
 





Abstract

Universal Grammar (UG) is characterized by the assumption that all hu-
man languages share a common structure with respect to their linguistic
well-formedness conditions. In Optimality Theory (OT) this structure is
represented by a set of linguistic candidate forms, a set of constraints and
the definition of being optimal. The nativist view of OT assumes that such
a structure is encoded in a Language Acquisition Device (LAD) provided to
a learner of a language genetically.

The symbolic and the biological levels in which OT and the LAD are re-
spectively, can be complemented with an intermediate level: the connection-
ist level. In this thesis, our purpose is focus on the link of the symbolic and
the connectionist level with a logical stage. Through an example based on
the CV Syllable Theory of OT, we build a bridge among OT-Connectionism-
Penalty Logic. In particular, for the link OT-Connectionism, we take from
Smolensky and Legendre (2005) a translation of the CV Syllable Theory
into connectionist terms. Such a translation is called CVnet. For the link
Connectionism-Penalty Logic, we propose a translation, expressed in the
penalty knowledge base cv. This last translation has as purpose to simplify
the encoding of the common structure U suggested by CVnet. In fact, such
a translation could be seen as an alternative encoding of U . As advantages,
it has its simplicity and the enrichment of the linguistic exploration with
logic’s tools.





Acknowledgments

I gratefully acknowledge the Consejo Nacional de Ciencia y Tecnoloǵıa
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Chapter 1

Introduction

1.1 This is the best

According to Leibniz ‘this is the best of all possible worlds’. Do you believe
it? Why not? Being the best does not mean being perfect. It means that
among a set of competitors, the candidate that is chosen as the best one is
the candidate that fulfills to a degree certain constraints. But notice that
the best candidate is always the best with respect to a certain group of
candidates and with respect to the fulfillment of a certain set of constraints.
Optimality theory is based on this general idea. It always looks for the
optimal or best linguistic form, not for the perfect one.

Optimality Theory (OT) is a framework for generating linguistic theo-
ries. It was officially presented to the intellectual community in the decade
of the 1990s. From this time it has brought new and interesting insights
in different areas of linguistics, especially in the area of phonology. A cen-
tral idea in OT is that the knowledge of linguistic well-formedness that is
attributed to speakers is universal. That does not mean that the speaker
always performs linguistic forms in a well-formed manner. What it means
is that the knowledge of certain structures is shared by all humans. This
assumption of a core of universals in human languages identifies OT as a
Universal Grammar (UG).

It is important to note that there is no consensus among UG frameworks,
about which elements form the core of universals assumed for all possible
human languages. Their common link is just the general assumption of the
existence of such ‘universals’. Furthermore, what ‘universal’ means in each of
the UG proposals is not homogeneous. OT for example, introduces a break
with the notion of ‘universal’ in Generative Grammar. In OT inviolability
is not necessary for universality while in traditional generative frameworks
it is.

A UG assumes that certain elements of human language do not vary,
these are the universals. Moreover, a UG has to explain the variable el-

6



ements of human languages, why they differ with respect to each other.
With respect to this, OT says that language variation is a question of con-
straint ranking variation. In other words, certain sets of constraints are the
same in all languages, but languages differ just in that each language or-
ders such constraints in different ways. To learn a grammar is not to learn
new constraints, it is only to learn another ordering of the same universal
constraints.

As we have said, OT shares with other UG approaches the belief that
humans share some linguistic knowledge. That this knowledge is innate is
not a necessary assumption in OT. But in this thesis we want to focus on
the nativist position of OT. We think that this exploration can bring us new
ideas for a possible encoding of a linguistic framework.

1.2 The nature vs. nurture debate

The “nature vs. nurture” debate is one of the most traditional and lively de-
bates concerning the origin of human knowledge. Unfortunately this debate
has arrived at a stalemate, where the arguments given for supporting one
of the positions do not seem better than those proposed for defending the
other position. Here we are going to draw a general picture of the nature
vs. nurture debate, in terms of the nativism-no nativism debate.

It is difficult to present a clear view of the debate of nativism against no
nativism, mainly for two reasons. First, there are a lot of issues mixed when
this debate is presented. The link nativism-no nativism is successor of the
discussion rationalim-empiricism. In such a tradition many elements enter
in the discussion and usually they are not cleary distinguished. Second,
the mixture of issues has lead to several misunderstandings between the
defenders of nativism and those who reject it.

How can we explain the nativism-no nativism debate? Traditionally
nativism has been related to rationalism and no-nativism to empiricism.
Nonetheless, these links can be dissolved. The point of discussion among
learning theorists is not whether there is something innate or not, in the
sense of something being possessed at birth before sensory experience or
not. Innateness in this sense of something possessed at birth is quite ac-
cepted. The disagreement arises in the opinion about what is considered to
be native. Following [2], we could say that the nativist controversy should
be constructed in terms of what is native or innate not in terms of whether
anything is innate.

Chomsky’s strong nativism marks a clear border in the discussion. On
the one side, those who agree about the genomic encoding of the abstract
grammatical knowledge; on the other, those who do not. The interesting
point is that connectionism —as we will see in the next section— can bring
a new approach to this discussion, the approach of an integrationist view.
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The nativism in grammatical knowledge compatible with OT is based
on three elements: language, typology and a language acquisition device.
Below the general definition:

The nativist hypothesis (general formulation)

a. Language. A language L is a rich combinatorial system gov-
erned by complex structural well-formedness conditions, GL.
b. Typology. The well-formedness conditions GL for all human
languages L share a great deal of common (‘universal’) struc-
ture U . The space of possible human languages, T , is intrin-
sically structured, the boundary separating possible from im-
possible languages being subtly determined by the universals of
well-formedness U .
c. LAD. The genome equips the learner with a Language Ac-
quisition Device (LAD) which encodes knowledge of U in the
following sense: the LAD is incapable of learning an impossible
human language —one that violates U— but it is capable of ef-
fectively and efficiently homing in on any target possible human
language L in T , given examples of well-formed items in L ([25]:
971-2). 1

In OT the structure U shared by all possible human languages is defined by
the set of output candidates produced by Gen, the set of well-formedness
constraints Con and the definition of being optimal.2 The learner is equipped
with a Language Acquisition Device (LAD) that encodes the knowledge of
the structure U . According to the definition above, such LAD is provided
by nature, is something that humans would have thanks to their genome.

1.3 Other traditional debate

The traditional polemic of rationalism vs. empirism clearly alive in the
seventeenth century is in some sense revived in the twentieth century under
the name of the nativist-no nativist polemic.

The point at issue in the rationalism vs. empiricism debate was raised in
the context of epistemology. The discussion focused on the origin of human
knowledge. The debate can be seen as answering the question Which is

the main source of our knowledge? Empiricists thought that our sensory
experience was the main source of our knowledge while rationalists disagreed

1A no nativist position will tend to postulate the least number of innate elements. For
example, those who support a no nativist position could accept a and b of the definition
above but it would reject c. That is, they could agree with the idea of a common structure
U but disagree with the idea that such a structure has been encoded genetically.

2Roughly speaking, to be an optimal candidate means to be the best satisfying a
hierarchy of constraints.
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about it and thought that ‘true knowledge’ was based on the principles of
reasoning.

Empiricists drew the distinction between simple and complex ideas. Sim-
ple ideas were those ideas directly produced from sensory experience. Com-
plex ideas were composed from simple ideas. The empiricist tradition in-
cludes an account for psychological processes called associationism. In this
view complex ideas are thought of as associations of simple ideas. The as-
sociation can be made for example by spatial contiguity, or by temporal
contiguity. The point that we want to stress here is that for empiricists,
ideas were grounded in experience in the sense that every idea is related
directly or indirectly to it. Rationalists do not think so. For them ideas are
innate, inborn, not acquired through sensory experience. True beliefs arrive
by reasoning according to these ideas.

The rationalist-empiricist debate can be brought into the context of lan-
guage acquisition. The debate was revived in the middle of the 20th century
by Chomsky. In his polemic argument about the poverty of stimulus he
stated the impossibility of an organism of learning everything from experi-
ence. The debate was nativism-no nativism, exemplified under the names
Chomsky against Skinner.

Behaviorism, mainly represented by Skinner, is a kind of association-
ism. Universal Grammar ocurring as generative grammar in Chomsky, is
innatism. The routes seem to be empiricism-associationism-behaviorism-
Skinner and rationalism-Universal Grammar-generative grammar-Chomsky.
The context in which connectionism3 appears it assumes these links. Con-
nectionism ‘is an elaboration of associationism’ (Cfr. [2]). So, it is not
strange that the first reaction of those who supported nativism was rejec-
tion. Even when connectionism has incorporated ideas of associationism,
it has added new ideas that places it far from previous forms of associa-
tionism. It is important to note that connectionism can be seen as neither
supporting nativism nor supporting no nativism. It can be seen as a theory
integrating both positions. In this tone in [24] it is said that Parallel Dis-

tributed Processing models can bring us a new perspective to think about
the nativism-empiricism debate.

[With respect to an organism that consists of highly intercon-
nected units]
Like good nativists, we have given the organism a starting point
that has been selected by its evolutionary history. We have not,
however, strapped the organism with the rigid predeterminism
that traditionally goes along with the nativist view (...) At the
same time, we have the best of the empiricist view, namely, we
place no a priori limitations on how the organism may adapt to

3By connectionism here we mainly mean an integrative connectionism. We exclude for
example, the eliminativist and implementationist positions.
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its enviroment. We do, however, throw out the weakest aspect of
the empiricist dogma, namely, the idea of tabula rasa (or totally
random net) as starting point ([24]: 140-1).

We close this section with an idea that other authors have mentioned before
in [2],[11], [24]: Connectionism may be an option for closing the gap in the
nativism-no nativism debate.

1.4 What is innate?

The answer is not Nature or Nurture; it’s Nature and Nurture.
But to say that is to trade one platitude for another; what is nec-
essary is to understand the nature of that interaction ([11]:357).

The concept of innateness has a quite wide use in different areas. Here we are
interested in a neural sense of the term. This does not mean a homogeneous
definition of the term. Innateness as connected with biology, brings us the
general idea of genes and different characterizations of innateness that in
many cases are not clear. For example, being innate from the biological
perspective can refer to our complete genetic endowment, or only to a single
set g of genes that produces a specific behavior, and so on.

In [11], the authors argue that for a precise characterization of innateness
it is important to distinguish between the mechanism and the content of
innateness. We focus only on the mechanism, given its relevance for our
topic.

With respect to the mechanism, we can identify three kind of constraints:
representational, architectural and timing constraints.

Representational constraints in a network level constitute patterns of
activation that spread across the processing units. Activation patterns are
determined considering connections between units. Innateness may be ex-
plained in terms of prespecified weights on the connections.

Architectural constraints operate in three levels: unit, local and global
level. But it is important to stress that in all levels, such constraints operate
considering the architecture of a network.

In the unit level, the focus is on the nodes of the network. In this level,
innateness is explained in terms of activation function, learning algorithm,
and so on. In the local level, the focus is on patterns of connectivity, for
example, it would take into account whether the network is feedforward
or recurrent. In this level innateness is related to network type, number of
layers, of units, and so on. In the global level, the focus is on the macro view,
that is, in the view that different pieces of a system form a unity. In this
level, all elements of the system must be taken into account for explaining
certain phenomenon. Innateness would be understood as emerging from the
relation of different parts of a network.
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Timing constraints arise from the timing of developmental events. Here,
innateness is understood in terms of adaptative learning rates, incremental
presentation of data, and so on.

It is worthwhile to mention that only in the representational level a
neural mechanism is capable of dealing with the idea that knowledge of
grammar can be innately specified. UG and, specifically OT, will be related
to the representational level. So, innate knowledge in the OT framework
will take the form of prespecified weights on the unit connections.

Universal Grammar assumes that certain grammatical knowledge is in-
nate. However, as Elman has pointed out in [11], representational con-
straints even when theoretically plausible seem to be biologically implausi-
ble. This point reminds us of the topic of competence and performance. A
grammar is oriented to explain the competence of language not its perfor-
mance. That is, a grammar is focused on explaining the use of the language
by a speaker as well as the judgment of grammaticality. Nonetheless, it
does not deal with the issue of how a speaker processes the language. This
is an important issue to be noted in order to understand why for a pro-
posal in linguistics, as OT for example, to use the representational level
on constraints is relevant even when such constraints are far from being a
biologically plausible model of biological networks.

A last remark with respect to the translation invariance problem. 4 For
solving the translation invariance problem, OT proposes to bound weights.
This proposal is in tone with the proposal of [12]. Proposals that suggest
as solution of the translation invariance problem to make the weights iden-
tical, usually assume representational constraints. According to what we
have mentioned before, this would mean that networks built under the as-
sumption of such proposals cannot be seen as plausible biological models, as
explanation of how speakers process language. Nevertheless, such networks
perhaps are not far from explaining how speakers use the language. 5

1.5 The proposal

In this thesis we propose to translate the constraints of the symmetric net-
work CVnet into formulae of penalty logic. The novelty of this proposal is in
the link penalty logic-optimality theory-connectionist networks, expressed
specifically in the link penalty logic-CVnet. The proposal is located in an
interdisciplinary environment. Some areas in which it could generate new
issues of research would be logic, linguistics, computation and philosophy.

4For an introduction to the translation invariance problem, Cfr. [12].
5This point is important for us given that we will translate a network in which bound

weights and representational constraints are assumed.
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1.6 About the other chapters

2 Optimality Theory
OT assumes that there are three things that all human languages share:

(i)A set of linguistic forms, from which the best or optimal form is selected;
(ii) a set of constraints and (iii) the definition of being optimal. These three
elements constitute the common structure U . The genome brings to the
learner a Language Acquisition Device (LAD) in which U is encoded.

In this chapter we introduce the elements of U . We present a concrete
example that implements such a structure, the CV Syllable Theory.

3 CVnet: A network embodying OT
In this chapter we treat the encoding of U into LAD. In particular, we

look at the encoding of the CV theory into a network called CVnet. This
network is part of the LAD.

4 Penalty Logic
The genomic encoding of U into the connectionist network CVnet can be

simplified and enriched if we encode U in Penalty Logic.
In this chapter we introduce the main definitions of Penalty Logic and we

exemplify how a symmetric network can be translated into Penalty Logic.

5 Translation of CVnet into Penalty Logic
In this chapter we present the genomic encoding of OT into Penalty

Logic. The CVnet network is translated into Penalty Logic. The link among
OT-Connectionist-Penalty Logic’s levels is closed.
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Chapter 2

Optimality Theory

In this chapter we present some elements of the framework of Optimality
Theory (OT). As we have pointed out in the introduction, we assume a na-
tivist reading of OT. The reason for such assumption is only methodological.
We think that the exploration of the nativist path might bring us new ideas
for a more critical view of the nature vs. nurture debate 1.

We start this chapter, defining a ‘nativist’ OT. The definition will permit
us to present a rough introduction of some elements of OT as well as some
clarifications about the set of universals in an OT Theory. After the nativist
OT’s definition, we present more extensively some elements of OT. We close
this chapter with the presentation of the CV Syllable Theory. The CV
Theory will be the base for the examples developed in later chapters.

2.1 The nativist hypothesis in OT

According to [25], the nativism in OT can be defined as follows:

Definition 2.1 The nativist hypothesis in OT

a. Language. A language L is a subset of a combinatorially-
structured candidate set of linguistic forms S; L consists of those
forms which best satisfy a set of violable well-formedness con-
straints ConL, as ranked in a strict domination hierarchy, GL.
b.Typology. The set of candidate forms S, the set of well
formedness conditions Con, and the formal definition of ‘best sat-
isfying a hierarchy of violable constraints’ are exactly the same
for all possible human languages: they define U . The typological
space of possible human languages T is the space of all languages
L comprised of the optimal forms relative to some rankings GL

1In fact, we think that exploring only the nativist side is not enough for a critical view
of the debate. A research in the no nativist side is also required for a mature valuation of
both positions.
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of the constraints Con.
c. LAD. The genome g equips the learner with a Language Ac-
quisition Device (LAD) encoding knowledge of U in the following
sense.

i. During development, g drives the construction of a neural
network N that maximizes Harmony.

ii. The activation patterns in N can realize any candidate lin-
guistic structure in S.

iii. The connections in N encode the constraints Con: maxi-
mizing Harmony constructs the realization of the structure
that best-satisfies the constraints Con, with each constraint
Ci in Con having a numerical strength si .

iv. During language acquisition, N adjusts the constraint
strengths si while processing example linguistic forms in S.
The learning algorithm finds a set of strengths si such that
each constraint in Con strictly dominates all weaker con-
straints —i.e., it finds the grammar of a possible language
in T .

v. If the learning data derive from a language L in T , the
learning algorithm efficiently converges to a set of strenghts
si realizing a ranking of Con that correctly generates L.
([25]: 972).

OT deals with linguistic forms. From the set of linguistic forms, some forms
arise as optimal. The selection of an optimal form is not absolute, but rela-
tive to a certain hierarchy of the constraints Con. The set of optimal forms
that emerge from a candidate evaluation in a hierarchy, say H, constitute a
language.

In OT, a grammatical form is an optimal form. In order to select such
a form, there is a candidate comparison, in which, the constraint hierarchy
is the most important tool for deciding which form is the optimal. It is
important to note, that for OT a grammatical form is not a form that does
not violate any constraint. On the contrary, optimal forms usually violate
some constraints. An important point for selecting the optimal form is the
position of the violated constraint(s) in a certain hierarchy. Constraints at
the top of the hierarchy have a higher value. As the hierarchy goes down,
the value of constraints decrease. Violations on the bottom constraints are
preferable given their lower cost in comparison with the top constraints.
However, the position of the violated constraint(s) is not sufficient for se-
lecting the winner candidate. For selecting the best form it should be also
taken in account which constraints the other competitors have violated.

In definition 2.1, specifically in the paragraph about typology, two im-
portant statements about OT are introduced. First, it is said what is going
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to constitute the common structure for all possible human languages, that
is, the structure U . This common base that all human languages share is
formed by the set of linguistic forms,2 the set of violable constraints Con

and the definition of ‘being optimal’. That means that human languages do
not differ neither in the candidate forms to be consider in the selection of
optimal forms, nor in the constraints that regulate the selection, nor in what
they consider as an ‘optimal’ form. According to OT, languages only differ
in the ranking of constraints. Second. “Typology is the study of the range
of systems that re-ranking permits” ([20]:7). According to the definition
above, the typological space of possible human languages is constituted by
the space of all languages L. That is, by all the optimal forms that arise
through different re-rankings of the constraints in Con.

Definition 2.1 also tells us that the structure U is encoded in a Language
Acquisition Device(LAD). This LAD is a harmonic network call it CVnet.
The point that I want to stress here is that the genome provides such LAD.
The genomic origin of the LAD has led people to see CVnet as an inborn
device. Such assumption about CVnet makes it plausible to think that the
definition of ‘being optimal’, the linguistic forms and the set of constraints
Con, due to their encoding in CVnet, are inborn too.

A more complete characterization of the inborn character of U , specifi-
cally in CVnet, should consider not only the violable constraints but also the
inviolable. In the CV Syllable Theory as formulated in ([25]: 980-1), the
distinction between violable and inviolable constraints is explicitly drawn.
Violable constraints are the Con constraints. Inviolable constraints are the
Gen and the Structural constraints. As the authors state in [25], the Gen

and the Structural constraints are beyond any constraint hierarchy, they
are assumed fulfilled in every candidate competition. As you can see in
the definition 2.1, such constraints are not mentioned. This suggests us the
alternative that such inviolable constraints may be excluded from the CV
Theory. However, independently whether a set of Gen and Structural con-
straints belong or not to the general OT, what we want to stress here is that
we are going to consider such constraints as part of the structure U that is
encoded in CVnet. We think that we are allowed to do this, first, because
such constraints as presented in [25] seem to be more fundamental than any
violable constraint; second, they are part of CVnet.

2Note that it is the whole set of linguistic forms, this includes not only optimal but
also no optimal forms.
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2.2 The OT framework

Optimality Theory arises to the public light at the end of the 20th century.
Alan Prince and Paul Smolensky introduced this framework extensively in
[20]. Initially, OT was focused on phonology, but since its birth has been
promptly extended to other areas of linguistics like syntax and semantics.

OT emerges in a context in which linguistic research is mainly based
on the framework of generative grammar.3 However, it differs from the
traditional approach in important points:

• In OT, linguistic forms are compared to each other for the selection of
an optimal. The status of a form always depends on other forms. In
generative grammar, this is not the case. Forms are singly evaluated
according to certain rules.

• OT’s constraints are universal and violable. Generative grammar’s
principles are universal and inviolable. 4

• OT recuperates markedness as a key element of a grammar where in
generative grammar the central role was played only by faithfulness.
This recuperation is related to the conflicting relation that the con-
straints will hold in OT.

• In OT, neither is violability a synomyn of inactivity, nor does satisfac-
tion (inviolability) mean activation. The OT outputs are not thought
in terms of duality, e.g. on/off, right/wrong, and so on, but in terms
of optimization. In generative grammar violability is inactivation, sat-
isfaction means activation.

• OT explains language variation in terms of re-ranking of constraints,
while generative grammar justifies that aspect appealing to other tools
like different rules/parameters and the lexicon.

• In generative grammar the lexicon plays an important role imposing
structure on the linguistic primitives. In OT, linguistic primitives and

3In the early 80’s Chomsky presents the Principles and Parameters Theory (P& P) (Cfr.

[7] and [8]). In P & P, it is postulated that languages do not have rules but principles
which are universal. Language variation is explained through parameters.“The reliance
on principles rather than rules has consequences also for the interpretation of the term
generative grammar that has been been associated with the Chomskyan approach since
it first appeared. ‘Generative’ means that the description is rigorous and explicit; ‘when
we speak of the linguistic’s grammar as a ‘generative grammar’ we mean only that it is
sufficiently explicit to determine how sentences of the language are in fact characterized
by the grammar ([6]:220)’”. ([10]:35).

4Acording to the CV Syllable Theory as exposed in ([25]: 980-1), some constraints
are universal and violable, these are the Con constraints. The Gen and the Structural

constraints are universal but inviolable. This is a distinction with respect to generative
grammar in which all the principles are universal and inviolable.
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inputs are the same (Richness of the Base Hypothesis). From this point
of view, two positions about the lexicon arise in OT: a)If a lexicon is
recognized, the role of the lexicon is quite different and almost null; or
b) There is no lexicon, only vocabulary.

• In OT and generative grammar, Universal Grammar (UG) plays a
central role. But the conception of UG that underlies these frameworks
is quite different. In OT, UG consists mainly of a set of universal
and violable constraints, while in generative grammar UG is a set of
(inviolable) principles and rule schemata.

It will be helpful for the clarity of the next sections, to mention something
about the relationship between OT and OT grammars. OT constitutes a
theory of human language capacity while an OT grammar is a part of that
language capacity. OT is a framework for positing linguistic theories, its
instantiations are particular OT grammars or OT linguistic theories. OT
deals with the structure of UG, while the grammars are concerned with its
content. In other words, OT works with the typology, with all possible
re-rankings of the set of universal constraints Con; OT grammars are the
particular rankings in that space of possible re-rankings.

2.3 The Basic Architecture

An OT grammar can be seen as an input-output mechanism5. The grammar
must assign to each input or underlying form, an output or surface form.
This input-output pairing is such that to each input there corresponds only
one output, and this output is always the optimal form among a set of
competitors.

The input-output association is accomplished by two functions: the Gen-
erator (hereafter Gen) and the Evaluator (henceforth Eval). Gen associates
with each input a set of possible analyses or output candidates. This set
is submitted to Eval. Eval will evaluate the candidate output forms us-
ing a ranking of the constraints in Con. From this evaluation, the optimal

candidate will be selected as the output.
The process described above can be schematically represented like:

Gen(Ik) → { c1, c2,..., cn }
H-Eval (ci, 1 ≤ i ≤ ∞) → Out 6.

5In this section, the description of the mechanism for generating an optimal form
is based on [20]. In the section ‘Structural Descriptions’ we complete this exposition
mentioning some elements of the contemporary OT as exposed in [25].

6Prince and Smolensky describe this process in similar terms in [20]. Here we have
changed only the notation.
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where Ik is the input for which a set of candidates c1, c2,..., cn will be
generated. As we have said Eval selects from that set of candidates, a
candidate ci that becomes the output (Out) assigned to the input Ik. In
such selection a ranking or constraint hierarchy H is assumed.

The number of candidates that Gen can assign to a certain input I

can be infinite. Besides, Gen is free to generate any conceivable candidate
for a certain input I, even when such output candidate may be a quite
unfaithful analysis of that input. The unique requirement is that Gen uses
licit elements for building the candidates, that is, elements from the universal
vocabulary or lexicon.

Gen’s characteristic of postulating any amount of analyses or output
candidates for a certain input I, is known as Freedom of Analysis. This
freedom of Gen could raise the question whether the system can at some
point finish the evaluation and state an output. This question leads us
to the distinction, usually accepted among formal linguists, between the
grammar and its cognitive implementation. That is, the distinction between
competence and performance. A grammar model is satisfactory if it explains
grammatical judments of speakers and regularities in natural language. Its
aim is not to explain how human minds process linguistic knowledge but
how they use them. In other words, a grammar’s goal is oriented to the
competence of a language not to its performance.7 The problematic issue of
whether a system can finish the process of evaluation and to select an output
is a problem related to the performance of language not to its competence.
So, it seems to be a problem that goes beyond a grammar’s goal.8

The candidates generated by Gen are compared to each other. From
this comparison, Eval will choose an optimal candidate, that is, the candi-
date that best satisfies the ranking of the constraints. Independently of the
number of output candidates, Eval always selects one, the most harmonic

candidate that becomes the output. There are two cases that may seem
problematic with respect to the unicity of the output. First, when there are
two or more candidates that have the same number of violation marks with
respect to the same constraint. In this case OT will consider such candidates
as forms equally correct. Second, when there is no optimal candidate. OT
always assumes that the candidates generated by Gen can be compared in
terms of violation marks. The candidates have the same number of marks9

7It leaves to disciplines like psycholinguistics, neurolinguistics and computational lin-
guistics, the task to deal with the cognitive implementation or performance. In Chomsky,
the distinction between competence and performance can be drawn in terms of the dis-
tinction between I-language and E-language ([5]).

8It should be observed that the gap between competence and performance is been
closed. Perhaps this explains why more people from ‘theoretical’ linguistics, computational
linguistics and neurolinguistics are nowadays working together.

9Having the same number of marks means in an OT context, the candidates compared
with respect to a certain constraint C in a hierarchy H, have the same number of violation
marks. Violation marks are usually represented in OT by asterisks.
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or not. If they do not, there is always a candidate with the minimum number
of marks.

Summing up. The basic architecture of an OT grammar includes a
universal candidate generator Gen, a universal evaluation function Eval,
and a universal set of constraints Con, whose constraints are ranked in a
hierarchy H. Assumming that a grammar deals with competence not with
performance, Eval is always able to find an output for a given input.

2.4 Two readings of an OT architecture

The basic architecture of an OT grammar introduced in the previous section
can be depicted as in figure 2.1. This architecture can be read in terms of

Figure 2.1: Basic OT Architecture

harmonic serialism or in terms of parallelism. In harmonic serialism the
production of an optimal form is explained as follows: A set of candidates
generated by Gen is advanced to evaluation, where Eval assuming a hierar-
chy of the constraints selects the most harmonic. The optimal candidate is
fed back into Gen. Gen generates another set of candidates, which again is
evaluated, and again the optimal candidate is returned to Gen. This process
continues until no improvement in optimization is possible [20].

The other interpretation called parallelism assumes that Gen generates
all the candidates at once. The candidate evaluation is global and parallel.
Just one pass through the constraint hierarchy is sufficient for selecting the
most harmonic candidate, that is, the output. In this thesis, we will assume
this second approach.
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2.5 The optimal candidate

Intuitively, the optimal candidate that constitutes the output of an evalua-
tion, it is the winner among other candidates. In the selection of an optimal

candidate, the number of violations on the constraints is not as important
as the position of the constraint(s) in a certain hierarchy. To violate a
higher constraint is more costly than to violate a lower one. An optimal

candidate is always optimal with respect to other candidates. The best or
optimal form will be that candidate that violates lower ranked constraints
than those constraints that the other candidates violate. That is,

Definition 2.2
A candidate w is considered to be optimal iff for each competitor

w’, the constraints that are violated by w must be ranked lower

than at least one constraint violated by w’.(Cfr.,[3]:20).

2.6 Speakers and Hearers

As you can see in figure 2.1, we have depicted a forward relation between
input and output, but the relation can be backward. What we have called
input and output are respectively the underlying form and the optimal form.
Figure 2.1 shows us the relation from the underlying form to the optimal

form, this relation is a function that we call, following [25], ‘the production
function’. This function denoted by f prod, can be identified with the speaker

perspective.
Additionally, in [25] a backward function is introduced. This function

maps from the optimal candidate10 to the underlying form, called it ‘the
comprehension function’, denoted by f comp, and it is commonly matched to
the hearer perspective.

In this thesis we focus on the speaker perspective. We will use the terms
‘input’ and ‘output’ as in earlier sections, as denoting the underlying and the
optimal forms respectively. A more precise characterization of the functions
just exposed is given in the next section, with the help of the concept of
structural description.

10With more precision, the function maps from the speaker’s optimal candidate to the
underlying form. It is important to note this, given that the speaker’s and hearer’s optimal
candidates may not coincide. In this thesis, we use the term ‘optimal’ only in the speaker’s
perspective.
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2.7 Structural Descriptions

11 Structural descriptions play an important role in theories that assumes
the principle of compositionality of meaning. This principle states that the
meaning of a complex expression is formed from the meaning of its parts
plus rules for combining such parts. OT grammars assume the principle
of compositionality. Structural descriptions will be the parts from which
compound structures will be formed.

A structural description in OT has three primitive elements: an inter-
pretation, an expression and a correspondence relation between the inter-
pretation and the expression. In the speaker’s perspective, input elements
are interpretations while outputs elements are expressions. 12 For example,
in the Basic CV Syllable Theory of OT, interpretations are strings of conso-
nants and vowels and expressions are such strings parsed into syllables. 13

Definition 2.3
A structural description S in an OT grammar is a tuple (I, E, R), where

1. I is an interpretation

2. E is an expression.

3. R is a correspondence relation between I and E.

For every expression E, there is a substructure O, called the overt part. 14

The universe of structural descriptions is denoted by U S . The universe of
interpretations, expressions, correspondence relations and overt forms by
U I , U E, UR and U O respectively.15

The set of candidate expressions of a particular interpretation I 0 is the
set of all structural descriptions S = (I 0, E, R) in U S . Such a set is called
Gen(I 0). That is,

11The content of this section is based on [25]:472-495.
12In the hearer’s perspective is in the opposite way. Input elements are expressions

while outputs are interpretations.
13We can take the string /V1C2 V 3C4/ as interpretation. Its corresponding grammatical

or optimal expression with respect to the hierarchy FillC ≫ Parse ≫ FillV ≫ NoCoda

≫ Onset would be .V1.C2V3C4. Cfr. section 2.9
14The overt part or surface form is ‘the portion of E that is directly available to the

hearer’([25]: 472).
15Each OT grammar specifies a universe of structural description, that is, a U S .
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Definition 2.4

Gen(I 0) = { S ∈ U S | ∃E ∈ U E, R ∈ UR s.t. S= (I 0, E, R)}

The so-called function Gen is the correspondence relation that maps from
the interpretation I 0 to the Es ∈ U E . The production function assigns to
each interpretation a subset of the set assigned by Gen. That is, f prod(I 0) ⊂
Gen(I 0). If a structure S= (I 0, E, R) ∈ f prod, S is a grammatical expression
of the interpretation I 0.

The set of candidate interpretations of a particular expression E 0 is the
set of all structural descriptions S = (I,E 0, R) in U S . This set is called
Int(E 0).

Definition 2.5

Int(E 0) = { S ∈ U S | ∃I ∈ U I , R ∈ UR s.t. S= (I, E 0, R)}

The function Int maps from the expression E 0 to the Is ∈ U I . The com-

prehension function assigns to each expression a subset of the set assigned
by Int. That is, f comp(E 0) ⊂ Int(E 0). If a structure S= (I, E 0, R) ∈ f comp,
S is a grammatical interpretation of the expression E 0.

As we have mentioned, we will focus on the speaker’s perspective. We
consider the hearer’s perspective also interesting , but it goes beyond our
main goal in this thesis.

2.8 The constraint hierarchy

The function of evaluation, that is, Eval, carries the responsability of select-
ing the grammatical well-formed structures in a certain language. Assuming
a strict order on the constraints, Eval looks for the output in the space of
candidates produced by Gen. But for such an evaluation gets help from
the following devices: a constraints hierarchy, marking of violations and
harmony evaluation ([15]). In this section we only comment the first device.

In OT, the universal constraints grouped in Con, are not mutually con-
sistent. In order to resolve their conflict and to choose the most harmonic

candidate, all the constraints in Con are ordered in a strict domination

hierarchy. We will represent this domination as: C1 ≫ C2 ≫... Cn where
‘Ca ≫ Cb’ is read as ‘constraint a dominates constraint b’.

The strict character of the domination means absolute priority of one
constraint over another. If we interpret violability in terms of numerical
penalty, C1 ≫ C2 could be read as: ‘the penalty for violating C1 is much
greater than the penalty for violating C2’.
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The absolute priority of C1 over C2 consists in that independently of
the number of violations of C2, large, small or nil, the violations of C2 does
not compensate a single violation of C1. “The penalty for violating C1 is
infinitely greater than the penalty for violating C2” ([20]:236).

The strict domination hierarchy can be seen as a strict partial order
(SPO). An SPO is a pair (W,R), where the relation R is irreflexive (∀x
¬Rxx ) and transitive (∀xyz (Rxy∧Ryz → Rxz )). In the case that concerns
us, W = Con, and R is the relation ≫. The properties of irreflexivity and
transitivity of the ranking of constraints can be expressed as:

Irreflexivity : ¬ (C1≫C1)
Transitivity : If C1≫C2 and C2 ≫ C3 then C1 ≫ C3.

Another property related to the ranking of constraints is called economy.

Economy Property : Banned options are available only to avoid
violations on higher-ranked constraints and can only be used
minimally ([20]:32).

This property is quite important, it tell us about the purpose of violating
a constraint: a constraint may be violated only to avoid the violation of
higher ranked constraints. And only to avoid such violations, that is, that
violations even when permitted should be kept to a minimum.

For example, take the case in which markedness constraints dominate
faithfulness constraints (markedness ≫ faithfulness). Assuming the econ-
omy property, those output candidates that violate faithfulness without
reduction of markedness will never become optimal. This is in tone with
the economy property, violation of a constraint (faithfulness in this case) is
permitted in order to avoid violation of a higher ranked constraint (here,
markedness). If the reverse ranking is the case, that is, faithfulness≫
markedness, violations of markedness are justifiable in order to avoid vi-
olations of faithfulness.

2.9 The Basic CV Syllable Theory

For the presentation of the Basic Syllable Theory in OT, we follow [25]. This version
of the CV theory assumes elements of the correspondence theory of McCarthy and
Prince [18].

The common base that all human languages share, that is the structure U , was
introduced in definition 2.1. According to this definition, U was formed by a set of
candidate forms S, a set of constraints Con and the definition of ‘being optimal’.
We mentioned that besides such elements we would add to U , in the case of the
CV Theory, two sets of constraints: the Gen and the Structural constraints.
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a) The universe U S

In the Basic CV Syllable Theory, the universe of structural descriptions
U S , is formed by strings of consonants and vowels, that is, C’s and V’s.
Interpretations are strings of C’s and V’s like /VCVC/, /CVCVC/, and so
on. Expressions are strings of C’s and V’s but parsed into syllables. For
example, from the interpretation /VCVC/ = /V1C2 V 3C4/ the following
candidates (i)-(iv) can be generated:16

/VCVC/ /V1C2 V 3C4/

(i) .2V.CV.〈C〉 [σCV1][σC2V3]

(ii) 〈V 〉.CV.〈C〉 [σC2V3]

(iii) 〈V 〉.CV.C2. [σC2V3][σC4V]

(iv) .V.CVC. [σV1][σC2V3C4]

From the speaker’s perspective, interpretations are always the inputs of
the Gen function, and expressions the output of such function.

b) Constraints
The Basic CV Syllable Theory has the following constraints ([25]:980-1):

Con constraints

(i) Onset. Every syllable nucleus has a preceding onset.
(ii) NoCoda. Codas are not permitted.
(iii) Parse. For every element in the input there is a corresponding element
in the output.
(iv) FillV . Every syllable nucleus in the output has a corresponding V in
the input.
(v) FillC . Every syllable onset or coda in the output has a corresponding C
in the input. 17

16The example is shown in two notations. The notation used in the left expressions can
be read as follows: .X. as ‘the string X is a syllable’, 〈x〉 as ‘the element x is unparsed’, 2

as ‘a node Onset, Nucleus or Coda is empty’, x́ as ‘the element x is a nucleus’ ([20]:110).
In the right expressions, all of the elements of the underlying form are numerated. This
strategy makes the 2 and 〈〉 symbols unnecessary. A syllable is indicated by σ . In what
follows we add to the left notation upper numbers just as to the right one. Numbers make
clearer which elements are mapped. But we still preserving boxes and angles because they
will help us in the next chapter to clarify which elements are parsed and which ones not.

17Another names given to Parse and Fill are MAX and DEP respectively. We will use
the names of Parse and Fill as in [25] due to the distinction that the authors drawn there
between FillV and FillC.
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Gen constraints

(vi)Identity. Each correspondence index i may label at most one pairing:
either Ci↔ Ci or Vi↔ Vi, but not both.
(vii)Linearity. Output segments mantain the order of their corresponding
input segments.
(viii)Integrity. Each segment in the input corresponds to at most one seg-
ment in the output.
(ix)Uniformity. Each segment in the output corresponds to at most one
segment in the input.

Structural constraints

(x) Outputidentity. Every output segment is either an onset, a coda or a
nucleus, but no more than one of these.
(xi)NoOutputgaps. There are no gaps between consecutive segments in an
output string.
(xii) Correspondence. No correspondence relation exists without both an
input and an output element.
(xiii) Nucleus. There must be a nucleus, after every onset and before every
coda.

The structure U in CV Theory is constituted by:

UCV = { U S , constraints, definition of ‘being optimal’ }

In the following chapters we will focus on the encoding of the structure
UCV . First, we will present the encoding in the connectionist level (chapter
3) and then in penalty logic (chapter 5).

c) The OT Table
In the Basic CV Theory the function Gen produces candidate expressions.
These candidates are compared taking in account a specific hierarchy H of
the constraints in Con. From such comparison, Eval will select the optimal

expression in the hierarchy H.

Suppose that for the input /V1C2 V 3C4/ Gen has generated the follow-
ing candidates:

c1: .2V1.C2V3.〈C〉

c2: 〈V 〉.C2V3.〈C〉

c3: 〈V 〉.C2V3.C4
2.

c4: .V1.C2V3C4.
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And assume that the constraints in Con show the ranking: FillC ≫
Parse ≫ FillV ≫ NoCoda ≫ Onset. 18

The OT table that shows the candidate comparison can depicted as in
table 2.1.

input: /V1C2V3C4/ → FillC ≫ Parse≫ FillV ≫ NoCoda≫ Onset

c1: .2V1.C2V3.〈C〉 * *

c2: 〈V 〉.C2V3.〈C〉 **

c3: 〈V 〉.C2V3.C4
2. * *

c4: .V1.C2V3C4. * *

Table 2.1: Candidate comparison in OT

Asterisks indicate violations on constraints. For example, candidate c1

has violated the constraints FillC and Parse. If you observe the table, all
candidates have violated a constraint. The optimal candidate is c4 because
from each competitor c’, the constraints that are violated by c4, that is,
NoCoda and Onset, are ranked lower than at least one constraint lost by
any c’ (definition 2.1).

Now, suppose that we have the same input and output candidates as
above, but the order that the constraint in Con show is different. Take the
hierarchy H’ being: Onset ≫ NoCoda ≫ FillV ≫ Parse ≫ FillC . The
corresponding OT table is table 2.2.

With respect to the constraint hierarchy H’, candidate c1 arises as the
optimal form.

Different rankings on the constraints in Con can support different lin-
guistic forms as optimal. This means that grammatical forms will be relative
to the contraint hierarchy assumed. As we have mentioned, in a nativist OT,
human languages will share the structure U but they will differ in the way
they order their Con constraints. To learn a language is just to learn the
ranking of constraints. The rest is inborn.

18Note that the ranking is always on the Con set. The Gen and the Structural con-
straints, are inviolable. They are always fulfilled and not rankeable. In every candidate
comparison, the Gen and the Structural constraints are assumed fulfilled.
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input: /V1C2V3C4/ → Onset≫ NoCoda≫ FillV ≫ Parse≫ FillC

c1: .2V1.C2V3.〈C〉 * *

c2: 〈V 〉.C2V3.〈C〉 **

c3: 〈V 〉.C2V3.C4
2. * *

c4: .V1.C2V3C4. * *

Table 2.2: Candidate comparison in H’

2.10 Appendix: The set of universal constraints

Con

OT recognizes two fundamental classes of Con constraints: markedness con-
straints and faithfulness constraints. Faithfulness constraints evaluate the
preservation of underlying forms in the output candidates, that is, in the
output of the Gen function. Markedness constraints assess only to such
outputs. These two types of universal constraints are always present in the
set Con.

OT requires that every OT grammar has markedness and faithfulness
constraints. That does not mean that each OT grammar will have the
same specific constraints of those types. Different OT theories can propose
distinct faithfulness constraints and distinct markedness constraints. For
example, in a theory for avoiding hiatus,19 the following Con constraints
may be assumed.

For avoiding Hiatus
(i) Markedness constraints:
*HIATUS: Hiatus are prohibited.
(ii)Faithfulness constraints:
MAX(V): Vowels may not be deleted.
DEP(C): Consonants epenthesis is prohibited.

While in a basic syllable theory as that exposed in [20], the following
constraints could be postulated:

For a syllable theory in OT
(i)Markedness constraints:
ONSET: A syllable must have an onset.
−CODA: A syllable must not have a coda.
(ii)Faithfulness

PARSE: Underlying segments must be parsed into syllable structure (Avoid
deletion).

19“Hiatus is the phonetic result of the immediate adjacency of vocalic syllable peaks”
([14]:5). The constraints mentioned with relation to hiatus were also taken from [14].
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FILL: Underlying segments must be filled with underlying segments (Avoid
epenthesis). 20

The relation between constraints is in principle conflictive. This aspect
is related to its violability. Markedness and faithfulness are two antago-
nistic classes. While faithfulness asks for preservation in the expression of
the material given in the underlying form, markedness usually modifies the
expression or output candidate, by deleting or aggregating material.

In OT violability does not mean ungrammaticality. Given the conflictive
character of markedness and faithfulness, an output is in most situations
forced to violate one class. This conflict will be resolved in the interaction
of constraints in a particular ranking. In this interaction Eval will select the
candidate with the least serious violations, that is, the optimal candidate.
The optimal candidate is not the candidate with null violations, but that
candidate that compared with other candidates is the best in satisfying the
set of constraints. Grammaticality in OT means optimality not inviolability.

20In the syllable theory we have presented in 2.9, Onset and NoCoda are the markedness

constraints. Parse, FillV and FillV are the faithfulness constraints.
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Chapter 3

CVnet: A network

embodying OT

3.1 The ‘abstract genome’ project

It seems that we can distinguish between two categories. On the one side,
the group of devices related with material of genome. In the other, the
group of devices concerning nets. In [25] is assumed that each level of the
genomic side encodes a level of the net’s side. In each side three levels are
distinguished.

The genomic side is constituted by the levels: biological genome, abstract
genome, innate constraints. Each of these ones will encode respectively the
following levels in the net’s side: biological neural net, connectionist net,
symbolic system. We will call this way of relation among the levels the
‘horizontal’ relation (see figure 3.1).

In [25] the necessity of introducing an intermediate level between the
biological genome’s level and the innate constraints’ level is suggested . This
intermediate level is called ‘abstract genome’.

The levels mentioned will indicate a ‘vertical’ relation. In the genomic
side, is assumed that the biological genome’s level instantiates the abstract
genome’s level, and this one, the innate constraints level. In the nets’ level,
the biological neural net’s level instantiates the connectionist net level and
this one, the symbolic system level.

In terms of what we treat in this thesis the scheme explained above means
the following: U is in the innate constraint level. To OT corresponds the
symbolic system level. That means, U encodes OT. However, also means
in the ‘vertical’ relation, that U is instantied in an abstract genome, and
this one, in a biological genome. In the nets’ side, it means that OT is
instantiated in CVnet, and this network in a biological network.

CVnet is in the connectionist net’s level. According to [25] it is in this
level where a device that encodes such connectionist network was needed.
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Figure 3.1: Abstract Genome

Their suggestion has been an abstract genome. We agree with the necessity
of an intermediate level, but instead of the abstract genome, we introduce
penalty logic. For us, penalty logic in the ’horizontal’ relation will encode
CVnet . In the ‘vertical’ path it instanties the innate constraints’ level, in
particular, the structure U ; and it is instantiated in a biological genome.

3.2 In which sense are the net-constraints univer-

sal?

In OT, constraints are universal as they form part of the structure U . In
the connectionist level, constraints are usually characterized as universal
when their weights are bound. In this thesis, we assume such a notion of
universality in the connectionist level.

In order to avoid confusion, we will use the following names for the ‘con-
straints’: Constraints in the level of OT will be called ‘OT-constraints’, while
constraints in the connectionist level will be denominated ‘net-constraints’.
This distinction will be extended to the particular constraints. For example,
we use the name ‘OT-Onset ’ for talking about Onset in the linguistic level,
and net-Onset for Onset in the connectionist level.

As we have said, all the net-constraints are universal in the sense that all
of them assume bound or identical weights. But analogous to the distinction
between violable and inviolable constraints given in OT, the net-constraints
will be divided into constraints with variable weights and constraints with
fixed weights. The net-Con constraints will belong to the first category, non-
fixed weights. The net-Gen and net-Structural constraints to the second one,
with fixed weights.
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3.3 CVnet architecture

In the CV Syllable Theory, the grammar defines a mapping from an under-
lying string composed with C’s and V’s, to a surface form with C’s and V’s.
This mapping is implemented in CVnet.

CVnet is a symmetric local connectionist network that can represent in-
terpretations and expressions of C’s and V’s.

In CVnet we find three layers: an input, an output and a correspondence
layer. 1 Take figure 3 as a matrix2. The input unit is represented by
cells a12,a13, a14, the output layer by cells a21, a31, a41 and a51, while the
correspondence layer is spread over the remaining cells, in the center of the
CVnet picture.

In the input and correspondence layers, units are classified by being
vowels or consonants. Vowels are denoted by ∇ and consonants by ©.
In the output layer a more detailed distinction is introduced. Consonants
are distinguished as onsets or codas. In the output layer we have three
units: vowels, onset consonants and coda consonants. These are denoted
respectively by ∇, © and a crescent.

It is important to note that as CVnet is a symmetric network, its con-
nectivity pattern has a symmetic feedback. That is, for two units α, β the
weight from α to β is equal to the weight from β to α.

Let us explain in more detail the activity in CVnet. Suppose that we have
the input string /V1C2C3/ (grey part of figure 3.2). This input is depicted
in the network through activation or disactivation of units in the input layer.
Black nodes represent activated nodes, white nodes disactivated nodes. The
input /V1C2C3/ is depicted in figure 3.2 in the input layer, that is, cells
a12,a13, a14. As we have pointed out, in the input layer we only find vowels
and consonants. If we think in the OT framework, this may be intepreted
as entering as inputs just CV syllables, that is, a syllable that has an onset
consonant, a nucleus, but no coda. Graphically, this interpretation seems to
be supported too, if you look at figure 3.2, a © is found in the input and
output layers, and in the last one is interpreted as onset consonant.

In the correspondence layer we still find the distinction of units into vow-
els and consonants. But in this layer, consonants are not distinguished yet
by onset or coda consonants. Let us see how the activity in the correspon-
dence layer goes. The V1 in the input (cell a12) is in correspondence with
the V in the cell a32. Notice that these two V’s are activated. Now, if you
look at cell a31, there is also a V active. This means that the V1 in the
input has been parsed, additionally it indicates in which output position the
V1 has been parsed. In this case, it has been parsed in the second position
of the output. The position of a vowel or consonant in the output will be

1In the standard representation of networks, the input, correspondence and output
layers will be the rows of input, hidden and output units respectively.

2In a cell aij , i represents the row and j the column.
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Figure 3.2: CVnet
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relevant for the intepretation if the syllable has onset, nucleus or coda.
Now consider the C2 in cell a13. This consonant is active but there is no

unit beneath it that indicates to us a correspondence relation. The C in the
output (cell a21) cannot be interpreted as the consonant C2 in the input (cell
a13) because in the cell a23 the consonant unit is not active. Furthermore,
observe that no consonant in the cells to the right of the cell a21 is active
(cells a22, a23, a24). This tell us that the consonant C in the output (cell
a21) has been added (epenthesis).

Now, consider the last consonant in the input, the consonant C3 (cell
a14). Beneath it, there is an active consonant (cell a44) and in the output
layer, cell a41, there is a C-coda active. This means that the C3 has been
parsed to a consonant coda in the output.

Notice that in the explanatin given above, we were always looking to
relate the vowels in some layer only with vowels in other parts of the net.
Similarly, we relate consonants in some layer only with consonants in other
layers. This way of proceeding is justified by the net-Identity constraint.3

3.4 The constraints of CVnet

3.4.1 The net-Con constraints

In order to describe properly the behavior of the net-Con constraints, we
have to state that all optimal patterns of activations satisfy the net-Gen and
the net-Structural constraints. The statement is plausible under the assump-
tion that these last sets of net-constraints have higher strength than the set
of net-Con constraints. Usually an exponentially higher weight is assigned
to the net-Gen and net-Structural constraints. This way of proceeding even
though it is not adequate because such constraints are not rankeable, in
practice guarantees the submission of the violable net-constraints.

Below we present the pictures of the net-constraints. In these pictures
you will see some numbers assigned to each net-constraint. These numbers
represent the bias values. Strengths are not determined. Connections co-
efficients are only introduced in the description of each net-constraint, but
not in the figures.

a) net-Onset and net-NoCoda

net-Onset is realized through a negative bias −1 on every V-unit in the out-
put. In order to avoid this negative value, a positive connection coefficient
+1 between every V-unit and C-onset unit in the output is required (see
figure 3.3).

For net-NoCoda a bias −1 is related to each C-coda unit. Given that
in a CV Syllable Theory codas should be avoided, for this negative bias

3This n-constraint will be introduced in a later section.

33



we do not require a positive connection coefficient +1, instead a connection
coefficient −1 is introduced (see figure 3.4).

b) net-Parse

In OT faithfulness constraints, there is a correspondence between the ele-
ments in the input and those in the output. In order to implement such a
correspondence in the connectionist level, correspondence units are needed.

In net-Parse, the values of correspondence units plus the values of the
bias coefficients lead to a ‘zero net Harmony’. In other words, for any Parse

net, a bias coefficient of −1 associated with each input unit, is assumed. A
bias coefficient of −3 is assigned to each correspondence node and +2 for
all connection coefficients. From the bias deficit plus a correspondence unit
linked to it, we have (−1) + (− 3) = −4. By the addition of the connection
coefficients we have 2 + 2 = 4. Then 4 + (−4) = 0. In figure 3.5 only
the bias coefficients are represented. Value of connection coefficients are not
included.

c) net-FillV and net-FillC

Similarly to net-Parse, for these net-constraints connection coefficients will
take the value +2, and the bias coefficient in each correspondence unit will
be equal to −3. Differently from net-Parse, net-FillV and net-FillC do not
have bias coefficients in input units but in output units. The bias coefficient
in each output unit will be −1. Similarly to net-Parse, these constraints
lead to a ‘zero net Harmony’.

In figure 3.6 both constraints are depicted: net-FillV is constituted by all
V-units (see dotted lines) while net-FillC is constituted by all the consonants
being onset or coda (see solid lines).

3.4.2 The net-Gen and net-Structural constraints

The net-Gen and net-Structural constraints are the inviolable constraints
of CVnet. More properly stated, these net-constraints have fixed strengths.
Besides, such net-constraints do not change their strengths with respect to
each other, so, we can consider them as a one complex constraint whose
weight is exponentially larger than any net-Con constraint.

We have chosen only some of these constraints for exposition. This
decision is due to their inviolable character. Even when these constraints
are part of the genomic encoding, they do not permit us to exemplify how
from a genomic encoding an optimal candidate arises. For that reason, even
when they are an important part of U we will not treat them in detail.
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Figure 3.3: net-Onset

Figure 3.4: net-NoCoda
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Figure 3.5: net-Parse

Figure 3.6: net-FillV and net-FillC
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net-Gen constraints

a) net-Identity

For net-Identity there is a connection coefficient −1 between the C’s and
V’s of the correspondence units. This connection coefficient will avoid the
activation of a C and V at the same time supporting in this way the mapping
C-C and V-V from input to output (see figure 3.7).

b) net-Linearity

In OT, linearity was the constraint that regulated that the order of the
elements in the input was preserved in the output. In the connectionist
level, this constraint is implemented through the assignment of a value -1
to each connection coefficient between the correspondence units. Observe
that in figure 3.8 below, the correspondence units are linked in a way that
preserves linear order. Consonants and vowels in a certain cell aij will be
linked with a cell that is in a previous column k and a posterior row l.

net-Structural constraints

c) net-OutputIdentity

For this constraint there is a connection coefficient −1 between the triple
formed in each output cell by the vowels, onset and coda consonants. This
negative connection is given in order to avoid the effect that more than one
unit of the triple is activated. The ranking of this constraint is required to
be significantly higher than the other net-Gen or net-Structural constraints.
This requirement is there because other fixed net-constraints will force more
than one unit in the output’s triple to be actived ([25]:992-3). See figure 3.9.

d) net-Correspondence

The wiring of this net-constraint is the same as that of net-Parse or of net-
Fills. The difference arises in the fact that there is no bias either for input
or for output units. Correspondence units have bias of −2. Connection
coefficients get value +1 (see figure 3.10).
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Figure 3.7: net-Identity

Figure 3.8: net-Linearity
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Figure 3.9: net-OutputIdentity

Figure 3.10: net-Correspondence
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Figure 3.11: Network activity for c1

3.5 Candidate Activations

The tables below show the activations of the candidates in table 2.1 (see
chapter 2). In order to obtain the optimal candidate, besides the activation
of the candidates we need exponential weights for introducing the ranking
of constraints Con.
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Figure 3.12: Network activity for c2

Figure 3.13: Network activity for c3
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Figure 3.14: Network activity for c4

3.6 The energy function E of net-constraints

Consider the function:

(F1) E(s) = −
∑

i<j

wijsisj

This function, called Ljapunov or energy function will help us to calculate
the value of E relatively to different activation states. Here, we will use
for calculating the minimal energy of each of the net-constraints. Below
we present pictures of net-constraints links. These links we will call them
micro-constraints. Below we also introduce the corresponding tables of the
energy E of the micro-constraints.

Microconstraints are important because they simplify the calculation
of the energy function E of the net-constraints. The character of localist
network of CVnet permits us to focus in the minimal significative part of the
network (the microconstraints) and to spread the results to more complex
networks build with these parts. If you observe the figures of net-constraints,
you will see the repetition of the same relations (microconstraints) through
all the network.

Instead of using the names of s1, s2,. . . sn for naming the states in the
networks, we have preferred a more easy association with chapter 5, by using
similar names to those that we will use in that chapter. We use the names
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s s s

coj vj′ b0 E(s) coj vj′ b0 E(s) coj vj′ b0 E(s)

[1] 1 1 1 0 [10] −1 1 1 2 [19] 0 1 1 1

[2] 1 1 −1 −2 [11] −1 1 −1 0 [20] 0 1 −1 −1

[3] 1 1 0 −1 [12] −1 1 0 0 [21] 0 1 0 0

[4] 1 −1 1 0 [13] −1 −1 1 −2 [22] 0 −1 1 −1

[5] 1 −1 −1 2 [14] −1 −1 −1 0 [23] 0 −1 −1 1

[6] 1 −1 0 1 [15] −1 −1 0 −1 [24] 0 −1 0 0

[7] 1 0 1 0 [16] −1 0 1 0 [25] 0 0 1 0

[8] 1 0 −1 0 [17] −1 0 −1 0 [26] 0 0 −1 0

[9] 1 0 0 0 [18] −1 0 0 0 [27] 0 0 0 0

Table 3.1: Energy micro-Onset

co for a unit representing an onset consonant, cc for a coda consonant, v

for a vowel and b for a bias. For an easier visual relation, we use circles
for onset consonants, crescents for coda consonants, triangles for vowels and
circles with a an internal cross for biases.

As we mentioned in 3.4.1, for the net-Onset constraint the connection
coefficient is always positive between the corresponding onset consonant and
the vowel. The bias for this constraint is always on the vowel and is negative.
In the micro-Onset we take the connection coefficient value as the value of
the link between the onset consonant and the vowel. The bias value is −1.
We can depict the network of the micro-constraint Onset as follows:

Figure 3.15: micro-Onset

The energy function for this system is: E(s) = − cojvj′ + vj′b0. States
in rows [2] and [13] show the minimal energy E with − 2 (see table 3.1). 4

For the net-NoCoda constraint each coda unit is affected by a negative
bias. In the micro-Onset we take the value of such a bias (−1) for the

4Observe figure 3.3 of net-Onset. The onset consonant (circle) is in a previous row with
respect to the vowel (triangle). For that reason we use j and j’ assuming that j ≥ j’.
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representation of the link between the coda consonant and bias unit. The
micro-constraint NoCoda may be depicted as:

Figure 3.16: micro-NoCoda

The energy function E for NoCoda would be: E(s) = − ccjb0. States in
[2] and [4] show the minimal energy E.

s

ccj b0 E(s)

[1] 1 1 1

[2] 1 −1 − 1

[3] 1 0 0

[4] −1 1 −1

[5] −1 −1 1

[6] −1 0 0

[7] 0 1 0

[8] 0 −1 0

[9] 0 0 0

Table 3.2: Energy micro-NoCoda

For the net-Parse constraint the connection coefficients are always posi-
tive. There are two kind of biases, biases on the input units (−1), and biases
on the correspondence units (+3). In figure 3.17 and 3.18, we distinguish
input units with an upper-index, while output units has a single-down index.
Correspondence units have a double-down index. In figure 3.17, we depict
the micro-constraint Parse.
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Figure 3.17: micro-Parse

The energy function for this system is: E(s) = − 2vivij-2vijvj + vib0 +
3vijb1. States in rows [4] and [29] show the minimal energy E with − 8
(see table 3.3). For brevity, here we only show the cases corresponding to
activated and inactivated states. These will be the relevant ones for the
translation into penalty logic.

The micro-constraints FillV may be depicted as follows:

Figure 3.18: micro-FillV
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s

vi vij vj b0 b1 E(s)

[1] 1 1 1 1 1 0

[2] 1 1 1 1 −1 −6

[3] 1 1 1 −1 1 −2

[4] 1 1 1 −1 −1 −8

[5] 1 1 −1 1 1 0

[6] 1 1 −1 1 −1 −6

[7] 1 1 −1 −1 1 −2

[8] 1 1 −1 −1 −1 −4

[9] 1 −1 1 1 1 2

[10] 1 −1 1 1 −1 8

[11] 1 −1 1 −1 1 0

[12] 1 −1 1 −1 −1 6

[13] 1 −1 −1 1 1 −2

[14] 1 −1 −1 1 −1 0

[15] 1 −1 −1 −1 1 −4

[16] 1 −1 −1 −1 −1 2

[17] −1 1 1 1 1 2

[18] −1 1 1 1 −1 −4

[19] −1 1 1 −1 1 4

[20] −1 1 1 −1 −1 −2

[21] −1 1 −1 1 1 6

[22] −1 1 −1 1 −1 0

[23] −1 1 −1 −1 1 8

[24] −1 1 −1 −1 −1 2

[25] −1 −1 1 1 1 −4

[26] −1 −1 1 1 −1 2

[27] −1 −1 1 −1 1 −2

[28] −1 −1 1 −1 −1 4

[29] −1 −1 −1 1 1 −8

[30] −1 −1 −1 1 −1 −2

[31] −1 −1 −1 −1 1 −6

[32] −1 −1 −1 −1 −1 0

Table 3.3: Energy micro-Parse
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FillV may be depicted as:

Figure 3.19: micro-FillC

The energy calculation for these constraints is similar to those of micro-

Parse.

3.7 Summary

In this chapter we have introduced the network CVnet. For doing that we
have presented the net-constraints, the micro-constraints, the energy func-
tion E and activations for particular candidates. All these topics are related.

For explaining such a relation, first, we will display CVnet in a more
conventional way of representing networks, that is, a network in which we
have rows of input units, of hidden units and of output units. In such a
network, we introduce arrows whose direction is forward and backward due
to the symmetry of CVnet.

Look at figure 3.20. In this representation, the first row from bottom to
top represents the input units of CVnet. The row in the middle contains the
hidden or correspondence units. The row at the top is constituted by the
output units.

In the input row, we have two kind of units, vowels represented by trian-
gles and consonants represented by circles. Observe that in this row, each
circle is related to a circle in the hidden row and each triangle is related to
a triangle in the hidden row.
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Figure 3.20: Another representation of CVnet
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In the hidden row we can also see two kind of units, consonants and
vowels. From this row, vowels will be related with vowels in the output.
Consonants in the hidden row will be related with an onset or a coda con-
sonant in the output row. It is important to note that if the strenght of
the activation that comes from the consonant located in the hidden unit is
stronger towards the onset consonant than towards the coda consonant, the
onset consonant will tend to be active while the coda consonant will tend
to be disactive. Similarly, when the activation is stronger towards the coda
consonant. The onset consonant will have less activation and it will tend to
be disactive.

The micro-Onset constraint show their minimal energy E in two cases:
(i) where the onset consonant and vowel are active but the bias is not active;
and (ii) where the onset consonant and vowel are disactive but the bias is
active (see table 3.1). These two cases are the same in which the net-Onset
constraint is fulfilled. These cases can be represented as in figure 3.21.

For net-Parse the states with minimal energy E are those in which the
vowels in the input, hidden and output rows are all activated but their biases
are not; or when such vowels are disactive but the biases are active (see table
3.3). Similarly with consonants (see figure 3.21).

Observe that in net-Parse vowels are active. This would imply according
with net-Onset that onset consonants must be active. However, according
to net-FillV , consonants in the hidden row and in input row become active.
Moreover, given that onset consonants in the output row are active, the
activation of consonants in the hidden units must be stronger to such units
intead of coda units. That is, codas will tend to be disactive. 5 Such acti-
vations and disactivations also fulfills the net-Parse constraint with respect
to consonants and FillC constraint. (see figure 3.22 at the top).

Now, consider the network activity of candidate c1. From figure 3.22
(at the bottom) and the representation of the constraint activity we can
guess which constraints such a candidate violates. Observe for example,
the first unit active in the output (from left to right) is a consonant. Such
consonant do not active the corresponding consonants in the hidden and
input units. This tells us that candidate c1 is violating the constraint net-
FillC . Moreover, if you observe the input row, the consonant located to
the most right is active but the corresponding consonants of the hidden and
output rows are not active. This can be read as a violation of net-Parse.

5This fact will fulfill the net-Nocoda constraint.
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Figure 3.21: net-Onset and net-Parse
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Figure 3.22: CVnet and candidate c1 activation
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Chapter 4

Penalty Logic

4.1 Penalty Logic as an abstract genome

According to [25] the abstract genome requires two assumptions in order
to encode CVnet. A general assumption about how the machinery of the
network develops and an assumption more specific, about a set of ‘abstract’
genes that determine a particular network. In the general assumption, it
is accepted that the system is capable for example, of distinguishing the
various types of units: input, output and correspondence units; vowels, and
(onset and coda) consonants; as well as their organization. In the specific
assumption, it is accepted that each type of unit of CVnet represents a specific
set of gens. In this set of gens the necessary information is encoded for
drawing the links in the network. In this sense, the output obtained from
the artificial network is an expression of our personal genetic information.1

In this chapter we introduce penalty logic. As we have mentioned in
chapter 3, we placed this logic in the abstract genome’s level paying attention
that this logic encodes CVnet. If this is the case, perhaps penalty logic should
have similar assumptions to those accepted by an abstract genome.

4.2 The Penalty Logic System

Penalty logic, introduced by Pinkas in [19], is an extended propositional
calculus that associates to the formulae in a penalty knowledge base, a price
or cost to pay if this formula is violated or not satisfied. The price or cost of
a formula is its penalty, that will be indicated using a real positive number.
Penalties induce a ranking among the formulae of a knowledge base, in terms
of the most costly or the least costly formula in the base.

Formulae in a penalty knowledge base will be called assumptions or be-
liefs. The ranking generated by the penalties will indicate to us the strength

1We cannot state that the output is totally determined by genetic information, because
in such a case we are excluding the possibility of learning the ranking of constraints.
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of the beliefs or assumptions in a certain knowledge base. Our weakest be-
liefs have the least priority, those of which we are least confident, and to
which we assign a low price or penalty. In contrast to this, to our stronger
beliefs we give a high priority, a high price. If we have to get rid of some
formulae in our knowledge base, it is better to exclude the weak beliefs. Re-
taining weak beliefs will be more costly in comparison with retaining strong
beliefs.2

An interesting aspect in [19] is that it considers inconsistent knowledge
bases. Penalties are used for selecting the preferred consistent subsets in
an inconsistent knowledge base. Such selection will induce a nonmonotonic
inference relation.

Below we present in a more formal way some of the concepts that we
have just mentioned. The definitions in the next section are based on [19]
and [4].

DEFINITION 4.1
Let L be the basic language of the standard propositional calculus. A
penalty knowledge base (PKB) Ψ is a set of pairs (S, κ) where S is a set
of well-formed formulae of L and κ is the penalty function that maps each
formula of S to the set {0,∞ }, i.e. κ: S → {0,∞}. 3 ∆Ψ stands for the set
of propositional formulae of L that are in the PKB Ψ.

As we have defined, a PKB contains propositional formulae with their
corresponding penalties. The function κ guarantees that only one penalty is
assigned to each formula of the PKB. Furthermore, κ also induces a ranking
among the formulae that belong to the PKB. This ranking will permit the
selection of the preferred or optimal subsets.

An example of a PKB is the following:

4.1.1 Example of a PKB

Suppose that we believe that penguins are birds, that birds fly and penguins
do not fly; and the strength of our beliefs is represented respectively by the
numbers 20, 5 and 10.

Consider a set P={ p0, p1, ..., pn } of propositional atoms where pi stands
for ‘animal i is a penguin’. Sets B={ b0, b1, ..., bn } and F={ f0, f1, ..., fn

} also of propositional atoms, where bi stands for ‘animal i is a bird’ and
fi for ‘animal i flies’.

2To retain a weak belief instead of a strong one means that we have to pay the price
for violating the strong belief. This price is higher than the price for a lower belief. In
this sense, it is said that retaining a weak belief is more costly than keeping a strong one.

3Some authors call a set of sentences plus certain penalties, a ‘penalty knowledge base’.
Here, we will assume a broad sense of PKB. A PKB is integrated by formulae, sentences
or both. Their penalties can be fixed or variable. In the examples we use in this thesis,
we will use PKBs composed by formulae and fixed weights for a better exemplification.
Formulae will permit us to modify valuations, and fixed weights to calculate specific costs.
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Our PKB will be constituted by4:

pi → bi 20
bi → fi 5
pi → ¬ fi 10

Call this PKB ex. The set of propositional formulae in ex is

∆ex = {pi → bi, bi → fi, pi → ¬ fi | i ≤ n }

Syntax

DEFINITION 4.2
Let ϕ be any formula of L. A scenario of ϕ in a PKB Ψ is a consistent
subset ∆’ of ∆Ψ such that ∆’ ∪ { ϕ } is consistent.5

The cost of a scenario ∆’ in a PKB Ψ, written KΨ(∆’), is the sum of the
penalties of the formulae of Ψ that do not belong to ∆’. That is,

(F2) KΨ =
∑

δ∈(∆Ψ−∆′)

κ(δ)

where κ(δ) stands for the penalty or cost of an expression δ.6

Note that the PKB may be inconsistent where the scenario is not. A
scenario of a formula ϕ will be a set of formulae of the PKB that is consistent.
This consistency must hold even for the union with ϕ.

4.2.1 Example of scenarios

Take ϕ = pi and consider the following subsets of the PKB ex :
∆1 = {pi → bi, bi→ fi }.
∆2 = {pi → bi, pi→ ¬ fi }.
∆3 = {bi → fi }.
∆4 = {bi→ fi, pi→ ¬ fi }.
∆5 = ∆ex ={pi → bi, bi→ fi, pi→ ¬ fi}.

The subset ∆1 is a scenario of pi, because ∆1 ∪ {pi}is a consistent set. The
subset ∆2 is also a scenario of pi, because ∆2 ∪ {pi} is consistent. ∆3 and

4‘¬’ and ‘→’ are as in classical propositional logic.
5It is not necessary that ϕ belongs to the PKB Ψ. It can be an external element. The

requirement asked for ϕ is just its consistency of its union with a subset of the PKB Ψ.
6With respect to penalty logic, we will use the term ‘expression’ as referring to a group

of signs that represent a concept. Expressions in the penalty logic context should be
distinguished from the ‘expressions’ in an OT context (see definition 2.3).
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∆4 are also scenarios of pi; the unions ∆3 ∪ {pi}, ∆4 ∪ {pi} are consistent.
But the subset ∆5 is not a scenario of pi because ∆5 ∪ {pi} is inconsistent.
Note that we could infer fi ∧ ¬fi.

The formula pi may be read as ‘animal i is a penguin’. To have the belief
that a certain animal is a penguin is consistent with the beliefs that penguins
are birds and birds fly. This is scenario ∆1 of pi. We can consistently hold
that certain animals are penguins, that penguins are birds but they do not
fly. This is scenario ∆2 of pi. Scenario ∆3 of pi is a subset of ∆1. The belief
that a certain animal is a penguin is consistent with the beliefs that birds
fly. Besides, we can without inconsistency state that birds fly but penguins
do not. Notice that in this case, we do not affirm that penguins are birds.
This is scenario ∆4 of pi. But if we affirm that certain animals are penguins,
we cannot hold consistently that penguins are birds, birds fly and penguins
do not fly. In this case, penguins would be birds that fly and do not fly.
This is ∆5 of pi.

4.2.2 Example of cost of scenarios

The cost of a scenario is the sum of the penalties of the formulae that belong
to the PKB but do not belong to the scenario. Consider scenario ∆3 of pi

introduced above. The formulae of the PKB that do not belong to ∆3 are
pi → bi and pi→ ¬ fi, with penalties of 20 and 10 respectively. The sum of
these penalties is the cost of ∆3, in this case, KΨ(∆3) = 30.

A more formal way to calculate the cost is following the formula F2. This
formula tells us what we have just done: We should add the penalties of the
formulae or expressions that belong to the PKB without considering the
formulae in the scenario. For calculating the cost of ∆3 using the formula
F2 we need the sum of the penalties of the formulae in ∆ex, i.e.,

∑
κ(δ)

such that δ ∈ ∆ex, in this case 35. Besides, we need the sum of the penalties
of the formulae in ∆3, i.e.,

∑
κ (δ) such that δ ∈ ∆3, which is equal to 5.

The cost of ∆3 with respect to the PKB ex appears by the substraction of
the second sum from the first one. That is, Kex(∆1) = 35 − 5 = 30.

DEFINITION 4.3
The scenarios of a formula ϕ that have a minimal cost K with respect (w.r.t.)
to a PKB Ψ are the optimal of ϕ w.r.t. Ψ.

Consider the scenarios of pi w.r.t. the PKB ex introduced in 4.2.1. The
cost of these scenarios is:

Kex (∆1) = 10
Kex (∆2) = 5
Kex (∆3) = 30
Kex (∆4) = 20
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According to definition 4.3, the optimal scenario of pi is ∆2 because it
has the minimal cost.

DEFINITION 4.4
Let α, β be two arbitrary formulae of a PKB Ψ. α ⊢Ψ β if and only if β is
an ordinary consequence of every optimal scenario of α in Ψ.

∆2 = {pi → bi, pi→ ¬ fi } is the optimal scenario of pi w.r.t. the PKB
Ψ. From this scenario we can infer for example that ∆2 ∪ {pi} ⊢Ψ bi and
∆2 ∪ {pi} ⊢Ψ ¬ fi. But we cannot infer ∆2 ∪ {pi} ⊢Ψ fi.

Semantics

DEFINITION 4.5
Let ν be an interpretation function that maps the well-formed formulae
of L to the set {−1,1}, i.e. ν: S→ {−1,1}. The system energy of the
interpretation is calculated by

(F3) EΨ =
∑

δ∈∆Ψ,‖δ‖ν=−1

κ(δ)

The function ν maps well-formed propositional formulae to {−1,1}. The
mapping of a formula ϕ to −1 can be interpreted as ϕ is violated, wrong,
unsatisfied, and so on. In contrast, the mapping of a formula ϕ to 1 can be
read as ϕ is not violated, right, satisfied, and so on. The function ν behaves
as the classical valuation in terms of 0 and 1 but in this case −1 plays the
role of 0.

F3 says that in order to calculate the energy system of an interpretation
ν, we should add the penalties of those expressions or formulae that belong
to the PKB Ψ but that are not satisfied under the interpretation ν. For
example, if ν assigns ν(bi → fi)= 1 and ν(pi → bi)= ν(pi → ¬ fi)= −1, we
sum up the penalties of the formulae pi → bi and pi → ¬ fi, that is, 20 +
10. The energy system of the interpretation ν w.r.t. Ψ, i.e. EΨ(ν) would be
30.

If it is the case that all formulae are satisfied under ν, the minimal
energy for the interpretation ν arises. However, if the opposite is the case,
all formulae are unsatisfied, a maximal energy of the interpretation ν arises.
In penalty logic, the minimal system energy of an interpretation ν is zero.
There is no fixed maximum. The maximal system energy of ν is determined
w.r.t. the formulae satisfied in each case. The more satisfied formulae there
are, the less energy the intepretation ν has. The less satisfied formulae (i.e.
more unsatisfied), the more energy for ν.
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penalties

20 5 10

pi bi fi pi → bi bi → fi pi → ¬fi Eex(ν)

M1 1 1 1 1 1 −1 10

M2 1 1 −1 1 − 1 1 5

M3 1 −1 1 −1 1 −1 30

M4 1 −1 −1 −1 1 1 20

Table 4.1: Models of the PKB ex

DEFINITION 4.7
Let Ψ be a PKB. The models of Ψ with the minimal energy E are the
preferred models of Ψ.

In the case of propositional logic a model is just a valuation. Following
this, we consider a model to be a certain assignation of values under an
intepretation ν. The preferred models will be the models with the highest
number of satisfied propositions.

Note that the formulae in the PKB ex are implications. The truth value
of an implication will be calculated in an analogous way to the classical one,
but here instead of 0 we use −1. That is, ν(ϕ → ψ) = −1 iff ν(ϕ) = 1 and
ν(ψ) = −1, where ϕ, ψ are formulae of the standard propositional calculus.

Consider the following models with their respective system energy :

In M1,
ν(pi → bi) = 1 because ν(pi) = ν(bi) = 1;
ν(bi → fi) = 1 because ν(bi) = ν(fi) = 1.
But ν(pi → ¬ fi) = − 1 because ν(pi) = 1 and ν(¬ fi) = − 1.

Notice that in M1 the formulae pi → bi and bi → fi are satisfied. We
can think of this model as a world in which birds fly and penguins are birds
that can fly. In order to calculate the system energy of an intepretation ν,
we need to add the formulae not satisfied in this model. The system energy

of interpretation ν w.r.t. M1 is 10. Because the formula not satisifed is pi

→ ¬ fi with penalty 10.

In M2,
ν(pi → bi) = 1 because ν(pi) = ν(bi) = 1;
ν(bi → fi) = −1 because ν(bi) = 1 and ν(fi) = −1.
ν(pi → ¬ fi) = 1 because ν(pi) = 1 and ν(¬ fi) = 1.

In M2 the formulae pi → bi and pi → ¬ fi are satisfied. Model M2 may
be thought of as a world in which penguins are birds that do not fly. Notice
that in this world birds do not fly either, bi → ¬ fi = 1.
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The system energy of interpretation ν w.r.t. M2 is 5. Because the
formula that is not satisfied is ν(bi → fi) with penalty 5.

In M3,
ν(pi → bi) = −1 because ν(pi) = 1 and ν(bi) = −1.
ν(bi → fi) = 1 because ν(bi) = −1 ν(fi) = 1; and
ν(pi → ¬ fi) = −1 because ν(pi) = 1 and ν(¬ fi) = −1.

In this model the only formula of the PKB ex satisfied is bi → fi, M3

represents a world in which birds fly. Moreover, a world in which penguins
do fly, because ν(pi → fi) = 1, but are not birds, ν(pi → ¬ bi) = 1.

The system energy of interpretation ν w.r.t. M3 is 30. Because we add
the penalties of the formulae not satisfied, ν(pi → bi) and ν(pi → ¬ fi), that
is, 20 + 10.

In M4,
ν(pi → bi) = −1 because ν(pi) = 1 and ν(bi) = −1;
ν(bi → fi) = 1 because ν(bi) = ν(fi) = −1; and
ν(pi → ¬ fi) = 1 because ν(pi) = ν(¬ fi) = 1.

Formulae satisfied in M4 are ν(bi → fi) and ν(pi → ¬ fi). Model M4

can be thought of as a world in which birds fly but penguins do not. Note
that in this world, penguins are not birds, ν(pi → ¬ bi) = 1.

The system energy of interpretation ν w.r.t. M4 is 20. The formula not
satisfied is pi → bi with penalty 20.

The preferred model w.r.t. to the set of models we have presented above,
would be M2, because it has the minimal system energy of the interpretation
ν.

The models that we have presented above are the analogues of the sce-
narios in 4.2.1. For selecting the optimal scenario the minimal cost K is
required. For choosing the preferred models, the minimal system energy of
ν is needed. When we have parallel scenarios and models, the optimal sce-
nario should coincide with the preferred model. In the example above, the
optimal scenario was ∆2, its analogue in the semantics is model M2, this
was the preferred model of ν.

DEFINITION 4.8
Let α, β be two arbitrary formulae of a PKB Ψ.

α |=Ψ β if and only if every preferred model of α is a model of β.

M2 was the preferred model w.r.t. the models of the PKB Ψ presented
above. From this model we could infer for example that M2, pi|=Ψ bi and
pi|=Ψ¬fi. However, it does not follow that M2, pi|=Ψ fi.
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FACT 1. The logic exhibited above is sound and complete. The notions in
definition 4.4 and 4.8 coincide.7

4.3 Translation of symmetric networks into penalty

logic

In chapter 3 we introduced the function

E(s) = −
∑

i<j

wijsisj

This function, called Ljapunov or energy function, permits us to calculate
the value of E with respect to different activation states. When an activation
state changes, E can decrease, increase or remain equal. In the previous
chapter when we calculated E, we always pointed out the state with the
minimal energy in the network. This state in the connectionist level was
related to the output of an optimal linguistic candidate in the OT level.
Now, we introduce another link, between states in a connectionist level and
models in a penalty logic base. States with the minimal energy in a network
will be linked to preferred models of the interpretation ν.8 In the example
below we will see this link.

Example

Below we present an example of a translation of a local connectionist
network into a penalty logic base. This translation not only will permit us
to observe the link, states with minimal energy E and preferred models, but
also to familiarize us with something that we will do in the next chapter.

In the example we use a local and symmetric connectionist network. We
have selected this kind of network because is of the same type as CVnet, the
network that we will translate in the next chapter. Remember that we are
interested in translating the inborn constraints of OT, expressed in CVnet.

In chapter 3, we saw the adequacy of local and symmetric connectionist
networks for representing OT constraints. Here, we want to point out that
this kind of network is also adequate for representing or being represented
by a penalty knowledge base. The translation from localist networks into
penalty logic is relatively easy if we take in account that each node is rep-
resented by an atomic formula. In the other direction, it is also relatively
simple, in the sense that each atomic propositional formula will represent a

7For a proof cfr. [19].
8The link of symmetric networks and penalty logic is treated in [19] and [4].
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unit in the network. Weights in a network are analogous of penalties in a
PKB. Weights can vary, but if so wished, they can be fixed into a symmetric
network. In a PKB, penalties are easily fixed, we just need to assign the
same cost or penalty to a set of formulae.

Notice that the following example even though it is quite similar to the
example of the PKB ex presented in 4.1.1, it is different. In the PKB ex the
formulae were conditionals. Below the formulae are biconditionals because
in this way we can translate the symmetric character of the weights in the
network.

We will start calculating the energy E for the network. Then, we trans-
late the network into a PKB. After that, we are able to draw the link states
with minimal energy E in a network and the preferred models of the inter-
pretation ν.

Consider the following network:

Figure 4.1: A symmetric network

Take a set of activation states S = [−1, 1]. The energy function for this
network is:

E(s) = − 2 s1s2 − 0.5 s2 s3 + s1s3

Let us consider only the states in which s1 is activated, i.e. when s1 has
value 1.

The state s that shows the minimal energy is 〈1, 1,−1〉 with E = −2.5.

Now, we translate the network into a PKB. To obtain the translation we
follow the next three steps:

• Each node of the network is represented by an atomic propositional
formula.

• Each symmetric weight by a biconditional.

• Negative weights are represented by negations.
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s

s1 s2 s3 E

[1] 1 1 1 −1.5

[2] 1 1 −1 −2.5

[3] 1 1 0 −2

[4] 1 −1 1 3.5

[5] 1 −1 −1 0.5

[6] 1 −1 0 2

[7] 1 0 1 1

[8] 1 0 −1 −1

[9] 1 0 0 0

Table 4.2: E for activated states s1

Take pi, bi, fi to represent respectively the nodes s1, s2, s3. The PKB
of the network in figure 4.1 is:

pi ↔ bi 2
bi ↔ fi 0.5
pi ↔ ¬fi 1

Define ν(ϕ ↔ ψ) = 1 iff ν(ϕ) = ν(ψ). Otherwise, ν(ϕ ↔ ψ) = −1.
Consider the models in which ν(pi) = 1:

penalties

2 0.5 1

pi bi fi pi ↔ bi bi ↔ fi pi ↔ ¬fi Eex(ν)

M’1 1 1 1 1 1 −1 1

M’2 1 1 −1 1 − 1 1 0.5

M’3 1 −1 1 −1 −1 −1 3.5

M’4 1 −1 −1 −1 1 1 2

Table 4.3: Some models M

The model with the minimal energy of ν is M’2 with 0.5, so, M’2 is the
preferred model.

Model M’2 is the analogon of the state [2] shown in table 4.2. Observe
that in M’2 the propositions pi, bi, fi take respectively the values 1, 1, −1,
i.e. the first two formulae are satisfied while the third one is not. These
values correspond to the state [2] in table 4.2 because the states s1, s2, s3
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have respectively the values 1, 1, −1, i.e. the first two nodes are activated
while the third one is not. So, we can say that the preferred model M’2, i.e.
the model with the minimal system energy of ν, corresponds to the state s

with the minimal energy E in the network.
Note that the interpretation ν, as we have defined it, is bivalent. We are

considering only the cases in which a proposition gets a value 1 or −1, that
is, when a formula is satisfied or not. We are not including intermediate
cases. We are pointing this out because for calculating the energy E of the
network we used a rest state indicated by zero. These states are not going to
be considered for mapping in the interpretation ν. In other words, we take
from the table 4.2 just the states in [1], [2], [4] and [5]. Notice that we do
not map the zeros of the the E-calculation to −1 in the ν-interpretation. If
we do this, we cannot state the order among the states in the network. This
is important because we need to take the state that presents the minimal

energy E, in order to compare it with the preferred model.
Consider the states 〈1, 1,−1〉 and 〈1, 1, 0〉. If we assume the mapping

from zero of E to −1 of ν, those states will be mapped to the same model
{1, 1, 0}. The problem with this arises when we compare the preferred

model with the state with minimal energy. If the preferred model is {1, 1,
0 }, this model will correspond to ambiguous energy E, specifically with E
= − 2.5 and 2. In other words, the preferred model will not necessarily be
linked to the state with minimal energy.

A problem that can arise by the exclusion of the mapping of the zeros
lies in the following question: what happens if the state of minimal energy
contains a zero? How can it be restored by the PKB? One way would be to
add a third value in the interpretation ν, i.e. to transform it to trivalency.
In this case, we would need to redefine the connectives in such way that the
order of the states can be preserved in the models.

In this thesis we are going to stick to the bivalent case, leaving the
trivalent one for further research. Taking this into account, we are going to
consider only the bivalent states in the network, that is, states that just are
activate or inactivate nodes (none zero). From this set of states, the state(s)
with the minimal energy E will be the analogon of the preferred model(s)
under the interpretation ν as defined in bivalent terms. In other words,
we state a link between networks and penalty logic under the bivalency
assumption. This assumption seems to be enough for restoring the cases of
optimal candidates in OT.
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Chapter 5

Translation of CVnet into

Penalty Logic

According to the nativist position in OT, the universals of well-formedness U
are encoded in the genome. The genome equips the learner with a Language
Acquisition Device (LAD), here called CVnet. Our proposal is that such a
genomic encoding can be expressed in a simpler way in the language of
penalty logic. In particular, we suggest that the penalty knowledge base cv

becomes part of the LAD that encodes the knowledge of U .
In order to form the PKB cv we translate the constraints of CVnet into

penalty logic. Then, we assign some abstract penalties to the constraints
translated. After this, we draw the link of minimal energy E-preferred model
between the networks of the n-constraints presented in chapter 3 and the
preferred models of the PKB cv. After having done this, we link these
notions with the optimal candidate notion in OT. For this link we first look
at which models would be the preferred ones under single constraints and
then, we recall an OT table presented in chapter 2 that contains the Con

constraints in order to see how the optimal candidate in OT can be preserved
in the other levels.

5.1 Formulae

In CVnet we distinguished units by being input, output or correspondence
units, or by being vowel or consonant units. We want to keep these distinc-
tions in our symbolism. For keeping the first distinction we use single-upper
indexes for input units, single-down indexes for output units, and double-
down indexes for correspondence units. For the other distinction we use v

for vowels, c for consonants, co for onset consonants and cc for coda conso-
nants.

Let INPUT be the set of input units, OUTPUT the set of output units,
and CORRESP the set of correspondence units. Let i, j be indexes that can
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stand for any natural number. We have the following sets of propositional
atoms:

A set { v0, v1, . . . , vn } where vi stands for: ‘unit i is a vowel input unit’.
A set { c0, c1, . . . , cn } where ci stands for: ‘unit i is a consonant input
unit’.
{ v0, v1, ..., vn } and { c0, c1, ..., cn } belong to INPUT.

A set {vij} where i ≥ 0, j ≥ 0, and vij stands for unit i from j is a corre-
spondence vowel unit.
A set {cij} where i ≥ 0, j ≥ 0, and cij stands for unit i from j is a corre-
spondence consonant unit.
{vij} and {cij} belong to CORRESP.

A set { v0, v1, . . . , vn } where vj stands for: ‘unit j is a vowel output unit’.
A set { co0, co1, . . . , con } where coj stands for: ‘unit j is a onset (output)
unit’.
A set { cc0, cc1, . . . , ccn } where ccj stands for: ‘unit j is a coda (output)
unit’.
The sets { v0, v1, . . . , vn }, { co0, co1, . . . , con } and { cc0, cc1, . . . , ccn }
belong to OUTPUT.

A set { b0, b1, . . . , bn } where bi stands for: ‘unit i is a bias’.

5.2 Translation of CVnet

5.2.1 Formulae of cv

We translate the following n-constraints: All the net-Con constraints, net-

Identity and net-Linearity from the net-Gen set; net-OutputIdentity and
net-Correspondence from the net-Structural set. Constraints in the version
of Penalty Logic will be called p-constraints. Below we repeat the networks
of some net-constraints introduced in chapter 3 and next to each one, we
write down the set of formulae of the corresponding p-constraints.

We have translated the negative connection coefficients and biases as
negations. For example, see net-Parse that assumes bias coefficient −1 in
input units. The negative value is represented in the negation of the bias:
{ vi ↔ ¬ b0 }.

Additionally, you will see numbers (with a ‘+’ sign) next to each for-
mula. These numbers indicate the connection coefficient and biases that
each constraint had in CVnet, they are not the penalties. Penalties in the
logical language represent the weights of a network, but in the cases below
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penalties cannot be assigned properly because weigths are not specified.1 In
the next section, we will assume certain penalties for the p-constraints in
order to explain how the PKB cv might work.

Figure 5.1: p-Onset and p-NoCoda

1The networks presented in chapter 3 and repeated below are generalizations of how
microconstraints can be implemented, assuming certain connection coefficients and in
some cases certain biases, but they do not show activation that indicate to us the possible
strengths between two nodes, i.e. the specific weights.
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Figure 5.2: p-Parse
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Figure 5.3: p-FillV and p-FillC
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Figure 5.4: p-Identity
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Figure 5.5: p-OutputIdentity

5.2.2 Penalties of cv

A PKB includes logical formulae plus their corresponding penalties. The
formulae have been presented in the previous section. Note that we have
used a set of formulae instead of a set of sentences in the translation of
the n-constraints. This level of abstraction will permit cases in which a
p-constraint is satisfied and cases in which it is not. We are interested
in the cases in which a p-constraint shows the highest number of satisfied
formulae. That is, in the preferred models of each p-constraint. But in order
to determine such models we will need to assign specific penalties to the p-
constraints. In this section, we introduce the penalties in an abstract way,
leaving a case containing more concrete penalties for the following section.

The p-Gen and the p-Structural constraints are the inborn non- hier-
archizable constraints. We assume that penalties for these constraints are
higher than any penalty of a net-Con constraint. Besides, we consider the
penalties of the p-Gen and the p-Structural fixed, analogous to the fixed
weights of the net-Gen and net-Structural constraints. Penalties for the
p-Gen and the p-Structural will be indicated by an n*, where n* can be
substituted by a real positive number larger than any number assigned to a
p-Con constraint.

The p-Con constraints can vary their penalty according to their posi-
tion in a hierarchy. The hierarchy on p-constraints will be kept through
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Figure 5.6: p-Correspondence
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exponential penalties, with an order analogous to exponential weights. The
p-constraint’s penalties or non-fixed penalties will be indicated by ( v

n
)k,

where v represents the number of violations, n is a natural number repre-
senting the total number of violations possible for a single p-constraint and
k a natural number that indicates the position of the p-constraint in the
hierarchy.

Below we present a version of a PKB cv. Note that this PKB is incom-
plete, given the missing formulae of some p-constraints.

5.3 The preferred models

For simplicity, in what follows we only consider the rankeable constraints,
i.e. the p-Con constraints. The p-Gen and the p-Structural constraints are
implicitly assumed having the highest penalty of all p-Con constraints.

In the OT level, candidates were evaluated with respect to constraints
that had a position in a hierarchy. The winner candidate was always the
optimal. Analogous to this evaluation, in Penalty Logic we will consider a
hierarchy on p-constraints. This hierarchy will be built with exponential
penalties, and from this will emerge the analogue of an optimal candidate,
that is a preferred model.

In this section, we focus on the selection of an ‘optimal’ model under a
single p-Con constraint, leaving the selection under a hierarchy for a later
section.

Consider the p-Onset constraint. The corresponding models are shown
in table 5.2.

Independently of which particular penalty the biconditionals get, the
models that come out as the preferred models are in rows 2 and 7. These
models show all the formulae of p-Onset satisfied, that is, ν(coj ↔ vj′) =
ν(vj′ ↔ ¬b0) = 1 (see colums 5, 6 in table 5.2 below).

Looking at the propositional atoms, a model of p-Onset has a minimal
system energy of ν in two cases: a) when the formulae expressing that there
is an onset and a vowel are both satisfied, but not the formula expressing
there is a bias; and b) when the formulae about onset and vowel are both
not satisfied but the formula of the bias is.

The preferred models of p-Onset match with the states showing minimal
energy E in the connectionist level. As a particular case, you can compare
table 5.2 with table 3.1 introduced in chapter 3. The minimal energy E
obtained in the system arose in the analogous cases of the preferred models
just mentioned: when an onset and a vowel unit were both activated but the
bias was not, and when both, an onset and a vowel unit were disactivated,
but the bias was activated.

For the p-NoCoda constraint the models are shown in table 5.3.
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p-constraints formulae penalty

1 p-Onset {j < j′ : coj ↔ vj′} ( v
n
)k

{vj′ ↔ ¬b0}

2 p-NoCoda {ccj ↔ ¬b0} ( v
n
)k

3 p-Parse {vi ↔ vij} ( v
n
)k

{vj ↔ vij}

{vi ↔ ¬b0}

{vij ↔ ¬b1}

{ci ↔ cij}

{coj ↔ cij}

{ccj ↔ cij}

{ci ↔ ¬b2}

{cij ↔ ¬b3}

4 p-FillV {vi ↔ vij} ( v
n
)k

{vj ↔ vij}

{vij ↔ ¬b0}

{vj ↔ ¬b1}

5 p-FillC {ci ↔ cij}

{coj ↔ cij}

{ccj ↔ cij}

{cij ↔ ¬b2}

{coj ↔ ¬b3}

{ccj ↔ ¬b4}

6 p-Identity {vij ↔ ¬cij} n*

7 p-Linearity k < i, j < l : vij ↔ ¬vkl} n*
k < i, j < l : cij ↔ ¬ckl}

8 p-Integrity n*

9 p-Uniformity n*

10 p-OutputIdentity {coj ↔ ¬vj} n*
{vj ↔ ¬ccj}

{ccj ↔ ¬coj}

11 p-NoOutputGaps n*

12 p-Correspondence {vi ↔ vij} n*
{vj ↔ vij}

{vij ↔ ¬b0}

{ci ↔ cij}

{coj ↔ cij}

{ccj ↔ cij}

{cij ↔ ¬b1}

13 p-Nucleus n*

Table 5.1: The PKB cv
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coi vj′ b0 coj ↔ vj′ vj′ ↔ ¬b0 ¬b0 E(ν)

1 1 1 1 1 −1 −1

2 1 1 − 1 1 1 1 0

3 1 −1 1 −1 1 −1

4 1 −1 −1 −1 −1 1

5 −1 1 1 −1 −1 −1

6 −1 1 −1 − 1 1 1

7 −1 −1 1 1 1 −1 0

8 −1 −1 −1 1 −1 1

Table 5.2: p-Onset models

ccj b0 ccj ↔ ¬b0 ¬b0 E(ν)

1 1 1 −1 −1

2 1 − 1 1 1 0

3 −1 1 1 −1 0

4 −1 −1 −1 1

Table 5.3: p-NoCoda models

The preferred models are those in rows 2 and 3 (table 5.3). Observe
that they are the unique models that have the formula constituting NoCoda

satisfied, that is, ν(ccj ↔ ¬b0) = 1. The preferred models of p-NoCoda

coincide with the states showing the minimal energy E. The states 〈1,−1〉
and 〈−1, 1〉 in table 3.2 have minimal energy E.

In the OT level the Parse constraint is satisfied if for every vowel or
consonant in the input there is a correspondent vowel or (onset or coda)
consonant in the output. In the case of p-Parse, there are two cases in
which we have preferred models. When all the atomic formulae of p-Parse

representing the content in the input, correspondence and output units are
satisfied or when they are not (see rows 4 and 29 table 5.4). As you can
see in table 5.4, when the formulae representing input, correspondence and
output units are satisfied the biases are not (row 4); and, when such formulae
are unsatisfied, biases are satisfied (row 29). This resembles the cases of
minimal energy E of Parse. If you see table 3.3 (chapter 3), the states in
rows [4] and and [29] show the minimal energy E with −8. In [4] the input,
correspondence and output units are all activated but the biases are not,
whereas in [29] the reverse is the case.
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vi vij vj b0 b1 vi ↔ vij vj ↔ vij vi ↔ ¬b0 ¬b0 vij ↔ ¬b1 ¬b1 E(ν)

1 1 1 1 1 1 1 1 −1 −1 −1 −1

2 1 1 1 1 −1 1 1 −1 −1 1 1

3 1 1 1 −1 1 1 1 1 1 −1 −1

4 1 1 1 −1 −1 1 1 1 1 1 1 0

5 1 1 −1 1 1 1 −1 −1 −1 −1 −1

6 1 1 −1 1 −1 1 −1 −1 −1 1 1

7 1 1 −1 −1 1 1 −1 1 1 −1 −1

8 1 1 −1 −1 −1 1 −1 1 1 1 1

9 1 −1 1 1 1 −1 −1 −1 −1 1 −1

10 1 −1 1 1 −1 −1 −1 −1 −1 −1 1

11 1 −1 1 −1 1 −1 −1 1 1 1 −1

12 1 −1 1 −1 −1 −1 −1 1 1 −1 1

13 1 −1 −1 1 1 −1 1 −1 −1 1 −1

14 1 −1 −1 1 −1 −1 1 −1 −1 −1 1

15 1 −1 −1 −1 1 −1 1 1 1 1 −1

16 1 −1 −1 −1 −1 −1 1 1 1 −1 1

17 −1 1 1 1 1 −1 1 1 −1 −1 −1

18 −1 1 1 1 −1 −1 1 1 −1 1 1

19 −1 1 1 −1 1 −1 1 −1 1 −1 −1

20 −1 1 1 −1 −1 −1 1 −1 1 1 1

21 −1 1 −1 1 1 −1 −1 1 −1 −1 −1

22 −1 1 −1 1 −1 −1 −1 1 −1 1 1

23 −1 1 −1 −1 1 −1 −1 −1 1 −1 −1

24 −1 1 −1 −1 −1 −1 −1 −1 1 1 1

25 −1 −1 1 1 1 1 −1 1 −1 1 −1

26 −1 −1 1 1 −1 1 −1 1 −1 −1 1

27 −1 −1 1 −1 1 1 −1 −1 1 1 −1

28 −1 −1 1 −1 −1 1 −1 −1 1 −1 1

29 −1 −1 −1 1 1 1 1 1 −1 1 −1 0

30 −1 −1 −1 1 −1 1 1 1 −1 −1 1

31 −1 −1 −1 1 −1 1 1 1 −1 −1 1

32 −1 −1 −1 −1 −1 1 1 −1 1 −1 1

Table 5.4: p-Parse models
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Observe that in the table above we have considered the cases in which
p-Parse has vowels as inputs. Cases in which a consonant should be mapped
into the output are quite similar to the case already presented. In such cases,
the same preferred models arise, with the difference that for consonants
we would have to consider the set of formulae { ci ↔ cij , ccj ↔ cij, c

i ↔
¬b2, cij ↔ ¬b3 } depending on whether the consonant is mapped to an onset
or coda consonant.

In the case of p-FillV we have a similar table to p-Parse, only we have
to substitute the formulae that indicates bias in the input for the formulae
expressing bias in the output. In general terms, the structure of the formulae
of this constraint compared with p-Parse is similar. The preferred models
are those in which all formulae of p-FillV are satisfied. That is, in the cases
where the atomic formulae show the values: ν(vi) = ν(vij) = ν(vj) = 1 and
ν(b0) = ν(b1) = −1, or ν(vi) = ν(vij) = ν(vj) = −1 and ν(b0) = ν(b1) = 1.

A case analogous for p-FillC , where the preferred models are the same
valuations as in p-FillV . The difference is that in the case of p-FillC we have
to consider the corresponding formulae with consonants instead of those
with vowels that constitute p-FillV .

5.4 Exponential penalties

The preferred models of the p-constraints shown above are analogues of
the optimal candidates under a single constraint in the OT level. In this
section we recall an OT table presented in chapter 2, and we explain how the
hierarchy of constraints can be represented at the Penalty Logic level. What
we explain in this section together with what saw in the previous section
will permit us to close the link minimal energy E−preferred models−optimal

candidates.
For an exemplification of how an OT table can be represented in a PKB,

we need certain exponential penalties. This kind of penalty will introduce
a hierarchy among the constraints. For the example below, we will use a
decimal position system. More explicitly, we will assume a system that
takes the n in ( v

n
)k equal to 10. But as we have said, n is a natural number

that represents the number of violations that are possible under a single
constraint. This means that n might be infinite.

In Penalty Logic the hierarchy can be introduced as follows. The first
constraint in the OT hierarchy from top to down is assigned with a penalty
p, where p can be any natural number in the range of 1 to 10 that represents
the number of violations of the highest OT-constraint. The remaining con-
straints going down in the OT hierarchy are assigned a penalty ( v

n
)k, where v

represents the number of violations (or asterisks in OT table) and k is a nat-
ural number that grows as the hierarchy goes down, i.e. ( v

n
)1,( v

n
)2,. . . ( v

n
)n.

For example, in table 5.5 the first constraint after the highest one is Parse,
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input: /V1C2V3C4/ → FillC ≫ Parse≫ FillV ≫ NoCoda≫ Onset

c1: .2V1.C2V3.〈C〉 * *

c2: 〈V 〉.C2V3.〈C〉 **

c3: 〈V 〉.C2V3.C4
2. * *

c4: .V1.C2V3C4. * *

Table 5.5: OT table

for it k = 1 is chosen, for FillV , k=2, and so on. Notice that this way of
assigning penalties only accepts a maximum of 9 violations per constraint,
given the decimal character we have assumed.

The positional location of the violation will permit us to join in a single
string the violations of constraints for a certain candidate. In that way, we
can assign a single complex penalty for each output candidate instead of one
simple penalty per constraint.

Recall formula F3 in chapter 4. This formula permits us to calculate
the system energy of the interpretation ν. According to that formula we
should add up the penalties of the formulae that belong to the corresponding
PKB but are not satisfied. The violations on OT candidates marked by an
asterisk are the analogues of non-satisfied formulae in Penalty Logic, that
is, formulae with value −1. If we consider the table 5.5, in a model M1 that
resembles candidate c1, the formulae not satisfied would be those of p-FillC

and p-Parse, or in other terms, model M1 would not be a preferred model,
neither under p-FillC nor under p-Parse. Adding up the penalties of these
two p-constraints, that is 1 + 0.1, we get 1.1. This number represents the
system energy of the interpretation ν under the hierarchy H. The energy of
the rest of models can be calculated in a similar way.

The system energy of ν with respect to the candidate-models in the table
above is:
Candidate c1: penalty of FillC 1 + Parse 0.1 = 1.1
Candidate c2: penalty of Parse 0.1 × 2 = 0.2
Candidate c3: penalty of Parse 0.1 + FillV 0.01 = 0.11
Candidate c4: penalty of NoCoda 0.001 + Onset 0.0001 = 0.0011

The candidate with the minimal system energy is the preferred model.
In this case candidate c4 would be that model. Observe that this candidate
has penalty 0.0011, that is, the minimal one because 0.0011 < 0.11 < 0.2 <
1.1.

In a more explicit way the penalties per constraint with respect to the
hierarchy in table 5.5 are shown below (see table 5.6). Note that blank
spaces indicate penalty 0 under a (certain) single contraint.
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p-FillC ≫ p-Parse ≫ p-Fill V ≫ p-NoCoda ≫ p-Onset

c1 1 ( 1
10 )1 = 0.1

c2 ( 2
10 )1 = 0.2

c3 ( 1
10 )1 = 0.1 ( 1

10 )2 = 0.01

c4 ( 1
10)3 = 0.001 ( 1

10 )4 = 0.0001

Table 5.6: Exponential penalties of an OT table

p-Onset ≫ p-NoCoda ≫ p-Fill V ≫ p-Parse ≫ p-FillC

c1 ( 1
10 )3 = 0.001 ( 1

10 )4 = 0.0001

c2 ( 2
10 )3 = 0.002

c3 ( 1
10 )2 = 0.01 ( 1

10 )3 = 0.001

c4 1 ( 1
10 )1 = 0.1

Table 5.7: Exponential penalties in H’

The penalties are assigned by position. If the hierarchy is changed to
p-Onset ≫ p-NoCoda ≫ p-FillV ≫ p-Parse ≫ p-FillC , we would have the
following system energy of ν:

Candidate c1: 0.0011
Candidate c2: 0.002
Candidate c3: 0.011
Candidate c4: 1.1

Under this last hierarchy the preferred model is c1 (see table 5.7). This
model coincides with the optimal candidate of the corresponding OT table
(see table 2.2, chapter 2).

Instead of models we may use scenarios. Following formula F2 in def-
inition 4.2 (see chapter 4), we calculate the optimal scenario for the PKB
conformed with the p-Con constraints under the hierarchy p-FillC ≫ p-

Parse ≫ p-FillV ≫ NoCoda ≫ p-Onset.
For this we need to consider the cost of violating the PKB conforming

to the p-Con constraints. This cost could be between 1.1111 and 9.9999.
We can assume that it is 1.1111 given the fact that in OT the number of
violations under a single constraint is not so important in comparison with
the hierarchy. The order is kept thanks to the strict domination. If we have
two constraints A and B, and B is ranked below A, it does not matter if B has
10, 100 or more violations, it will always be ranked below A and violations
on it will be preferred in order to avoid a violation in A. In a similar way
we can talk about p-constraints. For that reason it is not important if we
say that a certain p-constraint has 1 or 2, or more penalties assigned to it.
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Recall that the formula F2 introduced in chapter 4 was intended to
calculate the cost of a scenario, written KΨ (∆’). The cost of a scenario ∆’
in a PKB Ψ, i.e. KΨ(∆’), is the sum of the penalties or cost of the formulae
of ψ that do not belong to ∆’.

Consider the following scenarios, where ∆Con = 1.1111,

∆1 = { FillV , NoCoda, Onset }
KCon(∆1) = (∆ − ∆1) = (1.1111 − 0.0111) = 1.1.

∆2 = ∆’2 + ∆”2 = 0.2. 2

∆’2 = { FillC , FillV , Onset}
KCon(∆’2) = (∆ − ∆′

2) = (1.1111 − 1.0111) = 0.1.
∆”2 = { FillC , FillV , Onset }
KCon(∆”2) = (∆ − ∆′′

2) = (1.1111 − 1.0111) = 0.1.

∆3 = { FillC , NoCoda, Onset }
KCon (∆3) = (∆ − ∆3) = (1.1111 − 1.0011) = 0.11.

∆4 = { FillC , Parse, FillV }
KCon(∆4) = (∆ − ∆4) = (1.1111 − 1.11) = 0.0011.

The optimal scenario is ∆4 with minimal cost. Observe that the scenarios
presented above correspond to the output candidates of table 5.5. The
optimal candidate c4 is the analogue of the optimal scenario ∆4.

2The scenario ∆2 corresponds to candidate c2 in table 5.5. This candidate has two
violations. In order to calculate the penalty of the scenario we need to construct sub-
scenarios. Considering all the constraints in the hierarchy, the number of scenarios needed
for a candidate will be determined by the constraint that has more violations. Here
p-Parse has the maximum number of violations, 2 violations, so, we need two scenarios.
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Chapter 6

Conclusions

We have presented a translation of a localist symmetric network called CVnet

into penalty logic. The link optimal candidate-minimal energy E-preferred
model has permited us to present an example of how the analogue of an
optimal candidate arises in the penalty logic environment.

We think that the translation may provide new insights about the encod-
ing of the universal constraints of OT. But it is important to point out that
we have assumed through CVnet that universality should be implemented
by bound weights. This alternative for dealing with universality, even when
interesting is not unique. Alternative approaches may be given, for example,
in terms of assemblies.

Furthermore, we should observe the localist character of CVnet on which
our translation is based. Although it may be seen as a straightforward
mechanism for capturing the constraints of OT, a distributive representation
may also be an interesting option to explore. Perhaps from the point of
view of how our brain manages information it might be a more plausible
alternative.

What we have presented in the previous pages is just a suggestion of how
to re-think the encoding of the universals of OT. But we should stress that
the suggestion is not linked per se to the nativist account. With the assump-
tion of the same elements for the translation independently of whether they
constitute the common structure that all languages share, the translation
works. In this manner, the proposal becomes more fruitful.
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