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Chapter 1

Introduction

Hybrid logic is the result of extending the basic modal language with a second sort
of atomic propositions called nominals, and with satisfaction operators. Precisely,
the nominals (denoted by i, j, ...) behave similar to ordinary proposition letters,
expect that nominals are true uniquely at a world. In other words, a nominal names
a state by being true there and nowhere else. An example of a formula involving
nominals is 33i → ¬3i. The language obtained by adding nominals to the basic
modal language, is called the minimal hybrid logic H. Satisfaction operators allow
one to express that a formula holds at the world named by nominal. A formula
of the form @iφ expresses that p holds at the world named by the nominal i. The
extension of the basic modal language with nominals and satisfaction operators is
called the basic hybrid language H(@).

In this thesis we introduce and study an extension of hybrid logic in which the
set of nominals may be endowed with an algebraic structure. In other words we
add modal operators only for nominals. The main motivation of the paper comes
from [4]: you can name states but you can not give them structure. In this paper
we consider an application of hybrid logics to relational structures on algebras,
thus a set with a relation and an algebraic structure. Roughly speaking we try to
give to nominals a structure, we study the case where this structure is an algebraic
structure. As far as we know, the possible algebraic structure of nominals has not
been studied in the context of hybrid logic before. We should note that in [11] there
is a complete list of papers which study Kripke frames in which the universe of
possible worlds has a specific algebraic structure, besides the traditional relational
component.

5



6 CHAPTER 1. INTRODUCTION

1.1 A guide to this thesis

The thesis consists of six chapters. A brief overview of each of these parts follows.
Chapter 2: This chapter begins with a review of the basics of two hybrid logics

H(@) and H(@,∀, ∃), their language and semantics. We define notions that will
be discussed further later in the thesis such as: truth preserving translations, the
process of skolemizing a first order formula and elementary notions of Universal
Algebra.

Chapter 3: We name a version of the basic Hybrid Logic (H(@)) and we call it
HLON (Hybrid Logic with Operators only for Nominals) henceforth. We set up
the syntax and we give the notions of Kripke model and validity to it. We give a
notion of bisimulation for this language. We provide a standard translation from
HLON to First Order Logic (FOL).

Chapter 4: We name a version of the strong hybrid language H(@,∀,∃) and
we call it HLOV(@, ∀,∃) (Hybrid Logic with Operators only for Variables). We
set up its language and semantics.

Chapter 5: In this chapter we introduce a natural method for eliminating exis-
tential quantifiers in the context of H(@, ∀,∃) and HLON . This method is quite
similar with the technique of skolemization in first order logic.

Chapter 6: We deal with tableau proof methods applied to HLON . We mo-
tivate this result with examples from [17] . Again the technique of skolemization
is central here. Note that an important reason for growing popularity of hybrid
languages is a general completeness result for logics axiomatized by pure formulas.
We will show that this is also the case for HLON .

Chapter 7 We relate our contribution with the following area: Equational
Logic. The main motivation for this section comes from [4].

Chapter 8 The thesis ends with a discussion of possible directions in which this
thesis can be extended.

Main Result: In this thesis we set up a new hybrid logicHLON which proposes
alternatives to the modal operators by having uninterpreted functions which fulfill
the role of existential quantifiers. Based on this, we show that one of the traditional
fragments of hybrid logic becomes equivalent to first order logic.



Chapter 2

Preliminaries

2.1 Introduction

Chapter 2: This chapter begins with a review of the basics of two hybrid logics
H(@) and H(@,∀,∃), their language and semantics. We define notions that will
be discussed further later in this thesis.

2.2 Basic Hybrid Logic

This section is a short introduction of hybrid logic based on [4]. Hybrid Logic
is the result of extending the basic modal language with a second sort of atomic
propositions called nominals and with satisfaction operators. The nominals are
predicates which are true uniquely at a world, and in that sense are predicates
naming worlds. Thus nominals’ interpretation in models is restricted to singleton
sets. Satisfaction operators allow one to express that a formula holds at the world
named by nominal. For instance, @ip expresses that p holds at the world named
by the nominal i.

Formally, let PROP= {p1, p2, · · ·} be a countably infinite set of proposition
letters and NOM= {i, i1, · · ·} be a countably infinite set of nominals. Let Φ =
PROP ∪ NOM. Note that elements of NOM are still propositional variables.

Definition 2.2.1. H(@) MODELS.
A model for the basic hybrid language is a Kripke model M = (W,R3, V ),

such that the valuation V assigns singleton subsets of W to nominals.

� W 6= 0, a set of possible worlds;

7



8 CHAPTER 2. PRELIMINARIES

� R3 is a binary relation over W ;

� V: Φ → Pow(W) and V is such that for all nominals i ∈ NOM, V(i) is
singleton of W .

Following standard terminology we call the pair (W,R3) the frame underlying
the model.

For any model M and world w in the domain of M, the model M, w is called
pointed model.

Definition 2.2.2. The Hybrid Language H(@) is language that is used for describ-
ing models and frames. Its formulas are given by the following recursive definition.

ϕ := i | p | ¬ϕ | ϕ → ψ | 3ϕ | @iϕ

where p ∈ PROP and i ∈ NOM .

Definition 2.2.3. Semantics for H(@)
Given such a hybrid model M, we interpret our language as follows:

M, w |= α iff w ∈ V (i), where i ∈ Φ
M, w |= ϕ → ψ iff M, w 6|= ϕ or M, w |= ψ
M, w |= ¬ϕ iff M, w 6|= ϕ
M, w |= 3ϕ iff there is a v ∈ W such that R3(w, v)and

M, v |= ϕ.
M, w |= @iϕ iff M, v |= ϕ where V (i) = {v}

Note that the truth definition for nominals is the same as for proposition letters.
The only difference is in the admissible valuations: only valuation functions are
allowed that assign to each nominal a singleton set.

We proceed with basic definitions.

Definition 2.2.4. If M, w |= φ then we say that φ is satisfied in M at w.

Definition 2.2.5. For any frame F , if φ is satisfied in every model (F , V ) at
every w in F no matter which (hybrid) valuation V we choose, then we say that φ
is valid on F . A formula is valid if it is valid on every frame. A formula is valid
on a class of frames F if it is valid on every frame in F.

Definition 2.2.6. A pure formula is a formula that contains no propositional
letters.
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Example 2.2.1. Many properties of frames can be defined using pure formulas.
For example, transitivity of R could be defined as follows:

@i(¦ ¦ j → ¦j)
That is, this formula is valid on every transitive frame and falsifiable on every

non-transitive frame.

Syntax and semantics of H(@) can be found in [4] which is available in [14].
Note also that orthodox modal languages do not let us refer to individual states,
worlds, times and situations. Hybrid languages solve this problem based on the no-
tion of nominals (more about the use of hybrid logics please look in [4]). Moreover,
enriching ordinary propositional modal logic with both nominals and satisfaction
operators does not raise the computational complexity:

Theorem 2.2.1. [23] The satisfiability problem for the basic hybrid language is
PSPACE-complete.

2.3 Hybrid Languages with Quantifiers H(@, ∀, ∃)

Let NOM be a countable set of nominals NOM= {i1, i2, ...}, let SVAR be a
countable set o state variables SVAR= {x1, x2...} and let PROP be a countable
set of propositional letters. We assume that these sets are pairwise disjoint. We
call SSYM= NOM ∪ SVAR the set of state symbols and Φ =PROP ∪ NOM
∪ SVAR.

Definition 2.3.1. H(@,∀,∃) MODELS.

A model M for H(@, ∀,∃) is M = (W,R3, V ) such that:

� W 6= 0, a set of possible worlds;

� R3 is a binary relation over W ;

� V: Φ → Pow(W) and V is such that for all nominals i ∈ NOM, V(i) is
singleton of W .

An assignment g for M is a mapping g : SVAR→M. Given an assignment
g, the notation g[x 7→ d] is the function that assigns d to x and differs from g at
most with regard to the value x.
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Let [V, g](α) = g(α) if α is a state variable and V(α) otherwise.

Definition 2.3.2. Formulas of the Hybrid Language H(@,∀,∃) are given by the
following recursive definition:

ϕ := > | s | p | ¬ϕ | ϕ → ψ | 3ϕ | @sφ | ∀xφ | ∃xφ

where p ∈ PROP, x ∈ SVAR, s ∈ SSYM.

Remark 2.3.1. All types of atomic symbol are formulas. Note that the difference
between nominals and state variables is: nominals can not be bound by ∀,∃, whereas
state variables can.

Definition 2.3.3. Semantics for H(@, ∀,∃)

Let a model M = (W,R3, V ) for H(@, ∀,∃) and an assignment g such that
as (the semantics follow the lines of H(@), so we just give a few clauses of the
definition here, leaving the remainder to the reader):

M, g, w |= α iff w ∈ [V, g](α), where a ∈ Φ
M, g, w |= @xϕ iff M, g, g(x) |= ϕ
M, g, w |= ∀xφ iff (M, g[x 7→ d]) |= φ where for all d ∈W

2.4 Tableau

In this section we provide basic definitions and theorems that we shall use later in
this thesis. Our main purpose is to define a notion of systematic tableau construc-
tion general enough to establish completeness for countable languages. More about
hybrid tableau reasoning please read [5]. We will now give the set of tableau rules
for the H(@). First the rules for the booleans and for the satisfaction operators:

@s¬ϕ
@sϕ

[¬]
¬@s¬ϕ

@sϕ
[¬¬]

@s(ϕ ∧ ψ)
@sϕ

[∧]
¬@s(ϕ ∧ ψ)

¬@sϕ | ¬@sψ
[¬∧]

@sψ

@s@tϕ
@tϕ

[@]
¬@s@tϕ
¬@tϕ

[¬@]
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In these rules s, t are nominals. Note that these rules use the resources available
in hybrid logic to mimic the Kripke satisfaction definition: They draw conclusions
from the input to each rule (the formula(s) above the horizontal line) to the output
(the formula(s) below the line). For instance, the ∧− says that if φ ∧ ψ is true at
s, then both φ and ψ are true at s. The rule ¬∧ is branch rule saying that if φ∧ψ
is false at s, then either φ or ψ is false at s.

In order to formulate modal theories of state equality and state succession the
following rules are needed (rewrite rules):

[s on branch]
@ss

[Ref]
@ts
@st

[Sym]
@st @tϕ

@sϕ
[Nom]

@s¦t @tt
′

@s¦t′ [Bridge]

By s on branch in the statement of Ref we simply mean that some formula
on the branch in question contains an occurrence of s.

Rules related to modalities ¦ and 2 are:

@s¦ϕ
@s¦τ [¦]

¬@s¦ϕ @s¦t
¬@tϕ

[¬¦]

@τϕ

@s2ϕ @s¦t
@tϕ

[2]
¬@s2ϕ
@s¦τ [¬2]

¬@τϕ

where τ is a new nominal. That is, @s3ϕ means that we can make a transition
by the relation R from s to some state and then at this R− successor state, ϕ is
true there. We can capture this idea by the 3− rule where we need to introduce
a new state by the label τ and to insist that ϕ is true at τ .

As with any tableau system, we prove formulas by systematically trying to
falsify them. Suppose we want to prove φ. We choose a nominal i that does not
occur in φ, prefix φ with ¬@iφ and start applying rules. In case that tableau
closes (that is, if every branch contains some formula and its negation), then φ
is proved. On the other hand, suppose we reach a stage where we have applied
the appropriate connective rule to every complex formula and no application of
the rewrite rules yields anything new. If the tableau we have constructed contains
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open branches , then φ is not valid and hence not provable. Note that the near
atomic satisfaction statements on the open branch specify a counter model.

Recall that every formula in a tableau is of the form @sφ or ¬@sφ and that such
formulas are called satisfaction statements. Suppose that Σ is a set of satisfaction
statements, and that R is one of our tableau rules. Then:

� If R is not a branching rule, and R takes a single formula as input, and Σ+

is the set obtained by adding to Σ all the formulas (there are two) yielded
by applying R to σ1 ∈ Σ then we say that Σ+ is a result of expanding Σ by
R.

� If R is a binary rule, then Σ+ is the set obtained by adding to Σ the formula
yielded by applying R.

� If R is a branching rule and Σ+ is a set obtained by adding to Σ the formula
yielded by one of the two possible outcomes of applying R to σ1 ∈ Σ, then
we say that Σ+ is a result of expanding Σ by R.

� If a nominal s belongs to some formula in Σ, then Σ ∪ {@ss} is a result of
expanding Σ by Ref .

Definition 2.4.1. (Consistency and provability) A branch of a tableau is
closed iff it contains some satisfaction statement and its negation, and a branch
which is not closed is open. A tableau is closed iff all its branches are closed. A
formula φ is provable iff there is a closed tableau whose root node is ¬@jφ (i, can
be any nominal not occurring in φ) and φ is consistent iff ¬φ is not provable. A
set of formulas Σ is consistent iff for any finite subset Σf of Σ, the conjunction of
all the formulas in Σf is consistent.

Definition 2.4.2. (Satisfied by label) Suppose that Σ is a set of satisfaction
statements and that M = (W,R,V) is a standard model of H(@). We say that Σ
is satisfied by label in M iff for all formulas in Σ:

� If @sφ ∈ Σ, then M, w |= φ and

� If ¬@sφ ∈ Σ then M, w 6|= φ.

Note that w is the denotation of s under V. We say that Σ is satisfiable by label
iff there is a standard model in which it is satisfied by label.

Lemma 2.4.1. (Soundness) Suppose Σ is a set of satisfaction statements that
is satisfiable by label. Then, for any R, at least one of the sets obtainable by
expanding Σ by R is satisfiable by label.
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Proof. The only non-trivial case are when R is an existential rule. But even this
is straightforward.

Remark 2.4.1. If the formula @sφ at the root of the tree is satisfiable, then
trivially it is satisfiable by label. But the preceding lemma ensures that all formulas
on at least one branch of the tableau will be satisfiable by label too.

Remark 2.4.2. The systematic tableau construction is defined in [5]. Roughly
speaking, this construction is needed in order to prove strong completeness.

Theorem 2.4.1. ([5]) Any consistent set of formulas in countable language is
satisfiable in a countable standard model.

The following theorem is the most celebrated result in hybrid languages.
Roughly speaking, once a base system has been defined, it is easy to extend it
to a complete system for many important classes of frames by adding pure formu-
las as axioms.

Theorem 2.4.2. ([5]) Let A be a finite collection of @− prefixed formulas. Let
TA be the tableau system given above extended with the following rule: at any stage
in the tableau, we are free to choose a formula from A, instantiate it with nominals
occurring on some branch B, and then add the result to the end of branch B. Then
TA is complete with respect to the class of frames defined by

∧
φ∈A φ

2.5 Translation

In this section we will answer the question: what does it mean for a logic to be
equivalent or translatable into another one?

The answer comes from the following definition:

Definition 2.5.1. We say that a language L1 is as expressive as a language L2

with respect to a class K of models for L1 and L2 if there is a translation ·\:
L2 → L1 such that, for every B ∈ K, point w in B, and formula φ ∈ L2:

B, w |= φ iff B, w |= φ\

we say that L1 and L2 are equally expressible, if L1 is as expressive as L2 and
L2 is as expressive as L1.

Note that L2 can be translated into L1 in such way that a sentence of L2 is true
in one model iff the translation of this sentence is true in the same model viewed
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as a L1 model. As a consequence the model are the same mathematically, but the
languages that are interpreted in them are not the same. That is, the satisfiability
problem for L1 in K is decidable iff the satisfiability problem in K is decidable for
L2. The same holds for the finite model property.

2.6 Frame Definability

In this section we would like to summarize some important results of Hybrid logics
hoping to be easier for the reader to follow the structure of this thesis.

We start, defining the notion of modally definable frame class. Given a set
of modal formulas Σ, the frame class defined by Σ is the class of all frames on
which each formula in Σ is valid. A frame class is modally definable if there
is a set of modal formulas that defines it. A frame class is elementary if it is
defined by a sentence of the first order correspondence language Lfr which is
the first order language with equality and binary relation for each modality. We
will continue discussing a number of results concerning the relationship between
modally definable frame classes and elementary frame classes in the context of
hybrid logics.

First of all we should mention that there are some frame properties not definable
by pure axioms.

Example 2.6.1. An example is the class of Church-Rosser frames:

∀wvu ∃t(wRv ∧ wRu → uRt ∧ uRt)

That is, there is no way to get a handle on the convergence node t, in the above
first order definition.

The fact that a frame property is not definable by a pure axiom does not mean
that there isn’t a formula (containing propositional letters) of the basic hybrid
logic defining this particular class of frames.

Example 2.6.2. Right directed frames satisfy the property:

∀vu∃t(vRt ∧ uRt)

The formula: @i2p → @j¦p defines the class of right directed frames in the
context of Hybrid Logic. But since this formula is not a pure one, we can not apply
the completeness result (of [5])related to pure formulas .
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From [4], [9] we know that the hybrid languages with ∀ and ∃ (H(@, ∀,∃)) can
express any first order sentence. That is, using the following translation HT (·),
we map any first order representation to formulas of H(@, ∀,∃) ([4]):

HT (>) = > (2.1)

HT (P (x)) = p (2.2)

HT (x = y) = @xy (2.3)

HT (xRy) = @x¦y (2.4)

HT (¬ϕ) = ¬HT (ϕ) (2.5)

HT (ϕ ∧ ψ) = HT (ϕ) ∧HT (ψ) (2.6)

HT (∃vφ) = ∃vHT (φ) (2.7)

HT (∀vφ) = ∀vHT (φ) (2.8)

Proposition 2.6.1. Let φ be a first order formula. Then for every model M and
any assignment g, M |= φ[g] iff M, g |= HT (φ).

Proof. On page 45 of [9], proposition 3.7.

Example 2.6.3. Using the translation above, the right directness can be defined
by a natural sentence of the strong hybrid language, namely:

∀xy∃z(@x¦z ∧@y¦z)

Example 2.6.4. We know that the following pure formula defines transi-
tivity: @i(¦ ¦ j → ¦j). The same property can be re-expressed as follows:
∀x∀y@x(¦ ¦ y → ¦y).

That is, we can substitute nominals with variables taking the universal closure.
But also we can have the other way around: the state variables x and y are
arbitrary variables of our model, so the universal quantification is implicit. That
is, we can substitute state variables with nominals. We summarize this result
defining first the PUNF-sentences.

Definition 2.6.1. Call a sentence of H(@, ∀,∃) of the form ∀x1...xnφ, where
φ does not contain any quantifiers, propositional letters or nominals a PUNF-
sentence (Pure, Universal, Nominal free sentence).

Proposition 2.6.2. 1. For any pure formula φ of the basic hybrid language
there is a PUNF-sentece φ∀ of the strong hybrid language such that for any
frame F , φ is valid on F iff φ∀ is true on F .
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2. For any PUNF-sentence φ of the strong hybrid language there is a pure for-
mula φB of the basic hybrid language such that for any frame F , φ is true in
F iff φB is valid on F .

Proof. 1. Suppose we are given a pure formula φ(i1, ..., in), where φ(i1, ..., in),
where i1, ..., in are all the nominals in φ, then the required φ∀ is ∀x1...xnφ

2. Any PUNF-sentence φ of the strong hybrid language must have the form
∀x1...xnφ(x1, ..., xn) where φ contains no quantifiers, proposition letters or
nominals. Therefore, the required φB is φ([i1 ← x1, ..., in ← xn]).

That is, the last proposition tell us that the frame classes expressible by pure
axioms are simply the frame classes definable by PUNF-sentences.

To sum up, in this section we mentioned that the strong hybrid languages are
quite expressible. In particular they can express any first order representation. We
studied also the relation between PUNF-sentences and pure axioms. But PUNF-
sentences corresponds to the universal fragment of the strong hybrid languages.
Therefore the following question might arise:

Can we find an extension of the basic hybrid language that can define any first
order frame property?

This thesis deals with this question.

2.7 Elements of Universal Algebra

In this section we review some basic (universal) algebraic notions. Of primary
importance is the concept of an algebra. Also we will discuss the notions of iso-
morphism and congruence. What follows is a short textbook-style presentation of
algebra, following [26].

Roughly speaking an algebra is a set of together with a collection of functions
over the set. These functions are usually called operations.

Definition 2.7.1. (Similarity Type)
An algebraic similarity type is an ordered pair F = (F, ρ) where F is a non empty
set and ρ is a function F → N. Elements of F are called function symbols; the
function ρ assigns to each operator f ∈ F a finite arity or rank, indicating the
number of arguments that f can be applied to. Function symbols of rank zero are
called constants. We will usually be sloppy in our notation and terminology and
write f ∈ F instead of f ∈ F .
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Definition 2.7.2. (Algebras)
Let A be some set and n a natural number; an n-ary operation on A is a function
from An → A. Let F be an algebraic similarity type. An algebra of type F is a
pair U = (A, I) where A is a non empty set called the carrier of the algebra and I
is an interpretation, a function assigning, for every n, an n− ary operation fU on
A to each function symbol f of rank n. We often use the notation U = (A, fU)f∈F

for such an algebra.

It is a quite curious fact that the algebras that have been studied in conventional
modern algebra do not have fundamental operations of arity greater than two.
We proceed with various of examples of algebras. In particular we would like to
point out the role of recent directions in logic aimed at providing algebraic models
for certain logical systems. The reader will notice that all of the different kinds
of algebras listed below are distinguished from each other by their fundamental
operations and the fact they satisfy certain identities.

Example 2.7.1. Groups. A group G is an algebra < G, ·,−1 , 1 > with a binary,
a unary and nullary operation in which the following identities are true:

G1 x · 1 = 1 · x = x
G2 x · x−1 = x−1 · x = 1
G3 (x · y) · z = x · (y · z)

A group G is Abelian (or cummutative) if the following identity is true:

G4 x · y = y · x
Groups were one of the earliest concepts studied in algebra.

Remark 2.7.1. The definition given above is not the one which appears in stan-
dard texts on groups; for they use only one binary operation and axioms involving
existential quantifiers. We will discuss this in more detail on chapter 3.

Groups are generalized to semigroups and monoids in one direction, and to
quasigroups and loops in another direction.

Example 2.7.2. (Semigroups and Monoids) A semigroup is a groupoid <
G, · > in which (G1) is true. It is commutative or Abelian if (G4) holds. A
monoid is an algebra < M, ·, 1 > with a binary and a nullary operation satisfying
(G1) and (G2).
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Example 2.7.3. A quasigroup is an algebra < Q, /, ·, \ > with three binary oper-
ations satisfying the following identities:

Q1 x\(x · y); (x · y)/x = x
Q2 x · (x\y) = y; (xy) · y = x

A loop is a quasigroup with identity, i.e. an algebra < Q, /, ·, \, 1 > which
satisfies (Q1) Q2 and G2.

Example 2.7.4. (Rings) A ring is an algebra < R, +, ·,−, 0 > where + and ·
are binary, − is unary and 0 is nularry, satisfying the following conditions:

R1 < R, +, ·,−, 0 > is an Abelian group
R2 < R, · > is a semigroup
R3 x · (y + z) = x · y + x · z

(x + y) · z = x · z + y · z
A ring with identity is an algebra < R, +, ·,−, 0, 1 > such that R1−R3 and G2

hold.

Definition 2.7.3. (Isomorphism) Let A and B be two algebras of the same type
F . Then a function α : A → B is an isomorphism from A to B if α is one to one
and onto, and for every n-ary f ∈ F for (α1, ..., αn) ∈ A, we have:

γfA(α1, ..., αn) = fB(γα1, ..., γαn)

We say A is isomorphic to B, written A ∼= B, if there is an isomorphism from
A to B. If γ is an isomorphism from A and to B we may simply say γ : A → B
is an isomorphism. Usually we do not distinguish isomorphic algebras. Thus,
isomorphic algebras can be regarded as equal or the same.

There are several important methods of constructing new algebras from given
ones. Three of the most fundamental are the formation of subalgebras, homomor-
phic images and direct products. But we will not cover these issues here. Another
important definition is the following one:

Definition 2.7.4. (Congruences) Let U be an algebra for the similarity type
F . An equivalence relation ∼ on A (that is, a reflexive, symmetric and transitive
relation) is a congruence if it satisfies, for all f ∈ F

if a1 ∼ b1 and · · · and an ∼ bn then fU(a1, ..., an) ∼ fU(b1, ..., bn)

where n is the rank of f .
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The importance of congruences is that they are precisely the kind of equivalence
relations that allow a natural algebraic structure to be defined on the collection of
equivalence classes.

2.8 Skolemization

Skolem, following the work of Lowenheim (1915), introduced a technique to convert
a first order sentence φ into a sentence φ

′
in prenex form, with only universal

quantifiers such that: φ is satisfiable iff φ
′
is satisfiable.

Roughly speaking, dealing with universal quantified sentences are apparently
easier to understand. Note that we will discuss the same topic in the context
of Equational Logic in chapter 7. Skolemization allows us to say that the first
order language L with universal, existential quantifiers, relation symbols, function
symbols and equality = is equivalent expressible with the first order language L∀
(the universal fragment of L. In order to do that we use the notion of skolem
functions. Please treat this section as a repository of basic definitions for later
use.

Definition 2.8.1. A formula is on Prenex normal formula (PNF) if it has the
form

Q1x1 Q2x2 · · · Qnxn φ

where Qi ∈ {∀,∃} are quantifiers and φ is quantifier free.

Theorem 2.8.1. Every predicate logic formula of L is equivalent to a formula in
prenex form.

Briefly, to obtain a prenex form of a formula one can proceed in two steps
(more in [25]):

� Rename bound variables, so that no variable occurs both bound and free and
no two quantifiers bind the same variable.

� Use the quantifier equivalences to move quantifiers out of the scope of propo-
sitional connectives.

Definition 2.8.2. A first order formula φ is universal if it is in PNF and all
quantifiers are universal. That is, φ is of the form ∀x1, ..., xn G(x1, ..., xn), where
G is quantifier-free. G is called the matrix of φ.

We will use the following notation:
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� x = x1 · · · xn.

� Let A to be a model for the first order logic L.

� Let A∀ to be a model of the first order logic L∀ (the universal fragment of
L). In our case the model A∀ is an expansion of the model A as the lemma
2.8.1 states.

Lemma 2.8.1. � Given the sentence ∃yG(y), augment the language with a
new constant c and form the sentence G(c). Then

A |= ∃yG(y) iff A∀ |= G(c)

� Given the sentence φ = ∀x1 · · · ∀xn∃yG(x, y), we augment the language L
with a new n− ary function symbol f and form the sentence of L∀ : φS =
∀x1 · · · ∀xnG(x, f(x)). Then:

A |= φ iff A∀ |= φS

Proof. The proof of this lemma is quite well known. We prefer the approach of
[25].

In each step we expand the model A of L to the model A∀ of L∀ by adding the
appropriately designated element for the constant, or by adding an appropriate
function f .

Also the other way around, we can take the model A∀ and to remove the
interpretation of the constant, respectively function symbol and get the model
A.

Remark 2.8.1. We should also mention the approach of [29]. In [29] there is a
proof of the lemma 2.7.1 (pages 274-276), using terms of second order logic.

Definition 2.8.3. Consider a PNF-formula φ = Q1x1 · · ·Qnxnψ(x1, ..., xn). For
each existential quantifier Qi = ∃, remove ∃xi and replace xi by fi(xj1 , · · · , xjm)
where fi is a new m−ary function symbol and xj1 , · · · , xjm are universally quantified
variables to the left Qixi. The resulting formula φS is called the skolemization
of ϕ and the new function symbols are called Skolem function symbols. This
process of converting a sentence to such a universal sentence is called skolemizing.

Example 2.8.1. (Right Directness)

φ = ∀vu∃t(R(u, t) ∧R(u, t)) (2.9)

7→ ∀vu(R(u, f(u, v)) ∧R(u, f(u, v))) f new function symbol (2.10)

= φS (2.11)
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Theorem 2.8.2. Given a first order formula φ there is an effective procedure for
finding a universal sentence φ

′
(usually in an extended language) such that:

A |= φ iff A∀ |= φ
′

Furthermore, we can choose φ
′
such that every model of φ can be expanded to

a model of φ
′
and every model φ

′
can be reducted to model of φ.

Proof. First we put φ in prenex form. Then we just apply the lemma 2 repeatedly
until there are no existential quantifiers.

The next lemma gives the relation of a formula and its skolemization.

Lemma 2.8.2. Let φ be a closed prenex L− formula. Let φS be its skolemization
and f1, ..., fm the introduced Skolem function symbols. Then for every L− structure
A there is an L′ = L ∪ {f1, ..., fm}− structure B expanding A so that:

B |= φ ↔ φS

Proof. The proof goes by successively applying the procedure described above to
the out most existential quantifier, and then noting that an equivalence holds in a
structure if it already holds in a restriction. We use again the above example and
for some f (which we do not know much about):

(A; f) |= ∀vu ∃t(R(u, t) ∧R(u, t)) ↔ ∀vu(R(u, f(u, v)) ∧R(u, f(u, v)))(2.12)

Remark 2.8.2. Note that the lemma above only states that for a given structure
A and a given formula φ there is some expanded structure B in which the formula
is equivalent to its Skolemization: B |= φ ↔ φS. This equivalence need not hold in
every expansion of A.

Now we extend these ideas to sets of sentences.

Theorem 2.8.3. Given a set of first order sentences S, there is a set S ′ of uni-
versal sentences (usually in an extended language) such that:

A |= S iff A′ |= S ′

Furthermore, every model of S can be expanded to a model of S ′ and every
model of S ′ can be reducted to a model of S.
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Proof. We skolemize each sentence in S as before, making sure that distinct sen-
tences do not have any common skolem constants of functions.

Example 2.8.2. An axiom of abelian groups is:

∀x∃y (x + y = 0)

by skolemization we have:

∀x(x + f(x) = 0)

where f is unary.

2.9 Notation

Before proceeding any further we summarize the notation of logics that we will
use later in this thesis.

� H: Nominal hybrid logic.

� H(@) : Basic Hybrid logic. H plus satisfaction operators.

� H(@,∀, ∃): Strong Hybrid Logic. That is, H(@) plus a second sort of nomi-
nals that can be bind from the quantifiers ∀,∃.

� HLON : Hybrid Logic with Operations on Nominals. Extension of H(@)
with operators only for nominals. Please note for further use that HLON
is a language with infinite number of functional symbols of all finite arities.

� HLOV(@,∀,∃): Hybrid Logic with Operations on Variables. An extension
of H(@, ∀,∃) with operators only for state variables. Please note for further
use that HLOV(@,∀,∃) is a language with infinite number of functional
symbols of all finite arities.

� L: the first order language with universal, existential quantifiers, relation
symbols, function symbols and equality =.

� L∀: The universal fragment of L.

� ∀ −HLOV : The universal fragment of HLOV(@, ∀,∃).



Chapter 3

Extended Language

3.1 Introduction

Chapter 3: We name a version of the basic Hybrid Logic (H(@)) and we call it
HLON (Hybrid Logic with Operators only for Nominals) henceforth. We set up
the syntax and we give the notions of Kripke model and validity to it. We give a
bisimulation of models for this language providing also that validity is invariant
under bisimulation. We provide a standard translation from HLON to first order
logic. Roughly speaking, in HLON besides the traditional relational component,
the universe of possible worlds has a specific algebraic structure.

3.2 HLON
We are ready now to start our formal work on Hybrid Logics. First some basic
definitions:

Definition 3.2.1. An algebraic similarity type is an ordered pair is σ = (A, ρ)
where A is a non empty set and ρ is a function A → N . Elements of A are
called functions symbols; the function ρ assigns to each operator f ∈ A a finite
arity (rank), indicating the number of arguments that f can be applied to. Function
symbols of rank zero are called constants.

Let ANOM be a countable set of atomic nominals: ANOM= {i, i1, · · ·}. Let
σ an algebraic similarity type.

Definition 3.2.2. An algebraic language of nominals (σ, ANOM) is built up
using an algebraic similarity type (A, ρ) and a set of atomic nominals ANOM.

23
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The NOM=FORM(σ, ANOM) of nominals formulas over σ and ANOM is
given by the rule:

α := i | f(α1, · · · , αρ(f)
)

Note that CNOM = NOM \ ANOM, is the set of non atomic nominals; we
call them complex nominals henceforth. Let PROP= {p1, p2, · · ·} a countable set
of propositional variables. Let Φ = PROP ∪NOM. Note that elements of NOM
are still propositional variables.

Definition 3.2.3. HLON MODELS.

A model M for HLON is M = (W,R3, (F f )f∈σ, V ) such that:

� W 6= 0, a set of possible worlds;

� R3 is binary relation over W .

� for each n ≥ 0 and for all f ∈ σ, if f is an n−ary function symbol then F f

is an n− ary operation symbol of W . Note that F f : W n → W ;

� V: Φ → Pow(W) and V is such that for all nominals α ∈ NOM, V(α) is
singleton of W . In more detail:

– If α ∈ NOM then: V(α)=w.

– If α ∈ CNOM then: V(f(α1, ..., αn)) = F f (V (α1), ..., V (αn)).

We call the elements of M states or worlds, R3 accessibility relations, F f

operation symbols of W and V the valuation. We call the triple (W,R3, (F f )f∈σ)
the algebraic frame underlying the model.

Definition 3.2.4. The Hybrid Language HLON is a language that is used for
describing models and frames. Its formulas are given by the following recursive
definition.

ϕ := α | p | ¬ϕ | ϕ → ψ | 3ϕ | @αϕ

where α ∈ NOM.

Note that all types of atomic symbols (propositional variables and nominals)
are formulas. Furthermore a formula is pure if it is contains no propositional
variables and nominal free if it contains no nominals.
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Definition 3.2.5. Semantics for HLON

Let a model M = (W,R3, (F f )f∈σ, V ) for HLON and a valuation V which
assigns an element of the domain to every nominal.

M, w |= i iff w ∈ V (i), where i ∈ ANOM
M, w |= f(α1, · · · , αn) iff for some v1, · · · , vn ∈ Wwith F f (v1, ..., vn) = w

we have for each l,M, vl |= αl.
M, w |= p iff w ∈ V (p), where p ∈ PROP
M, w |= @αϕ iff M, v |= ϕ where V (α) = {v}
M, w |= ϕ → ψ iff M, w 6|= ϕ or M, w |= ψ
M, w |= ¬ϕ iff M, w 6|= ϕ
M, w |= 3φ iff if there is a v ∈ W such that R3(w, v) and M, v |= ϕ.

(M, w) is called point model. This is a model with designated world, called its
point, which is taken to be the actual world.

For simplicity we limit the language to one binary relation R3 and to one
binary function F . In other words our hybrid model is: M = (W,R3, F f , V ) or
better M = (W,R, F, V ) .

3.3 Bisimulation and Elementary Equivalence

Bisimulation is a useful notion in modal logic. Bisimulation is a relation between
two models in which related states have identical atomic information and matching
transition possibilities. Roughly speaking the notion of bisimulation defines an
equivalence relation between models. In the case of HLON models the notion of
identical atomic information means satisfying the same sentences. A well known
result in modal logic is that if two pointed models are bisimilar, then they satisfy
the same sentences (see in [6]). In this section we show that such a result holds
for HLON as well.

Definition 3.3.1. Bisimulations for HLON

Let two HLON models M = (W,R, F, V ) and M′
= (W

′
, R

′
, F

′
, V

′
). be

given. A non empty binary relation ∼ is a bisimulation when the following holds:

� (prop) if w ∼ w
′
then w ∈ V (p) iff w

′ ∈ V
′
(p), for all p ∈ ANOM∪PROP .
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� (fun-forth) if w ∼ w
′
and there are u1, u2 ∈ W such that F (u1, u2) = w,

then there are v1, v2 ∈ W
′
such that for all l, ul ∼ vl and F

′
(v1, v2) = w

′
.

� (fun-back) A similar condition from M′
to M.

� (forth) if w ∼ w
′

and Rwv, then there is v
′ ∈ W

′
such that R

′
w
′
v
′

and
v ∼ v

′
.

� (back) A similar condition from M′
to M.

� (@): if w ∈ V (α) and w
′ ∈ V (α) for some α ∈ NOM , then w ∼ w

′
.

Since @ is self dual we can collapse the back and forth clauses for this operator
into one. Prop, forth and back are the usual conditions for bisimulation. We
added fun-forth and fun-back in order to deal with functional sentences.

If there is a bisimulation between M and M′
linking w and w

′
then we write

M, w ↔M′
, w

′
.

Theorem 3.3.1. For all models (M, w) and (M′
, w

′
) and for all sentences φ, if

(M, w) ↔ (M′
, w

′
) then M, w |= φ iff M′

, w
′ |= φ.

Proof. By induction φ. Suppose M, w |= φ ↔M′
, w

′ |= φ.

� The case where ϕ ∈ PROP ∪ ANOM follows from clause (prop).

� For formulas ϕ ∈ CNOM we want to show that M, w |= f(α1, α2) iff
M′

, w
′ |= f(α1, α2). Suppose M, w |= f(α1, α2). This means that are worlds

x, y ∈ W with M, x |= α1 and M, y |= α2. Note that F (x, y) = w. Using
the definition of bisimulation we know that there are worlds x

′
, y

′ ∈ W
′
such

that M, x
′ |= α1, M, y

′ |= α2, x ∼ x
′

and y ∼ y
′
. We also know that

F
′
(x

′
, y

′
) = w

′
, thus M′

, w
′ |= f(α1, α2) . For the converse direction use the

clause (fun-back).

� As for formulas ¦ϕ, we have M, w |= ¦ϕ iff there exists a u in M such that
Rwu and M, u |= ϕ. As w,w

′
are bisimilar by clause (forth) we know that

there is a world u
′ ∈ M′

such that R
′
w′u′ and u ∼ u

′
. By the induction

hypothesis, M′
, u

′ |= ϕ, hence M′
, w

′ |= ¦ϕ

� For the converse direction use the clause (back).
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3.4 Undefinable Properties

In this section we will show that some class of frames is not closed under bisimu-
lation images.

Example 3.4.1. A nice example of how to use the bisimulation to show that some
first-order property cannot be expressed in our language is the following property:
there are two different successors of the current world, defined by the first order
formula:

φ = ∃x∃y(zRx ∧ zRy ∧ ¬x = y)

Consider two frames F1 and F2. These two frames are bisimilar over relation
symbol R and function symbol f , where f is one identity function: ∀xf(x) = x.
To see this, define the following relation Z = {(w, u), (v1, u1), (v2, u1)}.

F1 :

w
R−−−→ v1

R

y
v2

F2 :

u
R−−−→ u1

However F1 satisfies the property φ, whereas F2 does not.

Conclusion: Summarizing, our aim in this section was to develop hybrid logic,
incorporating algebraic structure of nominals into it.
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Chapter 4

HLOV(@,∀,∃)

4.1 Introduction

Chapter 4: We name a version of the strong hybrid language H(@,∀, ∃) and we
call it HLOV(@,∀,∃) (Hybrid Logic with Operators only for Variables). We set
up its language and semantics.

4.2 HLOV(@, ∀, ∃)

Let NOM be a countable set of nominals NOM= {i1, i2, ...}, let SVAR be a
countable set o state variables SVAR= {x1, x2...} and let PROP be a countable
set of propositional letters. We assume that these sets are pairwise disjoint. Let σ
an algebraic similarity type (see definition 2.1.1) and R3 an accessibility relation
symbol.

Definition 4.2.1. An algebraic language of variables (σ, SVAR) is built up us-
ing an algebraic similarity type (A, σ), and a set of state variables SVAR. The
VAR=FORM(σ, SVAR) of variables formulas over σ and SVAR is given by the
rule:

s := x | f(s1, · · · , sρ(f)
)

Remark 4.2.1. All types of atomic symbol are formulas. Note that the difference
between nominals and state variables is: nominals can not be bound by ∀,∃, whereas
state variables can.

29
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HLOV(@, ∀,∃) is a natural extension of the strong hybrid language H(@,∀,∃).
We call SSYM= NOM ∪ VAR the set of state symbols. ASTATES= NOM
∪ SVAR the set of atomic states and let Φ =PROP ∪ NOM ∪ VAR.

Definition 4.2.2. HLOV MODELS.

A model M for HLOV is M = (W,R3, (F f )f∈σ, V ) such that:

� W 6= 0, a set of possible worlds;

� R3 is binary relation over W ;

� for each n ≥ 0 and for all f ∈ σ, if f is an n−ary function symbol then F f

is an n− ary operation symbol of W . Note that F f : W n → W ;

� V: Φ → Pow(W) and V is such that for all nominals i ∈ NOM, V(i) is
singleton of W .

An assignment g for M is a mapping g : SVAR→M. Given an assignment
g, the notation g[x 7→ d] is the function that assigns d to x and differs from g at
most with regard to the value x.

Let [V, g](s) = g(s) if s is a state variable and V(s) otherwise. In more detail:

� If s ∈ ASTATES then: [V, g](s) = g(s)

� If s ∈ VAR \ ASTATES then: [V, g](f(s1, ..., sn) = F f (g(s1), ..., g(sn))

Definition 4.2.3. The Hybrid Language HLOV(@, ∀,∃) is a language that is used
for describing models and frames. Its formulas are given by the following recursive
definition.

ϕ := > | s | p | ¬ϕ | ϕ → ψ | 3ϕ | @sϕ | ∀xφ | ∃xφ

where s ∈ SSYM and x ∈ VAR.

Definition 4.2.4. Semantics for HLOV(@,∀, ∃)

Let a model M = (W,R3, (F f )f∈σ, V ) for HLOV and an assignment g such
that as (the semantics follow the lines of H(@,∀, ∃), so we just give a few clauses
of the definition here, leaving the remainder to the reader):

M, g, w |= α iff w ∈ [V, g](α), where α ∈ Φ
M, g, w |= @sϕ iff M, g, g(s) |= ϕ
M, g, w |= ∀xφ iff (M, g[x 7→ d]) |= φ where for all d ∈W
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4.3 HLON and ∀ −HLOV
In this section we will show how to move from the universal fragment of
HLOV(@,∀,∃) to HLON . For this reason we should modify the definition of
PUNF-sentences. By the notation ∀ −HLOV we mean the universal fragment of
HLOV(@,∀,∃).
Definition 4.3.1. Call a sentence of HLOV(@,∀,∃) of the form
∀x1...xnφ(γ1, ..., γk), where φ does not contain any quantifiers, propositional
letters or nominals a PUNF-sentence (Pure, Universal, Nominal free sentence).
Note that x1, ..., xn and γ1, ..., γk are the state variables and the function symbols
over variables occurring in φ. (PUNF-sentences are actually ∀−HLOV sentences)

Example 4.3.1. An ∀ −HLOV sentence:

∀x 33f(x) → 3f(x)

Proposition 4.3.1. 1. For any pure formula φ of HLON there is a PUNF-
sentence φ∀ of HLOV(@, ∀,∃) such that for any frame F , φ is valid on F
iff φ∀ is true on F .

2. For any PUNF-sentence φ of HLOV(@, ∀,∃) there is a pure formula φB of
HLON such that for any frame F , φ is true in F iff φB is valid on F .

Proof. 1. Suppose we are given a pure formula φ(i1, ..., in, f1, ..., fk), where
i1, ..., in are all the nominals and the function symbols over nominals in φ,
then the required φ∀ is ∀x1...xnφ(γ1, ..., γk)

2. Any PUNF-sentence φ of HLOV(@, ∀,∃) must have the form
∀x1...xnφ(γ1, ..., γk) where φ contains no quantifiers, proposition letters or
nominals. Therefore, the required φB is φ([i1 ← x1, ..., in ← xn, f1, ..., fk]).

Remark 4.3.1. This time, we substitute nominals with variables and function
symbols over nominals with functions symbols over variables taking the universal
closure. And of course the other way around.

Conclusion: In this section we introduced an extension of the strong hybrid
logic which will play an important role in the next section. We should be clear
that HLOV(@,∀,∃) is one language with infinite number of functional symbols of
all finite arities. Also the following problem remains: How we can move from the
universal fragment of the strong hybrid logic, to the universal existential fragment?
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Chapter 5

Skolem Functions

5.1 Introduction

Chapter 3: In this chapter we introduce a natural method for eliminating existential
quantifiers in the context of H(@,∀,∃) and HLON .

5.2 Skolemization in Hybrid Logic

In this section we will show that is possible to convert first order formulas to
∀−HLON formulas and this transformation preserves satisfiability. The steps of
this transformation should be clear from the beginning:

We write any first order sentence of L in a prenex form, let φ be such a formula.
Then we use the truth preserving translation HT (·) of [4], [9]. That is, we shift
from the formula φ to the formula HT (φ) of H(@, ∀,∃). We skolemize the formula
HT (φ) obtaining the sentence φ∀ of ∀ −HLON . Recall that HLOV(@, ∀,∃) is a
language with infinitely function symbols. But let us be more precise:

Lemma 5.2.1.

Given the sentence ∃y G(y) (G(y) is a quantifier free formula) of H(@, ∀,∃),
augment the language with a new constant c and form the sentence G(c) such that:

M, w |= ∃y G(y) iff M′
, w |= G(c)

Given the sentence ∀x1, · · · , xn∃y G(x, y) of H(@,∀,∃), augment the language with
a new n− ary function symbol f and form the sentence ∀x1, · · · , xn G

′
(x, f(x)) of

∀ −HLOV. Then:

33
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M, w |= ∀x1, · · · , xn∃y G(x, y) iff M′
, w |= ∀x1, · · · , xn G

′
(x, f(x))

where M and M′
are models of H(@,∀,∃) and ∀−HLON respectively. Note

that w is an arbitrary world of our domain.

Proof. In each step we can expand a model of the sentence on the left hand side to
one on the right hand side by adding the appropriately designated element for the
constant, or by adding an appropriate function F f , that is F , is the interpretation
of f in M. Conversely, we can take a model of the sentence on the right hand
side and remove the constant symbol, respectively function symbol and we get a
model for the left hand side.

Theorem 5.2.1. Given a formula φ of the strong hybrid language H(@,∀, ∃) there
is an effective procedure for

finding a universal sentence φ∀ of ∀ −HLOV such that:

M, w |= φ iff M′
, w |= φ∀

Furthermore, we can choose φ∀ such that every model of φ can be expanded to
a model of φ∀ and every model φ∀ can be reducted to model of φ.

Proof. First we put φ in prenex form. Then we just apply the lemma 5.2.1 repeat-
edly until there are no existential quantifiers.

We conclude with the following theorem:

Theorem 5.2.2. For every model M and any assignment g we can associate a
first order formula φ with one universal formula φ∀ of H(@, ∃,∀) such that:

M |= φ[g] iff M′
, g |= φ∀

Proof. By proposition 2.5.1 we know that:

M |= φ[g] iff M, g |= HT (φ)

Skolemizing the sentence HT (φ) we obtain the sentence φ∀, and by theorem 5.2.1
we have:

M, g |= HT (φ) iff M′
, g |= φ∀
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An important result of this theorem is:

Theorem 5.2.3. (Complexity) The satisfiability problem for ∀ −HLOV is un-
decidable.

Proof. As we know the satisfiability problem for first-order logic with a single
binary relation is undecidable. We can use this fact as follows: Theorem 9 says
that the first order logic L can be converted into ∀ − HLOV in such way that a
sentence of L is true in one model M iff the conversion of this sentence is true
in one almost the same model M′

of ∀ − HLOV . Therefore the model M and
M′

are almost the same mathematically, but the languages that are interpreted
in them are not the same. That is, the satisfiability problem for ∀−HLOV in M′

is undecidable since the satisfiability problem in M is undecidable for L.

The importance of the skolemization in the context of hybrid logic is that we
might be able to use the resolution method for developing successful automatic
theorem provers for hybrid logics. It is out of the scope of this chapter to provide
details of this idea. More about the resolution method and its significance please
look [25].

5.3 Frame Definability and HLON
In this section we discuss a number of results concerning the relationship between
elementary frame classes and frame classes definable by pure HLON− formulas.
That is, we will show a method of extending the syntax for the basic hybrid
language such that elementary frame classes which are not modally definable in
H(@), to be almost definable byHLON pure formulas. We start with one example
in order to motivate our formalism.

Example 5.3.1. Right directed. In [7] the following problem stated: Many im-
portant frame classes cannot be captured using pure axioms....Another (example)
is the class of right-directed frames, that is, frames satisfying the property:

∀v, u∃t(vRt ∧ uRt)

We will show how to capture the logic of such frame class in the context of
HLON . First we translate this formula in H(@, ∀, ∃):

∀v, u∃t(@v¦t ∧@u¦t)
Introducing a new binary function symbol F over variables we have:
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∀v, u@v¦F (u, v) ∧@u¦F (u, v) (5.1)

Using the proposition 4.3.1 we get the following HLON pure formula:

@i¦f(i, j) ∧@j¦f(i, j) (5.2)

We assume that i and j are particular names, but their interpretation in the
model is arbitrary, so the universal quantification is implicit. Note that no orthodox
modal formula defines the condition of right− directed.

That is,

Theorem 5.3.1. For any frame F we can associate a first order formula φ with
one HLON pure formula such that:

φ is valid on F iff φnom is valid on F ′

Proof. By the theorem 5.2.1 we know that there is a procedure associating any
first order formula φ with one universal formula of HLOV(@,∀, ∃) such that:

M, w |= φ iff M′
, w |= φ∀

By the definition 2.1.5 we have:

� Since M, w |= φ then for any frame F of M = (F , V ) we have that φ is
valid on F .

� Since M′
, w |= φ∀ then for any frame F ′

of M = (F ′
, V ) we have that φ∀ is

valid on F ′
. By proposition 4.2.3 we get that there is a HLON pure formula

φnom such that: φnom is valid on F ′
.

That is,

φ is valid on F iff φnom is valid on F ′

We can rephrase the previous result as follows: a sentnence ϕ of L is valid on
a frame F iff the formula φnom of HLON is valid on a frame F ′

. That is, the
satisfiability problem for ϕ on F is decidable or undecidable iff the satisfiability
problem is decidable or undecidable for ϕnom on F ′

.
Before we proceed we need the definition of frame satisfiability problem. That

is,
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Definition 5.3.1. (Frame Satisfiability problem) Given a formula ϕ, check if
there is a frame on which ϕ is valid.

Theorem 5.3.2. The frame satisfiability problem for modal formulas is highly
undecidable, in fact not analytical.

That is, by theorems 5.3.1 and 5.3.2 we get:

Theorem 5.3.3. The frame satisfiability problem for HLON− pure formulas is
highly undecidable, in fact not analytical.

To sum up, we showed that the traditional fragment of the hybrid logic becomes
in a rather unorthodox interpretation equivalent to first order logic by extending
the basic hybrid language with algebraic operators working on nominals denoting
worlds in the frame.

We continue with number of examples just in order to motivate our formalism.
Note that just for simplicity reasons we skip the step of converting first order
sentences in a prenex form. Examples presented here can be found in [23] and in
[16].

Example 5.3.2. Any two elements have a greatest lower bound (in the order
established by R):

∀x∀y∃z(zRx ∧ zRy ∧ ∀u((uRx ∧ uRy) → uRz))

Using the syntax of the strong hybrid logic H(@, ∀,∃) we get:

∀x∀y∃z(@z¦x ∧@z¦y ∧ ∀u((@u¦x ∧@u¦y) → @u¦z))

Then by skolemization we have:

∀x∀y(@F (x,y)¦x ∧@F (x,y)¦y ∧ ∀u((@u¦x ∧@u¦y) → @u¦F (x, y)))

where F (x, y) : W 2 → W is a binary function of our domain.
This can be re-expressed in HLON as:

@f(x,y)¦x ∧@f(x,y)¦y ∧ (@u¦x ∧@u¦y) → @u¦f(x, y)

Example 5.3.3. Two (different) persons are siblings if they share two different
parents.

x 6= y ∧ ∃z∃z1(z 6= z1 ∧ zPx ∧ z1Px ∧ zPy ∧ z1Py)
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where P is a relation symbol and xPy denotes that x is a parent of y. The
interpretation of the binary relation symbol P in H(@,∀,∃) is the modal operator
¦p.

In H(@,∀,∃) we have:

@x¬y ∧ ∃z∃z1 (@z¬z1 ∧@z¦px ∧@z1¦px ∧@z¦py ∧@z1¦py)

By skolemization we introduce two constant symbols f and f1:

@x¬y ∧ @f¦px ∧@f1¦px ∧@f¦py ∧@f1¦py

Therefore in HLON we get:

@x¬y ∧ @i¦px ∧@i1¦px ∧@i¦py ∧@i1¦py

The interpretation of the constants symbols f and f1 are the nominals: i and
i1 respectively.

5.4 Universal equalities

In this section we will comment about the remark 4 of chapter 1 (page 9).

Definition 5.4.1. [?] The set of proper symbols of the theory G of groups is
{=, ·, 1} where · is the first 2−place operation symbol and 1 is the first constant
symbol. The proper axioms of G are:

G1 ∀x (x · 1 = x)
G2 ∀x∃y (x · y = 1)
G3 ∀x∀y∀z ((x · y) · z = x · (y · z))

That is, we skolemize

{∀x∀y∀z ((x · y) · z = x · (y · z)),∀x (x · 1 = x),∀x∃y (x · y = 1)}
and we obtain:

{∀x∀y∀z ((x · y) · z = x · (y · z)), ∀x (x · 1 = x),∀x(x · f(x) = 1)}
where f(x) is unary.
That is, using the function symbol f as a reserve operation of · we have:
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G1 x · 1 = x
G2 x · x−1 = 1
G3 (x · y) · z = x · (y · z)

Note that the variable x is an arbitrary variable of our model, so the universal
quantification is implicit. By this example should be clear the relation between
universal formulas and algebraic languages. And in the context of HLON we
have:

G1 @x·1x
G2 @x·x−11
G3 @(x·y)·zx · (y · z)

Conclusion: In this section we discussed the complexity (undecidability) of
our new logics ∀−HLOV and HLON . The key point for this conclusion was the
skolemization method.



40 CHAPTER 5. SKOLEM FUNCTIONS



Chapter 6

Tableau

Chapter 4: In this chapter we present a method of extending the tableau calculus for
the basic hybrid language which yields completeness results for many frame classes
that can not be defined in terms of H(@)’s pure axioms, for instance right-directed
frames. Actually we provide a complete tableau calculus for HLON .

6.1 Motivation

In this section we will discuss what kind of frames we can capture using the syntax
of HLON . Again, the technique of skolemization is central here.

As we know from [17] there is a natural way of presenting logics by combina-
tions of the modal logic K with a relational theory T . In [17], authors work with
an orthodox modal language and a labelling algebra through a fixed interface. In
our case this result can be rephrased as follows:

the base logic H(@) stays fixed, and we generate the one we want by combining
H(@) with the appropriate pure formulas.

In order to do that we should consider two things:

� First we should investigate what kind of frame properties we can capture by
the syntax of HLON .

� Secondly, to study whether we can extend the completeness theorem ofH(@)
in our case.

We discussed the first point in detail in the last chapter. In this section we will
accommodate H(@)’s completeness result to our case.

41
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But before we proceed to technicalities we will motivate our study by one
example.

A large and important class of modal logics falls under the generalized Geach
axiom schema:

¦k2lp → 2m ¦n p

which corresponds to the semantic notion of (k, l, m, n) convergency:

∀x∀y∀z∃u(xRky ∧ xRmz → (yRlu ∧ zRnu)) (6.1)

where xR0y means x = y and xRk+1y means ∃v(xRv ∧ vRky).
That is, we start translating formula 23 in the strong hybrid logic H(@,∀, ∃)

and then we skolemize:

Example 6.1.1. (Geach axiom)

φ = ∀x∀y∀z∃u(xRky ∧ xRmz → (yRlu ∧ zRnu)) (6.2)

→H(·) ∀x∀y∀z∃u(@x¦ky ∧@x¦mz → (@y¦lu ∧@z¦nu)) (6.3)

7→ ∀x∀y∀z(@x¦ky ∧@x¦mz → (@y¦lF (x, y, z) ∧@z¦nF (x, y, z)))(6.4)

where F is a new function symbol F : W 3 → W . Then using the syntax of HLON
we get:

@x¦ky ∧@x¦mz → (@y¦lf(x, y, z) ∧@z¦nf(x, y, z))

Property (k,l,m,n) Char. Axiom Pure Formula
Seriality (0,0,1,1) 2p → ¦p @x¦f(x)

Convergency (1,1,1,1) ¦2p → 2 ¦ p @x¦y ∧@x¦z → (@y¦g(x, y, z) ∧@z¦g(x, y, z))
Reflexivity (0,0,1,0) 2p → p @i¦i
Symmetry (0,1,0,1) p → 2 ¦ p @i2 ¦ i
Transitivity (0,2,1,0) 2p → 22p ¦ ¦ i → ¦i

where f : W → W and g : W 3 → W are skolem functions.
That is, extending the completeness result of H(@) we could conclude that:

adding the pure formula for convergency to H(@)’s proof system yields a system
complete for frames that satisfy this property. Also extending H(@)’s proof system
with the pure axioms for reflexivity and transitivity yields a system complete both
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for reflexive and transitive frames. These results are cumulative: adding these
three pure axioms, we obtain a complete system for the logic S4.2.

A hierarchy of modal logics (a fragment)

K
reflexivity−−−−−−→ KT (T )

transitivity

y
yrefl

K4
reflexivity−−−−−−→ S4

convergency−−−−−−−→ S4.2

Remark 6.1.1. We should note that our method follows the lines of [1] (chapter
5) and [7], in these papers instead of functions symbols a node creating rule was
added to the basic hybrid proof system. We hope that our result is more general.

6.2 Proofs

In this section we will give the completeness proof by constructing Hintikka sets.
That is, extending the basic tableau methods of H(@) we suggest a reasoning
machinery for systems which combine relational and algebraic formalisms.

Definition 6.2.1. A substitution is a function from atomic nominals to nominals,
which is identity on all but finitely many atomic nominals.

We typically use Greek letters such as θ, ρ, σ for substitutions. If θ is a sub-
stitution and i is an atomic nominal, then we indicate the application of θ to i
by θ(i) as usual. We also extend substitutions homomorphically to nominals. If
t is a nominal and θ is a substitution, we indicate by tθ the application of θ to
t. This is defined inductively as follows: If t is an atomic nominal then tθ is θ(t).
Otherwise, t is of the form f(t1, t2, ..., tn) ( a complex nominal) for some n (pos-
sibly zero). Then tθ is f(t1θ, t2θ, ..., tnθ). Thus tθ is t with all atomic nominals
replaced by nominals as specified by θ. We often write a substitution as a set
{i1 7→ s1, ..., in 7→ sn}, indicating that the nominal ik is mapped to sk by the
substitution. We call tθ an instance of t. Also, if @tu where t and u are atomic
nominals and θ is a substitution, we call @tθuθ an intance of @tu.

Example 6.2.1. (Substitution) If @x·1x then @(x·x)·1x · x.

Since in HLON we deal with function symbols also the following rules are
needed:
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@st
@f(...,s,...)f(..., t, ...)

[Repl]
@ts

@tθuθ
[Sub]

Where θ is a substitution. As we will see in chapter 5 these rules follow the
lines of equational logics.

We continue giving completeness proof by constructing Hintikka sets. But we
should be clear, our tableau calculus are the old rules that we discussed in section
2.4 plus the rules Repl and Sub. Also the rules Nom and Sym they apply to
nominals, that is both to atomic nominals and to complex nominals.

Definition 6.2.2. Hintikka Set: A set of satisfaction statements Σ is a Hintikka
set if it satisfies the following conditions.

1. For all atoms π ∈ Φ, and all nominals s, if @sπ ∈ Σ then ¬@sπ 6∈ Σ.

2. For all nominals s and t, if @s¦t then ¬@s¦t 6∈ Σ.

3. If a nominal s occurs in any formula in Σ, then @ss ∈ Σ.

4. If Σ contains a formula that one of the branching rules can be applied to, then
it contains at least one of the formulas obtainable by making this application.

5. If Σ contains a pair of formulas that one of the binary rules can be applied
to, then it contains all the formulas obtainable by making this application.

6. If Σ contains a formula that one of the existential rules can be applied to,
then for some nominal i it also contains the formulas that would be obtained
by applying that rule to that formula using i as the new nominal τ .

7. For any other rule, if σ contains a formula that one of the rules applies to,
then it contains all the formulas obtainable by making this application.

Definition 6.2.3. Let Σ be a Hintikka set, we define NOM(Σ) to be:

{i|i is a nominal that occurs in some formula inΣ},
and define a binary ∼Σ on term(Σ) by i ∼Σ j iff @ij ∈ Σ. Clearly ∼Σ is an

equivalence relation. If k ∈ NOM(Σ), then |k| is the equivalence class of k under
∼Σ.
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Remark 6.2.1. Item 3 in the definition of Hintikka sets is an analog for first order
reflexivity rule for =, while closure under SY M and NOM ensures symmetry and
transitivity.

Lemma 6.2.1. Let Σ be a Hintikka set and assume that i, j ∈ NOM(Σ). Then
the following assertions are equivalent:

1. i ∼Σ j

2. For every formula φ, @iφ ∈ Σ iff @jφ ∈ σ

Proof. We start assuming i ∼Σ j. Then @ij ∈ Σ and hence @ji ∈ Σ. Since
Hintikka sets are closed under NOM then we have: @iφ ∈ Σiff@kφ ∈ σ. For the
converse, assume that @iφ ∈ Σiff@jφ ∈ σ. j occurs in Σ we have that @jj ∈ Σ.
Thus, if φ is j we have that @ij ∈ Σ then i ∼Σ j.

Definition 6.2.4. Model induced by a Hintikka set: Given any Hintikka set
Σ, there is a model MΣ = (W,R, V, F ) — the model induced by Σ — such that
the following hold.

1. W = {|k|Σ | k ∈ NOM(Σ)}.
2. |α1|ΣR|α2|Σ iff @α1¦α2 ∈ Σ.

3. F (|k1|Σ, |k2|Σ) = |α|Σ iff @αf(k1, k2) ∈ Σ

4. |α|Σ ∈ V (p) iff @αp ∈ Σ

5. |α|Σ ∈ V (j) iff @αj ∈ Σ. Note j is a nominal.

Lemma 6.2.2. Let Σ be a Hintikka set. Then any model MΣ = (W,R, V ) of the
kind just above difined is an model induced by Σ.

Proof. In this lemma we should prove that R, V and F are well defined.
To show that F is well defined we need to show that for all i, j, k, l ∈ NOM(Σ),

if i ∼Σ k and j ∼Σ l then F (|i|, |j|) = |α| implies F (|k|, |l|) = |α|. That is, we
need to show that F is function. Suppose that i ∼Σ k , j ∼Σ l and F (|i|, |j|) = α.
That is, we want to show that F (|k|, |l|) = |α|.

By definition this means that @αf(i, j) ∈ Σ, hence as i ∼Σ k and j ∼Σ l then
by the replacement rule of R: @αf(k, l) ∈ Σ. But since @αf(k, l) ∈ Σ, we have by
item 3 that F (|k|, |l|) = α as required.

By the same way, R is well defined when for all i, j, k, l ∈ NOM(Σ) if i ∼Σ k
and j ∼Σ l then |i|R|j| implies |k|R|l|. Let us assume i ∼Σ k , j ∼Σ l and |i|R|j|.
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Since |i|R|j| we have @i¦j ∈ Σ, hence as i ∼Σ k it follows that @k¦j. Also, since
|j|R|l| we also have that @j¦l ∈ Σ. Then by the bridge rule we have:

Since @k¦j ∈ Σ, @j¦l ∈ Σ then @k¦l
Therefore, |k|R|l| as required.
It is straightforward to see that V is well defined. But we need to show that

for all nominals , V(α) is a singleton. As we will see there is no need to study two
cases, for atomic nominals and complex ones. Let us assume that α occurs in Σ.
Then V(α) contains |α|, and as consequence @αα ∈ Σ. Now, let us assume that
|β| ∈ V(α). Then @βα ∈ Σ, that is β ∼Σ α which means that |β| = |α|. So, for
all nominals α, V (α) is a singleton subset of W .

Lemma 6.2.3. Truth lemma Let Σ be a Hintikka set and let MΣ be the model
induced by Σ. Then for all terms α and formulas φ, the following hold.

1. If @αφ ∈ Σ then MΣ, |α|Σ |= φ

2. If ¬@αφ ∈ Σ then MΣ, |α|Σ 6|= φ

That is, every formula in Σ is satisfied in MΣ.

Proof. The proof follows the lines of [8], so we just give two clauses leaving the
remainder to the reader:

� φ has the form f(s1, s2). Suppose @αf(s1, s2). Using the condition 3 of
Lemma 1 we know that F (|s1|, |s2|) = |α|. By induction hypothesis we get
M, |α| |= f(s1, s2).

� φ is of the form @lψ, l is a nominal.

Suppose @sφ ∈ Σ. Then @s@lψ ∈ Σ. Note that s is a nominal. By closure
under the tableau rules for @, we can infer that @lψ ∈ Σ. By induction
hypothesis, M, |l| |= ψ. Using the fact that the denotation of l in M is |l|,
concluding that M, |s| |= @lψ

Suppose ¬@sφ ∈ Σ. Then ¬@s@lψ ∈ Σ. By closure under the tableau rules
for @, we can infer that ¬@lψ ∈ Σ. By induction hypothesis, M, |l| 6|= ψ.
Using the fact that the denotation of l in M is |l|, we conclude that M, |s| 6|=
@lψ



Chapter 7

Equational Logic, Term Rewriting
and HLON

An equational system is a set of equations. In other words we can say that one
equational system E is a set of universally closed equations, that is, equations
without existential quantifiers. HLON as we know provides full first order ex-
pressetivity: using the technique of skolemization we were able to express any first
order concept of L using only universal quantifiers.

Note that many interesting classes of algebras are defined by equations. We
give an example of: semigroups and monoids. Mainly we are interested in knowing
whether an equation follows logically from a given set of equations.

Definition 7.0.5. (Syntax of Algebras) Let σ an algebraic similarity type and a
set X of variables. The language E of algebras (equational systems) is built up sa
follows:

t := x | f(t1, ..., tρ(f))

we call t, E− terms.

Definition 7.0.6. (Equation System) An E(X, σ, =) equation system is an expres-
sion of the form:

s = t

where s, t are E− terms.

Definition 7.0.7. (Semantics of Equational systems)
A structure M for the equational system E is M = (D, (F f )f∈σ, V ) such

that:

47
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� D 6= 0, a non empty domain D;

� for each n ≥ 0 and for all f ∈ τ , if f is an n−ary function symbol then F f

is an n− ary operation symbol of D. Note that F : Dn → D;

� A variable x is assigned a meaning V (x) which is an element D;

� The V (t) where t is a term, is defined as follows:

– If t is a variable x then: V (x) is an element D;

– If t is f(t1, · · · , tn) then: V (f(t1, · · · , tn)) = F (V (t1), · · · , V (tn))

Remark 7.0.2. In many textbooks instead of s = t the following notation is used:

∀x1, ..., xn s = t

where x1, ..., xn is the set of variables occurring in the terms s, t. We assume
that x1, x2, ..., xn are particular variables, but their interpretation in the model is
arbitrary, so the universal quantification is implicit.

Example 7.0.2. (Groups)

∀x, x · 1 = x (7.1)

∀x, x · x−1 = 1 (7.2)

∀x, (x · y) · z = x · (y · z) (7.3)

where (·)−1 is a unary operation.

Definition 7.0.8. Truth for Equational Logics

If M is a structure, we write M |= s = t to indicate that the equation s = t is
true in M, or formally, that M satisfies the equation s = t. That is:

M |= s = t iff V (s) = V (t) where V (s), V (t) are identical elements of D.

We say that a structure M satisfies a set E of equations, written M |= E, if
M satisfies each element of E. Such a structure is called a model of E.

If E1 and E2 are two equational systems, we write E1 |= E2 if all structures
M satisfy E1 also satisfy E2. That is, all models of E1 are also models of E2. In
this case if E1 |= E2 we call E2 a logical consequence of E1.

The main question that this section addresses is to determine when E1 |= E2

for various E1 and E2. Mainly E2 will consist of a single equation. In other words,
we are interested in knowing whether this equation is a logical consequence of
E1. We will investigate this problem in the context of HLON .
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Remark 7.0.3. Enriching the algebraic language of nominals (Definition
19) with the operator @, we form an equational system. The only
difference is how we represent the equality symbol. The relation be-
tween equational systems and hybrid logics is mentioned in [4] as fol-
lows: Thus hybrid logic is genuine hybrid: it brings to modal logic

the classical concepts of identity and reference.

Our contribution makes this relation between Hybrid Logics and Equational
systems complete.

Definition 7.0.9. Suppose E is a language of algebras.

� For M an E− structure and s = t an L− equation we write

M |= s = t

if V (s) = V (t). (read: M satisfies s = t or s = t holds in M.

� If M is an E− structure and S is a set of E− equations, then

M |= S

if M |= s = t for every equation s = t in S. (read: M satisfies S or S in
M)

� If S is a set of E− equations and s = t is an L− equation, then we write

S |= s = t

if M |= s = t whenever M |= S. (read: s = t is a consequence of S or
follows from S)

7.1 Proof systems

In this section we discuss methods for showing that E |= s = t for various E, s
and t. We will translate these results in the context of hybrid logic.

Definition 7.1.1. A substitution is function from variables to terms, which is
identity on all but finitely many variables.

Example 7.1.1. Let us assume that x·y = y·x. We can deduce that (x·y)·(z+z) =
(z + z) · (x · y) substituting every occurrence of x by the term x · y and substituting
every occurrence of y by the term z + z.
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We will use Greek letters such as θ, ρ, σ for substitution. If θ is substitution
and x is a variable, then we indicate the application of θ to x by θ(x) as usual.
We extend these definitions inductively for terms:

� If t is a variable then tθ is θ(t).

� Otherwise, t is of the form f(t1, ..., tn) for some non -zero n. Then tθ is
f(t1θ, ..., tnθ). That is, tθ is t with all variables replaced by terms as specified
by θ.

Remark 7.1.1. Some remarks about the using notation:

� It is common to write{x1 7→ s1, ..., xn 7→ sn}, indicating that the variable xi

is mapped to si by the substitution. We call tθ an instant of t.

� If t = u is an equation and θ is a substitution, we call tθ = uθ an instance
of the equation t = u.

Rule Name Example
true
s = s

Reflexive
x + y = x + y

s = t
t = s

Symmetric
x = x · x
x · x = x

r = s s = t
r = t

Transitive
x = x · x x · x = 1

x = 1
t = u

tθ = uθ
Substitution

x · 1 = x
(x · x) · 1 = x · x

t = u
f(..., t, ...) = f(..., u, ...)

Replacement
x · x = x

(x · x) + x = x + x

This result is due to Birkhoff and we will use it in the context of HLON :

Theorem 7.1.1. If E is a set of equations then E |= s = t iff r = s is derivable
from E using these rules.

We can state this result in an equivalent way: E |= r = s iff there is a finite
sequence u1, ..., un of terms such that r is u1 and s is un, further for all i, ui+1 is
obtained from ui by replacing a subterm t of ui by a term u, where the equation
t = u or the equation u = t is an instance of an equation in E. In more formal
way:

Definition 7.1.2. A derivation of an equation s = t of one set of equations E is
a sequence: s1 = t1, ..., sn = tn of equations such that each equation is either:
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� a member of E or

� is the result of applying a rule of inference to previous members of the se-
quence

and the last equation is s = t. We write E ° s = t if such a derivation exists.

7.2 Hyrbid Languages and Equations

In this section we rephrase basic notions of Equational Logic in the context of
HLON .

Definition 7.2.1. Sentences of HLON of the form: @st where s and t are nom-
inals (atomic or complex nominals) are called @−sentences.

Recall that equational sentences are universal first order sentences. Then an
immediate consequence of proposition 3 is:

Proposition 7.2.1. For any equality s = t of one equational system E there is an
@−sentence, such that for any model M, s = t is true in M iff @st is valid on
M.

Theorem 7.2.1. (Birkhoff)
If A is a set of @−sentences then A |= @st if @st is derivable from A using the
following inference rules.

Rule Name
true
@ss

Reflexive

@st
@ts

Symmetric

@rs @st
@rt

Transitive

@tu
@tθuθ

Substitution

@tu
@f(...,t,...)f(..., u, ...)

Replacement
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7.3 Hybrid Logic and Algebras

Some of the most interesting classes of algebras in mathematics are defined by
equations. We will introduce some of them in the context of HLON .

But first let us start with one example.

Example 7.3.1. Now let us suppose our language has one binary function symbol
f . The interpretation of this symbol in our model is F f = F . What we can say
about the nominals z, z1 if @f(x,z)f(x, z1)? The interpretation of @f(x,z)f(x, z1) is
F (V (x), V (z)) = F (V (x), V (z1)). Since F is function, then is one-to-one, there-
fore V (z) = V (z1). That is @zz1.

Definition 7.3.1. Semigroups SG is the following set consisting of one equation
(in the language LSG = {·} of a single binary operation) that defines semigroups,
namely,

SG = {(x · y) · z = x · (y · z)}
Using the syntax of HLON we have :

SG = {@(x·y)·zx · (y · z)}
Models of SG are called semigroups and SG axiomatizes or defines the class of

semigroups. Semigroups come up in computer science in the study of languages,
or in any subject that is based on the study of strings of symbols.

Definition 7.3.2. Monoids M is the following set of three equations (in the
Language LM = {·, 1} where · is binary and 1 is constant symbol) that defines
monoids, namely,

M = {(x · y) · z = x · (y · z), x · 1 = x, 1 · x = x}
In HLON we have the formulas:

M = {@(x·y)·zx · (y · z), @x·1x, @1·xx}
Any algebra of nominals that satisfies M is called monoid, and M is a set of

axioms or defining equations for monoids.

Monoids are very close to semigroups. Every monoid can be viewed as a semi-
group (drop the constant symbol).



Chapter 8

Conclusions and Further work

Here we conclude with a discussion of several possible directions in which this
work can be extended. Some of them have been addressed to some extend in the
preceding:

� Combination of Logics: We presented an extension of the basic hybrid
logic H(@): HLON , In this thesis we considered an application of hybrid
logics to relational structures on algebras, thus a set with a relation and
an algebraic structure. But this is not the only application. The notion of
Universal Logic seems to be useful here:

Universal logic is not a new logic, it is a way of unifying various of logics
by developing general tools and concepts that can be applied to all logics

That is, using techniques of Universal Logic we can design a specific logic
required for a given problem.

� Skolemization: By the method of skolemization we showed that hybrid
modal logic can be used as a worthy alternative to L logic (with binary
relation symbols). Can we extend this result for arbitary relation symbols?
Another line of research is to show that the hybrid modal logic with function
symbols is still decidable, and expressive enough to say useful things,
that is to derive interesting facts. Obviously, for that purpose one should
only consider relatively weak hybrid languages, i.e. just with nominals and
@ or universal modality. I want to thank Prof. Valentin Goranko for these
observations.

� Herbrand’s theorem. It would be interesting to study the theorem of Her-
brand in the context of hybrid logics. A guide for further research is the
following problem 5.8.12 from [28].

53
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� Hybrid Logics: It would be worth studying the relation of HLON with
other hybrid logics. The following question seems attractive: What kind of
function symbols we should add to H(@) in order to capture the expressive
power of H(@, ↓). That is, which function symbols behave like the modal
operator ↓?

� Nominals: There is some interest in this extended hybrid logic and its con-
nection to other formalisms that use nominals: for instance term rewriting,
monadic second order logic and description logics. Another direction is to in-
vestigate the relation of these extended hybrid logics with Fitting’s First Or-
der Intensional Logic [21]. Fitting writes: In addition to objects (variables)
there will be what we call intensions or intensional objects or concepts. Typ-
ical informal intensions are the morning star, the oldest person in the world,
or simply that. Intensions designate different objects under different objects
under different circumstances-they are non rigid designators. As such, they
will be modelled by functions from possible worlds to objects. There will be
quantification over intensions, as well as quantification over objects.

The use of these functions seems quite similar with the functions in HLON .

� Numerical Hybrid Logics: Designing formal languages for real world
applications many times requires the ability to express and to reason numer-
ically. There is a natural extension of HLON with number terms. That
is, we can consider an application of hybrid logics to relational structures
on algebras with numerical functions, thus a set with a relation and an al-
gebraic structure and functions assigning numerical values to worlds. The
meaning of these values depends on applications. Our main goal is to relate
our contribution with two other logics: distance logics [20], [2], [3], [19] and
probabilistic logics [22], [18].

That is, the numerical Hybrid Logic NHLON views function symbols as
terms, these terms do not denote elements of our model, but they denote
elements of the set N or Q or R. Their choice depends on applications. But
of course we can still allow algebraic operators only for nominals: denoting
elements of our domain.

In [20] the following problem addressed: Some applications might require
that we have some algebraic structure on the parameter sets different to the
reals, such as finite groups, which we could also incorporate into the formal
language.

HLON seems a good candidate for this direction.
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