the weight of a fragment t of category X as its
frequency in the tree bank divided by the frequency of all subtrees with the same
category X.

In this section, we show that DOP1 is not rank consistent where the selection
criterion is most probable parse or most probable derivation.

DOP1 most probable parse is not rank consistent

[Johnson, 2002] proved that DOP1’s most probable parse is not consistent and
biased. We will show that it is not rank consistent either.

We take as an example the tree bank as given in Figure (3.1), where tree (a)
appears two times in the corpus, tree (b) appears once and tree (c) appears
nine times. Rank consistency requires that tree (a), which appears twice, should
be assigned a higher parse tree probability than tree (b), which appears once
in the corpus. This tree bank will generate the corpus fragments as shown in
Figure (3.2). The numbers in brackets under fragments indicate their DOP1
weights.

Consider two trees of depth two S, (A, (a, ())) and S, (A, (a, ()), (b, ()))) of this
corpus. We see the difference of the trees’ frequencies and the trees’ DOP1 parse

28

tree(a) tree(b) tree(c)

S

A

a

S

A

A

a b

a b

(2) (1) (9)

Figure 3.1: Example tree bank

a

A

S

A

A

a b

a b

(1/6) (10/12)

S

a

A

A

S

(3/6)

(2/6)

(2/12)

Figure 3.2: Fragments of tree bank in figure 3.1

S

A

a

S

A

a b

S

A

a b

S

A

a

f()= 2 f()=1>

P ()=15/36 P ()=21/36<
DOP1DOP1

Figure 3.3: Frequencies and DOP1 parse tree probabilities of two trees

29

tree probabilities as depicted in Figure (3.3). DOP1 assigns tree (a) a lower parse
tree probability than tree (b). Thus, when calculating the most probable parse of
a tree, DOP1 does not give the result consistent with trees’ frequencies. Hence,
DOP1 is not rank consistent.

DOP1 most probable derivation is not rank consistent

A derivation probability is calculated as product of its fragments’ weights. In
DOP1 a fragment’s weight is its relative frequency. If two trees appear in the
corpus, these two trees are also in fragment corpus. It would be expected that
DOP1’s most probable derivation probabilities would be their weights in the frag-
ment corpus. However, this is not always true. If one tree appears in the corpus
with low frequency and its subtrees appear in the corpus with high frequencies,
a derivation that involves more fragments may be the DOP1 ’s most probable
derivation. Thus DOP1’s most probable derivation is not consistent with the
tree’s low frequency in the corpus and it is not rank consistent.

We use the tree bank in Figure (3.1) again as an example. From the
fragments’ weights in Figure (3.2) we have the most probable derivation of
two trees as depicted in Figure (3.4). DOP1 most probable derivation as-
signs tree S, (A, (a, ()), (b, ()))) higher probability than tree S, (A, (a, ())) though
S, (A, (a, ()), (b, ()))) has lower frequency in the tree bank than S, (A, (a, ())). So
DOP1 most probable derivation is not rank consistent.

Most probable
derivation probability

S

A

a

S

A

a

S

A

a b

Most probable
derivation probability

= weight of() =2/6

S S

A a b= =3/6 . 10/12 =5/12>2/6

Figure 3.4: DOP1 most probable derivation of two trees in the corpus

30

3.2.2 A rank consistent estimator versus a consistent es-
timator

Consistency and rank consistency are two different properties of estimators.

A rank consistent estimator estimates the probabilities of trees in the corpus
the same ranking as their frequencies. It uses the assumption that the ranking
of trees’ frequencies in the corpus is also the ranking of trees’ probabilities in
the language. This assumption is quite reasonable because the training corpus
is the only data that the estimator observes from the language. The consistency
definition considers the estimator’s result from all the possible training corpora.
In this section, we study if a consistent estimation preserves the ranking of tree
probabilities as their relative frequencies in the corpus.

We give an example to show that when the training corpus grows to infinity,
a consistent estimator is not a rank consistent estimator.

However, for any two trees with different probabilities in the language, the
total probability of training corpora such that a consistent estimator yields an
inconsistent ranking to these trees tends to zero.

In the limit a consistent estimator is not guaranteed to be rank con-

sistent

We use again the estimator est in example (3.1.1).

Let Ω = {t1, t2} and P ∗
Ω(t1) = P ∗

Ω(t2) = 1
2

tc is a training corpus sized n of Ω, estimator estn is defined as follows:

estn(tc)(t1) =
1

2
−

1

n
estn(tc)(t2) =

1

2
+

1

n
.

Example (3.1.1) shows that estimator est is consistent when the mean-square
error is used as estimator error function. However, estimator est always selects
the tree t2 as a more probable tree than tree t1. Now we prove that est is not
rank consistent.

Let C tc (t1) and C tc (t2) be the frequencies of t1 and t2 in training corpus
tc. The probability of a training corpus tc size n is:

P ∗(tc) = (P ∗(t1))
C tc(t1)(P ∗(t2))

C tc(t2)

= (
1

2
)C tc(t1)(

1

2
)C tc(t2) = (

1

2
)C tc(t1)+C tc(t2) = (

1

2
)n.

Estimator est estimates probability of t1 less than t2. So if in training corpus
tc frequency of tree t1 is equal or greater than frequency of tree t2, the estimator
est is not consistent with their relative frequencies.

31

Because each training corpus tc of size n has the same probability 1/2n, the
total probabilities of training corpora in which the frequency of tree t1 is equal
or greater than the frequency of tree t2 is at least 1/2 or total probabilities of
training corpora size n that the estimator est estimates trees’ probabilities not
consistent with trees’ frequencies is at least 1/2 for all n.

Estimator est and language Ω above are examples of a language in which
there are two trees with the same true distribution while estimator est, though
consistent, always give the probability of one tree different than the other tree.
This situation is depicted in the graph of Figure(3.5)

P*(t) =P*(t)
1 2

TC size

est (t)

est (t)

TC

TC

1

2

Figure 3.5: A consistent estimator est and most probable derivation of two trees
in the corpus

For any tree in the language, the difference between a consistent estimator’s
result and tree’s actual distribution approaches zero as the training corpus size
grows to infinity. However, this property of a consistent estimator does not
imply that in the limit the estimator estimates probabilities trees in the corpus
consistent with their actual ranking or their relative frequency in the corpus.

In the previous section, we showed that a consistent estimator does not pre-
serve the ranking of relative frequencies of all trees in the corpus. However, for
any two trees t1 and t2 with different probabilities in the language, we will prove
that the consistent estimator estimates their probabilities consistent with their
relative frequencies when the corpus size grows to infinity.

The intuition above is stated formally by the following theorem (3.2.2).

Given corpus tc, a consistent estimator est estimates tree t1 and t2 prob-
abilities estn(tc)(t1) and estn(tc)(t2) consistent with ranking of their relative
frequencies rf tc (t1) and rf tc (t2) if

(estn(tc)(t1) − estn(tc)(t2))(rf tc (t1) − rf tc (t2)) > 0 .

32

Theorem 3.2.2 Let t1 and t2 be two trees in language Ω with different proba-
bilities. If est is a consistent estimator of Ω, then for all q > 0 there exists an
integer N that

∑

(estn(tc)(t1)−estn(tc)(t2))(rftc(t1)−rftc(t2))<0

P ∗(tc) < q ∀n > N

To prove theorem (3.2.2) we need the following lemma:

Lemma 3.2.3 Let Ω be language with true distribution P ∗, est be a consistent
estimator. For all trees t0 of Ω and for any real value ε > 0, q > 0 there exists N
such that

∑

|estn(tc)(t0)−P ∗(t0)|>ε

P ∗(tc) < q ∀n > N

Proof: Because est is a consistent estimator so ∀q′ > 0, there exists N such that

∑

tc∈Ωn

P ∗(tc)
∑

t∈Ω

P ∗(t)(P ∗(t) − estn(tc)(t))2 < q′ ∀n > N (3.2)

Choose q′ = q.P ∗(t0).ε
2 and replace to (3.2):

∑

tc∈Ωn

P ∗(tc)
∑

t∈Ω

P ∗(t)(P ∗(t) − estn(tc)(t))2 < q.P ∗(t0).ε
2 (3.3)

Applying

P ∗(t0)(P
∗(t0) − estn(tc)(t0))

2 <
∑

t∈Ω

P ∗(t)(P ∗(t) − estn(tc)(t))2

to (3.3). We have

∑

tc∈Ωn

P ∗(tc)P ∗(t0)(P
∗(t0) − estn(tc)(t0))

2 < q.P ∗(t0).ε
2 (3.4)

Applying

∑

tc∈Ωn,|estn(tc)(t0)−P ∗(t0)|>ε

P ∗(tc) <
∑

tc∈Ωn

P ∗(tc)

to (3.4) we have:

∑

tc∈Ωn,|estn(tc)(t0)−P ∗(t0)|>ε

P ∗(tc)P ∗(t0) (P ∗(t0) − estn(tc)(t0))
2

︸ ︷︷ ︸

>ε2

< q.P ∗(t0).ε
2.

33

(3.5)

⇒
∑

tc∈Ωn,|estn(tc)(t0)−P ∗(t0)|>ε

P ∗(tc)P ∗(t0).ε
2 < q.P ∗(t0).ε

2. (3.6)

⇒
∑

tc∈Ωn,|estn(tc)(t0)−P ∗(t0)|>ε

P ∗(tc) < q (3.7)

qed

Note [Zollmann, 2004] proposes a definition of strong consistent estimation.
According to him, an estimation is strongly consistent if the supremum difference
of the estimation result and the true distribution in the whole language con-
verges to zero as the training corpus grows large. Then in (theorem (3.1.1),
[Zollmann, 2004]), he proved that a strong consistent estimation is also a John-
son consistent estimator. The remaining question goes in the opposite direction
of his theorem: whether a consistent estimation is also a strong consistent esti-
mation? In our lemma (3.2.3), we solve a somewhat weaker form of the question.
Given any tree t0, in the limit a consistent estimation will converge on its true
probability. The lemma serves as the main step in the proof of theorem 3.2.2.

Proof of 3.2.2. We use lemma (3.2.3) to prove theorem (3.2.2) as follows:

Choose ε =
1

2
|P ∗(t1) − P ∗(t2)|, because P ∗(t1) 6= P ∗(t2) so ε > 0.

Suppose P ∗(t1) < P ∗(t2) and

|estn(tc)(t1) − P ∗(t1)| < ε and |estn(tc)(t2) − P ∗(t2)| < ε

⇒ estn(tc)(t1) < estn(tc)(t2) (3.8)

Similarly, if

|rf tc (t1) − P ∗(t1)| < ε and |rf tc (t2) − P ∗(t2)| < ε

⇒ rf tc (t1) < rf tc (t1) (3.9)

From (3.8) and (3.9) we have

(estn(tc)(t1) − estn(tc)(t2))(rf tc (t1) − rf tc (t2)) > 0

34

So if (estn(tc)(t1) − estn(tc)(t2))(rf tc (t1) − rf tc (t2)) < 0, then

|estn(tc)(t1) − P ∗(t1)| > ε or |rf tc (t1) − P ∗(t1)| > ε

or |estn(tc)(t2) − P ∗(t2)| > ε or |rf tc (t2) − P ∗(t2)| > ε

where ε =
1

2
|P ∗(t1) − P ∗(t2)|

(3.10)

Choose q′ =
q

4
est is a consistent estimator, apply lemma (3.2.3): there exists Nest1 > 0,

Nest2 > 0 that

∑

tc∈Ωn,|estn(tc)(t1)−P ∗(t1)|>ε

P ∗(tc) < q′ ∀n > Nest1

and
∑

tc∈Ωn,|estn(tc)(t2)−P ∗(t2)|>ε

P ∗(tc) < q′ ∀n > Nest2

Relative frequency estimator (DOPMLE) is also a consistent estimator, apply
lemma (3.2.3): there exists NMLE1

> 0 and NMLE2
> 0 that

∑

tc∈Ωn,|rf(tc)(t1)−P ∗(t1)|>ε

P ∗(tc) < q′ ∀n > NMLE1

∑

tc∈Ωn,|rf(tc)(t2)−P ∗(t2)|>ε

P ∗(tc) < q′ ∀n > NMLE2

Choose N = max{Nest1 , Nest2 , NMLE1
, NMLE2

}, we have

∑

tc∈Ωn,|estn(tc)(t1)−P ∗(t1)|>ε

P ∗(tc) < q′ ∀n > N (3.11)

∑

tc∈Ωn,|rf tc(t1)−P ∗(t1)|>ε

P ∗(tc) < q′ ∀n > N (3.12)

∑

tc∈Ωn,|estn(tc)(t2)−P ∗(t2)|>ε

P ∗(tc) < q′ ∀n > N (3.13)

35

∑

tc∈Ωn,|rf tc(t2)−P ∗(t2)|>ε

P ∗(tc) < q′ ∀n > N (3.14)

Sum over (3.11), (3.12), (3.13) and (3.14):
∑

tc∈Ωn,|estn(tc)(t1)−P ∗(t1)|>ε

P ∗(tc) +
∑

tc∈Ωn,|rf tc(t1)−P ∗(t1)|>ε

P ∗(tc) +

∑

tc∈Ωn,|estn(tc)(t2)−P ∗(t2)|>ε

P ∗(tc) +
∑

tc∈Ωn,|rf tc(t2)−P ∗(t2)|>ε

P ∗(tc) <

q′ + q′ + q′ + q′ = q ∀n > N

⇒
∑

tc∈Ωn,|estn(tc)(t1)−P ∗(t1)| >ε

or |rf tc(t1)−P ∗(t1)| >ε

or |estn(tc)(t2)−P ∗(t2)| >ε

or |rf tc(t2)−P ∗(t2)| >ε

P ∗(tc) < q ∀n > N (3.15)

Apply result in (3.10) to (3.15) we have
∑

(estn(tc)(t1)−estn(tc)(t2))(rf tc(t1)−rf tc(t2))<0

P ∗(tc) < q ∀n > N

qed

3.3 Conclusion

We have discussed the consistency property of probability estimation in Natural
Language Processing. A consistent estimator gives the intuition of an estimator
assigning true probabilities for trees as their true probability in the language when
the training corpus grows to infinity. We show by example that the consistency
property of an estimator depends on the definition of error function.

The training corpus is the only evidence of the language for an estimator. If
one tree appears with higher frequency than the other tree in a training corpus,
intuitively the former tree has higher probability in the language. We defined
this estimation’s property as rank consistent and proved that the commonly used
DOP1 is not rank consistent.

We showed that a consistent estimation does not estimate trees’ probabilities
consistent with the ranking of trees’ frequencies in the whole tree bank but for

36

any two trees with different actual probabilities in the language, in the limit a
consistent estimator estimates their probabilities consistent with their frequencies
in the tree bank.

In the following chapter, we present a nontrivial rank consistent DOP esti-
mation.

37

Chapter 4

The new DOP estimation - DOPα

4.1 Overview

For estimation, a treebank serves as the only evidence of the language, thus
the distribution in the treebank is assumed to reflect the true distribution. The
purpose of estimation is to approximate this true distribution of the language from
the treebank. In the previous chapters, we discuss the rank consistency property
that the ranking of parse tree probabilities of trees in the treebank consistent
with their frequencies. In this chapter, we will present a rank consistent DOP
estimator.

The DOP estimations assume that trees of the language are generated by an
STSG that is encoded in the treebank. Thus in a rank consistent DOP estimation,
the treebank should be regarded not only as a stochastic generating system but
also as a sample of the stochastic process.

A naive solution for the DOP model, DOPMLE, assigns probabilities to trees in
the corpus as their relative frequencies and zero probability for the trees outside
the corpus. However, the treebank is finite and just contains a portion of the
language. The DOPMLE is extremely overfitting and against the DOP spirit that
a new sentence is parsed by combining the syntactic analyses that already appear
in the treebank.

To keep the DOP spirit and avoid the overfitting, the treebank should be
viewed not only as a sequence of trees but also as all the fragments that can be
extracted as DOP prescribes. This is represented by the fragment corpus of the
treebank. Thus the estimator should generate not only the full parse trees in the
treebank but also generate all fragments in the fragment corpus. One constraint
we think crucial is that the estimator should preserve the ranking of relative
frequencies of fragments in the fragment corpus. In this way, the estimator also
preserves the ranking of frequencies of trees in the treebank, because trees in the
treebank are also fragments of the fragment corpus. The estimator that preserves

38

the ranking of the fragments is also rank consistent.

Now we discuss the roles of extracted fragments and their weights in the DOP
estimation process. If we retrieve only depth-one fragments from the treebank,
the resulting PCFG model also generates all the trees and subtrees that DOP
generates. However, the PCFG model does not account for the co-occurrence of
rules. In DOP, all the fragments of the treebank are extracted. This makes DOP
able to capture all the long distance dependencies of the constituents, related
lexical items and structures that appear in the treebank.

NP

a

DT N

book

NP

the

DT N

NP

the

DT N

magazine book

tree a tree b tree c

Figure 4.1: Tree (a) and (b) are fragments of the corpus that contains two sen-
tences “I read a book” and “He bought the magazine” while tree (c) is not a
fragment of the corpus. All three trees can be derived from smaller fragments of
the corpus.

Let us consider the toy treebank in Figure (2.1) that contains the parse trees
of two sentences “I read a book” and “He bought the magazine”. Tree (a) and
tree (b) in Figure (4.1) are fragments of the treebank’s fragment corpus with
relative frequencies 0.1 and 0.1 respectively while tree (c) is not a fragment of the
treebank. However, all trees (a), (b) and (c) can be generated from their smaller
subtrees in the fragment corpus. In DOP, fragments (a), (b) are included in the
STSG rules to account for the co-occurrence of their sub-structures in the corpus.

Thus the estimation should also assign weights to fragments in such a way that
the joint dependency of the fragment’s subtrees are recovered. The dependency
of a fragment’s sub-structures is captured by the fragment’s relative frequency in
the fragment corpus that DOP extracts from the treebank.

Suppose the STSG G = (VN , VT , S, R, π) generates the language. The STSG
grammar treats fragments as if they were disjoint. The dependencies of sub-
structures in a tree are recovered by summing up over all the derivations of the
tree. Let T be a full parse tree of grammar G. A derivation of T represents a
possible combination of fragments in G. Also, a derivation of T is one possible
way of generating T from grammar G. The parse tree probability of T , PG (T),
is the sum of all the derivations’ probabilities of T .

The STSG model G not only generates full parse trees, it also generates
partial trees whose leaves are non-terminals or trees whose roots are not the start

39

symbol of the grammar. However, the existing STSG definitions of derivation and
parse tree probability are only applicable to full parse trees. As we will explain in
section (4.2), the STSG partial derivation concept fails to capture all the possible
combinations of fragments to a tree. To support the new view of the corpus as
its collection of fragments, the STSG derivation definition is generalized so that
it is applicable to an arbitrary tree. We call it derivation∗. A derivation∗ of tree
t, according to grammar G is a possible combination of fragments in G to tree t.
The formal definition of derivation∗ is given in section (4.2). We define the parse
probability of t, PG (t), is the sum of all derivations∗ probabilities. It specifies
how likely t is generated from grammar G and also captures the dependencies
of sub-structures in t. For a full parse tree, the new notions of derivation∗ and
probability coincide with the original definition of derivation and full parse tree
probability.

From the above discussion, we see the co-occurrences of subtrees from the
treebank’s point of view and from the STSG’s point of view. From the treebank’s
point of view, the co-occurrences of a tree’s sub-structures is captured by the
tree’s relative frequency in the treebank’s fragment corpus. From the STSG
point of view, the co-occurrences of a tree’s sub-structures are captured by the
parse probability of the tree. So how should the estimator assign weights to
fragments such that their probabilities reflect their relative frequencies in the
fragment corpus and also the model is rank consistent?

One answer would be an imaginary estimator γ that assigns weights to frag-
ments such that Pγ (f) = rf RFrag (f) for all fragments f in the fragment corpus
Fragtc.

1 However, this condition is too strict: There are corpora of a language
such that this condition can not be fulfilled. For example, if we have the tree-
bank in Figure (4.2) and its fragment corpus is in Figure (4.3), we cannot assign
weights to its fragments that fulfill the condition Pγ (f) = rf RFrag (f).

To fulfill the condition Pγ (f) = rf RFrag (f), the weight of

S

A

a b

is calculated

1The model γ is different from DOP1. DOP1 assigns weights to fragments as their relative
frequencies. Thus in DOP1, the relative frequency of a fragment just takes part as the proba-
bility of one derivation of the fragment whereas the probability of the fragment is the sum of
all the derivations probabilities. The model γ assigns weights to fragments such that sum of
all the derivations probabilities of a fragment is equal to its relative frequency

40

tree(a) tree(b) tree(c)

S

A

a

S

A

A

a b

a b

(2) (1) (9)

Figure 4.2: A treebank example

a

A

S

A

A

a b

a b

(1/6) (10/12)

S

a

A

A

S

(3/6)

(2/6)

(2/12)

Figure 4.3: Fragments of treebank in figure 4.2, the numbers in brackets are the
fragments’ relative frequencies.

41

from its parse tree probability as follows:

Pγ

S

A

a b

= πγ(
S

A

) × πγ(
A

a b
) + πγ(

S

A

a b

) (4.1)

Because

πγ(
S

A

) = Pγ

S

A

 = rf RFrag

S

A

πγ(
A

a b
) = Pγ

A

a b

 = rf RFrag

A

a b

 .

Apply the above equations to (4.1), we have

⇒ rf RFrag

S

A

a b

= rf RFrag

S

A

 × rf RFrag

A

a b

 + πγ(

S

A

a b

)

⇒
2

6
=

3

6
×

10

12
+ πγ(

S

A

a b

)

⇒ πγ(

S

A

a b

) =
2

6
−

5

12
< 0.

So it is impossible to assign weights to fragments to fulfill the constraint
Pγ (f) = rf RFrag (f) for all fragments f .

We cannot build a model for which Pγ (f) = rf RFrag (f) for all fragments f .
However, we want to build a model such that probabilities of fragments capture
their relative frequencies and the probabilities of fragments preserve the ranking
of their relative frequencies. The most appropriate answer is to assign weights

42

to fragments so that the parse probabilities of the fragments are proportional to
their relative frequencies in the fragment corpus. We call this model DOPα.

That means we will determine a real value α such that Pdopα(f) = α ×
rf RFrag (f) for all fragments f in Fragtc. We call α the proportionality factor .

In the following subsection, we show that assigning weights to fragments such
that their probabilities are proportional to their relative frequencies makes DOPα
rank consistent. The definition of derivation∗ is in section (4.2). The estimation
procedure of DOPα is in section (4.3).

4.1.1 DOPα is rank consistent

In DOPα, we treat the corpus not only as a multi-set of parse trees but also as
a multi-set of subtrees.

Let T be a full parse tree in the treebank, T is also a fragment in the treebank’s
fragment corpus.

Pdopα(T) = α×rf RFrag (T) = α×
CFragtc

(T)

C (RFragtc(T))
= α×

C tc (T)

C (RFragtc(T))
(4.2)

Let T1 and T2 be two trees in the treebank tc and C tc (T1) ≤ C tc (T2). These
two trees have the root as the start symbol of the model. Trees T1 and T2 are
also fragments in the fragment corpus of the same root. From equation (4.2) we
have Pdopα(T1) ≤ Pdopα(T2). So DOPα is rank consistent.

4.2 Definition of derivation∗

When calculating the probability of one full parse tree, we calculate probabilities
of all the derivations of the parse tree, that means all the possible combinations
of the fragments to the tree. So if T is a subtree of the tree, we have to consider
all the possible combinations of the fragments to the tree T . The set of all the
possible combinations of the fragments to an arbitrary tree T is not captured by
the existing STSG partial derivation or derivation definition.

In DOP1, a partial derivation 〈t1, t2, . . . tk〉 is a finite sequence of leftmost
nonterminal substitutions. The result of a partial derivation is a tree that might
have nonterminals appearing on the leaves. The definition of a tree’s partial
derivation restricts the number of possible combinations of subtrees to the tree
and is not suitable to our goal.

For example take tree (T) in Figure (4.4). Tree T has a nonterminal node
NP in its leaves. Let 〈t1, t2, . . . , tk〉 be one partial derivation of T , then t1 has
the node NP as its leftmost non-terminal node. If the length of the derivation is

43

S

NP VP

V NP

Mary

NP

Mary

NP

Tree (T)

S

NP VP

V

a possible combination of T ’s subtrees

Figure 4.4: tree(T) and a possible combination of its subtrees

greater than or equal to two, tree t2 will be substituted on this NP node, but the
node NP is a leaf node of T so it is impossible for the length of the derivation to
be greater than or equal two. Tree (T) has only one leftmost partial derivation
i.e. tree (T) itself. However, tree (T) is the result of the combination of two trees

S

NP VP

V NP

and
NP

Mary

which is depicted in the right side of Figure (4.4).

We define derivation∗ of an arbitrary tree T so that the set of derivation∗ of
tree T covers all possible combinations of fragments to tree T . When T is a parse
tree whose leaves are terminal symbols, the notion derivation∗ of T is equivalent
to the STSG derivation of T and vice versa. As for STSG’s, probability of tree
T is the sum of the probabilities of T ’s derivations∗.

Definition

Definition 4.2.1 A tree t is called a root subtree of tree T if t is a fragment of
T and the root of t corresponds to the root of T �

Example An example of a tree’s root subtree is in Figure (4.5)

Definition 4.2.2 If t is a root subtree of T then a non-terminal leaf node of t is
called a T-substitutable node if it corresponds to a non-leaf node in T . �

Example In Figure (4.6), tree t is a root subtree of T . In tree t, NP (the
non-terminal with italic font in dotted circle) is the only T-substitutable node

44

not a root subtree of Ta root subtree of T

VPNP

S

NP

S

Tree (T)

V

VP

NP

MaryV

VP

NP

Mary

Figure 4.5: An example of a root subtree

S

NP VP

V NP

Tree (T)

Mary

S

NP VP

V NP

tree (t)

Figure 4.6: An example of a T-substitutable node. The “NP” node in dotted
circle is tree t’s only T-substitutable node.

45

Note When T is a full parse , and t is a root subtree of T , the T-substitutable
nodes of t are also its leftmost non-terminal leaves.

Definition 4.2.3 If t1 is a root subtree of tree T and the leftmost T-substitutable
node of t1 is the same as the root of some tree t2, then the T-composition of t1
and t2, t1 ◦T t2, is a copy of tree t1 in which t2 has been substituted into the
leftmost T-substitutable node. �

Example An example of T-composition is in Figure (4.7)

o
T

VP

V NPVP

V NP

VP

V NP

Tree (T)

=

NP

Mary

VP

S

NP

S

NP

S

Figure 4.7: An example of T-composition.

Note If T is a tree whose leaves are terminal symbols and t is a root subtree
of T then the leftmost T-substitutable nodes of T are also the leftmost non-
terminal leaf of t. So the T-composition of t1 and t2, t1 ◦T t2, is the same as the
DOP composition of t1 and t2, t1 ◦ t2

Definition 4.2.4 A tuple of trees < t1, t2, . . . tk > is a derivation∗ of tree T iff
the T-composition of t1, t2, . . . tk yields tree T , i.e., t1 ◦T t2 ◦T . . . ◦T tk = T �

Example An example of derivation∗ is in Figure (4.8)

Note When T is a tree whose leaves are terminal symbols, the T-
composition operator gives the same result as the composition operator for
STSG’s so each derivation∗ of tree T is also a STSG’s derivation of T and the
set of derivations∗ and STSG’s derivations are the same.

Definition 4.2.5 If 〈t1, t2, . . . tk〉 is a derivation∗ of tree T , the probability of
this derivation∗ is πdopα (t1)× πdopα (t2)× . . .× πdopα (tk) and probability of tree
T is the sum of the probabilities of its derivations∗. �

46

Mary

NP

S

NP

V

VPV NP

VP

Mary

NPS

NP VP

o
T

o
T

V NP

VP

Mary

NPS

NP VP

, ,

=

Tree (T)

Figure 4.8: An example of a derivation∗ of T

4.3 DOPα Estimation Procedure

We repeat again the condition of DOPα. For all fragments f :

α × rf RFrag (f) = Pdopα(f) (4.3)

Pdopα(f) =def
∑

d is a derivation∗of f

Pdopα(d) (4.4)

Combining equation (4.3) and equation (4.4)we have

α × rf RFrag (f) =
∑

d is a derivation∗of f
length of d is 1

Pdopα(d) +
∑

d is a derivation∗of f
length of d is greater than 1

Pdopα(d)

=
∑

d=<f>

Pdopα(d) +
∑

d=<f1,f2,...,fn>, n>1

Pdopα(d)

= πdopα (f) +
∑

d=<f1,f2,...,fn>, n>1

Pdopα(d)

⇒ πdopα (f) = α × rf RFrag (f) −
∑

d=<f1,f2,...,fn>, n>1

Pdopα(d)

Denote P−
dopα(f) =

∑

d=<f1,f2,...,fn>, n>1

Pdopα(d).

We derive the formula for DOPα weight in Figure (4.9)2.

2DOPα weight assignment formula to a fragment is similar to Back-off estimation approach
in the way that it is the result of the relative frequency of the fragment after discounting
the probabilities of the fragments’ derivations probabilities. However, DOPα considers all

47

πdopα (f) =

α × rf RFrag (f) if depth of f is one

α × rf RFrag (f) − P−
dopα(f) if depth of f is greater than one

where P−
dopα(f) =

∑

d=<f1,f2,...,fn>, n>1

Pdopα(d)

Figure 4.9: DOPα weight assignment formula

Equation in figure (4.9) gives a hint of how to obtain the DOPα weight for frag-
ment f . If we have determined the proportionality factor α then α× rf RFrag (f)
is determined. We have to calculate P−

dopα(f) =
∑

d=<f1,f2,...,fn>, n>1

Pdopα(d).

A recursive estimator that is tractable

Now we develop a recursive way for estimating πdopα (f).

Let d =< f1, f2, . . . , fn > be a derivation∗ of f where the length n of d is
greater than one. So each fragment fi (i = 1, . . . n) is a subtree of f with a
number of internal nodes less than f .

Define function #intnodes : Fragtc → N; #intnodes(f) returns the number
of internal nodes of f . If f is a subtree depth 1 then #intnodes(f) = 1.

Denote maxintnodes(tc) = max
f∈Fragtc

#intnodes(f) as the maximum number of

internal nodes of a fragment in the fragment corpus Fragtc.

We use the fragment corpus in Figure (4.3) to illustrate function #intnodes
and maxintnodes value

#intnodes(

S

A

a b

) = 2, #intnodes(
A

a b
) = 1 maxintnodes(tc) = 2

Now we partition the fragment corpus Fragtc according to fragments with
the same number of internal nodes.

the derivations of the fragments whereas Back-off DOP, in [Sima’an & Buratto, 2003], only
considers the derivations of length two of a fragment. Also, DOPα recursively assigns weights
to small fragments first then to big fragments whereas Back-off DOP in contrast, assigns weights
to big fragments first then to small fragments. In Back-off DOP, in some situations, a later
modification of weight assignment in small fragments could result in an unexpected modification
of the parse tree probabilities of other big fragments.

48

Denote Fragn
tc as the set of fragments that have exactly n internal nodes in

fragment corpus Fragtc.

Fragtc =

maxintnodes(tc)
⋃

n=1

Fragn
tc and ∀n 6= m Fragn

tc ∩Fragm
tc = ∅

The set {Fragn
tc| where n = 1, . . . , maxintnodes(tc)} forms a partition of

the fragment corpus Fragtc. The DOPα weights of fragments in Fragtc are
calculated incrementally base on the number of internal nodes n.

If f is a fragment with one internal node, f ∈ Frag1
tc, from the equation in

Figure(4.9), the DOPα weight of f is πdopα (f) = α × rf RFrag (f) .

Suppose we have calculated DOPα weights of fragments that have at least
(n − 1) internal nodes. Fragments in Fragn

tc are calculated as follows.

We repeat here the DOPα weight of fragment f in the formula of Figure (4.9):

πdopα (f) = α × rf RFrag (f) − P−
dopα(f)

where P−
dopα(f) =

∑

length of d is greater than 2

Pdopα(d)

To get the DOPα weight of fragment f , we have to calculate P−
dopα(f). Each

derivation d whose length is greater than two only involves fragments that have
a number of internal nodes less than f . So derivation d only involves fragments
that have already been assigned DOPα weights in previous steps.

We create a temporary DOP STSG grammar Gn = (VN , VT , S, R, Π) that
includes DOPα fragments and weights that we have calculated in the previous
steps. That means the set of non-terminal symbols VN , the set of terminal sym-
bols VT and the start symbol S of Gn are as for DOP1, the set of rules R only
consists of fragments of at most n − 1 internal nodes, R =

⋃n−1
i=1 Fragi

tc. The
weights of fragments in R of Gn are the already determined DOPα weights,
πGn

(f) = πdopα (f) ∀f ∈ R.

Each derivation d of DOPα that involves only fragments with less than n
internal nodes is also a derivation of Gn with the same probability and vice
versa. So for each fragment f of DOPα that have exactly n internal nodes
PGn

(f) = P−
dopα(f).

Thus πdopα (f) can now be calculated for all fragments f ∈ Fragn
tc by applying

as follows: πdopα (f) = α × rf RFrag (f) − PGn
(f).

The estimator procedure for DOPα is summarized in Figure (4.10)

4.4 Determining α

In the previous section, when DOPα estimates fragment weights, we assume
that the proportionality factor α is given. This section will specify how this

49

1. Choose α

2. Calculate maxintnodes(tc)

3. Partition Fragtc: Fragtc = Frag1
tc ∪ Frag2

tc ∪ . . . ∪ Fragmaxintnodes(tc)
tc

4. For all f ∈ Frag1
tc assigns πdopα (f) = α × rf RFrag (f)

5. For n = 2, . . . , maxintnodes(tc)

• Create Grammar Gn = (VN , VT , S, R, Π) where

R =
n−1⋃

i=1

Fragi
tc and πG(f) = πdopα (f) ∀f ∈ R.

• Calculate PGn
(f) for all f ∈ Fragn

tc.

• Assigns πdopα (f) = α × rf RFrag (f) − PGn
(f) for all f ∈ Fragn

tc.

Figure 4.10: DOPα estimation procedure

proportionality factor α is selected.

The DOPα weight of fragment f in the fragment corpus is πdopα (f) =
rf RFrag (f) − P−

dopα(f). To satisfy the condition πdopα (f) > 0 for all fragments
f , during the DOPα incremental estimator, the following inequality always holds
α × rf RFrag (f) > P−

dopα(f) for all f ∈ Fragtc.

In the beginning of this chapter, we showed by example that when α = 1,
there exist treebanks for which the proportional condition cannot be fulfilled.
The question here is if we have a treebank of sample data from the language,
does a real value α always exist so that DOPα can assign weights to fragments
to satisfy the condition Pdopα(f) = α × rf RFrag (f) for all fragment f?

The answer to the above question is ”Yes”. We will show in theorem (4.4.1)
that for any treebank, there is at least a range of values that DOPα can select
proportionality factor α from so that the probabilities of fragments are propor-
tional with factor α to their relative frequencies in the fragment corpus of the
same root.

Theorem 4.4.1 Let tc be a treebank, there exists α0 > 0 such that any α,
0 < α ≤ α0, can be used as a valid proportionality factor of DOPα model.

To prove the theorem, we need the following lemma.

Lemma 4.4.2 For any tree T , let {〈t11, t12〉, 〈t21, t22〉, . . . , 〈tl1, tl2〉} be the set of

50

derivations∗ length two of T . The following inequality always hold:

P−
dopα(T) <

l∑

i=1

Pdopα(ti1) × Pdopα(ti2)

Proof:

P−
dopα(T) =

∑

d is a derivation∗of f
length of d is greater than 1

Pdopα (d) (4.5)

Let D2(T) be the set of derivations∗ of T and the lengths of the derivations
are greater than one . Equation (4.5) is rewritten as:

P−
dopα(T) =

∑

d∈D2(T)

Pdopα (d)

We partition the set D2(T) so that the derivations∗ that have the same last
fragments belonging to the same set. D2,f (T) = {〈f1, f2, . . . , fk〉|k ≥ 2, fk = f}
be the set of derivations∗ in D2(T) such that the last fragment in the derivation
is f . Choose tree t such that t ◦T f = T , so 〈t, f〉 is also a derivation∗ length
two of tree T . Also, if 〈f1, f2, . . . , fk〉, k ≥ 2 is a derivation∗in D2,f (T), we have
t = f1 ◦T f2 ◦T . . . ◦T fk−1.

Now we write the formula for the sum probabilities of derivations∗ in D2,f (T)

∑

〈f1,...,fk−1,f〉 ∈ D2,f (T)

Pdopα (〈f1, . . . , fk−1, f〉) =

=
∑

〈f1,...,fk−1,f〉∈D2,f (T)

πdopα (f1) × . . . × πdopα (fk−1) × πdopα (f)

=

∑

〈f1,...,fk−1〉 is a derivation∗of t

πdopα (f1) × . . . × πdopα (fk−1)

︸ ︷︷ ︸

Pdopα(t)

×πdopα (f)

= Pdopα(t) × πdopα (f) ≤ Pdopα(t) × Pdopα(f).

(4.6)

From equation (4.6):
∑

d∈D2,f (T)

Pdopα (d) ≤ Pdopα(t) × Pdopα(f).

51

Apply to equation (4.5)

P−
dopα(T) =

∑

d is a derivation∗of f
length of d is greater than 1

Pdopα (d)

=
∑

f

∑

d∈D2,f (T)

Pdopα (d)

≤
∑

〈t, f〉 is a derivation∗of T

Pdopα(t) × Pdopα(f)

≤
l∑

i=1

Pdopα(ti1) × Pdopα(ti2).

qed

Using the result in lemma (4.4.2) to prove theorem (4.4.1) as follows:

Proof of theorem (4.4.1). A real value α is a valid proportionality factor
of the DOPα model only if the condition P−

dopα(f) ≤ α × rf RFrag (f) for all
fragments f in the fragment corpus when the DOPα estimates the weights of
fragments incrementally.

Denote Der2 (f) = {〈f1, f2〉, where 〈f1, f2〉 is a derivation∗ length 2 of f}.

Apply lemma (4.4.2):

P−
dopα(f) ≤

∑

〈f1,f2〉∈Der2(f)

Pdopα(f1) × Pdopα(f2)

=
∑

〈f1,f2〉∈Der2(f)

α × rf RFrag (f1) × α × rf RFrag (f2)

= α2 ×
∑

〈f1,f2〉∈Der2(f)

rf RFrag (f1) × rf RFrag (f2)

(4.7)

Now choose α such that

α2 ×
∑

〈f1,f2〉∈Der2(f)

rf RFrag (f1) × rf RFrag (f2) ≤ α × rf RFrag (f)

or

α ≤
rf RFrag (f)

∑

〈f1,f2〉∈Der2(f)

rf RFrag (f1) × rf RFrag (f2)
.

We will have P−
dopα(f) ≤ α × rf RFrag (f)

52

Choose α0 = min
f∈Fragtc

rf RFrag (f)
∑

〈f1,f2〉∈Der2(f)

rf RFrag (f1) × rf RFrag (f2)

For each α ≤ α0, we have

P−
dopα(f) ≤ α × rf RFrag (f) ∀f ∈ Fragtc

qed

The aim for DOPα is to assign weights to fragments to satisfy the proportion-
ality condition. In practice, the selected proportionality factor will influence the
estimator’s result, we will discuss this in the section on empirical experiment. In
this theoretical frame work of DOPα, the α chosen is any positive value such that
the condition α×rf RFrag (f) = Pdopα(f) is satisfied for all fragments f ∈ Fragtc.
Theorem (4.4.1) showed that for any treebank there exists a α0 such that any
α ≤ α0 can be a valid proportionality factor of the model. The theorem did not
claim that if α > α0, it is not a valid proportional factor. This gives a hint how
to select proportionality factor as follows.

1. Start α = 1

2. Partition Fragtc: Fragtc = Frag1
tc ∪ Frag2

tc ∪ . . . ∪ Fragmaxintnodes(tc)
tc

3. For all f ∈ Frag1
tc assigns πdopα (f) = α × rf RFrag (f)

4. For n = 2, . . . , maxintnodes(tc)

• Create Grammar Gn = (VN , VT , S, R, Π) where

R =
n−1⋃

i=1

Fragi
tc and πG(f) = πdopα (f) ∀f ∈ R.

• For f ∈ Fragi
tc

Calculate PGn
(f)

If α × rf RFrag (f) < PGn
(f) go to step 6

Else assign πdopα (f) = α × rf RFrag (f) − PGn
(f)

5. Return α value.

6. Reduce α. Go back to step 3.

Figure 4.11: Determining α procedure

At the beginning, we assign α to some starting value, then check the validity
of α. If it is not valid, we reduce the selected α. At some point, we will get to

53

a value α that is a valid proportional factor of the model. A value α is a valid
one if P−

dopα(f) < α × rf RFrag (f) ∀f ∈ Fragtc. The selection α algorithm is
summarized in the Figure (4.11).

4.5 DOPα and Language Models

Natural language processing has applications ranging from speech recognition,
text summarization to machine translation. In these applications, often prob-
abilities of strings are computed to avoid ambiguity. The usual approach is to
define a language model which assigns a probability distribution over all the parse
trees in the language. The probability of a string is the sum of probabilities of
all its possible parse trees. The language model thus also assigns a probability
distribution over all strings of the language.

∑

s is a string of the language

P (s) = 1

More formally, in an application, we are given an input I and need to output a
string O∗ to be the message conveyed or encoded by the input I. The probability
P (O|I) is computed by Bayes’ rule as follows:

P (O|I) =
P (O) × P (I|O)

P (I)

Since the input I is fixed, it is the same for all the output string O so P (I) can
be ignored; P (I|O) is determined by the input evidence I; P (O) is determined
by the language model.

P (O) =
∑

T is a parse tree of O

P (T,O)

The NLP application uses a statistical parsing model M to determine the possible
parse trees T of string O and PM(T,O) or PM(T) as an approximation of its true
distribution in the language.

In DOP1, the fragments are assumed to be independent and the weight of
a fragment is considered as the probability to substitute the fragment into the
node of the root label. The weights of fragments of the same root sum up to
one, thus the probabilities of all full parse trees also sum up to one. In our
estimation, DOPα, fragments are not considered to be independent. The weight
of a fragment is assigned to account for the co-occurrences of its subtrees that
the fragment’s subtrees fail to capture.

πdopα (f) = α × rf RFrag (f) − P−
dopα(f)

54

where P−
dopα(f) =

∑

length of d is greater than 2

Pdopα(d)

DOPα is more flexible for weight assignment in that the sum of fragments’
weights of the same root is not equal to one but to a positive number less than
one. DOPα does not return the approximation of the probability of a tree in the
language but a proportion of the probability of the tree. By normalization, we
will obtain approximations of the true probabilities of trees in the language.

The statistical parsing is used as a sub-module of the other applications as
explained before. The proportionality to the true probability property of DOPα
does not affect the adaptability of the model. As we will explain in the following,
the model can return the Pdopα(T) directly as the other parsing models without
affect to the final result of the applications.

Let a be the normalization factor.

O∗ = arg max
O

P (O) × P (I|O)

= arg max
O

∑

T is a parse tree of O

P (T) × P (I|O)

= arg max
O

∑

T is a parse tree of O

(a × Pdopα(T)) × P (I|O)

= arg max
O

∑

T is a parse tree of O

Pdopα(T) × P (I|O)

In the above equation, the normalization factor a does not appear. Even if
the probabilities of all full parse trees do not sum up to one, the DOPα model
can be used with other applications.

4.6 Summary

In this chapter, we presented an estimator that satisfies the rank consistency
property. The treebank is viewed as a multi-set of fragments as well as multi-set
of full parse trees. We also gave an extension of the definition of the traditional
derivation and probability to an arbitrary tree. The probability of fragments are
proportional to their relative frequencies in the treebank.

55

Chapter 5

Empirical Results

In this chapter, we provide the empirical results of DOPα and compare them
with DOP1’s results when using the same training and testing data. All the
experiments were trained and tested on the OVIS 1 corpus.

5.1 OVIS treebank

OVIS treebank is a speech-based Dutch language corpus which was extracted
from telephone conversations about the railway timetable. Each sentence in the
corpus is syntactically and semantically annotated.

The parse tree of sentence “ik wil naar den haag centraal station” (“I want to
go to den haag central station”) depicted in Figure (5.1) is an annotated sentence
from the OVIS. The OVIS corpus contains 10,049 parse trees, 548 non-terminal
symbols and 965 terminal symbols. The average number of words per sentence
is 3.47.

The graph in Figure (5.2) shows the percentage of sentences with respect to
sentences’ word lengths in the OVIS. Most of the sentences consist of less than
6 words and about 30% of the sentences are one-word sentences. Since one-
word sentences are easy to parse, the high statistics results of a test set might
be explained by the high percentage of one-word sentences. To obtain a more
meaningful result, we remove all one-word trees from the test set and report the
results for sentences that contain more than one word.

1OVIS stands for Openbaar Vervoer Informatie Systeem (Public Transport System)

56

ssxB

perxA

ik

vpxA

vvxB

wil

mpxA

ppxA

naar

npxA

npxA

denxA

den

fllwhaagxA

haag

npxD

npuvwxB

centraal

nnuvw

station

Figure 5.1: An example of a parse tree in the OVIS corpus

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Sentence length

Figure 5.2: Percentage of sentences with respect to sentence’s length

57

5.2 Testing

The OVIS corpus is randomly split: 90% of the corpus is reserved for the training
process and the remaining 10% of the corpus is for the testing. To avoid that
the results are due to the random training/testing splitting, the experiments
were carried on five different such random splits. While testing for DOP1 and
DOPα depth 5, there were approximately 1,500,000 fragments extracted. The
large number of fragments causes overflow errors during the testing of DOP1 and
DOPα experiments of two splits. Unless stated otherwise, the reported results
are the average of the other three splits’ results.

We used Khalil Sima’an’s DOPDIS parser for both DOP1 and DOPαṪhe
DOPDIS is available at http://staff.science.uva.nl/˜simaan/dopdis.

5.2.1 Metrics

We evaluate the parsers by their exact match, bracketing recall and label precision
percentages. Exact match is the strictest criterion that count one for sentence
that the parser gets the parse tree completely right and zero for otherwise. The
exact match evaluation is the most sensible one that most of the parsing models
try to maximize. Bracketing Recall and Bracketing Precision measures on pieces
of trees how likely the parser’s results and the expected correct trees are.

Exact match

Exact match % =
Number of correct parses

Number of sentences in the test set
× 100

Bracketing Recall

Bracketing Recall measures the ratio of the correct brackets and the total number
of brackets in the correct parse trees.

Bracketing Recall % =
Number of correct bracketing

Number of bracketing in the correct parse trees
×100

Bracketing Precision

Bracketing Precision measures the ratio of the correct brackets and total number
of brackets returned by the parser.

Bracketing Precision % =
Number of correct bracketing

Number of bracketing in the parser’s parse trees
×100

58

5.2.2 The DOPα results of a random proportional factor

We test the model as suggested in chapter 4. The proportional value α start
from 1 and then α is reduced if it is not a valid proportional factor. In our
implementation, the value α is reduced by dividing to 2. By that we get a random
valid proportional factor. We present the results of the experiments which the
depths upper bound of fragments are from one to five. The following table lists
the proportional factor value α found for each depth.

Depth α
Depth 1 1
Depth 2 0.00390625 (2−8)
Depth 3 0.0009765625 (2−10)
Depth 4 0.0009765625 (2−10)
Depth 5 0.0009765625 (2−10)

84

84.5

85

85.5

86

86.5

87

87.5

88

88.5

Depth 5Depth 4Depth 3Depth 2Depth 1

Maximum fragments’ depths

DOPα

3

3

3 3
3

3
DOP1

+

+
+ +

+

Figure 5.3: Exact match percentage as a function of the depth upper bound (a
random α selection)

Figure (5.3), (5.4) and (5.5) show the exact match, bracketing precision, bracket-
ing recall percentage when the model used the first found valid proportional factor
values. The DOP1’s results increase and get peak when the maximum depth of
the extracted fragments is three, the experiments’ results start to decrease at the
depth four due to the fact that the DOP1’s weight assignment causes the model
bias toward big trees. DOPα’s results, on the other hand, steadily increase from

59

94.5

95

95.5

96

96.5

97

Depth 5Depth 4Depth 3Depth 2Depth 1

Upper bound fragments depths

DOPα

3

3

3 3
3

3
DOP1

+

+
+ +

+

Figure 5.4: Bracketing Precision percentage as a function of the depth upper
bound (a random α selection)

88.5

89

89.5

90

90.5

Depth 5Depth 4Depth 3Depth 2Depth 1

Upper bound fragments depths

DOPα

3
3

3 3

3

3
DOP1

+

+
+

+

+

Figure 5.5: Bracketing Recall percentage as a function of the depth upper bound
(a random α selection)

60

depth one to depth five and start to outperform DOP1’s result at the depth four
in all three evaluations. This is in line with our theoretical motivation presented
earlier in this thesis. In DOPα, the weights of the big fragments are assigned
just to capture the interdependencies of their sub-structures. Thus, the more
fragments are extracted, the more contexts and dependencies of the language are
captured giving the model better performance.

5.2.3 Proportionality Factor selection

To test whether the DOPα results above are due to some random proper-
ties of proportionality factor α, we select ten different valid values of α from
0.0001, 0.0002, . . . , 0.0009, 0.001 and tests the model for each value in the first
splitting.

86.6

86.8

87

87.2

87.4

87.6

87.8

88

0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.001

Proportional factors value

DOPα (-d4)

N N

N

N N N

N

N

N

NN

N

DOP1 (-d4)

+ + + + + + ++

+

Figure 5.6: Exact match percentage as a function of the proportionality factors

Figure (5.6) shows the exact match results of DOPα when testing with differ-
ent proportional factors. There are two different values of exact match percent-
ages. In our tested splitting of training and testing, the results get high value
when the proportional factors are 0.0003, 0.0007, 0.0009 and get low value when
tested with other proportional factors. But even when the proportionality factors
cause DOPα the worst performance, DOPα’s results still outperform DOP1. We
suggest that the optimal proportionality factor α can be estimated in the training
process by the cross-validation method. The training corpus is split into different
sets, using each set for held-out testing. The selected α starts as a first random
valid one for the first held-out testing and is then refined after each test.

61

5.2.4 Learning curve

In order to know the DOPα’s results with different training corpus sizes, we
successively test the model using the training corpus from 20%, 30%, . . . , to
100% data of the original training corpus. Figure (5.7) shows the exact match
percentages as the training corpus size increases.

80

82

84

86

88

90

20% 30% 40% 50% 60% 70% 80% 90% 100%
Training corpus size

DOPα (-d4)

3

3

3
3

3
3 3

3

3
DOP1 (-d4)

+

+

+
+ + + + +

+

Figure 5.7: Exact match percentage as a function of the training corpus size

DOP1 exact match results steadily increase as the training corpus size in-
creases from 20% to 60%. However, there is no significant difference of DOP1
exact match percentages when the training corpus size increases from 60% to
100%. Moreover, when the training corpus size increases from 60% to 70% or
from 80% to 90%, the DOP1 exact match results stay the same. DOPα results
on the other hand steadily increase with the training corpus size and start to
outperform the DOP1 results when the training corpus size is 70% the original
one. This suggests that DOPα might have outperformed DOP1 even clearer if
more data had been available.

5.3 Summary

We have provided the empirical results of DOPα and compared the results with
the DOP1 model. The DOPα results start to outperform DOP1 when the maxi-
mum depth of fragments is at least four. Also, the proportional factor α plays an
important role in the estimation result. When using the experiment in which the

62

maximum depth of fragments is four, the DOPα results outperform the DOP1
results even with the proportional factor selection that gives the worst perfor-
mance.

We also saw that the DOPα performance increases as the training corpus size
increases.

63

Chapter 6

Conclusion

The goal of this thesis has been to show a non-trivial DOP estimator for which
the treebank is regarded as a sample of the distribution in the language. To avoid
the overfitting problem, the treebank is considered as a multiset of fragments. In
the new estimator, the weights of fragments are assigned so that the parse tree
probabilities of fragments are proportional to their relative frequencies in the
treebank’s fragment corpus. Statistical parsing belongs to the set of problems in
which only partial information is available.

Laplace ’s “Principle of Insufficient Reason” stated that in the absence of in-
formation regarding a set of alternative solutions, one should assign equal prob-
abilities to all possibilities [Laplace, 1829]. The rank consistency property is
defined as an adaption of Laplace ’s principle in the statistical parsing area: if
one tree appears in the treebank with higher frequencies than the other tree, the
estimator also assigns the former tree higher probability than the latter tree. The
new estimator, DOPα, was proved to be rank consistent.

The theoretical properties of the model are validated by the empirical results.
We test the model on the OVIS corpus. In our experiments, the new model
results improve upon the original DOP1 results.

Also, we study the relationship of consistency property and rank consistency
property in estimation theory. In estimation theory, consistency is a desirable
property. Is our estimation consistent? The DOPα model estimates probability
of a tree as a proportional of its relative frequency in the treebank. Because the
probabilities of trees sum up to one, when the treebank size grows to infinity,
intuitively, the DOPα will estimate the probability of a tree as its relative fre-
quency in the treebank. The DOPMLE was proved to be consistent, thus DOPα
is also consistent. Further work of DOPα could provide the formal justification
of the consistency of the model.

We can only conclude that our model potentially provides better results in the
area of Data-Oriented Parsing. In our existing work, the proportional factor value

64

is just selected to be a valid one. However, the experiment in section (5.2.3) shows
that the proportional factor value has influence on the final testing results. This
brings up a deeper question. How the proportional factor value is selected in the
training process such that the model gets the optimal results? In section (5.2.3),
we suggest one possible solution. The proportional factor value maybe selected
using held-out estimation. The first selected proportional value is a random
valid one. The value is then refined after each test on the held-out corpus.
Possible future work could be an algorithm to get the optimal result of the selected
proportional factor value.

65

Bibliography

[Black et al, 1993] E.Black, R.Garside and G.Leech. 1993. Statistically-Driven
Computer Grammars of English. The IBM/Lancaster Approach, Ropodi:
Amsterdam-Atlanta.

[Bod, 1992] Bod, Rens. 1992. Data Oriented Parsing (DOP). Proceedings COL-
ING’92, Nantes, France.

[Bod, 1993] Bod, Rens. 1993. Using an Annotated Corpus as a Stochastic Gram-
mar. Proceedings EACL’93, Utrecht, The Netherlands.

[Bod, 1995] Bod, Rens. 1995. Enriching Linguistics with Statistics: Performance
Models of Natural Language. ILLC Dissertation Series 1995-14, Univer-
sity of Amsterdam. (ftp://ftp.fwi.uva.nl/pub/theory/illc/dissertations/DS-
95-14.text.ps.gz)

[Bod & Scha, 1996] Bod, Rens, and Remko Scha. 1996. Data-Oriented Language
Processing: An Overview. Research report nr. LP-96-13, ILLC Research re-
ports, University of Amsterdam.

[Bod, 1998] Bod, Rens. 1998. Beyond Grammar: An Experience-Based Theory
of Language. Stanford, CA: CSLI Publications.

[Bod, 2000] Bod, Rens. 2000. Parsing with the Shortest Derivation.
Proceedings COLING-2000. Saarbruecken, Germany. Available at
staff.science.uva.nl/~rens.

[Bonnema et al., 1999] Bonnema, Remko, Paul Buying, and Remko Scha.
1999. A New Probability Model for Data-Oriented Parsing. Proceed-
ings of the Amsterdam Colloquium 1999. Amsterdam. Available at
citeseer.nj.nec.com/bonnema99new.html.

[Bonnema, 2003] Bonnema, Remko. 2003. Probability Models for DOP. In: Bod,
R., Scha, R., and Sima’an, K. Data Oriented Parsing. CSLI Publications,
Stanford University. Stanford, California, USA.

66

[Booth & Thompson, 1973] Booth, Taylor and Thompson. 1973. Applying Prob-
ability Measure to Abstract Languages. IEEE Transaction on Computers C-
22(5): 442-450.

[Brill & Mooney, 1997] Eric Brill, Raymond J. Mooney. 1997. An overview of em-
pirical natural language processing - Natural Language Processing. AI Mag-
azine, Winter, 1997.

[Buratto, 2003] Burrato, L. 2002. Backoff as Parameter Estimation for DOP
models. Master of Logics series (MoL-2002-07). ILLC Scientific Publications,
Institute for Logic, Language and Computation (ILLC), Amsterdam. The
Netherlands.

[Goodman, 1998] Goodman, Joshua. 1998. Parsing Inside-Out.
Ph.D. thesis, Harvard University, Massachusetts. Available at
http://citeseer.nj.nec.com/article/goodman98parsing.html

[Guiasu & Shenitzer, 1998] S. Guiasu and A. Shenitzer. 1998. The principle of
maximum entropy. The Mathematical Intelligencer, 7(1), 1985. (An overview
paper)

[Hoogweg, 2000] Hoogweg, L. 2000. Extending DOP with Insertion. Master of
Logics series. ILLC Scientific Publications, Institute for Logic, Language
and Computation (ILLC), Amsterdam. The Netherlands.

[Johnson, 2002] Johnson, Mark. 2002. The DOP Estimation Method Is Biased
and Inconsistent. Computational Linguistics 28(1), pages 71-76. Available
at cog.brown.edu/~mj/Publications.htm.

[Laplace, 1829] Laplace, P.S. 1829. Essai philosophique sur les Probabilités..
H.Remy. Fifth edition.

[Manning & Schütze, 1999] Manning, Christopher, and Hinrich Schütze. 1999.
Foundations of Statistical Natural Language Processing. MIT Press, Cam-
bridge, Massachusetts.

[Krenn & Samuelsson, 1997] Krenn, Brigitte, and Christer Samuels-
son. 1997. The Linguist’s Guide to Statistics—Don’t Panic.
citeseer.nj.nec.com/krenn97linguists.html.

[Prescher, 2003] Prescher, Detlef. 2003. A Tutorial on the Expectation-
Maximization Algorithm Including Maximum-Likelihood Esti-
mation and EM Training of Probabilistic Context-Free Gram-
mars. Presented at ESSLLI-03, Vienna, Austria. Available at
http://staff.science.uva.nl/~prescher/papers/.

67

[Prescher et al., 2004] Prescher, Detlef, Remko Scha, Khalil Sima’an,
and Andreas Zollmann. 2004. On the Statistical Consistency
of DOP Estimators. To be published elsewhere. Available at
http://staff.science.uva.nl/~azollman/publications.html.

[Scha, 1990] Scha, Remko. 1990. Taaltheorie en Taaltechnologie; Competence
en Performance. In: de Kort, Q. A. M., and Leerdam, G. L. J.,
(eds.), Computertoepassingen in de Neerlandistiek, Almere: Landelijke
Vereniging van Neerlandici (LVVN-jaarboek). English translation as: Lan-
guage Theory and Language Technology; Competence and Performance;
http://iaaa.nl/rs/LeerdamE.html

[Shao, Jun, 1999] Shao, Jun. Mathematical Statistics. Springer Verlag, NewYork.

[Sima’an, 1999] Sima’an, Khalil. Learning Efficient Disambiguation. PhD disser-
tation (University of Utrecht). ILLC dissertation series 1999-02, University
of Amsterdam. Amsterdam.

[Sima’an, 2000] Sima’an, Khalil. Tree-gram Parsing: Lexical Dependencies and
Structural Relations. Proceedings ACL’2000, HongKong, China.

[Sima’an & Buratto, 2003] Sima’an, Khalil, and Luciano Buratto. Backoff Para-
meter Estimation for the DOP Model. Proceedings of the European Con-
ference on Machine Learning (ECML’03). Dubrovnik, Croatia. Available at
staff.science.uva.nl/~simaan

[Resnik, 1992] Philip Resnik. Probabilistic tree-adjoining grammar as a frame-
work for statistical natural language processing. Proceedings of the 14th con-
ference on Computational linguistics - Volume 2. Nantes, France.

[Zollmann, 2004] Zollmann, A. 2004. A Consistent and Efficient DOP estimation.
Master of Logics series. ILLC Scientific Publications, Institute for Logic,
Language and Computation (ILLC), Amsterdam. The Netherlands.

68

Index

DOPα, 37

ambiguity, 3
atomic fragment, 17

backoff, 17
Backoff DOP, 17
biased, 14
Bonnema DOP, 16
Bracketing Precision, 57
Bracketing Recall, 57

categories, 7
combination operations, 3
complex fragment, 17
Consistent DOP, 18
consistent estimation, 23
constituent labels, 7
corpus, 4, 8

Data-Oriented Parsing, 4
derivation, 10, 11, 13
DOP, 4
DOP Maximum Likelihood Estimator,

16

elementary probabilities, 12
empirical results, 55
estimation, 9
estimation error, 15
estimator, 9
estimator error, 23
Exact match, 57

fragment, 10
fragment corpus, 10
fragments, 4

frequency, 9
full parse tree, 7
full parse tree of a sentence, 7

held-out estimation, 18

inconsistent, 5, 14, 15
Indifference Principle, 26

language, 8
language model, 53
Laplace’s Principle, 26
Learning curve, 61
leftmost substitution, 11
loss function, 15

Maximum Likelihood Estimation, 16
metrics, 57

Natural Language Processing, 3
NLP, 3
nonterminal, 7

overfitting, 5, 37
OVIS treebank, 55

partial derivation, 13
partial trees, 38
PCFG, 4
phrase structure tree, 7
Principle of Insufficient Reason, 26
Probabilistic Context Free Grammar, 4
probabilistic grammar, 3
probability distribution, 8
proportional, 5, 42
proportionality factor, 42

rank consistency, 6, 26, 30

69

relative frequency, 9
risk, 15
root subtree, 43
rules, 3

sentence, 7
sentence category, 7
shortest derivations, 18
sparse data, 19
start symbol, 7
statistical parsing, 3
Stochastic Tree Substitution Grammar,

12
STSG, 12
Syntactic analysis, 3

T-composition, 45
T-substitutable, 43, 45
terminal, 7
testing data, 55
training data, 55
tree, 7
treebank, 4, 8

utterance, 7
utterance analyses, 9

weights, 3, 11, 12

70

