
A Construction Method for Modal Logics of Space

Spencer Gerhardt



Acknowledgements

I consider myself very fortunate for having the opportunity to work on this thesis under
the supervision of Johan van Benthem and Dick de Jongh. Besides shedding a great deal (of
very different!) light upon the problems contained in this thesis, they provided the encour-
agement and support needed to see this volume through to its completion. Thank you.

Thanks to Nick Bezhanishvili and Yde Venema, for serving as members on my defense com-
mittee and for useful suggestions along the way. To Benedikt Löwe for the same, and for
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1 Introduction

Given the important role of spatial intuitions in cognition, and the apparent unreliability
of these intuitions, there is something natural about looking at spatial structures from an
axiomatic standpoint. Indeed, it is not surprising that the first and best known application
of the axiomatic method was to provide a development of geometry.

In the past century, with the development of formal logic and subsequent discovery that
elementary number theory is not axiomatizable, it became both possible and independently
interesting to examine spatial structures within given logical formalizations. While the cen-
tral framework for examining spatial structures axiomatically has been first order logic, from
time to time other logics with spatial interpretations have been considered as well.

Recently, one popular area of investigation has been looking at modal logics with spatial
interpretations. This subject can be traced back to McKinsey and Tarksi’s [14] work on
boolean algebras with closure operators in the 1940s. However, within the past ten years a
more general program of providing a modal analysis of space has emerged.

By and large, the techniques used in investigating modal logics of space have been model
theoretic in nature, involving the transfer of geometric or topological structure from the de-
sired mathematical object to some Kripke frame. While this works well in cases where the
relevant modal logic has nice Kripke frame characterizations, in other cases this way of pro-
ceeding can become quite difficult.

In this thesis we will examine a more syntactic approach to establishing completeness re-
sults in modal logics of space. The technique we will use has the virtue of constructing
the desired mathematical structures directly, rather than working indirectly through Kripke
frames. This allows for a good deal of control over what models of the relevant logic look like.

In the first chapter, we will use our construction method to give new proofs of the com-
pleteness of S4 with respect to 〈Q, τ〉 and S4 ⊕ S4 with respect to 〈Q × Q, τ1, τ2〉. We will
also provide a much simpler axiomatization of 〈Q, τ〉 in the combined language 2 + F + P
and an axiomatization of 〈Q, <〉 in the Since/Until language. In the second chapter, we will
discuss the advantages and disadvantages of the construction method in comparison to the
standard model theoretic approach.
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2 Modal Logics of Space

2.1 Syntax and Semantics

Although they would not have been thought of as such at the time, some of the first seman-
tic completeness proofs for modal logic date back to McKinsey and Tarski’s [14] work the
on foundations of topology in the 1940s . These proofs pre-date the now standard Kripke
semantics for modal logic, and in fact are spatial completeness proofs for the modal logic S4
with a topological semantics.

Let L be the basic modal language, consisting of propositional variables p, q, r.., boolean
connectives ∧,∨,¬ →, and unary operators 2 and 3. The formulas of L define the least set
Γ containing all propositional variables which is closed under boolean connectives and the
operators 2 and 3.

Definition 2.1 A modal logic L is the least set of formulas of L containing all propositional
tautologies and the axioms of L which is closed under substitution and proof rules :

ϕ,ϕ→ ψ

ψ

ϕ

2ϕ

�

Definition 2.2 A formula ϕ is said to be provable in L (written `L ϕ) if ϕ ∈ L and a set
Γ of formulas is said to be L-consistent iff there is no finite set {ϕ1, ϕ2...ϕn} ⊆ Γ such that
L ` ¬(ϕ1 ∧ ... ∧ ϕn). �

The central modal logic for our purposes is S4, which contains the axioms:

2ϕ↔ ¬3¬ϕ
2(ψ → ϕ) → (2ψ → 2ϕ)
2ϕ→ ϕ
2ϕ→ 22ϕ

Recall that a topological space is a pair 〈W, τ〉, where W is a nonempty set and τ is a collection
of subsets of W satisfying the following properties:

• ∅, W ∈ τ ;

• if U, V ∈ τ , then U ∩ V ∈ τ ;

• if {Ui}i∈I ∈ τ , then
⋃
i∈I Ui ∈ τ ;

Definition 2.3 A topological model 〈W, τ, ν〉 is a triple, where 〈W, τ〉 is a topological space
and ν is a valuation assigning subsets of W to propositional letters. �

Further recall that for any U ⊆W ,
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• U is open if U ∈ τ

• U is closed if U /∈ τ

• The interior of U (Int(U )) is the union of all open sets contained in U

• The closure of U (Clo(U )) is the intersection of all closed sets containing U

• Int(U ) = W − Clo(W −U )

In the original topological semantics for L proposed by McKinsey and Tarski, the truth of
formulas was evaluated at the level of topological models. Thus given a valuation ν assigning
propositional letters to subsets of W , ν was extended to all formulas of L as follows:

• ν(p) ⊆W

• ν(¬ϕ) = W − ν(ϕ)

• ν(ϕ ∨ ψ) = ν(ϕ) ∪ ν(ψ)

• ν(ϕ ∧ ψ) = ν(ϕ) ∩ ν(ψ)

• ν(ϕ→ ψ) = (W − ν(ϕ)) ∪ ν(ψ)

• ν(2ϕ)) = Int(ν(ϕ))

• ν(3ϕ) = Clo(ν(ϕ))

A formula ϕ was said to be true on a topological model 〈W, τ, ν〉 if ν(ϕ) = W .

Besides working with the notion of truth on a topological model, in this paper we will also
make use of the notion of a formula ϕ being true at points in a topological model. This fine
grained topological semantics mirrors the now prevalent Kripke semantics for modal logic,
and will facilitate in transferring techniques and results later on.

Given a topological model M = 〈W, τ, ν〉, we define a formula ϕ to be true at a point w
by induction on the length of ϕ. From now on we will economize on boolean connectives,
considering only ¬ and ∨, the others being definable from these two alone.

• w |= p iff w ∈ ν(p)

• w |= ψ ∨ χ iff w |= ψ or w |= χ

• w |= ¬ψ iff not w |= ψ

• w |= 2ψ iff ∃U ∈ τ such that w ∈ U and ∀w′ ∈ U,w′ |= ψ

• w |= 3ψ iff ∀U ∈ τ, w ∈ U implies that ∃w′ ∈ U such that w′ |= ψ

Definition 2.4 We say ϕ is true on a topological model 〈W, τ, ν〉 (written 〈W, τ, ν〉 |= ϕ), if
〈W, τ, ν〉, w |= ϕ for every w ∈ W , or, equivalently, if ν(ϕ) = W . If ϕ is true on 〈W, τ〉 for
any valuation ν, we say ϕ is valid on the topological space 〈W, τ〉 (written 〈W, τ〉 |= ϕ). �
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2.2 Practical Workings

From the perspective of modal logic, the topological semantics proposed above looks quite
different from the standard Kripke-style labeled transitions systems. And from the perspec-
tive of topology, it is not clear what can be expressed in the modal language L. To sharpen
intuitions on both ends, let us briefly pause to get a sense of the practical workings of the
language .

At first glance, it may appear that little of mathematical interest can be expressed in L.
For example, there is no obvious way to express familiar topological properties such as con-
nectedness, being T0, etc.. And indeed the results that follow lend support to this belief. They
show, for example, that no formula of L can distinguish topological structures as different as
〈Q, τ〉 and 〈R, τ〉. (So it is true that connectedness can not be expressed in L).

On the other hand, even though many topological properties are undefinable, what formulas
can be true at a point in a topological model quickly becomes quite complicated. Just how
complicated becomes clear below when we try to construct a model 〈R, τ, ν〉 which has a real
number modeling an arbitrary consistent S4 formula. But for the moment let us consider a
few examples of simple formulas which can be made true at points on the real line.

Definition 2.5 A logic L is said to be complete with respect to a topological space 〈W, τ〉 if
`L ϕ⇔ 〈W, τ〉 |= ϕ. �

Much of what follows will be dedicated to proving topological completeness results for S4 and
its extensions, but for now let us make use of a classical result.

Theorem 2.6 S4 is complete with respect to 〈R, τ〉.

Viewed contrapositively, the right to left direction of Definition 2.5 says that if ψ is an S4-
consistent formula, then it can be made true at a point on the real line.

First consider an easy example, the S4-consistent formula 3p ∧ ¬p. By completeness, there
exists a valuation ν such that 〈R, τ, ν〉, x |= 3p∧¬p for some x ∈ R. And indeed it is not hard
to think of such a ν and x. For example, if ν(p) = {1/x | x > 0}, then 〈R, τ, ν〉, 0 |= 3p∧¬p.

A slightly more difficult example is the formula 33p ∧ 3¬p. Intuitively, this says that
there is a sequence of points approaching x and at every point y in this sequence there is a
sequence approaching y which models p. Actually, it is easier to give a valuation to describe
the situation. If

ν(p) = { 1
(x+ 1

y
)
| x ∈ N/{0}, y ∈ N}

then 33p ∧3¬p is true at 0.
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A more interesting example is the S4-consistent formula 2(3p ∧ 3¬p). This formula says
that every point in a given open neighborhood has both p and ¬p sequences approaching
it. Although at first glance it might seem difficult to describe a valuation which makes this
formula true at a point in 〈R, τ〉, there is actually a quite natural one. The valuation ν(p) = Q
makes 2(3p ∧3¬p) true at every point in 〈R, τ, 〉.

All of the examples considered above involve only single S4-consistent formulas containing one
propositional letter. However, by completeness it is guaranteed that every finite consistent
set of S4 formulas containing finitely many propositional letters can be made true together
at a single point on 〈R, τ〉. Now that the inner workings of the language have been explored
a bit, it is time to see what properties can be established about the language.

2.3 The Historical Results

In ‘The Algebra of Topology’ McKinsey and Tarski [14] examine the relations between closure
algebras and topological spaces. A closure algebra is a five-tuple 〈K,∪,∩,−, C〉 where

• K is a boolean algebra with respect to ∪, ∩, −

• If x ∈ K, then Cx is in K

• If x ∈ K, then x ⊆ Cx

• If x ∈ K, then CCx = Cx

• If x and y are in K, then C(x ∪ y) = Cx ∪ Cy

• C∅ = ∅

Clearly every topological space 〈X, τ〉 can be viewed as a closure algebra C(X) = 〈P(X),∪,∩,−, C〉,
where C is the closure operator on P(X). Conversely, every closure algebra of the form
C(X) = 〈P(X),∪,∩,−, C〉 can be viewed as a topological space 〈X, τ〉 such that 〈X, τ〉 |=

(i) p→ 3p

(ii) 33p↔ 3p

(iii) 3(p ∨ q) ↔ 3p ∨3q

(iv) 3 ⊥↔⊥

Furthermore, it can be proven that (i)- (iv) are equivalent to the axioms of the modal logic
S4. So it follows that if `S4 ϕ, then 〈X, τ〉 |= ϕ. McKinsey and Tarski’s pioneering results
in ‘The Algebra of Topology’ show that for a wide range of topological spaces, the converse
is also true.
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Theorem 2.7 (McKinsey and Tarski) For every finite topological space 〈X, τ〉 and every
normal, dense-in-itself topological space 〈Y, τ〉 with a countable base, there exists an embedding
C(X) � C(Y ).

From a logical perspective, the above theorem states that if there is a finite topological space
〈X, τ〉 such that 〈X, τ〉 6|= ϕ, then for any normal, dense-in-itself topological space 〈Y, τ〉 with
a countable base, 〈Y, τ〉 6|= ϕ. It is known (and proven below in Corollary 3.6) that if 0S4 ϕ,
then there is some finite topological space 〈X, τ〉 such that 〈X, τ〉 6|= ϕ. So from a logical
perspective, Theorem 2.7 states that S4 is complete with respect to every normal, dense-in-
itself topological space with a countable base. This is a very general result. It shows that, for
example, S4 is the complete with respect to the rationals, the reals, the Cantor Space, and
the Baire Space.

2.4 Modern Extensions

From the perspective of modal logics of space today, McKinsey and Tarski’s original results
are somewhat daunting in means and scope. In means, their arguments are by and large
mathematical rather than metamathematical, and make use of facts not necessarily familiar
to the modal logician. In scope, their results are sufficiently general to settle almost all ques-
tions about the basic modal language L with a topological semantics.

Thus recent investigations into modal logics of space have taken two directions. One is
to make the original results of McKinsey and Tarski more accessible by using the tools built
up in modal logic over the past 70 years. This project seems to have started with Mints [15],
where a new completeness proof of S4 with respect to the Cantor Space is given. Mints’
paper has in turn inspired several new proofs of completeness of S4 with respect to the real
line, including Mints, Zhang [17], Aiello, van Benthem, Bezhanishvili [3] and Bezhanishvili,
Gehrke [6].

The other direction is to move to richer modal languages. In the past ten years, many spatial
extensions of the basic modal language L have been put forward. The first and perhaps most
natural extension of L to be considered was the language L2FP , originally found in Shehtman
[20]. L2FP contains the 2 operator, together with two additional unary operators F and P .
In the intended semantics for L2FP , 2 is interpreted as interior and F and P are given their
standard temporal interpretation as ’future’ and ’past’.

More formally, given a partial order 〈W,<〉, the standard order topology τ on 〈W,<〉 and a
valuation ν, the truth of a L2FP formula at a point w ∈W is defined as follows:

• w |= Fψ iff ∃w′ > w such that w′ |= ψ

• w |= Gψ iff ∀w′ > w, w′ |= ψ

• w |= Pψ iff ∃w′ < w such that w′ |= ψ
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• w |= Hψ iff ∀w′ < w, w′ |= ψ

• w |= 2ψ iff ∃U ∈ τ such that w ∈ U and ∀w′ ∈ U,w′ |= ψ

• w |= 3ψ iff ∀U ∈ τ, w ∈ U implies that ∃w′ ∈ U such that w′ |= ψ

L2FP has the appealing feature of combining two basic properties of mathematical objects:
topological and metric structure. Plus it is topologically more expressive than L . Since L2FP

will occur throughout this paper, let us pause for a moment to consider an example.

As mentioned before, it follows from the completeness of S4 with respect to both 〈R, τ〉
and 〈Q, τ〉 that connectedness is not expressible in L. For assume it is, and that ϕ expresses
it. Then 〈R, τ〉 |= ϕ and 〈Q, τ〉 6|= ϕ. But

〈R, τ〉 |= ϕ⇔ `S4 ϕ⇔ 〈Q, τ〉 |= ϕ.

However, connectedness is expressible in L2FP .

Lemma 2.8 〈W, τ〉 |= 2ϕ ∧ F¬ϕ→ F (3ϕ ∧3¬ϕ) ⇔ 〈W, τ〉 is connected.

[⇒] Assume 〈W, τ〉 is not connected. Then W can be written as the union of two non empty
disjoint open sets U and V . Without loss of generality, assume that there is some x ∈ U and
y ∈ V such that x < y. Now consider the valuation ν(p) = U .

It is clear that 〈W, τ, ν〉, x |= 2p ∧ F¬p. We want to show 〈W, τ, ν〉, x 6|= F (3p ∧ 3¬p),
so assume z is an arbitrary point such that x < z. Either z ∈ U or z ∈ V . If z ∈ U ,
then 〈W, τ, ν〉, z |= 2p and if z ∈ V , then 〈W, τ, ν〉, z |= 2¬p. It follows that 〈W, τ, ν〉, x |=
G(2p ∨2¬p).

[⇐] Assume 〈W, τ〉 6|= 2ϕ ∧ F¬ϕ → F (3ϕ ∧ 3¬ϕ). Then there exists a valuation ν and
point x ∈W such that 〈W, τ, ν〉, x |= 2ϕ ∧ F¬ϕ and 〈W, τ, ν〉, x |= G(2ϕ ∨2¬ϕ). Let

X = {y | y < x}

Y = {z | z < x}

Z = ν(2ϕ)

V = ν(2¬ϕ)

Then X and Y are open sets and Z and V are the unions of open sets. It follows that
U = X ∪ Z and T = V ∩ Y are two disjoint open sets whose union is W . So 〈W, τ〉 is not
connected. qed

While L2FP increases topological expressive power by adding metric expressivity, other
strictly topological extensions of L have been considered as well. One recent nice exam-
ple is the dynamical topological language L2◦, containing the interior operator 2 plus an
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additional operator ◦ for one continuous transformation on a topological space. This lan-
guage is interpreted into a dynamic topological system 〈W, τ, T 〉 where 〈W, τ〉 is a topological
space and T is a continuous mapping on 〈W, τ〉. Given a valuation ν on 〈W, τ, T 〉, a L2◦

formula ϕ is defined to be true at a point w ∈W as follows:

• w |= 2ψ iff ∃U ∈ τ such that w ∈ U and ∀w′ ∈ U,w′ |= ψ

• w |= 3ψ iff ∀U ∈ τ, w ∈ U implies that ∃w′ ∈ U such that w′ |= ψ

• w |= ◦ψ iff T (w) |= ψ

In L2◦ it is possible to express not only topological properties, but also properties of functions
on topological spaces. For example, ◦2ϕ→ 2 ◦ ϕ expresses the continuity of T .

L2◦ was originally proposed by Artemov, Davoren, and Nerode [4] and examined by Da-
voren in her P.h.D thesis [9], where she showed that the logic S4C =

S4 + ◦2ϕ→ 2 ◦ ϕ + the interaction principles ◦(ϕ ∧ ψ) ↔ ◦ϕ ∧ ◦ψ and ◦¬ϕ↔ ¬ ◦ ϕ

is complete with respect to the class of all topological spaces. Of course given the explicitly
mathematical interpretation of the language, this is not a very satisfying result. Recently,
Mints, Zhang [18] established that S4C is also complete with respect to the Cantor Space.
Otherwise, almost all questions about this language remain open.

There has also been some investigation into the combined language L2◦ FP Mints, Kremer
[16], Kremer, Mints [13] . Given the appropriate interpretation of F and P (namely that they
apply only to N), this language is strong enough to express fundamental facts of analysis,
such as properties crucial to proving the Mean Value Theorem. These are only a few of a
large number of possible topological extensions of L. For a discussion of some of the other
possibilities, see Aiello [1] or Aiello, van Benthem [2].

As a note before moving on, one surprising feature of moving to richer modal languages
is how difficult the problems become, even when seemingly increasing the expressive power
only slightly. For example, L2FP does not seem like a particularly strong extension of L. And
it follows from Rabin’s Theorem that 〈R, τ〉 is axiomatizable in L2FP . Yet no one has been
able to find a complete axiomatization. Even the L2FP axiomatization of 〈Q, τ〉 in Shehtman
[20] is quite difficult, and something of an encyclopedia of modal logic. As mentioned above,
matters are worse still in L2◦, where except for the completeness of S4C with respect to the
Cantor Space almost all questions remain open. And not even that much is known about
L2◦FP . It seems that by adding only a little bit more expressive power, the proofs swiftly
move beyond strictly logical insight.

2.5 Modal Techniques

By and large, the techniques used in investigating modal logics of space have been model
theoretic in nature. To establish completeness of a logic L with respect to a topological space
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〈X, τ〉, the most common strategy has been to find a convenient class of Kripke frames the
logic is complete with respect to and establish a modal equivalence between an arbitrary
member of this class and the desired topological space.

For example, Aiello, van Benthem, Bezhanishvili [3] uses the fact that S4 is complete with re-
spect to the class of all finite transitive and reflexive trees. In outline, the proof then proceeds
as follows:

• If 0S4 ϕ, by completeness ϕ can be refuted on some finite transitive and reflexive tree
〈W,R〉.

• A labeling is devised between branches of the Cantor space and points in 〈W,R〉 such
that every node of 〈W,R〉 is modally equivalent to some branch of the Cantor Space.

• So the point on 〈W,R〉 which refutes ϕ is modally equivalent to some branch of the
Cantor Space.

• So ϕ in turn can be refuted on the Cantor Space.

In the last chapter we will discuss this example in greater depth.

The line of reasoning sketched above has been used in Shehtman [20] , Mints [15] Aiello, van
Benthem, Bezhanishvili [3] and van Benthem, Bezhanishvili, ten Cate, Sarenac [5], among
other places, to give streamlined topological completeness proofs. However, the approach is
not without difficulty. For one thing, when working in richer modal languages, where more
topological properties can be expressed, the Kripke frame characterizations of the logic can
become difficult to establish.

On the other hand, even in cases like S4 where the logic has many simple Kripke-frame
characterizations, it still may be difficult to transfer topological structure to these Kripke
frames. For example, no one has ever found a simple way to transfer the topological structure
of 〈R, τ〉 to an S4 Kripke frame. Indeed, the proofs of this fact in Aiello, van Benthem,
Bezhanishvili [3] and Mints [15] work even more indirectly, first establishing a modal equiva-
lence of the real line to some subset of the Cantor Space, then establishing a modal equivalence
between this subset of the Cantor Space and an arbitrary S4 Kripke frame. The procedure of
sending points on the real line to branches of the Cantor Space to points in a Kripke model,
all the while preserving modal equivalence, ends up requiring some rather fancy combinatorics.

The above difficulties raise the question of whether working indirectly through Kripke frames
is always the way to go. Instead of first trying to find a Kripke frame characterization of the
logic and then transferring topological structure to these Kripke frames, perhaps it is better
to try and think of modal techniques which work directly on the desired topological space to
establish completeness.
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2.6 The Construction Method

Curiously, there is a modal technique which works directly on mathematical structures rather
than indirectly through Kripke frames, but it has never been applied to topological com-
pleteness proofs. This technique was developed by de Jongh and Veltman [8] and Burgess
[7], among others, in the 1980s to overcome precisely the difficulties described above, but in
this case for axiomatizing structures such as 〈N, <〉, 〈Q, <〉 and 〈R, <〉 in the basic temporal
language LFP .

As in the topological case, the original completeness proofs for 〈N, <〉, 〈Q, <〉 and 〈R, <〉
in the temporal language (Segerberg [19]) provided a characterization of the relevant logic in
terms of Kripke frames, then established a modal equivalence between the desired mathemat-
ical structure and its class of Kripke frames. And again as above, the expressive power of the
temporal language resulted in Kripke frame characterizations which were not very nice and,
as a result, somewhat technical proofs.

Faced with these difficulties, de Jongh and Veltman (among others) developed a more di-
rect syntactic approach towards establishing completeness. The basic idea is to construct
the desired mathematical structure in stages, at each stage associating every point added
with a set of formulas which will be true at that point when the construction is finished.
Then if the construction procedure is carried out correctly, there will be a harmony between
the set of formulas associated with a point and the formulas which are actually true at that
point. Provided that the sets of formulas were selected judiciously, the structure will then
serve as a model of the desired state of affairs. Let us illustrate this procedure with our first
completeness proof.

2.7 QFP on 〈Q, <〉

Consider the logic QFP containing the axioms:

G(ψ → ϕ) → (Gψ → Gϕ)
H(ψ → ϕ) → (Hψ → Hϕ)
ϕ→ GPϕ
ϕ→ HFϕ
GGϕ→ Gϕ
Gϕ→ GGϕ
Fϕ→ G(ϕ ∨ Pϕ ∨ Fϕ)
Pϕ→ H(ϕ ∨ Pϕ ∨ Fϕ)
F>
P>

and proof rules:
ϕ,ϕ→ ψ

ψ

ϕ

Gϕ

ϕ

Hϕ
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Theorem 2.9 QFP is complete with respect to 〈Q, <〉.

Proof. To show `QFP
ϕ⇒ 〈Q, <〉 |= ϕ it is necessary to show that all of the axioms of QFP

are valid on 〈Q, <〉, and that the proof rules preserve validity on 〈Q, <〉. This involves some
routine fact checking. From now on this direction of completeness will be omitted. To show
the converse direction, assume 0QFP

ϕ. We will construct 〈Q, <〉 (modulo isomorphism) in
such a way that 〈Q, <〉 6|= ϕ.

Definition 2.10 A consistent set of formulas Γ is called maximally consistent if there is no
consistent set of formulas properly containing Γ. �

Fact 2.11 Every consistent set of formulas Γ can be extended to a maximally consistent set
of formulas Γ′, Γ ⊆ Γ′. Furthermore, Γ′ is maximally consistent if and only if for any formula
ϕ, either ϕ ∈ Γ′ or ¬ϕ ∈ Γ′ but not both.

Definition 2.12 Let Γq and Γq′ be QFP maximally consistent sets. We say Γq ≺ Γq′ if
Gϕ ∈ Γq ⇒ ϕ ∈ Γq′ �

Fact 2.13 Γq ≺ Γq′ ≺ Γq′′ ⇒ Γq ≺ Γq′′.

Fact 2.14 Γq ≺ Γq′ and Γq ≺ Γq′′ ⇒ Γq′ ≺ Γq′′ or Γq′ = Γq′′ or Γq′′ = Γq′.

Fact 2.15 The following are equivalent:
1) Γq ≺ Γq′
2) ϕ ∈ Γq′ ⇒ Fϕ ∈ Γq
3) Hϕ ∈ Γq′ ⇒ ϕ ∈ Γq
4) ϕ ∈ Γq′ ⇒ Pϕ ∈ Γq

The construction of 〈Q, <〉 will proceed in stages. Each stage n will consist of:

1. a finite set Qn = {q0, q1, . . . , qk}

2. an assignment of an QFP maximally consistent set Γqi to each qi ∈ Qn

3. a linear ordering < on Qn such that qj < qh ⇒ Γqj ≺ Γqh

Let ϕ0ϕ1ϕ2... be an enumeration of all F and P formulas in which each formula is repeated
infinitely many times. The construction will proceed as follows:

- Stage 0: Let Q0 = {q#} and associate q# with Γq# , a QFP maximally consistent extension
of {¬ϕ}.

- Stage 3n + 1: For all q, q′′ ∈ Q3n such that q′′ is the immediate successor of q in Q3n, add
a new point q′ in between q and q′′ and associate q′ with Γq′ , a QFP maximally consistent
extension of Γ = {ψ | Gψ ∈ Γq} ∪ {Fϕ | ϕ ∈ Γq′′}. Let Q3n+1 be Q3n plus the points added
by this procedure and let <3n+1 be <3n extended in the obvious way to include these points.
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- Stage 3n + 2: Let Fϕ be the next F formula in the enumeration and let q be the greatest
element in the Q3n+1 ordering such that Fϕ ∈ Γq and for all q∗ ∈ Q3n+1 such that q < q∗,
¬ϕ ∈ Γq∗ . If such a q exists, add a new point q′ immediately after q and associate q′ with
Γq′ , a QFP maximally consistent extension of Γ′ = {ϕ} ∪ {ψ | Gψ ∈ Γq}. Let Q3n+1 be Q3n

plus any points added by this procedure and let <3n+1 be <3n extended in the obvious way.

- Stage 3n + 3. Symmetric to 3n+2 taking the first P formula in the enumeration that hasn’t
been used.

In order to ensure that our eventual model 〈Q,<, ν〉 comes out right, it must be checked
that Conditions 1)− 3) above are met at every stage in the construction. As an illuminative
example, we will check that Condition 3) is met at Stage 3n+2. Fact 2.13 states that ≺ is
transitive, so we only need to check that Γq ≺ Γq′ ≺ Γq′′ , where q′′ is the immediate suc-
cessor of q in the <3n+1 ordering and q′ is a new point added between q and q′′ at Stage 3n+2.

It follows from the definition of Γq′ that Γq ≺ Γq′ . However, if q has an immediate suc-
cessor q′′ in Q3n+1, the definition of Γq′ does not immediately guarantee that Γq′ ≺ Γq′′ . On
the other hand, it does follow from Fact 2.14 that Γq′ ≺ Γq′′ or Γq′′ = Γq′ or Γq′′ ≺ Γq′ . If
Γq′′ = Γq′ holds, then ϕ ∈ Γq′′ and this contradicts the assumption that ¬ϕ ∈ Γq∗ for all
q <3n+1 q

∗. Furthermore, if Γq′′ ≺ Γq′ , then Fϕ ∈ Γq′′ and this contradicts the assumption
that q is the greatest element in the <3n+1-ordering such that Fϕ ∈ Γq. So it must be the
case that Γq′ ≺ Γq′′ , as required.

To finish off the construction, let 〈Q,<〉 =
⋃
{〈Qn, <n〉 | n ∈ ω}. We first want to show

our constructed frame 〈Q,<〉 can be used to refute ϕ. As suggested before, the fundamental
idea behind the construction method is that it is possible to build mathematical structures
such that the formulas associated with a point in the construction are the set of formulas
that will be true at that point when the construction is finished. However, up to now no
connection has been made between the syntactic objects associated with each point and the
semantic notion of truth at a point. It is the valuation ν which enables us to do this. To
get the ball rolling, we will choose ν such that the truth of a propositional letter at a point
q corresponds to its membership in Γq. In other words, let ν(p) = {q | p ∈ Γq}. Now let us
check that we have performed the construction in a such a way that this harmony extends to
all formulas ϕ.

Lemma 2.16 〈Q,<, ν〉, q |= ϕ⇔ ϕ ∈ Γq.

Proof. By induction on the complexity of ϕ.

• ϕ = p.

By the definition of ν, q |= p⇔ p ∈ Γq.

• ϕ = ψ ∧ χ.
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q |= ψ ∧ χ⇔ q |= ψ and q |= χ
q |= ψ and q |= χ⇔ (by induction hypothesis) ψ ∈ Γq and χ ∈ Γq
ψ ∈ Γq and χ ∈ Γq ⇔ (by maximal consistency) ψ ∧ χ ∈ Γq.

• ϕ = ¬ψ

q |= ¬ψ ⇔ q 6|= ψ
q 6|= ψ ⇔ (by induction hypothesis) ψ 6∈ Γq
ψ 6∈ Γq ⇔ (by maximal consistency) ¬ψ ∈ Γq.

• ϕ = Fψ

[⇐]. Assume Fψ ∈ Γq. Then by construction there is a stage j such that q ∈ Qj and
Fψ is being treated. At stage j + 1, there is a q′ ∈ Qj+1 such that q < q′ and ψ ∈ Γq′ .
It then follows from the inductive hypothesis that q′ |= ψ, so 〈Q,<, ν〉, q |= Fψ.

[⇒]. Assume 〈Q,<, ν〉, q |= Fψ. Then there is some q < q′ such that 〈Q,<, ν〉, q′ |= ψ.
So it follows from the inductive hypothesis that ψ ∈ Γq. Since q < q′, we know by
condition 3) on stages that Γq ≺ Γq′ . So Fψ ∈ Γq.

• ϕ = Gψ.

[⇐] In this case it is easier to argue contrapostively. So assume Gψ /∈ Γq. Then by
maximal consistency F¬ψ ∈ Γq and it follows from ”[⇐]” above that
〈Q,<, ν〉, q |= F¬ψ. So 〈Q,<, ν〉, q 6|= Gψ.

[⇒] Once again it is easier to argue contrapositively. So assume 〈Q,<, ν〉, q 6|= Gψ.
Then 〈Q,<, ν〉, q |= F¬ψ and it follows from ”[⇒]” above that F¬ψ ∈ Γq. So by maxi-
mal consistency, Gψ 6∈ Γq.

We will leave the H and P cases to the reader, as they are quite similar to G and
F . qed

Now with the appropriate hindsight, it is easy to see that 〈Q,<, ν〉 refutes ϕ. At Stage 0 we
made sure to put ¬ϕ in Γq# . So by the above Lemma it follows that 〈Q,<, ν〉, q# |= ¬ϕ.

To finish the proof, it only remains to be shown that our constructed model is isomorphic to
〈Q, <〉. To do this we will make use of Cantor’s Theorem.

Theorem 2.17 (Cantor) Every countable dense linear ordering without end points is iso-
morphic to Q.

Lemma 2.18 〈Q,<〉 is a countable, dense, linear order without end points.

Proof. Linearity follows immediately from condition 2) on stages, and countability from the
fact that only finitely many points are added at each stage. To see 〈Q,<〉 is dense assume
that q, q′′ ∈ Q such that q < q′′. Then there is some stage Qk such that q, q′′ ∈ Qk and by
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stage Qk+3 a new point q′ is added such that q < q′ < q′′. For right unboundedness, assume
q is the greatest element in the <j ordering for some j. Then there is a stage ` > k such that
the formula F> is being treated. F> is an axiom of QFP and so is in every QFP maximally
consistent set. If q does not have a successor at stage ` there is no q∗ ∈ Q`, q < q∗ such that
> ∈ Γq∗ . A new point will then be added after q at this stage. Left unboundedness is similar.
qed

It follows from Cantor’s Theorem and the above Lemma that there is an isomorphism f from
〈Q,<〉 to 〈Q, <〉. Assign 〈Q, <〉 the valuation ν ′(p) = f(ν(p)). It is easy to check that

〈Q,<, ν〉, q |= ψ ⇔ 〈Q, <, ν ′〉, f(q) |= ψ

So 〈Q, <, ν ′〉, f(q#) |= ¬ϕ and QFP is complete with respect to 〈Q, <〉. qed

In de Jongh, Veltman [8], the construction method presented above is used to give simplified
completeness proofs for the structures 〈N, <〉, 〈Q, <〉 and 〈R, <〉 in LFP . The simplicity of
〈R, <〉 is particularly notable (and tempting) for as in the case of 〈R, τ〉, the completeness
proofs of 〈R, <〉 working indirectly through Kripke frames are quite technical.

In the next chapter we will examine how the construction method can be applied to topolog-
ical completeness proofs. We will first use the method to axiomatize 〈Q, τ〉 in the the basic
modal language L and the more difficult combined language L2FP . Then we will stop to
consider possible extensions to 〈R, τ〉. Finally, we will examine the slightly more expressive
temporal Since/ Until language on 〈Q,<〉 and return to the basic modal language L with two
modal operators 21 and 22 on the topological product space 〈Q×Q, τ1, τ2〉.

3 Topological Completeness Proofs

3.1 Henkin Models

Before moving on to the topological completeness proofs, let us pause for a moment to cor-
rectly frame the construction method described above and prove a theorem made use of in
Section 2.3.

The construction method is best understood as a means of adding structure to Henkin models.

Definition 3.1 Consider the basic modal language L. A Henkin model is a triple M =
〈WL, RL, νL〉 where

• L is a logic

• WL is the set of all L maximally consistent sets

• RL ⊂WL ×WL is a binary relation such that RLΓxΓy iff 2ϕ ∈ Γx ⇒ ϕ ∈ Γy
• νL(p) = {Γx | p ∈ Γx}
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Both Henkin models and the construction method contain the same ingredients: maximally
consistent sets, a relation determined by the syntactic structure these sets, and a valuation
which connects syntax to semantics. However, while Henkin models are rather unwieldy en-
tities, constructed models are as well behaved as we can imagine them to be.

Yet despite their coarseness, Henkin models can be used to establish logically interesting
topological completeness proofs.

Theorem 3.2 S4 is complete with respect to the class of all topological spaces.

Proof. The proof will make use of the Henkin model for S4. Let us first define a topology
on 〈WS4, RS4, νS4〉 as follows: let ∆w = {Γz | RS4ΓwΓz} and B = {∆w | w ∈ WS4} serve as
a basis for τS4.

Lemma 3.3 〈WS4, τS4〉 is a topological space.

Proof. It suffices to check the following two properties:

• For any ∆u,∆v ∈ B and any Γx ∈ ∆u ∩∆v, there is some ∆y ∈ B such that
Γx ∈ ∆y ⊆ ∆u ∩∆v

• For any Γx ∈WS4, there is some ∆y ∈ B such that Γx ∈ ∆y

Fact 3.4 〈WS4, RS4〉 is transitive and reflexive.

Since 〈WS4, RS4〉 reflexive the second property is immediate; for any Γx ∈ WS4, Γx ∈ ∆x.
The first property is also not hard to establish. If Γx ∈ ∆u∩∆v then ∆x = {Γz | RS4ΓxΓz} ⊆
∆u ∩∆v. qed

Lemma 3.5 〈WS4, τS4, νS4〉,Γx |= ϕ⇔ ϕ ∈ Γx.

Proof. By induction on the complexity of ϕ. The propositional and boolean cases are the
same as before, and 3 is dual to 2, so we will only treat the case ϕ = 2ψ.

[⇐] Assume 2ψ ∈ Γx. We need to show that there is some U ∈ τS4 such that Γx ∈ U , and
for every Γy ∈ U , Γy |= ψ. Let U = ∆x = {Γz | RS4ΓxΓz}. Then by the definition of RS4,
2ψ ∈ Γx ⇒ ψ ∈ Γy for all Γy ∈ U . Furthermore, since 〈WS4, RS4〉 is reflexive, Γx ∈ U . It
then follows from the inductive hypothesis that y |= ψ for all Γy ∈ U . So Γx |= 2ψ.

[⇒]. We will argue contrapositively. Assume 2ψ 6∈ Γx. Then by maximal consistency
3¬ψ ∈ Γx. We want to show that for every U ∈ τS4, if Γx ∈ U then there is some Γy ∈ U
such that Γy |= ¬ψ. Since every open set is closed under RS4 successors, it suffices to find
a point Γz such that RS4ΓxΓz and Γz |= ¬ψ. It is clear what any such Γz must look like:
Γ = {ϕ | 2ϕ ∈ Γx}∪{¬ψ} ⊆ Γz. So let Γz be any maximally consistent extension of Γ (for the
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moment we will refrain from checking that Γ is consistent). Then it follows that for all U such
that Γx ∈ U , Γz ∈ U and by the inductive hypothesis Γz |= ¬ψ. So 〈WS4, τS4, νS4〉,Γx 6|= 2ψ.
qed

It is now easy to establish the desired completeness result. Assume 0S4 ϕ. We need to show
there exists a topological model 〈W, τ, ν〉 such that 〈W, τ, ν〉 6|= ϕ. Since 0S4 ϕ, it follows by
definition that ¬ϕ is consistent and so is a member of some S4 maximally consistent set Γy.
Then by the above Lemma 〈WS4, τS4, νS4〉,Γy |= ¬ϕ. qed

Corollary 3.6 S4 is complete with respect to the class of all finite topological spaces.

Proof. Every step in the above proof goes through if we restrict the language L to subformulas
of ¬ϕ. Then there are only finitely many maximally consistent sets, each of which is finite.
So the topological model refuting ϕ will be finite. qed

While the above theorem and corollary are logically quite useful, it is not clear how they can
be used to establish completeness results for mathematically interesting structures. Corollary
3.6 does show that Henkin models can be modified in certain ways to give more structured
completeness results. And indeed there exist far more subtle means for massaging Henkin
models into a desired shape than just restricting the cardinality of the language. However, for
our purposes such subtleties are not an issue. For one of the fundamental properties of the
all the mathematical structures we will be considering, irreflexivity, is not modally definable.
This means drastic measures must be taken to guarantee that a Henkin-like model is, say,
linearly ordered by a relation <. The construction method can be seen as one such measure.
It is the most fine grained means of throwing out points and removing unwanted relations
from a Henkin model. Now let us see how the construction method can be used to establish
mathematically interesting topological completeness results.

3.2 S4 on Q

The simplest topological space of mathematical interest is 〈Q, τ〉. That S4 is complete with
respect to 〈Q, τ〉 follows from ’The Algebra of Topology’. Keeping with the program of
simplifying McKinsey and Tarski’s results, a new modal proof has been given in van Benthem,
Bezhanishvili, ten Cate, Sarenac [5]. Our contribution to this project will be to give another
proof using the construction method. However, using the construction method it is possible
to strengthen McKinsey and Tarski’s original results.

Definition 3.7 A logic L is said to be strongly complete with respect to a model M =
〈W,R, ν〉 if for any set of formulas ∆ and formula ϕ:

M |= ∆ ⇒M |= ϕ ( ∆ |=M ϕ) iff ϕ is provable in L from ∆ ( ∆ `L ϕ).

�
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Strong completeness implies completeness (let ∆ = ∅), but the converse is not true.

Theorem 3.8 S4 is strongly complete with respect to 〈Q, τ〉.

Proof. Assume ∆ 0S4 χ. As in temporal case, we will give a construction (modulo isomor-
phism) of the structure 〈Q, <〉. We will then view 〈Q, <〉 as the topological space 〈Q, τ〉 and
show that the construction has been carried out such that ∆ 6|=〈Q,τ〉 ϕ.

In this case, the construction will be divided into stages and steps. A stage n consists
of:

1. a finite set Qn = {q0, q1, . . . , qk}
2. a linear ordering <n on Qn
3. an assignment of an S4 maximally consistent set Γqi to each qi ∈ Qn

Each stage n > 0 is divided into k + 2 steps. A step j, 0 ≤ j ≤ k + 1, consists of:

1. a finite set Qjn = {q0, q1, . . . , ql}
2. a linear ordering <jn on Qjn
3. an assignment of an S4 maximally consistent set Γqi to each qi ∈ Qjn

Note that unlike the temporal construction of 〈Q, <〉, the relations <n and <jn are indepen-
dent of the syntactic structure of the maximally consistent sets. For someone accustomed to
Henkin-style completeness proofs, this probably seems a bit off. But really it is no mystery.
When the truth of L formulas is evaluated in 〈Q, τ〉, the ordering of 〈Q, <〉 will play no role.
During the construction we need to keep in mind the eventual topological structure and not
the ordering.

With this word of advice in mind, let us begin the construction. Let ϕ0ϕ1ϕ2... be an enumer-
ation of all 2 and 3 formulas in which each formula is repeated infinitely many times.

- Stage 0: Let Q0 = {q#} and associate q# with Γq# , an S4 maximally consistent extension
of ∆ ∪ {¬χ}.

- Stage 2n + 1: Let 2ϕ be the next 2 formula in the enumeration and {q1....qk} be an
enumeration of the elements in Q2n ordered by <2n.

- Step 0: Q2n = Q0
2n and <2n=<0

2n.

- Step j + 1: If 2ϕ ∈ Γqj let Qj+1
2n = Qj2n ∪ {q∗, q′} and let <j+1

2n be <j2n extended to
include new points q∗ and q′ immediately before and after qj . Associate q∗ and q′ with
Γqj . If 2ϕ /∈ Γqj , let Qj+1

2n = Qj2n and <j+1
2n =<j2n.

Let Q2n+1 = Qk+1
2n and <2n+1=<k+1

2n .

- Stage 2n + 2: Let 3ϕ be the next 3 formula in the enumeration and {q1...qk} be an enu-
meration of the elements in Q2n+1 ordered by <2n+1.
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- Step 0 : Q2n+1 = Q0
2n+1 and <2n+1=<0

2n+1.

- Step j+1 : If 3ϕ ∈ Γqj , let Qj+1
2n+1 = Qj2n+1∪ {q′} and <j+1

2n+1 be <j2n extended to include
q′ immediately after qj . Associate q′ with Γq′ , an S4 maximally consistent extension of
Γ = {ϕ} ∪ {2ψ | 2ψ ∈ Γqj}. If 3ϕ /∈ Γqj , add no points at step Qj+1

2n+1.

Let Q2n+2 = Qk+1
2n+1 and <2n+2=<k+1

2n+1.

To finish off the construction, let 〈Q,<〉 =
⋃
{〈Qn, <n〉 | n ∈ ω}. Clearly each stage and each

step meets the conditions imposed above. The only thing to check is that the Γq′ ’s which
are claimed to exist in Stage 2n+2 actually do. By Fact 2.11, it suffices to check that Γ is
consistent.

Lemma 3.9 Γ is consistent.

Proof. Assume not. Then there are 2ψ1, ...,2ψn ∈ Γqj such that

`S4 2ψ1 ∧ ... ∧2ψn ∧ ϕ→⊥
`S4 2ψ → ¬ϕ where 2ψ = 2(ψ1 ∧ ... ∧ ψn)
`S4 2(2ψ → ¬ϕ)
`S4 22ψ → 2¬ϕ
`S4 2ψ → 22ψ
`S4 2ψ → 2¬ϕ

Then since 2ψ ∈ Γqj , it follows that 2¬ϕ ∈ Γqj . This contradicts the fact that 3ϕ ∈ Γqj and
Γqj is consistent. qed

Before switching perspectives and viewing our constructed frame 〈Q,<〉 as a topological space,
let us first check it has the desired structure.

Lemma 3.10 〈Q,<〉 is a countable dense unbounded linear order.

Proof. It follows from condition 2) on stages that 〈Q,<〉 is linear. And again, since only
finitely many points are added at every stage, 〈Q,<〉 is countable. To see 〈Q,<〉 is dense,
consider two arbitrary points q, q′′ ∈ Q such that q < q′′. Then there is some stage k such
that q, q′′ ∈ Qk and the formula 2> is being treated. 2> is a member of every S4 maximally
consistent set, so in particular 2> ∈ Γq. Thus by construction, at Stage k + 1 there will be
a new point q′ such that q < q′ < q′′. The same argument shows 〈Q,<〉 is unbounded. qed

Now let us switch perspectives and view our ordered set 〈Q,<〉 as a topological space with
the standard topology. Assign 〈Q, τ〉 the expected Henkin valuation ν(p) = {q | p ∈ Γq}.

Lemma 3.11 〈Q, τ, ν〉, q |= ϕ⇔ ϕ ∈ Γq.
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Proof. By induction on the complexity of ϕ. We will only treat the case ϕ = 2ψ.

[⇒] Assume 2ψ /∈ Γq. Then since Γq is an S4 maximally consistent set, 3¬ψ ∈ Γq. We
want to show that for every U ∈ τ such that q ∈ U there is some y ∈ U such that y |= ¬ψ.
Let U ′ be an arbitrary open containing q and let q′′ be a point in U ′ such that q < q′′. That
such a q′′ exists is guaranteed by the density of 〈Q,<〉. Then there is some stage j in the
construction such that q, q′′ ∈ Qj−1 and 3¬ψ is being treated. When stage j is completed,
there is a point q′ ∈ Qj such that q < q′ < q′′ and ¬ψ ∈ Γq′ . It then follows from the inductive
hypothesis that q′ |= ¬ψ. So 〈Q, τ, ν〉, q 6|= 2ψ.

[⇐] Assume 2ψ ∈ Γq. We want to show that there is some U ∈ τ such that q ∈ U and
for all y ∈ U , y |= ψ. To find such a U , consider the first stage j such that q ∈ Qj−1 and 2ψ
is being treated. At stage j, there is some step i where points q∗∗ and q′′ are added immediately
before and after q and Γq∗∗ = Γq = Γq′′ . We claim that for all Qmp , m > i, p ≥ j−1, if q′ ∈ Qmp
and q∗∗ < q′ < q′′, then 2ψ ∈ Γq′ . We will argue by induction on the steps of the construction.

Assume at step Qr+1
s , r + 1 > i, s ≥ j − 1, a point q′ is added between q∗∗ and q′′. By

inspecting the construction, it is clear that q′ is added immediately before or after the point
qr ∈ Qs. So q∗∗ ≤ qr ≤ q′′ and it follows from the inductive hypothesis and the fact that
2ψ is in Γq∗∗ and Γq′′ that 2ψ ∈ Γqr . If s is odd then Γq′ = Γqr and if s is even then
{2ψ | 2ψ ∈ Γqr} ⊆ Γq′ . So 2ψ ∈ Γq′ .

Finally, 2ψ → ψ is an axiom of S4, so for all q′ ∈ Q such that q∗∗ < q′ < q′′,ψ ∈ Γq′ . By the
inductive hypothesis on the complexity formulas, for all q′ ∈ Q such that q∗∗ < q′ < q′′, q′ |= ψ.
So if we let U be the open {y | q∗∗ < y < q′′} we immediately get that 〈Q, τ, ν〉, q |= 2ψ. qed

To finish the proof, let f be the isomorphism between 〈Q,<〉 and 〈Q, <〉. Assign 〈Q, τ〉 the
valuation ν ′(p) = f(ν(p)). It is easy to check that 〈Q, τ, ν〉, q |= ϕ ⇔ 〈Q, τ, ν ′〉, f(q) |= ϕ.
Since we made sure to add ∆ ∪ {¬χ} to Γq# at the first stage of the construction, it follows
from the above Lemma that 〈Q, τ, ν〉, q# |= ∆ ∪ {¬χ}. So 〈Q, τ, ν ′〉, f(q#) |= ∆ ∪ {¬χ} and
S4 is strongly complete with respect to 〈Q, τ〉. qed

3.3 Remarks on the Construction Method

The essential feature of the above construction is that once a 2ϕ formula is treated at a step,
a 2ϕ stretch is created which is preserved for the rest of the construction. Since this is the
most stringent requirement on the construction, as might be guessed, there is considerable
freedom in how formulas are satisfied at a point in 〈Q, τ〉.

For example, in the construction given above if 3ϕ ∈ Γq, then maximally consistent sets
containing ϕ are added arbitrarily close to q on the right . So if 〈Q, τ, ν ′〉, q |= 3ϕ, there
is guaranteed to be a sequence approaching from the right such that every point models ϕ.
However, we could have just as well selected for a sequence from the left, or sequences from
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both the right and the left. Actually, this last alternative has an interesting property: for all
formulas ϕ, ν ′(2ϕ) = X has no least upper bound. For assume X does have a least upper
bound q∗. Then 2ϕ /∈ Γq∗ , so 3¬ϕ ∈ Γq∗ . However, by construction there is a sequence of
points modeling ¬ϕ approaching q∗ from left, so q∗ is not the least upper bound of ν ′(2ϕ)
after all.

This flexibility in how formulas are to be satisfied on the desired topological space is a special
feature of the construction method. When proving topological completeness results indirectly
through Kripke models, the starting point is an arbitrary S4 model M refuting a formula ϕ
and the end result is that every point in the desired topological space is modally equivalent to
some point in M . Thus we know that the desired topological space refutes ϕ , but we don’t
have any idea how it does this.

This flexibility might lead one to be believe that the construction method has an advan-
tage over the model theoretic approaches in some cases. For example, by the above result
〈Q, τ〉 is a countermodel to an arbitrary non-theorem ϕ of S4. Without knowing anything
about how ϕ is refuted on 〈Q, τ, ν〉, it seems rather hopeless to extend 〈Q, τ, ν〉 to a coun-
termodel 〈R, τ, ν ′〉 refuting ϕ. But perhaps by constructing 〈Q, τ〉 so that ϕ is refuted in a
particular way, it would be possible to extend 〈Q, τ, ν〉 to a 〈R, τ, ν ′〉 countermodel . Indeed,
extending a QFP countermodel 〈Q, <, ν〉 to an RFP countermodel 〈R, < ν ′〉 in the basic
temporal language works quite naturally. We will consider such extensions shortly.

3.4 Q2FP on Q

However, before looking at possible temporal and topological extensions of Q, let us first
examine this structure in the combined temporal and topological language L2FP . As men-
tioned in the previous chapter, L2FP was one of the first spatial extensions of the basic modal
language to be considered. This language can be traced back to Shehtman [20], where an
axiomatization of 〈Q, τ〉 was given. Since that time, little progress has been made. It turns
out even the next question, axiomatizing 〈R, τ〉 in L2FP , is quite difficult.

The completeness proof for 〈Q, τ〉 given in Shehtman [20] works indirectly through Kripke
frames, as sketched in Section 2.5. In the last chapter, we will examine this approach in some
detail , but for now it suffices to say that in the case of L2FP this strategy is quite demanding.
This is one instance where using the construction method improves matters significantly.

Let Q2FP be the logic S4 + QFP + :

Fϕ→ 2Fϕ
Pϕ→ 2Pϕ
2ϕ→ Fϕ
2ϕ→ Pϕ
3ϕ→ ϕ ∨ Fϕ ∨ Pϕ
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2ϕ ∧Gϕ→ 2Gϕ
2ϕ ∧Hϕ→ 2Hϕ

Theorem 3.12 Q2FP is strongly complete with respect to 〈Q, τ〉.

Proof. Assume ∆ 0Q2FP
χ. As before, we will construct a frame 〈Q,<〉 ∼= 〈Q, <〉 in steps

and stages such that 〈Q, τ〉 refutes ∆ ∪ {ϕ}. However, since the ordering of 〈Q,<〉 will play
a role in evaluating the truth of L2FP formulas in 〈Q, τ〉, this construction will require some
relation between the maximally consistent sets and <. We will build this interaction into the
definitions of a stage and a step.

A stage n consists of:

1. a finite set Qn = {q0, q1, ..., qk}

2. a linear ordering <n on Qn such that qj <n ql ⇒ Γqj ≺ Γql

3. an assignment of a Q2FP maximally consistent set Γqi to each qi ∈ Qn

Each stage n is divided into ≤ k + 2 steps. A step j, 0 ≤ j ≤ k + 1, consists of:

1. a finite set Qjn = {q0, q1, ..., ql}

2. a linear ordering <jn on Qjn such that qh <
j
n qi ⇒ Γqh ≺ Γqi

3. an assignment of a Q2FP maximally consistent set Γqi to each qi ∈ Qjn

Once again, the salient feature of the construction will be that once a 2ψ formula is treated
at a step that a 2ψ stretch is created which can be preserved for the rest of the construction.
However, in the present case preserving 2ψ stretches requires some attention. For example,
assume the point q is in what we intend to be a 2ψ stretch and that Hϕ is in Γq. Furthermore,
assume at some stage we add a point q′′ immediately after q and P (¬ϕ∧3¬ψ) is added into
Γq′′ . Nothing so far prevents this situation from occurring. We know by the ordering relation
≺ that Hϕ must be in all Γq∗ such that q∗ < q. So in order to ensure the truth of P (¬ϕ∧3¬ψ)
at q′′ when the construction is finished, a point q′ must be added in between q and q′′ such
that 3¬ψ ∈ Γq′ . This ruins our prospective 2ψ stretch. Fortunately, guarding against this
sort of occurrence alone is sufficient to preserve 2ψ stretches.

Definition 3.13 We say Γq ≺2ψ Γq′ if

1) Γq ≺ Γq′
2) 2ψ ∈ Γq,Γq′
3) Hϕ ∈ Γq ⇒ H(ϕ ∨2ψ) ∈ Γq′
4) Gϕ ∈ Γq′ ⇒ G(ϕ ∨2ψ) ∈ Γq
�
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Proposition 3.14 Γq∗ ≺2ψ Γq ≺2ψ Γq′ ⇒ Γq∗ ≺2ψ Γq′.

Proof. Assume Γq∗ ≺2ψ Γq ≺2ψ Γq′ . It is easy to see conditions 1) and 2) of Γq∗ ≺2ψ Γq′ are
met. So assume Hϕ ∈ Γq∗ . By assumption Γq∗ ≺2ψ Γq, so H(ϕ ∨ 2ψ) ∈ Γq. Furthermore,
Γq ≺2ψ Γq′ , so H((ϕ ∨ 2ψ) ∨ 2ψ) ∈ Γq′ . It then follows from basic propositional logic and
maximal consistency that H(ϕ ∨2ψ) ∈ Γq′ . Condition 4) is similar. qed

Fact 3.15 Γq ≺2ψ Γq′ and Γq ≺2ϕ Γq′ ⇒ Γq ≺2(ψ∧ϕ) Γq′.

Armed with our new condition ≺2ψ to preserve 2ψ stretches, we are ready to begin the
construction. Let ϕ0ϕ1ϕ2... be an enumeration of all F, P,2 and 3 formulas in which each
formula is repeated infinitely many times.

- Stage 0: Let Q0 = {q#} with which we associate Γq# , a Q2FP maximally consistent exten-
sion of ∆ ∪ {¬χ}.

- Stage 5n + 1: Let 2ϕ be the next 2 formula in the enumeration and let {q1, ..., qk} be an
enumeration of the elements in Q5n ordered by <5n.

- Step 0 : Q5n = Q0
5n and <5n=<0

5n

- Step j+1 : If 2ϕ ∈ Γqj , let q∗∗ be the immediate predecessor of qj in the <j5n ordering,
provided one exists. Add a new point q∗ immediately before qj and associate q∗ with
Γq∗ , a Q2FP maximally consistent extension of:

Γ∗ = {2ϕ} ∪ {2ψ′ | Γq∗∗ ≺2ψ′ Γqj} ∪ {α′ | Hα′ ∈ Γqj} ∪ {Pβ′ | β′ ∈ Γq∗∗} ∪
{Pγ′ | P (γ′ ∧ ¬2ϕ) ∈ Γqj} ∪ {Gζ ′ | G(ζ ′ ∨2ϕ) ∈ Γqj}

Similarly, if 2ϕ ∈ Γqj let q′′ be the immediate successor of qj in the <j5n ordering,
provided one exists. Add a new point q′ immediately after qj and associate q′ with Γq′ ,
a Q2FP maximally consistent extension of:

Γ′ = {2ϕ} ∪ {2ψ | Γqj ≺2ψ Γq′′} ∪ {α | Gα ∈ Γqj} ∪ {Fβ | β ∈ Γq′′} ∪
{H(γ ∨2ϕ) | Hγ ∈ Γqj} ∪ {Fζ | F (ζ ∧ ¬2ϕ) ∈ Γqj}

Let Qj+1
5n be Qj5n plus any points added by the above procedure, and <j+1

5n be <j5n
extended in the obvious way to include these points.

Let Q5n+1 = Qk+1
5n and <5n+1=<k+1

5n .

The definitions of Γ∗ and Γ′ ensure that for all q ∈ Q5n, if 2ϕ ∈ Γq then at Stage 5n+1 q will
have an immediate predecessor q∗ and immediate successor q′ such that Γq∗ ≺2ϕ Γq ≺2ϕ Γq′ .
It only remains to be checked that Γ′ is consistent.

Lemma 3.16 Γ′ is consistent.
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Proof. Assume not. Then by Proposition 3.15 there is a formula 2ψ and formulasGα,Hγ1, ..,Hγm,
F (ζ1 ∧ ¬2ϕ), .., F (ζp ∧ ¬2ϕ) ∈ Γqj and β1, .., βk ∈ Γq′′ such that:

`Q2FP
2ϕ ∧2ψ ∧ α ∧ Fβ1 ∧ ... ∧ Fβk ∧H(γ1 ∨2ϕ) ∧ ... ∧H(γm ∨2ϕ) ∧ Fζ1 ∧ ... ∧ Fζp →⊥

`Q2FP
α→ ¬(2ϕ ∧2ψ ∧ Fβ1 ∧ ... ∧ Fβk ∧H(γ1 ∨2ϕ) ∧ ... ∧H(γm ∨2ϕ) ∧ Fζ1 ∧ ... ∧ Fζp)

(∗) `Q2FP
Gα→ G¬(2ϕ∧2ψ∧Fβ1∧...∧Fβk∧H(γ1∨2ϕ)∧...∧H(γm∨2ϕ)∧Fζ1∧...∧Fζp)

We know that:

- 2ϕ→ 22ϕ is an axiom and 2ϕ,2ψ ∈ Γqj , so 22ϕ ∈ Γqj and 22ψ ∈ Γqj

- β1, ..., βk ∈ Γq′′ and Γ ≺ Γq′′ , so Fβ1, ..., Fβk ∈ Γq′′

- Fβ → 2Fβ is an axiom, so 2Fβ1, ...,2Fβk ∈ Γqj

- 2ϕ ∈ Γqj , so 2(γ1 ∨2ϕ), ...,2(γm ∨2ϕ) ∈ Γqj

- Hγ1...Hγm ∈ Γqj , so H(γ1 ∨2ϕ), ...,H(γm ∨2ϕ) ∈ Γqj

- 2ψ ∧Hψ → 2Hψ is an axiom, so 2H(γ1 ∨2ϕ), ...,2H(γm ∨2ϕ) ∈ Γqj

- Fζ1, ..., F ζp ∈ Γqj and Fζ → 2Fζ is an axiom, so 2Fζ1, ...,2Fζp ∈ Γqj

Putting all this together it follows that:

2(2ϕ ∧2ψ ∧ Fβ1 ∧ ... ∧ Fβk ∧H(γ1 ∨2ϕ) ∧ ... ∧H(γm ∨2ϕ) ∧ Fζ1 ∧ ... ∧ Fζp) ∈ Γqj

and since 2ϕ→ Fϕ is an axiom:

F (2ϕ ∧2ψ ∧ Fβ1 ∧ ... ∧ Fβk ∧H(γ1 ∨2ϕ) ∧ .... ∧H(γm ∨2ϕ) ∧ Fζ1 ∧ ...F ζp) ∈ Γqj

However, Gα ∈ Γqj , so by (∗):

G¬(2ϕ ∧2ψ ∧ Fβ1 ∧ ... ∧ Fβk ∧H(γ1 ∨2ϕ) ∧ ... ∧H(γm ∨2ϕ) ∧ Fζ1 ∧ ... ∧ Fζp) ∈ Γqj

This contradicts the consistency of Γqj . qed

Showing Γ∗ is consistent is similar.

- Stage 5n + 2: Let Fϕ be the next F formula in the enumeration.

- Step 0 : If Fϕ ∈ Γqj and ¬ϕ∧G¬ϕ ∈ Γqj+1 (or if Fϕ ∈ Γqj and j = k) add a new point
q′ immediately after qj and associate Γq′ with a Q2FP maximally consistent extension
of:

Λ = {ϕ} ∪ {2ψ | Γqj ≺2ψ Γqj+1} ∪ {α | Gα ∈ Γqj}
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Let Q0
5n+1 be Q5n+1 plus any points added by this procedure and <0

5n+1 be <5n+1

extended in the obvious way to include any new points.

Let Q5n+2 = Q0
5n+1 and <5n+2=<0

5n+1.

Lemma 3.17 Λ is consistent.

Proof. Assume not. Then there are formulas 2ψ and α in Γqj such that:

`Q2FP
ϕ ∧2ψ ∧ α→⊥

`Q2FP
α→ ¬(2ψ ∧ ϕ)

`Q2FP
Gα→ G¬(2ψ ∧ ϕ)

Since Gα ∈ Γqj , it follows that G(¬2ψ ∨ ¬ϕ) ∈ Γqj . Furthermore, since G¬ϕ ∈ Γqj+1

and Γqj ≺2ψ Γqj+1 , it follows that G(2ψ ∨ ¬ϕ) ∈ Γqj . So:

G(2ψ → ¬ϕ) ∧G(¬2ψ → ¬ϕ) ∈ Γqj

However, by basic propositional logic it then follows that G¬ϕ ∈ Γqj . This contradicts the
fact that Fϕ ∈ Γqj . qed

The same argument given in the temporal construction of 〈Q,<〉 suffices to show that
Γqj ≺ Γq′ ≺ Γqj+1 .

- Stage 5n + 3: Symmetric to 5n+ 2 for the next P formula in the enumeration.

- Stage 5n + 4: Let 3ϕ be the next 3 formula in the enumeration and let {q0, ..., qk} be an
enumeration of the elements in Q5n+3 ordered by <5n+3.

- Step 0 : Let Q5n+3 = Q0
5n+3 and <5n+3=<0

5n+3.

- Step j + 1 : If 3ϕ ∈ Γqj let q′′ be the immediate successor and q∗∗ be the immediate
predecessor of qj in the <j5n+3 ordering, provided these exist. Let

Λ′ = {ϕ} ∪ {2ψ | Γqj ≺2ψ Γq′′} ∪ {α | Gα ∈ Γqj} ∪ {Fβ | β ∈ Γq′′}
and

Λ∗ = {ϕ} ∪ {2ψ′ | Γqj ≺2ψ′ Γq∗∗} ∪ {α′ | Hα′ ∈ Γqj} ∪ {Pβ′ | β′ ∈ Γq∗∗}

If ϕ ∈ Γqj add no points. If ϕ /∈ Γqj and Λ′ is consistent, then add a new point
q′ immediately after qj and associate q′ with a maximally consistent extension of Λ′.
Otherwise, add a new point q∗ immediately before qj and associate q∗ with a maximally
consistent extension of Λ∗.

Let Q5n+4 = Qk+1
5n+3 and <5n+4= Qk+1

5n+3.
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Proposition 3.18 Either ϕ ∈ Γqj , or Λ′ is consistent, or Λ∗ is consistent.

Proof. Assume not. Then there are formulas 2ψ,2ψ′, Gα,Hα′ ∈ Γqj , β1, ...βn ∈ Γq′′ and
β′1, ..., β

′
k ∈ Γq∗∗ such that

- `Q2FP
ϕ ∧2ψ ∧ α ∧ Fβ1 ∧ ... ∧ Fβn →⊥

- `Q2FP
ϕ ∧2ψ′ ∧ α′ ∧ Pβ′1 ∧ ... ∧ Pβ′k →⊥

As in the previous stages, it follows that:

- `Q2FP
Gα→ G¬(ϕ ∧2ψ ∧ Fβ1 ∧ ... ∧ Fβn)

- `Q2FP
Hα′ → H¬(ϕ ∧2ψ′ ∧ Pβ′1 ∧ ... ∧ Pβ′k)

and thus (**):

- ϕ /∈ Γqj and

- G¬(ϕ ∧2ψ ∧ Fβ1 ∧ ... ∧ Fβn) ∈ Γqj and

- H¬(ϕ ∧2ψ′ ∧ Pβ′1 ∧ ... ∧ Pβ′k) ∈ Γqj

Since Γq∗∗ ≺ Γqj ≺ Γq′′ , it follows that Fβ1, ..., Fβn, Pβ
′
1, ..., Pβ

′
k ∈ Γqj . Furthermore, since

2ψ,2ψ′ ∈ Γqj and Pϕ→ 2Pϕ, Fϕ→ 2Fϕ, 2ϕ→ 22ϕ are axioms, it follows that:

2(2ψ ∧2ψ′ ∧ Fβ1 ∧ ... ∧ Fβn ∧ Pβ′1 ∧ ... ∧ Pβ′k) ∈ Γqj

It is easy to show that `S4 2γ ∧3ϕ→ 3(γ ∧ ϕ), and by substituting

2ψ ∧2ψ′ ∧ Fβ1 ∧ ... ∧ Fβn ∧ Pβ′1 ∧ ... ∧ Pβ′k

for γ we get:

`Q2FP
2(2ψ ∧2ψ′ ∧ Fβ1 ∧ ... ∧ Fβn ∧ Pβ′1 ∧ ... ∧ Pβ′k) ∧3ϕ→

3(ϕ ∧2ψ ∧2ψ′ ∧ Fβ1 ∧ ... ∧ Fβn ∧ Pβ′1 ∧ ... ∧ Pβ′k).

So

3(ϕ ∧2ψ ∧2ψ′ ∧ Fβ1 ∧ ... ∧ Fβn ∧ Pβ′1 ∧ ... ∧ Pβ′k) ∈ Γqj

3γ → γ ∨ Fγ ∨ Pγ is an axiom, so:

- (ϕ ∧2ψ ∧2ψ′ ∧ Fβ1 ∧ ... ∧ Fβn ∧ Pβ′1 ∧ ... ∧ Pβ′k) ∈ Γqj or

- F (ϕ ∧2ψ ∧2ψ′ ∧ Fβ1 ∧ ... ∧ Fβn ∧ Pβ′1 ∧ ... ∧ Pβ′k) ∈ Γqj or
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- P (ϕ ∧2ψ ∧2ψ′ ∧ Fβ1 ∧ ... ∧ Fβn ∧ Pβ′1 ∧ ... ∧ Pβ′k) ∈ Γqj

This contradicts (∗∗) above. qed

To finish off the construction, let 〈Q,<〉 =
⋃
{〈Qn, <n〉 | n ∈ ω}. It is not difficult to

check that 〈Q,<〉 is a countable dense unbounded linear order (the formula 2> ensures both
unboundedness and density), so we will move directly on to showing that 〈Q, τ〉 satisfies
∆ ∪ {¬ϕ}. Again let 〈Q, τ〉 have the Henkin valuation ν(p) = {q | p ∈ Γq}.

Proposition 3.19 〈Q, τ, ν〉, q |= ϕ⇔ ϕ ∈ Γq.

Proof. By induction on the complexity of ϕ. We will treat the cases ϕ = 2ψ and ϕ = Fψ.

ϕ = 2ψ

[⇒] Assume 3¬ψ ∈ Γq. Let U ′ be an arbitrary open containing q and let q∗ and q′ be
points in U ′ such that q∗ < q < q′. Then there is a stage j in the construction such that
q, q∗, q′ ∈ Qj−1 and 3¬ψ is being treated. When stage j is completed, there is a point x ∈ Qj
such that q∗ < x < q′ and ¬ψ ∈ Γx. It then follows from the inductive hypothesis that
x |= ¬ψ. So 〈Q, τ, ν〉, q |= 3¬ψ.

[⇐] Assume 2ψ ∈ Γq. We know at some stage j and step i such there are points q∗∗ and q′′

immediately before and after q in the <ij ordering such that Γq∗∗ ≺2ψ Γq ≺2ψ Γq′′ . We claim
that for all r, s, t ∈ Qmp , m > i , p ≥ j, if q∗∗ ≤ r < s < t ≤ q′′, then Γr ≺2ψ Γs ≺2ψ Γt. We
will argue by induction on the steps of the construction.

Assume at step Qm+1
p , m ≥ i, p ≥ j a point q′ is added between q∗∗ and q′′. By inspecting

the construction, it is clear that q′ is added immediately before or after the point qm ∈ Qp.
Without loss of generality, assume it is placed immediately after qm. By Proposition 3.14
≺2ψ is transitive, so it suffices to show that Γqm ≺2ψ Γq′ ≺2ψ Γqv , where qv is the imme-
diate successor of qm in the <mp ordering. We will only check that Γqm ≺2ψ Γq′ , showing
Γq′ ≺2ψ Γqv is similar.

By condition 2) on stages, we know that Γqm ≺ Γq′ ≺ Γqv . Furthermore, by the induc-
tive hypothesis we know that Γqm ≺2ψ Γqv . By inspecting each stage of the construction, we
see that {2ϕ | Γqm ≺2ϕ Γqv} ⊆ Γq′ , so 2ψ ∈ Γq′ . Now assume Hϕ ∈ Γqm . As Γqm ≺2ψ Γqv ,
it follows that H(ϕ ∨ 2ψ) ∈ Γqv . It is easy to check that this entails HH(ϕ ∨ 2ψ) is also in
Γqv . So by the fact Γq′ ≺ Γqv , H(ϕ ∨ 2ψ) ∈ Γq′ . Showing Gϕ ∈ Γq′ ⇒ G(ϕ ∨ 2ψ) ∈ Γqm is
similar.

So for all r, s, t such that q∗∗ ≤ r < s < t ≤ q′′, Γr ≺2ψ Γs ≺2ψ Γt. It follows immedi-
ately that for all q′ such that q∗∗ < q′ < q′′, 2ψ ∈ Γq′ . And since 2ψ → ψ is an axiom,
it follows that ψ is also in all Γq′ . Then by the inductive hypothesis on the complexity of
formulas, q′ |= ψ for all q′, q∗∗ < q′ < q′′. By letting U be the open U = {x | q∗∗ < x < q′′},
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we get that 〈Q, τ, ν〉, q |= 2ψ.

ϕ = Fψ

[⇒] Assume Fψ ∈ Γq. Then there is some stage j such that q ∈ Qj−1 and Fψ is being
treated at j . After this stage, there is a point q′ > q such that ψ ∈ Γq′ . Then by the
inductive hypothesis q′ |= ψ, so 〈Q, τ, ν〉, q |= Fψ.

[⇐] Assume 〈Q, τ, ν〉, q |= Fψ. Then there is some q′ > q such that q′ |= ψ and by the
inductive hypothesis ψ ∈ Γq′ . Since q and q′ are related by ≺ it follows that Fψ ∈ Γq. qed

It follows as before that Q2FP is strongly complete with respect to 〈Q, τ〉. qed

3.5 Extensions To R : The Temporal Case

So far we have seen that Q is complete with respect to the logics QFP, S4 and Q2FP. While
this is interesting, Q is not a particularly rich topological structure. From a mathematical
perspective, R is more interesting. And indeed extensions to R have been considered for the
logics QFP, S4, and Q2FP. Working indirectly through Kripke frames, the corresponding
cases are found to be technical, difficult, and open, respectively.

As mentioned before, one impressive feature of the temporal construction method is the ease
in which completeness on 〈Q, <〉 is extended to completeness on 〈R, <〉. Thus in considering
topological extensions of 〈Q, τ〉 to 〈R, τ〉 for L and L2FP using the construction method, it
is useful to have the original LFP proof in mind. The proof makes use of the following well
known facts.

Fact 3.20 〈R, <〉 is the unique complete linear ordering that has a countable dense subset
isomorphic to 〈Q, <〉.

Fact 3.21 If 〈W,<〉 is a dense unbounded linearly ordered set, then there exists a continuous
unbounded linearly ordered set 〈W ′ <′〉 such that:

- W ⊂W ′ and < and <′ agree on W

- W is dense in W ′

It follows that our constructed dense, unbounded, linear order 〈Q,<〉 constructed in Section
2.6 can be extended to a frame 〈R,<〉 ∼= 〈R, <〉. Using our intuitions from first order logic
as a guide, after extending 〈Q,<〉 to 〈R,<〉 we should associate every new point with a QFP

maximally consistent set. Then we should extend our Henkin valuation to include these new
points, and check that our new model 〈R,<〉 still satisfies ∆ ∪ {¬χ}. However, in this case
our first order intuitions fail us. This is one of the rare practical occurrences where the basic
modal language is, in some respects, more expressive than its first order counterpart.
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Theorem 3.22 Every dense unbounded linear order is elementary equivalent.

Let DULO be the first order theory containing axioms for density, unboundedness and lin-
earity. Then by the above classical theorem:

〈R, <〉 |= ϕ⇔ `DULO ϕ⇔ 〈Q, <〉 |= ϕ

It follows immediately that continuity is not first order definable. However, continuity is
definable in LFP . Let Aψ denote ψ ∧Gψ ∧Hψ.

Proposition 3.23 〈W,<〉 |= A(Gϕ→ PGϕ) → (Gϕ→ Hϕ) ⇔ 〈W,<〉 is continuous.

Proof. [⇒] Assume 〈W,<〉 is not continuous. Then there is some bounded set X ⊆W such
that sup X /∈ W . Let 〈W,<〉 have the valuation ν(p) = W/X. Then for all y such that y <
sup X, y |= F¬p and for all y such that y > sup X, y |= Gp∧ PGp. Let z be a point greater
than sup X. Then z |= A(Gp→ PGp) and z 6|= Gp→ Hp.

[⇐] Assume 〈W,<〉 is continuous and 〈W,< ν〉, w |= A(Gϕ → PGϕ). Furthermore, as-
sume towards a contradiction that w |= Gϕ ∧ P¬ϕ. Then the set X = {x | x < w and
x |= ¬ϕ} is nonempty. Since W is continuous, sup X = w′ ∈ W . So w′ |= Gϕ ∧ ¬PGϕ. But
since w′ ≤ w, this means w |= P¬(Gϕ → PGϕ) ∨ ¬(Gϕ → PGϕ). So w 6|= A(Gϕ → PGϕ),
contrary to assumption. qed

It should be clear that with continuity we are already getting more than expected out of LFP
and that no additional properties of 〈R, <〉 can be expressed. However, we still want to prove
this fact. Let RFP be the logic QFP + A(Gϕ→ PGϕ) → (Gϕ→ Hϕ).

Theorem 3.24 RFP is strongly complete with respect to 〈R, <〉.

Proof. Assume ∆ 0RFP
χ. First carry out the temporal construction procedure for 〈Q,<〉

as in Section 2.6, except this time replacing QFP maximally consistent sets with RFP ones.
The end result of the construction will be a countable, dense, unbounded linear order 〈Q,<〉
which satisfies ∆∪{¬χ}. Now extend 〈Q,<〉 to a structure 〈R,<〉 ∼= 〈R, <〉. We know many
new points will be added by this procedure, and we want to associate each of them with a
RFP maximally consistent set such that 〈R,<〉 still satisfies ∆ ∪ {¬χ}.

An obvious candidate for the irrational newcomer x ∈ R\Q is Γx, an RFP maximally consis-
tent extension of:

Γ = {α | ∃q ∈ Q such that q < x and Gα ∈ Γq} ∪
{β | ∃q′ ∈ Q such that x < q′ and Hβ ∈ Γq′}

In this case the obvious candidate turns out to be the correct one.
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Lemma 3.25 Γ is consistent.

Proof. Assume not. Then there are q1, ...qm < x with Gαi ∈ Γqi for 1 ≤ i ≤ m and
q′1, ..., q

′
n > x with Hβj ∈ Γq′j for 1 ≤ j ≤ n such that

`RFP
¬(α1 ∧ ...αm ∧ β1 ∧ ... ∧ βn)

However, since 〈Q,<〉 is dense, there must be some q∗ such that q1, ...qm < q∗ < q′1, ..., q
′
n and

since the < ordering on 〈Q,<〉 respects ≺, α1 ∧ ...αm ∧ β1 ∧ ... ∧ βn ∈ Γq∗ . qed

So we only need to check that extending the Henkin valuation to include the new points
preserves the desired harmony between the syntactic and semantic.

Lemma 3.26 For all r ∈ R\Q, if Fψ ∈ Γr then there is some q ∈ Q, r < q, such that
ψ ∈ Γq.

Proof. Assume Fψ ∈ Γr, r ∈ R\Q, and for all q′′ ∈ Q such that r < q′′, ¬ψ ∈ Γq′′ . Then
we know from the properties of our constructed model 〈Q,<, ν〉 that for all q′′ ∈ Q such
that r < q′′, G¬ψ ∧ PG¬ψ ∈ Γq′′ . Furthermore, we also know that for all q∗ ∈ Q such that
q∗ < r, Fψ ∈ Γq∗ , for otherwise G¬ψ ∈ Γr by the definition of Γr. So for every q ∈ Q, either
PG¬ψ ∈ Γq or Fψ ∈ Γq. It follows that for all q ∈ Q, A(G¬ψ → PG¬ψ) ∈ Γq . Now let q′

be a point in Q such that q < q′. From A(G¬ψ → PG¬ψ) ∧ G¬ψ ∈ Γq′ and the continuity
axiom it follows that H¬ψ ∈ Γq′ . But this contradicts the fact that Fψ ∈ Γq∗ for all q∗ < r
and 〈Q,<, ν〉 obeys the ≺ ordering. qed

Lemma 3.27 〈R,<, ν〉 |= ϕ⇔ ϕ ∈ Γr.

Proof. By induction on the complexity of ϕ. We will only treat the case ϕ = Fψ.

[⇐] Assume Fψ ∈ Γr. Then by the above Lemma and the ≺ ordering on 〈Q,<〉, there is
some q ∈ Q such that r < q and ψ ∈ Γq. By induction hypothesis, q |= ψ, so 〈R,<, ν〉, r |= Fψ.

[⇒] Assume Fψ 6∈ Γr. It is not hard to check that ¬ψ ∈ Γq for all q ∈ Q such that
r < q. So assume towards a contradiction that there is some r′ ∈ R\Q such that r < r′

and ψ ∈ Γr′ . Since 〈Q,<〉 is a dense subset of 〈R,<〉, there exists a point q′ ∈ Q such that
r < q′ < r′. However, we know G¬ψ ∈ Γq′ and thus by the definition of Γr′ that ¬ψ ∈ Γr′ .
This contradicts our assumption. So for all r′′ ∈ R such that r < r′′, ¬ψ ∈ Γr′′ . By the
inductive hypothesis all r′′ |= ¬ψ and 〈R,< ν〉, r 6|= Fψ. qed

Since ∆∪{¬χ} ⊆ Γq# , it readily follows that RFP is strongly complete with respect to 〈R, <〉.
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3.6 Further Extensions to R

So we have seen that our constructed LFP model 〈Q,<, ν〉 can be extended to a new model
〈R, <, ν〉 while preserving the truth of LFP formulas on 〈Q,<, ν〉. Now let us consider this
procedure for 〈Q, τ, ν〉 and 〈R, τ, ν〉 in the languages L and L2FP .

Let us first consider extending 〈Q, τ, ν〉 to 〈R, τ, ν〉 in L. Unlike the temporal case, we know
that S4 is the logic of both 〈Q, τ〉 and 〈R, τ〉, so we only need to fill in 〈Q, τ〉 with S4 maxi-
mally sets. Otherwise, let us proceed as above.

Assume ∆ 0S4 χ and let 〈Q, τ, ν〉 be our constructed topological model which satisfies
∆ ∪ {¬χ}. Extend 〈Q,<〉 to a structure 〈R,<〉 ∼= 〈R, <〉. Now associate each x ∈ R\Q
with Γx, an S4 maximally consistent extension of:

Γ = {2ψ | ∃q1, q2 ∈ Q such that q1 < x < q2 and ∀q ∈ Q such that q1 < q < q2, ψ ∈ Γq} ∪
{3ϕ | ∀q3, q4 ∈ Q such that q3 < x < q4, ∃q′ ∈ Q such that q3 < q′ < q4 and ϕ ∈ Γq′}

Lemma 3.28 〈R, τ, ν〉, r |= ϕ⇔ ϕ ∈ Γr.

Proof. By induction on the complexity of ϕ. We will only treat the case ϕ = 2ψ.

[⇐] Assume 2ψ ∈ Γr. We claim that ∃q1, q2 ∈ Q such that q1 < r < q2 and ∀q ∈ Q,
q1 < q < q2, ψ ∈ Γq. If r ∈ Q, this holds by the construction of 〈Q, τ〉 . And if r ∈ R\Q this
follows from the definition of Γr (since 3¬ψ /∈ Γr).

Now assume towards a contradiction that there is some r′ ∈ R\Q such that q1 < r′ < q2
and ¬ψ ∈ Γr′ . Then by maximal consistency 2ψ 6∈ Γr′ . It then follows from the definition of
Γr′ that for all q3, q4 ∈ Q such that q3 < r′ < q4, there exists some q′ ∈ Q , q3 < q′ < q4, and
¬ψ ∈ Γq′ . But this means there is a q′ ∈ Q such that q1 < q′ < q2 and ¬ψ ∈ Γq′ , contradicting
the previous paragraph.

So for all x ∈ R such that q1 < x < q2, ψ ∈ Γx. By letting U = {y | q1 < x < q2}
and the inductive hypothesis we get that 〈R, τ, ν〉, r |= 2ψ.

[⇒] Assume 2ψ 6∈ Γr. We claim that ∀q3, q4 ∈ Q such that q3 < r < q4, ∃q′ ∈ Q, q3 < q′ < q4,
and ¬ψ ∈ Γq′ . If r ∈ Q this holds by the construction of 〈Q,<〉 and if r ∈ R\Q then this
holds by definition of Γr (since 2ψ 6∈ Γr). So it follows from the inductive hypothesis that
〈R, τ, ν〉, r 6|= 2ψ. qed

In order to show our constructed model 〈Q, τ, ν〉 can be extended to 〈R, τ, ν〉 while preserving
the truth of L formulas, it only remains to be shown that Γ is consistent. Unfortunately, this
can not be done. For unlike the previous cases, our natural syntactic candidate to associate
with a new point may be inconsistent. For example, assume x ∈ R\Q and 〈Q, τ〉 has the
valuation ν(p) = {q | q < x}. Then according to the definition of Γx, 3p and 3¬p are in

33



Γx. Furthermore, for every q ∈ Q, either q |= 2p or q |= 2¬p, so 2(2p ∨ 2¬p) ∈ Γx. But
`S4 2(2p ∨2¬p) → ¬(3p ∧3¬p) and this entails that ¬(3p ∧3¬p) ∧ (3p ∧3¬p) ∈ Γx

So already things are worse than the temporal case, but one might still hope that they
are better than using the model theoretic approach. As mentioned before, the completeness
of S4 with respect to 〈R, τ〉 can be established model theoretically, but with tricky diversions
through finite transitive and reflexive trees and subsets of the Cantor Space. As we have seen,
using the construction method we have some control over how formulas are satisfied on 〈Q, τ〉
and perhaps we can make use this control when jumping to 〈R, τ〉.

Looking at the failure of Γ, it is clear what property we want our constructed model 〈Q, τ, ν〉
to possess: if there are rational ϕ1, .., ϕn sequences approaching an irrational point x, then
there is a rational sequence ϕ1 ∧ ... ∧ ϕn approaching x. We can then show Γ is consistent.
For assume not. Then there are formulas 2ψ,3ϕ1, ...,3ϕn such that

- ∃q1, q2 ∈ Q, q1 < x < q2 and for all q′ ∈ Q, q1 < q′ < q2, ψ ∈ Γq′

- ∀q3, q4 ∈ Q, q3 < x < q4, there exists some q′i ∈ Q such that q3 < q′i < q4 and ϕi ∈ Γq′i ,
for 1 ≤ i ≤ n

- `S4 2ψ → ¬(3ϕ1 ∧ ... ∧3ϕn)

But as there are rational sequences ϕ1...ϕn approaching x, by assumption there is a rational
sequence 3(ϕ1 ∧ ... ∧ ϕn) approaching x. This implies there is some rational point q′ in be-
tween q1 and q2 such that: 2ψ,3ϕ1, ...,3ϕn ∈ Γq′ .

However, after some reflection, it is clear that the desired property of 〈Q, τ, ν〉 is (at least)
very difficult to ensure. For while we have control on how formulas are satisfied on the ra-
tionals, this tells us very little about how they will line up on the irrationals. There is no
natural way to force a construction of 〈Q, τ, ν〉 to tell us what kinds of sequences are being
created towards irrational points.

The underlying difficulty of extending 〈Q, τ, ν〉 to 〈R, τ, ν〉 in L is that there is no way of
expressing any topological relation between the points in the language. We can see this de-
fect clearly when comparing our failed attempt in 〈R, τ〉 to the successful temporal proof
for 〈R, <〉. In the the temporal construction, each state of affairs expressible in RFP (i.e.
each maximal consistent set) is related to every other state of affairs in a way that respects
order structure on 〈Q, <〉. Furthermore, each description of an RFP state of affairs existing
in 〈Q, <〉 says that if there is a bounded ϕ sequence, then this ϕ sequence has a least upper
bound respecting the ≺ ordering. Thus when extending 〈Q, <〉 to 〈R, <〉, we know we can
associate an irrational point x with its natural syntactic candidate Γx, since this state of
affairs has already been described to exist in 〈Q, <〉.

The temporal construction for 〈R, <〉 goes so smoothly because there is a kind of expres-
sive harmony between what can be said to occur in the language and the structure 〈R, <〉.
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Clearly this is not the case in 〈R, τ〉, where we are working with a fairly rich topological struc-
ture and a language that can express almost no topological properties of the structure. In this
sense, one might think that the seemingly more difficult construction of 〈R, τ〉 in L2FP would
fare better, since additional topological properties such as connectedness are expressible in
L2FP . However, L2FP is still to weak of a language for things to go smoothly. In order to
successfully extend 〈Q, τ〉 to 〈R, τ〉 we need to be able to express in the language when a
particular 2 stretch ends, which is a much stronger property than connectedness.

3.7 QSU on Q

Perhaps at some point in the preceding discussion, the reader noted the resemblance between
L2FP and the popular temporal Since and Until language LSU . Indeed, LSU has all the
expressive power of L2FP , plus the additional property we desired in our attempted con-
structions of 〈R, τ〉 : the ability to express up to what point a 2 stretch holds. In this section
we will examine how this additional property simplifies completeness proofs using the con-
struction method.

The Since/Until language LSU contains two binary operators U and S, and is built up in
the usual way from a set of propositional letters and these two operators. Intuitively, the
formulas U(ϕ,ψ) and S(ϕ,ψ) are supposed to mean ’until ϕ is true, ψ holds’ and ’since ϕ was
true, ψ has held’. More formally, given a model M = 〈W,<, ν〉, where < is a partial order,
we define when an LSU formula γ is true at a point w as follows:

• w |= U(ϕ,ψ) iff ∃w′′ > w such that w′′ |= ϕ and ∀w′ , w < w′ < w′′ , w′ |= ψ

• w |= S(ϕ,ψ) iff ∃w′′ < w such that w′′ |= ϕ and ∀w′ , w > w′ > w′′ , w′ |= ψ

As the reader may have noticed, LSU is expressively complete over L2FP . We can define 2,
F and P as follows:

Fψ := U(ψ,>)

Pψ := S(ψ,>)

2ψ := S(>, ψ) ∧ ψ ∧ U(>, ψ)

However, in LSU it is also possible to say additional things like ”until we are in a 2ϕ stretch,
we are in a 2ψ stretch” (U(2ϕ,2ψ)).

LSU was first introduced by Kamp in [12] and, as may be guessed from its name, the origi-
nal interest was temporal rather than topological. After the first most general completeness
results for partial orders were discovered, attention naturally turned to mathematical struc-
tures such as 〈N, <〉, 〈Q, <〉 and 〈R, <〉. Kamp made progress in these problems but never
published his results, as his proofs were regarded as very unwieldy. The first published results
in the area are found in Burgess [7], where axiomatizations of 〈N, <〉 and 〈Q, <〉 are given.
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However, even Burgess proofs are not very conspicuous and make crucial use high powered
technical results, such as Rabin’s theorem. Let us see how the construction method can be
used to simplify matters.

Let QSU be the logic containing axioms:

1a) G(ϕ→ ψ) → (U(ϕ, γ) → U(ψ, γ))
2a) G(ϕ→ ψ) → (U(γ, ϕ) → U(γ, ψ))
3a) ϕ ∧ U(ψ, γ) → U(ψ ∧ S(ϕ, γ), γ)
4a) U(ϕ,ψ) ∧ ¬U(γ, ψ) → U(ϕ ∧ ¬γ, ψ)
5a) U(ϕ,ψ) ∧ ¬U(ϕ, γ) → U(ψ ∧ ¬γ, ψ)
6a) U(ϕ,ψ) → U(ϕ,ψ ∧ U(ϕ,ψ))
7a) U(ψ ∧ U(ϕ,ψ), ψ) → U(ϕ,ψ)
8a)U(ϕ,ψ)∧U(γ, ζ) → U(γ ∧ψ ∧U(ϕ,ψ), ψ ∧ ζ)∨U(ϕ∧ γ, ψ ∧ ζ)∨U(ϕ∧ ζ ∧U(γ, ζ), ψ ∧ ζ)
9a) U(>,>)
10 ¬U(>,⊥)

and 1b)− 9b), where all occurrences of S are replaced by U in 1a)− 9a) , and vice versa.

Theorem 3.29 QSU is strongly complete with respect to 〈Q, <〉.

Proof. Assume ∆ 0QSU
χ. We will construct a frame 〈Q,<〉 ∼= 〈Q, <〉 in stages which

satisfies ∆ ∪ {¬χ}.

A stage n consists of:

1) a finite set Qn = {q0, q1..., qk}

2) a linear ordering <n on Qn

3) an assignment of a QSU maximally consistent set Γqi to each qi ∈ Qn

Definition 3.30 We say Γq ≺ϕ Γq′ if ψ ∈ Γq′ ⇒ U(ψ,ϕ) ∈ Γq �

Note the simplicity of the ≺ relation compared to ≺2ψ in L2FP . By adding slightly more
expressive power, we no longer have to force the temporal operators G and H to interact
correctly with 2. The language now takes care of this for us.

Proposition 3.31 Γq ≺ϕ Γq′ and Γq ≺ψ Γq′ ⇒Γq ≺ϕ∧ψ Γq′

Proof. Assume not. Then there is a γ ∈ Γq′ such that U(γ, ϕ) ∈ Γq, U(γ, ψ) ∈ Γq and
¬U(γ, ϕ ∧ ψ) ∈ Γq. By axiom 8a)

i) U(γ, ϕ ∧ ψ) ∈ Γq or
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ii) U(γ ∧ ϕ ∧ U(ϕ,ψ), ϕ ∧ ψ) ∈ Γq or

iii) U(γ ∧ ψ ∧ U(γ, ψ), ϕ ∧ ψ) ∈ Γq

i) contradicts the assumption that ¬U(γ, ϕ ∧ ψ) ∈ Γq straight away, so assume either ii) or
iii) hold instead. It is a basic fact that `QSU

U(α ∧ β, χ) ↔ U(α, χ) ∧ U(β, χ), so it follows
again that U(γ, ϕ ∧ ψ) ∈ Γq, contradicting the consistency of Γq. qed

Similar to previous constructions, when adding a new point q′ in between points q and q′′

such that Γq ≺ϕ Γq′′ , we want to take care that ϕ ∈ Γq′ and Γq ≺ϕ Γq′ ≺ϕ Γq′′ . In other
words, we want to be sure that

{ϕ} ∪ {¬ψ | ¬U(ψ,ϕ) ∈ Γq} ∪ {U(γ, ϕ) | γ ∈ Γq′′} ⊆ Γq′

In order to show that this is possible it is useful to prove the following Proposition.

Proposition 3.32 Assume Γq ≺ϕ Γq′′, ¬U(ψ,ϕ) ∈ Γq and γ ∈ Γq′′. Then
Γq ≺ϕ∧¬ψ∧U(γ,ϕ) Γq′′.

Proof. Assume α ∈ Γq′′ . We want to show U(α, ϕ ∧ ¬ψ ∧ U(γ, ϕ)) ∈ Γq.

Since Γq ≺ϕ Γq′′ , we know that U(α, ϕ) ∈ Γq.

Now we will show that U(α,¬ψ) ∈ Γq. Assume towards a contradiction that ¬U(α,¬ψ) ∈ Γq.
From α ∈ Γq′′ and Γq ≺ϕ Γq′′ , we know that U(α, ϕ) ∈ Γq. Then it follows from axiom 5a)
that U(ϕ ∧ ψ,ϕ) ∈ Γq. But this implies U(ψ,ϕ) ∈ Γq, contradicting our assumption.

Finally we will show U(α,U(γ, ϕ)) ∈ Γq. Assume towards a contradiction that ¬U(α,U(γ, ϕ)) ∈
Γq. From α, γ ∈ Γq′′ and Γq ≺ϕ Γq′′ , we know that U(α∧ γ, ϕ) ∈ Γq. Then from axiom 6a) it
follows that U(α ∧ γ, ϕ ∧ U(α ∧ γ, ϕ)) ∈ Γq. But this implies that U(α,U(γ, ϕ)) ∈ Γq, again
contradicting the consistency of Γq.

It follows from the above and Proposition 3.31 that U(α, ϕ ∧ ¬ψ ∧ U(γ, ϕ)) ∈ Γq. qed

We are now ready to begin the construction of 〈Q,<〉. Let ϕ0ϕ1ϕ2... be an enumeration of
all U , ¬U , S and ¬S formulas, in which each formula is repeated infinitely many times.

- Stage 0: Let Q0 = {q#} and associate q# with Γq# , a QSU maximally consistent extension
of ∆ ∪ {¬χ}.

- Stage 4n + 1: Let ¬U(ϕ,ψ) be the next ¬U formula in the enumeration. For all q ∈ Q4n, if

i) ¬U(ϕ,ψ) ∈ Γq and

ii) there is a u′ > q such that ϕ ∈ Γu′ and
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iii) for all t ∈ Q4n such that q < t < u′, ψ ∈ Γt

then let u be the least point q < u with ϕ ∈ Γu and let r be the greatest point q ≤ r < u
such that ¬U(ϕ,ψ) ∈ Γr. Let s be the immediate successor of r in <4n. Add a new point q′

in between r and s and associate q′ with Γq′ , a QSU maximally consistent extension of:

Γ = {¬ψ} ∪ {γ | Γr ≺γ Γs} ∪
{¬α | Γr ≺γ Γs and ¬U(α, γ) ∈ Γr} ∪ {U(β, γ) | Γr ≺γ Γs and β ∈ Γs}

Proposition 3.33 Γ is consistent.

Proof. Assume not. Then there are formulas γ1..., γk,¬U(α1, γ
′
1), ....,¬U(αl, γ′l), γ

′′
1 , ..., γ

′′
m ∈

Γr and β1...βm ∈ Γs such that

`QSU
¬(¬ψ ∧ γ1 ∧ ... ∧ γk ∧ ¬α1 ∧ ... ∧ ¬αl ∧ U(β1, γ

′′
1 ) ∧ ... ∧ U(βm, γ′′m))

`QSU
G¬(¬ψ ∧ γ1 ∧ ... ∧ γk ∧ ¬α1 ∧ ... ∧ ¬αl ∧ U(β1, γ

′′
1 ) ∧ ... ∧ U(βm, γ′′m))

`QSU
¬F (¬ψ ∧ γ1 ∧ ... ∧ γk ∧ ¬α1 ∧ ... ∧ ¬αl ∧ U(β1, γ

′′
1 ) ∧ ... ∧ U(βm, γ′′m))

From now on let ζ = γ1 ∧ ... ∧ γk ∧ ¬α1 ∧ ... ∧ ¬αl ∧ U(β1, γ
′′
1 ) ∧ ... ∧ U(βm, γ′′m).

We know from assumptions i)-iii) above that either:

1) Γs = Γu and ϕ ∈ Γs or

2) Γs 6= Γu and ψ ∧ U(ϕ,ψ) ∈ Γs

First assume 1) holds. Then since ϕ ∈ Γs, it follows from Propositions 3.31 and 3.32
that U(ϕ, ζ) ∈ Γr. Furthermore, since ¬U(ϕ,ψ) ∈ Γr, it follows from axiom 5a) that
U(¬ψ ∧ ζ, ζ) ∈ Γr. But this implies F (¬ψ ∧ ζ) ∈ Γr, contradicting the consistency of Γr.

So assume 2) holds instead. By contraposition of axiom 7a) we have that
¬U(ϕ,ψ) → ¬U(ψ∧U(ϕ,ψ), ψ). Since ¬U(ϕ,ψ) ∈ Γr, ¬U(ψ∧U(ϕ,ψ), ψ) ∈ Γr. Furthermore,
since ψ ∧ U(ϕ,ψ) ∈ Γs, by Propositions 3.31 and 3.32 we have that U(ψ ∧ U(ϕ,ψ), ζ) ∈ Γr.
So by axiom 5a), U(¬ψ ∧ ζ, ζ) ∈ Γr. But this implies F (¬ψ ∧ ζ) ∈ Γr, again contradicting
the consistency of Γr. qed

- Stage 4n + 2: Let U(ϕ,ψ) be the next U formula in the enumeration. For all q ∈ Q4n+1 if
U(ϕ,ψ) ∈ Γq and there is no w > q such that:

- ϕ ∈ Γw

- ∀r∀s, q ≤ r < s ≤ w, Γr ≺ψ Γs

- ∀q′, q < q′ < w, ψ ∈ Γq′
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then we need to add a new point somewhere after q such that all of the above properties hold
at that point. Let t be the greatest element in the <4n+1 ordering, q ≤ t, such that

- ∀r q ≤ r ≤ t, U(ϕ,ψ) ∈ Γr

- ∀r∀s q ≤ r < s ≤ t, Γr ≺ψ Γs

- ∀r q < r ≤ t, ψ ∈ Γr

Add a new point u immediately after t. Let v be the immediate successor of t in Q4n+1,
provided one exists. Associate u with Γu, a QSU maximally consistent extension of:

Γ′ = {ϕ} ∪ {¬α | ¬U(α, ψ) ∈ Γt}∪
∪{¬β | Γt ≺γ Γv and ¬U(β, γ) ∈ Γt} ∪ {U(ξ, γ) | Γt ≺γ Γv and ξ ∈ Γv}

Proposition 3.34 Γ′ is consistent

Proof. Assume not. Then there are ¬U(α1, ψ), ...,¬U(αj , ψ), γ1, ..., γk,¬U(β1, γ
′
1), ...,¬U(βl, γ′l),

γ′′1 , ...γ
′′
m ∈ Γt and ξ1....ξm ∈ Γv such that:

`QSU
¬(ϕ ∧ ¬α1 ∧ ... ∧ ¬αj ∧ γ1 ∧ ... ∧ γk ∧ ¬β1 ∧ ... ∧ ¬βl ∧ U(ξ1, γ′′1 ) ∧ ... ∧ U(ξm, γ′′m))

`QSU
G¬(ϕ ∧ ¬α1 ∧ ... ∧ ¬αj ∧ γ1 ∧ ... ∧ γk ∧ ¬β1 ∧ ... ∧ ¬βl ∧ U(ξ1, γ′′1 ) ∧ ... ∧ U(ξm, γ′′m))

Let ζ = γ1 ∧ ... ∧ γk ∧ ¬β1 ∧ ... ∧ ¬βl ∧ U(ξ1, γ′′1 ) ∧ ... ∧ U(ξm, γ′′m).

We know that the point t was chosen for one of the following reasons:

i) Γt 6≺ψ Γv

ii) Γt ≺ψ Γv but ¬ϕ ∧ ¬U(ϕ,ψ) ∈ Γv

iii) Γt ≺ψ Γv but ¬ϕ ∧ ¬ψ ∈ Γv

First assume i) holds. Then there is some χ ∈ Γv such that ¬U(χ, ψ) ∈ Γt. By Propositions
3.31 and 3.32, it follows that U(χ, ζ) ∈ Γt and thus by axiom 5a), we have that U(ζ∧¬ψ, ζ) ∈
Γt. Furthermore, since U(ϕ,ψ),¬U(α1, ψ), ...,¬U(αj , ψ) ∈ Γt, by repeated use of axiom 4a)
we have that U(ϕ∧ α1 ∧ ...∧ αn, ψ) ∈ Γt. Putting these facts together, it follows from axiom
8a) that:

a) U(ζ ∧ ¬ψ ∧ ψ ∧ U(ϕ ∧ ¬α1 ∧ ... ∧ ¬αj , ψ), ψ ∧ ζ) ∈ Γt or

b) U(ϕ ∧ ¬α1 ∧ ... ∧ ¬αj ∧ ζ ∧ ¬ψ,ψ ∧ ζ) ∈ Γt or

c) U(ϕ ∧ ¬α1 ∧ ... ∧ ¬αj ∧ ζ ∧ U(ζ ∧ ¬ψ, ζ), ψ ∧ ζ) ∈ Γt
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Choice a) straightforwardly contradicts the consistency of Γt. However, both b) and c) imply
that F (ϕ ∧ ¬α1 ∧ ... ∧ ¬αj ∧ ζ) ∈ Γt, which also contradicts the consistency of Γt.

So assume ii) holds. By Propositions 3.31 and 3.32, it follows that U(¬ϕ∧¬U(ϕ,ψ), ζ) ∈ Γt.
As before, from U(ϕ,ψ),¬U(α1, ψ), ...,¬U(αj , ψ) ∈ Γt we have U(ϕ∧¬α1∧ ...∧¬αj , ψ) ∈ Γt.
Then by axiom 8a)

a) U(ϕ ∧ ¬α1 ∧ ... ∧ ¬αj ∧ ζ ∧ U(¬ϕ ∧ ¬U(ϕ,ψ), ζ), ψ ∧ ζ) ∈ Γt or

b) U(ϕ ∧ ¬α1 ∧ ... ∧ ¬αj ∧ ¬ϕ ∧ ¬U(ϕ∧, ψ), ψ ∧ ζ) ∈ Γt or

c) U(¬ϕ ∧ ¬U(ϕ,ψ) ∧ ψ ∧ U(ϕ ∧ ¬α1 ∧ ... ∧ ¬αj , ψ), ψ ∧ ζ) ∈ Γt

Clearly b) and c) contradict the consistency of Γt. So only a) is possible. However by as-
sumption F (ϕ ∧ ¬α1 ∧ ... ∧ ¬αj ∧ ζ) is inconsistent.

Finally assume iii) holds. It follows from Propositions 3.31 and 3.32 that U(¬ψ∧¬ϕ, ζ) ∈ Γt.
As above, we have that U(ϕ ∧ ¬α1 ∧ ... ∧ ¬αj , ψ) ∈ Γt. Then it follows from axiom 8a) that

a) U(ϕ ∧ ¬α1 ∧ ... ∧ ¬αj ∧ ¬ψ ∧ ¬ϕ,ψ ∧ ζ) ∈ Γt or

b) U(¬ψ ∧ ¬ϕ ∧ ψ ∧ U(ϕ ∧ ¬α1 ∧ ... ∧ ¬αj , ψ), ψ ∧ ζ) ∈ Γt or

c) U(ϕ ∧ ¬α1 ∧ ... ∧ ¬αj ∧ ζ ∧ U(¬ψ ∧ ¬ϕ, ζ), ψ ∧ ζ) ∈ Γt

a) and b) contradict the consistency of Γt directly, and c) implies F (ϕ ∧ ¬α1 ∧ ... ∧ ¬αj ∧ ζ).
qed

Definition 3.35 We say Γq �ϕ Γq′ if ψ ∈ Γq ⇒ S(ψ,ϕ) ∈ Γq′ . �

- Stages 4n + 3 and 4n + 4 treat the next ¬S and S formulas in the enumeration. They are
mirror images of 4n+ 1 and 4n+ 2, using the � relation in place of ≺.

Proposition 3.36 Γq ≺ϕ Γq′ ⇔ Γq �ϕ Γq′

Proof. [⇒] Assume towards a contradiction that γ ∈ Γq′ ⇒ U(γ, ψ) ∈ Γq and there is some
ϕ ∈ Γq such that ¬S(ϕ,ψ) ∈ Γq′ . It follows that ϕ∧U(¬S(ϕ,ψ), ψ) ∈ Γq. But from axiom 3a)
we know that ψ ∧U(¬S(ϕ,ψ), ψ) → U(¬S(ϕ,ψ)∧S(ϕ,ψ), ψ), so U(¬S(ϕ,ψ)∧S(ϕ,ψ), ψ) ∈
Γq, which contradicts the consistency of Γq. The converse direction is symmetric. qed

By the above Proposition, it follows that if a new point q′ is added between points q and q′′

at S or ¬S stages that:

{ϕ | Γq ≺ϕ Γq′′} ∪ {¬ψ | Γq ≺ϕ Γq′′ and ¬U(ψ,ϕ) ∈ Γq}∪
{U(γ, ϕ) | Γq ≺ϕ Γq′′ and ϕ ∈ Γq′′} ⊆ Γq′
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To finish the construction, let 〈Q,<〉 =
⋃
{〈Qn, <n〉 | n ∈ ω}. Again it is not hard to check

that 〈Q,<〉 is a countable dense unbounded linear order; the axioms S(>,>) and U(>,>)
ensure unboundedness and ¬U(>,⊥) ensures density. So let us move straight way to showing
that 〈Q,<〉 satisfies ∆ ∪ {¬χ}.

Proposition 3.37 〈Q,<, ν〉, q |= γ ⇔ γ ∈ Γq.

Proof. By induction on the complexity of γ. We will only treat the case γ = U(ϕ,ψ).

[⇒] We will argue contrapositively. Assume ¬U(ϕ,ψ) ∈ Γq. If ϕ 6∈ Γr for all r > q, then by
the inductive hypothesis r 6|= ϕ for all r > q. In this case, clearly 〈Q,<, ν〉, q |= ¬U(ϕ,ψ). So
assume there is an s > q such that ϕ ∈ Γs. Then there is some stage k such that q, s ∈ Qk−1

and ¬U(ϕ,ψ) is being treated. If at stage k there is no q′′, q < q′′ < s, such that ¬ψ ∈ Γq′′ ,
then a new point q′ is added such that q < q′ < s and ¬ψ ∈ Γq′ . By inductive hypothesis
s |= ϕ and q′ |= ¬ψ, so 〈Q,<, ν〉, q |= ¬U(ϕ,ψ).

[⇐] Assume U(ϕ,ψ) ∈ Γq. By construction, there is a stage j with t ∈ Qj , q < t, such that

i) ϕ ∈ Γt

ii) ∀r∀s, q ≤ r < s ≤ t, Γr ≺ψ Γs

iii) ∀r, q < r < t, ψ ∈ Γr

Furthermore, for any point v′ added in the construction immediately between arbitrary points
v and v′′

{ψ | Γv ≺ψ Γv′′} ∪ {¬ϕ | Γq ≺ψ Γv′′ and ¬U(ϕ,ψ) ∈ Γv}∪
{U(γ, ψ) | Γv ≺ψ Γv′′ and ψ ∈ Γv′′} ⊆ Γv′

So it follows immediately from ii) and iii) that for all q′, q < q′ < t, ψ ∈ Γq′ . By the inductive
hypothesis, every q′ |= ψ and t |= ϕ, so 〈Q,<, ν〉, q |= U(ϕ,ψ). qed

It then follows as before that QSU is strongly complete with respect to 〈Q, <〉.

3.8 S4⊕ S4 on Q×Q

For one final application of the construction method, let us return to our starting point: the
basic modal language L. However, this time we will consider the basic modal language with
two modal operators 21 and 22. In the past fifteen years, such bimodal languages have been
studied extensively on products of Kripke frames. For a survey of the literature, see Gabbay
and Shehtman [10], or the encyclopedic Gabbay, Kurucz, Wolter and Zakharyaschev [11].

In the standard product semantics for mutimodal languages, each operator is interpreted
in the usual manner on a single dimension of a Kripke product frame. Thus given a bimodal
language and two Kripke frames F = 〈W,S〉 and G = 〈V, T 〉, 21 and 22 are interpreted as
would be expected on 〈W × V,R1, R2〉 where for all w,w′ ∈W and v, v′ ∈ V ,
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(w, v)R1(w′, v′) iff wSw′ and v = v′

(w, v)R2(w′, v′) iff w = w′ and vTv′

Although we will not delve into the results in this area, one relevant theorem of Gabbay and
Shehtman [10] is that if two logics L1 and L2 are complete with respect to frame classes F′
and F∗ which are defined by universal Horn conditions, then

F′ × F∗ = {〈W × V,R1, R2〉 : 〈W,S〉 ∈ F′ and 〈V, T 〉 ∈ F∗}

is axiomatized by L1 ⊕ L2 plus the interaction principles com = 2122ϕ ↔ 2221ϕ and
chr = 3122ϕ→ 2231ϕ.

More recently, the notion of an S4×S4 Kripke product frame has been generalized to that of
a topological product space preserving one dimensional topologies. For convenience, we will
call such spaces topological product frames. Thus given two topological spaces X = 〈X, η〉
and Y = 〈Y, θ〉, a topological product frame is defined to be 〈X × Y, τ1, τ2〉 where

τ1 = {U × {y} | U ∈ η and y ∈ Y }
τ2 = {V × {x} | V ∈ θ and x ∈ X}

Given the usual topological semantics for 2 on X = 〈X, η〉 and Y = 〈Y, θ〉, the topological
semantics for the bimodal language on 〈X × Y, τ1, τ2〉 is given as follows:

• (x, y) |= 21ψ ⇔ ∃U ∈ τ1 such that (x, y) ∈ U and for all (x′, y) ∈ U , (x′, y) |= ψ

• (x, y) |= 22ψ ⇔ ∃U ∈ τ2 such that (x, y) ∈ U and for all (x, y′) ∈ U , (x, y′) |= ψ

Topological product frames are proposed and investigated in van Benthem, Bezhanishvili, ten
Cate and Sarenac [5] where it is shown, among other things, that interaction principles such
as com and chr, which are valid on S4× S4 Kripke product frames by the above mentioned
result, fail in the more general topological setting. The main result of [5] is that the S4 axioms
for 21 and 22 alone suffice to axiomatize the topological product frame 〈Q×Q, τ1, τ2〉. Thus
any purported interaction between the horizontal and vertical topologies can be refuted on
simple topological spaces. As a final illustration of the construction method, we will provide
another short proof of the above fact, which illustrates the lack of interaction between 21 and
22 on 〈Q×Q, τ1, τ2〉.

Theorem 3.38 S4⊕ S4 is strongly complete with respect to 〈Q×Q, τ1, τ2〉.

Proof. Assume ∆ 0S4⊕S4 χ . We will construct two frames 〈Qa, <a〉 ∼= 〈Qb, <b〉 ∼= 〈Q, <〉
in steps and stages such that 〈Qa × Qb, τ1, τ2〉 satisfies ∆ ∪ {¬χ}. For the construction, it
is useful to have a linear ordering of Qa × Qb on hand. Let us define such a relation < as
follows. For all (x, y), (x′, y′) ∈ Qa ×Qb:

(x, y) < (x′, y′) iff x <a x
′, or x = x′ and y <b y′
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A stage n consists of :

1. a finite set Qan = {x0, x1..., xk} linearly ordered by <an

2. a finite set Qbn = {y0, y1..., ym} linearly ordered by <bn

3. a finite set Qn ⊆ Qan ×Qbn linearly ordered by <n, where <n= <� Qn

4. an assignment of an S4⊕ S4 maximally consistent set Γ(x,y) to all (x, y) ∈ Qn

Each stage is divided into ≤ k + 2 steps. A step j, 0 ≤ j ≤ k + 1, consists of:

1. a finite set Qjan = {x0, x1..., xl} linearly ordered by <an

2. a finite set Qjbn = {y0, y1..., yp} linearly ordered by <bn

3. a finite set Qjn ⊆ Qjan ×Qjbn linearly ordered by <jn, where <jn= <� Qjn

4. an assignment of an S4⊕ S4 maximally consistent set Γ(x,y) to all (x, y) ∈ Qjn

Let ϕ0ϕ1ϕ2... be an enumeration of all 21,22,31 and 32 formulas in which each formula is
repeated infinitely many times. The construction will proceed as follows:

- Stage 0: Let Qa0 = {x#}, Qb0 = {y#} and Q0 = {(x#, y#)}. Associate (x#, y#) with
Γ(x#,y#), an S4⊕ S4 maximally consistent extension of ∆ ∪ {¬χ}.

- Stage 5n + 1: Let 21ϕ be the next 21 formula in the enumeration and let {(x1, y1)....(xk, yk)}
be an enumeration of the elements in Q5n ordered by <5n.

- Step 0 : Let Q0
a5n

= Qa5n , Q0
b5n

= Qb5n and Q0
5n = Q5n.

- Step j + 1 : If 21ϕ ∈ Γ(xj ,yj), let Qj+1
a5n = Qja5n ∪ {x∗, x′}, Q

j+1
b5n

= Qjb5n
and Qj+1

5n =
Qj5n ∪ {(x∗, yj), (x′, yj)}. Let <j+1

a5n be <ja5n extended to include x∗ and x′ immediately
before and after xj , and associate the new points (x∗, yj), (x′, yj) in Qj+1

5n with Γ(xj ,yj).

Let Qa5n+1 = Qk+1
a5n

, Qb5n+1 = Qk+1
b5n

and Q5n+1 = Qk+1
5n .

- Stage 5n + 2: Let 31ϕ be the next 31 formula in the enumeration and let {(x1, y1)...(xk, yk)}
be an enumeration of the elements in Q5n+1 ordered by <5n+1.

- Step 0 : Q0
a5n+1

= Qa5n+1 , Q
0
b5n+1

= Qb5n+1 and Q0
5n+1 = Q5n+1.

- Step j + 1 : If 3ϕ ∈ Γ(xj ,yj), let Qj+1
a5n+1 = Qja5n+1 ∪ {x′}, Q

j+1
b5n+1

= Qjb5n+1
and Qj+1

5n+1 =

Qj5n+1 ∪ {(x′, yj)}. Let <j+1
a5n+1 be <ja5n+1 extended to include x′ immediately after x.

Associate the new point (x′, yj) ∈ Qj+1
5n+1 with Γ(x′,yj), an S4⊕S4 maximally consistent

extension of {ϕ} ∪ {21ψ | 21ψ ∈ Γ(xj ,yj)}. By Lemma 3.9 , Γ(x′,yj) is consistent.
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Let Qa5n+2 = Qk+1
a5n+1

, Qb5n+2 = Qk+1
b5n+1

and Q5n+2 = Qk+1
5n+1.

- Stage 5n + 3: Repeat 21 procedure for 22 formulas, adding points to Qb instead of Qa.

- Stage 5n + 4: Repeat 32 procedure for 32 formulas, adding points to Qb instead of Qa.

- Stage 5n + 5:

- Step 0: Let Q0
a5n+5

= Qa5n+4 , Q
0
b5n+5

= Qb5n+4 and Q0
5n+5 = Qa5n+4 ×Qb5n+4 .

Let Qa5n+5 = Q0
a5n+5

, Qb5n+5 = Q0
b5n+5

and Q5n+5 = Q0
5n+5.

We want to associate all the new points Q5n+5\Q5n+4 with maximally consistent sets such
that all of the horizontal 21 stretches and vertical 22 stretches are preserved. Because of the
way 21 and 22 stretches are created, we know that a newly added point (x, y) will not occur
in both a designated 21 stretch and a designated 22 stretch. Thus it suffices to associate
(x, y) ∈ Q5n+5\Q5n+4 with a maximally consistent set in the most recently created 21 or 22

stretch containing (x, y). More formally, for all (x, y) ∈ Q5n+5\Q5n+4, let m ≤ 5n + 4 be
the greatest 21 or 22 stage and i be the greatest step where points (x∗, y), (x′, y) or (x, y∗),
(x, y′) are added such that x∗ <a x <a x′ or y∗ <b y <b y′. If such an m and i exist, let
Γ(x,y) = Γ(x∗,y) or Γ(x,y) = Γ(x,y∗). If not, associate Γ(x,y) with an arbitrary S4⊕S4 maximally
consistent set.

To finish the construction, let 〈Qa, <a〉 =
⋃
{〈Qan , <an〉 | n ∈ ω},

〈Qb, <b〉 =
⋃
{〈Qbn , <bn〉 | n ∈ ω} and 〈Q×Q,<〉 =

⋃
{〈Qn, <n〉 | n ∈ ω}. It is easy to check

that 〈Qa, <a〉 and 〈Qb, <b〉 are countable dense unbounded linear orders. So it follows from
〈Qa, <a〉 ∼= 〈Qb, <b〉 ∼= 〈Q, <〉 that 〈Qa × Qb, <〉 ∼= 〈Q × Q, <〉. Furthermore, it is not hard
to see that 〈Q×Q,<〉 = 〈Qa ×Qb, <〉. By definition, 〈Q×Q,<〉 ⊆ 〈Qa ×Qb, <〉. So assume
(x, y) ∈ 〈Qa × Qb, <〉. Then there is some stage j such that x ∈ Qaj and y ∈ Qbj and by
stage j + 5, (x, y) ∈ Qj+5 ⊆ Q×Q. So 〈Q×Q,<〉 ∼= 〈Q×Q, <〉.

Proposition 3.39 〈Q×Q, τ1, τ2〉, (x, y) |= ϕ⇔ ϕ ∈ Γ(x,y).

Proof. By induction on the complexity of ϕ. We will only treat the case ϕ = 21ψ.

[⇒] Assume 21ψ 6∈ Γ(x,y) and assume (x1, y), (x2, y) ∈ Q × Q such that x1 <a< x <a x2.
Then there is a stage j such that (x1, y), (x, y), (x2, y) ∈ Qj−1 and 31¬ψ is being treated.
After stage j, there is a point (x′, y) ∈ Qj such that x1 <a x

′ <a x2 and ¬ψ ∈ Γ(x′,y). So
〈Q×Q, τ1, τ2〉, (x, y) 6|= 21ψ.

[⇐] Assume 21ψ ∈ Γ(x,y). Then at some stage j and step k there are points (x∗, y), (x′, y) ∈ Qkj
such that x∗ and x′ occur immediately before and after x in the <kaj

ordering and Γ(x∗,y) =
Γ(x′,y) = Γ(x,y). We claim that for all (r, y) ∈ Q × Q such that x∗ <a r,<a x′, 21ψ ∈ Γ(r,y).
We will argue by induction on the steps of the construction.
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Assume we are at at some 2 or 3 stage l ≥ j and step m+ 1 and a point (r, y) is added such
that x∗ <a r <a x′. If l is a 21 or 31 stage, then (r, y) is added immediately before or after
(xm, y), x∗ ≤a xm ≤a x′, and {2ϕ | 2ϕ ∈ Γ(xm,y)} ⊆ Γ(r,y). By the inductive hypothesis and
the fact that 2ψ ∈ Γ(x∗,y),Γ(x′,y), it follows that 2ψ ∈ Γ(r,y). If l is a 22 or 32 stage, no
points (r, y) are added such that x∗ <a r <a x′.

So finally assume l = 5n+ 5 for some n and a point (r, y) is added such that x∗ <a r <a x′.
At no 22 stage less than l are points (r, y∗), (r, y′) added such that y∗ <b y <b y′, so (r, y)
must be associated with Γ(r,y) = Γ(r∗,y) = Γ(r′,y) such that x∗ ≤a r∗ <a r <a r′ ≤a x′ and
{2ϕ | 2ϕ ∈ Γ(r,y)} ⊆ Γ(r∗,y). By the inductive hypothesis and the fact that 2ψ ∈ Γ(x∗,y),Γ(x′,y),
it follows that 2ψ ∈ Γ(r,y). qed

So S4⊕ S4 is strongly complete with respect to 〈Q×Q, τ1, τ2〉.

4 Method Comparison

Throughout this paper we have made remarks contrasting the construction method to its
more established counterpart, model theoretic approach to proving topological completeness.
However, thus far we have only sketched what the model theoretic approach is and have not
seen how the two approaches differ on any concrete examples. The purpose of this final chapter
will be to remedy this state of affairs. For a specific example of method comparison, we will
turn to the nicest application of the model theoretic approach to topological completeness:
S4 on the Cantor Space. We will then see how the construction method handles this case
and discuss more generally in which cases the construction method can be seen to have an
advantage over the standard model theoretic approach. Finally, we will speculate on further
applications of the construction method in modal logics of space.

4.1 S4 on 2ω, the Model Theoretic Approach

As mentioned in the introduction, one current area of investigation in modal logics of space
involves finding ways to simplify results found in McKinsey and Tarski’s ’The Algebra of
Topology’. This project seems to have started with Mints [15], where a new completeness
proof of S4 with respect to the Cantor Space is given. Since that time, a number of new proofs
of completeness with respect to R and Q have discovered, but none of them are quite as nice
as the Cantor Space proof. The reason for this is clear: S4 has a large number of simple tree
frame characterizations. It is just much more natural to transfer topological structure from
one tree to another than from a tree to a strict linear order. Now let us examine how this
model theoretic transfer of topological structure from the Cantor Space to an S4 tree works.
As a note, the proof given below does not follow Mints [15], but rather a slightly different
argument from Aiello, van Benthem, Bezhanishvili [3].

Fact 4.1 S4 is complete with respect to the class of all rooted finite transitive and reflexive
trees.
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Fact 4.2 Every S4 frame 〈W,R〉 can be viewed as a topological space 〈W, τ ′〉 where
∆x = {y | Rxy} and B = {∆y | y ∈W} serves as a basis for τ ′.

Recall that the domain of the Cantor Space 〈2ω, τ〉 is the set of all infinite sequences of 0s
and 1s. Such infinite sequences σ ∈ 2ω are called branches of the Cantor Space and finite
initial sequences s ⊂ σ are called nodes of the Cantor Space. Let Bt = {σ | t ⊂ σ}. Then
B = {Bt | t is a node of the Cantor Space} serves as a basis for τ .

In outline, the model theoretic completeness argument proceeds as follows:

- Assume 0S4 ϕ

- By Fact 4.1, ϕ can be refuted on a rooted finite transitive and reflexive tree 〈W,R〉

- By Fact 4.2, this tree can be viewed as a topological space 〈W, τ ′〉

- A homeomorphism is devised between 〈2ω, τ〉 and 〈W, τ ′〉

- Homeomorphism is shown to be stronger than the suitable notion of modal equivalence

- So 〈2ω, τ〉 6|= ϕ

Devising the homeomorphism between 〈2ω, τ〉 and 〈W, τ ′〉 is the step which requires work,
and which is the nice part of model theoretic proof. Essential use is made of the fact that
〈W,R〉 is a finite tree refuting ϕ.

Theorem 4.3 〈2ω, τ〉 is complete with respect to S4.

Proof. Assume 0S4 ϕ and 〈W,R〉 is a rooted finite transitive and reflexive tree refuting ϕ.
Intuitively, 〈W,R〉 can be viewed as tree in which some nodes are points in W and other nodes
are sets of points C ⊆ W , where for every x, y ∈ C, Rxy and Ryx. We call such C ⊆ W
clusters. In other words, the nodes of the tree can be viewed as equivalence classes, some
singletons and others proper.

Now let us view our Kripke frame 〈W,R〉 refuting ϕ as the topological space 〈W, τ ′〉. The
first step is to devise a labeling between nodes of the Cantor Space and points in W . The
labeling proceeds recursively as follows:

1) Label the root of the Cantor Space with a root of W (since the root of W may be a
cluster, there could be more than one point to choose from).

2) If a node t of the Cantor Space is labeled with a point w ∈ W then label every node
s ⊇ t of the branch t000... with w.

3) If t is labeled with w, label the nodes occurring immediately to the right of the branch
t000... as follows: let {w0, ...., wk} be an enumeration of ∆w and label the node t1 with
w0, t01 with w1, ... ,t(0)k1 with wk, t(0)k01 with w0..., and so on.
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Now we want to transform this labeling of nodes of the Cantor Space with points in W into
a labeling of branches of the Cantor Space with points of W . We know that that if a branch
σ ∈ 2ω is of the form σ = t000 and t is labeled with w, then every node s, t ⊆ s ⊂ σ, is
labeled w. In this case, we say w stabilizes σ. Otherwise, since all extensions t ⊆ s ⊂ σ of
a given node t labeled with w are labeled with members of ∆w (and ∆w is finite), we know
that from some point on every node of σ is labeled with elements in some cluster C ⊆ W .
With this in mind, let us define the following function F : 2ω →W .

F (σ) =
{

w if w stabilizes σ
ρ(C) if σ keeps cycling in C ⊆W , where ρ(C) is an arbitrary member of C

Lemma 4.4 For any node t labeled with w , F [Bt] = ∆w.

Proof. As stated above, all extensions s ⊇ t are labeled with points from ∆w, so it follows
immediately from the definition of F that F [Bt] ⊆ ∆w. For the converse, assume w′ ∈ ∆w.
Further assume w′ = wj in the enumeration {w0....wk} of ∆w. Then the branch t(0)j1000...
is labeled w′. So ∆w ⊆ F [Bt]. qed

Lemma 4.5 F is a homeomorphism from 〈2ω, τ〉 to 〈W, τ ′〉.

Proof. Clearly F is onto, so let us move on to showing F preserves and reflects opens.

F preserves opens: It suffices to check that F preserves basic opens. However, by the above
Lemma F sends basic opens Bt of 〈2ω, τ〉 to basic opens ∆w of 〈W, τ ′〉.

F reflects opens: Let ∆w be a basic open in 〈W, τ ′〉 and let

V =
⋃
{Bt : t is labeled with a point w ∈ ∆w}

Clearly V is open in 〈2ω, τ〉, so it suffices to check that F−1(∆w) = V . It follows easily
from Lemma 4.4 that F (V ) ⊆ ∆w, so V ⊆ F−1(∆w) . Now assume σ ∈ F−1(∆w). Then
F (σ) ∈ ∆w and we know by the labeling that from some point t ⊂ σ on, all nodes t ⊆ s ⊂ σ
are labeled with members of ∆w. So σ ∈ Bt ⊆ V and F−1(∆w) ⊆ V . qed

Definition 4.6 Suppose two topological models 〈X, τ, ν〉 and 〈X∗, τ∗, ν∗〉 are given. A
topo − bisimulation is a non-empty relation T ⊆ X ×X∗ such that if xTx∗ then

- x ∈ ν(p) iff x∗ ∈ ν ′(p) for any propositional letter p

- if x ∈ U ∈ τ then ∃U∗ ∈ τ∗ such that x∗ ∈ U∗ and ∀y∗ ∈ U∗, ∃y ∈ U such that yTy∗

- if x∗ ∈ U∗ ∈ τ ′ then ∃U ∈ τ such that x ∈ U and ∀y ∈ U , ∃y∗ ∈ U∗ such that yTy∗

�
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Fact 4.7 Let f be a homeomorphism between 〈X, τ〉 and 〈X∗, τ∗〉. Then given a valuation
ν∗ on 〈X∗, τ∗〉, the valuation ν(p) = f−1(ν∗(p)) defines a total topo-bisimulation between the
models 〈X∗, τ∗, ν∗〉 and 〈X, τ, ν〉.

Fact 4.8 If T is a topo-bisimulation between two models X,X∗ such that xTx∗, then x and
x∗ satisfy the same modal formulas.

To finish the proof, let ν ′ be the valuation and w be the point in W such that
〈W, τ ′, ν ′〉, w |= ¬ϕ. Then by Lemma 4.5 and Fact 4.7, we know that assigning 〈2ω, τ〉
the valuation ν(p) = F−1(ν ′(p)) defines a total topo-bisimulation between 〈W, τ ′, ν ′〉 and
〈2ω, τ, ν〉. So by Fact 4.8, 〈2ω, τ, ν〉, F−1(w) |= ¬ϕ. qed

4.2 S4 on 2ω, the Construction Method

We have now seen how the model theoretic approach can be used to show S4 is complete
with respect to the Cantor Space. Let us examine this proof from the perspective of the
construction method.

Theorem 4.9 〈2ω, τ〉 is complete with respect to S4.

Proof. Assume 0S4 χ. Let L′ be the language L restricted to subformulas of ¬χ. Then there
are only finitely many L′ maximally consistent sets, each of which is finite. We will label
nodes of the Cantor Space with L′ maximally consistent sets as follows:

1) Label the root r of the Cantor Space with Γr, an L′ maximally consistent extension of
{¬χ}.

2) If a node t is labeled with Γt then label every node s ⊇ t of the branch t000... with Γt.

3) If a node t is labeled with Γt then label the nodes occurring immediately to the right
of the branch t000... as follows. Let Σ = {3ψ0,3ψ1...3ψk} be an enumeration of the
diamond formulas in Γt. Label the node t1 with a L′ maximally consistent extension of
{ψ0} ∪ {2ϕ | 2ϕ ∈ Γt}, the node t01 with a maximally consistent extension of {ψ1} ∪
{2ϕ | 2ϕ ∈ Γt}, t(0)k1 with a maximally consistent extension of {ψk}∪{2ϕ | 2ϕ ∈ Γt},
t(0)k01 with a maximally consistent extension of {ψ0} ∪ {2ϕ | 2ϕ ∈ Γt}, ..., and so on.

Associate σ ∈ 2ω with any L′ maximally consistent set Γ which occurs infinitely many times
on the nodes of σ (since there are only finitely many L′ maximally consistent sets, such a Γ
is guaranteed to exist). Assign 〈2ω, τ〉 the usual Henkin valuation.

Lemma 4.10 〈2ω, τ, ν〉, σ |= ϕ⇔ ϕ ∈ Γσ.

Proof. By induction on the complexity of ϕ. We will only treat the case ϕ = 2ψ.

48



[⇐] Assume 2ψ ∈ Γσ. By examining the labeling procedure, it is clear that s ⊂ t⇒
{2ψ | 2ψ ∈ Γs} ⊆ {2ψ | 2ψ ∈ Γt}. Since each L′ maximally consistent set is finite, there
must be some t′ ⊂ σ such that for all t′′ ⊇ t′, {2ψ | 2ψ ∈ Γt′} = {2ψ | 2ψ ∈ Γt′′}. It
then follows from the labeling of branches that for every σ′ ∈ Bt′ , 2ψ ∈ Γσ′ . Furthermore,
2ψ → ψ is an axiom (and ψ is in L′ since it is a subformula of 2ψ), so for all σ′ ∈ Bt′ ,
ψ ∈ Γσ′ . Thus by the inductive hypothesis all σ′ |= ψ. It follows that 〈2ω, τ, ν〉, σ |= 2ψ.

[⇒] Assume 3¬ψ ∈ Γσ and Bt is an arbitrary open such that t ⊂ σ. We know there is
some t′ ⊃ t labeled with Γσ. Assume 3¬ψ = 3ϕj in the enumeration {3ϕ0,3ϕ1, ...,3ϕn}
of 3 formulas in Γσ. Let σ′ = t′(0)j100.... Then σ′ ∈ Bt and ¬ψ ∈ Γσ′ , so by the inductive
hypothesis, σ′ |= ¬ψ. Thus 〈2ω, τ, ν〉, σ |= 3¬ψ.

Let σ0 = 000.... We know that σ0 is associated with Γr and ¬χ ∈ Γr, so it follows from the
above Lemma that 〈2ω, τ, ν〉, σ0 |= ¬χ. qed

4.3 Method Comparison

When using the construction method to establish that S4 is complete with respect to the
Cantor Space, no mention is made of Kripke frame characterizations of S4, viewing these
frames as topological spaces, establishing a homeomorphism between the Cantor Space and
an arbitrary member of a class of Kripke frames, etc.. The only relevant fact, that there are
only finitely many maximally consistent sets, each of which is finite, is used in exactly the
way you would expect given how 2 and 3 formulas are evaluated on branches of the Cantor
Space. In this case, the construction method avoids a detour through Kripke semantics.

However, the mere streamlining of existing topological completeness proofs does not prove
the utility of the construction method. This comes only when we moving to modal languages
richer than L, where the requisite Kripke frame characterizations are often very difficult to
come by. In such cases, the construction method can be used to considerable advantage.

One instance where the construction method simplifies matters significantly is axiomatiz-
ing 〈Q, τ〉 in L2FP . To get a sense of the difficulty of working model theoretically, consider
one of the common Kripke frame characterizations of S4. For example, recall that S4 is com-
plete with respect to the class of all finite transitive and reflexive trees. Call this frame class
F. To make the model theoretic argument go forward, it is necessary to add structure to F to
make the temporal axioms of Q2FP true. As it stands, axioms such as Fϕ→ G(ϕ∨Pϕ∨Fϕ)
(right-linearity) and Pϕ→ H(ϕ ∨ Pϕ ∨ Fϕ) (left-linearity) need not be true on an arbitrary
〈W,R〉 ∈ F. The natural way to do this is to add an additional relation S to all 〈W,R〉 ∈ F
such that the temporal axioms (density, unboundedness, right linearity, left linearity, etc.)
are true on S.

However, once this new frame class F′ is conceived such that the axioms of S4 and QFP

are true on 〈W,R, S〉 ∈ F′, it still must be taken care that all the interaction principles be-
tween 2 and F and P are true on 〈W,R, S〉 ∈ F′. This is guaranteed to be difficult, since
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Q2FP is a somewhat expressive language and a tree containing two relations R and S bears
little resemblance to the intended structure 〈Q, τ〉. Once this is done, it remains to be shown
that 〈Q, τ〉 is modally equivalent to the relevant Kripke countermodel 〈W,R, S〉 ∈ F′ .

In this case, rather than wrestling with Kripke frames it is better to go to the intended
structure 〈Q, τ〉 directly. It is much simpler to force 2 and F and P to interact correctly
on 〈Q, τ〉, as we did with the syntactic condition ≺2ψ, than establish that 〈Q, τ〉 is modally
equivalent to an arbitrary member of some class of Kripke frames.

In general, when attempting to establish modal completeness results on mathematical struc-
tures it seems preferable to avoid Kripke semantics. In a large number of cases, the relevant
Kripke frame characterizations are difficult to establish and the necessary structural transfer
proves awkward [19] [20]. The construction method provides a means to avoid Kripke seman-
tics. Thus when working in modal languages more expressive than L, it seems reasonable that
the construction method would be the first choice to establish spatial completeness results.
Furthermore, since most questions concerning the basic modal language L with a spatial
interpretation have already been answered, it is reasonable to believe that the construction
method will be a useful tool in the future of modal logics of space.
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