
Analysing the complexity of games on graphs

MSc Thesis (Afstudeerscriptie)

written by

Samson Tikitu de Jager
(born May 30th, 1981 in Takaka, New Zealand)

under the supervision of Dr Benedikt Löwe, and submitted to the Board of
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Chapter 0

Introduction and definitions

This thesis does not have a thesis, in the sense of a central statement that is
developed and argued for. Instead, it explores three different ways of describing
complexity in simple games.

The three approaches are drawn from set theory, from automata theory,
and from theory of algorithms and computer science. These three areas, while
obviously related, generally use different notation and different approaches even
while ostensibly talking about the same things: ‘games’.

The progression of ideas through this thesis could be seen as a movement
from the abstract to the concrete. The formalism presented in this chapter
is the descriptive set theory notation, an explicitly infinitary concept and one
that, for sufficiently complicated games, can be shown not to yield to construc-
tive methods of proof (by comparison, however, the games considered in this
thesis have been chosen specifically because such methods are successful). Chap-
ter 1 presents the topological notion of complexity from descriptive set theory,
and some abstract solution concepts utilising infinitary procedures on infinitary
objects.

In Chapter 2 we move to automata theory, restricting ourselves to a class
of games that are played on finite structures (the games themselves remain
infinite, but can be given finite representations). The focus here is on the
finite computational resources needed to implement a strategy, which in the
descriptive set theoretic context might easily be infinite.

Chapter 3 takes an algorithmic approach to the process of constructing a
strategy for an automaton game, and measures the complexity of the game by
the time complexity of the algorithm to solve it. This is the most concrete of
the three approaches, in fact a Java application implementing some of these
algorithms accompanies the written text of this thesis. Not only are the games
restricted to finite representations (automata games, on finite structures) and
the strategies implementable with finite computational resources, but the pro-
cess of producing a strategy is also finitary and algorithmic.

The final chapter concerns a software implementation of some of the algo-
rithms given in Chapter 3, consisting of a Java library and a graphical applica-
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tion, for experimenting with graph games and labellings.
A short Appendix extends the techniques of Chapters 1, 2 and 3 to an

additional hierarchy of games, giving a finer-grained analysis of one of the classes
discussed in Chapter 1.

0.1 Preliminaries

The class of ordinals is denoted by Ord, the natural numbers by ω.

Definition 0.1 (Sequences). A sequence of elements from a set X is a total
function s : α → X where α ≤ ω is a natural number or ω, the length of s

(denoted lh(s)). We write sequences in angle brackets 〈1, 2, 3〉, and 〈〉 denotes
the empty sequence. By analogy with set notation, we also write a = 〈ai ; i < n〉
for a sequence a of length n such that a(i) = ai for i < n.

A sequence s is finite if lh(s) < ω, otherwise infinite. The set of finite
sequences of elements from a set X is denoted by <ωX, the infinite sequences
by ωX, and ≤ωX

def

= <ωX ∪ ωX.
Some ordinary function notions are also useful for sequences. The length of

a sequence s is also its domain dom(s). (The range of s, denoted ran(s),
collects the elements appearing in s.) The restriction of s

s¹n
def

= 〈s(i) ; i < n〉

corresponds to the intuitive notion of ‘cutting off’ the sequence at (just before)
the index n. Given two sequences s and t (over some set X), we say s is an
initial subsequence of t if s ⊆ t (and a proper initial subsequence if
s ( t, also that t extends s).

For s a finite sequence and t finite or infinite, we define the concatenation
sat as follows:

(sat)(i)
def

=

{

s(i) if i < lh(s),

t(i− lh(s)) otherwise.

For x ∈ X, we often write sax for the singleton extension sa〈x〉. We write
〈xn〉 for the constant sequence i 7→ x of length n, 〈xnym〉 for 〈xn〉a〈ym〉, etc.

Definition 0.2 (Graphs). A graph is a pair G = 〈V,E〉 where V is an
arbitrary vertex set and E ⊆ V × V the edge set or edge relation.

The successor and predecessor functions from V to ℘(V ) are defined
by

succG(v)
def

= {v′ ∈ V ; 〈v, v′〉 ∈ E},

predG(v)
def

= {v′ ∈ V ; 〈v′, v〉 ∈ E}.

(We omit the subscript wherever natural.) A vertex v such that succG(v) = ∅

is known as a leaf. A graph without leaves is pruned.
A walk through a graph 〈V,E〉 is a sequence s ∈ ≤ωV such that for all

n < lh(s) − 1, s(n) E s(n + 1). If all vertices in a walk s are distinct, then
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s is called a path. A cycle is a walk with at least one repeated vertex (a
walk s such that for n < m < lh(s), s(n) = s(m)). Given a graph G the sets
walks(G) and paths(G) collect respectively the walks and paths (including the
empty walk 〈〉).

Definition 0.3 (Trees). A tree on an arbitrary set X is a set T ⊆ <ωX

closed under initial subsequence. (That is, if s, t ∈ <ωX, s ∈ T and t ⊆ s, then
t ∈ T .) We can view a tree T as a graph 〈T,E〉 with E given by

〈s, t〉 ∈ T
def

⇐⇒ ∃x∈X(t = sax).

The tree definitions of leaves, a pruned tree, and the successor and predecessor
functions lift in the obvious manner.

Given a tree T ⊆ <ωX, [T ] ⊆ ωX denotes the set of branches through T :

[T ]
def

= {a ∈ ωX ; ∀n∈ω(a¹n ∈ T )}.

The subtree induced by a sequence s ∈ T , denoted Ts, is defined by

Ts
def

= {t ∈ T ; s ⊆ t ∨ t ⊆ s}.

A related notion is the branches induced by s ∈ T , denoted [s]T and
defined by

[s]T
def

= {a ∈ [T ] ; s ⊆ a} = [Ts].

(We omit the subscript if this is clear from context.)

Definition 0.4 (Unravelling a graph). If G = 〈V,E〉 is a graph, and v0 ∈ V

an arbitrary vertex, then we can define a tree T ⊆ <ωV called the unravelled
tree of G with root v0:

T
def

= {s ∈ walks(G) ; s = 〈〉 ∨ s(0) ∈ succG(v0)}.

0.2 Games

The games considered in this thesis are infinite alternating two-player games
of perfect information, played on a countable move set. Intuitively, the players
I and II take turns picking a move from a set of possibilities. The resulting
sequence after ω moves is used to decide the outcome of the game.

Definition 0.5 (Games). A game G with countable move set X is a pair
〈T,Ω〉, where T ⊆ <ωX is a non-empty pruned tree, and Ω: [T ]→ {I,D, II} is
the payoff function.

The set [T ] is the possible plays of G, and Ω assigns an outcome to each
play. The three outcomes represent respectively a win for I (and loss for
II), a draw, and a win for II (loss for I). We use shorthand notation ΩI for
{a ∈ [T ] ; Ω(a) = I}, and so on.
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A sequence s ∈ T is called a position, and the set {x ∈ X ; sax ∈ T} is
the moves available from s. A position s is owned by I if lh(s) is even,
otherwise it is owned by II.

For positions s ∈ T , Ts is known as the subgame from s. (Note that
[Ts] = [s]T .)

Conceptually speaking, to play a game the players alternate choosing ele-
ments from X and thus construct a branch through ωX. We use the notion of a
strategy both to formalise “choosing an element” and to constrain the resulting
branch to one through T .

Definition 0.6 (Strategies). Let T ⊆ <ωX be a pruned tree. A strategy
for the game 〈T,Ω〉 for player I is a pruned tree σ ⊆ T such that for all s ∈ σ, if
lh(s) is even then |succσ(s)| = 1, and if lh(s) is odd then succσ(s) = succT (s).
A strategy for II exchanges the words “odd” and “even” in the definition. The
branches through the strategy, [σ], are the plays according to σ.

For convenience, we use a function-like shorthand for expressing the ‘choices’
strategies make: if σ is a strategy for player i and s ∈ σ is a position owned by
i, then σ(s) denotes the unique t ∈ σ such that succσ(s) = {t}.

Intuitively, if σ is a strategy for player i, then for every position s owned by
i, σ chooses one available move (denoted σ(s)), while σ includes every available
move for positions owned by the opponent.

Definition 0.7 (Winning strategies). A strategy σ for I in the game 〈T,Ω〉
is winning if [σ] ⊆ ΩI, and likewise for II. Similarly, σ is non-losing (for I)
if [σ] ⊆ ΩI ∪ ΩD.

For arbitrary s ∈ σ we say that σ is winning from s if [σ] ∩ [s] ⊆ ΩI,
and likewise for II and the other outcomes. (Equivalently, if σ is winning in the
subgame from s.) A game G is called determined if one of the players has a
winning strategy for G.

Definition 0.8 (Strategy equivalence). Let σ and τ be strategies for the
games 〈T,Ω〉 and 〈T ′,Ω′〉, respectively. We say they are play equivalent
if [σ] = [τ ]. We say that σ and τ are outcome equivalent if {Ω(a) ; a ∈
[σ]} = {Ω(a) ; a ∈ [τ ]}.

Play equivalence is a very strong notion of equivalence. Outcome equiva-
lence, on the other hand, is very weak indeed. For instance, any two winning
strategies (for the same player) are outcome equivalent.

Definition 0.9 (Games with rule). Let G = 〈T,Ω〉 be an arbitrary game
where T ( <ωX. We say G is a game with rule T .

Define Ω′ : ωX → {I,D, II} by

Ω′(a) =











Ω(a) if a ∈ [T ],

I if a 6∈ [T ] and max{n ; a¹n ∈ T} is odd,

II if a 6∈ [T ] and max{n ; a¹n ∈ T} is even.

The game 〈<ωX,Ω′〉 is the rulification of 〈T,Ω〉.
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Intuitively, the rulification is the original game extended by the ‘rule’ “the
first player to play outside the tree loses.” The following theorem justifies the
connection between these two games.

Theorem 0.10. Let G = 〈T,Ω〉 be an arbitrary game with rule, and G′ =
〈<ωX,Ω′〉 its rulification. For any strategy σ ⊆ T winning or non-losing in G,
there exists a strategy σ′ ⊇ σ for G′ that is outcome-equivalent to σ.

Proof. Only one of the cases will be proved (that of a winning strategy for I),
the proofs for the other cases are analogous. The idea is that we can build a
strategy that always stays within the tree. If a play exits the tree, the strategy
guarantees that it will be the opponent’s fault.

Let σ be a winning strategy for I in G. Define σ′ as follows, taking x0 an
arbitrary element of X:

1. If s ∈ σ then s ∈ σ′;

2. If s ∈ σ′ with lh(s) odd, then succσ′(s) = succ <ωX(s);

3. If s ∈ σ′ with lh(s) even, and succσ(s) = ∅, then sax0 ∈ σ′.

Obviously σ′ is a strategy for I. Let a ⊆ [σ′] be an arbitrary path. Either
a ∈ [σ], in which case Ω(a) = Ω′(a) = I, or for some least n ∈ ω, a¹n + 1 6∈ σ.
But the construction of σ′ only adds moves for I outside T from positions
already outside T . That is, n is guaranteed odd, so by the construction of Ω′,
Ω′(a) = I. q.e.d

The following definition gives a concise and convenient notation for games
without rules.

Definition 0.11. The notation GX(A) for A ⊆ ωX represents the game without
rule 〈<ωX,Ω〉 where

Ω(a)
def

=

{

I if a ∈ A,

II otherwise.

The notation GX(A,B) for A,B ⊆ ωX and A ∩ B = ∅ represents the game
without rule 〈<ωX,Ω′〉 where

Ω′(a)
def

=











I if a ∈ A,

II if a ∈ B,

D otherwise.

Wherever possible we omit the subscript.
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Chapter 1

Topology and labellings

This chapter lays the foundations for those to come. The foundational evalua-
tion of complexity in this thesis is the approach taken in descriptive set theory,
based on a topological analysis of the payoff set of a game. This measure histor-
ically motivated the analysis via labellings which underpins most of the results
presented later.

1.1 Definitions

The heart of this analysis is a hierarchy of topological complexity known as
the Borel hierarchy. The construction given can be applied on any topological
space, but it has convenient properties (such as producing a hierarchy in the
usual sense!) on Polish spaces.

Definition 1.1 (Topological and Polish spaces). A topological space
is a pair S = 〈X,F〉, where F ⊆ ℘(X) satisfies the following conditions:

1. ∅, X ∈ F ;

2. If A,B ∈ F , then A ∩B ∈ F ;

3. For every E ⊆ F ,
⋃

E ∈ F .

The set X is called the field of S, and F is a topology on X. For A ∈ F
we call A open, its complement X \A closed. If A is both open and closed,
it is clopen.

A topological space is called a Polish space if it is separable and admits a
compatible complete metric. We will be concerned only with the Polish spaces
〈 ωX,F〉 where X is any finite set and F is given by closing under conditions
1., 2. and 3. above the set BX of basic open sets BX

def

= {[s] ; s ∈ <ωX}.
(It follows from this definition that a set A ⊆ ωX is closed iff for some tree T ,
A = [T ], a characterisation that we will frequently make use of.)

Since we use always the same topology, from here on we omit it from the
definitions and call ωX the Polish space. Two of these Polish spaces deserve
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special mention: the Baire space ωω is generally used in descriptive set theory
for game outcome sets, and the Cantor space ω2 will often come in handy
for its simplicity in cases where we want X finite. We call elements of these two
spaces reals.

For more details, see [Kec95, Chapter 1, “Polish spaces”].

Definition 1.2 (The Borel hierarchy). The Borel hierarchy on a topo-
logical space 〈X,S〉 starts by defining the class Σ

e

0
1: for A ⊆ X,

A ∈ Σ
e

0
1

def

⇐⇒ A ∈ S, i.e., A is open,

and the rest of the hierarchy is defined by the following recursion:

A ∈ Π
e

0
α

def

⇐⇒ X \A ∈ Σ
e

0
α

∆
e

0
α

def

= Σ
e

0
α ∩Π

e

0
α

and for α > 1,

A ∈ Σ
e

0
α

def

⇐⇒ there is a sequence 〈Ai ; i ∈ ω〉

such that each Ai ∈
⋃

β<α

Π
e

0
β and A =

⋃

i∈ω

Ai.

The result is the hierarchy shown in Figure 1.1. For more details, see [Kec95,
Chapter 2, “Borel Sets”].

Theorem 1.3 ([And01, Exercise 3.9]). The Borel hierarchy when defined
on a Polish space is proper until Σ

e

0
ω1

= Π
e

0
ω1

= ∆
e

0
ω1

.

We call the union of the countable levels of the hierarchy, ,
⋃

α<ω1
∆
e

0
1, the

“Borel sets”, and denote the class of all such sets (for a given topological space
X) by BorelX . Since we are mostly concerned with the Baire space, we write
“Borel” for Borel ωω.

An alternative, purely syntactic, characterisation of this hierarchy will also
be useful. The account given here is simplified as much as possible for our
present purposes; for more details, see [Kan03, pg. 152, “The Definability Con-
text”].

Definition 1.4 (Second-order arithmetic). Second-order arithmetic
is the two-sorted structure

A2 def

= 〈ω, ωω, ap,+,×,≤, 0, 1〉

where ap: ωω×ω → ω (function application) is defined by ap(a, n)
def

= a(n), and
the other elements have their usual arithmetical definitions. The language has
symbols for these elements, function variables ai ranging over ωω and number
variables xi ranging over ω, and corresponding function and number quantifiers
∃1, ∀1 for elements of ωω and ∃, ∀ for elements of ω.

Terms for numbers are defined in the obvious manner, and if ϑ is a num-
ber term and Φ a formula, the bounded quantifiers ∃xi<ϑΦ and ∀xi<ϑΦ
represent respectively the formulae ∃xi(xi < ϑ ∧ Φ) and ∀xi(xi < ϑ→ Φ).
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Figure 1.1: Two visualisations of the Borel hierarchy

A hierarchy of formulae for second-order arithmetic analogous to the finite
levels of the Borel hierarchy is defined as follows:

Definition 1.5 (Alternating quantifier hierarchy). Let Φ be a formula of
second-order arithmetic containing only number quantifiers. Then

Φ ∈ Π0 ⇐⇒ Φ ∈ Σ0
def

⇐⇒ the only quantifiers appearing in Φ are bounded,

Φ ∈ Σn+1
def

⇐⇒ Φ is of the form ∃xiΨ where Ψ ∈ Πn,

Φ ∈ Πn+1
def

⇐⇒ Φ is of the form ∀xiΨ where Ψ ∈ Σn.

By various quantifier rearrangement and coding equivalences (a prenex nor-
mal form theorem for second-order logic), every formula of second-order arith-
metic using only number quantifiers is equivalent to a formula in this hierarchy.
Finally, the hierarchy is related to the Borel hierarchy of sets of reals by the
following theorem:

Theorem 1.6 ([Kan03, Proposition 12.6]). Take A ⊆ ωω arbitrary. Then
A ∈ Σ

e

0
n for n ∈ ω iff for some formula Φ ∈ Σn with two free function variables
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and some b ∈ ωω, we have a ∈ A ⇐⇒ Φ(a, b). Likewise for A ∈ Π
e

0
n, with

Φ ∈ Πn.

This theorem means that we can place upper bounds on a set’s location in
the Borel hierarchy simply by giving a defining formula for it.

1.2 The strength of determinacy axioms

Recall that for A ⊆ ωX, GX(A) is the game where players play ω moves alter-
nately from X, and I wins if the result lies in A. Recall also that a game is
determined if a winning strategy exists for one of the players.

For Γ ⊆ ℘( ωX), the determinacy axiom DetX(Γ) is the statement “For
all A ∈ Γ, GX(A) is determined.” (As usual, we omit the subscript wherever un-
ambiguous.) Determinacy axioms can be used to show that the Borel hierarchy
is in fact measuring complexity in some natural manner.

Theorem 1.7 ([Mar75]).

ZFC ` Detω(Borel)

According to this theorem, the entire Borel hierarchy is determined. However
[Fri81] showed that proving this requires uncountably many iterations of the
power set operation.1 Less powerful axiom systems than ZFC prove determinacy
less far up the Borel hierarchy, showing that topological complexity corresponds
in some natural fashion to proof-theoretic strength.2

The idea is to start with a weak base theory T and measure the proof-
theoretic strength of the systems T+Det(Γ), for various Γ in the Borel hierarchy.
More details can be found in [HMar], here only the flavour of the results is given.

The following results can be found in Chapter 1 of [Mar]:

Theorem 1.8 (Martin). Let ZFC− be the axiom system ZFC without the pow-
erset axiom.

ZFC− ` Det(∆
e

0
4) (Corollary 1.4.12)

ZFC− 0 Det(Σ
e

0
4) (Exercise 1.4.1)

[HMar] discusses further results based on weakenings of SOA, an axiomati-
sation of the system of second-order arithmetic. By the second result of Theo-
rem 1.8, SOA 0 Det(Σ

e

0
4). However SOA proves Det(Σ

e

0
3) [HMar, via a theorem of

1 This statement is difficult to make precise without a lot of extra definitions; indeed, an earlier
draft of this thesis attempted to do so and merely misrepresented the result. Broadly speaking,
Friedman starts with the axiomatisation SOA of second-order arithmetic, and shows that
SOA+Detω(Borel) proves the existence of (codes for) every countable ordinal. However SOA

alone is not this powerful, so the extra proof-theoretic strength is the result of the determinacy
axiom.

2 It is perhaps worth noting that Borel determinacy also requires some fragment of the axiom
of choice; ZF does not suffice, but adding the axiom of choice for countable families of sets
does [Hur93].
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Welch]. Even weaker systems can be constructed by limiting the comprehension
scheme and induction axiom (by restricting the formulae appearing within them
to low levels of the alternating quantifier hierarchy). Some of these correspond
exactly to lower-level determinacy axioms, however precise statements of these
results would take us too far from the main ideas of the thesis.

The crucial point is that proofs of determinacy become more complicated
for higher Borel levels, and (as the results above by Friedman and Martin show)
this is by necessity. The games we are concerned with, however, lie in the lowest
Borel levels. We can not only prove directly that they are determined, we can
even construct winning strategies witnessing this.

1.3 Labellings

The classic determinacy proof is Gale and Stewart’s proof of open determinacy,
Det(Σ

e

0
1). The technique of labelling used for this proof is the inspiration for all

the solution procedures presented here.

Definition 1.9 (Labellings). The classes

LI

def

= {Iα ; α ∈ Ord},

LD

def

= {Dα ; α ∈ Ord},

LII

def

= {IIα ; α ∈ Ord}

are called respectively the I-labels, D-labels and II-labels.
A labelling on a graph 〈V,E〉 is a function

` : V → LI ∪ LD ∪ LII.

The set ran(`) ∩ LI is known as the I-labels of `, and likewise for D (the
draw labels) and II.

If `(v) = xα (for x ∈ {I,D, II}), then v is a vertex of height α, and we say
ht`(v) = α.

We define two well-orders on labels, <I and <II, given by

Iα <I,II Iβ
def

⇐⇒ Dα <I,II Dβ
def

⇐⇒ IIα <I,II IIβ
def

⇐⇒ α < β

and for all α, β, γ ∈ Ord,

Iα <I Dβ <I IIγ ,

IIα <II Dβ <II Iγ .

The well-orders <I and <II are in a sense preferences: each player prefers to
win if possible, draw if necessary, and lose only if unavoidable. If the intuitive
meaning of the labels accurately reflects the state of affairs, a player should be
able to ‘read off’ a strategy from a labelling by selecting moves with least (in
the appropriate order) label, and the resulting strategy will be ‘optimal’ for that
player. The following definition formalises these ideas.

12



Definition 1.10 (Good strategies and sound labellings). Let G = 〈T,Ω〉
be a game, and ` : T → LI ∪ LD ∪ LII a labelling on T .

A strategy σ for player i in G is `-good if for all positions s ∈ σ owned by
i and labelled by `,

`(σ(s)) = min
<i

{`(sax) ; x ∈ X} (or `(σ(s)) is undefined), and

σ(s) = min{sax ; x ∈ X and `(σ(s)) = `(sax)}.

(We implicitly assume a suitable well-order on the move set X. Recall that the
move set is finite, thus such an order always exists; for games on the Baire and
Cantor spaces we use the usual ordering on ω.)

The labelling ` is G-sound if every `-good strategy σ for player i satisfies
the following two conditions:

• σ is winning for player i from positions labelled from Li;

• σ is non-losing but not winning for player i from positions labelled D and
owned by i.

Remark. These definitions are adapted from [LS05] but include a significant
alteration: a labelling is not required to be total. Thus trivial (empty) G-sound
labellings exist for any game G. The advantage of this notation is that we can
speak precisely about the process of producing a G-sound total labelling `, for
instance by constructing a sequence of partial labellings 〈`α ; α < β〉 such that
each `α is G-sound and ` =

⋃

{`α ; α < β} is both total and G-sound. The
following section provides an example of such a construction.

1.4 The Gale-Stewart labelling

The Gale-Stewart procedure was introduced in [GS53] to prove Det(Σ
e

0
1), that

open sets produce determined games. This procedure is the jump-off point for
most of the algorithms considered in this thesis.

The idea will be familiar to game theorists, under the name backward in-
duction. This idea in game theory has however become somewhat problematic,
since it depends on notions of rationality and rational play that turn out on
closer inspection to be non-trivial.3 In the set-theoretic context these problems
are avoided by strengthening the requirements on strategies: the properties we
are interested in (being “winning” or “non-losing”) are required to hold against
any play by the other player.4

Informally, we start with the positions generating the basic open sets (at
which we know the outcome), and then ‘back up’ the values through the tree
by observing where I can move to a I-labelled node, and where II is forced to
do so.

3 See for instance [dB04].
4 The convenient existence of such powerful strategies only holds for two-player games. As

shown in [L0̈3], extremely simple games with three players can be constructed that admit no
winning strategies.
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Definition 1.11. Let ` be a labelling on T ⊆ <ωX. Let αI

def

= sup{β + 1 ; Iβ ∈
ran(`)}, and similarly αII and αD. Define the backup of `, backup(`) ⊇ ` as
follows:

backup(`)(s) =



























































`(s) if s ∈ dom(`),

IαI
if lh(s) even and `(t) ∈ LI for some t ∈ succT (s),

IαI
if lh(s) odd and `(t) ∈ LI for all t ∈ succT (s),

IIαII
if lh(s) odd and `(t) ∈ LII for some t ∈ succT (s),

IIαII
if lh(s) even and `(t) ∈ LII for all t ∈ succT (s),

DαD
if succT (s) ⊆ ran(`), {t ∈ succT (s) ; `(t) ∈ LD} 6= ∅,

and {t ∈ succT (s) ; `(t) ∈ LI} = ∅ if lh(s) even,

{t ∈ succT (s) ; `(t) ∈ LII} = ∅ if lh(s) odd.

Theorem 1.12. Let G = 〈T,Ω〉 be a game, ` a labelling on T . If ` is G-sound,
then so is backup(`).

Proof. A backup(`)-good strategy is necessarily `-good, so we need only check
the newly labelled positions.

Let σ be a backup(`)-good strategy, and s ∈ σ a position such that s ∈
dom(backup(`)) \ dom(`).

Suppose that backup(`)(s) ∈ LI (the case for II is symmetric). If lh(s) is
even, then by construction `(σ(s)) ∈ LI, so by hypothesis σ is winning from
σ(s) (since σ is `-good), therefore σ is winning from s. If, on the other hand,
lh(s) is odd, then by construction every sax ∈ T must be labelled I by `, so
again by hypothesis σ is winning from every successor of s so σ is winning from
s.

Suppose instead that backup(`)(s) ∈ LD. By construction, if s is owned by
player i then no successor of s is labelled from Li by `, and all successors of s are
labelled. Since σ is `-good, no winning strategy for i from s exists. Furthermore,
since σ is backup(`)-good, a successor labelled D by ` will be chosen. Finally,
since ` is G-sound, this successor is not winning for the opponent, so σ is non-
losing for i from s.

Thus backup(`) is G-sound if ` is. q.e.d

Definition 1.13. The Gale-Stewart labelling procedure labels a tree
T ⊆ <ωX from a seed B ⊆ <ωX as follows:

`0(s) =

{

I0 if ∃n∈ω(s¹n ∈ B),

⊥ otherwise.

`α+1 = backup(`α),

`λ =
⋃

{`α ; α < λ} for λ limit.

Let γ be the least fixpoint of this procedure, then the total labelling `GS is
defined by

`GS(s) =

{

`γ(s) if this is defined,

II0 otherwise.

14



Lemma 1.14. The fixpoint γ exists.

[ Any stage that does not label a previously unlabelled position is the fixpoint.
There are only countably many positions to label. ]

Theorem 1.15. Let A ⊆ ωX be an open set with basis B. The Gale-Stewart
labelling `GS with seed B is G(A)-sound.

Proof. First, the labelling `0 is G(A)-sound. Let a ∈ <ωX be arbitrary such
that for some n ∈ ω, `0(a¹n) = I0. Then for some s ∈ B, s ⊆ a, so since B

is a basis for A, a ∈ A. That is, for any position s labelled I0 by `0, I has
already won any play passing through s, so all strategies (and thus all `0-good
strategies) are winning for I at s.

Next, Theorem 1.12 guarantees that all successor-level labellings are G(A)-
sound, so long as limit-level labellings are. So let λ ∈ Ord be limit such that
for all α < λ, `α is G(A)-sound. Any position s labelled such that `λ(s) ∈
LI received the label at some previous stage, say α. But by the inductive
hypothesis, `α was G(A)-sound, that is, any `α-good strategy is winning for I
at s. And if a strategy σ is `λ-good, then it is also `α-good for all α < λ.

That is, both successor and limit stage labellings are G(A)-sound, so we
need only check soundness of the II-labels of `GS.

Let T be the tree generated from A (i.e., T
def

= {a¹n ; a ∈ A,n ∈ ω}). Let
σ be an `GS-good strategy for II in G(A) (so that σ ⊆ T ), and let s ∈ σ be
arbitrary such that `GS(s) = II0.

Assume toward a contradiction that for some a ∈ [σ] such that s ⊆ a, a ∈ A

(that is, σ is not winning from s for II).
Then since B is a basis for A, for some t ∈ B we have t ⊆ a. It cannot be

that t ⊆ s, since then `0(s) = I0, so we have s ( t.
Now we show, towards a contradiction, that at some stage α < γ, `α(s) = Iα.

The proof is by induction along t \ s, showing that each t(n) for n ≥ lh(s) − 1
is labelled I at some stage before γ. The position t provides a base case.

For the inductive step, let u ∈ σ be arbitrary such that for some α < γ,
`α(u) ∈ LI. Let v = u¹(lh(u)− 1) be the predecessor of u.

Suppose v is owned by I. Then `α+1(v) ∈ LI. Suppose instead that v is owned
by II. Then since σ is `GS-good, for all successors w ∈ succT (v), `γ(w) ∈ LI

(otherwise for some w ∈ succT (v), `GS(w) ∈ LII so σ chooses w instead of u).
Let β = sup{α ; w ∈ succT (v), `γ(w) = Iα)}. Then if β is limit, `β+1(v) = Iβ+1,
otherwise `β(v) = Iβ . This completes the inductive step.

By this induction, for no t ∈ σ such that t ⊇ s can it be the case that
`GS(t) ∈ LI while `GS(s) ∈ LII. So σ is winning for II from all II-labelled
positions.

We already showed that σ is winning for I from all positions labelled at
successor and limit stages. So we have that σ is winning for player i from
positions labelled i. Since σ was arbitrary `GS-good, this proves that `GS is
G(A)-sound. q.e.d

Remark. The original proof that a strategy produced by the Gale-Stewart la-
belling procedure is winning was substantially different. It used the observation

15



that such a strategy (for I) from a position labelled I moves always to a I-
position labelled in a preceding stage. Since the ordinals are well-founded, a
play according to such a strategy eventually passes through a position labelled
I0, confirming a win. For II it suffices to avoid forever positions labelled I, in
much the same way as the proof given above.

The more general construction via backup and soundness of labellings is
given here because these building blocks will be reused in later sections.

1.5 Combinatorial labellings

Combinatorial labellings are introduced in [LS05]. The idea is to specify those
labellings that are both sound (for their respective games) and are derived
‘bottom-up’ from the structure of the tree.

Definition 1.16 (Bisimulation). Let 〈U,E〉 and 〈V, F 〉 be directed graphs.
A relation R ⊆ U × V is a bisimulation if the following two conditions hold:

∀u, u′∈U∀v∈V (if uEu′ and uRv, then for some v′ ∈ V , vFv′ and u′Rv′),

∀u∈U∀v, v′∈V (if uRv and vFv′, then for some u′ ∈ U , uEu′ and u′Rv′).

This is made clearer by a diagram, in which the dotted arrows are required
by the definition:

u

E

²²

R // v

F

²²

u

E

²²

R // v

F

²²
u′ R // v′ u′ R // v′

If we treat the graphs as transition systems then R is a relation under which
either system can simulate the other.

Definition 1.17. Let T ⊆ <ωX a tree and A ⊆ ωX be arbitrary, and R ⊆ T×T

a bisimulation on the positions in T . We say R preserves A if for all a, b ∈ [T ]
we have

if ∀n∈ω(〈a¹n, b¹n〉 ∈ R) then a ∈ A⇐⇒ b ∈ A.

We extend this to a game 〈T,Ω〉 by requiring that R preserve ΩI, ΩD and
ΩII, and say that R preserves Ω.

If s, t ∈ T are positions both owned by the same player, we say they are
Ω-bisimilar if there exists an Ω-preserving bisimulation R such that sRt.

A combinatorial (‘bottom-up’) labelling should respect bisimulation. Intu-
itively, if two positions are bisimilar then the trees below them ‘look the same’
from the point of view of playing the game. A bottom-up labelling should thus
not distinguish between them.

Definition 1.18. A labelling ` for the tree T is Ω-combinatorial if for every
s, t ∈ T that are Ω-bisimilar, `(s) = `(t).

16



Theorem 1.19 ([LS05, Proposition 4.2]). There is a Σ
e

0
2 set A ⊆ ω2 such

that no G(A)-sound labelling is A-combinatorial.

Proof. Define A by

a ∈ A
def

⇐⇒ ∃n∈ω∀m≥n(a(m) = 0).

Clearly A is Σ
e

0
2, and II has many winning strategies (“move always 1” is a very

simple one). But by observation, any two s, s′ ∈ ω2 owned by the same player
are A-bisimilar. (Take the bisimulation {

〈

sat, s′at
〉

; t ∈ ω2} as witness.) This
means that any A-combinatorial labelling ` must give every position with odd
length the same label. And in that case, a strategy for II that is `-good will
make II always move 0. q.e.d

In fact, [LS05] shows that Σ
e

0
2 is the first Borel class containing a game that

does not admit a combinatorial labelling:

Theorem 1.20 ([LS05, Theorem 6.5]). Every ∆
e

0
2 set A has a total G(A)-

sound and A-combinatorial labelling.

Proof sketch. The proof proceeds by constructing G(A)-sound and A-combinatorial
labellings for sets A in the Hausdorff difference hierarchy. By a theorem of Haus-
dorff and Kuratowski, ∆

e

0
1 is the union of all countable-level Hausdorff difference

classes. q.e.d

1.6 The combinatorial game

Definition 1.21. The combinatorial game on a tree T ⊆ <ωX is the
rulification of the game 〈T,Ω〉 where ΩD = [T ].

That is, plays within the tree are a draw, otherwise the first player to exit
the tree loses. (Note that this is therefore a game G(A,B) with A,B ⊆ ωX

both open.)

The obvious extension of the Gale-Stewart procedure suffices to label a tree
for solving the combinatorial game.

Definition 1.22. The combinatorial Gale-Stewart procedure labels
a tree T ⊆ <ωX according to two seeds B,C ⊆ <ωX as follows:

`0(s) =











I0 if ∃n∈ω(s¹n ∈ B),

II0 if ∃n∈ω(s¹n ∈ C),

⊥ otherwise.

`α+1 = backup(`α),

`λ =
⋃

{`α ; α < λ} for λ limit.

Let γ be the fixpoint of this procedure, then the total labelling `CGS is defined
by

`CGS(s) =

{

`γ(s) if this is defined,

D0 otherwise.
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Remark. This definition can only be applied if B and C are ‘strongly disjoint’
in the following sense: ∀s∈B∀t∈C(¬(s ⊆ t∨ t ⊆ s)). This condition is obviously
satisfied by the seeds produced by the combinatorial game, which is all we need
for the present purposes.

Theorem 1.23. Let G(A,B) be a combinatorial game, the rulification of a tree
T ⊆ <ωX, and let C,D ⊆ <ωX be bases for A and B, respectively. Then the
combinatorial Gale-Stewart labelling `CGS with seeds C and D is G(A,B)-sound.

Proof. The proof for positions labelled I and II is analagous to that for Theo-
rem 1.15.

Let s ∈ <ωX be a position such that `CGS(s) = D0, and let γ be the fixpoint
of the sequence of backup labellings. Without loss of generality, let lh(s) be even
(the proof for positions owned by II is analagous). It suffices to show two things:
no successor of s is labelled I, and some successor of s is labelled D.

(These two requirements ensure that an `CGS-good strategy for I is drawing,
while the absence of a winning strategy is shown by the same argument as
demonstrated the soundness of a II-label given by `GS: if such a strategy existed,
s would be labelled I before `γ .)

But the two requirements follow directly from the definition of backup: since
s is owned by I, if some successor t becomes labelled I at stage α, then `α+1(s) =
I. Likewise, if all successors are labelled II at stages before γ, then `γ(s) =
II. q.e.d

However there is another labelling procedure that also suffices. Again, the
definition is given here mainly so we may make use of variations on this idea in
later chapters.5

Definition 1.24. The two-pass labelling `twice for a combinatorial game
G(A,B) on <ωX is given by the following definition: first, let B ′ = {〈0〉as ; s ∈
B}. Now take `A = `GS applied to G(A), and `B′ = `GS applied to G(B′)

`twice(s)
def

=











`A(s) if `A(s) ∈ LI,

IIα if `B(〈0〉as) = Iα,

D0 otherwise.

In essence, we analyse the two open games given by A and B to get the
positions winning for I and II, and any position lying in the closed portion of
both these games is drawing.

Theorem 1.25. For any combinatorial game G(A,B), the two-pass labelling
`twice is G(A,B)-sound.

Proof. Let σ be an `twice-good strategy. Clearly, σ is also `A-good. Let s ∈ σ

be labelled I. Then since `A is G(A)-sound, [σ] ∩ [s] ∈ A.

5 This labelling procedure is based on a suggestion by Be Birchall in a ‘mini-paper’ for the
Master of Logic course “Logic and Games”.
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Suppose instead that `twice(s) ∈ LII. Then let σ′ = {〈0〉at ; t ∈ s} be a
strategy for I in G(B′). Clearly, σ′ is `B′-good, and `B′ is G(B′)-sound. Since
`B′(〈0〉as) ∈ LI, σ′ ∩ [〈0〉as] ∈ B′. But then by construction, [σ] ∩ [s] ∈ B.

Finally, take s ∈ σ such that `twice(s) = D0. This means that both `A(s) =
II, and `B′(s) = II.

Since again σ is G(A)-good, we have [σ] ∩ [s] ⊆ ωX \A.
Since `B′(〈0〉as) = II, [σ′] ∩ [〈0〉as] ⊆ ωX \B′, that is, [σ] ∩ s ⊆ ωX \B.
Putting these two together gives us [σ] ∩ [s] ⊆ ωX \ (A ∪ B), that is, σ is a

drawing strategy.
All that remains is to show that no winning strategy from s exists when

`twice(s) = D0. Now suppose without loss of generality that lh(s) is even (the
case for positions owned by II is analagous, but complicated by the extra first
move, so we shall omit it). Note that a winning strategy for I in G(A,B) also
wins G(A). But σ is `A-good, and `A(s) = II, so no winning strategy for I from
s in G(A) exists, i.e., no winning strategy for I from s in G(A,B) exists.

Putting all this together means that `twice is G(A,B)-sound. q.e.d
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Chapter 2

Automata games

In this chapter I consider a number of classes of games played on finite graphs,
taken from the automata theory literature. These games allow for a new com-
plexity analysis, roughly speaking “How difficult is it to play according to a
given strategy?” Specifically, how much extra information beyond the structure
of the graph does the player need to remember, in order to play according to a
given strategy?

2.1 Definitions

An automaton is essentially a graph with the edges labelled. Conceptually, the
vertices of the graph represent configurations of a machine, and an labelled edge
represents a change from one configuration (or state) to another, driven by the
input of the machine.

Definition 2.1 (Automata). An automaton A over a finite alphabet Σ is
a structure 〈Q, q0, δ〉 where Q = {q0, q1, . . . , qn} is a finite set of states, q0 is
the start state, and δ : Q× Σ→ Q is the transition function.

The graph of A is 〈Q,E〉 where E ⊆ Q×Q is given by

〈q, q′〉 ∈ E
def

⇐⇒ ∃a∈Σ(δ(q, a) = q′).

We represent an automaton pictorially by drawing its graph and labelling the
edges with the appropriate inputs to the transition function. Figure 2.1 shows
a simple example.

Let A = 〈Q, q0, δ〉 be an arbitrary automaton. Intuitively the automaton
notion represents a machine with moving parts, which changes its configuration
from state to state in response to input.

The response of A to a nonempty sequence (responseA : <ωΣ → Q) is
defined inductively as follows:

responseA(〈x〉) = δ(q0, x),

responseA(sax) = δ(responseA(s), x).
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?>=<89:;q0

0 ** ?>=<89:;q1

0

jj
1 // ?>=<89:;q2

Figure 2.1: An automaton 〈Q, q0, δ〉 with state set {q0, q1, q2} and transition
function

{

〈q0, 0, q1〉, 〈q1, 0, q0〉, 〈q1, 1, q2〉
}

.

The trace of a (possibly infinite) sequence s ∈ ≤ωΣ is given by

traceA(s) = 〈responseA(s¹n) ; 0 < n ≤ lh(s)〉.

In both cases we omit the subscript wherever unambiguous. We also say
response(s) = trace(s) = ⊥ if δ is undefined on some necessary input for the
induction.

Definition 2.2 (Languages). A language L over a finite alphabet Σ is a
set of finite sequences with elements from Σ, i.e., L ⊆ <ωΣ. An ω-language
is a set of infinite sequences Lω ⊆

ωΣ, and its elements are known as ω-words.
An automaton A accepts a finite sequence s if traceA(s) 6= ⊥.
An ω-automaton is a pair 〈A,Ω〉 where A is an automaton with state set

Q and Ω ⊆ ωQ is the acceptance condition. An ω-word a is accepted by
an ω-automaton 〈A,Ω〉 if for all n ∈ ω A accepts a¹n, and if trace(a) ∈ Ω.

We call the set of finite sequences accepted by an automaton A the lan-
guage generated by A, and the ω-words accepted by 〈A,Ω〉 the ω-lan-
guage generated by 〈A,Ω〉, denoted by L(A,Ω).

2.2 Standard acceptance conditions

In this section I give some standard acceptance conditions that can be defined
in a natural way on the graph of the automaton, and show their complexity
with respect to the Borel hierarchy. All conditions are given with respect to an
automaton A = 〈Q, q0, δ〉.

2.2.1 Reachability

Let QT ⊆ Q be the target set. The acceptance condition ΩR is the set of all
(infinite) traces that pass though an element of QT:

Definition 2.3.
ΩR

def

= {a ∈ ωQ ; ∃n∈ω(a(n) ∈ QT)}.

Theorem 2.4. For all reachability condition ω-automata 〈A,ΩR〉, L(A,ΩR) ∈
Σ
e

0
1. Furthermore, there exists such an automaton with L(A,ΩR) 6∈∆

e

0
1.

Proof. The basis of finite sequences whose last element is in QT generates ΩR.
For the second statement, let A be given by

?>=<89:;q00 33
1 // ?>=<89:;q1 0,1

kk
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with QT = {q1}. Let L = L(A,ΩR) for brevity. If L is closed, then for some tree
T ⊆ <ω2, L = [T ]. For each n ∈ ω, 〈0n1ω〉 ∈ L. Since T is closed under initial
subsequence, this means that for all n ∈ ω, 〈0n〉 ∈ T . But then 〈0ω〉 ∈ [T ], and
〈0ω〉 6∈ L. Thus no such T exists. q.e.d

2.2.2 The Büchi condition

Let QT be the target set. The acceptance condition ΩB is the set of all infinite
traces that pass infinitely often through an element of QT.

Definition 2.5.

ΩB
def

= {a ∈ ωQ ; ∀n∈ω∃m>n(a(m) ∈ QT)}.

Theorem 2.6. For all Büchi condition automata 〈A,ΩB〉, L(A,ΩB) ∈ Π
e

0
2.

Furthermore, there exists such an automaton with L(A,ΩB) 6∈ Σ
e

0
2.

Proof. That L(A,ΩB) ∈ Π
e

0
2 for any Büchi automaton can be seen from an

alternating quantifiers argument. The two quantifiers in the defining formula
bound the depth to which the trace has to be evaluated, and checking the
membership in QT obviously only requires bounded quantifiers.

For the second statement, take the very simple automaton with alphabet
{0, 1} given by the picture

?>=<89:;q0

1 **
0 33

?>=<89:;q1

0

jj 1kk

and let QT = {q1}. Let L = L(A,ΩB). Suppose towards a contradiction that
L ∈ Σ

e

0
2. Then for some sequence 〈An ∈ Π

e

0
1 ; n < ω〉,

⋃

{An ; n ∈ ω} = L.
Now we use a diagonalisation argument to construct an element a that does not
appear in

⋃

{An ; n ∈ ω}, but such that a ∈ L.
First note that each An = [Tn], for suitable trees Tn ⊆

<ω2. We will find
an increasing family of sequences 〈sn ∈

<ωX ; n ∈ ω〉 such that for each n,
sn ( sn+1 but also for each n, sn 6∈ Tn. This guarantees that a =

⋃

{sn ;
n ∈ ω} 6∈

⋃

{An ; n ∈ ω}, however at the same time we will ensure that
trace(a) ∈ ΩB.

Let m0 ∈ ω be least such that 〈0m0〉 6∈ T0. Such an m0 exists, otherwise
〈0ω〉 ∈ [Tn] and the trace through this sequence visits q1 only finitely many
times. Since Tn is a tree, closed under initial subsequence, 〈0m1〉 6∈ Tn. Let
s0 = 〈0m1〉.

Now for the inductive step: let mn+1 ∈ ω be least such that sn
a〈0mn+1〉 6∈

Tn+1. Again, such an mn+1 exists, because otherwise sn
a〈0ω〉 ∈ [T ]. Then set

sn+1 = sn
a〈0mn+11〉.

Finally, take a =
⋃

{sn ; n ∈ ω}. Since for each n, sn+1 ) sn, we have
a ∈ ω2. In addition, since each sn ends with a 1, q1 is visited infinitely often in
trace(a). But then a ∈ L, while the construction ensures that

a 6∈
⋃

{[Tn] ; n ∈ ω}.
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This contradiction shows that such a sequence of closed sets such that
⋃

〈An〉 = L(A,ΩB) cannot be found. That is, for this automaton, L(A,ΩB) 6∈
Σ
e

0
2. q.e.d

2.2.3 The Muller condition

Let QT ⊆ ℘(Q) be a collection of target sets. The acceptance condition ΩM

requires that an accepted trace visit all and only the elements of some target
set infinitely often.

Definition 2.7. Let a ∈ ωX be an arbitrary infinite sequence. The set Fin(a) ⊆
X collects all elements from a occurring only finitely many times, while Inf(a) ⊆
X collects those elements occurring infinitely many times.

Inf(a)
def

= {x ∈ X ; ∀n∈ω∃m>n(a(m) = x)},

Fin(a)
def

= {x ∈ X ; ∃n∈ω∀m>n(a(m) 6= x)}.

Definition 2.8.

ΩM
def

= {a ∈ ωQ ; ∃P ∈ QT(Inf(a) = P )}.

Theorem 2.9. For all Muller condition ω-automata 〈A,ΩM〉, L(A,ΩM) ∈∆
e

0
3.

Furthermore, there exists such an automaton with L(A,ΩM) 6∈ Σ
e

0
2 ∪Π

e

0
2.

Proof. Suppose first that QT = {S} is a singleton.
For A ⊆ Q, Let Φ(a,A) represent the formula

∃n∈ω∀m>n(response(a¹m) ∈ A).

Then Φ(a, S) is a Σ
e

0
2 formula specifying that Inf(trace(a)) ⊆ S. As before,

taking traces and testing membership in S can be done using only bounded
quantifiers.1

Then for each A ( S, ¬Φ(a,A) is Π
e

0
2. And

Φ(a, S) ∧
∧

A(S

¬Φ(a,A)

is a ∆
e

0
3 formula specifying precisely that a ∈ ΩM. In case QT is not a singleton,

we have only a finite disjunction of such formulae, so the result is still ∆
e

0
3.

To see that Σ
e

0
2 does not suffice, we can take the construction given in the

proof of Theorem 2.6 (the Borel height of Büchi conditions). If we take a
singleton condition ΩΣ with target sets QΣ

def

= {{q0, q1}}, exactly the same con-
struction shows that any Σ

e

0
2 set either misses an element a that we want (with

Inf(trace(a)) = {q0, q1}) or includes one we don’t want (with Inf(trace(a)) =
{q0}).

1 In fact the language generated by an automaton condition belongs to the same Borel class as
the automaton condition itself: Borel classes are boldface pointclasses, closed under taking
continuous preimages, and the trace function is continuous.
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To see that Π
e

0
2 does not suffice, take the same automaton but with the

Muller condition ΩΠ given by the target sets QΠ

def

= {{q1}}. If this is Π
e

0
2, then

its negation is Σ
e

0
2. But the negation of this condition states precisely that q0

appears infinitely often in trace(a), the Büchi condition {q0}, and we showed
above that this is not Σ

e

0
2.

So we have two Muller conditions, one not in Σ
e

0
2 and one not in Π

e

0
2. But

we can combine them into a single automaton, in the following simple manner,
as in the following picture.

?>=<89:;q1

1 **
0

)) ?>=<89:;q2

0

jj 1kk

?>=<89:;q0

0

>>}}}}}}}}}

1

ÃÃA
AA

AA
AA

AA

?>=<89:;q3

1 **

0

KK
?>=<89:;q4

0

jj 1kk

The states of the two automata are renamed so that they are disjoint. The
first transition of the new automaton selects which of the sub-automata to use.
The Muller condition Ω∆ is defined from the union of the two sub-automata
conditions, target sets {{q1, q2} , {q3}}. If this is Σ

e

0
2 or Π

e

0
2, then the relevant

condition can be extracted simply by looking at the first element of the trace:

trace(a) ∈ ΩΣ ⇐⇒ trace(a) ∈ Ω∆ ∧ a(0) = 0,

trace(a) ∈ ΩΠ ⇐⇒ trace(a) ∈ Ω∆ ∧ a(0) = 1.

Since the test on the first element is quantifier-free, either of the two conditions
can be reduced to this one without changing Borel classes. To avoid contradic-
tion, Ω∆ 6∈ Σ

e

0
2 ∪∆

e

0
2. q.e.d

2.2.4 Summary

The conditions considered have been chosen because they make a relatively neat
and tidy hierarchy according to topological complexity. Figure 2.2 summarises
the situation. (The positions shown are the highest extent of the relevant con-
ditions, of course simple instances of complex conditions also exist.)

2.3 Automata games and strategies

The notion of automata games comes from picturing an automaton as a machine
processing input from the environment. Player I takes the role of a controller,
while II represents the environment, and the aim of the controller is to ensure
that some condition on the operation of the machine holds on an infinite run (the
acceptance condition of the automaton). However, the controller knows only
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Figure 2.2: Highest positions of automata conditions in the Borel hierarchy

about the state of the machine, not about the particular moves the environment
plays. These notions are formalised as follows:

Definition 2.10 (Automata games). An alternating automaton is an
structure

〈Q, q0, QI, QII, δ〉

where 〈Q, q0, δ〉 is an automaton, such that QI and QII partition Q, q0 ∈ QI,
and for all x ∈ Σ, if q ∈ QI then δ(q, x) ∈ QII, and if q ∈ QII then δ(q, x) ∈ QI

(where these are defined).
The automaton game for an alternating ω-automaton 〈A,Ω〉 is the game

〈T,A〉 where T ⊆ <ωΣ and A ⊆ [T ] are given by

s ∈ T
def

⇐⇒ A accepts s,

a ∈ A
def

⇐⇒ traceA(a) ∈ Ω.

Lemma 2.11. For any strategy σ ⊆ <ωQ on the tree of traces, a strategy
τ ⊆ <ωΣ on the tree of moves exists such that {trace(t) ; t ∈ τ} = σ.

[ Obvious, by choosing a single move to represent each edge in the graph of the
automaton. ]
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Definition 2.12 (Automata strategies). Let A = 〈Q, q0, QI, QII, δ〉 be an
arbitrary alternating automaton with alphabet Σ. An automaton strategy
for a game played on A is a structure

〈M,m0, σ〉

where M is an arbitrary set known as the memory, containing at least one
element m0 ∈M , the starting configuration, and σ : Q×M → Σ×M is
a function that both chooses a move and updates the memory. An automaton
strategy for I is defined on all pairs in QI×M , and likewise for II on QII×M .
We refer to the strategy as a whole as “σ” where this will not cause confusion.

While the plays in an automaton game are just ω-words, to match them to
automaton strategies we have to go via the states of the automaton.

Definition 2.13 (Plays according to σ). Let A = 〈Q, q0, QI, QII, δ〉 be an
alternating automaton with alphabet Σ, 〈M,m0, σ〉 a strategy for I (the alter-
ations necessary for II are obvious). Let aII ∈

ωΣ be an arbitrary ω-word,
representing the moves by II.

The definition of the play constructed by σ is given inductively in terms of
aI ∈

ωΣ (the moves played by I, generated by σ), ~q ∈ ωQ (the states passed
through by A), ~m ∈ ωM (the memory states used by σ) and aII:

~q(0) = q0,

~m(0) = m0,

For n = 2k (moves by I):

〈aI(k), ~m(k + 1)〉 = σ(~q(2k), ~m(k)),

~q(2k + 1) = δ(~q(2k), aI(k));

For n = 2k + 1 (moves by II):

~q(2k + 2) = δ(~q(2k + 1), aII(k)).

This should be made clearer by a picture:

δ ~q σ aI ~m aII

q0 m0

σ(q0,m0) = 〈a0, m1〉
δ(q0, a0) = q1 a1

δ(q1, a1) = q2 σ(q2,m1) = 〈a2, m2〉
δ(q2, a2) = q3 a3

δ(q3, a3) = q4 σ(q4,m2) = 〈a4, m3〉
δ(q4, a4) = q5 a5

...
...

...
...
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Finally, we construct the resulting play a ⊆ ωΣ as follows: for k ∈ ω,

a(2k) = aI(k),

a(2k + 1) = aII(k).

We call a the response of σ and A to aII. A play b ∈ ωΣ is according
to σ and A if there is some c ∈ ωΣ such that b is the response of σ and A to
c. The sequence ~q is the state response of σ and A to aII, and such a state
sequence is also according to σ and A if a suitable c ∈ ωΣ exists.

We need to update our definition of strategy equivalence: two strategies
(automata or ordinary tree-form) σ and τ are play equivalent if the plays
according to σ are exactly the plays according to τ .

The formal details of this definition are tiresome, but the idea is fairly sim-
ple. An automaton strategy isolates the computational mechanism used to
produce the next move, and the size of the memory M provides a measure of
the complexity of that mechanism. The terminology for automaton strategies is
deliberately reminiscent of that for ordinary tree-form strategies. The following
two theorems justify this notational overloading.

Theorem 2.14. Let σ be an automaton strategy for the automaton game 〈A,Ω〉
with state set Q. Then there exists a strategy τ ⊆ <ωQ such that ~q ∈ [τ ] iff ~q is
a state sequence according to σ and A.

In ordinary words: every automaton strategy can be transformed into an
equivalent (up to traces) strategy on the trace tree.

Proof. Obvious, by an inductive construction taking partial responses of σ to
finite sequences. q.e.d

Theorem 2.15. Let σ ⊆ <ωQ be a strategy (on the trace tree) for an automaton
game 〈〈Q, q0, δ〉 ,Ω〉. Then there exists an automaton strategy 〈M,m0, τ〉 play
equivalent to σ.

Proof. Take M = <ωQ, m0 = 〈〉, and define τ as follows:

τ(q0, 〈〉) = 〈σ(〈〉), δ(q0, σ(〈〉))〉 ,

and for s 6= 〈〉,

τ(q, s) =
〈

σ(saq), saqaδ(q, σ(saq))
〉

While this definition looks complicated, it simply ensures that the memory
always contains the previous history of the play so far. That is, repeating the
same picture as before:
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δ ~q τ aI ~m aII

q0 〈〉
τ(q0, 〈〉) = 〈a0, 〈q1〉〉

δ(q0, a0) = q1 a1

δ(q1, a1) = q2 τ(q2, 〈q1〉) = 〈a2, 〈q1, q2, q3〉〉
δ(q2, a2) = q3 a3

δ(q3, a3) = q4 τ(q4, 〈q1, q2, q3〉) = 〈a4, 〈q1, q2, q3, q4, q5〉〉
δ(q4, a4) = q5 a5

...
...

...
...

Clearly, the memory is tracking the play history. Since the move chosen by τ is
simply the response of σ to that history, the response to any aII is a branch of
σ. q.e.d

So we can freely transform back and forth between ordinary strategies (on
traces) and automata strategies. But in the general case, the automaton strategy
corresponding to a trace strategy requires infinite memory. We are particularly
interested in cases where not all of the play history need be used to produce a
winning strategy.

Definition 2.16. Let 〈M,m0, σ〉 be an automaton strategy. If |M | = 1, we call
σ memoryless. If |M | < ω, σ is finite-memory.

Lemma 2.17. If the plays according to a function σ : Q → Σ are defined for
each player in the obvious manner, then for every memoryless automaton strat-
egy 〈M,m0, τ〉 there exists a function ρ : Q → Σ which is play equivalent to
τ .

[ Obvious. ]
By an abuse of terminology we refer also to ρ in the above lemma as a

memoryless strategy. Our first example of such a strategy is for the reachability
game, however it will be useful to study instead a generalised version based on
the combinatorial game.

2.3.1 The combinatorial automaton game

The combinatorial automaton game is a generalised form of the reachability
game. The first player unable to move loses, while infinite plays are a draw. In
fact we have already seen this game, in section 1.6: the combinatorial automaton
game on an automaton A is simply the combinatorial game on the unravelled
tree of the graph of A.

Definition 2.18. If A = 〈Q, q0, QI, QII, δ〉 is an alternating automaton, the
combinatorial automaton game on A is a pair

〈〈Q ∪ {⊥I,⊥II} , q0, QI ∪ {⊥I} , QII ∪ {⊥II} , δ
′〉 ,ΩC〉
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where δ′ is given by

δ′(q, x) =











δ(q, x) if this is defined, otherwise

⊥I if q ∈ QI ∪ {⊥I} ,

⊥II if q ∈ QII ∪ {⊥II} .

and I wins traces containing ⊥II, II wins traces containing ⊥I, and all other
traces are a draw.

Remark. The definition of the combinatorial automaton game cannot be given
in the formalism we use for other automata games, because specifying only the
winning set for I does not fully describe the payoffs. This is no great problem,
since we will be using the game only to assist with various proofs, and these
will rely on results shown on the combinatorial game on trees, for which we
do have a proper formal representation. Likewise, the derived automaton A′ is
not properly speaking an alternating automaton, since both players play from
the states ⊥I and ⊥II. This could easily be remedied, but at the cost of some
clarity. For similar reasons, we cannot strictly speaking place the combinatorial
automaton game in the Borel hierarchy. However ‘morally speaking’ it is Σ

e

0
1,

since the sets of winning plays for both players are open.

Theorem 2.19. For every reachability game 〈A = 〈Q, q0, QI, QII, δ〉 ,ΩR〉 gen-
erated by QT ⊆ Q, there exists a combinatorial automaton game on an alter-
nating automaton B with the same set of winning traces.

Proof. Form the new alternating automaton B by making the following changes
to A: remove all transitions 〈q, x, p〉 ∈ δ where q ∈ QT. Add a new state q⊥,
and transitions δ(q, x) = q⊥ for all x ∈ X and q ∈ QI∩QT. Also add the system

GFED@ABCqα

0,1
++ GFED@ABCqβ

0,1

kk

and for every x ∈ X, for each q ∈ QI \ QT a transition δ(q, x) = qα, and for
each q ∈ QII \QT, a transition δ(q, x) = qβ .

This last step ensures that II never wins the combinatorial automaton game
(I always has an option to draw). And a play wins for I only if it passes through
an element of QT, since these are the only leaves in the graph of B. q.e.d

2.4 Memory requirement as complexity

The results in this section show how the memory requirements for automata
strategies compare to the set-theoretic complexity analysis in terms of the payoff
set.

Theorem 2.20. Memoryless strategies suffice for combinatorial graph games.
That is, if a winning (resp. non-losing) strategy exists for a combinatorial game
G(A,B), then a memoryless winning (resp. non-losing) automaton strategy ex-
ists.
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Proof. Recall that the combinatorial Gale-Stewart labelling `CGS (Definition 1.22)
is G(A,B)-sound where A and B are open (specifically, where G(A,B) is a com-
binatorial game, the rulification of a tree). The proof proceeds by defining a
similar labelling on the graph (which produces a memoryless automaton strat-
egy), and showing that the unravelling of the labelled graph is the labelled tree.
Since the tree labelling is G(A,B)-sound, so is the graph labelling.

Definition 2.21. The combinatorial graph labelling procedure la-
bels the graph G = 〈Q,E〉 of an alternating automaton 〈Q, q0, QI, QII, δ〉 as
follows:

`0(q)
def

=











I0 if succG(q) = ∅ ∧ q ∈ QII,

II0 if succG(q) = ∅ ∧ q ∈ QI,

⊥ otherwise;

`n+1
def

= backup(`n);

`ω
def

=
⋃

{`n ; n ∈ ω};

`CG(q)
def

=

{

`ω(q) if this is defined,

D0 otherwise.

Lemma 2.22. For some k ∈ ω, `k = `ω.

[ Each stage is either a fixpoint or labels one new vertex. There are only finitely
many vertices to label. ]

Let `CGS be the labelling produced by the combinatorial Gale-Stewart proce-
dure on the unravelled tree T of G, with the seeds A = {(saq) ∈ T ; succG(q) =
∅ ∧ lh(s) is even}, B = {(saq) ∈ T ; succG(q) = ∅ ∧ lh(s) is odd}. (We must
also add 〈〉 to B if succG(q0) = ∅.)

Let `CG be the labelling produced by the combinatorial graph labelling pro-
cedure on G.

Let σ : Q → X be an `CG-good memoryless strategy for player i. Derive a
strategy τ on the trace tree by taking, for s ∈ <ωQ owned by i,

succτ (s) =
{

saσ(s(lh(s)− 1))
}

(and succτ (〈〉) = 〈σ(q0)〉 if σ is a strategy for I).

Lemma 2.23. The strategies σ and τ are play-equivalent.

[ Obvious. ]

Lemma 2.24. The strategy τ is G(A,B)-sound.

[ The key insight here is that the procedure on the tree includes every step taken
by the procedure on the graph. That is, if q ∈ Q has a successor q′ labelled for
example In in the graph, then every saq ∈ <ωQ has a successor saqaq′ labelled
In in the tree. Furthermore, while the procedure on the tree does add labels
not present on the graph, it adds only higher labels (essentially those caused by
loops) which do not effect the formation of strategies. ]
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Lemmas 2.23 and 2.24 together guarantee that σ is sound for the combina-
torial graph game, proving the theorem. q.e.d

Corollary 2.25. Memoryless strategies suffice for the reachability game.

Remark. For the more complex automata games, we often stipulate that the
graph of the automaton is pruned, so that only ‘true’ infinite plays need be
considered. Theorem 2.20 in a sense justifies this decision: if the automaton
is not pruned, we can augment the condition with a combinatorial automaton
game, solve this to produce memoryless strategies for both players, and solve
the original game restricted to the pruned graph whose vertices receive D labels
in the combinatorial game.

Theorem 2.26. Memoryless strategies suffice for Büchi games.

Proof sketch. Let G = 〈Q,E〉 be the graph of an automaton. Take the Büchi
game from q0 ∈ Q with target set QT ⊆ Q. As before, we will define a labelling
on the graph. The details of the correspondence to the trace tree are omitted.

First, for each q ∈ QT define a labelling `q for the reachability analysis with
target set {q}. Recall that the reachability game from q0 is not automatically
won if q0 ∈ QT, so for each q ∈ QT such that `q(q) ∈ LI, I can force a cycle
that includes q.

Let QC be the set of these ‘cyclable’ target states. Now use this as the seed
for another reachability analysis. Call the resulting labelling `B.

That `B is sound also when lifted to the trace tree follows from the soundness
of reachability labellings. For any s ∈ <ωQ labelled In with n > 0, the soundness
of reachability labellings guarantees that every a ∈ [s] (restricted to an `B-good
strategy) passes through a position labelled I0. Likewise, for every such position,
it is guaranteed that every branch passes through another such, and the Büchi
winning condition is satisfied by an inductive argument.

Conversely, from a position s labelled II, the branches through s do not pass
through a vertex labelled I0. That this is sufficient for II to win is a consequence
of the choice of QC; again by reachability, for q ∈ QT \ QC, II has a strategy
that does not return to q. If `B(saq) ∈ LII, and if τ ⊆ <ωQ is an `B-good
strategy, then for all a ∈ [τ ] ∩ [saq], q does not recur in a, nor do any elements
of QC. Furthermore, since the same holds for all q ∈ QT \QC labelled II, and
since if s ⊆ a is labelled II the same will hold for all t ⊆ a (since τ is `B-good),
no element of QT occurs infinitely often in a. q.e.d

Theorem 2.27. Memoryless strategies do not suffice for Muller games. That
is, there exists a Muller game for which I has a winning strategy but no winning
memoryless strategy.

Proof. Take the automaton
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with the condition ΩM = {{q1, q2}}. It is clear that I has a winning strategy
(for instance, alternating playing 0 and 1) and equally clear that no winning
memoryless strategy exists. q.e.d

So far it seems that increasing memory requirements correspond to increasing
topological complexity. Our first example of a game that does not always admit
memoryless strategies is also the highest in the Borel hierarchy. However the
correspondence is only apparent. To show this, we need to introduce one more
automaton condition.

Definition 2.28. The parity condition is a function f : Q → ω assigning
to each state a value. We lift f to traces in the obvious manner: tracef (s) =
〈f(response(s¹n)) ; n ≤ lh(s)〉. Player I wins a play a with parity condition f

if the highest value occurring infinitely often in tracef (a) is even.

Theorem 2.29 ([Far02, Theorem 1.22]). The class of ω-languages accepted
by parity automata is precisely those accepted by Muller automata.

This of course means that the topological complexity of these two conditions
is the same.

Theorem 2.30 ([Küs02]). Memoryless strategies suffice for parity condition
games.

Theorems 2.29 and 2.30 demonstrate that the memory requirements com-
plexity measure is sensitive to details of the games that do not affect the topol-
ogy of the payoff sets. Less obviously, they place an upper bound on memory
requirements for Muller games.

Theorem 2.31 ([Maz02, Theorem 2.7]). Finite memory suffices for Muller
games.

Proof sketch. By Theorem 2.29, for every Muller condition automaton A there
is a parity condition automaton B that accepts the same ω-language. Sup-
pose I has a winning strategy for the game on B. By Theorem 2.30, he has a
memoryless winning strategy, say σ.

Now he can build a winning automaton strategy τ for A, using the states
of B for the memory. The memory traces a simulated path through B, and σ

generates his moves. Since σ is winning, the resulting play is accepted by B,
and therefore also by A. q.e.d

2.5 Summary

The memory requirements measure of complexity does not correspond in any
obvious manner to the topological complexity hierarchy. Instead, it is sensitive
to the class of automaton game being played. While Muller games require
more memory than the other games we considered (that lie lower in the Borel
hierarchy and admit memoryless strategies), the class of Muller languages is the
same as the class of parity languages, and parity automata admit memoryless
strategies.
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Chapter 3

Time complexity analysis

The last measure of game complexity considered in this thesis can be sum-
marised as: “How difficult is it to construct a winning strategy?” This is the
most concrete complexity measure we are concerned with; we take practical
algorithms (operating thus only on finite structures) and measure their time
complexity (the rate at which the running time of the algorithm increases with
increasing problem size).

3.1 Definitions

Definition 3.1 (Function complexity). Let f, g : ω → ω be functions. The
complexity class O(g) is the class of functions whose asymptotic growth is no
faster than that of g.

We say f ∈ O(g) (in words, “f is order g”) iff there exist constants a, b, c ∈
ω such that for all x > a, f(x) < bg(x) + c. For convenience, we often give g

directly as a polynomial:

• f ∈ O(1) (“f is constant time”) for f ∈ O(n 7→ 1);

• f ∈ O(n) (“f is linear time”) for f ∈ O(n 7→ n);

• f ∈ O(n2) (“f is quadratic time”) for f ∈ O(n 7→ n2), etc.

For algorithmic time complexity, given an algorithm A we take f to be the
function mapping the algorithm input onto the number of basic operations the
algorithm performs before terminating. Thus the statement “A is O(n)” means
that the algorithm takes time proportional to the size of its input (up to an
additive constant) to terminate.

Making this definition precise requires two additional elements: the basic
operations of an algorithm need defining, and the size of a structure.

Definition 3.2 (Algorithmic time complexity). A basic operation in
an algorithm is one of the following operations:
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• membership test: “v ∈ V ” returning a truth value;

• empty test: “v = ∅” returning a truth value;

• boolean and numeric operations, numeric comparisons (eg., addition, con-
junction, equality test);

• assignment to a variable: “x← 3”;

• returning a value from a procedure: “return v”;

• each iteration step over a set: “foreach v ∈ V ”;

• procedure call: “Label(G,u,1)”.

The last two cases require some elaboration: the intention is that complex
operations such as calling procedures or iterating over sets have costs attached
to the control structure as well as to the work done in the loop or procedure body.
So iterating through a set of n elements takes n basic operations in addition to
those used up in the loop body, and the procedure call itself is considered one
basic operation.

The size of a structure is defined recursively. The size of a set of natural
numbers or a relation R ⊆ ω×ω is simply its cardinality. The size of a structure
(a sequence of sets or structures) is the sum of the sizes of its components, plus
its length. In particular, the size of a graph G = 〈V,E〉 is |V |+ |E|+ 2.

Let A be an algorithm taking structures from a set S as input. The algo-
rithmic time complexity of A is the complexity of the function f : x 7→= tx,
where tx is given by

tx = max
S∈S
{basic operations of A operating on S ; S is of size x}.

Remark. The algorithmic language used here is a simplistic idealisation of real
programming languages. If this idealisation is not to give unrealistic results, we
must ensure that the proposed basic operations can in fact be given constant-
time implementations, and that these implementations then correspond to the
input size measurement given above. This can be achieved using a neighbour-
list implementation of graphs: each vertex stores a linked list of its successors
and another of its predecessors.

This implementation gives linear iteration time over successors and prede-
cessors in the graph, but makes updating the graph structure highly expensive;
however all the algorithms given here are read-only on the graph. The measure
of graph size given above is correct up to a (multiplicative) constant factor: each
edge in fact contributes two linked list elements (one for a successor list and one
for a predecessor list) but this constant factor is absorbed in the definition of
function complexity.

It will be convenient to define a slightly different type of labelling to that
given before. The labels are W, D and L, with intended meanings “the player
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playing from this position has a winning/a drawing/no non-losing strategy”, re-
spectively. This notation makes the algorithms less verbose, since the backward
induction step functions symmetrically for the two players.

Definition 3.3 (Labellings again). The sets

LW

def

= {Wn ; n ∈ ω},

LD

def

= {Dn ; n ∈ ω},

LL

def

= {Ln ; n ∈ ω}

are called respectively the win labels, draw labels and lose labels.
A win/lose labelling on a bipartite graph 〈V,E〉 with VI ⊆ V and

VII = V \ VI the vertices owned by I and II is a function

` : V → LW ∪ LD ∪ LL.

On bipartite graphs the two formalisms are interchangeable, according to the
following interpretation bijection LVI

:

〈v ∈ VI,Wn〉 7→ 〈v, In〉 ,

〈v ∈ VII,Wn〉 7→ 〈v, IIn〉 ,

〈v ∈ VI,Ln〉 7→ 〈v, IIn〉 ,

〈v ∈ VII,Ln〉 7→ 〈v, In〉 ,

〈v,Dn〉 7→ 〈v,Dn〉 .

We lift the notion of heights to win/lose labellings in the obvious way.

Remark. This notation can also be used for non-bipartite graphs, for which
the algorithms presented in this section were originally developed, however for
simplicity we stick to bipartite graphs. For all the games considered here, the
extension to non-bipartite graphs is trivial in principle but for many the algo-
rithms and definitions become much more convoluted.

3.2 Backward induction on the graph

The backward induction algorithm for a bipartite graph was given as a labelling
procedure in Definition 2.21. Here I formalise this procedure and give an upper
bound on its time complexity.

[Fra97] gives an informal algorithm for backward induction on a non-bipartite
graph, labelling the vertices W, L and D.1 This algorithm is stated to be O(|E|)
(where E is the edge set for the graph) however this statement is misleading.
Some of the operations apparently2 taken as primitive involve operations on
sets of vertices (such as collecting all those with no successors) which if taken
separately would add inner loops to the algorithm.

1 The notation in the paper is different: “N” and “P” replace W and L, respectively.
2 No formal analysis of the time complexity of this algorithm is given in the paper.
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To properly consider the question, Figure 3.1 contains a formal version of
the algorithm given in [Fra97]. This is the combinatorial graph labelling proce-
dure (Definition 2.21) and is in fact also suitable for alternating games on non-
bipartite graphs. I call it the “naive” backward induction algorithm, because
the running time can in fact be improved with some additional bookkeeping.

Definition 3.4. Let 〈V,E〉 be a bipartite graph with player-owned sets VI ⊆ V

and VII = V \VI. Then `CG-n is the labelling produced by CG-naive, interpreted
according to the bijection LVI

.

Theorem 3.5. The labelling `CG-n is sound for the combinatorial graph game.

Proof. The proof is by showing the equivalence of CG-naive to the combinatorial
graph labelling procedure. This equivalence is not strict (i.e., in general `CG-n 6=
`CG) but they are equivalent up to the height of vertices.

Firstly, it is obvious by inspection of the procedure Label that all labels are
applied correctly. (That is, if Label labels a vertex W or L it does so according
to the same rules as the inductive step constructing `CG.) It remains to show
that every vertex that `CG labels W or L also gets labelled by the algorithm
(i.e., that D labels are only applied where correct).

Procedure:MAIN(G = 〈V,E〉:graph)

foreach v ∈ V do

if (succ(v) = ∅) then
Ell[v] ← L0;

foreach {u ∈ pred(i) ; Ell[u] = undef} do
Label(G,u,1);

foreach v ∈ V do

if Ell[v] = undef then
Ell[v] ← D0;

Procedure:Label(G = 〈V,E〉:graph; v ∈ V :vertex, h ∈ ω)

aux ← Lh;

foreach u ∈ succ(v) do

if (Ell[u] ∈ LL) then
aux ← Wh;

else if (Ell[u] = undef and aux = Wh) then
aux ← undef;

if (Ell[v] 6= aux) then
Ell[v] ← aux;

foreach {u ∈ pred(v) ; Ell[u] = undef} do
Label(G,u,h + 1);

Figure 3.1: CG-naive: Naive backward induction on the graph
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The proof is by induction on the height of vertices, with the base case that
all vertices of height 0 are labelled eventually.

For the inductive step, assume that all vertices of height less than n in `CG

get labelled at some point by CG-naive. Let v be a vertex of height n in the
abstract procedure, and we show that it also gets labelled by CG-naive.

First, suppose v is labelled Wn by `CG. Then some successor u of v was
labelled Lm, with m < n. By the inductive hypothesis, u gets labelled by
CG-naive, and that labelling triggers the call to Label that will label v. (It
is possible that v has already been labelled when this occurs; it is this condi-
tion that produces the discrepancy between the heights according to the two
labellings, however it does not affect the correctness.)

Now suppose instead that v is labelled Ln by `CG. In this case, all successors
of v must have been labelled at earlier stages. Similarly, the inductive hypothesis
guarantees that they are at some point labelled by CG-naive, and the last such
labelling triggers the call to Label that will label v.

Since all W and L labels are correct, and all vertices labelled W and L by
`CG eventually get labelled (and the D labels are obviously correct, by inspection
of the loop), the labels applied by CG-naive are equivalent up to height to those
of `CG.

Thus, since `CG is sound for the combinatorial graph game, so is `CG-n. q.e.d

Theorem 3.6. CG-naive is O(|E| · |V |) but not O(|E|).

Proof. The sub-procedure Label gets called at most once for every edge in the
graph (the foreach loops containing Label calls). The loop through successors
multiplies this factor by (in the worst case) the number of vertices. Since all
other operations are constant-time, CG-naive is O(|E| · |V |).

To see that O(|E|) is too strict an upper bound, consider the family of graphs
given in Figure 3.2.
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Figure 3.2: A family of graphs with poor labelling properties
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The vertices yi will all receive the label W. Each time this happens, all the
vertices xj will be passed to Label (that is, once for every edge between xj and
yi), and the successor check will loop through every vertex yk. This gives a total
running time of at least O(nm2) — the first nm is O(|E|), the number of edges
between vertices xi and yj , while m is of course O(|V |). q.e.d

However, we can do better. With a sacrifice to the readability of the algo-
rithm, we can reduce the running time to a real O(|E|). The algorithm is given
in Figure 3.3, and uses a count of winning successors for each vertex to avoid
repeatedly querying successors.

Procedure:MAIN(G = 〈V,E〉:graph)

foreach v ∈ V do
succ countv ← 0;

foreach 〈u, v〉 ∈ E do
succ countu ← succ countu + 1;

foreach v ∈ V do

if (succ countv = 0) then
Label(G, v, 0);

foreach v ∈ V do

if Ell[v] = undef then
Ell[v] ← D0;

Procedure:Label(G = 〈V,E〉:graph; v ∈ V :vertex,h ∈ ω)

if Ell[v] 6= undef then
return;

else if succ countv = 0 then
Ell[v] ← Lh;

foreach u ∈ pred(v) do
Label(G, u, h + 1);

else
Ell[v] ← Wh;

foreach u ∈ pred(v) do
(∗) succ countu ← succ countu − 1;

foreach u ∈ pred(v) do

if succ countu = 0 then
Label(G, u, h + 1);

Figure 3.3: CG-book: backward induction with bookkeeping

Again, we must first prove that the resulting labelling is sound, then show
the running time to be O(|E|).

Theorem 3.7. CG-book produces a sound labelling for the combinatorial game
on G.
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Proof. We reduce this to the previous case by noting the following things:

1. The variables succ countv accurately reflect the number of successors of
v not labelled W at each point in the algorithm at which they are queried;

2. The sub-procedure Label is called on a vertex v when either a successor
u of v receives the label L (as in CG-naive) or when v has no successors
not labelled W (the condition for applying the label L in CG-naive);

3. In both these cases the procedure performs the same labelling as CG-naive.

Taking these together, we can see that the same labellings are performed by
both procedures, as required. q.e.d

Theorem 3.8. CG-book is O(|E|).

Proof. The succ count update (line marked (∗)) gets performed no more than
once for each edge in G. Likewise the procedure Label is called no more than
once for each edge.

(Note that every edge is inspected, for the initialisation of the succ count

variables, so we cannot do any better than this.) q.e.d

3.3 Asymmetric combinatorial game

The asymmetric combinatorial graph game was the subject of [dJLar].
In this variant of the combinatorial graph game, I wins plays in which II exits
the tree as usual, but II wins the infinite plays, and those in which I exits the
tree are drawn.

The interesting feature of the labelling procedure we developed to solve this
game is that it is nonmonotone: the labels applied to vertices at successive stages
of the algorithm may change. Despite this, we showed that the algorithm is
guaranteed to terminate in finite time, and with similar bookkeeping techniques
to CG-book it is also O(|E|).

An alternative to this approach is provided by the labelling `twice (Defini-
tion 1.24). It would suffice to label the graph first for the game G1 in which
I wins if II exits the graph, and II wins otherwise, and then again for the
game G2 in which I wins any play that exits the graph. The existence of win-
ning strategies for these two games is then translated back into the existence of
strategies in the asymmetric combinatorial game via the preference ordering on
outcomes: if I has a winning strategy in G2 but not in G1, for instance, then
he has a drawing strategy in the asymmetric game.

Since a constant factor can be ignored for algorithmic time complexity, the
asymmetric combinatorial game can be solved as efficiently as the ordinary
combinatorial game, or the reachability game. [L0̈3] considers the problem of
games with more than two players, and finds that a preference order on outcomes
and a set of rationality assumptions produce determinacy in a wide range of
situations. In particular, the standard combinatorial graph game is a degenerate
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case of an exceptional least evil situation, in which a closed outcome D
is preferred by all players over all outcomes except their most preferred outcome
(i.e., in this case, both players would rather draw than lose). It would seem very
easy to adapt the two-pass labelling procedure for more players, by introducing
extra passes and interpreting the results in terms of the preference orderings of
the players.

3.4 Higher complexity games

In the rest of this section we will give results about solution algorithms for some
of the more complex games from automata theory. Given that we know we can
deal in linear time with the combinatorial-game section of an automaton game
(the vertices from which one player has a strategy forcing a play to a leaf) we
now restrict our attention to pruned graphs. (Recall also that combinatorial
games admit memoryless strategies, and that the payoff sets are open. Our
three complexity measures agree that these games are in some sense ‘easy’.)

The procedure given for the reachability game can be written as an algorithm
in much the same way as CG-naive, and optimised using bookkeeping techniques
like those of CG-book. Figure 3.4 shows the algorithm.

Definition 3.9. Call the labelling produced by Reach `R.

Theorem 3.10. The labelling `R is sound for the reachability game. (Recall
that this game is not won automatically by starting at a vertex in VT, but only
by a non-empty walk ending in a target vertex.)

Proof. An easy adaptation of the techniques used to prove soundness of `CG and
`CG-n. q.e.d

Theorem 3.11. Reach is O(|E|).

Proof. As before, Label gets called no more than once per edge, and likewise
the succ count update occurs no more than once per edge. q.e.d

We can use this algorithm (which is basically a trivial modification of CG-book)
to solve Büchi games. The algorithm given in Figure 3.5 finds those vertices
within the target set from which he can force a cycle passing through the target
set. The full algorithm is given here for time complexity analysis purposes, but
it is more clearly expressed inductively.

Definition 3.12. The procedure Cycle is defined as follows:

V0
def

= VT,

Vn+1
def

= Vn ∩ Reach(Vn).

Lemma 3.13. Cycle reaches a fixpoint after finite steps.

[ For each n, Vn+1 ⊆ Vn, and VT is finite. ]
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Procedure:MAIN(G = 〈V, VI, VII, E〉:bipartite graph, VT)

foreach v ∈ V do
succ countu ← 0;

foreach 〈u, v〉 ∈ E do
succ countu ← succ countu + 1;

foreach v ∈ VT do
succ countv = 0;

foreach v ∈ VT do

foreach u ∈ pred(v) do
succ countu ← succ countu − 1;

foreach u ∈ pred(v) do
Label(G, u, 0);

foreach v ∈ V do

if Ell[v] = undef then
Ell[v] ← II0;

Procedure:Label(G = 〈V, VI, VII, E〉:graph; v ∈ V :vertex, h ∈ ω)

if Ell[v] 6= undef then
return;

else if v ∈ VI ∨ (v ∈ VII ∧ succ countv = 0) then
Ell[v] ← Ih;

foreach u ∈ pred(v) do
succ countu ← succ countu − 1;

foreach u ∈ pred(v) do
Label(G, u, h + 1);

Figure 3.4: Reach: reachability (with bookkeeping)
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Procedure:MAIN(G = 〈V, VI, VII, E〉:bipartite graph, VT)

returns V ′ ⊆ VT

V ′ ← Catch(G,VT);

while V ′ 6= VT do
VT ← V ′;

V ′ ← Catch(G,VT);

return V ′;

Procedure:Catch(G = 〈V, VI, VII, E〉:bipartite graph, VT)

returns V ′ ⊆ VT

foreach v ∈ V do
Ell[v] ← undef;

Reach(G,VT);

V ′ ← ∅;

foreach v ∈ VT do

if Ell[v] = I then
V ′ ← V ′ ∪ {v};

return V ′;

Figure 3.5: Cycle: find vertices from which I can force a cycle

Lemma 3.14. The fixpoint appears after no more than |VT| steps.

[ Each non-fixpoint stage must remove at least one vertex from the set. ]

Theorem 3.15. Let n be the fixpoint of Cycle. Then for each v ∈ Vn there
exists u ∈ Vn such that I has a winning strategy for the reachability games from
v to u and from u to u.

Proof. The proof is by induction on the subsequent stages of the algorithm after
the fixpoint has been reached.

Let v ∈ Vn be arbitrary, where n is the fixpoint. Since v ∈ Vn+1, for some
u ∈ Vn I has a winning strategy for the reachability game from v to u. If u = v

then we are done, otherwise apply the same reasoning for u and Vn+2: there
must be some u′ such that I wins the reachability game from u to u′.

Now note that winning strategies compose, so I also wins the game from v

to u′. If u = u′ or v = u′ we are done, otherwise repeat for Vn+3. Since there
are only finitely many vertices, we are guaranteed to find a cycle. q.e.d

Theorem 3.16. The algorithm Cycle is O(|E| · |V |).

Proof. Reach is O(|E|). We must run Reach at most once for every vertex in
VT, which is bounded by |V |. q.e.d

Theorems 3.15 and 3.16 give an efficient solution for Büchi games. Sadly,
this seems to be as far as we can get with efficient solution algorithms. In the
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final days of preparation of this thesis, I discovered the following theorem, which
will be presented in Gdansk the day after my thesis defence:

Theorem 3.17 ([HD05]). Deciding the winner of a Muller game is PSpace-
complete.

3.5 Summary

Like the automata theoretic analysis by memory requirements, the time com-
plexity analysis is sensitive to details of the game construction beyond simply
the topology of the payoff set. Perhaps more surprisingly, the hierarchy of games
seems more closely allied to the Borel hierarchy than the muddle produced by
the memory requirements. At least, by the techniques shown here, reachability
games can be solved more easily than Büchi games, and the result of [HD05]
places Muller games firmly above Büchi games.
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Chapter 4

Software for graph

algorithms

This thesis includes a piece of software written to experiment with graph games
and labelling algorithms. There are two parts to the software: a core library of
extendable classes defining graphs, labellings, and some aspects of algorithms,
and a graphical application that makes use of the library to provide a ‘play-
ground’ for experimentation.

4.1 The library

The library provides an abstract definition of graphs and sets, and a single
implementation. In addition, it contains a number of classes for the Java event
handling model, making it easy to build components that react to changes in
a graph (vertices being added or removed, for instance) in a cleanly structured
manner.

4.2 The application

The aim of the application is to let the user play with graphs and labelling
algorithms. You can create and manipulate a graph with the mouse, and colour
the vertices by hand. You can also apply simple labelling algorithms (reachabil-
ity, backward induction for the combinatorial game) either in ‘slow motion’ to
observe the individual steps, or simply for the results. The software is available
for download as it was at the time the thesis was completed;1 bug-fixes and
updates will be posted on my homepage.2

1 http://www.illc.uva.nl/Publications/ResearchReports/MoL-2005-07.software.jar
2 http://tikitu.dejager.net.nz/software/GameGraph/
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4.3 User manual

This section gives two views of the functioning of the software; the first explains
what each user interface element (menu item, button, etc.) is for. After this, I
give a task-oriented view (“How do I . . . ?”).

4.3.1 What all the twiddly bits do

The File menu allows you to Save and Open graph description files. The
format is intended to be human-readable and easily edited by hand.

Graph file format

Rather than give the full specification of the file format, I give here the file cor-
responding to the graph of the automaton shown in Figure 2.1, here reproduced
for convenience:3

?>=<89:;q0
** ?>=<89:;q1jj // ?>=<89:;q2

graph { 0..2 |

0 --> 1;

1 --> 0;

1 --> 2;

}

layout {

0: (50,50);

1: (150,50);

2: (250,50);

}

The layout section is optional, and if given specifies the position in pixel
coordinates of the centre of a vertex (using the standard Java Swing model).
Any vertices not positioned are placed at the top-left corner.

The first line of the graph declaration (between “{” and “|”) declares the
vertices that are to feature in the graph. This is a comma-separated list of single
vertices and ranges, so the same vertices would be given by 0,1..2 or 0,1,2.
They must, however, be given in ascending order. It is an error to reference a
vertex that has not been declared, either in the edges or in the layout.

Should it be necessary, comments can be introduced into graph files using
“//” (all text between this comment symbol and the end of line will be dis-
carded).

The Sets window

The Windows menu allows you to reveal the Sets window. Vertices can be
placed into sets, and their membership displayed by changing their colours (ver-

3 The software deals only with graphs, not automata, so the edges are not labelled.
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tices belonging to more than one set will be coloured only for one of them). This
mechanism is what we use for labelling.

The Sets window displays the special “Selection” set, and any others the
user has created (or belonging to a currently running algorithm). You can
add vertices to a set by selecting them (see next section) then using the Copy
Into . . . control on the “Selection” set.4

Editing graphs

The Edit Modes menu lists the various controls for creating and editing new
graphs (also provided as buttons on the toolbar). These modes alter the result
of mouse clicks on the graph. In Add/Remove mode, clicking on a vertex
removes it while clicking on empty space adds a new vertex there. Drag mode
allows you to move existing vertices around. Clicking a vertex in Select mode
selects it, while Control-clicking adds the vertex to the “Selection” set, letting
you select multiple vertices at once. This can be useful for creating large graphs:
the Link multiple mode adds edges from all selected vertices to the one you
click on. (If this is unclear, try selecting several vertices then changing to Link
multiple mode. Now hover the mouse over another vertex, and you will see
the edges that will be added by clicking showing up in a lighter gray.)

Algorithms

There are two algorithms you can run, both accessible from the Algorithms
menu. After selecting one, the buttons labelled “<<” (reset) and “>” (step) on
the toolbar can be used to step through the algorithm or to reset its state. The
labellings are indicated by sets W, L and D, coloured respectively blue, red and
green, which can be viewed using the Show Sets item in the Windows menu.

The Gale-Stewart algorithm applies exactly the procedure given in Defi-
nition 1.13. That is, each step applies Backup to the labelling produced by the
previous step, until this process reaches a fixpoint, then all unlabelled vertices
are labelled D.

The Backup-N algorithm is an implementation of CG-naive (Figure 3.1)
which inspects less vertices than the pure Gale-Stewart procedure (each vertex
v must be inspected once, but is inspected a second time only if some successor
of v becomes labelled). To indicate this, the vertex currently being inspected is
shown by the set “current”.

4.3.2 Task-oriented manual: How do I . . .

Each entry in this section answers a different “How do I . . . ” question.

4 The user interface in this window is not complete. There is no easy way to remove vertices
from a set, and the mechanism for adding them is highly unsatisfactory.
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. . . create graphs?

Either by hand-editing a file and using Load (in the File menu), or using the
Edit Modes, as described in the next few entries.

. . . add vertices?

Use the Add/Remove edit mode, and click on an empty space.5

. . . remove vertices?

Use Add/Remove and click the vertex.

. . . add edges?

Use Select to select the source(s) of your edges. (If your graph has a dense
and regular structure, you can save yourself some effort by choosing your se-
lection carefully.) Now change to the Link multiple mode, and click on the
destination(s) of your edges.

. . . remove edges?

Due to an oversight, this never made it into the graphical interface. You’ll have
to do it by saving to a file, editing the file, then loading it. Sorry.

. . . select vertices?

Use the Select mode. Clicking a vertex makes it the sole selection, clicking
empty space empties the selection. Holding the Control (Ctrl) key and clicking
adds or removes the vertex from the selection, which allows you to build up
multiple-vertex selections.

. . . alter the layout?

Either by editing a file by hand (not recommended for layout) or using the Drag
edit mode. (Note that this is independant of selection, so rearranging vertices
will not change which ones you have selected.)

. . . label vertices?

First, make sure that the “Sets” window is showing (Show Sets in the Window
menu).6 A set can be used as a label. Use the New Set control to create a set
(note that the algorithms use the sets W, L, D and current for special purposes,
and that Selection is defined as the name of the set of selected vertices). Now

5 The click detection requires that the mouse not move between pressing and releasing the
button.

6 If the checkbox is checked but the window is not visible, uncheck it then check it again. This
can happen if the window is dismissed without using the menu control.
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select the vertices you want to label, and use the Copy Into control on the
“Selection” set.7

. . . run algorithms?

The two supported algorithms are described in section 4.3.1 above. If you want
different algorithms, you’ll have to write them as code and recompile the whole
project. It was originally intended to include an algorithm description “mini-
language” in the software, but this proved too large an undertaking.

7 At this point there is no way to remove individual vertices from a set.
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Appendix A

Differences

In this appendix the three techniques displayed for measuring the complexity of
games are applied to Difference Games, a generalisation of reachability games.

A.1 The difference hierarchy

The definitions given here are taken from [LS05, section 2.1]. Intuitively, a set
A at level n of the difference hierachy can be presented as A = A0 ∪ (A2 \A1)∪
(A4 \ A3) · · · ∪ (An \ An−1), with An ⊆ Am if n < m, and minor alterations
depending on the parity of n. This intuitive picture is insufficent once we reach
infinite ordinal levels, but should be kept in mind when reading the following
definitions.

Definition A.1 (Hausdorff difference hierarchy). For a sequence ~A =

〈Aγ ; γ < α〉, the Hausdorff difference Diff( ~A) is the set

{

x ∈
⋃

γ<α

Aγ ; min{γ ; x ∈ Aγ} is of different parity to α

}

.

(Recall that an ordinal is odd if it is of the form λ + 2n + 1 for λ a limit ordinal
and n ∈ ω, or even if the form is λ + 2n.)

Given a Polish space ωX, the Hausdorff difference classes are de-
fined as follows: for A ⊆ ωX, A ∈ α-Σ

e

0
1 if there is an increasing sequence of

open sets ~A of length α such that A = Diff( ~A).

If A = Diff( ~A) we call ~A a presentation of A. Although in general the
presentation of a set need not be unique, for sets in the Hausdorff difference
hierarchy we can define a canonical presentation ~C as follows:
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Let A ∈ α-Σ
e

0
1 with α even. Then define

C0
def

=
⋃

{

[s] ; [s] ⊆ A
}

,

Cβ
def

=
⋃

{

[t] ; [t] ⊆ ( ωX \A) ∪
⋃

γ<β

Cγ

}

for odd β,

Cβ
def

=
⋃

{

[s] ; [s] ⊆ A ∪
⋃

γ<β

Cγ

}

for even β.

Finally, ~C = 〈Cβ ; β < α〉 is by inspection a presentation of A.

Theorem A.2 (Hausdorff-Kuratowski, [LS05, Theorem 2.1]).

∆
e

0
2 =

⋃

α<ω1

α-Σ
e

0
1.

As mentioned in Chapter 1, [LS05] uses this result to show that all ∆
e

0
2

games have combinatorial labellings. In the following two sections, we develope
a natural analogue of the difference hierarchy for automata games, and show
how complex its strategies and analysis algorithms are.

A.2 Memory requirements for difference games

The natural automaton equivalent to the difference hierarchy is restricted to
finite levels. The idea here is similar to the children’s game “good news/bad
news”: The good news is, you won sky-diving tickets! The bad news is, your
parachute didn’t open. The good news is, you spotted a haystack! The bad
news is, there was a pitchfork in the haystack. The good news is, you missed
the pitchfork! The bad news is, you missed the haystack. And so on.1 The
game is defined by a sequence of target sets. First I must reach an element of
the first set, then II must reach an element of the second, and so on. The first
player to fail to accomplish a stage loses.

Definition A.3 (Good news/bad news game). Let 〈Q, q0, δ〉 be an au-
tomaton. A good news/bad news game of difficulty n, for n ∈ ω, is

defined by a sequence ~Q ∈ <ω(℘(Q)) of length n, called the requirements,
as follows:

Let ~q be the trace of a play. Define the news of the trace, news(~q) ∈ <ωω:

news(~q)(0)
def

=

{

min{x ∈ ω ; ~q(x) ∈ ~Q(0)} if this is defined

⊥ otherwise,

news(~q)(n + 1)
def

=



















⊥ if news(~q)(n) = ⊥,

min{x > news(~q)(n) ; ~q(x) ∈ ~Q(n + 1)}

if this is defined,

⊥ otherwise.

1 The exclamation marks are traditional.
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(Note that by this definition lh(news(~q)) ≤ lh( ~Q).)
Finally, I wins ~q iff lh(news(~q)) is odd (‘good news’).

Theorem A.4. Let G(A) be a good news/bad news game on some (finite)

alphabet Σ with requirements ~Q, and payoff set A ⊆ ωΣ. Then

A ∈ lh( ~Q)-Σ
e

0
1.

Proof. For simplicity, we consider only the case for requirements of even length
(that is, even difference classes).

Define a sequence of sets ~A = 〈Ai ∈
ωΣ ; i ≤ n〉 as follows:

a ∈ Ai
def

⇐⇒ lh(news(trace(a))) ≥ lh( ~Q)− i.

Now take Diff( ~A). I claim that A = Diff( ~A).2 Since lh( ~A) = lh( ~Q) and since

each Ai is obviously open, this will prove A ∈ lh( ~Q)-Σ
e

0
1.

Let a ∈ Diff( ~A) be arbitrary. Then lh(news(trace(a))) is odd, by construc-

tion. By definition, I wins a. So Diff( ~A) ⊆ A.
Now take a ∈ A arbitrary. By definition, lh(news(trace(a))) is odd, and

by the definition of “news”, less than lh( ~Q). Then a appears in Ai for all

i ≥ lh(news(trace(a))), and the least of these is odd. Therefore a ∈ Diff( ~A),

and A ⊆ Diff( ~A). q.e.d

Now let’s look at the memory requirements to play this game successfully.

Theorem A.5. Let G be a good news/bad news game with requirements ~Q.
Then a winning automaton strategy exists for one of the players with memory
M such that |M | ≤ lh( ~Q).

That is, the memory required to solve a good news/bad news game is
bounded by its difficulty.

Proof. Each stage can be analysed as a reachability game (a little care must
be taken; winning the stage does not necessarily mean winning the game, so
not all stage-winning strategies are equally useful). Since reachability games
admit memoriless strategies, the memory required will be at most the number
of stages (the difficulty of the game). q.e.d

However given an automaton, a good news/bad news game can be con-
structed with arbitrary difficulty. Is this bound unnecessarily loose? It turns
out that it is not, as stated in the following theorem.

Theorem A.6. For any n ∈ ω, a good news/bad news game exists for which a
winning automaton strategy requires a memory of size at least n. Furthermore,
such a game can be shown on an automaton with only two states.

2 In fact, if the requirements are non-trivial —in the sense that for no n is ~Q(n) = Q— the
presentation given is canonical.
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Proof. Take the automaton

?>=<89:;q00 33
1 // ?>=<89:;q1 0,1

kk
and the family of games where the requirements are {q0} for the first 2n stages
then {q1}. Player I has a winning strategy in each of these games, but any such
winning strategy requires a memory of size n. In effect, I has to count through
the first 2n stages. Suppose II plays only 0. Then if I plays 1 before stage
2n + 1, he has lost. But if he fails to play 1 at some point in the game, then
likewise he loses. With less than n memory states, at some stage before 2n he
either plays a 1 and loses, or enters a cycle in which he will continue to play
only 0 and thus loses to the all-0 play from II. q.e.d

Remark (The connection with parity automata). This type of game can be nat-
urally generalised to the infinite case by taking a requirement of length ω. Once
you do so, however, it is no longer necessarily possible to analyse the game us-
ing a finitary algorithm (see the following section) or win using a finite-memory
strategy (via a generalisation of the argument above).

Suppose instead that we convert a finitary requirement to an infinitary sim-
ply by removing from the trace every state that occurs only finitely many times.
If a further restriction on requirements is invoked, that the sets appearing are
pairwise disjoint, then the result is a parity game (highest parity wins) as de-
scribed in Definition 2.28.

A.3 Time complexity for solution algorithms

We have an obvious upper bound through the analysis by reachability: using
CG-book for each stage we get a time complexity of O(|E| · |V | · lh( ~Q)), where

〈V,E〉 is the graph of the automaton and ~Q is the requirement. However we
can restrict this by noticing that although the requirement can grow without
bound, the number of different paths that need to be considered is bounded by
the size of the graph.

Theorem A.7. Let G be a good news/bad news game on an automaton with
graph 〈V,E〉, and let the length of the requirement be n. Then there exists an

algorithm A solving G such that A ∈ O(|E| · |V | · n) ∩O(|E| · |V |
3
).

Proof. There are only |V |
2

different point-to-point reachability goals, so an algo-
rithm that computes the reachability for each stage but remembers the results
for vertex pairs it has checked before performs the minimum of |V |

2
and n

reachability analyses. q.e.d
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