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Abstract

In the past few years unlabeled examples and their potentialadvantage have received
a lot of attention. In this paper a new boosting algorithm is presented where unla-
beled examples are used to enforce agreement between several different learning algo-
rithms. Not only do the learning algorithms learn from the given training set but they
are supposed to do so while agreeing on the unlabeled examples. Similar ideas have
been proposed before (for example, the Co-Training algorithm by Mitchel and Blum),
but without a proof or under strong assumptions. In our setting, it is only assumed
that all learning algorithms are equally adequate for the tasks. A new generalization
bound is presented where the use of unlabeled examples results in a better ratio between
training-set size and the the resulting classifier’s quality. The extent of this improve-
ment depends on the diversity of the learners—a more diversegroup of learners will
result in a larger improvement whereas using two copies of a single algorithm gives
no advantage at all. As a proof of concept, the algorithm, named AgreementBoost, is
applied to two test problems. In both cases, using AgreementBoost results in an up to
40% reduction in the number of labeled examples.
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Chapter 1

Introduction

Imagine a young pupil being taught for the first time to read a foreign language. The
teacher might begin the first lesson by writing the entire alphabet of the language on
the board announcing that today they are going to learn the first letter, say ‘ℵ.’ After
a rather cumbersome hour of staring at letters, the pupil is surprised by the teacher’s
last announcement: the following lesson will begin with a short quiz covering today’s
material. The quiz will take the following form: each pupil will receive a sheet of paper
written in that foreign language and will have to mark all occurrences of the letter ‘ℵ.’
Furthermore, imagine that the teacher of this young pupil isa particularly bad one. She
does not give the pupil any guidance nor explanation with respect to how an ‘ℵ’ should
be recognized out of the whole alphabet. Rather the teacher spends the whole lesson
showing the students transparencies of different letters,saying for each one whether it
is a nice example of the lesson’s subject (‘ℵ’) or that it is a letter they will study at a
later time.

The problem faced by this poor pupil can be modeled by one of the simplest but
popular models in machine learning calledsupervised learning.This model represents
a scenario where a ‘learner’ is required to solve aclassification problem.The model
assumes the existence of a set of possible examplesX which are divided in some way
into a set of classesY (often called labels). In the pupil’s case, the example space can
be the set of all possible images of letters in the alphabet (one letter per image) and
the classes are ‘ℵ’ and non-‘ℵ.’ The pupil then comes up with a mappingf : X → Y ,
saying for each letter in the quiz whether it is an ‘ℵ’ or not. In order to evaluate the
quality of the pupil’s mapping it is assumed that there exists a distributionP overX ×Y

which represents the ‘chance’ to see a specific example and it’s label1 in real life. The
quality of the pupil’s mapping, or classifier, is then measured by the probability of it
making a mistake. In other words, the lower the probability of the classifier making a
mistake, the better the classifier.

In class, the only interaction between teacher and pupil is achieved by showing
the pupil a set of examples along with their correct label. This form of interaction is
modeled by assuming that the learner is given a finite sample of labeled examplesS,
drawn at random and independently fromP. Since this is the only information the pupil
receives, she must use this sample to generate the resultingclassifier.

More formally, the learning model is defined as follows: it isassumed that the
learning algorithm is given only a finite sequence of training examples. The training

1Note that this setting allows an example to belong to different classes, or have several labels. This is
helpful when modeling noise or non-deterministic processes.
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examples are given in the form of a set of ordered pairs,S=
{
(x j ,y j )

}ns

j=1, where each
instancex j belongs to someinstance spaceX and is accompanied by a single label
out of a label space2 Y ⊆ [−1,+1]. Furthermore, it is assumed that the training set
Swas generated by repeatedly and independently sampling some arbitrary probability
distributionP overX ×Y . The task of a learning algorithm is then to use the training
set to construct a classifier, or a hypothesis that best predicts the labels given to ex-
amples fromX by P. Typically the learning algorithm can only choose a hypothesis
from a limited set of possible hypotheses, which is referredto as the hypothesis space
H ⊆ Y X .

Though the above learning scenario is somewhat contrived, many real life applica-
tions fall nicely within this model. Problems like OCR, web pages classification (as
done in Internet directories) and detection of spam e-mail are only a few of many prob-
lems that fit into this scheme. Note that the assumption regarding the poor didactic
skills of the teacher is made to serve a very practical reason: how does one explain
to an e-mail program how to detect a spam e-mail? If this was easy, it would have
been much simpler to write a program to identify spam rather then running a learning
algorithm. Devising concrete rules that precisely discernspam from non-spam is much
harder (to humans) than the pure proclamation “This is spam.” In other words, the al-
gorithm is used to transfer our somehow vague notion of “Thisis spam” to a concrete
rule that can be efficiently executed by a computer. Therefore, an algorithm that is able
to ‘learn’ concrete classification rules from a labeled sample alone demands less from
the ‘teacher’—the user of the learning algorithm.

In all the examples above and in many others, it is relativelyhard to obtain a large
sample of labeled examples. The sample has to be carefully analyzed and labeled by
humans—a costly and time consuming task. However in many situations it is fairly
easy to obtain unlabeled examples: examples from the example spaceX without the
class that they belong to. This process can be easily mechanized and preformed by a
machine, much faster then any human-plausible rate. This difference between labeled
and unlabeled examples has encouraged researchers in the recent years to study the
benefits that unlabeled examples may have in various learning scenarios. For example,
will it help the young pupil if she will be given a booklet written in that foreign lan-
guage to take home? Can this booklet and the abundant unlabeled-examples within be
used to improve the pupil’s results in the coming exam?

1.1 The Co-training model

At first glance it might seem that nothing is to be gained from unlabeled examples.
After all, unlabeled examples lack the most important pieceof information—the class
to which they belong. However, this is not necessarily the case. In some theoretical
settings, it is beneficial to gain knowledge over the examples’ marginal distribution
P(x) (for example in [7]). In these cases, having extra examples,with or without their
label, provides this extra information. On the other hand, there exist situations (for
example in [10]) where knowingP(x) is not helpful and unlabeled examples do not help
at all. The main goal of this sort of research is to determine the amount of information
that can be extracted from unlabeled examples. However, unlabeled examples have
also been used by algorithms in a more practical way: as a sortof a communication

2For technical reasons, the label space is restricted to[−1,+1]. In the general case,Y may be different.
For example, in a multi class problem one typically choosesY to be{1,2,3...,M} whereM is the number
of possible classes.
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platform between two different learning algorithms. One such usage is the so called
Co-Training model or strategy.

A typical example of Co-Training can be found in [5], a paper often cited with
respect to unlabeled examples. In their paper, Blum and Mitchel provide both an algo-
rithm and a theoretical framework where unlabeled examplesare used to communicate
an ‘opinion’ about an unlabeled example from one algorithm to another. As a case
study, the algorithm is then applied to a web-page classification problem involving
identifying courses’ homepages out of a collection of web-pages.

In their work, Blum and Mitchel assume that the example spacecan be split into
two ‘views’ X 1 andX 2 i.e.,X = X 1×X 2. For example, in the web-page classification
problem, a web-page can be represented as the words appearing on the web-page itself
(view 1) but also as words appearing on links pointing to it. Further they assume that
examples are labeled by two target functionsf 1, f 2, one for each view. In order to
comply with the fact that each example belongs to a single class, they further assume
that P

({
x1×x2 : f 1

(
x1
)
6= f 2

(
x2
)})

= 0. Lastly, they assume that there exist two
learning algorithmsL1 andL2 such thatL1 can learn using the first view alone and
L2 can learn using the second view and in the presence of noise. Furthermore, they
suppose that both views are sufficient for learning the problem.

The main theoretical result in their paper is the following:under some assumptions,
a classifier that uses the first view and that is slightly better than random guessing is
equivalent to a noisy source when looked upon from the point of view of L2. Further-
more, the noise rate of the source is strictly smaller than1

2 and therefore it contains
some information on the original labels. IfL1 is trained on the labeled examples to
achieve such a classifier, it can then be used to label unlabeled examples and supply a
noisy source forL2 to learn from. SinceL2 can learn in the presence of noise, it can
then use the abundant newly labeled examples to produce a good classifier.

This ability to transform a deterministic process to randomnoise entails a very
severe assumption: for every fixed example

(
x̂1, x̂2

)
∈ X of non-zero probability it

must hold that:

P
(
X1 = x̂1 | X2 = x̂2) = P

(
X1 = x̂1 | f 2(X2)= f 2(x̂2)) (1.1)

P
(
X2 = x̂2 | X1 = x̂1) = P

(
X2 = x̂2 | f 1(X1)= f 1(x̂1)) .

In other words, thatX1andX2 are conditionally independent given the label. As the
authors themselves state, only four hypotheses comply withthis assumption (assuming
thatP allows for it).

The algorithm presented by Blum and Mitchel (see Algorithm 1) has been shown
to produce better classifiers in the web-pages problem and inother experiments (for
example, [12, 11], for more detailed analysis and limitations see [13, 16]). However,
the theory presented can only be used as a motivation or a general intuition for the al-
gorithm’s success. The algorithm does not train one learnerand uses it to labelall un-
labeled examples, which are in turn given to the second learner. Instead, both learners
are allowed to choosesomeunlabeled examples for labeling. These unlabeled exam-
ples are then added to the pool of labeled examples. Therefore, after being labeled, an
unlabeled example assumes the same role as a labeled example: a true representation
of the target function. As the authors themselves remark, this process encourages the
learners to slowlyagreeon the labels of the unlabeled examples. In the last iteration of
the Co-Training algorithm, the classifiers produced are theresult of underlying learn-
ers doing their best to fit the same set of labeled and newly-labeled examples. If the
number of newly-labeled examples is considerately larger,this implies that the learners

3



The Value of Agreement A New Boosting Algorithm

Algorithm 1 The Co-Training algorithm, as presented in [5]
Inputs:

• A set of labeled training examples (S)

• A set of unlabeled examples(U)

1. Create a poolU ′ of examples by choosingnu unlabeled examples, at random,
fromU .

2. Loop fork iterations:

(a) UseSandL1 to train a classifierh1 that considers only thex1 portion of the
examples.

(b) UseSandL2 to train a classifierh2 that considers only thex2 portion of the
examples.

(c) Allow h1 to labelp positive andn negative examples fromU ′.

(d) Allow h2 to labelp positive andn negative examples fromU ′.

(e) Add these self-labeled examples toS.

(f) Randomly choose 2p+2n examples fromU to replenishU ′.

are encouraged to agree on a set of examples whose labels werenot given to them in
advance. Before starting the algorithm, there is no guarantee as to what label an unla-
beled example will receive but only to the fact that the end classifiers are highly likely
to agree on that label. This type of agreement is a side effectof many other variants of
the co-training model [15, 14].

This intuition that agreement is useful and can assist in thetask of learning is elabo-
rated and made more precise in this paper. A theoretical framework is presented where
agreement between different learners has a clear advantage3. Furthermore, these ideas
are carried over to the field of boosting, where the theoretical settings are especially ap-
plicable. This is achieved in the form of a new algorithm thatbuilds upon this theory.
A similar attempt can be found in [17] where a boosting algorithm is presented, based
on the above intuition. However, no proof is provided that the algorithm does result in
agreeing classifiers nor for the advantage of such an agreement. A proof for the latter
(in a more general settings) was provided by Dasgupta et al. in [18]. Nevertheless,
for the proof to hold one still has to use the strong assumption of view-independence
(Equation 1.1). Another example for the use of unlabeled examples in boosting can be
found in [23].

Before delving into the theoretical benefits of agreement, we present a short intro-
duction to boosting.

1.2 Boosting

The basic idea behind boosting is to iteratively combine relatively simple hypotheses to
create a more complex classifier—a classifier that is superior to all underlying hypothe-

3Assuming that all learners are different yet adequate for the task.

4



The Value of Agreement A New Boosting Algorithm

Algorithm 2 AdaBoost [19]

Input: A sampleS= {(xi ,yi)}ns
i=1 and an underlying learning algorithmL.

1. Initialize: d(1)
i = 1/ns for all i = 1, . . . ,ns.

2. Do fort = 1, . . . ,T:

(a) UseL to obtain a hypothesisht : X → {−1,+1} trained onS, re-weighted
according tod(t).

(b) Calculate the weighted training errorεt of ht :

εt =
ns

∑
i=1

d(t)
i I(yi 6= ht(xi)) whereI(yi 6= ht(xi)) =

[
1 if yi 6= ht(xi)
0 otherwise

(c) Setαt = 1
2 log 1−εt

εt
.

(d) Update weights:d(t+1)
i = d(t)

i exp(−αtyiht (xi))/Zt , whereZt is a normal-

ization constant such that
ns

∑
i=1

d(t+1)
i = 1.

3. Outputsign

(
T
∑

t=1
αtht

)
as resulting classifier.

ses. While coming up with a classifier (and an algorithm to construct it) that can ade-
quately solve a supervised learning problem is hard, devising a ‘rule of thumb’ which
is just slightly better than random guessing is fairly easy in many problems. Take, for
example, the web-page classification problem from before. One can use the existence
of the word ‘course’ in a web-page as a relatively good indication that this is a course
home page. While this criterion is far from perfect (for example, a university schedule
is also highly likely to contain the word ‘course’) it is still much better than random
guessing. Other such words may include ‘homework’,‘class’,‘lesson’,‘assignment’ etc.

In the last decade boosting has grown in popularity and has received consider-
able attention. One of the first practical boosting algorithms was AdaBoost (Adaptive
Boosting, see Algorithm 2), introduced by Freund and Schapire in [19]. Since then, it
was thoroughly researched and many variants of it were derived. Since AdaBoost is
such a typical and simple boosting algorithm, it will be usedhere as a representative
example.

The main idea behind AdaBoost (and many other boosting algorithms) is to assign
to each of the training examples a weight. An underlying learning algorithm is then
used to generate a (weak) hypothesis based on this artificially weightedtraining set.
This means that the algorithm receives the original training setSalong with the weights
of examples in it. The learning algorithm is expected to treat this weighing as if it is
the true distribution of examples inS.

The weight of an example is determined at each iteration according to the hypoth-
esis,ht , returned by the weak learner. The weight of examples that are correctly clas-
sified byht is decreased and the weight of those that are misclassified isincreased. In
this way, the learner is forced to focus on the more difficult examples in the training
set. The final hypothesis is then constructed by combining the hypotheses of all rounds
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giving more weight to hypotheses that had a lower classification error.
Freund and Schapire provide a bound for the training error made by the ensemble

classifier built by AdaBoost:

1
ns

ns

∑
i=1

I (yi 6= sign( f (xi))) ≤ 2T
T

∏
t=1

√
εt (1− εt).

If it is further assumed that weak learning algorithm alwaysreturns a hypothesis whose
error is at least a constant away from random guessing (i.e.,εt ≤ 1

2 − γ), this bound
turns into:

1
ns

ns

∑
i=1

I (yi 6= sign( f (xi))) ≤ exp
(
−2Tγ2) .

Therefore, under the above assumption, the training error decays exponentially fast.
This quick convergence has also been observed in practice and is one of the most
important traits of AdaBoost.

Further experiments have revealed that this analysis is notenough to explain the
behaviour of AdaBoost. Typically, the reduction of training error to zero was combined
with a generalization4 bound connecting the training error to the global true errorof
the classifier (for an example, see Theorem 12 in Chapter 2.3). This means that once
a classifier has reached zero training error the bounds have reached their full power
in predicting the quality of it. However, in practice, the test-error of the classifiers
produced by AdaBoost continue to improve long after the training error has reached
zero.

Beginning with [20], a whole new set of generalization bounds was introduced that
can explain this behavior. Two of these bounds will be presented in the following
chapters as an example. Describing the rest of the generalization bounds and the huge
amount of research into and improvements of AdaBoost is far beyond the scope of this
work. For further information and an excellent introduction, the reader is referred to
[1].

4The term generalization refers to the ability of a classifierto perform well ingeneraland not only on
the training set. Generalization bounds are theorems bounding its global error with terms relating to some
measurement on the training set and other terms that are independent of the specific classifier used. Typically
these terms measure the complexity of the set of possible classifiers. For more details see Chapter 2.
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Chapter 2

The Value of Agreement

In this chapter, a theoretical foundation and justificationof the advantage in combing
several different learning algorithms will be presented.

A typical approach in the supervised learning model is to design an algorithm that
chooses a hypothesis that in some way best fits the training sample. It will be shown
that an advantage can be gained by taking several such learning algorithms and de-
manding that they not only best learn the training set but also ‘agree’ with each other
by outputting identical hypotheses1.

The discussion below involves several learning algorithmsand their accompanying
hypothesis spaces. To avoid confusion, any enumeration or index that relates to dif-
ferent learners or hypotheses is enumerated using superscripts (typically l ). All other
indices, such as algorithm iterations and different examples, are denoted using a sub-
script.

2.1 Preliminaries

Since the learning algorithm is only given a finite sample of examples, it can only se-
lect a hypothesis based on limited information. However, the task of the algorithm is a
global one. The resulting classifierf must perform well with respect to all examples in
X . The probability of errorP({(x,y) : f (x) 6= y}) must be small. In order to transfer
the success of a classifier on the training set to the global case, there exist numerous
generalization bounds(two such theorems will be given below). Typically these the-
orems involve some measure of the complexity or richness of the available hypothesis
space. In some cases it is assumed that the labels of examplesfrom X are given by one
of the hypotheses inH. In other cases, the algorithm’s task is to construct a classifier
that best predicts an arbitrary distributionP (for example, in the case of noise). In both
cases, if the hypothesis space is not too rich, any hypothesis able to correctly classify
the given examples cannot be to far from the target distribution. However, ifH is very
rich and can classify correctly any finite sample using different functions, success on a
finite sample does not necessarily imply good global behavior.

One such hypotheses-space complexity measure, which is particularly useful in the
boosting scenario (see Theorem 7) is theRademacher Complexity. A definition from
[2] will be given here:

1By identical it is meant that the hypotheses represent the same function fromX to Y . In practice the
hypotheses will be very different (for example, Bayes classifiers vs. decision trees).

7



The Value of Agreement A New Boosting Algorithm

Definition 1. Let X1, . . . ,Xn be independent samples drawn according to some distri-
butionP on a setX . For a class of functionsF , mappingX to R, define the random
variable

R̂n (F) = E

[
sup
f∈F

∣∣∣∣∣
2
n

n

∑
i=1

σi f (Xi)

∣∣∣∣∣

]

where the expectance is taken with respect toσ1, . . . ,σn , independent uniform{±1}-
valued random variables. Then theRademacher complexityof F is Rn (F) = ER̂n (F)
where the expectance is now taken overX1, . . . ,Xn.

The Rademacher complexity is in fact a measure of how well a hypothesis space
is expected to fit an arbitrary labeling. A rich class of functions will do this well
and the term supf∈F

∣∣ 2
n ∑n

i=1 σi f (Xi)
∣∣ will be high for many examples. Therefore, the

Rademacher complexity of such a function set will be high as well. Smaller and less
rich spaces are expected to lead to a smallerRn(F) value. In the special case whereF

consists of binary functions, one can show thatRN (F) = O
(√

VCdim(F)/N
)

(derived

from [2]), connecting the Rademacher complexity to the well-known VC dimension.
One example of a generalization bound is the following (adapted from Theorem 3

in [1] and proved in [3]):

Theorem 2. Let F be a class of real-valued functions fromX to [−1,+1] and let
θ ∈ [0,1]. Let P be a probability distribution onX ×{−1,+1} and suppose that a
sample of N examples S= {(x1,y1) , . . . ,(xN,yN)} is generated independently at random
according to P. Then for any integer N, with probability at least1− δ over samples of
length N, every f∈ F satisfies

P(y 6= sign( f (x))) ≤ L̂θ( f )+
2RN(F)

θ
+

√
log(2/δ)

2N

whereL̂θ( f ) = 1
N

N
∑

n=1
I (yn f (xn) ≤ θ) andI (yn f (xn) ≤ θ) = 1 if yn f (xn) ≤ θ and0 oth-

erwise.

Theorem 2 introduces a new concept namedmargin.

Definition 3. Themargin of a functionh : X → [−1,1] on an examplex ∈ X with a
labely∈ {±1} is yh(x).

The margin of a functionh on an examplex can be interpreted as the confidence
of the classification. If the margin is negative,sign(h) misclassifiesx. A positive mar-
gin measures the distance ofh(x) from the crucial 0-value. In these terms, Theorem 2
can be interpreted as saying that a more ‘confident’ hypotheses has a lower general
error. Margins have been used to give a new explanations to the success of boosting
algorithms, such as AdaBoost, in decreasing the global error long after a perfect clas-
sification of the training examples has been achieved [4]. Typically, one would expect
a learning algorithm to eventually over fit the training sample, resulting in an increase
in global error.

Theorem 2 represents a rather general type of generalization bounds. Instead of
assuming that the labels are generated by one of the hypotheses inH, it gives a connec-
tion between the empirical error on samples drawn fromanydistribution and the global
expected error. As can be seen, the complexity ofH plays a crucial role in this relation.
If a small hypothesis space was able to fit well a relatively large sample (resulting in a

8
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low Lθ and a largeθ), the probability distribution must correlate well with the selected
function. However, ifH is very rich its success in fitting a finite sample is of lesser
importance.

From the above discussion it is clear that if one was able to reduce the hypothesis
spaceH without harming its ability to fit the sampled data, the resulting classifier is
expected to have a smaller global error.

2.2 Formal Settings

Let H1, . . . ,HL be a set of hypothesis spaces, each with a fitting learning algorithm,
Al . Further suppose that the intersection of all hypothesis spaces is not empty and all
learning algorithms are forced to agree and output the same hypothesis. Then effec-

tively the algorithms select a hypothesis from a smaller hypothesis space:
L�

l=1
H l . If it

is further assumed that the hypothesis that best fits the training set belongs to everyH l

(thus available to all algorithms), this scheme produces a hypothesis from a potentially
muchsmallerhypothesis space which is just as good on the training sample. Hence, the
generalization capability of such a hypothesis, as drawn from theorems such as The-
orem 2, is potentially much better than the hypotheses outputted from any algorithm
operating alone.

While the above discussion would yield the expected theoretical gain, it is very
hard to implement. First, demanding that the algorithms output exactlythe same hy-
pothesis entails an ability that is unlikely to be easily available. Typically the different
hypothesis spaces would consist of classifiers as differentas neural networks and Bayes
classifiers. The need to test (or construct) whether two classifiers are absolutely equal
in functionality would render this scheme impractical. Existing algorithms could not
be used as is, if at all, and would have to be thoroughly changed. Second, it is also
unrealistic to demand that the hypothesis spaces will have an intersection which is rich
enough to be useful to correctly classify different target distributions. While this might
be feasible forL = 2 (such as the assumption in [5]) it is highly unlikely for a bigger
number of learners. A more relaxed agreement demand will nowbe presented, along
with a simple way of checking it: unlabeled examples.

Definition 4.

1. Define thevarianceof a vector inR
L to be:

V(y1, . . . ,yL) =
1
L

L

∑
l=1

(
yl
)2

−
(

1
L

L

∑
l=1

yl

)2

.

2. Furthermore, define the variance of a set of classifiersf 1, . . . , f L to be the ex-
pected variance on examples fromX :

V
(

f 1, . . . , f L)= EV
(

f 1(x), . . . , f L(x)
)
.

The variance of a set of classifiers will be used in the following relaxed definition
of intersection as a measures of their disagreement:

9
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Definition 5. For anyν > 0, define theν-intersectionof a set of hypothesis spaces,
H1, . . . ,HL to be:

ν−
L�

l=1

H l =
{

f 1, . . . , f L : ∀l , f l ∈ H l , andV( f 1, . . . , f L) ≤ ν
}

.

In effect theν-intersection ofH1, . . . ,HL contains all the hypotheses whose differ-
ence with some of the members of other hypothesis spaces is hard to discover. This
relaxed definition of intersection will be used as the space from which the algorithms
can draw their hypotheses. Note that forν = 0, the 0-intersection is precisely2 the
normal intersection ofH1, . . . ,HL.

As mentioned before, unlabeled examples will be used to measure the level of
agreement between the various learners. Therefore, letU =

{
u j
}nu

j=1 be a set of un-
labeled examples, drawn independently from the same distributionP but without the
label being available. It will now be shown that if enough unlabeled examples are
drawn, the disagreement measured on them is a good representative of the global dis-
agreement. This will be done by defining a new hypothesis spaceV(H1, . . . ,HL) and a
target distributionP̃ and using a generalization bound resembling Theorem 2.

Definition 6.

1. LetV
(
H1, . . . ,HL

)
=
{
V ◦
(

f 1, . . . , f L
)

: f 1 ∈ H1, . . . , f L ∈ HL
}

where
V ◦
(

f 1, . . . , f l
)

: X → [0,1] is defined by:

V ◦
(

f 1, . . . , f L)(x) = V
(

f 1(x), . . . , f L(x)
)
.

2. LetP̃ be a probability distribution overX × [0,∞] which is defined by:

(∀A⊆ X × [0,∞])
[
P̃(A) = P({(x,y) ∈ X ×Y : (x,0) ∈ A})

]
.

In essence,̃P labels all examples inX with 0, while giving them same marginal
probability as before.

Before we can use the generalizing bound, we need to establish the Rademacher
complexity of the new hypothesis spaceV(H1, . . . ,HL). This will be done using the
following theorem from [2] (Theorem 10) which gives some structural properties of
the Rademacher complexity.

Theorem 7. Let F,F1, . . . ,Fk and H be classes of real functions. Then

1. If F ⊆ H, Rn (F) ≤ Rn (H).

2. Rn(F) = Rn (convF) where

convF=

{
T

∑
t=1

αt ft : ∀t ft ∈ F andαt ≥ 0,
T

∑
t=1

αt = 1

}

is the class of all finite convex combinations of functions from F.

2This assumes that no element inX has zero marginal probability. In the case thatX contains non-empty
groups of zero probability, the difference between the 0-intersection and true intersection will be never be
discovered.

10
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3. For every c∈ R, Rn (cF) = |c|Rn (F) where cF= {c f : f ∈ F}.

4. If φ : R→R is Lipschitz with a constant Lφ and satisfiesφ(0)= 0, then Rn (φ(F))≤
2LφRn(F) whereφ(F) = {φ◦ f : f ∈ F}.

5. Rn
(
∑k

i=1Fi
)
≤ ∑k

i=1Rn (Fi) where∑k
i=1Fi =

{
∑k

i=1 fi : ∀i f i ∈ Fi
}

.

Note that clause 2 in Theorem 7 is what makes the Rademacher complexity so
attractive in boosting. Since the complexity of all convex combinations of classifiers
from a weak hypothesis space is the same as the complexity of the space it self, it
results in good generalization bounds.

Corollary 8. Rn
(
V
(
H1, . . . ,HL

))
≤ 8maxl Rn

(
H l
)
.

Proof. The result will follow from the following fact:

V
(
H1, . . . ,HL)⊆ 1

L

L

∑
l=1

φ
(

H l
)

+

[
−φ

(
1
L

L

∑
l=1

H l

)]

whereφ(z) = z2 and is Lipschitz onY ⊆ [−1,+1] with Lφ = 2.
Therefore, from Theorem 7

Rn
(
V
(
H1, . . . ,HL)) ≤ Rn

(
1
L

L

∑
l=1

φ
(

H l
)

+

[
−φ

(
1
L

L

∑
l=1

H l

)])

≤ 1
L

L

∑
l=1

Rn

(
φ
(

H l
))

+Rn

(
φ

(
1
L

L

∑
l=1

H l

))

≤ 1
L

L

∑
l=1

2LφRn

(
H l
)

+2Lφ
1
L

L

∑
l=1

Rn

(
H l
)

≤ 8max
l

Rn

(
H l
)

.

Before proving the main theorems of the section, the following generalization bound
(adapted from [2]) is presented. This theorem allows the useof an arbitrary loss func-
tion and does not use the concepts of margins.

Theorem 9. Consider a loss functionL : Y ×R → [0,1] and let F be a class of func-
tions mappingX to Y . Let{(xi ,yi)}n

i=1 be a sample independently selected according
to some probability measure P. Then, for any integer n and any0 < δ < 1, with proba-
bility of at least1− δ over samples of length n, every f∈ F satisfies

EL (Y, f (X)) ≤ ÊnL(Y, f (X))+Rn
(
L̃◦F

)
+

√
8log(2/δ)

n

whereÊn is the expectance measured on the samples and

L̃◦F = {(x,y) 7→ L (y, f (x))−L (y,0) : f ∈ F} .

The scene is now set to give the first of the two main theorems ofthis chapter—a
connection between function’s agreement on a finite sample set and their true disagree-
ment:

11
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Theorem 10. Let H1, . . . ,HL be sets of functions fromX to Y and let U=
{

u j
}n

j=1
be a set of unlabeled examples drawn independently according to a distribution P over
X ×Y . Then for any integer n and0 < δ < 1, with probability of at least1− δ every
set of functions fl ∈ H l , l = 1. . .L satisfies:

V( f 1, . . . , f L) ≤ V̂( f 1, . . . , f L)+8max
l

Rn(H
l )+

√
8log(2/δ)

n

whereV̂( f 1, . . . , f L) is the sampled expected variance, as measured on U=
{

u j
}n

j=1.

Proof. The theorem follows directly from Theorem 9 when applied to the function set
V(H1, . . . ,HL) with P̃ as target distribution. The loss function is defined byL (y,z) =
min{|y−z| ,1}. SinceP̃ assigns zero probability to all non-zero labels,

EL
(
Y,V

(
f 1(X), . . . , f L(X)

))
= EV

(
f 1(X), . . . , f L(X)

)
= V( f 1, . . . , f L)

and
ÊL
(
Y,V

(
f 1(X), . . . , f L(X)

))
= V̂( f 1, . . . , f L).

FurthermoreRn
(
L̃◦F

)
= Rn

(
V(H1, . . . ,HL)

)
since

P̃
(
L
(
y,V ◦ ( f 1, . . . , f L)(x)

)
−L (y,0) 6= V ◦ ( f 1, . . . , f L)(x)

)
= 0.

Therefore, Theorem 9 implies that, with a probability of at least 1− δ,

V( f 1, . . . , f L) ≤ V̂( f 1, . . . , f L)+Rn
(
V(H1, . . . ,HL)

)
+

√
8log(2/δ)

n

≤ V̂( f 1, . . . , f L)+8max
l

Rn(H
l )+

√
8log(2/δ)

n

where the last inequality holds due to the corollary of Theorem 7.

Theorem 10 allows us to use a finite set of unlabeled examples to make sure (with
high probability) that the classifiers selected by the learning algorithms are indeed in
the desiredν-intersection of the hypothesis spaces. This allows us to adapt generaliza-
tion bounds to use smaller hypothesis spaces. As an example,an adapted version of
Theorem 2 is presented.

Theorem 11. Let H1, . . . ,HL be a class of real-valued functions fromX to [−1,+1]
and letθ ∈ [0,1]. Let P be a probability distribution onX ×{−1,+1} and suppose
that a sample of ns labeled examples S=

{
(x j ,y j)

}ns

j=1 and nu unlabeled examples

U =
{

u j
}nu

j=1 is generated independently at random according to P. Then for any

integer ns, ν > 0, 0 < δ < 1 and nu such that8maxl Rnu(H
l )+

√
8 log(4/δ)

nu
≤ ν

2, with a

probability at least1− δ, every f1 ∈ H1, . . . , f L ∈ HL whose disagreementV̂ on U is
at mostν

2 satisfies

∀l P(y 6= sign( f l (x))) ≤ L̂θ( f l )+

2Rns(ν−
�
l̂

H l̂ )

θ
+

√
log(4/δ)

2ns

whereL̂θ( f l ) = 1
ns

ns

∑
j=1

I
(
yi f l (xi) ≤ θ

)
.

12
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Proof. From Theorem 10, with a probability of at least 1− δ
2, V( f 1, . . . f L) ≤ ν and

therefore∀l f l ∈ v− �
l̂

H l̂ . Applying Theorem 2 tov− �
l̂

H l̂ , with a probability of at

least 1− δ
2,

∀ f ∈ ν−
�

l̂

H l̂ P(y 6= sign( f (x))) ≤ L̂θ( f )+

2Rns(ν−
�
l̂

H l̂ )

θ
+

√
log(4/δ)

2ns

using the union bound and combining the results proves the theorem.

To conclude this section, we note that the proposed settingshas the following desired
property: it doesn’t help to have duplicate copies of the same hypothesis space. To have
any advantage,ν− �

l̂

H l̂ must be considerably smaller then any of the base hypothesis

spaces. Therefore, using only duplicate copies of the same hypothesis spaceH =

H1, . . .HL givesν−�
l̂

H l̂ = H and hence no improvement. Furthermore, any duplicates

within the set of different hypothesis spaces can be removedwithout changing the
results.

2.3 Reduction of labeled examples

The previous section presented a formal setting where agreement was used to reduce
the complexity of the set of possible hypotheses. The immediate implication is that
training error serves as a better approximation for global true error. Therefore, for a
given number of labeled examples, if the learning algorithmhas produced a classifier
with a low training error one can expect a lower global error.However this reduction
in complexity can be also viewed from a different, though very related, point of view.

Since most algorithms can reduce the training error to a verylow level, the number
of labeled examples necessary is usually determined as to decrease the two other terms
in generalization bounds: the complexity of the hypothesisspace and the certainty in
the success of the whole procedure (δ). Using more labeled examples typically allows
using a lowerδ value without hindering the expected error of the resultingclassifier

(for example, Theorem 2 involves a
√

log(2/δ)
2N term). The second result of increasing

the number of labeled examples is reduction in the Rademacher complexity (or sim-
ilar complexity terms). Therefore, decreasing the term relating to hypothesis space
complexity, enables one to uselesslabeled examples while achieving the same bound.

To illustrate this consider Blumer et al. result [6] concerning the simple case of
consistent learners:

Theorem 12. (adapted from 2.1.ii in [6]) For anyε > 0, δ > 0, a probability distri-
bution P overX and a hypothesis space H⊆ {−1,+1}X of finite VC dimension, d.
Let f̂ ∈ H be some target function and S=

{(
x j , f̂ (x j)

)}ns

j=1 a sample independently

drawn fromX where ns is larger thanmax
{

4
ε log 2

δ , 8d
ε log 13

ε
}

. Then with probability
of at least1−δ over samples of size ns , for any function f∈H which correctly classify
all sampled examples, P( f (x) 6= f̂ (x)) < ε.

To prove the theorem, Blumer et al. showed that with high probability, a sample
of size max

{
4
ε log 2

δ , 8d
ε log 13

ε
}

is sufficient to disqualify any function inH that is too
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‘far’ from the targetf̂ . If H is made smaller, the number of functions which need to be
excluded is reduced. Therefore, less labeled examples are needed in order to exclude
high error functions.

In many learning applications one often comes across a phenomena called over-
fitting. In these cases, the learning algorithm produces a classifier which is overly
trained on the training sample. The classifier is too specialized in classifying the learn-
ing sample and looses its generalization powers. In other words, the algorithm learns
information that is accidentally available in the trainingsample but is specific to it. For
an iterative learning algorithm (improving its current classifier with every iteration),
one typically observes a reduction in both training and test(global) error in the begin-
ning of the algorithm’s run. However, from some point on, thetest error will start to
increase, while the training error is still being reduced[21, 22].

Generalization bounds such as those presented above typically deal with over-
fitting using the following idea: if the algorithm is given enough labeled examples
it will not over-fit. Since the training sample is representative enough of of target func-
tion, specializing in it does no harm. In the extreme, this leads to theorems such as
the one of Blumer et al. concerning consistent learning algorithms. In the setting pro-
posed here, the learning algorithm needs not only fit its training data but also agree
with a couple of other algorithms. If the algorithms are sufficiently different, forcing
them to agree inhibits their specialization on the trainingdata, allowing to use a less
representative training sample, or less labeled examples.
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Chapter 3

The Algorithm

In this chapter, we propose a new boosting algorithm named AgreementBoost (Algo-
rithm 3), which exploits the benefits suggested by the theorypresented in the previous
chapter. Like AdaBoost, the algorithm is designed to operate in Boolean scenarios
where each example can belong to one of two possible classes denoted by±1 (i.e.,
Y = {+1,−1}).

As in many boosting algorithms, AgreementBoost creates combined classifiers or
ensembles. However, instead of just one such classifier, AgreementBoost creates L
ensembles, one for each hypothesis space. The ensembles areconstructed usingL un-
derlying learning algorithms, one for each of theL hypothesis spaces

{
H l
}L

l=1. At each
iteration, one of the learning algorithms is presented witha weighing of both labeled
and unlabeled examples in the form of a weight vectorw(x) and pseudo-labels for the
unlabeled examples (y(u)). The underlying learner is then expected to return a hypothe-
sis f l

t with a near-optimal1 edge2: γ = ∑
(xj ,yj)∈S

w(x j)y j f l (x j)+ ∑
u j∈U

w(u j)y(u j) f l (u j).

The returned hypothesis is then added to the corresponding ensemble. The weight
given to f l

t (αl
t , selected at step 2.a.iii) is chosen such that the cost function F is mini-

mized. This can be done by any numeric line minimization algorithm.
The proposed AgreementBoost can be described as a particular instance of Any-

Boost [21], a boosting algorithm allowing for arbitrary cost functions. Agreement-
Boost’s cost functionF has been chosen to incorporate the ensembles’ disagreement
into the normal margin terms. This is achieved using a weighted sum of two terms:
an error or margin-related term (∑L

l=1 ∑ns
j=1er

(
−y jgl (x j)

)
) and a disagreement term

∑nu
j=1er(V (u j)). Despite of the fact that the these terms capture different notions, they

are very similar. Both terms use the same underlying function, er(x), to assign a cost
to some example-related measure: The first penalizes low (negative) margins while the
second condemns high variance (and hence disagreement). AgreementBoost allows
choosing any function aser(x), so long as it is convex and strictly increasing. This
freedom allows using different cost schemes and thus for future cost function analysis
(as done, for example, in [21]). In the degenerate case whereno unlabeled examples are
used (nu = 0) andex is used aser(x), AgreementBoost is equivalent toL independent

1For the exact definition of ‘near-optimal’, see Chapter 4.
2Note that the edge can be rewritten in terms of the weighted error of f l : γ = 1− 2ε where ε =

∑
(x j ,y j )∈S

w(xj )I
[
yj 6= f l (xj )

]
+ ∑

u j∈U
w(uj )I

[
y(uj ) 6= f l (uj )

]
. Therefore f l having a near-optimal edge is

equivalent to it having a near-minimal weighted error.
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Algorithm 3 Agreement Boost

DenoteF
(
g1, . . . ,gL

)
= ∑L

l=1 ∑ns
j=1er

(
−y jgl (x j)

)
+ ηL∑nu

j=1er(V (u j)) where

V(u) = 1
L

L
∑

l=1
gl (u)2−

[
1
L

L
∑

l=1
gl (u)

]2

, η ∈ R
+ is some positive real number and

er : R → R is some convex, strictly increasing function with continuous second
derivative.

1. Setgl ≡ 0 for l = 1. . .L.

2. Iterate until done (countert):

(a) Iterate overl = 1. . .L:

i. Setw(x j ) = er′
(
−y jgl (x j)

)
y j/Z for all (x j ,y j) ∈ Sand

w(u j ) = 2η
∣∣∣ 1

L ∑L
l̂=1

gl̂ (u j)−gl(u j)
∣∣∣er′ (V(u j))/Z for all u j ∈U

whereZ is a renormalization factor s.t.∑
xj

w(x j)+ ∑
u j

w(u j ) = 1.

Usey(u j) = sign
(

1
L ∑L

l̂=1
gl̂ (u j)−gl(u j)

)
as pseudo-labels foru j .

ii. Receive hypothesisf l
t from learnerl using the above weights and

labels.

iii. Find αl
t ≥ 0 that minimizesF

(
g1, . . . ,gl + αl

t f l
t , . . . ,g

L
)
.

iv. Setgl = gl + αl
t f l

t .

3. Output classifiersign(gl ) whose error on the samples is minimal out of theL
classifiers.

runs of AdaBoost (using theL underlying learners).
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Chapter 4

Proof of convergence

In this chapter a convergence proof for Algorithm 3 is given.The proof considers two
scenarios. The first assumes that the intersection of allconv

(
H l
)

is able to correctly
classify all labeled examples using classifiers which agreeon all unlabeled examples.
Under this assumption, it is shown that the algorithm will produce classifiers, which in
the limit are fully correct and agree on all unlabeled examples. In other cases, where
this assumption is not valid, the algorithm will produce ensembles which minimize a
function representing a compromise between correctness and agreement.

Both Mason et al. [21] and Rätsch et al. [24] provide similar convergence proofs for
AnyBoost-like algorithms. While both proofs can be used (with minor modifications)
in our settings, they do not fully cover both scenarios. The proof in [24] demands that
the sum of theαl

t coefficients will be bounded and thus cannot be used in cases where
the theoretical assumptions hold. This can be seen easily inthe case of AdaBoost,
where a fully correct hypothesis will be assigned an infiniteweight. While Agreement-
Boost will never assign an infinite weight to a hypotheses (due to the disagreement
term), it is easy to come up with a similar scenario where the coefficient sum grows
to infinity. In [21], Mason et al. present a theorem very similar to Theorem 18 below.
However, they assume that the underlying learner performs perfectly and always re-
turns thebesthypothesis from the hypothesis space. Such a severe assumption is not
needed in the proof presented here. Furthermore, due to the generality of AnyBoost,
the result in [21] apply to the cost function alone and is not translated back to training
error terms.

The proofs below are based on two assumptions concerning thelearning algorithms
and the hypothesis spaces. It is assumed that when presentedwith an example set1 S
and a weighingw(x), the underlying learning algorithms return a hypothesisf l for
which:

∑
(xj ,yj)∈S

w(x j)y j f l (xi) ≥ δmax
f̂∈H l

(

∑
xj∈S

w(x j )y j f̂ (xi)

)
for someδ > 0.

The second assumption concerns the hypothesis spaces: it isassumed2 that for everyl
and somef l ∈ H l the negation off l is also inH l i.e.: f ∈ H l ⇒− f ∈ H l . This allows

1Note that this may include examples labeled by the algorithm, rather the being drawn according to the
underlying distributionP.

2Note that this is assumed for simplicity alone. By allowing the algorithm to use negative values forαl
t

all hypothesis spaces becomeH l ∪−H l , which are closed under negation. This inflicts no increase in the
Rademacher complexity of the spaces. To keep the assumptionwith respect to the hypothesis returned by the
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us to using absolute value in the previous assumption:

∑
xj∈S

w(x j)y j f l (x j) ≥ δmax
f̂∈H l

∣∣∣∣∣∑xj∈S

w(x j)y j f̂ (xi)

∣∣∣∣∣ for someδ > 0.

In the Lemmas and Theorems to follow, it will sometimes be assumed that the
hypothesis spaces are finite. Due to the fact that there is only finite amount of ways to
classify a finite set of examples with a±1 label, if some of the hypothesis spaces are
infinite it will be indistinguishable when restricted toSandU . Therefore, without loss
of generality, one can assume that the number of hypotheses is finite.

The convergence of the algorithm is proven taking a different point of view to the
ensembles built by the algorithm. The ensembles can be seen as a mix of all possible
functions in the hypothesis spaces rather then as an accumulation of hypotheses:

Definition 13.

1. LetH l =
{

f l
i

}
i∈Il

be an enumeration of functions inH l . One can rewrite the en-

semblesgl built by AgreementBoost as functions fromX×R
|H l | toR: gl(x,βl )=

∑
i

βl
i f l

i (x) for βl =
(
βl

1,β
l
2, . . .

)
∈ R

|H l | and l = 1. . .L. Further denoteβ =
(
β1, . . . ,βL

)
. Note thatβl

i is the sum of allαl
t chosen by the algorithm such

that f l
t ≡ f l

i .

2. Let thevarianceof g1, . . . ,gL on an exampleu be

V(u,β) =
1
L

L

∑
l=1

gl (u,βl )2−
[

1
L

L

∑
l=1

gl (u,βl )

]2

.

3. Whenever it is clear from context what are theβ parameters,V(u) andgl (u) will
be used for brevity.

4. Leter : R → R
+ be a convex monotonically increasing function. Denote by

F(β) = E(β)+ ηD(β)

E(β) =
L

∑
l=1

ns

∑
j=1

er
(
−y jg

l(x j)
)

(4.1)

D(β) = L
nu

∑
j=1

er(V (u j))

for someη > 0.

F(β) represents a weighing between correctness and disagreement. E (β), being a
sum of loss functions penalizing negative margins, relatesto the current error of the
ensemble classifiers.D(β) captures the ensembles’ disagreement over the unlabeled
examples.

Using the above notations and the new point of view, the margins of hypotheses
becomes proportional to the partial derivative ofF (β) with respect to the corresponding

underlying learning algorithm, one has to present two queries: the original query and a query where all labels
are negated. Choosing the the hypothesis with a higher margin of the two results is the desired hypothesis.
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coefficient. Replacing the examples’ weight and labels according to the definition of
AgreementBoost, we have that:

∑
xj∈S

w(x j)y j f l
i (x j)+ ∑

u j∈U
w(u)y(u j) f l

i (u j) =

1
Z ∑

xj∈S
er′
(
−y jgl (x j)

)
y j f l

i (x j)+

2η
Z ∑

u j∈U
er′ (V(u j))

(
1
L ∑L

l̂=1
gl̂ (u j)−gl(u j)

)
f l
i (u j)

= − 1
Z

∂F
∂βl

i
(β.)

Therefore the underlying learners return hypotheses whosecorresponding partial deriv-
atives maintain the following inequality:

− ∂F

∂βl
i

(β) ≥ δmax
î

− ∂F

∂βl
î

(β) .

Furthermore, since the hypothesis spaces are assumed to be closed under negation, the
following holds as well:

− ∂F

∂βl
i

(β) ≥ δmax
î

− ∂F

∂βl
î

(β) = δmax
î

∣∣∣∣∣
∂F

∂βl
î

(β)

∣∣∣∣∣ .

Note that this ensures that the partial derivative with respect to the returned function
coefficient is non-positive and hence the choice ofαl

t in step 2.a.ii of Algorithm 3 is
in fact the global optimum3 over allR. Since in every iteration only one coefficient is
changed to a value which minimizesF(β), Algorithm 3 is equivalent to a coordinate
descent minimization algorithm (for more information about minimization algorithms
see, for example, [9]).

As a last preparation before the convergence proof, it will be shown thatF(β) is
convex. Apart from having other technical advantages, thisguaranties that the algo-
rithm will not get stuck in a local minimum:

Claim 14.

1. ∀u∈U , er(V(u,β)) is convex with respect toβ.

2. ∀x j ∈ X, er(−y jgl (x j ,βl )) is convex with respect toβl .

Proof. The claim will follow from the following facts:

1. The operatorg(β) =
(
g1(β1), . . . ,gL(βL)

)
is linear. Therefore, for everyβ, β̂ and

∀α,γ ∈ [0,1] , we have thatg(αβ + γβ̂) = αg(β)+ γg(β̂).

2. LetA,B∈ R
L be two vectors andα,γ ∈ [0,1] two numbers such thatα+ γ = 1.

Further denote the variance of a vectorv = (v1, . . . ,vL) by V(v) = 1
L

L
∑

i=1
v2

i −

1
L2

(
L
∑

i=1
vi

)2

. Then the following holds:

V(αA+ γB) = α2V(A)+ γ2V(B)+2αγcov(A,B)

≤ α2V(A)+ γ2V(B)+ αγ(V(A)+V(B))

= αV(A)+ γV(B)

3This involves the convexity ofF(β) that will be discussed below.
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wherecov(A,B) is the covariance of the two vectors and is defined in a similar
fashion toV(v).

3. ∀c∈ R the functioner(cx) is convex with respect tox.

4. er is monotonically increasing.

Therefore, for everyβ, β̂ and∀α,γ ∈ [0,1] such thatα + γ = 1, using fact 1 and fact
2 above, we have thatV(u,αβ + γβ̂) ≤ αV(u,β)+ γV(u, β̂). Using fact no. 4 ander’s
convexity, we have that

er
(
V(u,αβ + γβ̂)

)
≤ er

(
αV(u,β)+ γV(u, β̂)

)
≤ αer(V(u,β))+ γer

(
V(u, β̂)

)

proving the first part of the claim.
For the second part, Facts 1 and 3 are used together, giving that

er(−y jg
l (x j ,αβl + γβ̂l)) = er

(
−y j

[
αgl (x j ,βl )+ γgl(x j , β̂l )

])

≤ αer
(
−y jg

l (x j ,βl )
)

+ γer
(
−y jg

l (x j , β̂l )
)

proving the second part of the claim.

Lemma 15. The function F(β) is convex with respect toβ.

Proof. This follows immediately from Claim 14 and the fact that a sumof convex
functions is convex.

Lemma 16. Let {βn} be a sequence of points generated by an iterative linear search
algorithm A, i.e.,βn+1 = A(βn) minimizing a non-negative convex function4 F ∈ C2.

Denote the direction in which the algorithm minimizes F in every step by vn =
βn+1−βn

‖βn+1−βn‖∞
and Fn(α) = F (βn + αvn) (i.e., A minimizes Fn(α) in every iteration by a linear search).

Then, if∃M ∈ R
+ such that∀n d2Fn

dα2 (α) ≤ M for every ‘feasible’α (i.e., when Fn(α) ≤
F(βn)) then lim

n→∞
dFn
dα (0) = 0.

Proof. By Taylor expansionFn(α) = Fn(0)+F ′
n(0)α+ F ′′

n (ξ)
2 α2 for someξ between 0

andα. ThereforeFn(0)−Fn(α) = −F ′
n(0)α− F ′′

n (ξ)
2 α2 ≥ −F ′

n(0)α− 1
2Mα2 since by

assumptiond2Fn
dα2 (ξ) ≤ M (by the convexity ofF , if α is feasible, all points between it

and 0 are also feasible). From the previous inequalities it follows that

F(βn)−F(βn+1) = F(βn)− min
f easibleα

Fn(α) = max
f easibleα

(Fn(0)−Fn(α))

≥ max
f easibleα

(
−F ′

n(0)α− 1
2

Mα2
)

= max
α∈R

(
−F ′

n(0)α− 1
2

Mα2
)

=
F ′

n(0)2

2M
≥ 0.

Note that the last inequality ensures that the last expression is maximized by a feasible
α, making the equality argument valid.

Now, sinceF(βn) is a monotonically decreasing sequence and is bounded from
below, it must converge. Therefore lim

n→∞
(F(βn)−F(βn+1)) = 0, which together with

the above inequality, gives the result.

4By C2 we denote the set of functions having a continuous second derivative.
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Lemma 17. Let {βn} be a sequence of points generated by an iterative linear search
algorithm A (i.e.,βn+1 = A(βn)) minimizing a non-negative convex function F∈ C2.
If in addition to the conditions of Lemma 16 (and using the same notations),∃m> 0∈
R such that∀n d2Fn

dα2 (α) ≥ m for every ‘feasible’α (i.e., when Fn(α) ≤ F(βn)) then
lim
n→∞

‖βn+1−βn‖∞ = 0.

Proof. The proof is similar to the one of Lemma 16.

By Taylor expansionFn(α) = Fn(0)+ F ′
n(0)α +

F ′′
n (ξ)
2 α2 for someξ between 0 andα.

ThereforeFn(0)−Fn(α) = −F ′
n(0)α− F ′′

n (ξ)
2 α2 ≤ −F ′

n(0)α− 1
2mα2 since by assump-

tion d2Fn
dα2 (ξ)≥ m. It follows that for theα chosen at stepn, |α| must be smaller or equal

to
∣∣∣2F ′

n(0)
m

∣∣∣. By Lemma 16 lim
n→∞

F ′
n(0) = 0, and therefore‖βn+1−βn‖∞ = ‖αvn‖∞ =

|α| −→ 0.

Theorem 18. For some non-empty sets of labeled examples S and unlabeled exam-
ples U, suppose that the underlying learners are guaranteedto return a hypothesiŝf

such that∑
x

w(x)yx f̂ (x) ≥ δ
(

max
f

∣∣∣∣∑
x

w(x)yx f (x)

∣∣∣∣

)
for some constantδ > 0 and every

weighing w(x) of their examples. Further let er: R → R
+ be a non constant convex

monotonically increasing function such that:

1. er∈C2 and er′(0) > 0.

2. ∃M ∈R
+ for which er(x)≤max

{
L(|S|+ η |U |)er(0), 1

η (|S|+ η |U |)er(0)
}

im-

plies that er′′(x) < M.

Then it holds thatlim
n→∞

‖∇F(βn)‖∞ = 0.

Proof. Since Algorithm 3 is equivalent to performing a coordinate descent which min-
imizes

F(β) = ∑
l

∑
xi

er(−yig
l (xi))+ ηL∑

u j

er(V(u j))

the result will follow from Lemma 16 and Lemma 17.
Using the same notation as in Lemma 16, one must show that∀n d2Fn

dα2 (α) ≤ M′ for
every ‘feasible’α and someM′ ∈ R

+. Since Algorithm 3 only changes one coordinate
at a time, it is enough to show that the second derivative withrespect to each coordinate
is bounded.

∂2F

∂βl
i ∂βl

i

= ∑
xj∈S

er′′
(
−y jg

l (x j)
)[

y j f l
i (x j)

]2

+4
η
L ∑

u j∈U
er′′ (V(u j))

[
1
L ∑̂

l

gl̂ (u j)−gl (u j)

]2

f l
i (u j)

2 (4.2)

+2η ∑
u j∈U

er′ (V(u j))
L−1

L
f l
i (u j)

2.

DenoteLη = max
{

L, 1
η

}
andξ = sup{x : er(x) ≤ Lη (|S|+ η |U |)er(0)} (note that

er convexity and the fact that it is not a constant function imply that lim
x→∞

er(x) = ∞
and thereforeξ is finite). Now, from the convexity ofer(x) it follows that er′(x) is
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monotonically increasing. Hence it holds thater(x) ≤ Lη (|S|+ η |U |)er(0) implies
er′(x) ≤ er′(ξ). Therefore, without loss of generality, we can assume thater(x) ≤
Lη (|S|+ η |U |)er(0) implies that bother′(x) ander′′(x) are bounded byM.

Let {βn} be the sequence of coefficient vectors generated by Algorithm 3. Since
β0 is the all zero vector,F(β0) = L(|S|+ η |U |)er(0). Therefore for every ‘feasi-
ble’ β which the algorithm might consider, it must hold thatF(β) ≤ F(β0). Since
(∀x) [er(x) ≥ 0], this implies that

(∀l , j)
[
er(−y jg

l (x j)) ≤ L(|S|+ η |U |)er(0)
]

and

(∀ j)

[
er(V(u j)) ≤

1
η

(|S|+ η |U |)er(0)

]
.

Therefore,

[
1
L ∑̂

l

gl̂ (u j)−gl (u j)

]2

≤ LV(u) ≤ Lξ. (4.3)

From which it follows that for every feasibleβ:

∂2F

∂βl
i ∂βl

i

(β) ≤ ∑
xj∈S

M
[
y j f l

i (x j)
]2

+4
η
L ∑

u j∈U

MLξ f l
i (x)

2 (4.4)

+2η ∑
u j∈U

M
L−1

L
f l
i (x)

2

≤ M (|S|+2η |U |(2ξ+1)) ,

where the last inequality follows from the fact thaty j , f l
i (x j)∈ {−1,1}. This completes

the necessary requirements of Lemma 16 and therefore lim
n→∞

∂F
∂βln

in

= 0 whereln and in

are the indices of the hypothesis returned by the underlyinglearner at iterationn. By
the assumptions regarding the base learners and the hypothesis spaces

− ∂F

∂βln
in

≥ δmax
i

− ∂F

∂βln
i

= δmax
i

∣∣∣∣∣
∂F

∂βln
i

∣∣∣∣∣

giving that∀i ∈ Iln lim
n→∞

∣∣∣∣
∂F

∂βln
i

(βn)

∣∣∣∣= 0.

Since in Algorithm 3,ln = (n modL) + 1, in order to complete the proof it is

enough to show that∀l̂ = 1. . .L, ∀i ∈ I l̂n lim
n→∞

∣∣∣∣
∂F

∂βl̂n
i

(βn)

∣∣∣∣= 0 wherel̂n =
(
n+ l̂ modL

)
+

1. Using the above as base for an induction argument (forl̂ = L), it is enough to show
that if the claim holds for̂l + 1, it also holds for̂l . Let i be some index inI l̂n. By the
inductive assumption, it holds that

lim
n→∞

∣∣∣∣∣
∂F

∂βl̂n
i

(βn−1)

∣∣∣∣∣= 0 (note that̂ln =
(
n−1+ l̂ +1 modL

)
+1).
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Figure 4.1:z= 1√
yx2 + 1

y and its level curves

It is therefore enough to show that

∣∣∣∣
∂F

∂βl̂n
i

(βn)− ∂F

∂βl̂n
i

(βn−1)

∣∣∣∣ also converges to 0 asn

grows to infinity.
Using the bound in Equation 4.3 which is valid for alll , it holds that

∀l

∣∣∣∣∣
1
L ∑̂

l

gl̂ (u j)−gl (u j)

∣∣∣∣∣≤
√

Lξ

for all ‘feasible’β and therefore for allβ betweenβn−1 andβn. Denoting again byin−1

the function index returned by learnerln−1 in iterationn−1, one can show in a very
similar way to that used to develop Equation 4.4 that

∣∣∣∣∣∣
∂2F

∂βln−1
in−1

∂βl̂n
i

(β)

∣∣∣∣∣∣
≤ M (|S|+2η |U |(2ξ+1)) (4.5)

for all β betweenβn−1 andβn, regardless to whetherln−1 = l̂n or not.
From Equation 4.5, sinceβn andβn−1 differ in only one coordinate, it follows that

∣∣∣∣∣
∂F

∂βl̂n
i

(βn)−
∂F

∂βl̂n
i

(βn−1)

∣∣∣∣∣≤ M (|S|+2η |U |(2ξ+1))‖βn−βn−1‖∞ .

Furthermore, sinceer′(V(u)) ≥ er′(0), it follows from Equation 4.2 that

∂2F

∂βl
i ∂βl

i

≥ 2η
L−1

L
|U |er′(0)

allowing to invoke Lemma 17 and conclude the proof.

Theorem 18 ensures that the gradient ofF (β) converges to zero along the sequence
generated by AgreementBoost. Combined with the fact thatF (β) is convex, this suf-
fices to ensure that AgreementBoost converges to the global minimum of F , if such a
minimum exists. However, sinceβ is not restrained, it may very well be thatF has
no minimum. As a matter of fact, if one assumes that indeed alllearners are able to
correctly classify the labeled examples while agreeing on the unlabeled examples, it is
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guaranteed thatF will have no finite minimum. In other words, regardless of thealgo-
rithm’s current point, one can always do better. Therefore,we can only hope that in the
limit, the algorithm converges to the infimum ofF ’s domain, i.e.,F (βn)→ inf {F (β)}.

Unlike the one-dimensional case, the derivative’s convergence to 0 is not suffi-
cient to ensure the convergence of a multimultidimensionalfunction to its infimum.
As an example, consider the two-dimensional functionf (x,y) = 1√

yx2 + 1
y (shown in

Figure 4.1) and the sequence
{(

t,t4
)}∞

t=1. While the function’s gradient∇ f (t,t2) =(
2
t ,− 1

2t4
− 1

t8

)
converges to 0, the function itself stays above the value of 1: f (t,t4) =

1+ 1
t4

—far away from the desired infimum. In the rest of this chapter, it will be
shown that even whenF (β) has no finite minimum, AgreementBoost converges to its
infimum.

Lemma 19. Let T : V1 → V2 be a linear transformation between two finite dimen-
sion vector spaces overR and let{vn} ∈ V1 be a sequence of vectors. Denote the
orthogonal complement of the kernel of T by Ker(T)⊥. Then if lim

n→∞
‖vn‖2 = ∞ and

(∀n)
[
vn ∈ Ker(T)⊥

]
then lim

n→∞
‖T (vn)‖2 = ∞ when the norms are taken with respect to

some arbitrary orthonormal bases.

Proof. Let T ′ be the restriction ofT to Ker(T)⊥. SinceKer(T ′) = {0}, T ′ is in-
vertible when its range is restricted to its image. Denotingby ξn = T (vn), suppose
for a contradiction that lim

n→∞
‖ξn‖2 6= ∞. Therefore, there exists a sub-sequence ofξn

which is bounded and hence a converging sub-sequenceξni . Denote its limit byξ.
Since the image ofT ′ is a finite dimension vector space it is closed and therefore
ξ ∈ Domain

(
T ′−1

)
. However, sinceT ′−1 is continuous,

lim
n→∞

∥∥T ′−1 (ξni )
∥∥

2 = lim
n→∞

‖vni‖2 =
∥∥T ′−1(ξ)

∥∥
2 .

This is in contradiction to lim
n→∞

‖vn‖2 = ∞ sincevn cannot have a bounded sub-sequence.

Lemma 20. Let{βn} be a sequence of coefficients. Furthermore let

B = {β : ∀u∈U, V(u,β) = 0}

andβ̃n be the closest point in B toβn. Then if∃M ∈R such that(∀u∈U) [V(u,βn) < M],

it follows that
∥∥∥βn− β̃n

∥∥∥
∞

is bounded.

Proof. Note thatB is a closed set due to the continuity ofV(u,β) and thereforẽβn

is well defined. To derive a contradiction, suppose that
∥∥∥βn− β̃n

∥∥∥
∞

is not bounded.

Therefore, by looking only at a sub-sequence, it can be assumed that
∥∥∥βn− β̃n

∥∥∥
∞
→ ∞.

Now, define the following set of linear transformations, foreveryl ∈ {2. . .L}:

T l (β) =
(

gl−1
(

u1,βl−1
)
−gl

(
u1,βl

)
, . . . ,gl−1

(
unu,β

l−1
)
−gl

(
unu,β

l
))

.

Note thatβ ∈ Ker(T l ) if and only if the resulting classifiersgl−1 andgl agree on
the unlabeled examples:(∀u∈U)

[
gl−1

(
u,βl−1

)
= gl

(
u,βl

)]
. Further defineT(β) to

be the linear transformation resulting from ordering allT l (β) in an(nu(L−1))-tuple.
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For the combined transformationT, β ∈ Ker(T) if and only if all resulting classifiers
agree on all unlabeled examples. Hence, it follows thatKer(T) = B.

SinceKer(T) is a vector subspace and sinceβ̃n is the closest vector in it toβn, βn−
β̃n is the projection ofβn onto the orthogonal complement ofKer(T). By Lemma 19,
it follows that

‖T(βn)‖2 =
∥∥∥T(βn− β̃n)

∥∥∥
2
−→ ∞.

Therefore the difference between at least two classifiers onone of the unlabeled ex-
amples grows to infinity. This contradicts the assumption that(∀u∈U) [V(u,βn) < M]
.

Theorem 21. Under the assumptions of Theorem 18 with the additional assumption
that er(x) is strictly monotonic and that all underlying hypothesis spaces are able to
correctly classify the data using finite ensemble classifiers from the intersection of the
hypothesis spaces, both the error and the disagreement of the ensemble classifiers con-
structed by Algorithm 3 converge to 0.

Proof. Denote the correct classifiers as ˜gl = ∑β̃l
i f l

j and byβ̃ the corresponding coef-

ficient vector

(
β̃1

1, . . . , β̃L
|HL|

)
. Since these classifiers come from the intersection of the

hypothesis spaces(∀u, l1, l2)
[
g̃l1(u) = g̃l2(u)

]
and therefore(∀α)

[
V
(

β + αβ̃,u
)

= V (β,u)
]
.

This implies the following:

∂F

∂β̃
=
〈

∇F, β̃
〉

=
〈

∇E, β̃
〉

+
〈

η∇D, β̃
〉

=
〈

∇E, β̃
〉

=
∂E

∂β̃
.

From Theorem 18, it follows that
∣∣∣ ∂E

∂β̃
(βn)

∣∣∣ −→ 0. Since by assumption all the ˜gl

classifiers are correct (∀x.yxg̃l (x) > 0) ander(x) is an increasing monotonic function,

∂E

∂β̃
= ∑

l ,i
∑

xj∈S

er′
(
−y jg

l (x j)
)

y j β̃l
i f l

i (x j) = ∑
l

∑
xj∈S

er′
(
−y jg

l (x j)
)

y j g̃
l (x j) > 0.

Therefore,
∣∣∣ ∂E

∂β̃
(βn)

∣∣∣→ 0 implies that(∀xi ∈ S)
[
er′
(
−y jgl (x j)

)
→ 0

]
and hencey jgl (x j)→

∞, giving the necessary error convergence.

Furthermoreer′
(
−y jgl (x j)

)
→ 0 implies that(∀ j, l)

[
∂E
∂βl

j
(βn) → 0

]
and therefore

(∀ j, l)

[
η

∂D

∂βl
j

(βn) =
∂F

∂βl
j

(βn)−
∂E

∂βl
j

(βn) → 0

]
(4.6)

or lim
n→∞

‖∇D(βn)‖∞ = 0.

Now, assume in contradiction that∃û∈U such that lim
n→∞

V(û) 6= 0. Therefore

lim
n→∞

|D(βn)−L |U |er(0)| 6= 0. (4.7)

As in Lemma 20, denote bỹβn the closest element inB= {β : (∀u∈U) [V(u,β) = 0]}.
Since by definition the resulting ensembles ‘agree’ on all examples it follows that

(∀n)
[
D
(

β̃n

)
= L |U |er(0)

]
.
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Using equation 4.3 to apply Lemma 20, there exists someM such that
∥∥∥βn− β̃n

∥∥∥
2
< M.

Furthermore since the tangent to a convex function is alwaysan under estimator, it
holds that:

D(βn)+
〈

∇D(βn) , β̃n−βn

〉∥∥∥βn− β̃n

∥∥∥
2
≤ D

(
β̃n

)

or

|D(βn)−L |U |er(0)| =
∣∣∣D(βn)−D

(
β̃n

)∣∣∣ <
∣∣∣
〈

∇D(βn) ,βn− β̃n

〉∣∣∣M

≤ ‖∇D(βn)‖2M2.

Which, using Equation 4.6, gives the contradiction to equation 4.7.
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Chapter 5

Experiments

In this chapter a few experiments are presented, testing thealgorithm (and theory)
presented in the previous chapters. The algorithm was tested on two problems: the
first is an artificially constructed problem where all theoretical assumptions hold and
the second a ‘real life’ test case. The algorithm was appliedto the same web pages
classification problem that was used by Blum and Mitchel in [5].

In these experiments,ex was used as the loss functioner(x). This gives an algorithm
which is very similar to AdaBoost, with the additional agreement requirement. In
order to have a reference point, the proposed AgreementBoost algorithm is compared
to AdaBoost, which is run separately on each of the underlying learning algorithms.

In all experiments done, theη parameter is set using the following formula:η =
ns
nu

c, wherec is some constant. This keeps the relative influence of the disagreement
and training error terms in Equation 4.1 roughly constant within a single series of
experiments. This compensates for the fact that the number of labeled and unlabeled
examples changes. More details about the effects of theη parameter and about the
reason for these settings are presented in Section 5.3.1.

5.1 A toy problem

In order to test the algorithm in a clean and noiseless environment, it was first applied
to the following artificial test problem: classification of randomly generated vectors in
R

n.
Denoting the coordinates of a vectorx ∈ R

n by x = (x1, . . . ,xn), the hypothesis
spaces available to the algorithm consist of classifiers of the formPosj = (x j > 0) or
Negj = (x j ≤ 0) for j = 1. . .n, i.e., the underlying hypotheses classify a vector by
choosing one of its coordinates and looking at its sign. It then could classify all vectors
with a positivejth coordinate as belonging to the+1 class (these classifiers are denoted
by Posj ) or as−1 (denoted byNegj ).

The algorithm is then run using two underlying learners, each being able to choose
only part of the possible hypotheses. Learner no. 1 has access to all hypotheses in-
specting the first two thirds of the coordinates (H1 = �

j≤ 2
3n

{
Posj ,Negj

}
) while learner

no. 2 can access only the last two thirds of the hypotheses (H2 = �
j≥ 1

3n

{
Posj ,Negj

}
).

When presented with a query, both algorithms perform an exhaustive search on their
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Figure 5.1: An illustration of the hypothesis spaces in the toy problem

H1 

H2 
 
 
 
 
 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

 

n = 18, target function coordinates forr = 5 are colored in grey

respective hypothesis space and return the best hypothesisfound. Note that the inter-
section of the both hypothesis spacesH1∩H2 = �

1
3n≤ j≤ 2

3n

{
Posj ,Negj

}
is available to

both learners.
As the example spaceX , then-dimensional cube= [−1,+1]n is used, along with

a uniform distribution overX . After being drawn, each example is labeled by a target
function:

ft =
r−1

∑
i=0

1
r

Posd n−r
2 e+i for some radius parameterr <

1
3

n.

Note thatft ∈ convH1∩convH2 and therefore this problem complies to all assumptions
needed for the theoretical analysis to hold. Figure 5.1 shows an illustration of the
division of hypothesis spaces with respect to the target function.

5.1.1 Results

The full results of the comparison on this toy problem are presented in Table 5.1. The
boosting algorithms were run on different sample sizes fromns = 0 tons = 225 exam-
ples, where all resulting classifiers had no test error. The experiment was repeated 20
times for each sample size, using freshly drawn examples at each time. All runs used
2000 unlabeled examples and 560 labeled examples as a test group (≈ 25% of 2225,
the total number of examples in the ‘training set’). Table 5.1 presents the averages of
the different runs along with their standard deviationσ. Recall thatV̂

(
g1,g2

)
is the

variance ofg1 andg2 on the unlabeled examples. Figure 5.2 presents the average test
error1 of the various classifiers in more visual way.

AgreementBoost shows a clear advantage over AdaBoost, at least for this artificial
problem where all assumptions hold. The foreseen advantagecan be seen both in
its precision form and in terms of saving on labeled examples. For example, using
ns = 100 labeled examples, AgreementBoost produces classifierswith an average test
error of 0.019 and 0.02 while the classifiers boosted by AdaBoost have anerror of
only 0.127 and 0.116. In terms of saving on labeled examples,AgreementBoost saves
≈ 40% of labeled examples if one wants to achieve an error of≈ 0.07. For an error of
≈ 0.02 a saving of≈ 30% is achieved.

1The ratio between the misclassified examples and the total number of test examples.
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Figure 5.2: AgreementBoost applied to toy problem
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Table 5.1: AgreementBoost applied to toy problem

n = 200,r = 5, nu = 2000,η = ns
250, 1000 boosting iterations

Agreement Boost AdaBoost
Labeled Learner 1 Disagreement Learner 1

Examples Test Err. σ V̂(g1,g2) σ Test Err. σ
0 0.505 ±0.022 0 ±0.0
25 0.362 ±0.054 4e-6 ±3e-6 0.386 ±0.047
50 0.205 ±0.071 11e-6 ±6e-6 0.285 ±0.041
75 0.075 ±0.038 14e-6 ±5e-6 0.180 ±0.037
100 0.019 ±0.025 10e-6 ±5e-6 0.127 ±0.052
125 0.003 ±0.007 9e-6 ±3e-6 0.055 ±0.047
150 5.3e-4 ±1.7e-3 7e-6 ±4e-6 0.002 ±0.005
175 0.000 ±0.000 4e-6 ±2e-6 0.000 ±0.000

Agreement Boost AdaBoost
Labeled Learner 2 Disagreement Learner 2

Examples Test Err. σ V̂(g1,g2) σ Test Err. σ
0 0.506 ±0.061 0.0 ±0.0
25 0.362 ±0.054 4e-6 ±3e-6 0.391 ±0.040
50 0.205 ±0.071 11e-6 ±6e-6 0.292 ±0.051
75 0.075 ±0.038 14e-6 ±5e-6 0.186 ±0.045
100 0.020 ±0.025 10e-6 ±5e-6 0.116 ±0.050
125 0.003 ±0.007 9e-6 ±3e-6 0.070 ±0.048
150 5.3e-4 ±1.7e-3 7e-6 ±4e-6 0.004 ±0.017
175 0.000 ±0.000 4e-6 ±2e-6 0.000 ±0.000
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5.2 Classifying web pages

In this section, we return to the problem of classifying web pages from the WebKb
database presented in [5]. The WebKb database [8] contains 1051 web pages, collected
from the websites of computer science faculties of four different universities. For each
web page, the database contains both the words contained in the page itself (referred
to as View 1 in [5]) and words appearing in links referring to that web pages (View 2).
The web pages are split into two classes: homepages of courses (230) and non-course
pages (821). The goal of the learning algorithms presented in this section is to correctly
classify web pages into these two classes.

In order to determine the quality of the resulting classifiers, 25% of the examples in
the database were randomly selected in each experiment and held out as a test group.
The experiments were repeated 20 times for each parameter set (number of labeled
examples, unlabeled examples etc.). The tables and graphs in this section show the
average result and standard deviation of these 20 experiments.

5.2.1 Naive Bayes for Text Classification

Naive Bayes is a well-known classifier based on the probabilistic Bayes Rule. The
version of it used here, adapted to the problem of text classification, is taken from
[7]. For simplicity, we present a simpler model than the one discussed in [7], but this
simplified version results in the same practical algorithm.In this model, each example,
or documentdi , is represented as a set of words taken from some finite vocabulary set

V =
{

w1,w2, . . . ,w|V |
}

. Further, letwdi,k denote the word in positionk of document

di .
Enumerating the possible document classes by

{
c j
}

, it is assumed that the doc-
uments are ‘generated’ in the following way: first, a classc j is chosen at random
according to some distributionP(c) over the possible classes. Then, the length of the
document|di | is chosen, independently of the classc j . Having the desired length, the
document words are then drawn independently according to some distribution onV ,
P(w|c j), which is based on the classc j . Putting these together, the probability of a
specific documentdi, given its classc j is given by

P(di |c j) = P(|di |)
|di |
∏
k=1

P
(

wdi,k|c j

)
.

The probability of a specific document to be drawn, regardless of the chosen class is
then given by its marginal probability:P(di) = ∑

j
P(c j)P(di |c j). Using Bayes rule, it

is now possible to give the probability of a classc j , given a specific documentdi :

P(c j |di) =
P(c j)P(di |c j)

P(di)
=

P(c j)
|di |
∏

k=1
P
(

wdi,k|c j

)

∑
ĵ
P
(

c ĵ

) |di |
∏

k=1
P
(

wdi,k|c ĵ

) .

To apply this model to a real classification problem, the necessary distributions are
extracted from the training set. For every classc j , P(c j) is taken to be the relative
frequency of that class within the training set, a set of documentsD and the class
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assignment:

P(c j) =
∑|D|

î=1
P(c j |dî)

|D|
whereP(c j |dî) is 1 if documentdî is classified to classc j and 0 otherwise.

The probability of the words given a specific class is calculated in a similar fashion
while using a Laplacean prior2:

P(wt |c j) =

1+
|D|
∑

î=1
N(wt ,dî)P(c j |dî)

∣∣V
∣∣+

|V |
∑

s=1

|D|
∑

î=1
N(ws,dî)P(c j |dî)

whereN(wt ,dî) is the number of occurrences of wordwt in documentdî . After extract-
ing these probabilities, a new documentdi is classified by selecting the class with the
highest posterior probability: argmaxj P(c j |di).

This concludes the description of a general Naive Bayes algorithm. However, this
algorithm cannot be used as is in the context of boosting. At each iteration the Naive
Bayes algorithm is not only given a set of documentsD, but also a new weighing
function w : D → [0,1]. The algorithm should respond as ifw represents the true
distribution of documents. To accommodate this demand,w is incorporated into the
estimates of probabilities, replacing the previous uniform like treatment:

P(c j) =
|D|
∑̂
i=1

w(dî)P(c j |dî) (5.1)

P(wt |c j) =

1+
|D|
∑

î=1
w(dî)N(wt ,dî)P(c j |dî)

∣∣V
∣∣+

|V |
∑

s=1

|D|
∑

î=1
w(dî)N(ws,dî)P(c j |dî)

(5.2)

5.2.2 Agreeing with the Village Fool...

The first set of experiments on the WebKb database mimics the experiments performed
in [5]. The Naive Bayes algorithm is used as a single underlying learning algorithm,
applied to each of the so called views: page content and wordson incoming links. This
is done in a similar fashion to the toy problem, where AgreementBoost is run using the
same learning algorithm on two different aspects of an example. AgreementBoost was
allowed to run for 1000 iterations, using 525 unlabeled examples and settingη = ns

264.
As can be seen in Figure 5.3 and Table 5.2, the classifiers built by Agreement-

Boost are roughly as good as the better of the two AdaBoost classifiers. Both Agree-
mentBoost classifiers perform roughly the same as AdaBoost applied to the web pages
content using Naive Bayes.

One of the main assumptions used in Chapter 2 was that the underlying learners are
all capable to produce a good classifier. However, as Figure 5.3(b) and Table 5.3 show,
this is not the case in this experiment. While learning the links pointing to the pages
produces a classifier with very low training error, it highlyover-fits the data and has a

2This prevents words from having 0 probability in any class.
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Table 5.2: WebKb database, Naive Bayes applied to content and links

η = 1∗ ns
264 , nu = 525

Agreement Boost AdaBoost
Labeled View 1 - Content Disagreement View 1 - Content

Examples Test Err. σ V̂(g1,g2) σ Test Err. σ
52 0.149 ±0.041 2.4e-3 ±6.1e-3 0.126 ±0.071
105 0.101 ±0.028 4.5e-3 ±7.4e-3 0.092 ±0.043
158 0.081 ±0.027 6.6e-3 ±8.6e-3 0.101 ±0.060
184 0.082 ±0.029 8.3e-3 ±9.8e-3 0.091 ±0.064
211 0.084 ±0.038 7.3e-3 ±8.5e-3 0.087 ±0.051
264 0.071 ±0.027 9.5e-3 ±0.01 0.099 ±0.058

Agreement Boost AdaBoost
Labeled View 2 - Links Disagreement View 2 - Links

Examples Test Err. σ V̂(g1,g2) σ Test Err. σ
52 0.173 ±0.081 2.4e-3 ±6.1e-3 0.263 ±0.214
105 0.124 ±0.041 4.5e-3 ±7.4e-3 0.221 ±0.197
158 0.099 ±0.028 6.6e-3 ±8.6e-3 0.248 ±0.187
184 0.097 ±0.025 8.3e-3 ±9.8e-3 0.251 ±0.186
211 0.099 ±0.031 7.3e-3 ±8.5e-3 0.198 ±0.154
264 0.093 ±0.027 9.5e-3 ±0.01 0.233 ±0.168

Table 5.3: WebKb database, Naive Bayes applied to content and links

Training Error vs. Test Error (AdaBoost,ns = 264)

Boosting View 1 - Content
Iteration Training Error σ Test Error σ

11 0.066 ±0.054 0.104 ±0.055
51 0.055 ±0.060 0.099 ±0.058
101 0.055 ±0.060 0.099 ±0.058
201 0.055 ±0.060 0.099 ±0.058
991 0.055 ±0.060 0.099 ±0.058

Boosting View 2 - Links
Iteration Training Error σ Test Error σ

11 0.016 ±0.011 0.090 ±0.019
51 2.6e-3 ±7.5e-3 0.227 ±0.163
101 2.6e-3 ±7.5e-3 0.232 ±0.169
201 2.6e-3 ±7.5e-3 0.233 ±0.168
991 2.6e-3 ±7.5e-3 0.233 ±0.168
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Figure 5.3: WebKb database, Naive Bayes applied to content and links

η = 1∗ ns
264 , nu = 525
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very large test error. It is therefore not surprising that such a classifier has nothing to
contribute.

Nevertheless, AgreementBoost does seem to be able to ‘choose’ the better classifier.
Despite of the fact that the two classifiers are forced to agree, the resulting consensus
is as good as the better independent classifier.

5.2.3 Using a better learner

In light of the performance of the underlying links-based algorithm, it was replaced by a
another learning algorithm which learns the web pages’ content. This new underlying
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Figure 5.4: WebKb database, using Naive Bayes and Tree Stumps

η = 1∗ ns
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Table 5.4: WebKb database, using Naive and Tree Stumps

η = 1∗ ns
264 , nu = 525

Agreement Boost AdaBoost
Labeled Naive Bayes Disagreement Naive Bayes

Examples Test Err. σ V̂(g1,g2) σ Test Err. σ
52 0.077 ±0.039 1.2e-3 ±9.2e-4 0.126 ±0.071
105 0.061 ±0.020 1.8e-3 ±1.0e-3 0.093 ±0.042
158 0.045 ±0.015 2.7e-3 ±2.8e-3 0.101 ±0.061
184 0.043 ±0.015 3.0e-3 ±2.6e-3 0.091 ±0.064
211 0.043 ±0.014 3.0e-3 ±2.1e-3 0.088 ±0.050
264 0.038 ±0.011 3.3e-3 ±2.8e-3 0.098 ±0.058

Agreement Boost AdaBoost
Labeled Tree Stumps Disagreement Tree Stumps

Examples Test Err. σ V̂(g1,g2) σ Test Err. σ
52 0.080 ±0.046 1.2e-3 ±9.2e-4 0.094 ±0.024
105 0.061 ±0.022 1.8e-3 ±1.0e-3 0.075 ±0.024
158 0.050 ±0.016 2.7e-3 ±2.8e-3 0.064 ±0.015
184 0.046 ±0.014 3.0e-3 ±2.6e-3 0.059 ±0.017
211 0.044 ±9.9e-3 3.0e-3 ±2.1e-3 0.054 ±0.015
264 0.040 ±0.010 3.3e-3 ±2.8e-3 0.049 ±0.011

Table 5.5: WebKb database, using Naive Bayes and Tree Stumps

Training Error and Test Error per iteration
η = 1∗ ns

264 , nu = 525

Agreement Boost AdaBoost
Boosting Naive Bayes Tree Stumps Tree Stumps
Iteration Trn. Err. σ Trn. Err. σ Trn. Err. σ

31 55.8e-3 ±3.7e-2 66.8e-3 ±1.6e-2 8.7e-3 ±4.6e-3
151 18.3e-3 ±8.8e-3 28.7e-3 ±7.4e-3 3.9e-3 ±2.5e-3
301 15.1e-3 ±8.5e-3 21.9e-3 ±6.5e-3 3.9e-3 ±2.5e-3
1021 7.0e-3 ±4.9e-3 12.8e-3 ±3.8e-3
2011 5.3e-3 ±4.0e-3 5.1e-3 ±3.8e-3
2971 5.1e-3 ±4.0e-3 4.3e-3 ±3.0e-3

Agreement Boost AdaBoost
Boosting Naive Bayes Tree Stumps Tree Stumps
Iteration Test Err. σ Test Err. σ Test Err. σ

31 0.083 ±0.034 0.088 ±0.022 0.050 ±0.012
151 0.046 ±0.017 0.053 ±0.019 0.049 ±0.011
301 0.043 ±0.015 0.048 ±0.017 0.049 ±0.011
1021 0.039 ±0.012 0.042 ±0.011
2011 0.038 ±0.011 0.041 ±0.011
2971 0.038 ±0.011 0.040 ±0.010
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learner is based on a degenerate version of decision trees called tree stumps. Tree
stumps consist of only one decision node, classifying an example only according to a
single test. In these experiments, the web pages are classified by testing the number of
instances of a single word within them. If the word has more instances then a given
threshold, the web page is classified to one class and otherwise to the other. An example
of such a tree stump is presented in Figure 5.5.

Before moving on to the results of using
Figure 5.5: A Tree Stump

N(wt ,di) > n

Ye
s N

o

AgreementBoost with the new Tree Stumps
algorithm, note that it does indeed perform
better. This can be seen in Figure 5.4(b) and
Table 5.5, showing the results using 264 la-
beled examples. When boosted with AdaBoost,
the resulting tree stumps ensemble had a very
low training (3.9× 10−3 average) and test
error (0.049 average). For comparison, the
Naive Bayes ensemble had an average train-
ing error of 0.055 and an average test error
of 0.099.

The full summary of experiments performed with the Tree Stumps algorithm is
presented in Figure 5.4 and Tables 5.4 & 5.5. In all experiments shown, 526 examples
were used as unlabeled examples, allowing for up to 264 labeled examples. To perform
a fair competition and to avoid over-fitting, the AdaBoost was run for only 300 itera-
tions3. As can be seen, AgreementBoost produces substantially better classifiers. On
average, using the full 264 labeled example set, the tree stumps ensemble produced by
AgreementBoost had 0.04 error on the test set. The naive Bayes classifier performed
even better with a 0.038 test error. In comparison, the tree stumps ensemble constructed
by AdaBoost, which was better than the corresponding naive Bayes classifier, had a test
error of 0.049.

In terms of labeled examples reduction, AgreementBoost hasalso produced good
results. The final test error achieved by AdaBoost using the full labeled exampled
set (264 examples), was already achieved by AgreementBoost’s classifiers using 158
labeled examples, a reduction of 40%.

Figures 5.4(c),(d) and (e) give some insight into the algorithm and the construction
of the classifiers. Unlike AdaBoost, which reaches its final training error within 100
iterations, AgreementBoost is slower to converge. However, the agreement between
the classifiers results in a considerably lower training error for the naive Bayes clas-
sifier. While the AdaBoost-run quickly gets stuck with a training error of 0.055 , the
agreement with the tree stumps classifier ‘drags’ the naive Bayes well below that level.
In the AgreementBoost run, the naive Bayes classifier continues to descend, leveling
out at around 1500 iterations with a training error of≈ 5.3×10−3. Surprisingly, the
naive Bayes descends faster then the better tree stumps classifier.

Since this apparent improvement seems to be the result of theextra disagreement
term, it is interesting to see the dynamics between it and thetraining error. This can
be achieved by comparing Figure 5.4(c) and Figure 5.4(d). Inthe beginning of the run,
roughly corresponding to the period where AdaBoost reachesits minimum training er-
ror, the two learning algorithms focus mainly on the reduction of training error: i.e.,
the labeled examples. As a result, there is an initial sharp increase in the average dis-
agreement between the two classifiers. After 91 iterations,disagreement is in its peak

3‘Early stopping’ is one of the first techniques suggest to avoid over-fitting.
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Figure 5.6: Setting theη parameter Stumps
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average value of 45.2×10−3, while starting from the perfect agreement of the initial
0-classifiers. After this initial strive for correctness, the focus shifts and both learners
pay a more equal attention to both labeled and unlabeled examples. The disagreement
slowly reduces while still improving the training error.

5.3 Agreeing is important, but how much?

5.3.1 Setting theη parameter

The convergence proof presented in Chapter 4 ensures that ifall assumptions are met,
the resulting classifiers will fully agree (albeit in the limit) regardless of what value is
given to the parameterη. However, this does not give any guarantee as to how fast that
will be achieved nor to what happens when the hypothesis spaces cannot fully agree or
classify the data. Since the algorithm advances by iteratively minimizing a weighted
sum of error and disagreement, one can expect that the weightgiven to disagreement
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Table 5.6: Setting theη parameter

WebKb database, using Naive Bayes and Tree Stumps

nu = 525

Labeled Naive Bayes Tree Stumps Disagreement
Examples Test Err. σ Test Err. σ V̂(g1,g2) σ

η = 0.1∗ns/264
105 0.064 ±0.032 0.065 ±0.027 5.3e-3 ±7.5e-3
184 0.047 ±0.025 0.051 ±0.026 4.6e-3 ±5.1e-3
264 0.046 ±0.019 0.046 ±0.012 11.1e-3 ±1.9e-2

η = 10∗ns/264
105 0.085 ±0.050 0.084 ±0.040 1.7e-3 ±8.3e-4
184 0.074 ±0.034 0.085 ±0.029 2.0e-3 ±7.1e-4
264 0.069 ±0.029 0.080 ±0.025 2.2e-3 ±4.8e-4

η = 50∗ns/264
105 0.172 ±0.062 0.166 ±0.054 3.4e-4 ±1.4e-4
184 0.191 ±0.046 0.184 ±0.048 2.9e-4 ±1.5e-4
264 0.206 ±0.031 0.198 ±0.036 2.3e-4 ±1.3e-4

For η = 1∗264/ns and AdaBoost statistics see Table 5.4

will have effects on the algorithm behavior.
A series of experiments aimed at studying these effects, arepresented in Figure 5.6

and Table 5.6. The figures and table display the results of setting η to different values,
both lower and higher then the one used so far. For comparison, Figure 5.6(b) shows
the results presented already in the previous section forη = 1∗ ns

264. Settingη to the
lower value of 0.1∗ ns

264 results in relatively good classifiers although the resultsseem
less robust. The gap between the classifiers constructed by AgreementBoost and the
ones of AdaBoost is not as stable as when usingη = 1∗ ns

264.
Unlike lower values, settingη to higher values resulted in inferior results. For

η = 10∗ ns
264 the AgreementBoost classifiers lie in between the classifiers produced by

AdaBoost and forη = 50∗ ns
264 the AgreementBoost-classifiers are hardly better than

random guessing.
This behavior is caused by the iterative nature of AgreementBoost. At every iter-

ation, only one of the underlying learning algorithm is allowed to advance. At every
step only one classifier is changed while the others stay the same. As a result, mak-
ing disagreement very important restricts the step size (αl

t ) that will be selected in step
2.a.ii. Using a lower value ofη allows the algorithm to make bigger steps and converge
faster. Therefore, for the high value ofη = 50 the algorithm is effectively stuck.

For this reason,η was set throughout the experiments to be proportional to theratio
ns
nu

. When the rations
nu

is small, namely there are many unlabeled examples, the sum
in the disagreement term consists of more monomials than theerror term. Therefore,
if η is not changed accordingly and is left constant throughout the experiment, the
disagreement term would dominate (see equation 4.2). As a result, in early experiments
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Figure 5.7: Effects of unlabeled examples, toy problem
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and using a constantη, the algorithm sometimes performed poorly . Settingη to be
proportional to the rations

nu
, compensates for this effect and reduces the importance of

the disagreement term accordingly.

5.3.2 The effects of the number of unlabeled examples.

The experiments presented in this section are designed to test the effects of another
aspect of the disagreement term: the number of unlabeled examples (nu). Striving for
‘global’ agreement, the previous experiments were performed using relatively a lot of
unlabeled examples. However, it may very well be that only a few (or fewer) unlabeled
examples are sufficient for good results.

Figure 5.7 and Table 5.7 display the results of using variousnumbers of unlabeled

Table 5.7: Effects of unlabeled examples, artificial toy problem

Displaying Alg. 1,n = 200,r = 5, η = 1∗ 2000∗ns
nu∗250 ,1000 boosting iterations

Labeled Examples
Unlabeled ns = 75 ns = 125 ns = 175
Examples Test Err. σ Test Err. σ Test Err. σ

0 0.180 ±0.036 0.054 ±0.046 0.000 ±0.000
10 0.123 ±0.061 0.055 ±0.032 4.6e-3 ±9.8e-3
100 0.109 ±0.042 0.018 ±0.026 0.000 ±0.000
500 0.081 ±0.031 2.9e-3 ±6.4e-3 0.000 ±0.000
1000 0.081 ±0.031 2.9e-3 ±6.4e-3 0.000 ±0.000
2000 0.074 ±0.038 2.9e-3 ±7.1e-3 0.000 ±0.000
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Figure 5.8: WebKb database, using Naive Bayes and Tree Stumps

Using less unlabeled examples:η = 1∗ ns
474 , nu = 315
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examples in the toy problem. In order to keep the magnitude ofthe disagreement term
roughly constant,η was set to2000∗ns

nu∗250 . Due to the symmetry in the problem, only the
results of first classifier are presented.

The results suggest that using only relatively few unlabeled examples (nu = 10, for
ns > 125), distracts the algorithm and produces classifiers thatare poorer than those
generated without any unlabeled examples. However, usingnu = 100 unlabeled ex-
amples already produces a classifier which is better. Fornu ≥ 500, there is hardly any
difference between the resulting classifiers.

Since the experiments on the toy problem suggest that one canuse a relatively
small number of unlabeled examples, the WebKb experiment (Section 5.2.3) was re-
peated. This time, the algorithm was run using only 30% of thedatabase as unlabeled
examples (instead of 50% in the original experiment). Sincethe size of the database is
limited, this allowed testing the behavior of AgreementBoost on a larger set of labeled
examples. The results are shown in Figure 5.8 and Table 5.8.

The performance of AgreementBoost in this experiment are just as good, if not
better, than the previous experiment. As before, AgreementBoost produces better clas-
sifiers than both ensembles constructed by AdaBoost. Using roughly 284 labeled ex-
amples and 315 unlabeled examples, AgreementBoost reducedthe average error from
5% to 3.9%. For comparison, in the previous experiment, using 264 labeled examples
and 525 unlabeled examples the results were very similar: 4.9% versus 3.8%. However,
the AgreementBoost-ed naive Bayes achieves an almost maximal precision already for
189 labeled examples, having an average training error of 4.1%. From this point, the
AgreementBoost classifiers seem to have reached their limitand do no improve signif-
icantly with the addition of labeled examples.

The best achieved average test error of AdaBoost (4.5%, by the tree stumps classi-
fier, using 379 labeled examples) is already achieved by AgreementBoost’s naive Bayes
using only≈ 150 labeled examples and by the tree stumps classifier using 189. This
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Table 5.8: WebKb database, using Naive Bayes and Tree Stumps

Using less unlabeled examples:η = 1∗ ns
474 , nu = 315

Agreement Boost AdaBoost
Labeled Naive Bayes Disagreement Naive Bayes

Examples Test Err. σ V̂(g1,g2) σ Test Err. σ
94 0.058 ±0.019 4.3e-4 ±3.1e-4 0.09 ±0.038
189 0.041 ±0.013 5.7e-4 ±3.0e-4 0.10 ±0.057
284 0.039 ±0.011 7.3e-4 ±2.9e-4 0.067 ±0.043
379 0.040 ±0.013 9.2e-4 ±3.5e-4 0.073 ±0.034
475 0.038 ±0.012 9.9e-4 ±3.1e-4 0.070 ±0.048

Agreement Boost AdaBoost
Labeled Tree Stumps Disagreement Tree Stumps

Examples Test Err. σ V̂(g1,g2) σ Test Err. σ
94 0.065 ±0.019 4.3e-4 ±3.1e-4 0.071 ±0.021
189 0.045 ±0.013 5.7e-4 ±3.0e-4 0.058 ±0.015
284 0.040 ±9.4e-3 7.3e-4 ±2.9e-4 0.050 ±0.011
379 0.041 ±0.012 9.2e-4 ±3.5e-4 0.045 ±0.012
475 0.038 ±0.012 9.9e-4 ±3.1e-4 0.045 ±0.013

amounts to reduction of 50% for the tree stumps classifier - the lesser of the two.
Another interesting point to notice is the switch in performance between the two

classifiers. When boosted by AdaBoost, the relatively simple tree stumps classifier
outperforms the more power full naive Bayes algorithm. However, when using Agree-
mentBoost, their roles reverse: Naive Bayes performs slightly better than the tree
stumps ensemble. Some hints for this behavior could alreadybe seen in the previous
experiment (Figure 5.4(a)), but here it is much more pronounced.
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Chapter 6

Summary and Conclusions

In the first chapter of this thesis, we have formulated and made concrete the potential
advantage in making several learning algorithms agree. In order to ensure and validate
the learners agreement, an extra set of unlabelled examplesis used along side the usual
labeled exampled of the supervised training model.

Drawing on the general intuition, a new generalization bound was derived where the
penalty relating to the hypothesis space complexity is reduced due the use of unlabelled
examples. As a complexity measure, we have used the Rademacher complexity due its
technical advantage. However, the same general scheme can be used to improve other
generalization bounds that involve other complexity measures. The suggested scheme
will work as long as the complexity measure is monotonic withrespect to inclusion.
However, we expect any proper complexity measure to have this property.

Motivated by the theoretical framework, we have presented anew boosting algo-
rithm named AgreementBoost along with a proof of its convergence (in the limit). The
algorithm was applied to a test toy problem and a web-page classification problem (as
defined by Mitchel and Blum [5]). In both problems, AgreementBoost reduced the
number of labeled examples necessary in order to achieve a desired error by up to 40%
(compared to AdaBoost).

While agreement successfully reduces the number of labeledexamples, it is not
without a price. Increasing the importance assigned to the learners’ agreement causes
a reduction in the algorithm’s convergence speed. Since AgreementBoost constructs its
ensembles iteratively, this results in larger and computationally more expensive classi-
fiers. The exact trade-off between agreement weight and convergence speed is yet to
be established.

When designing AgreementBoost, we have opted for simplicity and thus avoided
using many of the possible improvements and modifications, many of which are non-
trivial and justify new research projects. We name a few:

1. Many of the improvements of AdaBoost suggested in the literature can adapted
for AgreementBoost. Modifications like regularization terms for the hypotheses
weights and soft margins will probability improve that algorithm’s performance.

2. For simplicity, we have kept the agreement weight(η) constant along the run.
However, we suspect that changing it during the algorithm’srun might lead to
superior results.

3. Following previous work, we have performed all experiments using only two
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underlying learners. However, the theoretical framework is quite more general,
allowing for an arbitrary number of underlying learners. Further experimental
study involving more learners is required.
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