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Overview

This thesis is divided into two parts. Each part explores a particular logical
perspective on distributed information and its dynamics.

The first part takes the perspective of epistemic and dynamic epistemic
logic. We first explain why distributed knowledge does not always comply
with the principle of full communication, as observed by van der Hoek, van
Linder, and Meyer [43] and Gerbrandy [16], and give a complete character-
ization of the class of models in which distributed knowledge does comply
with the principle of full communication. Then, we address an issue raised
by van Benthem [40]: is there a natural extended notion of bisimulation
that matches the expressive power of distributed knowledge operators in
epistemic logic. Next, we show that distributed knowledge operators (or
more generally, intersection modalities) can be incorporated into the logic
of communication and change, recently proposed by van Benthem, van Ei-
jck, and Kooi [42]. At last, we discuss a more conceptual point. Distributed
knowledge is what can be established by a group of agents through a partic-
ular kind of communication: everyone writes down everything he knows, all
that is put together, and what follows from the accumulated facts is distrib-
uted knowledge. Other, arguably more interactive kinds of communication
may be considered as well. Van Benthem [39], for example, is interested in
the information that can be established by a group of agents through public
announcements. We discuss the information that can be established by a
group of agents given a certain communication network.

The second part of the thesis takes the perspective of multi-context sys-
tems. These systems describe the distribution and flow of information among
a number of contexts (people, databases, etc.). We provide a simplified se-
mantics for the basic systems and define generalizations of this semantics
for various extended systems.
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Part I

Epistemic Logic
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Chapter 1

Expressive Power and Full
Communication

Distributed knowledge is a standard notion in epistemic logic [13, 23]. In-
tuitively, a formula ϕ is distributed knowledge among a group of agents B
iff ϕ follows from the knowledge of all individual agents in B put together.
Semantically, ϕ is distributed knowledge among B iff ϕ is true in all worlds
that every agent in B considers possible. This chapter addresses two issues
concerning distributed knowledge.
Full communication. Van der Hoek, van Linder, and Meyer [43] argued
that, to be of any use at all, a notion of group knowledge should comply
with what they call the principle of full communication: whenever ϕ is con-
sidered group knowledge, it should be possible for the members of the group
to establish ϕ through communication (this will be made more precise be-
low). Van der Hoek, van Linder, and Meyer [43] and Gerbrandy [16] showed
that distributed knowledge does not generally comply with the principle
of full communication, but does in certain special model classes. It is not
clear, however, why distributed knowledge does not generally comply with
the principle of full communication, and why it does in these special model
classes. Moreover, it is not known whether these model classes are complete,
that is, whether they comprise all models in which distributed knowledge
complies with the principle of full communication. We will provide a sim-
ple analysis of the problem and a complete characterization of the class of
models in which distributed knowledge complies with the principle of full
communication.
Expressive power. A standard notion of structural equivalence between
epistemic models is that of bisimilarity. This notion (to be defined below)

2



1.1 Epistemic Logic 3

perfectly matches the expressive power of basic epistemic formulas (formu-
las without distributed knowledge operators): if two models are bisimilar,
then they satisfy exactly the same basic formulas. But adding distributed
knowledge to the basic language yields a more expressive language, whose
formulas may be able to distinguish bisimilar models. Is there a natural
extended notion of bisimulation that matches the expressive power of the
language with distributed knowledge? This question is the first of a list
of open problems in a recent survey by van Benthem [40]. We will de-
fine and analyze a suitable extended notion of bisimulation, corresponding
model comparison games, and a closely related extended notion of modal
saturation.

The chapter is organized as follows. Section 1.1 reviews some basic
notions from epistemic logic. Section 1.2 is concerned with the extent to
which distributed knowledge complies with the principle of full communica-
tion, and section 1.3 introduces notions of bisimulation and saturation, as
well as related model comparison games, to capture the expressive power of
distributed knowledge operators. Sections 1.2 and 1.3 each conclude with a
short summary and pointers to related work.

1.1 Epistemic Logic

The following notions are all standard in epistemic logic [13, 23]. A countable
set of proposition letters P and a finite set of agents A is assumed to be given
throughout our general discussion and clear from the context in particular
examples.
Languages. The basic epistemic language consists of all formulas that can
be built from proposition letters in P using conjunction, negation, and a
modal operator Ka for every agent a ∈ A. Kaϕ stands for agent a knows
that ϕ is true. The basic epistemic language is denoted by LK :

ϕ ::= p | ¬ϕ | ϕ ∧ ψ | Kaϕ

One standard way to extend the basic language is to add a modal operator
DB for every group of agents B ⊆ A. DBϕ stands for ϕ is distributed
knowledge among B. The resulting language is denoted by LD:

ϕ ::= p | ¬ϕ | ϕ ∧ ψ | Kaϕ | DBϕ

Models. A model M is a triple (W,R, V ), where:
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• W is a non-empty set of worlds,

• R : A → ℘(W ×W )

• V : W → ℘(P)

R assigns to every agent a ∈ A a so-called accessibility relation on W . In-
tuitively, (w, v) ∈ R(a) means that in world w, agent a considers world v
possible. Accessibility relations are often assumed to be equivalence rela-
tions, or to have other less restrictive properties, but for sake of generality
we do not commit ourselves to any such specific assumptions here. V asso-
ciates every world w ∈ W with a subset of P, the proposition letters that
are true in w. If M = (W,R, V ) is a model and w is a particular world in
W , then (M,w) is called a pointed model, and w is called its actual world.
We will often simply refer to pointed models as models. The information
state [M,w]a of an agent a in (M,w) is the set of worlds that a considers
possible in (M,w). Similarly, the information state [M,w]B of a group of
agents B in (M,w) is the set of worlds that every agent a ∈ B considers
possible in (M,w):

[M,w]a = {v ∈ W | (w, v) ∈ Ra}
[M,w]B = {v ∈ W | (w, v) ∈ Ra for all a ∈ B}

Semantics. The satisfaction relation � between pointed models and for-
mulas in LK or LD is recursively defined as follows:

M,w � p iff p ∈ V (w)
M,w � ¬ϕ iff M,w � ϕ
M,w � ϕ ∧ ψ iff M,w � ϕ and M,w � ψ
M,w � Kaϕ iff M, v � ϕ for all v ∈ [M,w]a
M,w � DBϕ iff M, v � ϕ for all v ∈ [M,w]B

Intuitively, the Kaϕ clause says that an agent knows ϕ to be true just in
case ϕ is true in all worlds she considers possible. Similarly, the DBϕ clause
says that ϕ is distributed knowledge among B just in case ϕ is true in all
worlds that every agent in B considers possible. A set of formulas Φ entails
a formula ϕ, Φ � ϕ, iff every pointed model that satisfies all formulas in
Φ also satisfies ϕ. A set of formulas Φ is consistent or satisfiable iff there
is a pointed model that satisfies all formulas in Φ. One set of formula Φ is
consistent with another set of formulas Σ iff Φ ∪ Σ is consistent. A set of
formulas Φ is satisfiable in an information state iff that information state
contains a world that satisfies all formulas in Φ. The theory of a world in
a model is the set of all formulas true in that world. A world is consistent
with a set of formulas Φ iff its theory is consistent with Φ.
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1.2 Full Communication

Van der Hoek, van Linder, and Meyer [43] argue that, to be of any use
at all, a notion of group knowledge should comply with what they call the
principle of full communication: whenever ϕ is considered group knowledge,
it should be possible for the members of the group to establish ϕ through
communication. To make this more precise, they define the knowledge set
of a group of agents B in a model (M,w) to be the set of all LK-formulas
that at least one agent in B knows to be true in (M,w):

KSB(M,w) = {ψ ∈ LK | M,w � Kaψ for some a ∈ B}

Then they take it that a formula can be established through communication
by a group of agents iff that formula is entailed by the knowledge set of
that group. So distributed knowledge complies with the principle of full
communication iff for all ϕ ∈ LK :

M,w � DBϕ ⇒ KSB(M,w) � ϕ (1.1)

Van der Hoek, van Linder, and Meyer [43] as well as Gerbrandy [16] show
that (1.1) does not generally hold. To see this, consider the model depicted
below (all accessibility relations are equivalence relations here). Take B =
{a, b}. Then, p is distributed knowledge among B in w, but p is not entailed
by B’s knowledge set in w.

w

x y

z

a b

b a

p

p

¬p ¬p

In [43] and [16] various classes of models are identified in which distributed
knowledge does comply with the principle of full communication. Van der
Hoek, van Linder, and Meyer define a model M to be distinguishing iff
for every world w in M there is an LK-formula that is true in w and no-
where else M . They show that distributed knowledge complies with the
principle of full communication in finite, distinguishing models. Gerbrandy
generalizes this result. He defines M to be locally distinguishing iff for every
w in M , every v ∈ ⋃

a∈A[M,w]a, and every a ∈ A, there is an LK-formula
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ϕa such that M, v � ϕa iff v ∈ [M,w]a. He shows that distributed knowledge
complies with the principle of full communication in locally distinguishing
models. Gerbrandy also defines a model M to be full iff for every group
B ⊆ A and every w ∈ W , every set of LD-formulas that is consistent with
KSB(M,w) is satisfiable in [M,w]B. He proves that distributed knowledge
complies with the principle of full communication in full models.

It is not clear, however, why distributed knowledge does not generally
comply with the principle of full communication, and why it does in mod-
els that are finite, (locally) distinguishing and/or full. Moreover, it is not
clear whether all models in which distributed knowledge complies with the
principle of full communication are finite, (locally) distinguishing and/or
full. And if not, whether a complete characterization of such models can be
given.

Section 1.2.1 gives a simple analysis of why distributed knowledge does
not always comply with the principle of full communication. This analysis
yields a rather general class of models in which distributed knowledge does
comply with the principle. Section 1.2.2 relates the defining properties of this
class, called tightness and epistemic saturation, with notions familiar from
modal logic. In particular, epistemic saturation is shown to be equivalent
with modal saturation. In section 1.2.3 we compare our model class with
the model class defined by van der Hoek, van Linder, and Meyer. We show
that every finite, distinguishing model is tight and saturated, and moreover,
that there is an interesting intermediate model class consisting of generated
submodels of the canonical model. In section 1.2.4 we show that our model
class can be generalized in various ways, which finally leads to a complete
characterization of models in which distributed knowledge complies with the
principle of full communication. Interestingly, the characteristic property of
such models turns out to be a weak version of Gerbrandy’s fullness property.

1.2.1 Distributed Knowledge and Full Communication

Why does distributed knowledge not comply with the principle of communi-
cation? One answer to this question is that in general an agent’s information
state may not contain every world that is consistent with her knowledge set.
Consider, for example, the model depicted above: everything a knows in w
is true in y. So y is consistent with a’s knowledge set in w. Still, y does
not belong to a’s information state in w. Similarly, x does not belong to b’s
information state in w, even though everything b knows in w is true in y,
that is, y is consistent with b’s knowledge set in w. As a consequence, the
intersection of two information states may sometimes yield more informa-
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tion than the union of the corresponding knowledge sets. To continue the
above example, a and b’s knowledge sets in w are identical. Thus, taking
their union does not yield any new information. However, a and b’s infor-
mation states in w are different, and their intersection yields a new, more
informative state. As a result, p is distributed knowledge among a and b in
w, even though it is not entailed by the union of their knowledge sets.

This explanation, trivial as it may seem, leads us to the characterization
of a rather general class of models in which distributed knowledge does
comply with the principle of full communication, namely, the class of models
in which every agent’s information state does contain every world that is
consistent with her knowledge set.

This requirement can be split into two sub-requirements. First, every
set of formulas that is consistent with an agent’s knowledge set must be sat-
isfiable in the agent’s information state. We call this requirement epistemic
saturation.

Definition 1.1 (Epistemic Saturation) A model M = (W,R, V ) is epis-
temically saturated iff for all w ∈ W and all a ∈ A, every set of LK-formulas
that is consistent with KSa(M,w) is satisfiable in [M,w]a.

Second, every world that is consistent with an agent’s knowledge set must
be contained in the agent’s information state. We call this requirement
tightness.

Definition 1.2 (Tightness) A model M = (W,R, V ) is tight iff for all
w ∈ W and all a ∈ A, every world in M that is consistent with KSa(M,w)
is in [M,w]a.

Notice that epistemic saturation and tightness are complementary require-
ments: the former requires that a model contains enough worlds; the latter
requires that a model provides for enough access.

We now show that distributed knowledge complies with the principle of
full communication in tight and epistemically saturated models.

Proposition 1.3 In tight and epistemically saturated models distributed
knowledge complies with the principle of full communication.

Proof. Let M = (W,R, V ) be tight and epistemically saturated. To prove:

M,w � DBϕ ⇒ KSB(M,w) � ϕ
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Suppose that KSB(M,w) � ϕ. Then {¬ϕ} ∪ KSB(M,w) is consistent. Let
a ∈ B. Then {¬ϕ} ∪ KSB(M,w) is consistent with KSa(M,w) so, by epis-
temic saturation of M , [M,w]a contains a world wa satisfying all formulas
in {¬ϕ}∪KSB(M,w). Thus, wa is consistent with KSb(M,w) for all b ∈ B,
and by tightness of M , we must have wa ∈ [M,w]b for all b ∈ B. This means
that wa ∈ [M,w]B, and thus, that M,w � DBϕ, as desired. �

1.2.2 Tightness and Saturation

Tightness is familiar from modal logic (see, for example, [14]). Epistemic
saturation seems new, but turns out to be equivalent with another very fa-
miliar notion from modal logic, namely, modal saturation (see, for example,
[7]). A model M = (W,R, V ) is modally saturated iff for every w ∈ W ,
every a ∈ A, and every set of LK-formulas Σ, if every finite subset of Σ is
satisfiable in [M,w]a, then Σ itself is satisfiable in [M,w]a.

Proposition 1.4 A model is epistemically saturated iff it is modally satu-
rated.

Proof. Let M = (W,R, V ) be a model, a ∈ A, and w ∈ W .
(⇒) SupposeM is epistemically saturated. Let Σ be a set of LK-formulas

such that every finite subset of Σ is satisfiable in [M,w]a. Then every finite
subset of Σ′ = Σ ∪ KSa(M,w) is also satisfiable in [M,w]a. It follows,
by compactness, that Σ′ is satisfiable and therefore consistent. Then, by
epistemic saturation of M , Σ′ must be satisfiable in [M,w]a. This means
that Σ is satisfiable in [M,w]a, and thus that M is modally saturated.

(⇐) Suppose M is modally saturated. Let Σ be a set of LK-formulas
that is consistent with KSa(M,w). Then every finite subset of Σ is satisfiable
in [M,w]a. To see this, let Σ′ be a finite subset of Σ and suppose that Σ′ is
not satisfiable in [M,w]a. Then ¬∧

Σ′ ∈ KSa(M,w), which contradicts the
assumption that Σ is consistent with KSa(M,w). So every finite subset of Σ
is satisfiable in [M,w]a. By modal saturation, it follows that Σ is satisfiable
in [M,w]a, and thus that M is epistemically saturated. �

Henceforth, we will simply refer to modal and epistemic saturation as satu-
ration.

1.2.3 Tight & Saturated versus Finite & Distinguishing

Next, we show how tightness and saturation are related to the special model
properties defined by van der Hoek, van Linder, and Meyer. We prove that
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every finite, distinguishing model is tight and saturated, and also identify
an interesting intermediate class of models.

Proposition 1.5 Finite, distinguishing models are saturated and tight.

Proof. Finite models are always saturated [7]. Now suppose a model M
is finite and therefore saturated, but not tight. Then for some agent a there
must be two worlds w and v in M such that everything a knows in w is true
in v, but v is not contained in [M,w]a. Let Γ be the set of formulas true in
v. Clearly, Γ is consistent with KSa(M,w). M is saturated so there must
be a world u in [M,w]a that satisfies all formulas in Γ. But this means that
u and v satisfy exactly the same formulas. So M is not distinguishing. We
conclude that, if M is finite and distinguishing, then it must be saturated
and tight. �

The class of saturated and distinguishing models clearly subsumes the
class of finite and distinguishing models, but is itself subsumed by the class
of tight and saturated models. Interestingly, a model is saturated and distin-
guishing if and only if it is a generated submodel of the so-called canonical
model. To show this, let us first recall the relevant definitions, which are all
standard in modal logic [7].

A set of LK-formulas Σ is maximally consistent iff it is consistent and
for all ϕ ∈ LK , either ϕ ∈ Σ or ¬ϕ ∈ Σ. Note that the theory of a pointed
model is always maximally consistent. The canonical model M c is a triple
(W c, Rc, V c) where:

W c = {wΣ | Σ is a maximally consistent set of LK-formulas}
Rc(a) = {(wΣ, wΔ) | Kaϕ ∈ Σ implies ϕ ∈ Δ}
V c(wΓ) = {p ∈ P | p ∈ Σ}

It is a well-known result that for every ϕ ∈ LK , M c, wΣ � ϕ iff ϕ ∈ Σ.
Given a model M = (W,R, V ) and a set of worlds X ⊆ W , the model
M |X = (X,R|X,V |X) is called the restriction of M to X. M |X is a
generated submodel of M iff, whenever w ∈ X and v ∈ [M,w]a for some
a ∈ A, then also v ∈ X. So a generated submodel is a submodel that
preserves information states.
Finally, two models (M,w) and (M ′, w′) are isomorphic, M,w ∼= M ′, w′, iff
there is a bijective bisimulation (i.e., an isomorphism) Z between M and
M ′ such that wZw′.

Proposition 1.6 A model is saturated and distinguishing iff it is isomor-
phic to a generated submodel of the canonical model.
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Proof. Let M = (W,R, V ) be a model.
(⇒) Suppose M is saturated and distinguishing. Then, every world

in M has a unique, maximally consistent theory, and therefore uniquely
corresponds to a world in M c. Let W ′ be the set of all worlds w′ in M c that
correspond to a world w in M , and let M ′ = (W ′, R′, V ′) be the restriction
of M c to W ′. We show (1) that M ′ is a generated submodel of M c and (2)
that M and M ′ are isomorphic.

For (1), suppose that w′ ∈ W ′ and (w′, v′) ∈ Rc(a) for some a ∈ A and
some v′ ∈ W c. We must show that v′ ∈ W ′. By definition of the canonical
model v′ satisfies every formula in KSa(M c, w′). So Γ(M c, v′) is consistent
with KSa(M c, w′), and therefore also with KSa(M,w). Then, by epistemic
saturation of M , Γ(M c, v′) must be satisfiable in [M,w]a. But this means
that [M,w]a must contain a world v with Γ(M c, v′) as its theory. It follows
that v′ is in W ′, and thus, that M ′ is a generated submodel of MA,P .

For (2), let Z be the bijection that relates every world w ∈ W with its
corresponding world w′ ∈ W ′. Clearly, w and w′ satisfy the same proposition
letters. It remains to check the back and forth clauses. We do the forth
clause; the back clause is completely analogous. Let a ∈ A and v ∈ [M,w]a.
Clearly, Γ(M, v) is consistent with KSa(M,w), and therefore Γ(M ′, v′) is
also consistent with KSa(M,w). But then, by definition of the canonical
model, v′ ∈ [M ′, w′]a, as desired.

(⇐) SupposeM is isomorphic to a generated submodelM ′ = (W ′, R′, V ′)
of M c. It is clear that no two worlds in M can have the same theory, so M
must be distinguishing. To show that M is saturated it suffices to show that
M ′ is saturated. M c is well-known to be saturated [7]. Moreover, generated
submodels it preserve information states and saturation thereof. So M ′ and
M are saturated. �

We are not aware of any earlier statements of this result, although Fine [14]
made several observations in this direction, and we would not be surprised if
others had proven similar results, be it for different purposes and presumably
in terms of modal saturation rather than epistemic saturation.

1.2.4 A Complete Characterization of Full Communication

So far, we have established that finite, distinguishing models are canoni-
cal, that canonical models are saturated and tight, and that saturation and
tightness are sufficient conditions for compliance with the principle of full
communication. Now we could ask whether they are also necessary, that is,
whether all models in which distributed knowledge complies with the princi-
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ple of full communication are saturated and tight. The answer is no. To see
this, reconsider the proof of proposition 1.3. The role of saturation here is
to ensure that every LK-formula ϕ that is consistent with the knowledge set
of a group of agents is satisfiable in the information state of every agent in
the group. Saturation is sufficient here, but not necessary: it is concerned
with sets of formulas, where it could equally well just be concerned with
single formulas. Then, once it has been established that ϕ is satisfiable in
the information state of every agent in the group, the role of tightness is to
ensure that there is at least one world satisfying ϕ which is contained in the
information state of all agents in the group. Again, tightness is sufficient
to fulfil this role, but not necessary. These observations give rise to the
following definition:

Definition 1.7 (Full Communication Model) A model M = (W,R, V )
is a full communication model iff for all w ∈ W and all B ⊆ A, every
LK-formula that is consistent with KSB(M,w) is satisfiable in [M,w]B.

Notice that full models, as defined by Gerbrandy, are full communication
models: where Gerbrandy quantifies over sets of LD-formulas, we quantify
over single LK-formulas. The following proposition establishes that tight
and saturated models are full communication models as well.

Proposition 1.8 Tight and saturated models are full communication mod-
els.

Proof. Let M be tight and saturated, w in M , B ∈ A, and Σ a set of
LK-formulas that is consistent with KSB(M,w). We must show that Σ
is satisfiable in [M,w]B. Let a ∈ B. Then Σ ∪ KSB(M,w) is consistent
with KSa(M,w), so by saturation of M , [M,w]a must contain a world wa

that satisfies all formulas in Σ ∪ KSB(M,w). Thus, wa is consistent with
KSb(M,w) for all b ∈ B, and by tightness of M , we must have wa ∈ [M,w]b
for all b ∈ B. This means that wa ∈ [M,w]B. So Σ is satisfiable in [M,w]B
which means that M is a full communication model. �

Now we prove that distributed knowledge complies with the principle of
full communication in full communication models, and moreover, that full
communication models are the only models in which distributed knowledge
complies with the principle of full communication.

Proposition 1.9 Distributed knowledge complies with the principle of full
communication in M if and only if M is a full communication model.
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Proof. The if part was, implicitly, already established by Gerbrandy [16]:
suppose M is a full communication model, w a world in M , B a group of
agents, and ϕ a formula in LK that is not entailed by KSB(M,w). Then ¬ϕ
is consistent with KSB(M,w), and therefore, as M is a full communication
model, ¬ϕ is satisfiable in [M,w]B. But this means that ϕ cannot be dis-
tributed knowledge among B in (M,w). So distributed knowledge complies
with the principle of full communication in M .

For the only if part, suppose that M is not a full communication model.
Then, for some w in M and some B ⊆ A, there is a formula ϕ in LK that is
consistent with KSB(M,w) but not satisfiable in [M,w]B. For this to be the
case, ¬ϕ must not be entailed by KSB(M,w). On the other hand, ¬ϕ must
hold throughout [M,w]B and therefore be distributed knowledge among B
in (M,w). So distributed knowledge does not comply with the principle of
full communication in M . �

1.2.5 Conclusion

Van der Hoek, van Linder, and Meyer [43] as well as Gerbrandy [16] observed
that distributed knowledge does not always comply with the principle of full
communication. They also observed that distributed knowledge does comply
with the principle in finite, distinguishing models, in locally distinguishing
models, and in full models. It was not clear, however, why these properties
were sufficient and whether they were necessary for compliance with the
principle of full communication.

We established the following hierarchy of models in which distributed
knowledge complies with the principle of full communication:

full communication models

saturated and tight

saturated and distinguishing

finite and distinguishing
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Our point of departure was the class of saturated and tight models, in which
every agent’s information state contains all worlds that are consistent with
her knowledge set. We established that this class contains all finite and dis-
tinguishing models and all canonical (saturated and distinguishing) models.
On the other hand, it is subsumed by the class of full communication mod-
els, which was shown to consist of all models in which distributed knowledge
complies with the principle of full communication. Interestingly, the char-
acteristic property of full communication models turned out to be a weak
version of Gerbrandy’s fullness property. One more thing to notice about the
hierarchy above is that less restrictive properties are concerned with more
fine-grained structural aspects of a model. Finiteness and distinguishabil-
ity are concerned with the structure of a model as a whole, saturation and
tightness are concerned with information states of individual agents, and
full communication models impose restrictions on the information states of
groups of agents. Distributed knowledge itself is defined in terms of infor-
mation states of groups of agents. In the light of this observation it is not so
surprising that finiteness, distinguishability, tightness, and saturation only
led to a partial characterization of the class of full communication models.

As a final remark we would like to point out that the principle of full
communication considered here presupposes a particular kind of communi-
cation, namely private communication. Other kinds of communication may
be considered as well. Van Benthem [39], for example, is interested in the
information that can be obtained by a group of agents through public com-
munication. Parikh and Pacuit [25] are interested in the information that
can be established by a group of agents relative to a restricted communica-
tion network. Chapter 4 and 5 of [28] are also relevant in this respect. In
general, a dynamic view on epistemic logic [46] gives rise to many interesting
notions of group knowledge, most of which remain to be explored. We leave
such explorations for another occasion, however, and now turn to the second
topic of the chapter.

1.3 Expressive Power

Bisimulation, which was introduced in a general modal setting by van Ben-
them [37], is a standard measure of structural equivalence between epistemic
models. Intuitively, two pointed models are bisimilar iff (1) they assign the
same truth values to all proposition letters and (2) they assign equivalent
information states to all agents.

Definition 1.10 (Bisimulation) Let M = (W,R, V ) and M ′ = (W ′, R′, V ′)
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be two epistemic models. A non-empty relation Z ⊆ W ×W ′ is a bisimula-
tion between M and M ′ iff for every w ∈ W and w′ ∈ W ′ such that wZw′

we have:

1. V (w) = V ′(w′)

2. For every agent a ∈ A:

forth ∀v ∈ [M,w]a : ∃v′ ∈ [M ′, w′]a : vZv′
back ∀v′ ∈ [M ′, w′]a : ∃v ∈ [M,w]a : vZv′

Two pointed models (M,w) and (M ′, w′) are bisimilar, (M,w) 
 (M ′, w′),
if and only if there is a bisimulation Z between M and M ′ such that wZw′.

Bisimilarity matches the expressive power of the basic epistemic language: if
(M,w) 
 (M ′, w′) then (M,w) and (M ′, w′) satisfy the same LK-formulas.
The language with distributed knowledge operators, however, is more ex-
pressive. To see this, consider the models depicted in figure 1.1 and 1.2
(where all accessibility relations are equivalence relations).

w

x y

z

a b

b a

p

p

¬p ¬p

Figure 1.1: Model M .

u

v

a b

p

¬p

Figure 1.2: Model N .

(M,w) and (N, u) are bisimilar, but do not satisfy the same formulas in LD.
For example, with B = {a, b} we have:

M,w � DBp
N, u � DBp

Is there a natural extended notion of bisimulation that matches the expres-
sive power of distributed knowledge operators? This question is the first of
a list of open problems recently put together by van Benthem [40]. Section
1.3.1 proposes an extended notion of bisimulation, and proves its adequacy.
Section 1.3.2 investigates related model comparison games, and section 1.3.3
explores a corresponding notion of saturation.
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1.3.1 Collective Bisimulation

Bisimilarity requires two models to associate equivalent information states
with every single agent. But distributed knowledge involves information
states of groups of agents. Thus, in order to obtain a suitable notion of
bisimulation, it seems natural to require two models to associate equivalent
information states not just with every individual agent, but with every group
of agents.

Definition 1.11 (Collective Bisimulation) Let M = (W,R, V ) and M ′ =
(W ′, R′, V ′) be two models. A non-empty relation Z ⊆ W ×W ′ is a collec-
tive bisimulation between M and M ′ iff for every w ∈ W and w′ ∈ W ′ such
that wZw′:

1. V (w) = V ′(w′)

2. For every group of agents B ⊆ A:

forth ∀v ∈ [M,w]B : ∃v′ ∈ [M ′, w′]B : vZv′
back ∀v′ ∈ [M ′, w′]B : ∃v ∈ [M,w]B : vZv′

Two models (M,w) and (M ′, w′) are collectively bisimilar, (M,w) 
c (M ′, w′),
iff there is a collective bisimulation Z between M and M ′ such that wZw′.

Collective bisimilarity generalizes ordinary bisimilarity. The latter only
requires the back and forth conditions to hold for singleton groups of agents.
So if two models are collectively bisimilar, then they are also bisimilar, but
not vice versa: the models depicted in figure 1.1 and 1.2, for example, are
bisimilar, but not collectively bisimilar.

We now show that collective bisimulation indeed matches the expressive
power of LD and establish some of its basic properties.

Proposition 1.12 (Adequacy) If two pointed models are collectively bisim-
ilar, then they satisfy exactly the same formulas in LD.

Proof. Let M = (W,R, V ) and M ′ = (W ′, R′, V ′) be two models and let
w ∈ W and w′ ∈ W ′ be such that (M,w) 
c (M ′, w′). We must prove that
for every ϕ ∈ LD:

M,w � ϕ iff M ′, w′ � ϕ

Clearly, it suffices to prove either the if or the only if part of the statement.
We do the latter by induction on the complexity of ϕ. The base case and the
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induction steps for negation, conjunction and individual knowledge opera-
tors are standard [7]. Here is the induction step for distributed knowledge
operators. Let ϕ be of the form DBψ and suppose that M,w � DBψ. Then
M, v � ¬ψ for some v ∈ [M,w]B. As (M,w) 
c (M ′, w′), there is a world
v′ ∈ [M ′, w′]B such that (M, v) 
c (M ′, v′). By the induction hypothesis,
then, M ′, v′ � ¬ψ, and thus M ′, w′ � DBψ. �

Proposition 1.13 Collective bisimulation is an equivalence relation.

Proof. Reflexivity and symmetry are clear. Transitivity amounts to:

(M,w) 
c (M ′, w′) and (M ′, w′) 
c (M ′′, w′′) imply (M,w) 
c (M ′′, w′′)

Let Z be a collective bisimulation between (M,w) and (M ′, v′), and let
Z ′ be a collective bisimulation between (M ′, w′) and (M ′′, v′′). Then the
relation Z ′′ between worlds in M and worlds in M ′′ given by {(w,w′′) |
∃w′ ∈ M ′ : wZw′ and w′Z ′w′′} is a collective bisimulation between (M,w)
and (M ′′, v′′). To see this, first observe that (M,w) and (M ′′, v′′) should
satisfy the same proposition letters, by (M,w) 
c (M ′, w′) and (M ′, w′) 
c

(M ′′, w′′). Now let v be a world in [M,w]B for some arbitrary group of
agents B. Then, by (M,w) 
c (M ′, w′), there is a world v′ in [M ′, w′]B
such that vZv′. Moreover, by (M ′, w′) 
c (M ′′, w′′), there is a world v′′ in
[M ′′, w′′]B such that v′Z ′v′′. Then, by definition of Z ′′, we have vZ ′′v′′. This
establishes the forth clause. The back clause can be proven analogously. So
we may conclude that Z ′′ is a collective bisimulation between (M,w) and
(M ′′, w′′). �

Proposition 1.14 The set of collective bisimulations between any two mod-
els is closed under taking arbitrary (finite or infinite) unions.

Proof. Let {Zi | i ∈ I} be a non-empty set of collective bisimulations
between two models M and M ′. To show that Z =

⋃
i∈I Zi is again a

collective bisimulation between M and M ′, let w in M and w′ in M ′ be any
two worlds such that wZw′. Then we must have wZiw

′ for some i ∈ I. Now
let v be a world in [M,w]B for some arbitrary group of agents B. Then,
there must be a world v′ in [M ′, w′]B such that vZiv

′. But vZiv
′ means that

vZv′ holds as well. This establishes the forth clause, and the back clause
can be proven analogously. We conclude that Z is a collective bisimulation
between M and M ′. �
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Corollary 1.15 If there is a collective bisimulation between two models M
and M ′, then there is always a maximal collective bisimulation between M
and M ′: one that includes all other collective bisimulations between M and
M ′.

Proof. Take the union of all collective bisimulations between M and M ′.
By proposition 1.14, this is again a collective bisimulation between M and
M ′ and clearly, it includes all others. �

1.3.2 Model Comparison Games

If two models are bisimilar, then they satisfy exactly the same formulas
in LK . The opposite is only true for certain special classes of models. If
two finite models, for example, satisfy the same formulas in LK , then they
are bisimilar. However, infinite models may very well satisfy exactly the
same formulas in LK even though they are not bisimilar. Intuitively, this is
because whether or not a model (M,w) satisfies a formula ϕ only depends
on worlds in M that can be reached from w in a finite number of steps along
the accessibility relations in M . This number of relevant steps is bounded
by the so-called modal depth of ϕ.

Definition 1.16 (Modal Depth) The modal depth d(ϕ) of a formula ϕ ∈
LK is defined recursively as follows:

d(p) = 0 for all p ∈ P
d(¬ϕ) = d(ϕ)
d(ϕ ∧ ψ) = max(d(ϕ), d(ψ))
d(Kaϕ) = d(ϕ) + 1 for all a ∈ A

Now, for two models (M,w) and (M ′, w′) to satisfy the same formulas in
LK it is sufficient that (M,w) and (M ′, w′) satisfy the same proposition
letters and that for every finite path starting from w in M , we can find a
corresponding path starting from w′ in M ′ (and vice versa). Bisimulation
requires something stronger, namely that (M,w) and (M ′, w′) satisfy the
same proposition letters and that for every (possibly infinite) path starting
from w in M , we can find a corresponding path starting from w′ in M ′ (and
vice versa). This is why two infinite models that satisfy the same formulas
in LK are not necessarily bisimilar.

Model comparison games can be seen as finite approximations of a bisim-
ulation. A model comparison game is played on two models, say (M,w) and
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(M ′, w′), by two players called spoiler and duplicator, and consists of a fixed
number of rounds. Spoiler tries to establish that (M,w) and (M ′, w′) satisfy
different formulas; duplicator tries to show that they satisfy exactly the same
formulas. The number of rounds of the game yields a bound on the length
of the paths starting from w in M and from w′ in M ′ that are available to
spoiler as possible evidence for a structural difference between M and M ′.
If spoiler cannot win the n-round model comparison game on (M,w) and
(M ′, w′), then these models satisfy exactly the same formulas in LK up to
depth n. So if duplicator has a winning strategy for all model comparison
games on (M,w) and (M ′, w′), then (M,w) and (M ′, w′) satisfy the same
LK-formulas of arbitrary depth. And now the converse also holds: if (M,w)
and (M ′, w′) satisfy the same LK-formulas, then duplicator has a winning
strategy for all model comparison games on (M,w) and (M ′, w′). This works
out because games themselves have a finite number of rounds (just like for-
mulas have finite modal depth), but for every n, there is a game with n
rounds (just as for every n, there are formulas with modal depth n). Model
comparison games characteristic for LK are standard and can be found, for
example, in [46]. Here, we define model comparison games characteristic for
LD, called LD-games, and show that duplicator has a winning strategy in
all LD-games on two models iff those two models satisfy exactly the same
LD-formulas. Just as LK-games can be seen as finite approximations of a
bisimulation, LD-games can be seen as finite approximations of a collective
bisimulation.

Definition 1.17 (LD-games) Let M = (W,R, V ) and M ′ = (W ′, R′, V ′)
be two models, let w ∈ W and let w′ ∈ W ′. The rules of the n-round
LD-game on (M,w) and (M ′, w′) are as follows:

1. If n = 0 then duplicator wins iff V (w) = V ′(w′).

2. If nnot = 0 then spoiler can do either one of the following moves:

forth-move Spoiler picks a group of agents B ⊆ A and a world v ∈
[M,w]B. Duplicator responds by picking a world v′ ∈ [M ′, w′]B.
The rest of the game is the (n−1)-round LD-game on (M, v) and
(M ′, v′).

back-move Spoiler picks a group of agents B ⊆ A and a world v′ ∈
[M ′, w′]B. Duplicator responds by picking a world v ∈ [M,w]B.
The rest of the game is the (n−1)-round LD-game on (M, v) and
(M ′, v′).
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3. If a player cannot make any further move, she loses the game.

Proposition 1.18 Let (M,w) and (M ′, w′) be two models, and let P be
finite. Then (M,w) and (M ′, w′) satisfy exactly the same LD-formulas iff
for all n ≥ 0, duplicator has a winning strategy for the n-round LD-game
on (M,w) and (M ′, w′).

Proof. Define the depth d(ϕ) of a formula ϕ ∈ LD just as for formulas in
LK (see definition 1.16) with the following additional clause:

d(DBϕ) = d(ϕ) + 1 for all B ⊆ A
Write (M,w) ≡n (M ′, w′) iff (M,w) and (M ′, w′) satisfy exactly the same
formulas in LD with depth n. Observe that, as P and A are both assumed
to be finite, for every n ≥ 0, there are only finitely many formulas with
depth n, up to logical equivalence. Now we prove, by induction on n, that
duplicator has a winning strategy for the n-round LD-game on (M,w) and
(M ′, w′) iff (M,w) ≡n (M ′, w′).

The base case (n = 0) follows directly from the definitions.
The induction step involves two directions, which we treat separately:
(⇒) Suppose duplicator has a winning strategy for the (n+1)-round LD-

game on (M,w) and (M ′, w′). Then we must show that for all ϕ ∈ LD such
that d(ϕ) = n+ 1, we have M,w � ϕ iff M ′, w′ � ϕ. We do so by induction
on ϕ, and only treat the non-standard case in which ϕ is of the form DBφ,
where d(φ) = n. Suppose M,w � DBφ. We show that M ′, w′ � DBφ must
hold as well: let v′ be any world in [M ′, w′]B. Suppose spoiler chooses v′

in a first back-move of the (n+ 1)-round LD-game on (M,w) and (M ′, w′).
Then, by assumption, duplicator can pick a world v in [M,w]B such that
she (duplicator) has a winning strategy for the remaining n-round LD-game
on (M, v) and (M ′, v′). By the induction hypothesis, (M, v) ≡n (M ′, v′).
In particular, we have that M ′, v′ � φ, and as v′ was an arbitrary world in
[M,w]B, we may conclude that M ′, w′ � DBφ.

(⇐) Now suppose that (M,w) ≡n+1 (M ′, w′). We must show that dupli-
cator has a winning strategy in the (n+ 1)-round LD-game on (M,w) and
(M ′, w′). Suppose spoiler starts with a back-move and picks a world v′ in
[M ′, w′]B. Now, toward a contradiction, suppose that there is no world v in
[M,w]B such that (M, v) ≡n (M ′, v′) (which is what duplicator needs for a
winning strategy). Then, for every v in [M,w]B, there is a formula ψv ∈ LD

of depth n such that M, v � ψv but M ′, v′ � ψv. Define:

ψw =
∨

v∈[M,w]B

ψv
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We observed that there are only finitely many formulas with depth n, up to
logical equivalence. So ψw corresponds to a finite disjunction, again of depth
n. We have M,w � DBψw, but M ′, w′ � DBψw, even though d(DBψw) =
n + 1. This contradicts our assumption that (M,w) ≡n+1 (M ′, w′). So we
may conclude that duplicator has a winning strategy for the (n+ 1)-round
LD-game on (M,w) and (M ′, w′). �

1.3.3 Saturation and Fullness

Recall the notions of saturation and fullness from section 1.2. A model is
saturated iff every set of LK-formulas that is consistent with the knowl-
edge set of a single agent is satisfiable in the information state of that sin-
gle agent. A model is full iff every set of LD-formulas that is consistent
with the knowledge set of a group of agents is satisfiable in the information
state of that group of agents. Notice that fullness generalizes saturation just
like collective bisimulation generalizes ordinary bisimulation and distributed
knowledge operators generalize individual knowledge operators: where satu-
ration, bisimulation, and individual knowledge operators are concerned with
the information states of individual agents, fullness, collective bisimulation
and distributed knowledge operators are concerned with the information
states of groups of agents.

There is an important and well-known connection between saturation,
bisimilarity, and the expressive power of LK : saturated models are bisimilar
iff they satisfy the same LK-formulas [7]. The following proposition estab-
lishes a similar connection between fullness, collective bisimilarity, and the
expressive power of LD.

Proposition 1.19 Full models are collectively bisimilar iff they satisfy the
same LD-formulas.

Proof. Proposition 1.12 already established that, in general, collectively
bisimilar models satisfy the same formulas in LD. Here, we show that full
models which satisfy the same formulas in LD are collectively bisimilar. Let
M and M ′ be full, and let w in M and w′ in M ′ be such that (M,w) and
(M ′, w′) satisfy the same formulas in LD. Let Z be the relation between
W and W ′ that consists of all pairs of worlds that satisfy exactly the same
formulas in LD. Clearly, wZw′. We will show that Z is a collective bisimu-
lation between M and M ′. To do so, let B be an arbitrary group of agents
and let v be any world in [M,w]B. Let Γ be the set of LD-formulas true in
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v. Then Γ is consistent with KSB(M,w), and therefore also consistent with
KSB(M ′, w′). As M ′ is full, Γ must be satisfiable in [M ′, w′]B. But this
means that there must be a world v′ in [M ′, w′]B that satisfies exactly the
same LD-formulas as v. So we have vZv′, which means that Z is indeed a
collective bisimulation between M and M ′. �

This can be taken a bit further. The following propositions establish that
full models are collectively bisimilar iff they are bisimilar and that with
respect to full models, LD has no more expressive power than LK .

Proposition 1.20 Full models are bisimilar iff they are collectively bisimi-
lar.

Proof. Clearly, collectively bisimilar models are always bisimilar. We must
show that full, bisimilar models are always collectively bisimilar. To do so,
let M and M ′ be full and let w in M and w′ in M ′ be such that (M,w)
and (M ′, w′) are bisimilar. Let Z be the maximal bisimulation between
(M,w) and (M ′, w′) (the existence of which is established in [7]). We will
show that Z is also a collective bisimulation between (M,w) and (M ′, w′).
To do so, let B be an arbitrary group of agents and let v be any world in
[M,w]B. Let Γ be the set of LD-formulas true in v. Then Γ is consistent
with KSB(M,w). (M,w) and (M ′, w′) are bisimilar, so they satisfy the same
formulas in LK . Therefore, Γ is also consistent with KSB(M ′, w′). M ′ is
full, so Γ must be satisfiable in [M ′, w′]B. This means that there must be
a world v′ in [M ′, w′]B that satisfies exactly the same LD-formulas as v. In
particular, v and v′ satisfy exactly the same LK-formulas. M and M ′ are
both saturated, so (M, v) and (M ′, v′) must be bisimilar. But then, as Z
was assumed to be maximal, we must have vZv′, and this establishes that
Z is indeed a collective bisimulation. �

Proposition 1.21 Full models satisfy the same formulas in LK iff they
satisfy the same formulas in LD.

Proof. Clearly, it is enough to prove the only if part. Let (M,w) and
(M ′, w′) be full. Suppose (M,w) and (M ′, w′) satisfy the same formulas in
LK . Since both models are saturated, they must be bisimilar [7]. Then,
by proposition 1.20, they must be collectively bisimilar. But then it follows
from proposition 1.12 that they must satisfy exactly the same formulas in
LD. �
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1.3.4 Conclusion

We have proposed an extended notion of bisimulation that matches the
expressive power of the basic epistemic language extended with distributed
knowledge operators. We have also defined related model comparison games
and established their adequacy. Finally, we showed that fullness generalizes
saturation just as collective bisimulation generalizes ordinary bisimulation
and established that full models are collectively bisimilar iff they are bisim-
ilar iff they satisfy exactly the same LK-formulas iff they satisfy exactly the
same LD-formulas. In particular, LD and LK have equal expressive power
with respect to full models.

As mentioned before, the issue addressed here is the first of a list of open
problems in a recent survey by van Benthem [40]. The model comparison
games defined here are variations on standard games for the basic modal
language as described, for instance, by van Ditmarsch, van der Hoek, and
Kooi in [46]. The connection between saturation, bisimulation, and the
expressive power of LK is a standard result in modal logic [7].



Chapter 2

Distributed Knowledge in
Dynamic Epistemic Logic

Dynamic epistemic logic deals with information change. It is the subject of
a lively field of research, with key contributions by Gerbrandy [16], Baltag,
Moss, and Solecki [3, 4], and van Ditmarsch [44]. A particularly attractive
system, called the logic of communication and change, LCC, has recently
been proposed by van Benthem, van Eijck, and Kooi in [42]. It takes propo-
sitional dynamic logic as its static point of departure, but does not consider
intersection modalities, which are needed to define distributed knowledge.
In this chapter, we show that intersection modalities can be incorporated
into the logic of communication and change in a straightforward way. We
will define LCC as in [42], merely highlighting the slight modifications in-
volved in adding intersection modalities. This chapter is meant to be read
along with [42]. The underlying intuitions provided there are not repeated
here.

2.1 Propositional Dynamic Logic

Language The basic language of propositional dynamic logic, PDL, con-
sists of formulas ϕ and relational symbols π:

ϕ := � | p | ¬ϕ | ϕ1 ∧ ϕ2 | [π]ϕ
π := a |?ϕ | π1;π2 | π1 ∪ π2 | π∗

This language can be extended with so-called intersection modalities. That
is, if π1 and π2 are relational symbols, then π1∩π2 is also a relational symbol.
The resulting language is denoted as PDL∩.

23
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Semantics. The semantics of formulas in PDL and PDL∩ is given in terms
of the models defined in the previous chapter, which are hereafter called
epistemic models. Formulas are interpreted as subsets of W , and relational
symbols are interpreted as binary relations on W :

[[�]]M = W
[[p]]M = {w ∈ W | p ∈ V (w)}
[[¬ϕ]]M = W \ [[ϕ]]M

[[ϕ1 ∧ ϕ2]]M = [[ϕ1]]M ∩ [[ϕ2]]M

[[[π]ϕ]]M = {w ∈ W | (w, v) ∈ [[π]]M implies v ∈ [[ϕ]]M}

[[a]]M = R(a)
[[?ϕ]]M = {(w,w) ∈ W ×W | w ∈ [[ϕ]]M}
[[π1;π2]]M = [[π1]]M ◦ [[π2]]M

[[π1 ∪ π2]]M = [[π1]]M ∪ [[π2]]M

[[π1 ∩ π2]]M = [[π1]]M ∩ [[π2]]M

[[π∗]]M = ([[π]]M )∗

[[π1]]M ◦ [[π2]]M is the composition of [[π1]]M and [[π2]]M , and ([[π]]M )∗ is
the reflexive transitive closure of [[π]]M . PDL∩ is decidable [10] and has a
complete axiomatization [2].

It is possible to describe various kinds of group knowledge in PDL∩.
[
⋃

a∈B a]ϕ, for example, means that ϕ holds in all worlds that any agent in B
considers possible, i.e., that every agent in B knows ϕ. This is traditionally
written as EBϕ. [(

⋃
a∈B a)

∗]ϕ means that every agent in B knows ϕ, that
every agent in B knows that every agent in B knows ϕ, and so on, i.e., that
ϕ is common knowledge among B. This is traditionally written as CBϕ.
Finally, [

⋂
a∈B a]ϕ means that ϕ holds in every world that all agents in B

consider possible, i.e., that ϕ is distributed knowledge among B. This, as we
saw in the previous chapter, is traditionally written as DBϕ.

2.2 Update Models

In LCC, epistemic models are used to represent the agents’ information, and
so-called update models are used to represent information bearing events.
To define update models we need the following notion:

Substitutions. A substitution for a language L is a function of type
L → L that distributes over all language constructs, and maps all but a
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finite number of proposition letters to themselves. Let ε denote the empty
substitution, and let SubL denote the set of all substitutions for L.

Update Models. An update model for a finite set of agents A and a
language L is a quadruple U = (E,R, pre, sub), where E is a finite non-empty
set of events, R is a family of accessibility relations, one for every agent
a ∈ A, pre associates every event with a precondition, and sub associates
every event with a substitution for L:

E = {e0, . . . , en−1}
R = {R(a) ⊆ E × E | a ∈ A}
pre = {pre(e) ∈ L | e ∈ E}
sub = {sub(e) ∈ SubL | e ∈ E}

If U = (E,R, pre, sub) is an update model and e ∈ E, then (U, e) is called a
pointed update model, and e is called its actual event.

Executability. Let M = (W,R, V ) be an epistemic model for A and P,
and let w ∈ W . Let U = (E,R, pre, sub) be an update model for A and any
language L that can be interpreted in epistemic models for A and P. Then
an event e ∈ E is called executable in (M,w) if and only if M,w � pre(e).

Execution. Let M , w, and U be as above, and let e ∈ E be executable in
(M,w). Then the result of executing (U, e) in (M,w) is the epistemic model
M ⊗ U = (W ′, R′, V ′) where:

W ′ = {(w, e) ∈ W × E | M, w � pre(e)}
R′(a) = {((w, e), (w′, e′)) | (w,w′) ∈ R(a) and (e, e′) ∈ R(a)}
V ′(p) = {(w, e) ∈ W ′ | M,w � sub(e)(p)}

and which has (w, e) as its actual world.

2.3 The Logic of Communication and Change

Language. The basic language LCC and the extended language LCC∩ are
obtained from PDL and PDL∩, respectively, by adding a clause for update
execution: if (U, e) is a pointed update model, then [U, e]ϕ is a formula
expressing that ϕ must be the case after successful execution of (U, e).
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Semantics. The semantics of LCC and LCC∩ is obtained from the seman-
tics of PDL and PDL∩, respectively, by adding the following clause for update
execution:

[[ [U, e]ϕ ]]M = {w ∈ W | M,w � pre(e) implies (w, e) ∈ [[ϕ]]M⊗U}

2.4 Expressive Power and Reduction Axioms

A truth-preserving translation from formulas in LCC to formulas in PDL
is provided in [42]. The existence of this translation establishes that these
two languages are equally expressive. We will show how to extend this
translation to one from LCC∩ to PDL∩.

The main challenge is to translate formulas of the form [U, ei][π]ϕ to
equivalent formulas of the form

∧n−1
j=0 [TU

ij (π)][U, ej ]ϕ, where the TU
ij operators

transform every π-path in M ⊗U that starts in (w, ei) and ends in (v, ej) to
a corresponding path from w to v in the original epistemic model M . We
define the TU

ij transformers as in [42], with an extra clause for intersection
modalities:

TU
ij (a) =

{
?pre(ei); a if (ei, ej) ∈ R(a)
?⊥ otherwise

TU
ij (?φ) =

{
?(pre(ei) ∧ [U, ei]φ) if i = j,
?⊥ otherwise

TU
ij (π1;π2) =

n−1⋃
k=0

(TU
ik(π1);TU

kj(π2))

TU
ij (π1 ∪ π2) = TU

ij (π1) ∪ TU
ij (π2)

TU
ij (π1 ∩ π2) = TU

ij (π1) ∩ TU
ij (π2)

TU
ij (π

∗) = KU
ijn(π)

where KU
ijn(π) is exactly as in [42], definition 26. To prove that:

M,w � [U, ei][π]ϕ ⇔ M,w �
n−1∧
j=0

[TU
ij (π)][U, ej ]ϕ

it is sufficient to show that:

(w, v) ∈ [[TU
ij (π); ?pre(ej)]]M ⇔ ((w, ei), (v, ej)) ∈ [[π]]M⊗U

This equivalence, to which we shall refer as (#), is established in [42] by
induction on the complexity of π. We provide the additional induction step
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for intersection modalities (which is analogous to the induction step for
union modalities in [42]). Assume that (#) holds for π1 and π2. Then:

(w, v) ∈ [[TU
ij (π1 ∩ π2); ?pre(ej)]]M

⇔ (w, v) ∈ [[(TU
ij (π1) ∩ TU

ij (π2)); ?pre(ej)]]M

⇔ (w, v) ∈ [[(TU
ij (π1); ?pre(ej)) ∩ (TU

ij (π2); ?pre(ej))]]M

⇔ (w, v) ∈ [[TU
ij (π1); ?pre(ej)]]M and (w, v) ∈ [[TU

ij (π2); ?pre(ej)]]M

⇔ (IH) ((w, ei), (v, ej)) ∈ [[π1]]M⊗U and ((w, ei), (v, ej)) ∈ [[π2]]M⊗U

⇔ ((w, ei), (v, ej)) ∈ [[π1 ∩ π2]]M⊗U

This establishes that LCC∩ and PDL∩ are equally expressive. Moreover,
it leads to a sound and complete proof system for LCC∩ consisting of the
proof system for PDL∩ provided in [2] plus a number of so-called reduction
axioms. The reduction axioms for LCC∩ are exactly the same axioms that
can be found in [42] for LCC:

[U, e]� ↔ �
[U, e]p ↔ (pre(e) → sub(e)(p))
[U, e]¬ϕ ↔ (pre(e) → ¬[U, e]ϕ)
[U, e](ϕ1 ∧ ϕ2) ↔ ([U, e]ϕ1 ∧ [U, e]ϕ2)
[U, ei][π]ϕ ↔ ∧n−1

j=0 [TU
ij (π)][U, ej ]ϕ

2.5 Specific Communication Types

Some specific types of communication, such as public announcements and
private messages to subgroups, are of special interest in dynamic epistemic
logic. Every specific communication type corresponds to a specific kind of
update model, which, in turn, gives rise to specific reduction axioms, in
which the general TU

ij operators do not appear anymore. Explicit reduction
axioms for common knowledge were derived in [42]. Here, we give explicit
reduction axioms for distributed knowledge. We treat two major communi-
cation types, that will also play a role in chapter 4.

Public announcements. A public announcement that ϕ is represented
by an update model ϕ! consisting of just one event e0 with precondition ϕ
and with accessibility relation {(e0, e0)} for all agents (see figure 2.1).
The reduction axiom that expresses the effect of ϕ! on distributed knowledge
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e0

A

ϕ

Figure 2.1: Public announcement that ϕ.

among B, can be derived as follows:

[ϕ!]DBψ ↔ [ϕ!][
⋂

a∈B a]ψ
↔ [Tϕ!

00 (
⋂

a∈B a)][ϕ!]ψ
↔ [

⋂
a∈B T

ϕ!
00 (a)][ϕ!]ψ

↔ [
⋂

a∈B(?pre(e0); a)][ϕ!]ψ
↔ [

⋂
a∈B(?ϕ; a)][ϕ!]ψ

↔ [?ϕ;
⋂

a∈B a][ϕ!]ψ
↔ (ϕ → [

⋂
a∈B a][ϕ!]ψ)

↔ (ϕ → DB[ϕ!]ψ)

As was already conjectured in [42], this reduction axiom is just like the fa-
miliar reduction axiom for individual knowledge: [ϕ!][a]ψ ↔ (ϕ → [a][ϕ!]ψ).

Private messages to subgroups. A private message to subgroup G that
ϕ is the case is represented by an update model consisting of two events e0

and e1 with precondition ϕ and �, respectively. Intuitively, e0 is the actual
event, whereas e1 is the event “nothing happens”. Agents in G know that
e0 is taking place, while all the other agents think that nothing happens.

e0 e1

G

A\G

A

ϕ �

As in [42], we use CCG
ϕ to denote this update model. The reduction axiom

that expresses the effect of CCG
ϕ on distributed knowledge among another
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subgroup B, can be derived as follows:

[CCG
ϕ , e0]DBψ ↔ [CCG

ϕ , e0][
⋂

a∈B a]ψ

↔ ([T
CCG

ϕ

00 (
⋂

a∈B a)][CC
G
ϕ , e0]ψ ∧ . . .

[T
CCG

ϕ

01 (
⋂

a∈B a)][CC
G
ϕ , e1]ψ)

↔ ([
⋂

a∈B(T
CCG

ϕ

00 (a))][CCG
ϕ , e0]ψ ∧ . . .

[
⋂

a∈B(T
CCG

ϕ

01 (a))][CCG
ϕ , e1]ψ)

↔ ([
⋂

a∈B∩G(?ϕ; a) ∩ ⋂
a∈B\G(?⊥)][CCG

ϕ , e0]ψ ∧ . . .
[
⋂

a∈B∩G(?⊥) ∩ ⋂
a∈B\G(?ϕ; a)][CCG

ϕ , e1]ψ)

Now, we consider three cases:

1. Suppose B ⊆ G. Then the axiom reduces to:

[CCG
ϕ , e0]DBψ ↔ [

⋂
a∈B(?ϕ; a)][CCG

ϕ , e0]ψ
↔ [(?ϕ;

⋂
a∈B a)][CC

G
ϕ , e0]ψ

↔ (ϕ → DB[CCG
ϕ , e0]ψ)

If B ⊆ G, then all agents in B are aware of the announcement. As
expected, the axiom says that after the announcement it is distrib-
uted knowledge among B that ψ is the case, if and only if before the
announcement it was distributed knowledge among B that should the
announcement be made, then ψ would become true.

2. Suppose B ⊆ A \G. Then the axiom reduces to:

[CCG
ϕ , e0]DBψ ↔ [

⋂
a∈B(?ϕ; a)][CCG

ϕ , e1]ψ
↔ [(?ϕ;

⋂
a∈B a)][CC

G
ϕ , e1]ψ

↔ (ϕ → DB[CCG
ϕ , e1]ψ)

↔ (ϕ → DBψ)

If B ⊆ A \G, then none of the agents in B is aware of the announce-
ment. As expected, the axiom says that after the announcement ψ
is distributed knowledge among B if and only if this was already the
case before the announcement.

3. Suppose B � G and B � A \G. Then we get:

[CCG
ϕ , e0]DBψ ↔ �

This result may seem surprising at first sight, but it has an intuitive
and interesting explanation. Namely, the result of privately informing
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M |ϕ M

B∩G

B\G

some agents in B (those that belong to G) about ϕ, while keeping the
others in the dark results in a true separation of beliefs.

As illustrated above, agents in B \G still believe they are in the orig-
inal model M , while agents in B ∩ G have in fact shifted to a new
model M |ϕ. As a consequence, there are no worlds in the overall re-
sulting model that all agents in B consider possible. In other words,
their collective information state is inconsistent, and therefore, every
formula whatsoever has become distributed knowledge among them.

2.6 Summary

We have shown that the logic of communication and change can be extended
so as to incorporate distributed knowledge and other intersection modalities.
The extension is straightforward, and leads to intuitive reduction axioms for
specific communication types.



Chapter 3

Communication Networks

We now move on to a more conceptual point. As mentioned before, dis-
tributed knowledge can be seen as the information that can be established
by a group of agents through a particular kind of communication: every
group member writes down everything he knows, and what follows from the
accumulated facts is distributed knowledge. Other, arguably more interac-
tive kinds of communication may also be considered. In particular, it would
be interesting to analyze which information can be established by a group
of agents relative to a restricted communication network. In this chapter,
dynamic epistemic logic is used and extended to analyze communication
relative to a communication network. Our aim is to outline a general frame-
work, in which agents may have incomplete knowledge of the structure of
the communication network, and in which the structure of the network itself
is changeable.

3.1 Networks

In many situations, the extent to which agents are able to communicate
with one another is restricted by their communication network. If agents
communicate by phone, for instance, then each agent can only talk to one
other agent at a time. If the communication medium is email, then whole
groups of agents can be reached at once. But it may be the case that one
email address is used by, say, a whole family of agents, so that it is impossible
to send a private email message to one family member without the others
finding out.

31
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Networks. A communication network N ⊆ ℘(A)×℘(A) for a set of agents
A is simply a set of communication channels (A,B) from one group of agents
A ⊆ A to another group of agents B ⊆ A.

3.2 A Logic of Communication Networks

We introduce a logic of communication networks, LCN, a subtle variation of
the logic of communication and change, LCC, discussed in chapter 2.

Language. The language LLCN
A,P is obtained from LLCC

A,P by adding desig-
nated proposition letters con(A,B) for every A,B ⊆ A, which are used to
describe the structure of the communication network. Intuitively, con(A,B)
means that the network contains a communication channel from A to B.

Update Models. Apart from general update models, we will consider
two special kinds of update models. Communication models will be used to
model communication relative to the communication network, and reconfig-
uration models will be used to model reconfigurations of the communication
network. Both kinds of special update models will be discussed below.

Semantics. The semantics for LCN is exactly as the semantics for LCC. In
particular, the clause for execution of an update model (U, e) in an epistemic
model M = (W,R, V ) is as follows:

M, w � [U, e]ϕ iff M,w � pre(e) implies M ⊗ U, (w, e) � ϕ

For general update models, M ⊗ U is defined exactly as for update models
in LCC. The communication network plays no role in this case. For com-
munication and reconfiguration models, M⊗U is defined in section 3.3 and
3.4, respectively. The proof system for LCN is just the same as that for LCC.

3.3 Communication

Communicative Events. Communicative events are distinguished from
general information carrying events by the property of being initiated by and
directed toward a particular group of agents. We define a communicative
event e for LLCN

A,P to be a triple (Ae, Be, ϕe) where:

• Ae ⊆ A is the group of agents that sends e,
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• Be ⊆ A is the group of agents that receives e,

• ϕe ∈ LLCN
A,P specifies the informational content of e.

Communication Models. A communication model for LLCN
A,P is an up-

date model U = (E,R, pre, sub) for LLCN
A,P where:

• E is a non-empty finite set of communicative events,

• R is a family of accessibility relations, one for every a ∈ A,

• pre(e) = con(Ae, Be) ∧ CAeϕe for every e ∈ E,

• sub(e) = ε for every e ∈ E.

What distinguishes communication models from other update models is that
(1) E contains only communicative events, (2) the preconditions associated
with an event are determined by the specification of that event itself, and
(3) all substitutions are empty.

Executability. A communicative event is executable if and only if its
preconditions are satisfied. A first precondition for a communicative event
e to take place is that the communication network supports communication
from Ae to Be. A second precondition is that ϕe is common knowledge
among the sending group of agents. Together, pre(e) = con(Ae, Be)∧CAeϕe.

Execution. Let M = (W,R, V ) be an epistemic model for A and P, with
w ∈ W . Let U = (E,R, pre, sub) be a communication model for LLCN

A,P , and
let e ∈ E be executable in (M,w). Then the result of executing (U, e) in
(M,w) is the epistemic model M ⊗ U = (W ′, R′, V ′) where:

W ′ = {(w, e) ∈ W × E | M, w � pree}
R′(a) = {((w, e), (w′, e′)) | (w,w′) ∈ R(a) and (e, e′) ∈ R(a)}
V ′((w, e)) = V (w)

with (w, e) as its actual world. Thus, the execution of a communicative
event model, unlike the execution of a general update model, depends on the
communication network. However, like the execution of a general update
model, it does not affect the communication network. The opposite is true
for reconfiguration models, to be defined next.
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3.4 Reconfiguration

Reconfigurations. A reconfiguration is a special kind of substitution,
namely, one that maps all but a number of designated proposition letters of
the form con(A,B) to itself. A reconfiguration can be represented as a set
of bindings:

{con(A,B) �→ ϕA,B | A,B ∈ A}
Intuitively, con(A,B) �→ ϕA,B means that a communication channel from A
to B is added to the network in all worlds that satisfy ϕA,B. In particular,
con(A,B) �→ � means that a channel from A to B is added everywhere,
con(A,B) �→ ⊥ means that the channel from A to B is removed everywhere,
con(A,B) �→ ¬con(A,B) means that a channel from A to B is added in
worlds where it was not present, but removed in worlds where it did exist,
and con(A,B) �→ con(A,B) means that the channel from A to B is left
untouched.

Reconfiguration Models. A reconfiguration model for LLCN
A,P is an update

model U = (E,R, pre, sub) for LLCN
A,P where:

• E is a non-empty finite set of reconfigurations,

• R is a family of accessibility relations, one for every a ∈ A,

• pre associates a precondition pre(e) ∈ LLCN
A,P with every e ∈ E,

• sub(e) = e for every e ∈ E.

What distinguishes a reconfiguration model from other update models is that
(1) E contains only reconfigurations, and (2) the substitution associated with
a reconfiguration is that reconfiguration itself.

Executability. A reconfiguration is executable if and only if its precondi-
tions are satisfied. Preconditions for reconfigurations are like preconditions
for events in general update models; there are no special restrictions.

Execution. Let M = (W,R, V ) be an epistemic model for A and P, with
w ∈ W . Let U = (E,R, pre, sub) be a reconfiguration model for LLCN

A,P , and
let e ∈ E be executable in (M, w). Then the result of executing (U, e) in
(M, w) is the epistemic model M ⊗ U = (W ′, R′, V ′) where:

W ′ = {(w, e) ∈ W × E | M, w � pree}
R′(a) = {((w, e), (w′, e′)) | (w,w′) ∈ R(a) and (e, e′) ∈ R(a)}
V ′(p) = {(w, e) ∈ W ′ | M,w � sub(e)(p)}
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with (w, e) as its actual world. Thus, the execution of a reconfiguration
model, unlike the execution of a general update model, affects the network.

3.5 Summary

The logic of communication networks we proposed only involved a minor ex-
tension of LCC. The main idea underlying our proposal is that communica-
tive events are distinguished from other events by their inherent property of
being initiated by and directed toward a particular group of agents.

The proposed framework seems to facilitate a very general analysis of
communication relative to a partially observable, changeable network. The
next chapter defines notions group knowledge relative to concrete instances
of the general communication networks discussed here.



Chapter 4

Communicative Power

In this chapter, we introduce a new notion of group knowledge, called po-
tential knowledge, and a more general notion called communicative power.
Both notions are conceived of relative to a communication network.

Just as specific communication types, there are specific network types
that seem to be of special interest. We propose a few major network types,
and investigate potential knowledge relative to these network types.

We leave many issues open in this chapter. Our main objective, for now,
is to introduce some relevant notions and sketch a plan for further research.

4.1 Communicative Power

We define a formula ϕ to be potential knowledge among a group of agents
B if there is some finite sequence of communicative events, all initiated
by subgroups of B, that establishes common knowledge of ϕ among B.
Potential knowledge is probably the most straightforward dynamic notion
of collective group knowledge.

A more general notion is what we call communicative power. A group
B has the communicative power to establish ϕ if there is a finite sequence
of communicative events, all initiated by subgroups of B, that yields ϕ.
We write PBϕ if B has the communicative power to establish ϕ. Potential
knowledge of ϕ among B can then be expressed as PBCBϕ. We may be
interested in weaker forms of communicative power, such as the power to
establish universal knowledge of ϕ. This can be expressed as PBEBϕ. But
we may also be interested in far more subtle forms of communicative power,
such as the power of a group of agents B to share a certain piece of infor-
mation ϕ without informing another agent a. This kind of communicative

36
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power plays a role in the russian cards problem [45]. It can be expressed as
PB(CBϕ ∧ ¬[a]ϕ).

Axiomatizing communicative power does not seem to be straightforward.
Moreover, the results in [24] cast serious doubt on its decidability. A possible
way to avoid this would be to consider bounded versions of communicative
power. Bounds on the number of communicative events, as well as bounds
on the modal depth of the communicated formulas may be considered.

4.2 Specific Network Types

Many situations involve special types of communication networks. Every
face-to-face group meeting, for example, involves a public broadcast network,
in which every group member can only publicly address the rest of the group
as a whole. Another type of network that is reminiscent of every day life
is the one-to-one private message passing network provided by telephone
operators. Other communication media, such as email, give rise to more
complicated communication networks.

It may be possible and useful to further systematize this spectrum of
specific network types. For now, we focus on a modest case study of potential
knowledge in public broadcast and private message passing networks.

4.3 Potential Knowledge and Public Broadcast

Van Benthem [39] already showed that if a public broadcast network is avail-
able in finite, distinguishing models, then it is always possible for a group
of agents B to communicate in such a way that the model is restricted to
its communicative core: the set of worlds that every member of B considers
possible. Clearly, everything that becomes common knowledge among B at
some point of the communication, will be common knowledge in the core.
Thus, for a finite, distinguishing model M = (W,R, V ) we have:

M,w � PBCBϕ iff CoreB(M,w) � ϕ

where CoreB(M,w) is the restriction of M to {v ∈ W | (w, v) ∈ ⋂
a∈B R(a)},

again with w as its actual world. To reach the core, just one announcement
per agent is needed. To see this, notice that for every world v in a distin-
guishing model M = (W,R, V ), there is a formula ϕv that is true in v and
no-where else in M . So, if a pointed model (M,w) is finite every agent a can
restrict it to her own information state by announcing

∨
v∈[M,w]a

ϕv. After
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all agents have done so, the model will be restricted to its communicative
core.

This result still holds in infinite models, as long as [M,w]a is finite for
all a and all w. If this is not the case, the core may not be reachable by a
finite sequence of announcements. Still, it determines a useful upper bound
for potential knowledge. We have:

M,w � PBCBϕ only if CoreB(M,w) � ϕ

This upper bound can be approximated by ever more lengthy sequences.

4.4 Potential Knowledge and Private Messages

We consider the three generals example discussed in [39]. Notice that this
example is not the same as the more familiar two generals scenario discussed,
for instance, in [20]. The latter scenario is used to show that unreliable
communication channels make it impossible to establish common knowledge.
We show that private message passing networks yield similar restrictions.

Generals. Let B = {a1, a2, a3} be a group of three generals with armies
on different hilltops, who plan to surprise their enemy in the plain below.
Only a1 has some piece of information p, which has to become common
knowledge to facilitate a joint attack.

The initial model for this situation is:

w v
a2,a3

p ¬p

The private message passing network only allows for one-to-one messages
(hereafter simply called messages), which are represented by communication
models (U,m) like the one depicted in figure 4.1, where m is a special kind of
communicative event of the form (sm, rm, ϕm), sent by sm ∈ B and received
by rm ∈ B. Notice that m completely determines (U,m). We will therefore
simply write m instead of (U,m).
It can be shown, by induction on the number of messages that may be sent,
that the generals do not have the communicative power to establish CBp.
It is clear that a single message can not establish CBp. Now, suppose that
there is no way for the generals to establish CBp with at most n messages.
This means that every model that is obtained from the original model by
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m ε

sm∪rm

B\{sm∪rm}

B

Figure 4.1: (U,m).

executing a sequence of n messages, still contains at least one B-path that
leads from the actual world to a world where p is false. Let M be such a
model, and let w be its actual world. Let m = (sm, rm, ϕm) be a message
that is executable in (M,w), and let um be the only general who is unaware
of m being sent (um /∈ {sm, rm}). The result of executing m in (M,w) is the
model:

M |m M |ε
um

where M |m is the restriction of M to worlds where ϕm is true, with accessi-
bility relations for sm and rm only, while M |ε is like the original model M ,
the only difference being that every world w has been renamed to (w, ε).
Every world in M |m is mistaken by um for the corresponding world in M |ε.
In particular, the actual world (w,m) is mistaken for (w, ε), and (w, ε) is still
connected by some B-path to a world where p is false. So, also after n+ 1
messages, CBp has not been established. By induction, then, we conclude
that the generals do not have the communicative power to establish CBp.

This example illustrates that the communication network between agents
can have important limitative effects on the agents’ communicative power.
Private message passing networks are ubiquitous, but it would of course be
interesting to consider other network types as well.

4.5 Knowledge over Time

Communicative power is about the possible manipulation of information by
agents over time. In that respect, it fits into a whole range of questions that
arise in a temporal perspective on epistemic logic. Communication networks
should play a role in addressing these questions. Another dimension, which
we did not mention here, is formed by communication protocols. These
can be seen as subsets of the possible branches through a space of evolving
epistemic models. In this perspective, the following kinds of issues arise:
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• Safety. Does a protocol assure that nothing bad happens?

• Eventuality. Does a protocol assure that something good happens?

• Power. Has group B the communicative power to establish ϕ?

• Limit behaviour. Does iterated communication converge to a stable
information state?

Safety and eventuality issues have been studied extensively in temporal
logic, especially motivated by applications of this logic to system verifi-
cation. Emerson [11] provides an overview of this work. Communicative
power is related with game theoretical power notions and logical treatments
thereof. Especially relevant are the formalization of group power in games
by Pauly [27] and the links between game theory and dynamic epistemic
logic described by van Benthem [38]. Limit behaviour of iterated commu-
nication is investigated in the work of Sadzik [33]. General treatments of
temporal epistemic frameworks can be found in [13] and [26].

4.6 Summary

We introduced a new notion of group knowledge, called potential knowledge,
and a more general notion called communicative power. Both notions were
conceived of relative to a communication network. We related the potential
knowledge of agents in public broadcast networks to the communicative
core of their information models, and showed that private message passing
networks impose important restrictions on agents’ communicative power.
In particular, we showed that common knowledge is unattainable in such
networks. Finally, we suggested that communicative power issues naturally
fall into a whole range of issues that arise in a temporal perspective on
epistemic logic. Probably, they should be further investigated within this
perspective.
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Chapter 5

Introduction

Some formalizations of distributed information and its dynamics take the
contextual nature of information as their point of departure. The most no-
table frameworks of this kind are the propositional logic of context developed
by McCarthy, Buvač and Mason [9, 21, 22], and the multi-context systems
devised by Giunchiglia, Serafini, and Ghidini [17, 18, 19]. These frameworks
have been compared from a technical viewpoint by Serafini and Bouquet
[35] and from a more conceptual perspective by Benerecetti et.al. [5].

Multi-context systems, which are reviewed in section 5.1, describe the
information available in a number of contexts (i.e., to a number of people,
agents, databases, etc.) and specify the inter-contextual information flow.
The so-called local model semantics defines a system to entail a certain piece
of information in a certain context, if and only if that piece of information
is acquired in that context, independently of how the information flow de-
scribed by the system is accomplished.

In chapter 6, it is shown that the local model semantics of a multi-context
system is completely determined by the information that is obtained when
simulating the information flow specified by the system, in such a way that
a minimal amount of information is deduced at each step of the simula-
tion. We define an operator that suitably implements such a simulation,
and thus determines the information entailed by the system. This operator
constitutes a first constructive account of the local model semantics.

In chapter 7, it is observed that, in its original formulation, the multi-
context system framework implicitly rests on the assumption that informa-
tion flow is deterministic. In many situations, this is not a suitable assump-
tion. In a multi-agent scenario, for example, upon establishing a certain
piece of information, an agent may decide to pass this information on to
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either one of a group of other agents. His choice as to which agent he will
inform could be made non-deterministically. Another typical situation in
which information flow is inherently non-deterministic is when the informa-
tion channels between different contexts are subject to temporary failure or
unavailability. Consider the case of online repositories. If information is
obtained in one repository, the protocol may be to pass this information on
to any one of a number of associated “mirror repositories”: if the commu-
nication channel with one of these is defective or temporarily unavailable,
another one is tried, until a successful communication is established.

The local model semantics can easily be adapted to account for non-
deterministic systems. However, if a system describes a non-deterministic
information flow, then the minimal information entailed by the system can-
not be determined unequivocally. We provide a way to generate from a
non-deterministic system a number of deterministic systems, the semantics
of which can be determined constructively, and which, together, completely
determine the semantics of the original non-deterministic system.

In chapter 8, it is observed that in multi-context systems, new informa-
tion is derived based on the presence of other information only. However,
in many natural situations (concrete examples will be given below), new
information is obtained due to a lack of other information. We propose a
generalized framework to account for such situations. Non-monotonic rea-
soning techniques are applied to formulate a semantics for this framework.

5.1 Multi-Context Systems

Mr.1 Mr. 2

Figure 5.1: A magic box.

A simple illustration of the main intuitions underlying the multi-context
system framework is provided by the situation depicted in figure 5.1. Two
agents, Mr.1 and Mr.2, are looking at a box from different angles. The box is
called magic, because neither Mr.1 nor Mr.2 can make out its depth. As some
sections of the box are out of sight, both agents have partial information
about the box. To express this information, Mr.1 only uses proposition
letters l (there is a ball on the left) and r (there is a ball on the right), while
Mr.2 also uses a third proposition letter c (there is a ball in the center).



44 Introduction

In general, we consider a set of contexts I, and a language Li for each
context i ∈ I. Henceforward, we assume I and {Li}i∈I to be fixed, unless
specified otherwise. Moreover, we assume each Li to be built over a finite
set of proposition letters, using standard propositional connectives.

To state that the information expressed by a formula ϕ ∈ Li is estab-
lished in context i we use so-called labelled formulas of the form i : ϕ (if
no ambiguity arises, we simply refer to labelled formulas as formulas, and
we even use capital letters F , G, and H to denote labelled formulas, if the
context label is irrelevant). A rule r is an expression of the form:

F ← G1 ∧ . . . ∧Gn (5.1)

where F and all G’s are labelled formulas; F is called the consequence of r
and is denoted by cons(r); all G’s are called premises of r and together make
up the set prem(r). Rules without premises are called facts. Rules with at
least one premiss are called bridge rules. A multi-context system (system
hereafter) is a finite set of rules. A fact describes information that is estab-
lished in a certain context, independent of which information is obtained in
other contexts. A bridge rule specifies which information is established in
one context, if other pieces of information are obtained in different contexts.
So a system can be seen as a specification of contextual information available
a priori plus an inter-contextual information flow.

Example 5.1 The scenario in figure 5.1 is modelled by the following sys-
tem:

1 : ¬r ←
2 : l ←
1 : l ∨ r ← 2 : l ∨ c ∨ r
2 : l ∨ c ∨ r ← 1 : l ∨ r

Mr.1 knows that there is no ball on the right, Mr.2 knows that there is a ball
on the left, and if any agent gets to knows that there is a ball in the box,
then he will inform the other agent about it.

A classical interpretations m of language Li is called a local model of con-
text i. A set of local models is called a local information state. Intuitively,
every local model in a local information state represents a “possible state
of affairs”. If a local information state contains exactly one local model,
then it represents complete information. If it contains more than one local
model, then it represents partial information: more than one state of affairs
is considered possible. A distributed information state is a set of local infor-
mation states, one for each context. In conformity with the literature, we
will refer to distributed information states as chains.
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Example 5.2 The situation in figure 5.1, in which Mr.1 knows that there
is no ball on the right but does not know whether there is a ball on the left,
is represented by a chain whose first component {{l,¬r} , {¬l,¬r}} contains
two local models. As such, the chain reflects Mr.1’s uncertainty about the
left section of the box.

A chain c satisfies a labelled formula i : ϕ (denoted c |= i : ϕ) if and
only if all local models in its ith component classically satisfy ϕ. A rule r is
applicable with respect to a chain c if and only if c satisfies every premiss
of r. Notice that facts are applicable with respect to any chain. A chain c
complies with a rule r, if and only if, whenever r is applicable with respect
to c, then c satisfies r’s consequence. We call c a solution chain of a system
S if and only if it complies with every rule in S. A formula F is true in S
(denoted S |= F ) if and only if every solution chain of S satisfies F .

For convenience, we introduce some auxiliary terminology and notation.
Let C denote the set of all chains. Notice that, as each Li is assumed to be
built over a finite set of proposition letters, C is assumed to be finite. Let c⊥

denote the chain containing every local model of every context (c⊥ does not
satisfy any non-tautological expression); let c� denote the chain containing
no local models at all (c� satisfies all expressions). If C is a set of chains,
then the component-wise union (intersection) of C is the chain, whose ith

component consists of all local models that are in the ith component of some
(every) chain in C. If c and c′ are chains, then c\c′ denotes the chain, whose
ith component consists of all local models that are in ci but not in c′i. Finally,
let us sometimes say that a local model m is (not) in c, when we actually
mean that m is (not) in some (any) component ci of c.



Chapter 6

Minimality

In this chapter, we show that the semantics of a multi-context system is
completely determined by its least informative solution chain, and provide
a way to compute this least informative solution chain.

6.1 Minimal Solution Chain Semantics

We can order chains according to the amount of information they convey.
Intuitively, the more local models a chain component contains, the more
possibilities it permits, so the less informative it is. Formally, we say that
c is less informative than c′ (c � c′), if for every i we have ci ⊇ c′i. If,
moreover, for at least one i we have ci ⊃ c′i, then we say that c is strictly less
informative than c′ (c ≺ c′). Note that c⊥ is strictly less informative than
any other chain, and c� is strictly more informative than any other chain.

Lemma 6.1 If c � c′, then any formula satisfied by c is also satisfied by c′.

Proof. Suppose c |= i : φ. Then, m |= φ for every m ∈ ci. As c′i is
contained in ci, we also have m′ |= φ for every m′ ∈ c′i. So c′ |= i : φ. �

We say that c is minimal among a set of chains C, if c is in C and no
other chain c′ in C is strictly less informative than c. In particular, we say
that c is a minimal solution chain of a system S, if it is minimal among the
set of all solution chains of S. The main result of this section, theorem 6.5,
establishes that every system has a unique minimal solution chain. To prove
this result, it suffices to show that the component-wise union of all solution
chains of a system S is less informative than all solution chains of S (lemma
6.2) and in fact itself a solution chain of S (lemma 6.4).
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Lemma 6.2 Let C be a set of chains. Let cu denote the component-wise
union of all chains in C. Then cu is less informative than any chain in C.

Proof. Let c′ be a chain in C. Then for every i, every local model m in c′i
is also in cui . So cui ⊇ c′i, and thus cu � c′. �

Lemma 6.3 Let C be a set of chains and let cu denote the component-wise
union of all chains in C. Then a formula is satisfied by cu if and only if it
is satisfied by every chain in C.

Proof.
(⇒) Follows directly from lemma 6.2 and lemma 6.1.
(⇐) Suppose all chains in C satisfy i : φ. Then all local models in the ith

component of every chain in C must satisfy φ. These are exactly the local
models that make up the ith component of cu. So cu also satisfies i : φ. �

Lemma 6.4 The set of all solution chains of a system S is closed under
component-wise union. I.e., if C is a set of solution chains of S, then the
component-wise union cu of all chains in C is again a solution chain of S.

Proof. Let C be a set of solution chains of S. Let cu be the component-
wise union of C. Let r be an arbitrary rule in S. Then all c′ in C comply
with r. Suppose, toward a contradiction, that cu does not comply with r,
i.e., cu satisfies all of r’s premises, but does not satisfy r’s consequence. By
lemma 6.3 all c′ in C satisfy all of r’s premises, and therefore, by assumption,
they all satisfy r’s consequence as well. But then, again by lemma 6.3, cu

must also satisfy r’s consequence, which contradicts the assumption that cu

does not comply with r. So cu must comply with r, and as r was arbitrary,
cu must be a solution chain of S. �

Theorem 6.5 Every system S has a unique minimal solution chain cS.

Proof. Every system has at least one solution chain, namely c�. Now, let
S be a system and let CS be the set of all its solution chains. Then, by
lemma 6.4, the component-wise union cS of CS is itself in CS . Moreover,
by lemma 6.2, cS is less informative than any other chain in CS . So cS
is minimal among CS and, moreover, any chain c′ in CS which is minimal
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among CS , must be equal to cS . In other words, cS is the unique minimal
solution chain of S. �

Theorem 6.6 The semantics of a system S is completely determined by its
unique minimal solution chain cS. That is, for any formula F we have:

S |= F ⇔ cS |= F

Proof. Let S be a system and let F be a formula. Then F is true in S
if and only if F is satisfied by all solution chains of S. By lemma 6.3, this
is the case if and only if F is satisfied by the component-wise union of all
solution chains of S. By the proof of theorem 6.5 this union constitutes the
minimal solution chain cS of S. �

Theorem 6.5 and 6.6 establish that, to answer queries about a system S,
it is no longer necessary to compute all solution chains of S; we only need
to consider the system’s minimal solution chain cS .

6.2 Computing the Minimal Solution Chain

Recall that a system S can be thought of as a specification of inter-contextual
information flow. It turns out that the minimal solution chain of S can be
characterized as the �-least fixpoint of an operator TS , which, intuitively,
simulates the information flow specified by S.

Let S∗(c) denote the set of rules in S that are applicable w.r.t. c. Then:

TS(c) = c \ {m | ∃r ∈ S∗(c) : m � cons(r)} (6.1)

For every rule r in S that is applicable w.r.t. c, TS removes from c all
local models that do not satisfy cons(r). Intuitively, this corresponds to
augmenting c with the information expressed by cons(r). In this sense, TS

simulates the information flow described by S. Clearly, TS(c) is obtained
from c only by removing local models from it. As a result, TS(c) is always
more informative than c.

Lemma 6.7 For every chain c and every system S: c � TS(c). �
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We now prove that, starting with the least informative chain c⊥, TS will
reach its �-least fixpoint after finitely many iterations, and that this �-least
fixpoint coincides with the minimal solution chain of S. The first result is
typically established using Tarski’s fixpoint theorem [36]. In order to apply
this theorem, we first need to show that (C,�) forms a complete lattice,
and that TS is monotone and continuous with respect to �.

Lemma 6.8 (C,�) forms a complete lattice.

Proof. We should prove that every finite subset of C has both a greatest
lower bound and a least upper bound in C. Let C be a subset of C (note that
C is finite, so C must be finite as well). Let cu (ci) denote the component-
wise union (intersection) of all chains in C. Then, by lemma 6.2, cu is a
lower bound of C. Now consider a chain c′, such that cu ≺ c′. For this
to be the case, there must be a local model m, which is in cu but not in
c′. But then m must also be in some chain cm in C, which makes c′ � cm

impossible. So c′ cannot be a lower bound of C, which implies that cu is the
greatest lower bound of C. Analogously, it is shown that ci is least upper
bound of C. �

Lemma 6.9 TS is monotone with respect to �.

Proof. Let c and c′ be any two chains such that c � c′. We need to prove
that TS(c) � TS(c′). Suppose, toward a contradiction that this is not the
case. Then there is a local model m that belongs to TS(c′) but not to TS(c).
Clearly, m must already be present in c′, and therefore also in c. From the
fact that m has been removed from c by TS it follows that there must be a
rule r in S such that c satisfies prem(r), whereas m does not satisfy cons(r).
But then, by lemma 6.1, c′ must also satisfy prem(r), so TS should have
removed m from c′ as well. We conclude that TS(c) � TS(c′). So TS is
monotone with respect to �. �

Lemma 6.10 TS is continuous with respect to �.

Proof. Let c0 � c1 � c2 � . . . be an infinite sequence of chains, each of
which contains more information than all preceding ones. We need to prove
that TS(

⋃∞
n=0 c

n) =
⋃∞

n=0 TS(cn). As C is finite, {c0, c1, c2, . . .} must have
a maximum cm in C. So TS(

⋃∞
n=0 c

n) = TS(cm) =
⋃∞

n=0 TS(cn). �
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Theorem 6.11 TS has a �-least fixpoint, which is obtained after a finite
number of consecutive applications of TS to c⊥.

Proof. Lemmas 6.8, 6.9, 6.10, and Tarski’s fixpoint theorem [36]. �

Lemma 6.12 Let c be a chain and let S be a system. Then c is a fixpoint
of TS if and only if c is a solution chain of S.

Proof. A chain c is a fixpoint of TS if and only if for every rule r in S, c
satisfies cons(r) whenever c satisfies prem(r). This is the case if and only if
c is a solution chain of S. �

Theorem 6.13 Let S be a system. Then the minimal solution chain cS of
S coincides with the �-least fixpoint of TS.

Proof. Follows directly from lemma 6.12. �

From theorems 6.11 and 6.13 we conclude that the minimal solution
chain cS of a system S is obtained by a finite number of applications of TS

to the least informative chain c⊥. But we can even prove a slightly stronger
result:

Theorem 6.14 Let S be a system and let |S| denote the number of bridge
rules in S. Then the minimal solution chain cS of S is obtained by at most
|S| + 1 consecutive applications of TS to c⊥.

Proof. Let c be a chain and let S be a system. Notice that TS(c) is a
fixpoint of TS if and only if S∗(TS(c)) coincides with S∗(c). Lemmas 6.1
and 6.7 imply that, in any case, S∗(TS(c)) ⊇ S∗(c). In other words, during
each iteration of TS some (possibly zero) rules are added to S∗. In the
case that S∗ remains unaltered, TS must have reached a fixpoint. Now we
observe that during the first application of TS (to c⊥) all facts in S are
added to S∗. Clearly, after that, TS can be applied at most |S| times before
a fixpoint is reached. �

In fact, a slightly more involved, but essentially equivalent procedure was
introduced for rather different reasons in [31]. This procedure was shown to
have worst-case time complexity O(|S|2 × 2M ), where M is the maximum
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number of propositional variables in either one of the contexts involved in
S. The greater part of a typical computation is taken up by propositional
reasoning within individual contexts, which itself requires exponential time
in the worst case.

Example 6.1 Consider the system S given in example 5.1. Applying TS

to c⊥ establishes the facts given by the first two rules of the system. But
then Mr.2 knows that there is a ball in the box, so the next application of
TS simulates the information flow specified by the third rule of the system:
Mr.2 informs Mr.1 of the presence of the ball. The resulting chain is left
unaltered by any further application of TS, and therefore constitutes the
minimal solution chain of S. The fact that this chain satisfies the formula
1 : l reflects, as desired, that Mr.1 has come to know that there is a ball in
the left section of the box.

6.3 Summary

We have shown that the local model semantics of a multi-context system
is completely determined by the minimal solution chain of that system.
This solution chain represents the information that is obtained when the
information flow specified by the system is simulated in such a way that a
minimal amount of information is deduced at each step of the simulation.
We defined an operator that suitably implements such a minimal simulation,
and thus determines the minimal solution chain of the system.



Chapter 7

Non-Determinism

The original formulation of multi-context systems implicitly rests on the as-
sumption that information flow is deterministic. However, there are many
natural situations in which information flow is inherently non-deterministic.
To model such situations, this chapter develops a non-deterministic exten-
sion of the multi-context systems framework.

7.1 Non-Deterministic Multi-Context Systems

Let us first consider an example of a situation in which information flows
non-deterministically.

Example 7.1 Adriano is on holiday after having submitted his final school
exams. He has promised to call his father or his mother in case his teacher
lets him know that he has passed his exams. This situation can be modeled
by a system S consisting of the following rule:

m : p ∨ f : p ← a : p

Notice that Adriano may be conceived of as an agent in a multi-agent sys-
tem, who non-deterministically decides which other agents to inform when
acquiring novel information. Alternatively, Adriano’s parents may be con-
ceived of as mirror repositories of information about Adriano’s well-being
(assuming that they tell each other everything they come to know about
Adriano). Typical telephonic connections may be broken or temporarily
unavailable. Analogous to the situation sketched in the introduction, Adri-
ano will try to reach his parents, until at least one of them is informed. In
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general, we would like to consider systems in which rules r are of the form:

F1 ∨ . . . ∨ Fm ← G1 ∧ . . . ∧Gn (7.1)

where all F ’s and G’s are labeled formulas; all F ’s are called consequences of
r and together form the set cons(r); and as before, all G’s are called premises
of r and together constitute the set prem(r). A rule does not necessarily
have any premises (n ≥ 0), but always has at least one consequence (m ≥
1). We call a rule deterministic if it has only one consequence, and non-
deterministic otherwise. We call finite sets of possibly non-deterministic
rules non-deterministic multi-context systems (non-deterministic systems for
short). Systems which consist of deterministic rules only, are from now on
referred to as deterministic systems.

A chain c complies with a non-deterministic rule r if and only if, whenever
r is applicable w.r.t. c, at least one of its consequences is satisfied by c. A
chain is a solution chain of S if and only if it complies with all rules in S.
A formula F is true in S, S |= F , if and only if F is satisfied by all solution
chains of S.

Observation 7.1 Let S be a non-deterministic system, let c′ and c′′ be two
solution chains of S, and let c be the component-wise union of c′ and c′′.
Then it is not generally the case that c is again a solution chain of S.
Therefore, S does not generally have a unique minimal solution chain.

Example 7.2 Suppose Adriano is informed that he passed his exams. The
resulting system S is given by the following rules:

a : p ←
m : p ∨ f : p ← a : p

This system has two minimal solution chains:

cm = {{p}m, {p,¬p}f , {p}a}
cf = {{p,¬p}m, {p}f , {p}a}

whose component-wise union {{p,¬p}m, {p,¬p}f , {p}a} is not a solu-
tion chain of S.

Theorem 7.2 The semantics of a non-deterministic system S is completely
determined by the set CS of all its minimal solution chains. For any formula
F we have:

S |= F ⇔ ∀c ∈ CS : c |= F
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Proof. Let S be a non-deterministic system and let F be a formula. Then
F is true in S if and only if F is satisfied by every solution chain of S. Clearly,
if F is satisfied by every solution chain of S, then it must in particular be
satisfied by every minimal solution chain of S. Moreover, every solution
chain of S is an extension of some minimal solution chain of S, which implies,
by lemma 6.1, that F is satisfied by all minimal solution chains of S only if
F is satisfied by all solution chains of S. �

Theorem 7.2 establishes that the meaning of a non-deterministic system
S is completely determined by the set CS of all its minimal solution chains.
Next, we show how to compute CS using the method outlined in chapter 6.

7.2 Minimal Solution Chain Semantics

Inspired by an idea originally developed for disjunctive databases [34], we
generate from a non-deterministic system S a number of deterministic sys-
tems S1, S2, . . . , Sn, in such a way that the minimal solution chains of S
are among the minimal solution chains of S1, S2, . . . , Sn (note that each Si

has a unique minimal solution chain which can be computed as outlined in
section 6). Hereto, we introduce the notion of a generated system. Let S
be a non-deterministic system and let r be a rule in S. Then we say that a
deterministic rule r′ is generated by r if and only if cons(r′) ∈ cons(r) and
prem(r′) = prem(r). We say that a system S′ is generated by S if and only
if it is obtained from S by replacing each rule r in S by some rule r′ gener-
ated by r. Notice that, indeed, a generated system is always deterministic,
and that any non-deterministic system S generates at most

∏
r∈S |cons(r)|

different deterministic systems.

Example 7.3 The non-deterministic system from example 7.2 generates
two deterministic systems:

a : p ← a : p ←
m : p ← a : p f : p ← a : p

The only system generated by a deterministic system is that system itself.

Lemma 7.3 A chain c is a solution chain of a non-deterministic system S
if and only if it is a solution chain of some system S′ generated by S.
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Proof.
(⇒) Suppose c is a solution chain of S. Then c complies with every rule in
S. For every rule r in S, if c complies with r, then there must be a rule r′

generated by r such that c complies with r′ as well. Let S′ be the system
{r′ | r ∈ S}. Then c is a solution chain of S′.
(⇐) Suppose c is a solution chain of a system S′ generated by S. Then c
complies with every rule in S′. Every rule r in S has generated some rule r′

in S′, and clearly, if c complies with r′ then it must also comply with r. So
c is a solution chain of S. �

We call a chain c a potential solution chain of S if and only if c is a
minimal solution chain of some system S′ generated by S.

Lemma 7.4 Every minimal solution chain of a system S is also a potential
solution chain of S.

Proof. Suppose c is a minimal solution chain of S. Then, by lemma 7.3, c
is a solution chain of some system S′ generated by S. Let c′ be the minimal
solution chain of S′. Then c must be an extension of c′. By lemma 7.3 c′

must be a solution chain of S. But then, as c is a minimal solution chain of
S, c′ must be equal to c. So c is a minimal solution chain of S′, and therefore
a potential solution chain of S. �

Observation 7.5 It is not generally the case that a potential solution chain
of S is also a minimal solution chain of S.

Example 7.4 Suppose Adriano’s teacher also called Adriano’s mother to
tell her the good news. The resulting system S is given by the following
rules:

a : p ←
m : p ←

m : p ∨ f : p ← a : p

This system has two potential solution chains:

cm = {{p}m, {p,¬p}f , {p}a}
cmf = {{p}m, {p}f , {p}a}

But as cmf extends cm only the latter is a minimal solution chain of S.
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We call c an essential solution chain of S if and only if c is minimal
among all potential solution chains of S.

Theorem 7.6 A chain is a minimal solution chain of S if and only if it is
an essential solution chain of S.

Proof.
(⇒) Suppose c is a minimal solution chain of S. Then, by lemma 7.4, c is
a potential solution chain of S. If c is minimal among all potential solution
chains of S, then, per definition, it is essential. Now, toward a contradiction,
suppose that c is not minimal among all potential solution chains of S. Then
there must be another potential solution chain c′ of S, such that c′ ≺ c. But,
by lemma 7.3, c′ must also be a solution chain of S, which contradicts the
assumption that c is a minimal solution chain of S.
(⇐) Suppose c is an essential solution chain of S. Furthermore, toward a
contradiction, suppose that c is not a minimal solution chain of S. Then
there must be a minimal solution chain c′ of S, such that c′ ≺ c. By lemma
7.4, c′ is a potential solution chain of S. But this contradicts the assumption
that c is minimal among all potential solution chains of S. �

Theorem 7.6 establishes that, in order to compute the meaning of a non-
deterministic system S it suffices to compute the meaning of all deterministic
systems generated by S. This can be done re-using the method developed in
chapter 6. Given that S generates at most

∏
r∈S |cons(r)| different systems,

and that computing the meaning of each of these systems takes at most time
O(|S|2 × 2M ), we conclude that, in the worst case, computing the meaning
of S takes time O(

∏
r∈S |cons(r)| × |S|2 × 2M ).

7.3 Summary

We observed that multi-context systems can only be used to describe de-
terministic information flow. We sketched a number of situations in which
information flow is non-deterministic. We extended the framework in order
to account for non-deterministic information flow and showed how to express
the semantics of a non-deterministic system in terms of the semantics of a
number of associated, deterministic systems, which can be computed using
the machinery developed in chapter 6.



Chapter 8

Absent Information

Multi-context systems can only be used to model information flow in which
new information is established based on the presence of other information.
There are many natural situations in which information is obtained as a re-
sult of the absence of other information. This chapter develops an extension
of the present framework in order to deal with such situations.

8.1 Normal Multi-Context Systems

Let us first consider two typical situations in which new information is ob-
tained as a result of the absence of other information.

Example 8.1 (Integration) Let d1, d2 be two databases, and let d3 be a
third database, which integrates the information established in d1 and d2,
respectively. Any piece of information that is established by d1 and not
refuted by d2 (or vice versa) is included in d3:

3 : ϕ ← 1 : ϕ ∧ not 2 : ¬ϕ
3 : ϕ ← 2 : ϕ ∧ not 1 : ¬ϕ

Example 8.2 (Trust) Let d1, d2, and d3 be as in example 8.1. It would be
natural for d3 to regard d1 as more trustworthy than d2 (or vice versa). In
this case, any piece of information that is established in d1 is automatically
included in d3, but information obtained in d2 is only included in d3 if it is
not refuted by d1:

3 : ϕ ← 1 : ϕ
3 : ϕ ← 2 : ϕ ∧ not 1 : ¬ϕ

57
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In general, to model situations in which new information is obtained based
on the absence of other information we need rules r of the form1:

F ← G1 ∧ . . . ∧Gm ∧ not H1 ∧ . . . ∧ not Hn (8.1)

where F , all G’s, and all H’s are labeled formulas. As before, F is called
the consequence of r (cons(r)). G1, . . . , Gm are called positive premises of
r and together constitute the set prem+(r). H1, . . . , Hn are called negative
premises of r and make up the set prem−(r). A rule does not necessarily
have any premises (m,n ≥ 0). In analogy with commonplace terminology in
deductive database and logic programming theory, we call such rules normal
rules, and finite sets of them normal multi-context systems (normal systems
for short). If a rule only has positive premises, we call it a positive rule.
Note that a system, which consists of positive rules only conforms with
the original definition of multi-context systems. From now on we call such
systems positive systems.

Our aim is to generalize the result obtained chapter 6, i.e. to define the
semantics of a normal system S in terms of a single canonical chain cS of S,
such that, whenever S is a positive system, cS coincides with the minimal
solution chain of S.

A first naive attempt would be to say that a chain c complies with a
normal rule r if and only if it satisfies r’s consequence, whenever it satisfies
every positive premise of r and does not satisfy any negative premise of r.
The (minimal) solution chains of a normal system S can then be defined
as for positive systems. However, as the following example shows, a normal
system does not generally have a unique minimal solution chain, and worse,
minimal solution chains of a normal system do not generally correspond
with the intended meaning of that system.

Example 8.3 Let a system S be given by the following rule:

1 : p ← not 2 : q

Then S has two minimal solution chains:

cp =
{[ {p} ]

1

[ {q}
{¬q}

]
2

}

cq =
{[ {p}

{¬p}
]

1

[ {q} ]
2

}

1For now, we take deterministic systems as a starting point. The results in this section
are not straightforwardly generalized to the case of non-deterministic systems.
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Intuitively, S provides no ground for deriving q in context 2. Thus, p should
be derived in context 1, and every “proper” canonical chain of S should
satisfy 1 : p. As cq fails to do so, it should be rejected as such. How, then,
should the canonical chain of a normal system be characterized?

Extensive research efforts have been involved with an analogous question
in the setting of logic programming, when, in the late 80’s / early 90’s, a
proper semantics for normal logic programs was sought. In motivating our
characterization of canonical chains for normal multi-context systems, we
will recall some important intuitions and adapt some crucial definitions that
have resulted from these efforts.

A first desired property of canonical chains, first introduced in the set-
ting of logic programming by Apt, Blair, and Walker [1] and Bidoit and
Froidevaux [6], is termed supportedness. Intuitively, a chain c is a supported
solution chain of a normal system S if and only if, whenever c satisfies a
formula F , then S provides an explanation for why this is so.

Definition 8.1 We call a chain c a supported solution chain of a normal
system S if and only if, whenever c satisfies a formula F , then S contains
a set R of rules, such that:

• ∀r ∈ R :
{ ∀G ∈ prem+(r) : c |= G

∀H ∈ prem−(r) : c � H

• ⋃
r∈R cons(r) |= F

Example 8.4 In example 8.3, as desired, cp is a supported solution chain
of S, while cq is not. But both cp and cq are supported solution chains of the
following extension S′ of S:

1 : p ← not 2 : q
2 : q ← 2 : q

Intuitively, cp should be accepted as a canonical chain of S′, but cq should
be rejected as such, because the explanation provided by S′ for the fact that
cq satisfies 2 : q is circular, i.e., it relies on the very fact that cq satisfies
2 : q. So, in general, the concept of supportedness does not satisfactorily
characterize the canonical chain of a normal system.

The notion of well-supportedness, first introduced for logic programs by
Fages [12], refines the notion of supportedness to avoid the counter-intuitive
result obtained in example 8.4. Intuitively, a chain c is a well-supported
solution chain of a normal system S if and only if, whenever c satisfies a
formula F , then S provides a non-circular explanation for why this is so.
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Fages also proved this notion to be equivalent to the notion of stability,
which had been defined somewhat earlier by Gelfond and Lifschitz [15]. The
results obtained in chapter 6 pave the way for a straightforward adaptation
of the notion of stability to our present setting.

Definition 8.2 Let c be a chain and S a normal system. Define:

S′(c) = {r ∈ S | ∀H ∈ prem−(r) : c � H}
S′′(c) = pos(S′(c))

where pos(S′(c)) is obtained from S′(c) by removing all negative premises
from its rules. Then, c is a stable solution chain of S, iff it is the unique
minimal solution chain of S′′(c).

Intuitively, a solution chain c of a system S is stable if, whenever the
information represented by c is assumed, then the information flow spec-
ified by S reproduces exactly c. Namely, if c is assumed to contain valid
information, then any rule in S, one of whose negative premises is satisfied
by c, is certainly not applicable. Negative premises which are not satisfied
by c can be removed from the remaining rules, because they do not have
any influence on whether those rules are applicable or not. Thus, S can be
reduced to S′′(c), and c is stable if and only if it corresponds exactly to the
meaning of S′′(c), i.e., by Theorem 6.6, to its minimal solution chain.

Example 8.5 In example 8.4, as desired, cp is a stable solution chain of
S′, while cq is not.

For many systems, stability suitably characterizes a unique canonical
chain. There are still some special cases, however, in which it fails to do so.
We give some typical examples.

Example 8.6 Both cp and cq from example 8.3 are stable solution chains
of the system given by the following rules:

1 : p ← not 2 : q
2 : q ← not 1 : p

Example 8.7 The following system does not have any stable solution chains.

1 : p ← not 1 : p

In both cases we think it is most reasonable to conclude that no information
is derived at all, i.e. to regard c⊥ as the proper canonical chain.
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Example 8.8 The following system does not have any stable solution chains
either.

1 : p ← not 1 : p
1 : t ← not 2 : q
2 : r ← 1 : t

Example 8.8 illustrates that, even if the rest of the system is unproblematic,
one single rule (in this case the first one) can cause the system not to have
any stable solution chain at all. In this case, t and r should be derived in
context 1 and 2, respectively.

The well-founded semantics, first proposed for logic programs by van
Gelder, Ross, and Schlipf [47] avoids the problems encountered in the above
examples. The well-founded model of a program is defined as the least
fixpoint of an operator, which, given an interpretation, determines the atoms
that are necessarily true and those that are necessarily not true with respect
to the program and the interpretation. It assigns true to the former set
of atoms, and false to the latter. As a result, more atoms may become
necessarily true or necessarily not true. Corresponding truth values are
assigned until a fixpoint is reached. All atoms that have not been assigned
a definite truth value, are interpreted as unknown.

Our approach shares an important intuition with the well-founded se-
mantics for logic programs, namely, that while constructing the canonical
chain of a system, it is not only important to accumulate the information
that can certainly be derived from the system, but also to keep track of
information that can certainly not be derived from the system.

But the two approaches are also fundamentally different. The well-
founded semantics constructs a 3-valued interpretation I, which is minimal
with respect to a truth order � (i.e. I � I ′ iff I makes less atoms true and
more atoms false than I ′), whereas we seek a chain which is minimal with
respect to an information order � (i.e. c � c′ iff c makes less expressions
either true or false than c′). This particularly results in a different treatment
of expressions that are found not to be true. To regard these expressions
as false, as the well-founded semantics does, would be to introduce redun-
dant information. Instead, in our setting, such expressions should simply be
recorded as not being derivable.
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8.2 Anti-Chain Semantics

The canonical chain of a normal system S, henceforward denoted by cS , is
constructed by an iterative transformation of a datastructure 〈c, a〉, where:

• c is the “canonical chain under construction”. Initially, c = c⊥. Every
transformation of c removes from it those local models that are found
not to be in cS . So at any phase of the construction of cS , c contains
those local models that are possibly in cS , and as such represents the
information that is necessarily conveyed by cS .

• a is the “anti-chain”. Initially, c = c�. Every transformation of a
adds to it those local models that are found to be in cS . So at any
phase of the construction of cS , a contains those local models that
are necessarily in cS , and as such represents the information that is
possibly conveyed by cS .

Observation 8.3 By construction, we have c � cS � a. Therefore, by
lemma 6.1, for any formula F :

c |= F ⇒ cS |= F

a � F ⇒ cS � F

�

We call a chain-anti-chain pair 〈c, a〉 less evolved than another such pair
〈c′, a′〉 (denoted as 〈c, a〉 ≤ 〈c′, a′〉) if and only if c is less informative than c′

and a is more informative than a′. If, moreover, c is strictly less informative
than c′ or a is strictly more informative than a′, then we say that 〈c, a〉 is
strictly less evolved than 〈c′, a′〉. We say that 〈c, a〉 is minimal among a set
CA of chain-anti-chain pairs, if and only if 〈c, a〉 ∈ CA and no other chain-
anti-chain pair 〈c′, a′〉 in CA is strictly less evolved than 〈c, a〉. Notice that,
if 〈c, a〉 is minimal among CA, then c is minimal among {c | 〈c, a〉 ∈ CA}.

Given a certain chain-anti-chain pair 〈c, a〉, the intended transformation
ΨS first determines which rules in S will (not) be applicable w.r.t. cS ,
and then refines 〈c, a〉 accordingly. The canonical chain cS of S will be
characterized as the first component of the ≤-least fixpoint of ΨS .

We first specify how ΨS determines which rules will (not) be applicable
w.r.t. cS . Let 〈c, a〉 and a rule r in S be given. If r has a positive premise
G, which is satisfied by c, then G will also be satisfied by cS . On the other
hand, if r has a negative premiss H, which is not satisfied by a, then H will
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not be satisfied by cS either. So if all positive premises of r are satisfied by c
and all negative premises of r are not satisfied by a, then r will be applicable
with respect to cS :

S+(c, a) =

⎧⎨
⎩r ∈ S

∀G ∈ prem+(r) : c |= G
and

∀H ∈ prem−(r) : a � H

⎫⎬
⎭

If r has a positive premise G, which is not satisfied by a, then G will not be
satisfied by cS either. If r has a negative premise H, which is satisfied by c,
then H will be satisfied by cS as well. In both cases r will certainly not be
applicable with respect to cS :

S−(c, a) =

⎧⎨
⎩r ∈ S

∃G ∈ prem+(r) : a � G
or

∃H ∈ prem−(r) : c |= H

⎫⎬
⎭

For convenience, we write:

S∼(c, a) = S \ S−(c, a)

Think of S∼(c, a) as the set of rules that is possibly applicable with respect to
cS , and notice that S+(c, a) ⊆ S∼(c, a), whenever c � a, and that S+(c, a) =
S∼(c, a), if c = a.

Lemma 8.4 If S is a normal system and 〈c, a〉 and 〈c′, a′〉 are two chain-
anti-chain pairs s.t. 〈c, a〉 ≤ 〈c′, a′〉, then we have:

1. S+(c, a) ⊆ S+(c′, a′)

2. S−(c, a) ⊆ S−(c′, a′)

3. S∼(c, a) ⊇ S∼(c′, a′)

Proof. Suppose that 〈c, a〉 ≤ 〈c′, a′〉. Then, by definition, c � c′ and
a′ � a. Let r be a rule in S. For the first statement, suppose that r ∈
S+(c, a). Then c satisfies all of r’s positive premises, and a does not satisfy
any of r’s negative premises. By lemma 6.1, the same goes for c′ and a′,
respectively, which implies that r ∈ S+(c′, a′). The second statement is
proven analogously; the third follows directly from the second. �

Next, we specify how ΨS refines 〈c, a〉, based on S+(c, a) and S∼(c, a).
Every local model m ∈ ci that does not satisfy the consequence of a rule in
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S+(c, a) should certainly not be in cS and is therefore removed from c. On
the other hand, every local model m ∈ ci that satisfies the consequences of
every rule in S∼(c, a) should certainly be in cS (S provides no ground for
removing it) and is therefore added to a.

ΨS(〈c, a〉) = 〈Ψc
S(〈c, a〉),Ψa

S(〈c, a〉)〉

where:

Ψc
S(〈c, a〉) = c \ {

m | ∃r ∈ S+(c, a) : m � cons(r)
}

Ψa
S(〈c, a〉) = a ∪ {m | ∀r ∈ S∼(c, a) : m |= cons(r)}

Notice that Ψc
S only removes local models from c, whereas Ψa

S only adds
local models to a.

We now prove that, starting with 〈c⊥, c�〉, ΨS reaches its ≤-least fixpoint
after finitely many iterations. To apply Tarski’s fixpoint theorem, we first
need to show that (C × C,≤) forms a complete lattice, and that ΨS is
monotone and continuous with respect to ≤.

Lemma 8.5 (C × C,≤) forms a complete lattice.

Proof. Let CA be a set of chain-anti-chain pairs. Let cu and au (ci and
ai) denote the component-wise union (intersection) of all chains c and a,
respectively, such that 〈c, a〉 is in CA. Then 〈cu, ai〉 is the greatest lower
bound of CA and 〈ci, au〉 is the least upper bound of CA. The proof of this
statement is completely analogous to that of lemma 6.8. �

Lemma 8.6 ΨS is monotone with respect to ≤, that is, for every normal
system S, 〈c, a〉 ≤ 〈c′, a′〉 implies ΨS(〈c, a〉) ≤ ΨS(〈c′, a′〉).

Proof. Let S be a normal system and let 〈c, a〉 and 〈c′, a′〉 be any two
chain-anti-chain pairs such that 〈c, a〉 ≤ 〈c′, a′〉. Then, by definition, c �
c′ and a′ � a. We need to prove that ΨS(〈c, a〉) ≤ ΨS(〈c′, a′〉). Sup-
pose, toward a contradiction, that this is not the case. Then Ψc

S(〈c, a〉) �
Ψc

S(〈c′, a′〉) or Ψa
S(〈c′, a′〉) � Ψa

S(〈c, a〉). We consider both possibilities.

Ψc
S(〈c, a〉) � Ψc

S(〈c′, a′〉)
In this case there must be a local model m which is contained in
Ψc

S(〈c′, a′〉) but not in Ψc
S(〈c, a〉). In the process of applying Ψc

S to
〈c′, a′〉 local models may be removed from c′, but no local models are
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added to it. So m must already be present in c′. As c � c′, m must
also be in c, thus it must have been removed from c in the process of
applying Ψc

S to 〈c, a〉. It follows that there must be a rule r in S+(c, a),
such that m � cons(r). From the fact that 〈c, a〉 ≤ 〈c′, a′〉, by lemma
8.4, it follows that S+(c, a) ⊆ S+(c′, a′). So r is also in S+(c′, a′) and
m should be removed from c′ in the process of applying Ψc

S to 〈c′, a′〉
as well. This contradicts our earlier conclusion that m ∈ Ψc

S(〈c′, a′〉).
Ψa

S(〈c′, a′〉) � Ψa
S(〈c, a〉)

In this case there must be a local model m which is contained in
Ψa

S(〈c, a〉) but not in Ψa
S(〈c′, a′〉). For m /∈ Ψa

S(〈c′, a′〉) to hold, there
must be a rule r in S∼(c′, a′) such thatm � cons(r). As 〈c, a〉 ≤ 〈c′, a′〉,
by lemma 8.4, we have S∼(c′, a′) ⊆ S∼(c, a). So r must be in S∼(c, a)
as well, and therefore m cannot be in Ψa

S(〈c, a〉). This contradicts our
earlier conclusion that m ∈ Ψa

S(〈c, a〉).
It follows that ΨS(〈c, a〉) ≤ ΨS(〈c′, a′〉), as desired. �

Lemma 8.7 ΨS is continuous with respect to ≤.

Proof. Let 〈c0, a0〉 ≤ 〈c1, a1〉 ≤ 〈c2, a2〉 ≤ . . . be an infinite sequence of
chain-anti-chain pairs, each of which is more evolved than all preceding ones.
We need to prove that ΨS(

⋃∞
n=0〈cn, an〉) =

⋃∞
n=0 ΨS(〈cn, an〉). As C × C

is finite, {〈c0, a0〉, 〈c1, a1〉, 〈c2, a2〉, . . .} must have a maximum 〈cm, am〉 in
C × C. So ΨS(

⋃∞
n=0〈cn, an〉) = ΨS(〈cm, am〉) =

⋃∞
n=0 ΨS(〈cn, an〉). �

Theorem 8.8 ΨS has a ≤-least fixpoint, which is obtained after finitely
many iterations of ΨS, starting with 〈c⊥, c�〉.

Proof. Lemmas 8.5, 8.6, 8.7, and Tarski’s fixpoint theorem [36]. �

Definition 8.9 Let S be a normal system, and let 〈cS , aS〉 be the ≤-least
fixpoint of ΨS. We define cS to be the canonical chain of S, and we define
the semantics of S to be completely determined by cS. That is, for every
formula F :

S |= F ≡ cS |= F

�
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A bound on the number of iterations needed by ΨS to reach its ≤-least
fixpoint can be formulated in terms of the number of bridge rules in S.

Theorem 8.10 Let S be a normal system and let |S| denote the number of
bridge rules in S. Then, starting with 〈c⊥, c�〉, ΨS will reach its ≤-least
fixpoint after at most |S| + 1 iterations.

Proof. A chain-anti-chain pair 〈c, a〉 is a fixpoint of ΨS if and only if
S+(c, a) = S+(ΨS(〈c, a〉)) and S−(c, a) = S−(ΨS(〈c, a〉))). During the first
application of ΨS (to 〈c⊥, c�〉), all facts in S are added to S+ and all bridge
rules in S are added to S∼. Each further application of ΨS either leads to
a fixpoint or to the addition of at least one bridge rule to S+ or S−. Once a
bridge rule is added to S+ or S−, it will not be removed again in any further
iteration of ΨS . It follows that ΨS must reach its ≤-least fixpoint after at
most |S| + 1 iterations. �

The next theorem shows that definition 8.9 is a proper generalization of
the local model semantics for positive systems.

Theorem 8.11 Let S be a positive system. Then its canonical chain coin-
cides with its minimal solution chain.

Proof. If S is a positive system, then for every pair 〈c, a〉, S+(〈c, a〉) co-
incides with S∗(c) and therefore Ψc

S(〈c, a〉) is independent of a. As a conse-
quence, 〈cS , aS〉 is the ≤-least fixpoint of ΨS , for some anti-chain aS , if and
only if cS is the �-least fixpoint of TS . �

The canonical chain of a system S, and other fixpoints of ΨS , are inti-
mately related to the stable solution chains of S.

Lemma 8.12 If c is a stable solution chain of a normal system S, then
〈c, c〉 is a fixpoint of ΨS.
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Proof. Recall that:

S′(c) = {r ∈ S | ∀H ∈ prem−(r) : c � H}

=
{
r ∈ S

∃G ∈ prem+(r) : c � G
∀H ∈ prem−(r) : c � H

}

∪
{
r ∈ S

∀G ∈ prem+(r) : c |= G
∀H ∈ prem−(r) : c � H

}
︸ ︷︷ ︸

S+(c,c)

(8.2)

and that c is a stable solution chain of S, only if it is the minimal solu-
tion chain of S′′(c) = pos(S′(c)). Furthermore, observe that for every c,
S+(c, c) = S∼(c, c), which implies that 〈c, c〉 is a fixpoint of ΨS if and only
if:

c =
{
m | ∀r ∈ S+(c, c) : m |= cons(r)

}
(8.3)

Suppose that 〈c, c〉 is not a fixpoint of ΨS . There are two possibilities to
consider:

∃m ∈ c : ∃r ∈ S+(c, c) : m � cons(r)
In this case, c is not a solution chain of S+(c, c), and therefore not a
solution chain of S′′(c).

∃m /∈ c : ∀r ∈ S+(c, c) : m |= cons(r)
Suppose c is a solution chain of S′′(c). Then every rule in S′′(c) is such
that c either satisfies its consequence, or does not satisfy at least one
of its premises. Let c′ be the chain obtained from c by adding m to
it, and let r be a rule in S′′(c). If c satisfies r’s consequence, then, by
definition of m, c′ does so as well. If c does not satisfy a premiss G of
r, then, by lemma 6.1 and the fact that c′ � c, c′ does not satisfy G
either. It follows that c′ is a solution chain of S′′(c) as well. So c is
not the minimal solution chain of S′′(c).

In both cases, as desired, c is not a stable solution chain of S. �

Theorem 8.13 Let S be a normal system, let 〈cS , aS〉 be the ≤-least fixpoint
of ΨS, and let cstable be a stable solution chain of S. Then cS � cstable � aS.
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Proof. Suppose that cS � cstable or that cstable � aS . Then 〈cS , aS〉 �
〈cstable, cstable〉, while 〈cstable, cstable〉, by lemma 8.12, is a fixpoint of ΨS .
This contradicts the assumption that 〈cS , aS〉 is the ≤-least fixpoint of ΨS .

�

Lemma 8.14 Let S be a normal system. If 〈c, c〉 is the ≤-least fixpoint of
ΨS, then c is a stable solution chain of S.

Proof. Recall, as in the proof of lemma 8.12, that c is a stable solution
chain of S only if it is a minimal solution chain of S′′(c), that S′′(c) can
be expressed in terms of S+(c, c) as in equation (8.2), and that 〈c, c〉 is a
fixpoint of ΨS if and only if c satisfies condition (8.3).

Suppose that 〈c, c〉 is the ≤-least fixpoint of ΨS . We first show that c is
a solution chain of S′′(c). Observe that every rule in S′′(c) \ pos(S+(c, c))
is such that at least one of its premises is not satisfied by c, and that every
rule in pos(S+(c, c)) is such that c satisfies its consequence. It follows that
c is a solution chain of S′′(c).

Next, we show that, if c is not a minimal solution chain of S′′(c), then
〈c, c〉 cannot be the ≤-least fixpoint of ΨS .

Claim 8.15 If c′ is a solution chain of S′′(c) such that c′ ≺ c, then there is
an a′ such that 〈c′, a′〉 is a fixpoint of ΨS.

By construction, 〈c, c〉 � 〈c′, a′〉, so from claim 8.15 it would follow directly
that 〈c, c〉 is not the ≤-least fixpoint of ΨS .

To prove claim 8.15 we show that, if a is such that c � a, then Ψc
S(〈c′, a〉) =

c′. To see this, first notice that, as 〈c′, a〉 ≤ 〈c, c〉, by lemma 8.4, we have
S+(c′, a) ⊆ S+(c, c). Now, let r be a rule in S+(c, c). As c′ complies with all
rules in pos(S+(c, c)), c′ must satisfy cons(r), whenever it satisfies all pos-
itive premises of r. Every rule r′ in S+(c′, a) is also in S+(c, c) and is such
that c′ satisfies all its positive premises. Therefore, c′ must satisfy cons(r′)
as well. This means that no local models are removed from c′ in the process
of applying Ψc

S to 〈c′, a〉. In other words: Ψc
S(〈c′, a〉) = c′.

For any a we have Ψa
S(〈c′, a〉) � a (no local models will be removed from

a in the process of applying Ψa
S to 〈c′, a〉). So in particular, the sequence:

c,Ψa
S(〈c′, c〉),Ψa

S(Ψa
S(〈c′, c〉)), . . .

is a descending sequence with respect to �, bounded by c⊥. This means
that after applying ΨS finitely many times to 〈c′, c〉 a fixpoint 〈c′, a′〉 of ΨS

will be reached, which proves claim 8.15.
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We conclude that c is a minimal solution chain of S′′(c), and therefore a
stable solution chain of S. �

Theorem 8.16 Let S be a normal system and let 〈cS , aS〉 be the ≤-least
fixpoint of ΨS. If cS and aS coincide, then cS is the unique stable solution
chain of S.

Proof. Stability of cS is established by lemma 8.14; uniqueness follows
from theorem 8.13. �

Finally, we remark that, in our view, all the examples presented above are
suitably dealt with by the present analysis. We treat one of them explicitly.

Example 8.9 Let S be the system from example 8.8. Then:

cS =
{[ {p, t}

{¬p, t}
]

1

[ {q, r}
{¬q, r}

]
2

}

As desired, no information is derived about p and q, while t and r are indeed
established in context 1 and 2, respectively.

8.3 Summary

Multi-context systems can only be used to model information flow in which
new information is obtained due to the presence of other information. We
provided some examples of situations in which the establishment of new
information depends not only on the presence, but also on the absence of
other information. We presented a generalized framework to model such
situations. We applied non-monotonic reasoning techniques in defining a
semantics for this framework.

Remark. Recently, Gerhard Brewka noticed that the anti-chain semantics
for normal multi-context systems defined above has a significant drawback.
The problem is related to a problem he and Georg Gottlob encountered in
generalizing the well-founded semantics to default logic [8]. We will sketch
the problem and a possible solution here, but the issue certainly calls for
further investigation.
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To see what goes wrong, consider the following system S:

(a) 1 : p ← not 1 : ¬p
(b) 1 : ¬p ← not 1 : p
(c) 1 : t ← not 1 : q

Intuitively, one would like 1 : t to be true in this system. But it is not
satisfied by the canonical chain of the system. The problem is that rules
(a) and (b) are both possibly applicable, but no local model can satisfy the
consequences of both rules (p and ¬p). So no local model is added to the
anti-chain, and the fact that 1 : q is not derivable will never be recognized.

The following seems to be a possible solution. Consider multiple anti-
chains, one for each subsystem consisting of rules whose consequences do
not enforce local inconsistencies. Then update each anti-chain relative to
the set of rules that it is associated with. As an example, consider the
system S above. There are two subsystems of S that consist of rules whose
consequences do not enforce local inconsistencies:

S1 = {(a), (c)}
S2 = {(b), (c)}

So we work with two anti-chains, a1 and a2. In general, let a denote the set
of anti-chains of a system. The update of anti-chains, then, is as follows:

Add to an ∈ a every local model that satisfies the consequence
of every possibly applicable rule in the associated subsystem Sn.

Notice that before we had:

Add to a every local model that satisfies the consequence of every
possibly applicable rule in S.

In the above example we get:

a′1 = {pqr, p¬qr}
a′2 = {¬pqr,¬p¬qr}

Next, we adjust the definition of S+(c,a), the set of rules that will definitely
be applicable with respect to cS . A rule is in S+(c,a) if and only if:

1. all its positive premises are satisfied by c.

2. none of its negative premises is satisfied by any anti-chain an ∈ a.
(instead of: “. . . by the anti-chain a”.)

In the above example, rule (c) is in S+(c,a), which makes 1 : r true in S,
as desired. This adapted semantics could be referred to as the anti-chainset
semantics for normal multi-context systems.



Chapter 9

Conclusions

We conclude with a short summary of our main observations and results. In
part one, we investigated the notion of distributed knowledge in epistemic
and dynamic epistemic logic. Distributed knowledge is a standard notion
in this framework, but nevertheless, there are some subtle unresolved issues
concerning its semantics. Urged by these issues, we critically examined
epistemic semantics, and proposed a rather dramatic simplification thereof.
We argued that epistemic models are only acceptable if they are modally
saturated and tight. Non-redundant models stand out as most natural, and
we argued that epistemic semantics should be defined exclusively in terms of
such models. This simplification resolves the problematic issues concerning
distributed knowledge, and is, in our view, also of considerable independent
interest.

Next, we showed that the logic of communication and change [42], the
most general and most perspicuous dynamic epistemic logic to date, can be
extended so as to incorporate distributed knowledge and other intersection
modalities in a rather straightforward way. This extension could not be
considered before, because a suitable notion of bisimulation for intersection
modalities was not available. Restricting epistemic semantics to natural
models resolves this technicality.

Then, we moved on to a more conceptual issue. We observed that distrib-
uted knowledge is a purely static notion of collective group knowledge. For a
theory of communication, it should be of interest to consider more dynamic
notions of collective group knowledge as well. The question becomes: which
information can be established by a group through communication? To ad-
dress this question, the communication network between a group of agents
has to be taken into account. We showed that a logic of communication
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networks can be obtained as a slight extension of the logic of communica-
tion and change. We defined a general dynamic notion of collective group
knowledge, called communicative power, and investigated a specific kind of
communicative power, called potential knowledge, in public broadcast and
private message passing networks.

In part two, we investigated the multi-context system formalism as a
framework for representing distributed information and its dynamics. We
observed that the semantics of a multi-context system is completely deter-
mined by the information that is obtained when simulating the information
flow specified by the system, in such a way that a minimal amount of infor-
mation is deduced at each step of the simulation. Based on this observation,
we defined an operator that determines the information entailed by the sys-
tem by suitably simulating the prescribed information flow.

Next we observed that the multi-context system framework implicitly
rests on the assumption that information flow is deterministic. We sketched
a number of situations, in which this assumption is not valid. We extended
the framework in order to account for non-deterministic information flow,
and provided a way to express the semantics of a non-deterministic system
in terms of the semantics of a number of associated, deterministic systems.

Finally, we observed that in the multi-context framework, new informa-
tion is deduced based on the presence of other information. We presented a
generalized framework that accounts for situations in which new information
can be derived based on the absence of other information as well.

The general background of this work is to use ideas from non-monotonic
reasoning to obtain suitable semantics for extended multi-context systems.
This connection opens up a whole range of questions for further research.

We have not mentioned the relationship between the two formalisms
considered in part one and part two, respectively. At least two different
kinds of information seem to be involved. In epistemic logic and in the
singular contexts of a multi-context system, information about a situation
is modeled as a range of possible alternatives for the actual situation.

In multi-context systems, another kind of information, namely the in-
formation that one situation carries about other situations, is modeled by
rules that describe the regularities between different contexts in a system.

Van Benthem [41] recognizes these different concepts of information and
explores their treatment in a single modal framework. We think this issue
is very much worth further investigation.
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