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Abstract

In the past few years unlabeled examples and their poteatiantage have received
a lot of attention. In this paper a new boosting algorithmrisspnted where unla-
beled examples are used to enforce agreement betweenlsbfferant learning algo-
rithms. Not only do the learning algorithms learn from theegi training set but they
are supposed to do so while agreeing on the unlabeled exsnfpimilar ideas have
been proposed before (for example, the Co-Training algority Mitchel and Blum),
but without a proof or under strong assumptions. In our rsgitit is only assumed
that all learning algorithms are equally adequate for tls&ksa A new generalization
bound is presented where the use of unlabeled exampletsrigsaibetter ratio between
training-set size and the the resulting classifier's guallthe extent of this improve-
ment depends on the diversity of the learners—a more digmep of learners will
result in a larger improvement whereas using two copies afiglesalgorithm gives
no advantage at all. As a proof of concept, the algorithm,etagreementBoost, is
applied to two test problems. In both cases, using AgreeRuerst results in an up to
40% reduction in the number of labeled examples.
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Chapter 1

Introduction

Imagine a young pupil being taught for the first time to readraifjn language. The
teacher might begin the first lesson by writing the entirdnalpet of the language on
the board announcing that today they are going to learn teielditter, say[1." After

a rather cumbersome hour of staring at letters, the pupilrigrsed by the teacher’s
last announcement: the following lesson will begin with arslguiz covering today’s
material. The quiz will take the following form: each pupillweceive a sheet of paper
written in that foreign language and will have to mark all@eences of the lettef.
Furthermore, imagine that the teacher of this young pupilgarticularly bad one. She
does not give the pupil any guidance nor explanation witheesto how and’ should
be recognized out of the whole alphabet. Rather the teaglesids the whole lesson
showing the students transparencies of different letsengng for each one whether it
is a nice example of the lesson’s subjeci’{ or that it is a letter they will study at a
later time.

The problem faced by this poor pupil can be modeled by onee&implest but
popular models in machine learning callapervised learninglhis model represents
a scenario where a ‘learner’ is required to solvelassification problemThe model
assumes the existence of a set of possible examplebich are divided in some way
into a set of classe®” (often called labels). In the pupil’'s case, the example sgan
be the set of all possible images of letters in the alphabet (etter per image) and
the classes arél’” and non-TJ." The pupil then comes up with a mappifig X — ¢,
saying for each letter in the quiz whether it is &' ‘or not. In order to evaluate the
quality of the pupil’s mapping it is assumed that there exaatistributiorP overX x &
which represents the ‘chance’ to see a specific example ‘andhef in real life. The
quality of the pupil's mapping, or classifier, is then measuiby the probability of it
making a mistake. In other words, the lower the probabilitthe classifier making a
mistake, the better the classifier.

In class, the only interaction between teacher and pupitigesed by showing
the pupil a set of examples along with their correct labelisTarm of interaction is
modeled by assuming that the learner is given a finite sanfdibeled examples,
drawn at random and independently fr@®mSince this is the only information the pupil
receives, she must use this sample to generate the restlissifier.

More formally, the learning model is defined as follows: itaissumed that the
learning algorithm is given only a finite sequence of trajp@xamples. The training

INote that this setting allows an example to belong to diffeasses, or have several labels. This is
helpful when modeling noise or non-deterministic processe
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examples are given in the form of a set of ordered pSifS,{(Xj ,y,-)}?il, where each
instancex; belongs to soménstance spaceX and is accompanied by a single label
out of alabel spacé 9 C [-1,+1]. Furthermore, it is assumed that the training set
Swas generated by repeatedly and independently sampling adritrary probability
distributionP over X x . The task of a learning algorithm is then to use the training
set to construct a classifier, or a hypothesis that best gigetlie labels given to ex-
amples fromX by P. Typically the learning algorithm can only choose a hypseibe
from a limited set of possible hypotheses, which is refetoegis the hypothesis space
HCoX.

Though the above learning scenario is somewhat contrivadymeal life applica-
tions fall nicely within this model. Problems like OCR, webges classification (as
done in Internet directories) and detection of spam e-maibaly a few of many prob-
lems that fit into this scheme. Note that the assumption dagguthe poor didactic
skills of the teacher is made to serve a very practical reakow does one explain
to an e-mail program how to detect a spam e-mail? If this wayg,aawould have
been much simpler to write a program to identify spam rathentrunning a learning
algorithm. Devising concrete rules that precisely disegam from non-spam is much
harder (to humans) than the pure proclamation “This is spamother words, the al-
gorithm is used to transfer our somehow vague notion of “Ihigpam” to a concrete
rule that can be efficiently executed by a computer. Theegfm algorithm that is able
to ‘learn’ concrete classification rules from a labeled sknaone demands less from
the ‘teacher'—the user of the learning algorithm.

In all the examples above and in many others, it is relatitialid to obtain a large
sample of labeled examples. The sample has to be carefidlyzed and labeled by
humans—a costly and time consuming task. However in maogtsins it is fairly
easy to obtain unlabeled examples: examples from the exasppiceX withoutthe
class that they belong to. This process can be easily mesdthand preformed by a
machine, much faster then any human-plausible rate. Tfiexelce between labeled
and unlabeled examples has encouraged researchers ircémg years to study the
benefits that unlabeled examples may have in various legastienarios. For example,
will it help the young pupil if she will be given a booklet weeh in that foreign lan-
guage to take home? Can this booklet and the abundant uetabrmples within be
used to improve the pupil’s results in the coming exam?

1.1 The Co-training model

At first glance it might seem that nothing is to be gained framabeled examples.
After all, unlabeled examples lack the most important p&cdeformation—the class
to which they belong. However, this is not necessarily treecdn some theoretical
settings, it is beneficial to gain knowledge over the exasiptearginal distribution
P(x) (for example in [7]). In these cases, having extra examplih,or without their
label, provides this extra information. On the other haheére exist situations (for
example in [10]) where knowinB(x) is not helpful and unlabeled examples do not help
at all. The main goal of this sort of research is to determieaimount of information
that can be extracted from unlabeled examples. Howeveabaldd examples have
also been used by algorithms in a more practical way: as a$@rcommunication

2For technical reasons, the label space is restrictéd 1o+1]. In the general casg/ may be different.
For example, in a multi class problem one typically chog¥e® be{1,2,3...,M} whereM is the number
of possible classes.
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platform between two different learning algorithms. Onelsusage is the so called
Co-Training model or strategy.

A typical example of Co-Training can be found in [5], a papéewo cited with
respect to unlabeled examples. In their paper, Blum andhditgrovide both an algo-
rithm and a theoretical framework where unlabeled exangiesised to communicate
an ‘opinion’ about an unlabeled example from one algoritonamother. As a case
study, the algorithm is then applied to a web-page classificgproblem involving
identifying courses’ homepages out of a collection of welygs.

In their work, Blum and Mitchel assume that the example sparebe split into
two ‘views’ X! andx?i.e., X = X1 x X2, For example, in the web-page classification
problem, a web-page can be represented as the words appeatime web-page itself
(view 1) but also as words appearing on links pointing to itrtRer they assume that
examples are labeled by two target functididsf2, one for each view. In order to
comply with the fact that each example belongs to a singlescldey further assume
that P ({x! xx?: f1(x') # 2 (x?) }) = 0. Lastly, they assume that there exist two
learning algorithmd.? andL? such that.! can learn using the first view alone and
L? can learn using the second view and in the presence of noisghefmore, they
suppose that both views are sufficient for learning the bl

The main theoretical result in their paper is the followingder some assumptions,
a classifier that uses the first view and that is slightly bettan random guessing is
equivalent to a noisy source when looked upon from the pdiwieov of L2. Further-
more, the noise rate of the source is strictly smaller t%n&md therefore it contains
some information on the original labels. LI is trained on the labeled examples to
achieve such a classifier, it can then be used to label ueldlegiamples and supply a
noisy source fot.? to learn from. Since&.? can learn in the presence of noise, it can
then use the abundant newly labeled examples to producedactpssifier.

This ability to transform a deterministic process to randonise entails a very
severe assumption: for every fixed exam(u’é,f@) € X of non-zero probability it
must hold that:

P(Xt=8|X2=%) = P(X'=g&"f?(X?) =1f*(%)) (1.1)
P(X2=R|Xx1=gY) = P(X2=f|f(x)=1f(x}).

In other words, thak*andX? are conditionally independent given the label. As the
authors themselves state, only four hypotheses complythiglassumption (assuming
thatP allows for it).

The algorithm presented by Blum and Mitchel (see Algorithnihds been shown
to produce better classifiers in the web-pages problem awother experiments (for
example, [12, 11], for more detailed analysis and limitasicee [13, 16]). However,
the theory presented can only be used as a motivation or aajémition for the al-
gorithm’s success. The algorithm does not train one leanéiuses it to laballl un-
labeled examples, which are in turn given to the second ésamstead, both learners
are allowed to choossomeunlabeled examples for labeling. These unlabeled exam-
ples are then added to the pool of labeled examples. Thereffier being labeled, an
unlabeled example assumes the same role as a labeled exantple representation
of the target function. As the authors themselves remaik pitocess encourages the
learners to slowlagreeon the labels of the unlabeled examples. In the last itevatio
the Co-Training algorithm, the classifiers produced areréiselt of underlying learn-
ers doing their best to fit the same set of labeled and nevalgléal examples. If the
number of newly-labeled examples is considerately latberjmplies that the learners
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Algorithm 1 The Co-Training algorithm, as presented in [5]
Inputs:

e A set of labeled training exampleS)(

e A set of unlabeled exampléb )

1. Create a podl’ of examples by choosing, unlabeled examples, at random,
fromU.

2. Loop fork iterations:

(a) UseSandL! to train a classifieh! that considers only the* portion of the
examples.

(b) UseSandL? to train a classifieh? that considers only the portion of the
examples.

(c) Allow h' to labelp positive anch negative examples frotd’.
(d) Allow h? to labelp positive anch negative examples frot’.
(e) Add these self-labeled examplessto

() Randomly choose 2+ 2n examples fronJ to replenishJ’.

are encouraged to agree on a set of examples whose labela@tagizen to them in
advance. Before starting the algorithm, there is no guassas to what label an unla-
beled example will receive but only to the fact that the eradsifiers are highly likely
to agree on that label. This type of agreement is a side effentny other variants of
the co-training model [15, 14].

This intuition that agreement is useful and can assist itebleof learning is elabo-
rated and made more precise in this paper. A theoreticadiranrk is presented where
agreement between different learners has a clear advanfagghermore, these ideas
are carried over to the field of boosting, where the theaaksettings are especially ap-
plicable. This is achieved in the form of a new algorithm thiailds upon this theory.
A similar attempt can be found in [17] where a boosting aliponiis presented, based
on the above intuition. However, no proof is provided thatallgorithm does result in
agreeing classifiers nor for the advantage of such an agreedroof for the latter
(in a more general settings) was provided by Dasgupta ehdlL8]. Nevertheless,
for the proof to hold one still has to use the strong assumpifoview-independence
(Equation 1.1). Another example for the use of unlabeledmptas in boosting can be
foundin [23].

Before delving into the theoretical benefits of agreementpvesent a short intro-
duction to boosting.

1.2 Boosting

The basic idea behind boosting is to iteratively combinatietly simple hypotheses to
create a more complex classifier—a classifier that is supterall underlying hypothe-

3Assuming that all learners are different yet adequate fotakk.
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Algorithm 2 AdaBoost [19]
Input: A sampleS= {(x,yi)}{; and an underlying learning algorithim

1. Initialize: di<1) =1/nsforalli=1,...,ns.
2. Dofort=1,...,T:
(a) Usel to obtain a hypothesis : X — {—1,+1} trained onS, re-weighted
according tad(®),
(b) Calculate the weighted training errof hy:

o= 5 10 ) wherel () = | o T 00

otherwise

(c) Setoy = 3log .

(d) Update Weightsdf”l) = di(t) exp(—ayiht (%)) /Z:, wherez; is a normal-
Ns
ization constant such that d*™ = 1.
i=1

T
3. Outputsign< S cxtht) as resulting classifier.
t=1

ses. While coming up with a classifier (and an algorithm tostiret it) that can ade-
guately solve a supervised learning problem is hard, deyiai‘rule of thumb’ which
is just slightly better than random guessing is fairly easgnany problems. Take, for
example, the web-page classification problem from beforee €an use the existence
of the word ‘course’ in a web-page as a relatively good intiticethat this is a course
home page. While this criterion is far from perfect (for exden a university schedule
is also highly likely to contain the word ‘course’) it is $tihuch better than random
guessing. Other such words may include ‘homework’,‘cldssson’,'assignment’ etc.

In the last decade boosting has grown in popularity and hesived consider-
able attention. One of the first practical boosting algonshwas AdaBoostAdaptive
Boosing, see Algorithm 2), introduced by Freund and Schapird 8].[Since then, it
was thoroughly researched and many variants of it were eriGince AdaBoost is
such a typical and simple boosting algorithm, it will be ubede as a representative
example.

The main idea behind AdaBoost (and many other boosting ithgos) is to assign
to each of the training examples a weight. An underlyingriegay algorithm is then
used to generate a (weak) hypothesis based on this artifievgightedtraining set.
This means that the algorithm receives the original trgjsgtSalong with the weights
of examples in it. The learning algorithm is expected tottthes weighing as if it is
the true distribution of examples &

The weight of an example is determined at each iterationrdoupto the hypoth-
esis,h, returned by the weak learner. The weight of examples tleatamectly clas-
sified byh; is decreased and the weight of those that are misclassifiedresased. In
this way, the learner is forced to focus on the more difficuliraples in the training
set. The final hypothesis is then constructed by combiniadppotheses of all rounds
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giving more weight to hypotheses that had a lower classidioatrror.
Freund and Schapire provide a bound for the training erratenty the ensemble
classifier built by AdaBoost:

Ns

LS 1 (yi # sign(f(x))) <27 ﬁ\/st Frs)
t=

Ns &

If it is further assumed that weak learning algorithm alwestsirns a hypothesis whose
error is at least a constant away from random guessing z(j.g:,% —), this bound

turns into:
Ns

= 510 # sign(f(x))) < exp(~2TY?).

=

Therefore, under the above assumption, the training eeoays exponentially fast.
This quick convergence has also been observed in practitésaone of the most
important traits of AdaBoost.

Further experiments have revealed that this analysis i@matigh to explain the
behaviour of AdaBoost. Typically, the reduction of traipirror to zero was combined
with a generalizatichbound connecting the training error to the global true eofor
the classifier (for an example, see Theorem 12 in Chapter Zt8% means that once
a classifier has reached zero training error the bounds le@aahed their full power
in predicting the quality of it. However, in practice, thesterror of the classifiers
produced by AdaBoost continue to improve long after theningj error has reached
zero.

Beginning with [20], a whole new set of generalization basimas introduced that
can explain this behavior. Two of these bounds will be pregktin the following
chapters as an example. Describing the rest of the geraratiZoounds and the huge
amount of research into and improvements of AdaBoost isdgohd the scope of this
work. For further information and an excellent introduatiehe reader is referred to

[1].

4The term generalization refers to the ability of a classifieperform well ingeneraland not only on
the training set. Generalization bounds are theorems ogriid global error with terms relating to some
measurement on the training set and other terms that aneendent of the specific classifier used. Typically
these terms measure the complexity of the set of possildsifiexs. For more details see Chapter 2.



Chapter 2

The Value of Agreement

In this chapter, a theoretical foundation and justificatibithe advantage in combing
several different learning algorithms will be presented.

A typical approach in the supervised learning model is tagiean algorithm that
chooses a hypothesis that in some way best fits the trainmglsa It will be shown
that an advantage can be gained by taking several suchrgaaigorithms and de-
manding that they not only best learn the training set but @gree’ with each other
by outputting identical hypotheses

The discussion below involves several learning algoritantstheir accompanying
hypothesis spaces. To avoid confusion, any enumerationdaxithat relates to dif-
ferent learners or hypotheses is enumerated using suipsstypicallyl). All other
indices, such as algorithm iterations and different exas\phre denoted using a sub-
script.

2.1 Preliminaries

Since the learning algorithm is only given a finite samplexaraples, it can only se-
lect a hypothesis based on limited information. However tésk of the algorithmis a
global one. The resulting classifiemust perform well with respect to all examples in
X. The probability of erroP ({(x,y) : f(X) #y}) must be small. In order to transfer
the success of a classifier on the training set to the glolsa, dhere exist numerous
generalization boundé@wo such theorems will be given below). Typically these-the
orems involve some measure of the complexity or richnesseévailable hypothesis
space. In some cases it is assumed that the labels of exafingpie®’ are given by one
of the hypotheses iAl. In other cases, the algorithm'’s task is to construct a iflass
that best predicts an arbitrary distributiBr{for example, in the case of noise). In both
cases, if the hypothesis space is not too rich, any hypatladde to correctly classify
the given examples cannot be to far from the target disicshutHowever, ifH is very
rich and can classify correctly any finite sample using défe functions, success on a
finite sample does not necessarily imply good global belavio

One such hypotheses-space complexity measure, whichtisydarly useful in the
boosting scenario (see Theorem 7) is Reedemacher ComplexityA definition from
[2] will be given here:

1By identical it is meant that the hypotheses represent tive ganction fromx to . In practice the
hypotheses will be very different (for example, Bayes dfass vs. decision trees).
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Definition 1. Let Xy,...,X, be independent samples drawn according to some distri-
butionP on a setX. For a class of functiong, mappingX to R, define the random

variable
2 n
ﬁi;Ui f(xl)H

where the expectance is taken with respedito. ., dn , independent uniform+1}-
valued random variables. Then tRademacher complexitf F is R, (F) = ER, (F)
where the expectance is now taken oXer.. ., Xn.

Ra(F)=E lsup

feF

The Rademacher complexity is in fact a measure of how wellpothesis space
is expected to fit an arbitrary labeling. A rich class of fuocs will do this well
and the term supr |,-21zi”:10if(m\ will be high for many examples. Therefore, the
Rademacher complexity of such a function set will be high eB.v&maller and less
rich spaces are expected to lead to a sm&j¢F ) value. In the special case whed¥e

consists of binary functions, one can show fRatF) = O (« /VCdin(F)/N) (derived
from [2]), connecting the Rademacher complexity to the watbbwn VVC dimension.

One example of a generalization bound is the following (&&hfrom Theorem 3
in [1] and proved in [3]):

Theorem 2. Let F be a class of real-valued functions frakhto [—1,+1] and let

6 € [0,1]. Let P be a probability distribution otk x {—1,4+1} and suppose that a
sample of N examplesS{(xyy1),...,(Xn,Yn) } iS generated independently at random
according to P. Then for any integer N, with probability sa$1 — & over samples of
length N, every & F satisfies

Pty 2 sign( 100 < L9() + 2RNe(F) N Iogz(il/é)

N N
whereL®(f) = & 5 I (ynf(Xn) < 8) andl (ynf (Xn) < 8) = 1if yof (x;) < 6 andO oth-
n=1

erwise.
Theorem 2 introduces a new concept hammedgin.

Definition 3. Themarginof a functionh: X — [—1,1] on an exampl& € X with a
labely € {£1} is yh(x).

The margin of a functioln on an example can be interpreted as the confidence
of the classification. If the margin is negatiwgign(h) misclassifiex. A positive mar-
gin measures the distancetyk) from the crucial O-value. In these terms, Theorem 2
can be interpreted as saying that a more ‘confident’ hypethbhas a lower general
error. Margins have been used to give a new explanationstsubcess of boosting
algorithms, such as AdaBoost, in decreasing the globat Eyng after a perfect clas-
sification of the training examples has been achieved [4picBlly, one would expect
a learning algorithm to eventually over fit the training sdenpesulting in an increase
in global error.

Theorem 2 represents a rather general type of generalizationds. Instead of
assuming that the labels are generated by one of the hygsthms, it gives a connec-
tion between the empirical error on samples drawn femydistribution and the global
expected error. As can be seen, the complexity plays a crucial role in this relation.
If a small hypothesis space was able to fit well a relativelgdasample (resulting in a
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low L® and a larg®), the probability distribution must correlate well withetselected
function. However, ifH is very rich its success in fitting a finite sample is of lesser
importance.

From the above discussion it is clear that if one was abledaae the hypothesis
spaceH without harming its ability to fit the sampled data, the résgl classifier is
expected to have a smaller global error.

2.2 Formal Settings

Let HL,... H' be a set of hypothesis spaces, each with a fitting learnirgyition,
Al. Further suppose that the intersection of all hypothesisepis not empty and all
learning algorithms are forced to agree and output the sapethesis. Then effec-

L
tively the algorithms select a hypothesis from a smallerdtiypsis space() H'. If it
=1

is further assumed that the hypothesis that best fits th@nset belongs to evely!
(thus available to all algorithms), this scheme producegumtiesis from a potentially
muchsmallerhypothesis space which is just as good on the training sarfgiece, the
generalization capability of such a hypothesis, as dra@mftheorems such as The-
orem 2, is potentially much better than the hypotheses ttgihdrom any algorithm
operating alone.

While the above discussion would yield the expected thealegain, it is very
hard to implement. First, demanding that the algorithmguoigxactlythe same hy-
pothesis entails an ability that is unlikely to be easilyide. Typically the different
hypothesis spaces would consist of classifiers as diffa®néural networks and Bayes
classifiers. The need to test (or construct) whether twesifiass are absolutely equal
in functionality would render this scheme impractical. &ig algorithms could not
be used as is, if at all, and would have to be thoroughly chéin@econd, it is also
unrealistic to demand that the hypothesis spaces will hawetarsection which is rich
enough to be useful to correctly classify different targstributions. While this might
be feasible fot. = 2 (such as the assumption in [5]) it is highly unlikely for ayger
number of learners. A more relaxed agreement demand willmpwresented, along
with a simple way of checking it: unlabeled examples.

Definition 4.

1. Define thevarianceof a vector inR" to be:
2
1L 2 (1t
1 Ly _ =+ _ | =
VyL... ¥ = LI;(V) (lel>ﬂ> :

2. Furthermore, define the variance of a set of classifiérs. ., f- to be the ex-
pected variance on examples frofn
V(fL L) =BV (f1(x),.... 5 (X).

The variance of a set of classifiers will be used in the foltaywielaxed definition
of intersection as a measures of their disagreement:
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Definition 5. For anyv > 0, define thev-intersectionof a set of hypothesis spaces,
HL, ... H' to be:

L
v—H' :{fl,...,fL:\ﬂ, fleH, andV(fl,...,fL)gv}.
I=1

In effect thev-intersection oH?, ... H contains all the hypotheses whose differ-
ence with some of the members of other hypothesis spacesdgddiscover. This
relaxed definition of intersection will be used as the spasmfwhich the algorithms
can draw their hypotheses. Note that foe= 0, the O-intersection is precisélyhe
normal intersection ofi®,... HL.

As mentioned before, unlabeled examples will be used to nneabe level of
agreement between the various learners. Thereforg) tet{u; }T“Zl be a set of un-
labeled examples, drawn independently from the same faligion P but without the
label being available. It will now be shown that if enoughab#led examples are
drawn, the disagreement measured on them is a good refatigeinf the global dis-
agreement. This will be done by defining a new hypothesisesgéd?, ... ,H") and a

target distributiorP and using a generalization bound resembling Theorem 2.
Definition 6.
1. LetV (HL,...,HY) = {Vvo (fl .. f): fleH ... f-eH'} where
Vo (fi,..., f1) : X —[0,1] is defined by:
Vo (i . 15 x) =V (f}(x),..., f*(x).
2. LetP be a probability distribution ovex x [0, ] which is defined by:
(VAC X x [0,0)) [P(A) = P({(x,y) € X x 91 (x,0) € A})].

In essencep labels all examples itx with 0, while giving them same marginal
probability as before.

Before we can use the generalizing bound, we need to estahksRademacher
complexity of the new hypothesis spa¢¢H?,...,H"). This will be done using the
following theorem from [2] (Theorem 10) which gives someustural properties of
the Rademacher complexity.

Theorem 7. Let K F4,...,Fcand H be classes of real functions. Then
1. IfF CH,Ry(F) <Rn(H).
2. R\(F) =R, (convF) where

T T
convF= aifi :vtfreFando; >0,y ot =1
{tZ P

is the class of all finite convex combinations of functionsiiF.

2This assumes that no elementirhas zero marginal probability. In the case thatontains non-empty
groups of zero probability, the difference between thetérsection and true intersection will be never be
discovered.

10
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3. Forevery o= R, R,y (cF) = |c| R\ (F) where cF= {cf : f e F}.

4. If@:R — Ris Lipschitz with a constantJand satisfieg(0) =0, then R (¢(F)) <
2LoRn(F) where@(F) ={@o f : f € F}.

5. R (i F) < 314 Ra(R) wherest R = {31 fi : Vifi e R}

Note that clause 2 in Theorem 7 is what makes the Rademachwslexity so
attractive in boosting. Since the complexity of all convexnbinations of classifiers
from a weak hypothesis space is the same as the complexityea$gace it self, it
results in good generalization bounds.

Corollary 8. Ry (V (H,...,H')) < 8maxR, (H').

Proof. The result will follow from the following fact:

V(HY.. HY) %i () + ¢<%|§1Hl>]

where@(z) = Z% and is Lipschitz o’ C [~1,+1] with Ly =
Therefore, from Theorem 7

Ra(V(HL...,HY)) < Rn<
2

< L5 (el e o(25))
< L5 (W)radd SR ()
< 8maxR, (H'

O

Before proving the main theorems of the section, the follmageneralization bound
(adapted from [2]) is presented. This theorem allows theofis@ arbitrary loss func-
tion and does not use the concepts of margins.

Theorem 9. Consider a loss functiod : 9" x R — [0, 1] and let F be a class of func-
tions mappingX to 9. Let{(x,yi)}[_, be a sample independently selected according
to some probability measure P. Then, for any integer n anddaqyd < 1, with proba-
bility of at leastl — & over samples of length n, everyefF satisfies

LY, £(X)) < EnL(Y, f(X))+Rna(LoF) + 8|097r(]2/6)
whereE, is the expectance measured on the samples and
LoF ={(xy)— L(y,f(x))—L(y,0): f €F}.

The scene is now set to give the first of the two main theorentisiefchapter—a
connection between function’s agreement on a finite sangpkensl their true disagree-
ment:

11
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Theorem 10. Let HL,... H' be sets of functions frodt to 9 and let U= {uj}T:1

be a set of unlabeled examples drawn independently acagptdia distribution P over
X x . Then for any integer n and < & < 1, with probability of at leasiL — & every
set of functions 'fe H', | = 1...L satisfies:

V(Y <V(FLL Y 1 8maR(H') + S'OQT(Z/&
whereV/(f1,..., f') is the sampled expected variance, as measured enfu; }?:1'

Proof. The theorem follows directly from Theorem 9 when appliedi® function set
V(HL,... HY) with P as target distribution. The loss function is defined/bfy,z) =
min{|y—Z,1}. SinceP assigns zero probability to all non-zero labels,

EL(Y,V (f1(X),....f5(X))) =BV (f}(X),..., f5(X)) = V(fi,..., Y

and
EL(Y,V (f1(X),...,f5(X))) =V (fL,... ).

FurthermoreR, (LoF) =R, (V(H2,...,H%Y)) since
P(L(yVo(fh...,fh(X) - L0 #Vo(fl... 5 (x)=0.

Therefore, Theorem 9 implies that, with a probability ofesdt 1 J,

VLY < (Y R (V(HE L HY)) + 8'09#(2/5)
< V(L 1) BmaRs(H') + %QT(Z/&
where the last inequality holds due to the corollary of Tleeo. O

Theorem 10 allows us to use a finite set of unlabeled examplesake sure (with
high probability) that the classifiers selected by the leaymlgorithms are indeed in
the desired-intersection of the hypothesis spaces. This allows usaptagkeneraliza-
tion bounds to use smaller hypothesis spaces. As an exaarpkrlapted version of
Theorem 2 is presented.

Theorem 11. Let H',... H' be a class of real-valued functions frathito [—1, +1]
and letB € [0,1]. Let P be a probability distribution oiX x {—1,+1} and suppose
that a sample of nilabeled examples S {(xj,yj)}';s:l and n, unlabeled examples

U= {Uj}?u:l is generated independently at random according to P. Therarfy

integern, v > 0,0 < & < 1and n, such thalSmaanu(H')jL\/%:w < % with a

probability at leastl — 5, every £ ¢ H,..., fL € H- whose disagreemeNt on U is
at most; satisfies

VIP(y #sign(f'(x))) < LO(f') + er + IOgz(::/a)

wherel8(f') = nis .nzsll (vifl(x)<86).
i=

12
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Proof. From Theorem 10, with a probability of at least-13, V(f2,... f) <v and
thereforevl f' € v—NH'. Applying Theorem 2 tov — N H', with a probability of at
i i

least 1 3,
2Rn,(v —NH")
v ev—(HTP(y # sign(f(x))) < L8(f) + - '092?:/5)
I" S
using the union bound and combining the results proves tr¢m. O

To conclude this section, we note that the proposed settiagshe following desired
property: it doesn’t help to have duplicate copies of thesshypothesis space. To have

any advantage; — QH' must be considerably smaller then any of the base hypothesis

|
spaces. Therefore, using only duplicate copies of the samethesis spacél =
HL .. .H- givesv— N H' = H and hence no improvement. Furthermore, any duplicates

[
within the set of different hypothesis spaces can be remaititbut changing the
results.

2.3 Reduction of labeled examples

The previous section presented a formal setting where agmeewas used to reduce
the complexity of the set of possible hypotheses. The imatedmplication is that
training error serves as a better approximation for glohed error. Therefore, for a
given number of labeled examples, if the learning algorittas produced a classifier
with a low training error one can expect a lower global ertdowever this reduction
in complexity can be also viewed from a different, thoughyedated, point of view.
Since most algorithms can reduce the training error to alesvyevel, the number
of labeled examples necessary is usually determined asteake the two other terms
in generalization bounds: the complexity of the hypothepece and the certainty in
the success of the whole procedudg (Using more labeled examples typically allows
using a lower value without hindering the expected error of the resultitassifier

(for example, Theorem 2 involves\(;(% term). The second result of increasing
the number of labeled examples is reduction in the Rademadmeplexity (or sim-
ilar complexity terms). Therefore, decreasing the termatie to hypothesis space
complexity, enables one to ukesslabeled examples while achieving the same bound.

To illustrate this consider Blumer et al. result [6] condegithe simple case of
consistent learners:

Theorem 12. (adapted from 2.1.ii in [6]) For any > 0, 6 > 0O, a probability distri-
bution P overX and a hypothesis space & {—},+1}X of finite VC dimension, d.
Let f € H be some target function and=S{ (x;, f(x;)) }Til a sample independently

drawn fromX where r is larger thanmax{ £logZ, &log22}. Then with probability
of atleastl — o over samples of size nfor any function fe H which correctly classify
all sampled examples,(P(x) # f(x)) < €.

To prove the theorem, Blumer et al. showed that with high abdlity, a sample

of size maxX 2log %, & log 13} is sufficient to disqualify any function il that is too

13
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‘far’ from the targetf. If H is made smaller, the number of functions which need to be
excluded is reduced. Therefore, less labeled examplessaaed in order to exclude
high error functions.

In many learning applications one often comes across a phena called over-
fitting. In these cases, the learning algorithm producesassifier which is overly
trained on the training sample. The classifier is too speeidlin classifying the learn-
ing sample and looses its generalization powers. In othedsyahe algorithm learns
information that is accidentally available in the traingsgmple but is specific to it. For
an iterative learning algorithm (improving its currentsddier with every iteration),
one typically observes a reduction in both training and (glstbal) error in the begin-
ning of the algorithm’s run. However, from some point on, test error will start to
increase, while the training error is still being reducdd22].

Generalization bounds such as those presented above llypleal with over-
fitting using the following idea: if the algorithm is given amgh labeled examples
it will not over-fit. Since the training sample is represéntenough of of target func-
tion, specializing in it does no harm. In the extreme, thadeto theorems such as
the one of Blumer et al. concerning consistent learningréttyms. In the setting pro-
posed here, the learning algorithm needs not only fit itsingi data but also agree
with a couple of other algorithms. If the algorithms are sudiitly different, forcing
them to agree inhibits their specialization on the trairdiagg, allowing to use a less
representative training sample, or less labeled examples.

14



Chapter 3

The Algorithm

In this chapter, we propose a new boosting algorithm nameaédekgentBoost (Algo-
rithm 3), which exploits the benefits suggested by the thpoegented in the previous
chapter. Like AdaBoost, the algorithm is designed to ogeiratBoolean scenarios
where each example can belong to one of two possible clagsegatl by+1 (i.e.,
y= {+1’ _1})-

As in many boosting algorithms, AgreementBoost createshooed classifiers or
ensembles. However, instead of just one such classifieeekgentBoost creates L
ensembles, one for each hypothesis space. The ensembtemateicted using un-
derlying learning algorithms, one for each of theypothesis space{sH' }|L:1' Ateach
iteration, one of the learning algorithms is presented withieighing of both labeled
and unlabeled examples in the form of a weight vewtp) and pseudo-labels for the
unlabeled exampleg(u)). The underlying learner is then expected to return a hygoth
sis f{ with a near-optimdledgé: y= 5 w(x)y;f'(x)+ 3 w(uj)y(u;) ' ().

(x.y;)€S U<V
The returned hypothesis is then added to the correspondisgneble. The weight
given tof! (a}, selected at step 2.a.iii) is chosen such that the costibumitis mini-
mized. This can be done by any numeric line minimization atgm.

The proposed AgreementBoost can be described as a pariicstance of Any-
Boost [21], a boosting algorithm allowing for arbitrary ¢dsnctions. Agreement-
Boost's cost functior has been chosen to incorporate the ensembles’ disagreement
into the normal margin terms. This is achieved using a weiglsum of two terms:
an error or margin-related ternyf_; zrj‘iler(—yj g'(xj))) and a disagreement term
z?“:ler(v (uj)). Despite of the fact that the these terms capture differetions, they
are very similar. Both terms use the same underlying fun¢égx), to assign a cost
to some example-related measure: The first penalizes layafive) margins while the
second condemns high variance (and hence disagreementgemgntBoost allows
choosing any function asr(x), so long as it is convex and strictly increasing. This
freedom allows using different cost schemes and thus faréutost function analysis
(as done, for example, in [21]). In the degenerate case witewalabeled examples are
used (, = 0) ande* is used a®r(x), AgreementBoost is equivalent koindependent

1For the exact definition of ‘near-optimal’, see Chapter 4.

2Note that the edge can be rewritten in terms of the weightedr ef f' : y = 1 — 2¢ wheree =
( z) w(xp)I [yj # f1(x))] “ru%UW(Uj)l [y(uj) # f'(u;)]. Thereforef' having a near-optimal edge is
Xj,yj €S i
equivalent to it having a near-minimal weighted error.
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Algorithm 3 Agreement Boost
DenoteF (¢%,...,0") = 31 = er(—yjd (x))) +nL 3, er(V (uj)) where

L L

V=275 du?- {% S g'(u)} ,n € RT is some positive real number and
=1 1=1

er: R — R is some convex, strictly increasing function with continesecond

derivative.

1. Setgd =0forl =1...L.

2. lterate until done (counté):

(a) lterate ovel =1...L:
i. Setw(xj) = er (—y;d'(xj))y;/Z for all (xj,yj) € Sand
w(u) =20 |E5E o () — g (uy)| er (V(u)) /Z for all uj € U

whereZ is a renormalization factor s.J. w(x;) + S w(u;) = 1.
Xj uj

Usey(uj) = sign(% z:r:lgf(uj) —d (Uj)) as pseudo-labels far;.
ii. Receive hypothesi§ from learned using the above weights and
labels.
iii. Find a} > 0 that minimizes (g,...,d' +alf!,....q").
iv. Setd =d' +af.

3. Output classifiesign(g') whose error on the samples is minimal out of the
classifiers.

runs of AdaBoost (using the underlying learners).
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Chapter 4

Proof of convergence

In this chapter a convergence proof for Algorithm 3 is giv&he proof considers two
scenarios. The first assumes that the intersection co:baIW(H') is able to correctly
classify all labeled examples using classifiers which agreall unlabeled examples.
Under this assumption, it is shown that the algorithm wiiguce classifiers, which in
the limit are fully correct and agree on all unlabeled exaapln other cases, where
this assumption is not valid, the algorithm will produce@mbles which minimize a
function representing a compromise between correctnesagneement.

Both Mason et al. [21] and Réatsch et al. [24] provide simitamergence proofs for
AnyBoost-like algorithms. While both proofs can be usedtfwninor modifications)
in our settings, they do not fully cover both scenarios. Thaopin [24] demands that
the sum of thea| coefficients will be bounded and thus cannot be used in casegew
the theoretical assumptions hold. This can be seen eastlyeitase of AdaBoost,
where a fully correct hypothesis will be assigned an infiniggght. While Agreement-
Boost will never assign an infinite weight to a hypotheses (tuthe disagreement
term), it is easy to come up with a similar scenario where thefficient sum grows
to infinity. In [21], Mason et al. present a theorem very santb Theorem 18 below.
However, they assume that the underlying learner perfomnfegtly and always re-
turns thebesthypothesis from the hypothesis space. Such a severe assarigphot
needed in the proof presented here. Furthermore, due toetherality of AnyBoost,
the result in [21] apply to the cost function alone and is naslated back to training
error terms.

The proofs below are based on two assumptions concernigaheng algorithms
and the hypothesis spaces. It is assumed that when preseitiieah example sétS
and a weighingv(x), the underlying learning algorithms return a hypothesigor
which:

w(x))y; f' (%) > 6max< > w(x))y; f(x;)) for somed > 0.

(x.v7)es et \xfes

The second assumption concerns the hypothesis spaceasstimetithat for everyl
and somef' € H' the negation of' is alsoinH' i.e.: f e H' = —f e H'. This allows

INote that this may include examples labeled by the algorittather the being drawn according to the
underlying distributiorP.

2Note that this is assumed for simplicity alone. By allowihg &lgorithm to use negative values fdr
all hypothesis spaces becoréU —H!, which are closed under negation. This inflicts no increastaé
Rademacher complexity of the spaces. To keep the assumyitiorespect to the hypothesis returned by the

17
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us to using absolute value in the previous assumption:

for somed > 0.

> w(x))y; f(x)

Xj€S

> wix))y; f'(x;) > dmax
feH!

Xj€S

In the Lemmas and Theorems to follow, it will sometimes beuased that the
hypothesis spaces are finite. Due to the fact that there ysfimite amount of ways to
classify a finite set of examples with4al label, if some of the hypothesis spaces are
infinite it will be indistinguishable when restricted &andU. Therefore, without loss
of generality, one can assume that the number of hypothe§ese.

The convergence of the algorithm is proven taking a diffepaint of view to the
ensembles built by the algorithm. The ensembles can be seg@mix of all possible
functions in the hypothesis spaces rather then as an acatiarubf hypotheses:

Definition 13.

1. LetH' = {f{}, , beanenumeration of functionskii. One can rewrite the en-

semblesy built by AgreementBoost as functions frotx RIH'| toR: g (x, p!) =
SR (x) for B = (BL,BL....) € RIM' andl = 1...L. Further denote =

|

(BL,....BY). Note thatB} is the sum of alla} chosen by the algorithm such
that f{ = f!.

2. Letthevarianceof g, ...,g" on an example be

1L 1L ?
V(U, B) = Elzlgl(uvBl)z_ [Elzlgl(uaBl)] .

3. Whenever it is clear from context what are fhparameters/ (u) andg' (u) will
be used for brevity.

4. Leter:R — R* be a convex monotonically increasing function. Denote by

F(B) = E(®)+nDb®)

L ns

EPB) - I;leer(—ngwxj)) (4.1)
DE) = LY er(v(u)
J;er uj

for somen > 0.

F(B) represents a weighing between correctness and disagrede{@), being a
sum of loss functions penalizing negative margins, reltagbe current error of the
ensemble classifiersD(P) captures the ensembles’ disagreement over the unlabeled
examples.

Using the above notations and the new point of view, the margf hypotheses
becomes proportional to the partial derivativé-qf3) with respect to the corresponding

underlying learning algorithm, one has to present two @setthe original query and a query where all labels
are negated. Choosing the the hypothesis with a higher mafghe two results is the desired hypothesis.

18
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coefficient. Replacing the examples’ weight and labels ating to the definition of
AgreementBoost, we have that:

Xj€S
%Xzeseﬂ( ng(xj)) fil () +
2 3 er V) (b, g -gw) ff ()
:—%gﬁ (B

Therefore the underlying learners return hypotheses wtmrsesponding partial deriv-
atives maintain the following inequality:

oF oF
- dmax——
o (B2 3max—r (B)
Furthermore, since the hypothesis spaces are assumedIttsbd ander negation, the
following holds as well:

oF oF oF
_a_B!(B) 6m|ax 6[3' B) = 6m|a OB'

Note that this ensures that the partial derivative with eespo the returned function
coefficient is non-positive and hence the choicaipin step 2.a.ii of Algorithm 3 is
in fact the global optimurhover allR. Since in every iteration only one coefficient is
changed to a value which minimiz&€$(3), Algorithm 3 is equivalent to a coordinate
descent minimization algorithm (for more information abminimization algorithms
see, for example, [9]).

As a last preparation before the convergence proof, it vélshown that (B) is
convex. Apart from having other technical advantages,dh@ranties that the algo-
rithm will not get stuck in a local minimum:

Claim 14.

B)]-

1. Yue U, er(V(u,p)) is convex with respect tf.
2. Vxj € X, er(—yjg' (xj,B")) is convex with respect tf'.
Proof. The claim will follow from the following facts:

1. The operatog(B) = (g*(BY),....9 ([3'-)) is linear. Therefore, for ever, B and
Va,y e [0,1] , we have thag(aB+y[3) =ag(B) + yg([3)

2. LetA B < R" be two vectors and,y € [0, 1] two numbers such that +y = 1.

L
Further denote the variance of a vectoe (vi,...,v.) by V(v) = %,Z V2 —
L 2 i=1
& (Z vi) . Then the following holds:

i=1

2v )+ V2V (B) +2aycov(A B)
< a®V(A)+YV(B)+ay(V(A) +V(B))
( ) +W(B)

3This involves the convexity df (B) that will be discussed below.

V(aA+yB)
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wherecoVA, B) is the covariance of the two vectors and is defined in a similar
fashion toV (v).

3. Vc € R the functioner(cx) is convex with respect te.
4. eris monotonically increasing.

Therefore, for everg, f3 andva,y € [0,1] such thatn +y=1, using fact 1 and fact
2 above, we have that(u,aB + yB) < aV(u,p) + W (u,B). Using fact no. 4 anér's
convexity, we have that

er (V(u,a[3+yf3)) <er (aV(u,B) +W(u,[§)) <aer(V(u,p)) +yer(V(u,[3))

proving the first part of the claim.
For the second part, Facts 1 and 3 are used together, giahg th

er(-yig (. aB +y8) = er(-y;[ag xj,B) +vd' (x;,B)) )
aer (-yig (x;,8)) +ver (-yid (x;. "))

proving the second part of the claim. O

IN

Lemma 15. The function Ef) is convex with respect .

Proof. This follows immediately from Claim 14 and the fact that a safrconvex
functions is convex. O

Lemma 16. Let {Bn} be a sequence of points generated by an iterative linearckear
algorithm A, i.e.,Bny1 = A(Bn) minimizing a non-negative convex functtidh € C2.
Denote the direction in which the algorithm minimizes F iemn\step by y= m
and fy(a) =F (Bn+avy) (i.e., Aminimizesd{a) in every iteration by a linear search).
Then, ifaM € R such thatvn ‘fT':;(O() < M for every ‘feasiblet (i.e., when R(a) <

F(Bn)) thean]iLrlo %_';h(o) —o.

Proof. By Taylor expansioti,(a) = F;(0) + F1(0)a + @az for someg between 0
anda. ThereforeF,(0) — Fn(a) = —F/(0)a — @02 > —F}(0)a — $Ma? since by
assumptiorf;T@(E) <M (by the convexity of, if a is feasible, all points between it
and 0 are also feasible). From the previous inequalitieslivi/s that

F(Bn) —F(Bns1) = F(Bn)— min Fy(a) = max (Fy(0)—Fy(a))

feasiblen feasiblen

> max <—F,§(O)cx—%Mcx2>

feasiblex
1 F/(0)?
= —F/(0)a — =Ma? | = - > 0.
?e%X( n(0)a—3 O‘) M =

Note that the last inequality ensures that the last expmessimaximized by a feasible
o, making the equality argument valid.

Now, sinceF (Bn) is a monotonically decreasing sequence and is bounded from
below, it must converge. Thereforr]io!(rﬁ(Bn) —F(Bn+1)) = 0, which together with

the above inequality, gives the result. O

4By C2 we denote the set of functions having a continuous secoriatiee.
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Lemma 17. Let {Bn} be a sequence of points generated by an iterative linearckear
algorithm A (i.e.,Bn:1 = A(Bn)) minimizing a non-negative convex functioneFC?.
If in addition to the conditions of Lemma 16 (and using thesamtationsgm > 0 €

R such thatvn %5;( o) > m for every ‘feasiblet (i.e., when R(a) < F(Bn)) then

Am”ﬁml— Bnlle = O.

Proof. The proof is similar to the one of Lemma 16.

By Taylor expansior,(a) = Fn(0) + Fi(0)a + @az for someg between O and:.
ThereforeFn(0) — Fn(a) = —F(0)a — @az < —F}(0)a — $ma? since by assump-
tion d F” Z1(&) > m. It follows that for thea chosen at step, |o| must be smaller or equal
to ‘#’ By Lemma 16nﬂg)1Fr§(O) = 0, and thereforé|Bn+1— Bnlle = ||0Vn|le =
|a] — 0. O

Theorem 18. For some non-empty sets of labeled examples S and unlabedet e
ples U, suppose that the underlying learners are guaranteedturn a hypothesi$

such thaty w(x)yxf(x) > & (mfax
X

S W(X)yx f(X) D for some constardi > 0 and every
X

weighing wx) of their examples. Further let elR — R be a non constant convex
monotonically increasing function such that:

1. erc C? and ef(0) > 0.

2. AM e R for which er(x) < max{L(|S| +nlU|)er(0), % (1S 4+n|u |)er(0)} im-
plies that ef (x) <M

Then it holds thailm [IOF (Bn)ll, =O.

oo =

Proof. Since Algorithm 3 is equivalent to performing a coordinagésaknt which min-
imizes
=3 3 eryd () +nL erv(w))
% uj

the result will follow from Lemma 16 and Lemma 17. )

Using the same notation as in Lemma 16, one must shovwm%&%(a) <M’ for
every ‘feasible’a and somaV’ € R*. Since Algorithm 3 only changes one coordinate
at atime, itis enough to show that the second derivative igspect to each coordinate
is bounded.

0°F , 2
o ijese'” (—YJQ'(XJ)) {YJ fi'(Xj)}
2
n / 1 L2
+ar Y e (VW) | ¢ flu)? (4.2
L Ly

L
+2n zuer’ (uj)) T fl (uj)2.

Denotel, = max{L, %} andg =sup{x : er(x) <L (|S|+n|U|)er(0)} (note that
er convexity and the fact that it is not a constant function iyniblat XIim er(x) = o«
and thereforé, is finite). Now, from the convexity oér(x) it follows thater'(x) is
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monotonically increasing. Hence it holds tretx) < L, (]S +n|U|)er(0) implies
er'(x) < er(§). Therefore, without loss of generality, we can assume ¢n@t) <
Ly (|S 4+ n|U|)er(0) implies that botter (x) ander”(x) are bounded b.

Let {Bn} be the sequence of coefficient vectors generated by Algorgh Since
Bo is the all zero vectorF(Bo) = L(|§+n|U|)er(0). Therefore for every ‘feasi-
ble’ B which the algorithm might consider, it must hold tHa{f3) < F(Bo). Since
(Vx) [er(x) > 0], this implies that

(1, 5) [er(=y;d (%)) <L(S+n[Uer(0)]
and

(i) [er(ij)) <

S|

(1S+n |U|>er<0>] .

Therefore,

2
[% ydu)-d (Uj)] SLV(u) < L& (4.3)
I

From which it follows that for every feasib[&

0°F 2
W(B) < szesM [YJ fil(xj)}
+4E MLEF! (x)2 (4.4)
UJE
+2n ML%lfi'(x)z
UJ‘E

< M(S+2nUj(2£+1)),

where the last inequality follows from the fact thyat f! (x;) € {—1,1}. This completes
the necessary requirements of Lemma 16 and ther%forea%'_ﬁ;m: 0 wherel, andin

are the indices of the hypothesis returned by the underlﬁianmer at iteratiom. By
the assumptions regarding the base learners and the hgfotpaces

oF oF
> omax——-
|

OB oy

oF
oB"

= 6m_ax‘
1

giving thatvi € I, l!im

o (B =
Since in Algorithm 3,lI, = (n modL) + 1, in order to complete the proof it is

enoughto showthat =1...L, Vi€ I lim. ‘ :B% (Bn)

—Owherd, = (n+f modL) +

1. Using the above as base for an induction afgumenfétot), it is enough to show
that if the claim holds fot + 1, it also holds fot. Leti be some index ify-. By the
inductive assumption, it holds that

OF
Gl

lim

n—oo

(Bn-1)| =0 (note thaty = (n—1+7+1 modL) +1).
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1

Figure 4.1:z= vl

X2 + % and its level curves

It is therefore enough to show thhﬁ (Bn) — 2= (Bn_1)| also converges to 0 as

F/\ =
B:n 0B:n

grows to infinity.
Using the bound in Equation 4.3 which is valid for gllt holds that

<L

vl

Ly d)-dw)
|

for all ‘feasible’3 and therefore for aB betweer3,,_1 andf,. Denoting again by, _1
the function index returned by learnigr 1 in iterationn— 1, one can show in a very
similar way to that used to develop Equation 4.4 that

2
T @) <m(s+ 20U (28 +1) (45)
oy ;0B

for all B betweerf3,_1 andfy, regardless to whethéy 1 = ﬂ, or not.
From Equation 4.5, sind&, andf3,_1 differ in only one coordinate, it follows that

oF oF

oph o

(Bn-2)] <M (IS +2n|U[(2€ + 1)) [[Bn— Bn-1/lco -

Furthermore, sincer’ (V (u)) > er'(0), it follows from Equation 4.2 that

0%F
>
0BjoB}

L-1
20=—=|UJer(0)

allowing to invoke Lemma 17 and conclude the proof. O

Theorem 18 ensures that the gradienEdf) converges to zero along the sequence
generated by AgreementBoost. Combined with the factRh@) is convex, this suf-
fices to ensure that AgreementBoost converges to the globéahom of F, if such a
minimum exists. However, singgis not restrained, it may very well be thBthas

no minimum. As a matter of fact, if one assumes that indeelbathers are able to
correctly classify the labeled examples while agreeingheruinlabeled examples, it is
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guaranteed thd will have no finite minimum. In other words, regardless of #hgo-
rithm'’s current point, one can always do better. Thereferecan only hope that in the
limit, the algorithm converges to the infimumeis domain, i.e.F (Bn) — inf{F (B)}.
Unlike the one-dimensional case, the derivative’s cormecg to 0 is not suffi-
cient to ensure the convergence of a multimultidimensidmattion to its infimum.

As an example, consider the two-dimensional functidxy) = sz )1, (shown in

Figure 4.1) and the sequen¢ét,t*)},” . While the function’s gradienil f (t,t?) =
(— — 5 — t_S) converges to 0, the function itself stays above the value éftlt%) =

14—%4 —far away from the desired infimum. In the rest of this chapitewill be
shown that even whef (3) has no finite minimum, AgreementBoost converges to its
infimum.

Lemma 19. Let T :V; — WV, be a linear transformation between two finite dimen-
sion vector spaces ové& and let{v,} € Vi be a sequence of vectors. Denote the
orthogonal complement of the kernel of T by Kert. Then ifrl1im [IVal|, = o and
(Vn) [V € Ker(T)*] thenlim |[T (vn)||, =  when the norms are taken with respect to
some arbitrary orthonormal bases.

Proof. Let T’ be the restriction off to Ker(T)*. SinceKer(T’) = {0}, T’ is in-

vertible when its range is restricted to its image. Denobnd,, = T (vn), Ssuppose
for a contradiction tha;[] lim &nl|, # . Therefore, there exists a sub-sequencé,of

which is bounded and hence a converging sub-sequ&nceDenote its limit byg.
Since the image of’ is a finite dimension vector space it is closed and therefore
& € Domain(T'~1). However, sincd '~ is continuous,

lim (| T En) ||, = Jim v, = [T (

n—oo n—oo HZ

This is in contradiction to linj|vy||, = e sincev, cannot have a bounded sub-sequence.
Nn—oo
O

Lemma 20. Let{Bn} be a sequence of coefficients. Furthermore let
B={B:VYueU,V(u,B) =0}

andp, be the closest pointin B @. ThenifiM € R such thatVu e U) [V (u,Bn) < M],

it follows that’ Bn— l~3n is bounded.

Proof. Note thatB is a closed set due to the continuity‘di(u B) and thereforeﬁn
is well defined. To derive a contradiction, suppose t“ﬁ;{ Bn is not bounded.

—>00_

Therefore, by looking only at a sub-sequence, it can be aessmlnatHBn — Bn
Now, define the following set of linear transformations, éweryl € {2.. L}

7B = (9 (B ) g (wB) 0 (o B) —d (v ).

Note thatB € Ker(T') if and only if the resulting classifierg ! andg' agree on
the unlabeled example$vu € U) [¢'~* (u,B' ") = d' (u,p")]. Further defind (B) to
be the linear transformation resulting from orderingTlB) in an (ny(L — 1))-tuple.
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For the combined transformatidn B € Ker(T) if and only if all resulting classifiers
agree on all unlabeled examples. Hence, it follows Ke(T) =

_SinceKer(T) is a vector subspace and sirfigis the closest vector in it tn, Bn —
Bn is the projection of3, onto the orthogonal complementi§ér(T). By Lemma 19,
it follows that

IT @Bl = [T (Ba—B)]|, —

Therefore the difference between at least two classifiersmanof the unlabeled ex-
amples grows to infinity. This contradicts the assumptian tiu € U) [V (u,Bn) < M|
O

Theorem 21. Under the assumptions of Theorem 18 with the additionalrapsion
that er(x) is strictly monotonic and that all underlying hypothesiasgs are able to
correctly classify the data using finite ensemble classifierm the intersection of the
hypothesis spaces, both the error and the disagreemeng efitbemble classifiers con-
structed by Algorithm 3 converge to 0.

Proof. Denote the correct classifiers ds:”zﬁl fJ! and byf& the corresponding coef-

ficient vector(ﬁ%, e [~3'|-HL|) . Since these classifiers come from the intersection of the

hypothesis spacésu, |1,12) [§'(u) = §'2(u)] and thereforéva) {V (B+a[§, u) =V (B, u)}.
This implies the following:

‘;'; (OF,B) = <DE,B>+<nDD,B>_<DE,B>_Z—E.

From Theorem 18, it follows th%t%%(ﬁn)
classifiers are correctk. yxd (x) > 0) ander(x) is an increasing monotonic function,

oF _ z er (—ngl(xj )YJ[3| Z z e’j( ng (X )ngl(xj) > 0.

aB X ES Xj€S

Therefore‘ %%(Bn) — Oimpliesthatvx € S) [er (—y;d' (xj)) — 0] and hence;d' (x;) —
oo, giving the necessary error convergence.

Furthermoreer’ (—y;d' (X)) — 0 implies that(Vj, 1) [6[3' (Bn) — 0} and therefore

(V1) n (Bn) (Bn)

(Bn) ] (4.6)

aB' aB' aB'

or lim ||ID(Bn)l |, = 0.
Now, assume in contradiction thafi € U such thatn Iig\/(a) # 0. Therefore

lim |D(By) — LU er(0)| # 0. @7

Asin Lemma 20, denote ty the closest element B = {B:(YueU)[V(u,B)=0]}.
Since by definition the resulting ensembles ‘agree’ on aheples it follows that

(Vn) {D ([in) —L|U] er(O)} .
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Using equation 4.3 to apply Lemma 20, there exists sbhseich tha1H Bn— Bn‘ ) <M.
Furthermore since the tangent to a convex function is alveaysinder estimator, it

holds that:
D (Bn) + {0 (Bn) ,Ba— Bn) |[Ba — Bl <D (Br)
or
D (Ba) ~LIU|er(©) = [D(Br) ~D ()| < |(OD(Bo),Ba— )| M
< || OD(Bn)[|,M?.
Which, using Equation 4.6, gives the contradiction to eiquat.7. O
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Chapter 5

Experiments

In this chapter a few experiments are presented, testingltfithm (and theory)
presented in the previous chapters. The algorithm wasdt@stéwo problems: the
first is an artificially constructed problem where all thema assumptions hold and
the second a ‘real life’ test case. The algorithm was applbetthe same web pages
classification problem that was used by Blum and Mitchel in [5

In these experiments! was used as the loss functier{x). This gives an algorithm
which is very similar to AdaBoost, with the additional agresnt requirement. In
order to have a reference point, the proposed AgreementRtgmrithm is compared
to AdaBoost, which is run separately on each of the undegligarning algorithms.

In all experiments done, thg parameter is set using the following formula.=
Q—jc, wherec is some constant. This keeps the relative influence of treggdiement
and training error terms in Equation 4.1 roughly constarthiwia single series of
experiments. This compensates for the fact that the nunflabeled and unlabeled
examples changes. More details about the effects ofjtbarameter and about the
reason for these settings are presented in Section 5.3.1.

5.1 Atoy problem

In order to test the algorithm in a clean and noiseless enmemnt, it was first applied
to the following artificial test problem: classification @mdomly generated vectors in
R".

Denoting the coordinates of a vectwe R" by x = (Xq,...,%,), the hypothesis
spaces available to the algorithm consist of classifierb®formPos = (x; > 0) or
Neg = (x; <0) for j =1...n, i.e., the underlying hypotheses classify a vector by
choosing one of its coordinates and looking at its sign.dhtbould classify all vectors
with a positivejt" coordinate as belonging to thel class (these classifiers are denoted
by Pos) or as—1 (denoted bNeg).

The algorithm is then run using two underlying learnershdaging able to choose
only part of the possible hypotheses. Learner no. 1 has sitces! hypotheses in-

specting the first two thirds of the coordinates'= | {Poq,Neg}) while learner

j<2n

no. 2 can access only the last two thirds of the hypothd4és=( |J {Poq,Neg }).
ji>3n
When presented with a query, both algorithms perform an &sthee search on their
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Figure 5.1: An illustration of the hypothesis spaces in thegroblem
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n = 18, target function coordinates foe= 5 are colored in grey

respective hypothesis space and return the best hypotbasid. Note that the inter-
section of the both hypothesis spateésnH? = |J {Pos,Neg} is available to
in<j<2n
both learners.
As the example spack, then-dimensional cube- [—1,+1]" is used, along with
a uniform distribution oveX. After being drawn, each example is labeled by a target

function:
r-1

fi = Po for some radius paramete 1n
t= 2 PO parameters 3

Note thatf, € convH' N convH and therefore this problem complies to all assumptions

needed for the theoretical analysis to hold. Figure 5.1 shaw illustration of the
division of hypothesis spaces with respect to the targettfan.

5.1.1 Results

The full results of the comparison on this toy problem aresen¢ed in Table 5.1. The
boosting algorithms were run on different sample sizes fingm 0 tong = 225 exam-
ples, where all resulting classifiers had no test error. Kpegment was repeated 20
times for each sample size, using freshly drawn exampleadit #me. All runs used
2000 unlabeled examples and 560 labeled examples as adesgt @ 25% of 2225,
the total number of examples in the ‘training set’). Tablk presents the averages of
the different runs along with their standard deviatmnRecall thatV (gl,gz) is the
variance ofg! andg? on the unlabeled examples. Figure 5.2 presents the avegsige t
errort of the various classifiers in more visual way.

AgreementBoost shows a clear advantage over AdaBoosgsitfter this artificial
problem where all assumptions hold. The foreseen advartagdée seen both in
its precision form and in terms of saving on labeled examplesr example, using
ns = 100 labeled examples, AgreementBoost produces classifitran average test
error of Q019 and 0.02 while the classifiers boosted by AdaBoost haverram of
only 0.127 and 0.116. In terms of saving on labeled examplgeementBoost saves
=~ 40% of labeled examples if one wants to achieve an errer @07. For an error of
~ 0.02 a saving ofz 30% is achieved.

1The ratio between the misclassified examples and the totabatiof test examples.
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Figure 5.2: AgreementBoost applied to toy problem
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Table 5.1: AgreementBoost applied to toy problem

n=200,r =5,n, =2000,n = %’, 1000 boosting iterations

Agreement Boost AdaBoost
Labeled Learner 1 Disagreement Learner 1
Examples || Test Err. o V(gh,d?) o Test Err. o
0 0.505 | 4+0.022 0 +0.0

25 0.362 | +0.054 4e-6 +3e-6| 0.386 | +£0.047
50 0.205 | +0.071| 1lle-6 | +6e-6| 0.285 | £0.041
75 0.075 | +0.038 | 14e-6 | +5e-6| 0.180 | £0.037
100 0.019 | +0.025| 10e-6 | +5e-6| 0.127 | +0.052
125 0.003 | +0.007 9e-6 +3e-6| 0.055 | +£0.047
150 5.3e-4 | £1.7e-3| 7e-6 +4e-6| 0.002 | +0.005
175 0.000 | +0.000 4e-6 +2e-6| 0.000 | +0.000

Agreement Boost AdaBoost

Labeled Learner 2 Disagreement Learner 2

Examples || Test Err. o V(g g?) o Test Err. o
0 0.506 | +0.061 0.0 +0.0

25 0.362 | +0.054 4e-6 +3e-6| 0.391 | +0.040
50 0.205 | +£0.071| 1le-6 | +6e-6| 0.292 | £0.051
75 0.075 | +0.038 | 14e-6 | +5e-6| 0.186 | +0.045
100 0.020 | +£0.025| 10e-6 | +5e-6| 0.116 | £0.050
125 0.003 | +0.007 9e-6 +3e-6| 0.070 | +£0.048
150 5.3e-4 | £1.7e-3| 7Te-6 +4e-6| 0.004 | +£0.017
175 0.000 | +0.000 4e-6 +2e-6| 0.000 | +0.000

29



The Value of Agreement A New Boosting Algorithm

5.2 Classifying web pages

In this section, we return to the problem of classifying welg@s from the WebKb
database presented in [5]. The WebKb database [8] contabisweb pages, collected
from the websites of computer science faculties of fouredédht universities. For each
web page, the database contains both the words containbd page itself (referred
to as View 1 in [5]) and words appearing in links referringhattweb pages (View 2).
The web pages are split into two classes: homepages of co@3@) and non-course
pages (821). The goal of the learning algorithms presenttiis section is to correctly
classify web pages into these two classes.

In order to determine the quality of the resulting classifi@5% of the examples in
the database were randomly selected in each experimeniedahdit as a test group.
The experiments were repeated 20 times for each paramet@ruseber of labeled
examples, unlabeled examples etc.). The tables and graghgsisection show the
average result and standard deviation of these 20 expesmen

5.2.1 Naive Bayes for Text Classification

Naive Bayes is a well-known classifier based on the protsdigilBayes Rule. The
version of it used here, adapted to the problem of text dlaasbn, is taken from
[7]. For simplicity, we present a simpler model than the orseussed in [7], but this
simplified version results in the same practical algoritimthis model, each example,
or document;, is represented as a set of words taken from some finite viargizet
V= {Wl,Wz, .. ,Wl,,/| } Further, letwy, , denote the word in positiok of document
d.

Enumerating the possible document classe.{d‘.])}, it is assumed that the doc-
uments are ‘generated’ in the following way: first, a clagds chosen at random
according to some distributio®(c) over the possible classes. Then, the length of the
documentd;| is chosen, independently of the clags Having the desired length, the
document words are then drawn independently accordingne sdistribution on?’,
P(wic;j), which is based on the clasg. Putting these together, the probability of a
specific documerd;, given its class;j is given by

[

P(dlci) =P(d)) [P (va.ler).

The probability of a specific document to be drawn, regasdtésthe chosen class is
then given by its marginal probability (di) = 3 P(cj) P (di|cj). Using Bayes rule, it
]

is now possible to give the probability of a clags given a specific documedt:
i) M P(wg |C
P(cj)P(di|cj) Al Gl

||

T (o) )

To apply this model to a real classification problem, the ssagy distributions are
extracted from the training set. For every clagsP(c;j) is taken to be the relative
frequency of that class within the training set, a set of deents? and the class

P(cjldi) =
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assignment:
|D|
3, Plejld)
P(c)) =—"—=—+—
: D]
whereP (cj|dr) is 1 if documentl; is classified to classj and O otherwise.

The probab|I|ty of the words given a specific class is cal@dan a similar fashion
while using a Laplacean priéir

|D|
1+ 3 N(w,d;)P(cildy)
=1

P(wcj) = 1
VI+ 3 2N<ws, dr)P(cj|d;)

whereN(w;, dr) is the number of occurrences of wosglin document!;. After extract-
ing these probabilities, a new documeints classified by selecting the class with the
highest posterior probability: argmaR(c;|d;).

This concludes the description of a general Naive Bayesidhgo. However, this
algorithm cannot be used as is in the context of boosting.aéhéteration the Naive
Bayes algorithm is not only given a set of documefitsbut also a new weighing
functionw : D — [0,1]. The algorithm should respond aswif represents the true
distribution of documents. To accommodate this demani, incorporated into the
estimates of probabilities, replacing the previous umiftike treatment:

2|
P(c)) = ZW P (cj|d) (5.1)
2|
L+ 5 W(d)N(wt, d)P(c|dy)
e O (52)
7]+ 3, zlw< )N (ws, ) P(c; )

5.2.2 Agreeing with the Village Fool...

The first set of experiments on the WebKb database mimicsdberienents performed
in [5]. The Naive Bayes algorithm is used as a single undeglyearning algorithm,

applied to each of the so called views: page content and veorilscoming links. This

is done in a similar fashion to the toy problem, where AgrestBeost is run using the
same learning algorithm on two different aspects of an examgreementBoost was
allowed to run for 1000 iterations, using 525 unlabeled gxasand setting = %1.

As can be seen in Figure 5.3 and Table 5.2, the classifiers lyuihgreement-
Boost are roughly as good as the better of the two AdaBoossifikers. Both Agree-
mentBoost classifiers perform roughly the same as AdaBqpdieal to the web pages
content using Naive Bayes.

One of the main assumptions used in Chapter 2 was that thelyingdearners are
all capable to produce a good classifier. However, as Fig@3(®pand Table 5.3 show,
this is not the case in this experiment. While learning th&dipointing to the pages
produces a classifier with very low training error, it higlolyer-fits the data and has a

2This prevents words from having 0 probability in any class.
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Table 5.2: WebKb database, Naive Bayes applied to contehliras

N=1%58,ny=>525

Agreement Boost AdaBoost
Labeled View 1 - Content Disagreement View 1 - Content
Examples || Test Err. o V(gh,g?) o Test Err. o
52 0.149 | +£0.041| 2.4e-3 | +6.1e-3|| 0.126 | +0.071
105 0.101 | +0.028| 4.5e-3 | +7.4e-3|| 0.092 | +0.043
158 0.081 | +0.027| 6.6e-3 | +8.6e-3|| 0.101 | +0.060
184 0.082 | +£0.029| 8.3e-3 | +9.8e-3|| 0.091 | +0.064
211 0.084 | +0.038| 7.3e-3 | +8.5e-3|| 0.087 | +0.051
264 0.071 | £0.027| 9.5e-3 | +0.01 0.099 | +0.058
Agreement Boost AdaBoost
Labeled View 2 - Links Disagreement View 2 - Links
Examples || Test Err. o V(gh,d?) o Test Err. o
52 0.173 | £0.081| 2.4e-3 | +6.1e-3|| 0.263 | +0.214
105 0.124 | +0.041| 4.5e-3 | +7.4e-3|| 0.221 | +0.197
158 0.099 | +0.028| 6.6e-3 | +8.6e-3| 0.248 | +0.187
184 0.097 | +£0.025| 8.3e-3 | +9.8e-3|| 0.251 | +0.186
211 0.099 | +0.031| 7.3e-3 | +8.5e-3|| 0.198 | +0.154
264 0.093 | £0.027| 9.5e-3 | +0.01 0.233 | +0.168

Table 5.3: WebKb database, Naive Bayes applied to contehliras

Training Error vs. Test Error (AdaBoosg,= 264)

Boosting View 1 - Content

Iteration || Training Error c Test Error c
11 0.066 +0.054 0.104 | +0.055
51 0.055 +0.060 0.099 | +0.058
101 0.055 +0.060 0.099 | +0.058
201 0.055 +0.060 0.099 | +0.058
991 0.055 +0.060 0.099 | +0.058

Boosting View 2 - Links

Iteration || Training Error c Test Error c
11 0.016 +0.011 0.090 | +0.019
51 2.6e-3 +7.5e-3 0.227 | +0.163
101 2.6e-3 +7.5e-3 0.232 | +0.169
201 2.6e-3 +7.5e-3 0.233 | +0.168
991 2.6e-3 +7.5e-3 0.233 | +0.168
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Figure 5.3: WebKb database, Naive Bayes applied to contehlirsks
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very large test error. It is therefore not surprising thathsa classifier has nothing to
contribute.

Nevertheless, AgreementBoost does seem to be able to ‘etthedetter classifier.
Despite of the fact that the two classifiers are forced toggte resulting consensus
is as good as the better independent classifier.

5.2.3 Using a better learner

In light of the performance of the underlying links-basegbaithm, it was replaced by a
another learning algorithm which learns the web pages’aan{This new underlying
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Figure 5.4: WebKb database, using Naive Bayes and Tree Stump
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Table 5.4: WebKb database, using Naive and Tree Stumps

N=21xx%,Ny=525
Agreement Boost AdaBoost
Labeled Naive Bayes Disagreement Naive Bayes
Examples || Test Err. o V(gt,g?) o TestEr.| o
52 0.077 | +£0.039| 1.2e-3 | +9.2e-4|| 0.126 | +£0.071
105 0.061 | +£0.020| 1.8e-3 | £1.0e-3|| 0.093 | +0.042
158 0.045 | +0.015| 2.7e-3 | +£2.8e-3|| 0.101 | +0.061
184 0.043 | +£0.015| 3.0e-3 | +£2.6e-3|| 0.091 | +0.064
211 0.043 | +0.014| 3.0e-3 | +2.1e-3|| 0.088 | +0.050
264 0.038 | +£0.011| 3.3e-3 | £2.8e-3|| 0.098 | +0.058
Agreement Boost AdaBoost
Labeled Tree Stumps Disagreement Tree Stumps
Examples || Test Err. o V(gl,g?) o Test Err. o
52 0.080 | +0.046 | 1.2e-3 | +£9.2e-4|| 0.094 | +0.024
105 0.061 | +0.022 | 1.8e-3 | +1.0e-3|| 0.075 | +0.024
158 0.050 | +0.016| 2.7e-3 | £2.8e-3|| 0.064 | +£0.015
184 0.046 | +0.014| 3.0e-3 | +2.6e-3|| 0.059 | +0.017
211 0.044 | £9.9e-3| 3.0e-3 | +£2.1e-3|| 0.054 | £0.015
264 0.040 | +0.010| 3.3e-3 | +2.8e-3|| 0.049 | +0.011

Table 5.5: WebKb database, using Naive Bayes and Tree Stumps

Training Error and Test Error per iteration

N=1x58,ny=>525
Agreement Boost AdaBoost
Boosting Naive Bayes Tree Stumps Tree Stumps
Iteration || Trn. Err. o Trn. Err. o Trn. Err. o
31 55.8e-3 | +3.7e-2| 66.8e-3 | +1.6e-2|| 8.7e-3 | +4.6e-3
151 18.3e-3 | +8.8e-3| 28.7e-3 | +7.4e-3|| 3.9e-3 | +2.5e-3
301 15.1e-3 | +8.5e-3| 21.9e-3 | +6.5e-3|| 3.9e-3 | +2.5e-3
1021 7.0e-3 | +4.9e-3| 12.8e-3 | +3.8e-3
2011 5.3e-3 | +4.0e-3| 5.1e-3 | +3.8e-3
2971 5.1e-3 | +4.0e-3| 4.3e-3 | +3.0e-3
Agreement Boost AdaBoost
Boosting Naive Bayes Tree Stumps Tree Stumps
Iteration || Test Err. o Test Err. o Test Err. o
31 0.083 | +0.034| 0.088 | +0.022 0.050 | +0.012
151 0.046 | +0.017| 0.053 | +0.019 0.049 | +0.011
301 0.043 | +0.015| 0.048 | +0.017 0.049 | +0.011
1021 0.039 | +£0.012| 0.042 | +0.011
2011 0.038 | +0.011| 0.041 | +0.011
2971 0.038 | +0.011| 0.040 | +0.010
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learner is based on a degenerate version of decision trdled ti@e stumps. Tree
stumps consist of only one decision node, classifying amgk@ only according to a
single test. In these experiments, the web pages are aalslifitesting the number of
instances of a single word within them. If the word has mostances then a given
threshold, the web page is classified to one class and otbeetavihe other. An example
of such a tree stump is presented in Figure 5.5.

Before moving on to the results of using
AgreementBoost with the new Tree Stumps Figure 5.5: A Tree Stump
algorithm, note that it does indeed perform
better. This can be seen in Figure 5.4(b) and
Table 5.5, showing the results using 264 la-
beled examples. When boosted with AdaBoost,
the resulting tree stumps ensemble had a very
low training (39 x 102 average) and test 4‘21@
error (0.049 average). For comparison, the
Naive Bayes ensemble had an average train-
ing error of 0.055 and an average test error
of 0.099.

The full summary of experiments performed with the Tree Sisiralgorithm is
presented in Figure 5.4 and Tables 5.4 & 5.5. In all experimigimown, 526 examples
were used as unlabeled examples, allowing for up to 264ddi@iamples. To perform
a fair competition and to avoid over-fitting, the AdaBoostswan for only 300 itera-
tions’. As can be seen, AgreementBoost produces substantiathyr lotsissifiers. On
average, using the full 264 labeled example set, the treepstensemble produced by
AgreementBoost had 0.04 error on the test set. The naivesBagssifier performed
even better with a 0.038 test error. In comparison, the tregss ensemble constructed
by AdaBoost, which was better than the corresponding naayeB classifier, had a test
error of 0.049.

In terms of labeled examples reduction, AgreementBoostalsasproduced good
results. The final test error achieved by AdaBoost using tiieldbeled exampled
set (264 examples), was already achieved by AgreementBatasssifiers using 158
labeled examples, a reduction of 40%.

Figures 5.4(c),(d) and (e) give some insight into the athariand the construction
of the classifiers. Unlike AdaBoost, which reaches its finahing error within 100
iterations, AgreementBoost is slower to converge. Howeber agreement between
the classifiers results in a considerably lower trainingrefor the naive Bayes clas-
sifier. While the AdaBoost-run quickly gets stuck with amiag error of 0.055 , the
agreement with the tree stumps classifier ‘drags’ the naayeB well below that level.
In the AgreementBoost run, the naive Bayes classifier coasinio descend, leveling
out at around 1500 iterations with a training erroro6.3 x 10-3. Surprisingly, the
naive Bayes descends faster then the better tree stumpiielas

Since this apparent improvement seems to be the result @xting disagreement
term, it is interesting to see the dynamics between it andrdiring error. This can
be achieved by comparing Figure 5.4(c) and Figure 5.4(dhérbeginning of the run,
roughly corresponding to the period where AdaBoost reaith@sinimum training er-
ror, the two learning algorithms focus mainly on the reduttf training error: i.e.,
the labeled examples. As a result, there is an initial sharease in the average dis-
agreement between the two classifiers. After 91 iteratidissgreement is in its peak

o

3‘Early stopping’ is one of the first techniques suggest tadewer-fitting.
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Figure 5.6: Setting thg parameter Stumps
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average value of 43 x 103, while starting from the perfect agreement of the initial
O-classifiers. After this initial strive for correctnessetfocus shifts and both learners
pay a more equal attention to both labeled and unlabeled@esamrhe disagreement
slowly reduces while still improving the training error.

5.3 Agreeing is important, but how much?

5.3.1 Setting then parameter

The convergence proof presented in Chapter 4 ensures #ibagsumptions are met,
the resulting classifiers will fully agree (albeit in the ltjregardless of what value is
given to the parametey. However, this does not give any guarantee as to how fast that
will be achieved nor to what happens when the hypothesiespannot fully agree or
classify the data. Since the algorithm advances by itesigtiminimizing a weighted
sum of error and disagreement, one can expect that the wgiigdt to disagreement
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Table 5.6: Setting thg parameter

WebKb database, using Naive Bayes and Tree Stumps

ny =525
Labeled Naive Bayes Tree Stumps Disagreement
Examples | TestEr.| o TestErr| o Vigh®) | o
n=0.1xns/264
105 0.064 | £0.032|| 0.065 | +£0.027| 5.3e-3 | £7.5e-3
184 0.047 | £0.025|| 0.051 | +0.026| 4.6e-3 | £5.1e-3
264 0.046 | £0.019|| 0.046 | +0.012| 11.1e-3 | £1.9e-2
n =10xns/264
105 0.085 | £0.050|| 0.084 | +0.040| 1.7e-3 | +8.3e-4
184 0.074 | £0.034|| 0.085 | +0.029| 2.0e-3 | +7.1le-4
264 0.069 | £0.029| 0.080 | +0.025| 2.2e-3 | +4.8e-4
n =50xns/264
105 0.172 | £0.062|| 0.166 | +0.054| 3.4e-4 | £1.4e-4
184 0.191 | +£0.046| 0.184 | +0.048| 2.9e-4 | +1.5e-4
264 0.206 | £0.031|| 0.198 | +0.036| 2.3e-4 | £1.3e-4

Forn = 1x264/ns and AdaBoost statistics see Table 5.4

will have effects on the algorithm behavior.

A series of experiments aimed at studying these effectqrasented in Figure 5.6
and Table 5.6. The figures and table display the results tihget to different values,
both lower and higher then the one used so far. For comparﬁl:igure 5.6(b) shows
the results presented already in the previous section ferl x - a5 Settingn to the
lower value of 01 - >4 fesults in relatively good classifiers although the ressdtsm
less robust. The gap between the classifiers constructe(gmementBoost and the
ones of AdaBoost is not as stable as when ugirgl x 1 54"

Unlike lower values, setting to higher values resulted in inferior results. For
n = 10x 2”654 the AgreementBoost classifiers lie in between the classifievduced by
AdaBoost and for = 50 754 the AgreementBoost-classifiers are hardly better than
random guessing.

This behavior is caused by the iterative nature of AgreeBmosgt. At every iter-
ation, only one of the underlying learning algorithm is aléml to advance. At every
step only one classifier is changed while the others stayah®es As a result, mak-
ing disagreement very important restricts the step sigethat will be selected in step
2.a.ii. Using a lower value af allows the algorithm to make bigger steps and converge
faster. Therefore, for the high value pf= 50 the algorithm is effectively stuck.

For this reasom was set throughout the experiments to be proportional toetie

. When the rat| o is small, namely there are many unlabeled examples, the sum
|n the d|sagreement term consists of more monomials thaertioe term. Therefore,
if n is not changed accordingly and is left constant throughloeitexperiment, the
disagreement term would dominate (see equation 4.2). Asudtrén early experiments
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Figure 5.7: Effects of unlabeled examples, toy problem
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and using a constamt, the algorithm sometimes performed poorly . Settintp be
proportional to the raticﬂﬁ, compensates for this effect and reduces the importance of
the disagreement term accordingly.

5.3.2 The effects of the number of unlabeled examples.

The experiments presented in this section are designedtdhie effects of another
aspect of the disagreement term: the number of unlabeladm@ga 6,). Striving for
‘global’ agreement, the previous experiments were peréatosing relatively a lot of
unlabeled examples. However, it may very well be that onlgva(or fewer) unlabeled
examples are sufficient for good results.

Figure 5.7 and Table 5.7 display the results of using vanmumbers of unlabeled

Table 5.7: Effects of unlabeled examples, artificial toylppeon

2000¢ns

Displaying Alg. 1n=200,r =5,n = 1* £,

1000 boosting iterations

Labeled Examples
Unlabeled ns=75 ns= 125 ns=175
Examples || Test Err. o Test Err. o Test Err. o
0 0.180 | £0.036| 0.054 | +0.046 || 0.000 | +0.000
10 0.123 | £0.061| 0.055 | +0.032 || 4.6e-3 | +£9.8e-3
100 0.109 | £0.042| 0.018 | +£0.026 | 0.000 | +0.000
500 0.081 | £0.031| 2.9e-3 | £6.4e-3|| 0.000 | +0.000
1000 0.081 | £0.031| 2.9e-3 | +£6.4e-3|| 0.000 | £0.000
2000 0.074 | £0.038| 2.9e-3 | £7.1e-3|| 0.000 | +0.000
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Figure 5.8: WebKb database, using Naive Bayes and Tree Stump
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examples in the toy problem. In order to keep the magnitudbetlisagreement term
roughly constanty was set to22%35s. Due to the symmetry in the problem, only the
results of first classifier are presented.

The results suggest that using only relatively few unlatbeleamplesrf, = 10, for
ns > 125), distracts the algorithm and produces classifiersatepoorer than those
generated without any unlabeled examples. However, ugjrg 100 unlabeled ex-
amples already produces a classifier which is betternfor 500, there is hardly any
difference between the resulting classifiers.

Since the experiments on the toy problem suggest that oneisam relatively
small number of unlabeled examples, the WebKb experimestti@ 5.2.3) was re-
peated. This time, the algorithm was run using only 30% oftimbase as unlabeled
examples (instead of 50% in the original experiment). Stheesize of the database is
limited, this allowed testing the behavior of AgreementBloan a larger set of labeled
examples. The results are shown in Figure 5.8 and Table 5.8.

The performance of AgreementBoost in this experiment aseds good, if not
better, than the previous experiment. As before, AgreeBwat produces better clas-
sifiers than both ensembles constructed by AdaBoost. Usinghly 284 labeled ex-
amples and 315 unlabeled examples, AgreementBoost rethieederage error from
5% to 3.9%. For comparison, in the previous experiment,gi284 labeled examples
and 525 unlabeled examples the results were very simil@® #ersus 3.8%. However,
the AgreementBoost-ed naive Bayes achieves an almost rabgiecision already for
189 labeled examples, having an average training errorld8b4 From this point, the
AgreementBoost classifiers seem to have reached theirdimdido no improve signif-
icantly with the addition of labeled examples.

The best achieved average test error of AdaBoost (4.5%,eblydle stumps classi-
fier, using 379 labeled examples) is already achieved bygxgemtBoost's naive Bayes
using only~ 150 labeled examples and by the tree stumps classifier usgThis
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Table 5.8: WebKb database, using Naive Bayes and Tree Stumps

Using less unlabeled examplgs= 1« %‘ ,ny =315

Agreement Boost AdaBoost
Labeled Naive Bayes Disagreement Naive Bayes
Examples || Test Err. o V(g',¢?) o Test Err. o
94 0.058 | +0.019| 4.3e-4 | +£3.1e-4| 0.09 | +0.038
189 0.041 | +0.013| 5.7e-4 | +3.0e-4| 0.10 | +0.057
284 0.039 | +£0.011| 7.3e-4 | +2.9e-4| 0.067 | +0.043
379 0.040 | +0.013| 9.2e-4 | +3.5e-4| 0.073 | +0.034
475 0.038 | +£0.012| 9.9e-4 | +3.1e-4| 0.070 | +0.048
Agreement Boost AdaBoost
Labeled Tree Stumps Disagreement Tree Stumps
Examples || Test Err. o V(g',¢?) o Test Err. o
94 0.065 | +£0.019| 4.3e-4 | +£3.1e-4| 0.071 | +0.021
189 0.045 | +£0.013| 5.7e-4 | +£3.0e-4| 0.058 | +0.015
284 0.040 | +9.4e-3| 7.3e-4 | +2.9e-4| 0.050 | +0.011
379 0.041 | +£0.012| 9.2e-4 | +3.5e-4| 0.045 | +0.012
475 0.038 | +0.012| 9.9e-4 | +3.1e-4| 0.045 | +0.013

amounts to reduction of 50% for the tree stumps classifies tdbser of the two.

Another interesting point to notice is the switch in perfame between the two
classifiers. When boosted by AdaBoost, the relatively stmipge stumps classifier
outperforms the more power full naive Bayes algorithm. Hosvewhen using Agree-
mentBoost, their roles reverse: Naive Bayes performs thjighetter than the tree
stumps ensemble. Some hints for this behavior could alrbadseen in the previous
experiment (Figure 5.4(a)), but here it is much more prowcedn
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Chapter 6

Summary and Conclusions

In the first chapter of this thesis, we have formulated andentahcrete the potential
advantage in making several learning algorithms agreerderdgo ensure and validate
the learners agreement, an extra set of unlabelled exaisplssd along side the usual
labeled exampled of the supervised training model.

Drawing on the general intuition, a new generalization lwbwras derived where the
penalty relating to the hypothesis space complexity iscedulue the use of unlabelled
examples. As a complexity measure, we have used the Radenwachplexity due its
technical advantage. However, the same general schemeaged to improve other
generalization bounds that involve other complexity measuThe suggested scheme
will work as long as the complexity measure is monotonic wéhpect to inclusion.
However, we expect any proper complexity measure to hageptioperty.

Motivated by the theoretical framework, we have presentadva boosting algo-
rithm named AgreementBoost along with a proof of its conearg (in the limit). The
algorithm was applied to a test toy problem and a web-pagsitileation problem (as
defined by Mitchel and Blum [5]). In both problems, Agreeniast reduced the
number of labeled examples necessary in order to achiever@derror by up to 40%
(compared to AdaBoost).

While agreement successfully reduces the number of lakelathples, it is not
without a price. Increasing the importance assigned todhmkers’ agreement causes
a reduction in the algorithm’s convergence speed. SincedwgentBoost constructs its
ensembles iteratively, this results in larger and comriatly more expensive classi-
fiers. The exact trade-off between agreement weight andecgance speed is yet to
be established.

When designing AgreementBoost, we have opted for simplaitd thus avoided
using many of the possible improvements and modificatiomsynof which are non-
trivial and justify new research projects. We name a few:

1. Many of the improvements of AdaBoost suggested in theglitee can adapted
for AgreementBoost. Modifications like regularizatiomerfor the hypotheses
weights and soft margins will probability improve that afigom’s performance.

2. For simplicity, we have kept the agreement weigfit constant along the run.
However, we suspect that changing it during the algorittmas might lead to
superior results.

3. Following previous work, we have performed all experitsamsing only two
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underlying learners. However, the theoretical framewsr§juite more general,
allowing for an arbitrary number of underlying learners.rthar experimental
study involving more learners is required.

Acknowledgementl’'m utterly grateful to Leen Torenvliet, Peter Grunwald efr
Adriaans and Peter van Emde Boas for their time, commenthelpéul insights, lead-
ing to the final version of this work.
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