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Abstract

This thesis is two fold. The first part deals with an existence proof of a for-
mal algorithm that takes a narrative discourse and returns its semantic repre-
sentation in the Event Calculus (EC from now on) [19]. This algorithm uses
Discourse Representation Theory, and takes on the form of a translation from
Discourse Representation Structures to Scenarios and Integrity Constraints in
EC. The second part, under a Cognitive-Functional approach, deals with the
closely intertwined tasks of providing tools for the formalization of Construction
Grammar, and to give the first few steps towards a more flexible algorithm for
the semantic representation in the EC.

Keywords: Event Calculus, Discourse Representation Theory, Construction
Grammar, Formal Semantics, Cognitive-Functional Linguistics.

Resumen

La presente tesis tiene dos objetivos. En la primera parte se trabaja una prueba
de existencia de un algoritmo formal que toma una narración y regresa su res-
pectiva representación semántica en el Cálculo de Eventos (CE por brevedad)
[19]. Este algoritmo usa la Teoŕıa de Representación de Discursos, y consiste
en la traducción de Estructuras de Representación de Discursos en Escenar-
ios y Restricciones de Integridad en CE. La segunda parte, bajo un enfoque
Cognitivo-Funcional, trata las tareas cercanamente interconectadas de proveer
herramientas para la formalización de la Gramática de Construcciones, y de
dar los primeros pasos hacia un algoritmo más flexible para la representación
semántica en el CE.

Palabras Clave: Cálculo de Eventos, Teoŕıa de Representación de Discur-
sos, Gramática de Construcciones, Semántica Formal, Lingǘısitica Cognitivo-
Funcional.
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Chapter 1

Introduction

1.1 The Proper Treatment of Events

Michiel van Lambalgen & Fritz Hamm [19] developed a formal system with
which to analyze temporal discourse. Here, temporal discourse is understood as
the linguistic coding of temporal notions. They start out with the assumption
that we can gain much insight into temporal discourse by looking at the way
humans construct time. They argue that planning and causality are key notions
that shape the way humans construct time, and, therefore, temporal discourse
can be studied with the help of the notions of planning and causality. The
formal system they developed, which will be called here Event Calculus (or EC
for short), is intended to be a cognitive representation of causality and planning,
and is used to provide an analysis of temporal discourse.

The framework under which this enterprise is carried out is that of Cogni-
tive Semantics (see §1.2). They add a further assumption to this approach: The
semantic representation arrived at in the explanation should be computational.
Accordingly, they assume that the meaning of a sentence is a cognitive model,
where a cognitive model is nothing else but an algorithm. In this particular
case, an algorithm is a computational procedure that updates previous declar-
ative information. The previous declarative information is intended to be the
background or context against which a sentence is interpreted, and the update of
this information is intended to be the cognitive representation of that sentence.

The main achievements of their formal system is the working out of the or-
der of events —which does not come straightforwardly from the order of the
sentences— and the coherent representation of different kinds of temporal even-
tualities —fluents and events.1

In the following section I will sketch the framework of Cognitive Semantics,
in order to get to grips with van Lambalgen’s and Hamm’s cognitive approach.

1See, for instance, [19, Ch. 9].
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1.2 Cognitive Semantics

Given any natural language L, it is the job of the syntactician to come up with
an appropriate set of rules that describe the set of concatenations of lexical
elements that are licensed by (the linguistic community of speakers of) L, i.e.,
the set of sentences of the language.

It is the job of the semanticist to come up with a specification of the mean-
ings of the expressions of a (subset of a) language. Modern Logical Semantics
is based on the Correspondence Theory of Meaning,2 also dubbed the refer-
ential approach to meaning, in which meanings of expressions are regarded as
associations between the expressions and something else. The nature of that
‘something else’ divides this approach to meaning in two: on the one hand, we
have Formal Semantics, in which ‘something else’ are things in the outer world3;
on the other hand, we have Cognitive Semantics, in which ‘something else’ are
concepts in our minds. It is argued in this type of approach that there are no
things in the outer world that can be thought of as referents for the expressions.
This is not to deny the existence of the outer world, it is just to say that the
referents of our expressions are conceptualizations of the outer world. The main
points of this approach are brought out by Jackendoff [8], to which I turn to
discuss now.4

E-Language and I-Language The first concepts that need to be explained
are the concept of E-Language and I-Language. The former is thought of as
a tool, an artifact that humans use and whose properties make part of the
‘external’ world. The latter is a psychological concept, a body of knowledge
that resides inside the mind of the speakers.

E-Semantics and I-Semantics The distinction drawn between E-Language
and I-Language has also a counterpart at the semantic level. Accordingly, E-
Semantics is the description of the relation between E-Language and the ‘ex-
ternal’ world. I-Semantics is the description of the relation between I-Language
and our conceptualization of the ‘external’ world.

Grammaticality and Truth The concepts of a sentence being grammat-
ical/true are relativized in accordance with the I-Language and I-Semantics
concepts:

E-gram String S is a grammatical sentence of language L.

I-gram A speaker of language L judges string S grammatical.
2Cf. [4, Ch. 1, Vol. 2].
3Cf. [4], [12].
4It might be worth saying that I am not committed to this approach at a personal level.

I believe that it has a number of problems with respect to the nature of the explanation
of meaning. Nonetheless, I will completely work here under the assumptions of Cognitive
Semantics. A brief discussion of my qualms are presented in chapter 8.
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E-true Sentence S of language L is true iff5 conditions C1, . . . , Cn obtain in
the world.

I-true A speaker of language L judges sentence S true iff conditions C1, . . . , Cn

obtain in his construal of the world.

The Nature of Reference and Meaning The concept of reference is inter-
nalized: words refer to our conceptualization of the ‘external’ objects. Let us
consider Jackendoff’s example:

(1.1) The meeting was changed from Tuesday to Monday.

The concept of reference of the terms in (1.1) cannot be taken realistically: ‘this
sentence points to nothing perceptible. It describes something that takes place
only in people’s minds, changing their future behavior ... [By the same token,
T]here is nothing in the world that demands a sharp boundary between red and
orange, and there is nothing in the world that sharply distinguishes climbing
from other kinds of locomotion.’6

1.3 EC and Temporal Discourse

The formalism of Event Calculus —developed initially by Murray Shanahan
[15]— represents actions and their effects. This is a formalism widely used in AI,
but only recently has it been used in linguistics —mainly, by M. van Lambalgen
and F. Hamm.7 Several formal tools were added to EC of Shanahan in the pursue
of coping with linguistic data on tense and aspect. Among others, the formal
tools added are the Feferman coding —for the introduction of parameters into
fluents and events—, Constraint Logic Programming —in order to constraint
the class of models—, and Integrity Constraints —in order to code the tense
of the sentences via goals and planning. This formalism —widely explained in
[19]— is briefly explained in §3.

The scope of analysis of the formalism is temporal discourse. We under-
stand here a temporal discourse as a sequence of sentences describing a series
of eventualities. It turns out that the concept ‘discourse’ is necessary —i.e., the
unit of analysis is not the sentence but sequences of sentences—, because sev-
eral phenomena, for instance ‘temporal anaphora’, ‘temporal perspective point’,
and tenses like ‘Imparfait’ in French, only make sense in a temporal discourse.
The analysis of tense and aspect would be mutilated if analyzed at the sentence
level. Thus, the goal of EC is the explanation of the order and structure of the
eventualities described in a sequence of sentences.

The explanation of the semantics of pieces of temporal discourse provided
by EC is as of yet informal. If we were to analyze an example like:

5Throughout this thesis, and in accordance with common mathematical usage, I will use
‘iff’ as a short for ‘if and only if’.

6[8, p. 557]. Italics are his.
7Cf. [18] and [19].
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(1.2) Jean took off his sweater. The room was warm.

we would come up with a scenario and integrity constraints for each sentence, fol-
lowing an update of the scenario brought about by these integrity constraints.8

However, the theory by itself does not provide us with any reasons as to why
these scenarios and integrity constraints, and no others, have to be used in this
case. Further, it does not provide us with a systematic method for produc-
ing the scenario and integrity constraints in question: we come up with these
in an informal way. It is the task of the first part of this work to argue that
such reasons can be given, and that the link between natural language temporal
discourse and semantic representation can be carried out in a formal way.

I should make clear the scope of the analysis given in here. I restricted my
attention only to past tense sentences. However, I believe that a similar analysis
can be given to other tenses as well, like the past and present progressive, and
the present tense. (Though, the future tense might represent a problem.)

1.4 This Thesis

1.4.1 Part I

In the first place, I give a formal (theoretical) algorithm that goes from the
syntactic representation of simple past tense sentences in English to a semantic
representation in EC. This algorithm is rather complex, since the idea is to
translate Discourse Representation Structures —the semantic representations
provided by Discourse Representation Theory— into semantic representations
in EC.9 In order to explain the whole algorithm, then, we need to get to grips
with Discourse Representation Theory. This is the purpose of Chapter 2. In
chapter §3, I explain EC formalism, in which I introduced some changes. The
reason for this changes is to make it easier to handle with the formal definition
of aktionsarten (Cf. §3.5). Chapter 4 is the core of part I, since it deals with
the translation between DRT and EC. This section ends with some comments
about this algorithm, further ways to improve it, and some reasons to look for
different algorithms.

1.4.2 Part II

In §4.3 some arguments for improving the translation attempted in the first part
are given. But instead of focusing on a direct improvement of the algorithm,
we will change our approach to the problem. Some comments are in place
here. In the first part, we attempted a translation that is based on DRT. This
latter starts from syntax, so the semantic representation of a temporal discourse
is rather indirect. We first process the discourse syntactically, then we give a

8Cf. §3.7 for the treatment of this example in the actual state of affairs, and Cf. §4.1 for
the treatment of this example starting out from syntax —i.e., in the improved way proposed
in this work.

9This idea was first given in [7], to which this work owes a good amount of insightful ideas.
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semantic representation in DRT and then we transform this into a representation
in EC. This presupposes that each step is independent from the next one.10 In
the second part of the thesis, I will explore a semantic representation based on
a ‘cognitive-functional’ approach (Cf. §5). This approach overrides the order of
steps just mentioned. In the long term, we expect this change to bring better
results than a direct improvement on the translation given in the first part.

The first chapter of the second part, §5, is an introduction to the new ap-
proach to cognitive linguistics. Since it differs from the framework used to
give the translation algorithm in the first part, I will make a short discussion of
some points that change along with the approach. The principal change brought
about by the change in approach is the change in the underlying syntactic the-
ory. That is, we will move onto Construction Grammar. An introduction to
this theory is given in chapter §6, in which I present a brief summary of the
classical defense of argument structure constructions, based on [5]. The next
chapter, §7, presents the attempt to formalize two argument structure construc-
tions meaning by means of EC. A discussion of what was achieved and what
remains to be done is given in §7.6.

1.4.3 Part III

The last part of the thesis (i.e., Chapter 8) is a brief discussion about cognitive
models and truth conditions. The discussion intends to be a presentation of my
personal qualms regarding cognitive models. The remedy to these qualms is a
move towards truth conditions, move that is briefly explored in this chapter.

10This independence is true up to certain extent. Each step requires something particular
from the previous one, and to this extent there exists certain dependence.

10



Part I

From DRT to EC
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Chapter 2

Discourse Representation
Theory (DRT)

The main objective of this part of the thesis is to present a formal way to trans-
late natural language temporal discourse into a semantic representation in EC.
Suffice it to define a temporal discourse as a sequence of sentences describing
eventualities. It would be enough for our purposes to find a theory that deliv-
ers appropriate semantic representations to temporal discourse, and which can
be translated into semantic representations in EC. Discourse Representation
Theory1 (DRT from now on) is a semantic theory that allows us to do so.

Now, DRT’s starting point is syntax (in particular, the syntactic theory
called Generalized Phrase Structure Grammar), and syntax provides a syntactic
form to each sentence in the temporal discourse.2 Thus, the upshot of the
syntactic theory is a sequence of syntactic forms. DRT provides an algorithm
to transform this sequence of forms into a Discourse Representation Structure
(DRS from now on, see below) in an incremental way. That is, it builds up
a DRS for the first sentence and adds the new information represented in the
second sentence to this DRS, and so on. A DRS is regarded as a discourse
representation, and it fits into the Realistic Formal Semantics paradigm (RFS
from now on) because we can give a precise definition of the truth conditions for a
DRS, and thus to the syntactic representation of each sentence of the temporal
discourse. It is not relevant for us to go into the discussion of whether DRT
fits completely or partially into the picture given by either RFS or Cognitive
Semantics.3 Rather, my interest in DRT comes from the possibility to give a
formal translation from DRS into EC. This implies that, if we could come up
with a formal way to transform a DRS into a semantic representation in EC,
we would have a formal way of going from (the syntactic representation of)

1My main sources to DRT are [9] and [4, Vol 2.].
2As long as these sentences are in the domain of the syntactic theory. The details are not

important here.
3But see [4], [16], and [7] for a discussion.
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temporal discourse to a semantic representation in EC.4 The important ideas
are summed up in the following figure:

Narrative Discourse // Syntactic Form

²²
DRS //

²²Â
Â
Â Truth-conditions

Semantic Representation in EC

This chapter deals, in a very general way, with the solid downward arrow, i.e.,
the path from Syntax to DRT. Chapter 4 deals with the dashed downward
arrow, i.e., the path from DRT to EC.

2.1 The DRT-Translation Algorithm

As I said before, the starting point to give a temporal discourse a semantic
representation in DRT is syntax.5 In DRT, there is an important modification
of the syntactic information. That is, the construction rules (see below) modify
the syntactic tree in such a way that it does not fit anymore into the original
syntactic theory. This will become clearer as long as we go into the details of
the algorithm.

To begin with, we need to define a Discourse Representation Structure
(DRS). A DRS is a box-like semantic representation, which is intended to cap-
ture the discourse meaning of a set of sentences S1, . . . , Sn. It consists of a
universe, symbolized by UK , and a condition set, symbolized by ConK . The
elements in UK are called discourse referents, and are to be interpreted as
objects in a First-Order Model Universe. The elements of ConK are to be
distinguished in two classes: reducible and irreducible conditions (see §2.1.2).
A DRS is complete if it contains only irreducible conditions, which are to be
interpreted as predicates in a First-Order Model. I will not explain here the
interpretation and truth conditions of a DRS. The interested reader is referred
to [9, §1.2] or [4, Vol. 2, §7.4] for details.

2.1.1 Easy first example

Consider the following example:

(2.1) John owns Ulysses.

In order to start the translation of this example into a DRS, we need its syntactic
structure, which I present without explanation in figure 2.1.1.

4This idea is original from [7]. This part of the thesis proposes a detailed construction of
this translation algorithm.

5I will hardly go into any detail of syntax here. The reader is referred to [9] for details.
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a) Syntactic structure of (2.1).
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x VP’

c) Output
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Figure 2.1.1.

We need also an empty DRS, but in general we should assume that this DRS
contains all the presuppositions the hearer has and with which he understands
the discourse. We should feed this DRS with the syntactic structure of the
sentence we want to analyze. We introduce the syntactic structure into ConK .

That syntactic structure of our example, now viewed as a condition in the
DRS, has a characteristic top-part structure, which determines that the subject
is a proper name, namely John. This structure is called a triggering configura-
tion (see figure 2.1.1). It is a triggering configuration because it is the starting
point of a construction rule, which modifies the original condition. The con-
struction rule activated by this triggering configuration tells us that we need to
introduce a new discourse referent into the universe of the DRS, UK . Call this
referent x. We should require this discourse referent to refer to John, and thus
we have to introduce the condition John(x) into the condition set of the DRS,
ConK . Here it comes an important step. The condition (the original tree in
this case) should be modified in order for the algorithm to continue with the rest
of the information. So, the outcome of the construction rule is a modification
of the input condition, obtained by means of a modification of the triggering
configuration (see figure 2.1.1).

The DRS obtained after the application of this construction rule contains
two conditions: John(x) and the modified syntactic tree. Two comments are in
place here. To begin with, the former condition is called an irreducible condition,
since no construction rule has it as a triggering configuration —John(x) can be
interpreted as a predicate in a First-Order Model without further modification.
On the other hand, the latter condition, represented by the modified syntactic
tree, is a reducible condition, since, as we shall soon see, it contains triggering
configurations of some construction rules. It needs some more touches in order
for its information to be correctly interpreted in a First-Order Model. The
second comment is the following. We said above that the construction rules
modify the syntactic tree in such a way that it does not fit anymore in the
definition of the syntactic theory. This can now be easily seen, for the tree that
appears as a second condition of the previous DRS contains a discourse referent
instead of a syntactic category. Each further construction rule will modify even

14



more this structure, plugging semantic information in it, so to speak. The
upshot of the whole procedure: only semantic information remains in the DRS
in the form of irreducible conditions. This example is far too simple to be worth
continuing any further. I will now turn to the general form of the translation
algorithm.

2.1.2 The general form

Here is a quote which clearly states the idea of the construction algorithm:
‘The DRS-construction algorithm involves two recursions. The first recursion
operates at the level of the complete sentence that the discourse consists of:
when the algorithm is applied to a sequence of sentences S1, . . . , Sn it deals with
these sentences in order of appearance. It first incorporates S1 into the starting
DRS K0, then it incorporates S2 into the DRS K1 resulting from the first incor-
poration, etc. The first step of the process by which Si gets incorporated into
Ki−1 consists in adding the syntactic analysis [Si] of Si to the set of conditions
of Ki−1 (...) [which] acts as a context of interpretation for Si.’

6

The non-trivial step of the algorithm is to incorporate the syntactic analysis [Si]
of sentence Si into the set of conditions of Ki−1. The analysis consists, in few
words, in the reduction of all the reducible conditions in the set of conditions
of Ki−1 plus [Si]. Since we assume that the set of conditions of Ki−1 does
not contain any reducible condition, we only need to reduce the condition [Si].
(From the example in the previous section, we know what reducible and irre-
ducible conditions are.) To fully define the analysis, we need to give the order
of application of construction rules, and then we need to give the construction
rules.

The order of application of construction rules stands in need of classification.
We have to cope with the possibility of there being several reducible conditions
to be reduced. This case is rather trivial, since the order is irrelevant. We can
reduce the conditions in any order and the outcome will be the same. On the
other hand, we also have to cope with the possibility of there being a reducible
condition to which we can apply several rules. In this case we have to choose
the rule whose triggering configuration (the one that could be applied to the
condition) has a node which dominates every other node of the triggering con-
figurations of other candidate rules. If there is no such a rule, we can apply any
rule whose top-node is not dominated by any node of other candidate rules.7

Now, we need to give a description of the construction rules. The construc-
tion rules depend on the syntactic theory that has been chosen. Since the syntax
needed to cope with the sentences we are interested in here is rather complex,
we would need a large amount of DRS construction rules to deal with all the

6[9, p. 85].
7This can be stated in an easier way by means of mathematical terminology. The rules we

can apply are those whose triggering configuration have a maximal node in the set of nodes of
all the triggering configurations of the candidate rules. As we know from the theory of partial
orders, there could be several maximal elements in a partial order. This translates in our
example as there being several rules we can apply. The order of application of the ‘maximal’
rules is irrelevant. A further specification: the partial order is defined by the dominance
relation in the syntactic tree.
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possible cases of syntactic trees. This is clearly out of the scope of this thesis.
However, I will give in full detail the explanation of a simple rule: the rule for
proper names. The other rules will be introduced as long as we require them.
For a more detailed and comprehensive explanation see [9].

2.1.3 The rule for Proper Names

A construction rule starts with a triggering configuration. A triggering configu-
ration is a part of a reducible condition in the set of conditions of a DRS. In the
case of proper names, the triggering configuration is presented in figure 2.1.1
and in the table below. Whenever a condition has this structure as one of its
parts, we can apply the rule for proper names. This rule stipulates the intro-
duction of a discourse referent, call it x, which will be the referent of the proper
name. It also stipulates the introduction of a condition, call it Prop Name(x).
This condition asserts that the discourse referent should refer to the appropriate
PN. This requires to search the node below the syntactic category PN within
the condition from which we took the triggering configuration. Finally, the rule
should modify the reducible condition from which it was triggered. In general,
the modification is performed in the triggering configuration. For this case, see
figure 2.1.1.

Hereafter, since the description of a rule will follow the previous steps, and
these can be easily read off from a standard format (see below), I will omit the
explanation of the steps and go straight to the standard format. The standard
format for the rule of proper names is:

Construction Rule for Proper Names (CR.PN)
Triggering Configuration γ ∈ ConK :

S

NP

PN

VP’

Introduce into UK : x
Introduce into ConK : Prop Name(x)

Replace γ with:
S

x VP’

2.2 Tensed Sentences in DRT

The aim of this section is to introduce some elements of tense and aspect that
are used to deal with the representation of tensed sentences.8 The elements
introduced in this section cover a range which is broader than we really need,
since they embody a more or less coherent whole. It is also necessary to say
some few words about the ontology of time which DRT presupposes. Ontology

8Though, this presentation is strongly biased towards DRT’s interpretation. It is important
to bear in mind that there are several ways to present what follows, in particular, EC’s
presentation differs in several aspects from it. For instance, there is a significant difference in
the way that both theories deal with aspectual properties.
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of time is paramount to any discussion about tense, and involves the nature of
time and events. However, I am not interested in the discussion of the ontology
of time per se. The aim here is only to present the particular ontology chose by
DRT.

2.2.1 Eventualities

DRT has chosen an “event semantics,” where some temporal entities, called
‘events’, are taken as primitives. They are opposed to ‘instants’ in the sense
that the former can be thought of as composed out of the latter. Events like
‘Mary writes a letter’ are not instantaneous, but they have some “duration in
time.” Instants refer to non-extended-in-time entities whereas events refer to
entities with extension in time. There are three important relations between
events: precedence (<), overlapping (©), and inclusion (⊆). Since events are
taken as primitives, they are generated by an axiomatization of relations among
events. I am not going to reproduce these axioms here (but see [9, p. 667]).
I assume that the reader understands these axioms and the consequences that
can be drawn from them. On the other hand, there is an important distinction
between events and states, but I won’t handle it until section §2.2.3. The term
eventuality is generally used to refer to both events and states and I will stick
to that use.

2.2.2 Tense

Tense is a property of sentences. The main criterion to distinguish between
different tenses is the relation between the time of the event referred to by the
sentence and the utterance time (n from now on). Let us denote the eventuality
described by the tensed sentence as t. Accordingly, we can describe the past
tense by saying that the eventuality time is previous to the utterance time
(t < n); the present tense by saying that the eventuality time contains the
utterance time (n ⊆ t); and the future tense by saying that the utterance time
is previous to the eventuality time (n < t).

2.2.3 Aspect

Aspectual properties —or aktionsarten—, unlike tense properties, are proper-
ties of verbs and verb phrases. The aspectual properties taken into account
by DRT are accomplishment verbs, achievement verbs, stative verbs, and activ-
ity verbs. The classification of verbs (or verb phrases) according to aspectual
properties depends on two intertwined things. The first thing is whether the
eventuality described by the verb can be seen as structuring the time line in
three different phases: (I) A preparatory phase that leads to (II) a culmination
point, which is followed by (III) a result state. The second thing is —if the
eventuality can be so divided— which of these parts are referred to by the past,
the progressive, and the perfective sentences related to that verb. To make this
clearer, consider the following example with the verb phrase ‘write a letter’.
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The eventuality described by this verb phrase does structure the time line in
these three phases. The past form, say ‘Mary wrote a letter’, refers to phases
I and II. The past progressive, i.e. ‘Mary was writing a letter’, refers to phase
I, and the perfective, i.e. ‘Mary has written a letter’, refers to phase III. This
kind of verbs are called accomplishments. Now, consider verb phrases like ‘reach
the top’. This eventuality also divides the time line in three phases. However,
the past tense, unlike accomplishments, refers just to phase II. Consider the
sentence ‘John reached the top’. If we think of phase I of this eventuality, we
cannot say that at that moment John reached the top, because that is some-
thing that happens instantaneously. (This previous reasoning might be clearer
when carried out with the verb ‘die’, instead of ‘reach the top’.) These verbs
are called achievements. The characterization of states is easy, since they just
simply do not divide the time line in these phases. The eventuality described
by a sentence like ‘John knew the answer’ cannot be thought of as dividing the
time line into a preparatory phase leading to a culmination point. There is no
culmination point in this eventuality. John’s state of knowing the answer can
completely lay in the past, but it might as well be John’s actual state —he can
still know the answer. On the other hand, the classification of activities is a
little bit odd in DRT. Activities do divide the time line in three phases, but
not by themselves. Something more should be added to the VP that describes
the eventuality in order to allow for the correct use of some tenses. A sentence
like ‘Mary walked’ is odd unless there is some complement that introduces the
culmination point, like ‘for one hour’.

The information contributed by aspectual properties in DRT comes down to
the use of two syntactic features. These are STAT and PERF . The former dis-
tinguishes between states and events. Therefore STAT has two values: +STAT
(state), and −STAT (event). The second feature distinguishes between those
verbs which refer to the result state and those which not. Therefore PERF has
two values: +PERF (refers to result state), and −PERF (does not refer to a
result state).

A notable difference between DRT and EC is that, in the former, the ak-
tionsart does not play an important role, whereas in the latter it is vital. Ak-
tionsarten do not play an important role in DRT simply because the foregoing
features —that is, STAT and PERF— cannot distinguish between aktionsarten.
What is important in DRT is which of the three phases —if at all— a sentence
refers to. This difference in stress with respect to aktionsarten is one thing that
stands in the way of a neat translation between DRT and EC, as we will later
on see.

2.2.4 Temporal perspective

In section §2.2.2 we used two eventualities to distinguish among tenses, namely,
t and n. However, when we deal with a sequence of sentences, we need two other
eventualities. We are going to call them reference time, and temporal perspective
point. They have to do with temporal anaphora involved in a sequence of
sentences. (This is going to be explained in more detail in §2.3.2.) If we consider
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one single sentence in isolation, we do not need to think of a reference time nor
a temporal perspective point —we need just the time of the eventuality referred
to by that sentence— . They can be better appreciated when we interpret
a sentence after having interpreted another sentence. The second sentence is
interpreted against the background, so to speak, introduced by the first sentence.
And we usually interpret the events described in the second sentence as occurring
in, or having certain relation with, the ‘vicinity’ of the temporal time introduced
by the first one. This ‘vicinity’ is the reference time. In a longer sequence, say of
three or four sentences, the reference time can be thought of as either changing
from sentence to sentence or to be fixed by the first sentence. The former
takes on a form of temporal sequence, whereas the latter takes on a form of an
elaboration of, say, a description. On the other hand, the introduction of the
temporal perspective in the analysis of tensed sentences is necessary in order to
explain the meaning of sentences like:

(2.2) Fred arrived at 10. He had set off at 6.

The eventuality referred to by the second sentence in (2.2) is previous to the
reference time introduced by the first sentence. That is, the reference time in
which (2.2) is interpreted is given by Fred’s arriving at 10 o’clock. At that time,
Fred’s setting off has already happened.

In order to disentangle this, we need three eventualities: utterance time
(n), reference time (t), and temporal perspective point (TPpt) —this point
is meant to represent the temporal point at which we locate ourselves so as
to describe the eventuality. Thus, the first sentence describes a situation at a
time previous to the utterance time. It is the time of that situation at which
we place the temporal perspective point since it is that time from which we
interpret the second sentence. Accordingly, the reference time of the second
sentence is previous to the temporal perspective point, since the event of the
second sentence is seen in the past at the time described by the first sentence
(which already lied in the past).

The relation between reference time and temporal perspective point is con-
trolled by the syntactic feature TENSE, which has three values: past (t <
TPpt), pres (t = TPpt), and fut (TPpt < t). In order to control the
relation between temporal perspective point and utterance time, we need an-
other feature, TP , which has two values: +PAST (TPpt < n), and −PAST
(TPpt = n).

It is worth noting that when we have a feature like −PAST , the feature
TENSE gives the same information as the one given by §2.2.2.

2.2.5 Features for tense and aspect

By means of the four features presented so far we can describe the following
English tenses:
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Tense TP TENSE STAT PERF
present −PAST pres +STAT −PERF
future −PAST fut +/− STAT −PERF

simple past −PAST past +/− STAT −PERF
+PAST pres +STAT −PERF

past future +PAST fut +/− STAT −PERF
present perfect −PAST pres +STAT +PERF
future perfect −PAST fut +STAT +PERF

past perfect +PAST past +/− STAT −PERF
past future perfect +PAST fut +STAT +PERF

2.3 Past Tense Sentences in DRT

[9] argue for an ambiguity in the temporal structure of simple past tense sen-
tences. A first structure is given to sentences like:

(2.3) Mary got to the station at 9:45.

which describes a past event. This event is seen as completely lying in the
past, and the perspective from which we see it coincides with the utterance
time. The event is in the past and we, at the moment of the utterance, are
in the result state after the culmination of the event. This temporal structure
is captured with the help of the syntactic features explained in the previous
section. To begin with, since we see this eventuality from an actual perspective,
the TPpt coincides with the utterance time n. Plus, the reference time, or time
of the eventuality, lies completely in the past, and therefore the reference time is
previous to the TPpt. The described event with the above temporal properties
has the following set up: the feature STAT has the value −STAT , TENSE
has the value past, and TP has the value −PAST . Since this eventuality refers
to the culminating point, the feature PERF has the value −PERF .

It is worth noting that the case of a past temporal perspective overlapping
the reference time of an event seems almost impossible. However, there are
cases where the TPpt lies in the past, and it coincides with the reference time.
Such cases are motivate by certain behavior of the indexical now. Consider the
example:

(2.4) Mary had been unhappy in her new environment for more than a year.
But now she felt at home.

The second sentence of (2.4), by means of the indexical now, situates the tem-
poral perspective in the past. This sentence does not have the structure of the
past perfect, and besides, it is quite intuitive that the temporal perspective coin-
cides with the reference time. Thus, the temporal properties of such a sentence
obey the following set up: the feature STAT has the value +STAT , TENSE
has the value pres, and TP has the value +PAST . Since this eventuality is a
state, PERF has the value −PERF .

This ambiguity is pretty clear in French. The Passé Simple has the charac-
teristics of the first set up, whereas the Imparfait has all the characteristics of
the second.
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There is a third possibility allowed. A state can also be described from an
actual temporal perspective and lying completely in the past, as in the example:

(2.5) John knew the answer (but he does not know it anymore).

The set up in this case is clear: the feature STAT has the value +STAT ,
TENSE has the value past, and TP has the value −PAST . Since this even-
tuality is a state, PERF has the value −PERF .

2.3.1 Simple past tense

A rigorous way to present the DRT translation algorithm would be to give the
syntax for the fragment of English we are interested in, next the construction
rules, and finally some examples. The order of presentation here is inverted,
mainly for ease of presentation. I am going to start with an example of a simple
past tense sentence, and therewith I will introduce the construction rules we
will need. The example is:

(2.6) Mary wrote the letter on Sunday.

The algorithm requires a lot on the syntax. One thing it requires is for the top
node to bear all the temporal information. A tensed sentence is considered as
describing an eventuality. This eventuality should be located with respect to
other three eventualities: the utterance time, the temporal perspective point,
and the reference time. The latter gives a sort of temporal context, and usually
is got from the context given by the previous sentences. Although the relations
among these eventualities are naturally thought of as being encoded in the
verb, the algorithm requires this information to be accessed in the first step of
processing, that is, the top node of the syntactic tree. I am going to assume
without explanation the following syntax for example (2.6), and from here I will
explain the construction rules needed for it.

S′h
TP=-PAST/TENSE=past

STAT=-STAT/PERF=-PERF

i

S

NP

PN

Mary

VP’

VP

V

wrote

NP

Det

the

NP

letter

Adv

PP

Prep

on

NP

Sunday

Suppose that we have an empty DRS K and that we introduce into ConK the
previous syntactic tree. This tree is seen as a reducible condition of the DRS.

21



This condition contains temporal information for the first step of the process,
which is triggered by the configuration embodied by the nodes S′, S, and Adv.
From this configuration we are going to represent the following information:

1. The sentence describes an eventuality. Therefore, introduce a new dis-
course referent e. Also, introduce the discourse referent n for the utterance
time, and a new discourse referent t for the reference time.

2. Find the value of the temporal perspective point TPpt according to TP .
Since TP is −PAST in this example, then TPpt := n.

3. Record the temporal relation between the described eventuality and the
reference time according to STAT . In this example, the value of STAT
is −STAT , i.e., the sentence describes an event. The relation is e ⊆ t.

4. Record the temporal relation between the reference point and the TPpt
according to TENSE. The example has got a value past for TENSE,
therefore the relation is t < n (recall that TPpt := n in this example).

5. Introduce a new condition for the temporal adverb. This condition should
be of the form β(t), i.e., it constraints the reference time. In the example,
the temporal adverb is on Sunday. Therefore, we need to introduce in
ConK the condition On Sunday(t).

6. We should modify the condition in such a way to keep track of the dis-
course referent already introduced with the aim to represent the described
eventuality. In this case, such referent is e. We should, therefore, plug
this referent into the condition for further construction rules. Also, and
since we already represented the temporal information of the sentence, we
should ‘detense’ the remaining parts of the condition; we should modify
the condition into an infinitive form.

The application of the first step in our example gives as a result the following
DRS:

e n t

TPpt := n
e ⊆ t
t < n
On Sunday(t)

S(e)

NP

PN

Mary

VP’

VP

V

write

NP

Det

the

NP

letter
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The next step involves the handling of the subject PN. In order for the rule
that we introduced in §2.1.3 to apply in this case we should make a slight
modification to it. We should use (e) in both the triggering configuration and
the modification of the condition. It is worth noting that the information of the
discourse referent which represents the described eventuality is carried along
from the S node to the VP’ node.

The transition between VP’ and VP is not important here. Though, it is
necessary for the use of auxiliary verbs, like in the future tense. In this case, the
only modification brought about by a construction rule that handles with the
VP’ would be the carrying along of the eventuality (e) to the node VP. The next
step treats the NP, by introducing a new discourse referent y with the condition
the letter(y), plus carrying along the eventuality into the V node. The outcome
of this three steps in our example is:

e n t x y

e ⊆ t
t < n
On Sunday(t)
Mary(x)
the letter(y)

e : write(x,y)

Note that I modified the condition that carries the remaining part of the tree
to the condition e : write(x,y) . This is a much more readable presentation of
the DRS and is the one that I am going to adopt here. I will also leave out the
condition TPpt := α, since this is a redundant information.

2.3.2 Consecutive past sentences

This subsection deals with two much more interesting examples which will allow
us to explore the role of the ‘temporal anaphora’ and the ambiguity we have
allowed in the simple past tense sentences.

I will analyze two examples of consecutive past tense sentences. The first
will be developed in detail, and the second will be built upon the first, giving
importance only to the differences with the former. The main difference between
them is the following. The former consists of a succession of two event-sentences,
whereas the latter is an event-sentence followed by an state-sentence. The first
example is:

(2.7) Peter went into his room. He turned on the radio.

I am going to perform the same steps as in the previous example except from
the introduction of the temporal adverb. So, this seems to be a good place
to introduce the general rule of the top node for initial sentences. Such a rule
is presented in table (2.A). In our example, the application of this and the
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(CR.S’) Construction Rule
for the top node

TP = α, TENSE = β, STAT = δ
Triggering

Configuration
γ ∈ ConK :

(i)
S′

S

(ii)
S′

Adv S

(iii)
S′

S Adv

Chose TPpt: if α = −PAST , Introduce into ConK : TPpt := n
if α = +PAST , Introduce into ConK : TPpt := o
where o < n follows from K

Introduce into UK : t,n

If γ 6= (i) then: Introduce into ConK : Adv(t)

If δ = −STAT
Introduce into UK : e

Introduce into ConK : e ⊆ t

If β = past then Introduce into ConK : t < TPpt

If β = fut then Introduce into ConK : TPpt < t

Replace γ with:
S(e)

If δ = +STAT
Introduce into UK : s

If β = past then Introduce into ConK : s© t
Introduce into ConK : t < TPpt

If β = pres then Introduce into ConK : t ⊆ s
Introduce into ConK : TPpt = t

If β = fut then Introduce into ConK : s© t
Introduce into ConK : TPpt < t

Replace γ with:
S(s)

here, is the ‘detensed’ tree obtained from the original tree

Table 2.A: Construction Rule for the top node.
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remaining appropriate rules —which are the same as in the previous example—
give the following DRS:

e n t x y

e ⊆ t
t < n
Peter(x)
room(y)

e : go into(x,y)

Now, we should focus on the second sentence. We need to interpret this sentence
against the context already present in the DRS. The important part of the
interpretation we are interested in here is the temporal anaphora. This anaphora
is handled by using the reference time. The idea is as follows. We need to search
an appropriate event in the context to which we can relate the reference time
of the sentence that we are just interpreting. The way to find the appropriate
event is not always straightforward, but I am going to give some default rules in
order to determine it. We focus our attention to either a sequence of sentences
in the past tense or a sequence of sentences in the future tense. These rules
are as follows. Suppose we are interpreting the sentence Si of the discourse
S1, . . . , Sn (where 1 < i ≤ n):

• If there is a j < i such that Sj is an event-sentence in the past tense
(future tense) and there is no j < k < i such that k is an event-sentence
in the past tense (future tense), we stipulate that the reference point be
the discourse referent representing the event described by Sj .

• If the previous case is false, and there is a j < i such that Sj is a
state-sentence in the past tense (future tense), and there is no j < k < i
such that k is an state-sentence in the past tense (future tense), we stip-
ulate that the reference point be the discourse referent representing the
location time described by Sj .

• Otherwise, we assume the reference point to be equal to some new event
discourse referent.

Once the reference point is determined, we need to establish the relation between
the reference point and the eventuality described by the sentence Si. This
relation depends on the feature STAT of Si. Note that the reference point is
always an event, say t. This leaves us with two cases open: If STAT = −STAT ,
suppose e is the eventuality described by Si. We should introduce in ConK :
t < e. If STAT = +STAT , suppose s is the eventuality described by Si. We
should introduce in ConK : t ⊆ s.

So, coming back to our example, we have already interpreted the sentence
‘Peter went into the room’ ending up with a DRS K. We suppose given the
syntactic structure of the subsequent sentence ‘He turned on the radio’. Thus,
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e n t x y e′ t′

e ⊆ t
t < n
Peter(x)
room(y)

e : go into(x,y)

TPpt := n
e′ ⊆ t′
t′ < n
Rpt:=e
e < e′

S(e′)

NP

PRON

He

V P ′

V P

V

turns on

NP

Det

the

N

radio

e n t x y e′ t′ z u

e ⊆ t
t < n
Peter(x)
room(y)

e : go into(x,y)

e′ ⊆ t′
t′ < n
e < e′
z = x
the radio(u)

e′ : turn on(z,u)

Figure 2.a: Intermediate and final DRS of the second sentence in (2.7).

we need to introduce such syntactic structure in ConK . We apply the construc-
tion rule for the top node, and next we need to determine the reference point.
According to our rules, the referent point is given by the event described by
the first sentence, that is, by e. We need to introduce this information and the
information of the relation between the reference point and the new eventuality,
which is e < e′. See figure 2.a.

We need here a rule to account for the anaphoric pronoun ‘he’. The descrip-
tion of such a rule will take us too far afield and so I skip it (but see [9, §1.1.1]).
Also, the rest of the construction rules applied to the last condition of K do not
give us new insight into the temporal anaphora, so I will omit these steps. The
final DRS can be seen in figure 2.a.

We turn now to the second example, which is:

(2.8) Jean took off the sweater. The room was warm.

The by now familiar construction rules applied to this sentence give us a DRS,
that I am not going to present here. (It could be read off from the final DRS after
representing the second sentence.) It is worth noting that the second sentence
is an state-sentence whose temporal perspective is in the past. Thus, it is of
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the second kind of structure with regards to the ambiguity I mentioned at the
beginning of this section. The syntactic structure of this sentence is:

S′h
TP=+PAST/TENSE=pres

STAT=+STAT/PERF=-PERF

i

S

NP

Det

the

N

room

V P ′

V P

BE

was

Adj

warm

As can be noted from the construction rule 2.A, when the TP feature has value
+PAST , we are required to find a temporal perspective point different from n.
DRT does not provide formal rules for such a choice, but, in the case of just two
consecutive sentences, we can simply require the TPpt to be the event described
by the first sentence. In the case the first sentence is a state, we can fix the
TPpt as the location time. Since we are only dealing with past tense sentences,
the condition of the TPpt being previous to n will follow from the axioms on
eventualities (see §2.2.1). In our example, we have TPpt := e, where e is the
event described by the first sentence. At some step in the construction we will
need to determine the reference point of this sentence. If we follow the rules of
the reference point, we also have that it is e, and that we should include the
condition e ⊆ s. Note, in the DRS below, that this last condition would have
followed in any case. We can apply the familiar construction rules, obtaining:

e n t x y s t′ z

e ⊆ t
t < n
Jean(x)
the sweater(y)

e : take off(x,y)

t′ ⊆ s
t′ = e
e ⊆ s
the room(z)

s : warm(z)

After this brief summary of the aspects of DRT that I am going to require
in Chapter 4, I can turn to a discussion of EC in the next chapter.
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Chapter 3

Event Calculus (EC)

The presentation of EC given in this chapter elaborates on that of [19]. However,
I will only pay attention to those aspects that are relevant for the translation
algorithm that I will develop in the next chapter. In order to do so, I require
to do a little bit of elaboration in some points of EC. In particular, I will
make explicit: (i) the distinction between different sorts of eventualities; (ii) the
codification of real first order predicates by means of Feferman Coding; and (iii)
the standard form of each aktionsarten.

An important omission should be mentioned. One of the main elements of EC
is the interaction between constraint logic programming and minimal models.
I will pay no attention to this, mainly, because of lack of space. Besides, it is
not a central theme regarding the translation from DRT in EC, and that is what
this part of the thesis is about.

3.1 The Language of EC

EC is a many-sorted first order logic. In the original version, the sort of fluents
is considered as a single sort, along with parameterized fluents and fluents for
activities. It turns out that, in order to have a neat, general definition of the
standard scenario for each aktionsart, we had better distinguish among these
different sorts of fluents. Another point I will elaborate from the original version
is the use of codes for objects, instead of keeping a separate sort for them. Thus,
objects are seen, in the present version, as a finite list of constants of sort σR

(the sort of real numbers, which we already needed for the time parameters).
The language is composed by the following sorts:

1. σR is the sort of reals,

2. σe is the sort of events,

3. σf is the sort of non-activity fluents,

4. σact is the sort of activity fluents.
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5. σF is the sort of parameterized fluents.

The reader can find a detailed version of the language of EC in appendix 9. It
is advisable for the reader to, at least, do a quick reading of such appendix in
order to get acquainted with the name of functions and axioms that I am going
to use in what follows.

3.2 Eventualities from Predicates

In this section, I will show how to build up an event, a fluent and a fluent for
activities, from a real first order predicate. These constructions rely on the
Feferman coding (Cf. [3]). Although this coding requires a rather involved
machinery, it is a powerful tool, whose utility can be much appreciated later on.

3.2.1 Gödel numbering

A gödel numbering is an assignment of natural numbers (called ‘gödel numbers’)
to expressions. Here, expression refers to any term, or formula. Such assignment
should meet the following conditions:

1. Different gödel numbers are assigned to different expressions,

2. It is effectively computable what the gödel number of an expression is,

3. It is effectively decidable whether a number is the gödel number of some
expression, and, if so, it is effectively computable which expression the
number is the gödel number of.

I am not going to give the explicit definition of the assignment of gödel numbers
to the expressions of the language of EC. It is enough to note that the procedure
in [1, pp.170-1] can be adapted to the language of EC.

Thus, for instance, for each variable xσ, we have its gödel number, pxσq.
Also, if ϕ is a formula, we have its gödel number, pϕq.

So we have a way to represent expressions in the language by means of
representing its gödel number using the numeral associated with it. For instance,
if ϕ is a formula and n = pϕq, we represent ϕ by n.

3.2.2 Feferman coding

Let ϕ be a formula with free variables among t1, . . . , tn, x1, . . . , xm, all of sort
σR. Let pϕq denote the σR-numeral of the gödel number of ϕ. We define1

ϕ[t̂1, . . . , t̂n, x1, . . . , xm] := Πm+1(pϕq, x1, . . . , xm)

Note that ϕ[t̂1, . . . , t̂n, x1, . . . , xm] is a term of sort σR. Since we are interested
in building up eventualities by using this coding, we need functions that return

1The Πm+1 function codifies a (m + 1)-tuple into a single real number. For details see
appendix §9.
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the appropriate sort. This can be carried out by introducing functions Iσ of
sort σR → σ, for σ ∈ {σe, σf , σact} and require them to satisfy the following
axioms:

1. Iσ(0σR) = 0σ,

2. Iσ ◦ (·)′ = (·)′ ◦ Iσ. (where the (·)′ in the left-hand side is the successor
function of sort σN and the (·)′ in the right-hand side is the successor
function of sort σ.)

It is not difficult to see that EC ` Iσ(nσN) = nσ. This will allow us to transport
the coded terms from one domain into another, and still keep track of what this
code stands for.

3.2.3 Events and fluents with parameters

And now the main result of this section. Let V (t, x1, . . . , xm) be a (m + 1)-ary
predicate of sort σR × . . .× σR︸ ︷︷ ︸

(m+1)−times

. We define:

1. V [x1, . . . , xm]e := Iσe ◦Πm+1(p∃tV q, px1q, . . . , pxmq),

2. V [x1, . . . , xm]f := Iσf

(V [t̂, x1, . . . , xm]),

3. V [x1, . . . , xm]f := Iσf ◦Πm+1(p¬V q, px1q, . . . , pxmq]),

4. V [x1, . . . , xm]act := Iσact

(V [t̂, x1, . . . , xm]),

Note that these are terms, not formulas. They represent a numeral, and we will
have to use a process of decoding in order to determine which variables and
predicate they are built up from.

This process can be extended in a straightforward way to any formula ϕ
whose free variables are among t1, . . . , tn, x1, . . . , xm.

3.3 Constraint Logic Programming

Suppose A(x), B(x), and C(x) are predicates and a is an object. From the set
of premises

{A(a) → B(a), B(a) → C(a), A(a)}
and the modus ponens rule we can deduce the formula C(a): A(a) and A(a) →
B(a) give B(a). This and B(a) → C(a) give C(a). This is a derivation of C(a)
from the set of premises. In constraint logic programming, on the other hand,
we work backwards. We start from the set of premises Γ and a formula ϕ, and we
ask whether ϕ can be derived from Γ. So, we have a query, denoted by ?ϕ, and
we try to derive the query from the premisses. We will illustrate this procedure
by means of an example. Suppose Γ is {A(a) → B(a), B(a) → C(a), A(a)} and
ϕ is C(a). The derivation of the query proceeds as follows:
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1. Ask the query: ?C(a).

2. Search into the set of premisses a premise whose consequent is C(a).

3. If such a premise exists: Replace C(a) in the query by the antecedent of
this premise. Go back to step 1 with the new query.

4. If no such a premise exists: The derivation ends in a failure.

5. If at some step the query is empty, the derivation stops in a success.

We can represent the derivation in a graphical way as follows:
?C(a)

²²

B(a) −→ C(a)

xxqqqqqqqqqq

?B(a)

²²

A(a) −→ B(a)

xxqqqqqqqqqq

?A(a)

²²

A(a)

xxpppppppppppp

?

If we follow the arrows in the inverse direction we can get the derivation of C(a)
out of Γ by means of modus ponens. So far so good, but this is only the first
step. The derivations in which we are interested include universally quantified
premisses. This implies that we will need to deal with unification and with
constraints of the form τ1 = τ2, where τ1 and τ2 are terms. Furthermore, we
should allow for the possibility of there being queries containing more than one
clause. We are going to handle with both improvements at the same time in
the following example. Suppose that our set of premises is

Γ = {∀x(A(x) → B(x)), ∀y((B(y) ∧D(y)) → C(y)), A(a), D(a)}

We make the question whether we can derive C(a) out of this premisses. In
order to give a neat procedure, we need the following clarifications:

• We note that the premisses we will be dealing with are all in prenex
normal form. That is, they take on the form Q1 . . . Qnψ where Qi is
∀xi for an appropriate variable xi, and ψ is a quantifier free formula.
Hereafter we will leave out the quantifiers and deal only with ψ. The
process of unification will allow the derivation to behave as though we
had the quantifiers.

• We say that ϕ[τ ] can be unified to ψ(x) if the formula2 [τ/x]ψ is equal to
ϕ[τ ]. The constraint of the unification is x = τ . For instance, C(a) can
be unified to C(x) with the constrain x = a.

2Here [τ/x]ψ is the formula ψ(x) where all the free occurrences of x have been replaced
with τ .
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With this two points in mind it is not difficult to explain the procedure of the
derivation as follows:

1. Ask the query: ?C(a).

2. Search into the set of premisses a premise whose consequent can be unified
to C(a).

3. If such a premise exists: Replace C(a) in the query by the antecedent of
this premise plus the constraint that allowed the unification. Go back to
step 1 with the new query.

4. If no such a premise exists: The derivation ends in a failure.

5. If at some step the query contains only constraints, the derivation stops
in a success.

These steps applied to our example can be represented graphically as follows:
?C(a)

²²

B(y) ∧D(y) −→ C(y)

ttiiiiiiiiiiiiiiii

?B(y), D(y), y = a

²²

A(x) −→ B(x)

ttiiiiiiiiiiiiiiii

?A(x), D(y), x = y, y = a

²²

A(a)

ttiiiiiiiiiiiiiiiiii

?D(y), x = a, x = y, y = a

²²

D(a)

ttiiiiiiiiiiiiiiiiiii

?x = a, x = y, y = a

Thus, whenever the constraints x = a and y = a are true, we can derive C(a)
out of Γ by means of modus ponens and the logical axioms of First-Order Logic
—the axiom of universal instantiation is of paramount importance here.

So far we have been dealing with positive clauses, i.e., none of the formulas
contained negated sub-formulas. However, we want to allow the possibility of
premises having negated clauses. EC and its version of constraint logic pro-
gramming deals with negated clauses by means of a procedure called negation
as failure. A short description of it is the following. Whenever we have a clause
of the form ¬ϕ in the query we can start a new query of the form ?ϕ. If such a
query fails, then we will leave out the clause ¬ϕ from the original query.

3.4 Integrity Constraints

We turn now to an important element in EC: integrity constraints. The intuitive
idea of an integrity constraint (IC hereafter) is that it requires a particular
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update of a ‘database’. In our case, this database is a scenario. A scenario is,
intuitively, the description of the initial conditions of a model. We are not going
into details here (but see [19, p. 43]). Again, we will work with an example.
Suppose our scenario is

{Initiates(break, being broken, t)}
where break is an event, begin broken a fluent, and t a real variable (representing
time).3 An IC takes on the form of a query plus a requirement of success or
failure. If the requirement is that of success (failure), the scenario should be
updated in such a way that the query succeeds (fails). There are two constraints
on the possible formulas that we can use to update the scenario. In the first
place, the new formula should be consistent with the scenario, and second, the
update should be non trivial. If we cannot find an appropriate formula that
we can use to update the scenario, we say that the IC fails. Let us develop an
example. Suppose our IC is

?HoldsAt(being broken, 10) succeeds

The most immediate way to update the scenario in order for the query

?HoldsAt(being broken, 10)

to hold is to introduce the sentence HoldsAt(being broken, 10) itself in the
scenario, yielding:

{Initiates(break, being broken, t),HoldsAt(being broken, 10)}
This scenario can be shown to be consistent, so the first constraint is not broken.
Furthermore, the query ?HoldsAt(being broken, 10) clearly succeeds. How-
ever, the second constraint is broken. The update is trivial. A non trivial update
consists of the introduction in the scenario of (i) the antecedent of an axiom of
EC, or (ii) the antecedent of a conditional formula4 already present in the sce-
nario. In our example, we have two possible non trivial updates. We can intro-
duce Initally(being broken), or we can introduce Happens(break, t′)∧ t′ < 10.

The convention to chose among the possible updates before an IC of the
form

?HoldsAt(f, t) succeeds

is as follows:

• First, try to update the scenario with Happens(e, t) for an appropriate
value of e, and appropriate inequalities in t. If this does not work, try the
following:

• Update the scenario with Initially(f). It is not difficult to see that this
last clause always leads to the success of the IC.

3Note that the sentence is of the form ∀tInitiates(break, being broken, t), but, as explained
before, we omit the universal quantifier.

4A conditional formula is something like ϕ → ψ.
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The convention to chose among the possible updates before an IC of the form

?Happens(e, t) succeeds

is as follows:

• First, try to update the scenario with antecedents of conditional formulas
in the scenario. If this does not work, try the following:

• Update the scenario with the formula Happens(e, t). and the appropriate
value of e and constraints on t. It is not difficult to see that this last clause
always leads to the success of the IC.5

3.5 Aktionsart

Eventualities, as defined in section §2.2, is a common name for events and
states. EC differs in its ontology from that of DRT since it uses fluents, which
are more complex entities than states, given their different roles in causality
(they can represent a state but also a complex event which develops through
time, and also actions, which are able to cause a continuous change on the
parameterized fluents). However, all of those are eventualities, in the sense of
being ‘temporal objects’. This term will receive a formal treatment in EC with
the aim of capturing, within a single element, all possible aspectual properties
of eventualities.

Let f be a fluent of sort σf , f a fluent of sort σact, and F a fluent of sort σF.
The formal definition of an eventuality is that of a structure (f,F, e, f), where:

1. f is a fluent which represents an activity, something which exerts a force,

2. F is a parameterized fluent, representing a parameterized object or state,
which is driven by the force f,

3. e is the culminating event, representing a canonical goal,

4. f is a fluent which represents the state of having achieved the goal. Also,
it can be just a state of affairs.

EC acknowledge six types of aspectual properties of VP: state, activity
(strict), activity (wide), accomplishment, achievement, and points. Each cate-
gory has a different representation as an eventuality. Remember that an even-
tuality is a quadruple, i.e., we have four slots to fill in. However, not every
aspectual property requires all of the slots to be filled in. In fact, requiring
some slots and no others to be necessarily filled in is the way EC defines the
aspectual properties. The requirements for the five aspectual properties afore-
mentioned are summarized in the following table:

5This is also a trivial update, but the fact is that there is no other way to update the
scenario so as to make the query successful.

34



Aktionsart To fill in
State 〈−,−,−, +〉

Activity (strict) 〈+,−,−,−〉
Activity (wide) 〈+, +,−,−〉
Accomplishment 〈+, +,+, +〉

Achievement 〈−,−,+, +〉
Point 〈−,−,+,−〉

Each aspectual property has a default representation in a scenario. The con-
struction of the scenario from a VP and its aktionsart will be of paramount
importance afterwards. We shall try to make explicit the steps of the general
case in this construction. From now on we suppose given a VP in the form
of a (m + 1)-ary First-Order Predicate V (t, x1, . . . , xm), where x1, . . . , xm and
t are variables of sort σR. In the following subsections we will deal with each
aktionsart in turn. (See section §3.2.3 for details about the construction of an
event, a fluent of sort σf and a fluent of sort σact from V .)

States If the VP is to be a state, we use the fluent V [x1, . . . , xm]f . The
cases we are interested in here do not involve the use of a scenario for states.
Nevertheless, the causal behavior of states is constrained due to the axioms
of EC. Note that, mainly, states cannot appear in the first component of the
Trajectory predicate, which means that states are inert for causation —the
sates do not cause a continuous change on parameterized fluents.

Activities in the strict sense If the VP is to be a strict activity, we use
the fluent V [x1, . . . , xm]act. The activities in the strict sense do not require a
scenario either. The constraints in its causal behavior are given by EC axioms.
Note that, mainly, activities are the only kind of fluents appearing in the first
component of the Trajectory predicate, and they do not have a predicate
Releases —whereas events and parameterized fluents do.

Activities in the wide sense If the VP is to be a wide activity, we use the
fluent V [x1, . . . , xm]act, a parameterized fluent F of sort σF, and an injective
real function g(r) of sort σR → σR. The scenario for this aktionsart should be:

{HoldsAt(F, g(y), t) → Trajectory
(
V [x1, . . . , xm]act, t, F, g(y + d), d

)}

Accomplishments If the VP is to be an accomplishment, we introduce the
fluent V [x1, . . . , xm]act, a parameterized fluent F, events start and finish, con-
stants a and c of sort σR, and a monotone increasing function g(r) of sort
σR → σR. As can be read off from the formulas that are going to be introduced
in the scenario (see below), the intended meaning of start and finish is that of
the events that trigger and finish (respectively) the fluent V [x1, . . . , xm]act. In
a minimal model, the interpretation of V [x1, . . . , xm]act would be a semiopen
interval (r, s], where r is such that Happens(Start, r) holds, and s is such that
Happens(finish, s) holds. Besides, a and c are intended to be the initial and
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the final state (respectively) of the parameterized fluent F. Note that, when F
reaches the value c, it triggers the occurrence of the finish event.

With this ingredients we build up the following scenario:

{a < c,HoldsAt(F, y, t) ∧HoldsAt(F, z, t) → y = z,

Initially(F, a), Initiates(start, V [x1, . . . , xm]act, t),
Terminates(finish, V [x1, . . . , xm]act, t),
HoldsAt(V [x1, . . . , xm]act, t) ∧HoldsAt(F, c, t) → Happens(finish, t),

HoldsAt(F, g(y), t) → Trajectory
(
V [x1, . . . , xm]act, t, F, g(y + d), d

)
,

Releases(start, F, y, t)}

Achievements If the VP is to be an achievement, we introduce the event
V [x1, . . . , xm]e, and fluents C[x1, . . . , xm]f and C[x1, . . . , xm]f , which come from
coding a predicate C(t, x1, . . . , xm). The scenario for this aktionsart is:

{HoldsAt
(
C[x1, . . . , xm]f , t

) → Initiates
(
V [x1, . . . , xm]e, t, C[x1, . . . , xm]f

)}

Points If the VP is to be a point, we introduce the event V [x1, . . . , xm]e. No
scenario is required.

3.6 IC’s for Tensed Sentences

The semantic representation in EC of a sentence comes down to the construction
of a scenario —depending on its aktionsart— and an integrity constraint —
depending on both its aktionsart and its tense. In the next section we are going
to give an almost complete example of the semantic representation carried out
in EC. But before doing that, and because we will need it later on for some
details in the translation algorithm, we are going to make clear how to give an
IC for sentences which are either achievements or accomplishments, and which
are in the past tense. The interesting part here is the temporal anaphora, and
the appropriate link between the parameterized fluent in an accomplishment’s
scenario and its IC.

To begin with, suppose given a VP which has been determined to be an
achievement, and suppose it comes from a sentence S in past tense. The IC for
S is:

?HoldsAt(f1, R), . . . ,HoldsAt(fn, R),Happens(e,R), R < now succeeds

where e is the event given by the scenario of the VP (say V [x1, . . . , xm]e),
fn is the fluent given by the scenario (say C[x1, . . . , xm]f ), and f1, . . . , fn−1

are context fluents. If we want a formal translation from a linguistic input,
we should specify some rules to fix such context fluents. Since the semantic
representation is intended to act upon a narrative discourse, we assume given
a sequence of sentences S1, . . . , Sk, S. Thus, we are going to search the context
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fluents in such sentences. Let V Pi, Akti, and Tensei be the verb phrase, the
aktionsart, and the tense of sentence Si, respectively (i = 1, . . . , k). The rules
we are going to follow here are:

• If Tensei is past, and Akti is state, then fi is the fluent represented by
V Pi.

• If Tensei is past, and Akti is accomplishment, then fi is the fluent F[c],
represented by the scenario of V Pi.

• If Tensei is past, and Akti is achievement, then fi is the fluent C[x1, . . . , xm]f ,
represented by the scenario of V Pi.

This is enough to handle with the cases we are interested in here.

3.7 Semantic Representation in EC

Here we will give the representation in EC of the mini-discourse:

(3.1) Jean took off his sweater. The room was warm.

Recall that the purpose of this part of the project is to define a translation algo-
rithm from a DRS into a semantic representation in EC. But, before we can get
into details of the translation, it is convenient to make clear what the semantic
representation in EC looks like. We will make the semantic representation of
(3.1) from scratch —i.e. intuitively— in this section in order to state clearly
what precisely the end point of the translation algorithm is. Since we already
analyzed (3.1) in DRT, the setup for stating the translation algorithm will be
completed, for we will have its staring and end points defined.

It should be noted that we are representing both sentences simultaneously,
although we could have done this in a sequential way. The adaptation to this
is straightforward.

1. The first step in the representation consists in the identification of the
variables and constants of the language with which we represent the im-
portant elements of the sentences. The objects referred to by the sen-
tences are ‘Jean’, ‘the sweater’, and ‘the room’. In order to represent
them we need predicates of sort σR × σR: Jean(t, x), the sweater(t, y),
and the room(t, z), respectively. Then, we build up fluents for each pred-
icate: Jean[x]f , the sweater[y]f , and the room[z]f , respectively. At first
sight this could look odd, but this turns out to be a wise decision because
DRT also codifies objects as predicates, and then the translation will be
more smooth. However, we will also assume that we have constants Jean,
the sweater, and the room of sort σR.

The eventualities in the sentences are ‘take off’ and ‘be warm’. They will
yield predicates take off(t, x, y) and warm(t, x) of sort σR × σR × σR

and σR × σR, respectively. Now, we need to attach to each of them its
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respective aktionsart. Thus, since ‘take off’ is an achievement, we need an
event and two (complementary) fluents. The event is take off [x, y]e. The
fluents are derived from the predicate on(t, x, y) of sort σR×σR×σR, and
are on[x, y]f and on[x, y]f . Finally, since ‘be warm’ is a state, we shall
represent it by means of the fluent warm[z]f .

2. The second step consists in the construction of the scenario using the
constraints on each eventuality. We first represent the achievement ‘take
off’: the constraint on the achievement ‘take off’ gives the scenario:

{HoldsAt(on[x, y]f , t) → Initiates
(
take off [x, y]e, on[x, y]f

)} (3.2)

Now, as for the state ‘being warm’: the states don’t determine a scenario
but in special cases, and this is not one of those. So the scenario is just
(3.2).

3. The third step is the construction of the IC for each sentence. We need
to state two kinds of information in the IC. The first is the temporal in-
formation of the sentence, and the second is the existence of the objects
referred to by the sentence, and which appear as parameters of the even-
tuality. This is carried out for the sentence ‘Jean took off the sweater’ in
the following IC:

?HoldsAt(Jean[x]f , R1),HoldsAt(the sweater[y]f , R1)
HoldsAt(on[x, y]f , R1),Happens(take off [x, y], R1), (3.3)
R1 < now, x = Jean, y = the sweater succeeds

The same goes for the sentence ‘The room was warm’, yielding the IC:

?HoldsAt(the room[z]f , R2),
HoldsAt(warm[z]f , R2), R2 < now, (3.4)
z = the room succeeds

4. The final step is the verification of the IC’s and the update of the sce-
nario. We verify first the IC in (3.3). According to the rules of an IC for
events and fluents in page 34 we update the scenario with the respective
Happens, Initially, and constraint formulas, yielding:

{HoldsAt(on[x, y]f , t) → Initiates
(
take off [x, y]e, on[x, y]f

)
,

Initially(Jean[x]f ), Initially(the sweater[y]f ),
Happens(take off [x, y]e, R1), Initially(on[x, y]f ), R1 < now}

We continue with the verification of the IC in (3.4). According to the
rules of an IC for fluents in page 33 we need to update the scenario with
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formulas Initially. This gives us the following update:

{HoldsAt(on[x, y]f , t) → Initiates
(
take off [x, y]e, on[x, y]f

)
,

Initially(Jean[x]f ), Initially(the sweater[y]f ),
Happens(take off [x, y]e, R1), Initially(on[x, y]f ), R1 < now,

Initially(the room[z]f ), Initially(warm[z]f ), R2 < now}

Let us verify that the information we intended example (3.1) to represent is given
in the final scenario. This information should be true in any minimal model of
the scenario. The verification will take the form of a list of propositions which
should be true or false at certain intervals of time. The list we have in mind is:

1. HoldsAt(Jean[x]f , t), HoldsAt(the sweater[y]f , t),
HoldsAt(the room[z]f , t), and HoldsAt(warm[z]f , t) are true for t ≥ 0.

2. HoldsAt(on[x, y]f , t) is true for 0 ≤ t ≤ R1, and false for t > R1.

3. HoldsAt(on[x, y]f , t) is false for 0 ≤ t ≤ R1, and true for t > R1.

We proceed to prove some of these claims.

Claim 1. HoldsAt(warm[z]f , t) is true for every t ≥ 0.

Proof. The following is a derivation of HoldsAt(warm[z]f , 0) from the scenario
and the axioms of EC:

?HoldsAt(warm[z]f , 0)

²²

Axiom 1.1

ttiiiiiiiiiiiiiiiiii

?Initially(f), f = warm[z]f

²²

Initially(warm[z]f )

ttiiiiiiiiiiiiiiiii

?f = warm[z]f

Using this we can derive that HoldsAt(warm[z]f , t) for any arbitrary t > 0:
?HoldsAt(warm[z]f , t)

²²

Axiom 2.1

tthhhhhhhhhhhhhhhhhhh

?¬∃s < r(HoldsAt(f, s)),¬Clipped(r, f, t),
HoldsAt(f, r), f = warm[z]f , r < t

²²

HoldsAt(warm[z]f , 0)

ttiiiiiiiiiiiiiiiiiiii

?¬∃s < r(HoldsAt(f, s)),¬Clipped(r, f, t),
f = warm[z]f , r < t, r = 0

²²
?f = warm[z]f , r < t, r = 0

The last step in the derivation follows from negation as failure applied to
¬∃s < r(HoldsAt(f, s)) and to ¬Clipped(r, f, t) along with the constraints
r = 0, r < t, and f = warm[z]f .
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Claim 2. HoldsAt(on[x, y]f , t) is true for every t ≤ R1.

Proof. From the scenario and EC axioms we can derive that
HoldsAt(on[x, y]f , 0):

?HoldsAt(on[x, y]f , 0)

²²

Axiom 1.1

uulllllllllllllll

?Initially(f), f = on[x, y]f

²²

Initially(on[x, y]f )

uullllllllllllll

?f = on[x, y]f

Using this we can derive that HoldsAt(on[x, y]f , t) for any t ≤ R1:
?HoldsAt(on[x, y]f , t)

²²

Axiom 2.1

ttjjjjjjjjjjjjjjjjj

?¬∃s < r(HoldsAt(f, s)),¬Clipped(r, f, t),
HoldsAt(f, r), f = on[x, y]f , r < t

²²

HoldsAt(on[x, y], 0)

uukkkkkkkkkkkkkkkkkk

?¬∃s < r(HoldsAt(f, s)),¬Clipped(r, f, t)
f = on[x, y]f , r < t, r = 0

²²
?

The last step in the derivation follows from negation as failure applied to
¬∃s < r(HoldsAt(f, s)) and to ¬Clipped(r, f, t) along with the constraints
r = 0, f = on(Jean, the sweater), and t ≤ R1. It is worth mentioning that
without the latter we could not have failed in the derivation of Clipped(r, f, t).
For instance, for any t > R1 it follows that Clipped(r, f, t). Here is the proof
of this fact —that Clipped(r, f, t) is true for t > R1:

?Clipped(r, on[x, y]f , t)

²²

Axiom 5.1

tthhhhhhhhhhhhhhhhhhh

? Terminates(e, f, s) ∨Releases(e, f, s),
Happens(e, s), r = 0, f = on[x, y]f , r < s < t

²²

Happens(take off [x, y]e, R1)

uujjjjjjjjjjjjjjjjjj

?
Terminates(e, f, s) ∨Releases(e, f, s),

e = take off [x, y]e, r < s < t,
s = R1, r = 0, f = on[x, y]f ,

²²

Terminates�
take off [x, y]e, on[x, y]f

�

uukkkkkkkkkkkkkkkkk

?
r = 0, f = on[x, y]f ,
r < s < t, s = R1,
e = take off [x, y]e
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Claim 3. HoldsAt(on[x, y]f , t) is false for every t > R1.

Proof. It is not difficult to read from the constraints r < s < t, s = R1 in the
previous derivation that whenever r < R1 < t then Clipped(r, on[x, y]f , t) is
true. Therefore, the derivation of HoldsAt(on[x, y]f , t) cannot be done via
axioms 2.1 or 3.1. It is not difficult to see that such derivation is not possible
via axiom 1 either. This means that no derivation of this claim in the scenario
is possible. Therefore, the negation of it is true due to our definition of negation
as failure.
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Chapter 4

Translating from DRS

4.1 Translation of an Example

The example of a semantic representation given in the previous chapter can be
considered as the outcome of a translation algorithm. As I said before, the idea
of the first part of the thesis is to come up with a formalized way to go from
DRT to EC. In order to do so, I will explore a way of going from the DRS
previously built in §2.3.2 to a semantic representation in EC as close as possible
to the representation just made in the previous chapter.

The first inconvenience in making the step from DRT to EC is that the latter
depends very much on the aktionsart of the VP. For instance, the definition of
the scenario depends explicitly on the aktionsart of the VP. Thus, such informa-
tion should be available at some step of the representation. The problem is that
this information is not present in the DRS, save in the form of the distinction
between events and states. I will address this problem later on.

In the previous section I identified four steps in the semantic representation.
The fourth step was just a verification, or actualization brought about by the
set up —set up consisting of scenario plus IC. Thus, a translation has only to
do with the first three steps of the representation, namely, the identification of
the language, the construction of the scenario, and the construction of the IC’s.

4.1.1 Identification of the language

The first step is the identification of the language constants. The algorithm
receives a DRS and scans each of its conditions. We have a table of instructions
triggered by DRS conditions (see list of instructions (4.1) below). Any time a
DRS condition has the form of one of the conditions in the table, the respective
instruction in the table is carried out. The outcome of the carrying out of
an instruction is the adding of information in a new structure that I will call
Intermediate Information, or II.

The list of instructions is:
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(4.1)

If DRS Condition is: Follow instruction:

P (x) (i) Create a predicate P (t, x)
of sort σR × σR.
(ii) Introduce in II
fluent P [x]f .
(iii) Create a constant P of sort σR.
(iv) Introduce in II
line ‘x = P’.

e : V (x1, . . . , xn) (i) Create a predicate

V (t, x1, . . . , xn) of sort
σR × . . .× σR︸ ︷︷ ︸

(n+1)−times

.

(ii) Introduce in II
‘V (t, x1, . . . , xn) comes from e’.

Let us work with our example. For ease of presentation I will reproduce the
DRS of example (3.1) here:

e n t x y s t′ z

e ⊆ t
t < n
Jean(x)
the sweater(y)

e : take off(x,y)

t′ ⊆ s
t′ = e
e ⊆ s
the room(z)

s : warm(z)

The idea is to examine each condition of the DRS in turn. If the condition is
of one of the two forms in list (4.1), we follow the respective instructions. In
the example, the first and second conditions in the DRS are of a different form
from the conditions in the list. Once we scan the third condition, we find that
it has the form of the first condition of the list (4.1). Accordingly, we should
introduce in II a new predicate and derive a fluent from it. The same goes for
conditions fourth and ninth. Once we scan the fifth, we find that it has the form
of the second triggering condition. We should introduce in II an appropriate
predicate. The same goes for the tenth line. The application of this step returns
the following II:
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II
Jean[x]f
x = Jean

the sweater[y]f
y = the sweater

the room[z]f
z = the room

take off(t, x, y) comes from e
warm(t, z) comes from s

4.1.2 Construction of the scenario

Now, we should assume that there is a database entry of the form:

λ1 7→ 〈s1
1, s

1
2, s

1
3, s

1
4〉

λ2 7→ 〈s2
1, s

2
2, s

2
3, s

2
4〉

...

λk 7→ 〈sk
1 , sk

2 , sk
3 , sk

4〉
...

where λk is a DRT eventuality, and sk
i ∈ {+,−} for i = 1, . . . , 4, and k = 1, . . ..

This database will be in charge to store the aspectual information of the VP’s.
This is the trickiest part of the whole algorithm. Since the aspectual informa-
tion is a property of, usually, the VP, then we need to associate the respective
aktionsart to the VP when we have access to both verb and direct object (and
complements). Therefore, this database is assumed to be constructed while the
DRS is being constructed. Let us explain this by using our example. The con-
struction of the DRS from the sentence ‘Jean took of the sweater’ has to go
through the step where we analyze the reducible condition represented by:

VP(e)

V

take off

NP

Det

the

NP

sweater

At this stage we have access to the full VP, and we can assume a way to attach
an appropriate aktionsart to it. Since we also have the information of the
eventuality by means of which it is represented (e in this case), we can attach
to e an aktionsart: e 7→ 〈−,−, +, +〉.

In order to handle with our example, we assume the following database:

e 7→ 〈−,−, +,+〉
s 7→ 〈−,−,−,+〉

We need more instructions in order to attach an aktionsart to each predicate in
II. These instructions act on the already built II. We go line by line in II
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and determine whether they are predicates. If so, we look up in the database
which aktionsart is attached to it.

Following this procedure in our example we end up with the following II:

II
Jean[x]f
x = Jean

the sweater[y]f
y = the sweater

the room[z]f
z = the room

take off(t, x, y) comes from e is 〈−,−, +, +〉
warm(t, z) comes from s is 〈−,−,−, +〉

We are now in a position to create an scenario using II. We can just take each
eventuality in II and its aktionsart, and create a scenario for it in accordance
with what was said in §3.5. Finally, we will unite all of these scenarios in a
single big scenario.

We put the first two steps —i.e. database and many scenarios—in the fol-
lowing instructions:

(4.2)

If line is a 1stOL predicate Follow instruction

V (x1, . . . , xn, t) comes from λ (i) Look up in the data-
base for the aktionsart of
λ, and add the information
‘is 〈s1, s2, s3, s4〉’ to the re-
spective line in II.

(ii) Create a new scenario
for V in accordance with its
aktionsart (Cf. §3.5).

After these instructions are carried out in II we need to execute instruction:
Unite all the previously created scenarios into a single one.

Accordingly, and continuing with our example, we end up with the following
scenario:

{HoldsAt(on[x, y]f , t) → Initiates
(
take off [x, y]e, on[x, y]f

)}

4.1.3 Construction of the IC’s

The creation of the IC should serve three purposes: (i) we require that the fluents
representing the objects hold; (ii) we need to codify the temporal structure of
the sentence; (iii) we need to fit together the information in (i) and (ii).

The first task is easily accomplished by the following instructions —again
based on a scan of the lines of II:
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(4.3)

If line is Follow instruction

a fluent f Introduce in II:
?HoldsAt(f, R) succeeds.

x = P Introduce in II:
?x = P succeeds

Further, we need the temporal information, codified in the DRS as a list of
appropriate binary relations between eventualities (for details, see below, and
table 4.B). We need to go over the lines of II, looking for predicates. When
we find one, we should record from which DRT-eventuality it comes, and then
we go back to the DRS and create the appropriate list of relations. The way of
creating this list can proceed along the following lines:

(4.4)

If line is a predicate Follow instructions
V (t, x1, . . . , xn) comes from λ (i) Find in the original DRS all the

conditions of the form λ ⊆ κ, κ ⊆ λ,
or λ©κ, determining thus a finite list
κ1, . . . κk of eventualities related with
λ.

(ii) For each κi (i = 1, . . . , k) find
in the DRS all the conditions of the
form κi < γ, γ < κi, or κi = γ.
Collect those γ’s and make a finite
list κi,1, . . . κi,ri of eventualities re-
lated with κi (i.e., the γ’s are referred
to as κi,j). Do this once again obtain-
ing a third list κi,j,1, . . . , κi,j,sj .

(iii) According to lemma 1, this in-
formation is enough to determine the
tense of the eventuality.

The tense of the eventuality and its aktionsart are enough to find the appropriate
IC according to the instructions in [19, ch. 8].

Now, we turn to the proof of the important lemma that the tense of the
eventuality can be read off from the DRS.

Lemma 1. Suppose the DRS K was built up following the construction rule
(2.A) and the rules for the reference time described in chapter 2. Suppose K
contains a condition of the form

λ : V (x1, . . . , xn)

Let κ1, . . . , κn be eventualities such that λ ⊆ κi, κi ⊆ λ, or λ©κi are conditions
of K (call this kind of conditions C1

i ). Further, let κi,1, . . . , κi,ri be eventualities
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Tense Table

Branch of
conditions

λ ⊆ κi λ© κi

κi < κi,j κi < κi,j

·
κi ⊆ λ

κi = κi,j( 6= n)

κi ⊆ λ
κi = n

λ ⊆ κi λ© κi

κi,j < κi κi,j < κi

Tense Past Present Future

Table 4.A: This table shows the tense attached to each branch.

such that κi < κi,j, κi,j < κi, or κi = κi,j are conditions in K (for j = 1, . . . , ri,

and i = 1, . . . , n) (call this kind of conditions C2
i,j). Call a pair C1

i

C2
i,j

of conditions

a branch.
For each eventuality λ, all branches determine a unique tense according to

table 4.A (there might be branches that do not determine any tense).

Proof. In the statement of the lemma we might have given reasons why these
lists of κi, κi,j , and κi,j,k are finite. Though this is clearly unnecessary. For
note that it follows from DRT that every DRS is finite, in the sense that it has
only finitely many conditions. And this clearly implies the finiteness of these
lists.

In order to give a complete proof we should show that: (i) there is always
a branch that determines a tense according to table 4.A, and (ii) all branches
determining a tense determine the same tense. To prove (i) it is enough to see
that for each combination of features TP , TENSE, and STAT , there is always
a branch that fits the scheme given in table 4.A. This is illustrated in table 4.B.
To prove (ii), we should take into account the following facts. The only way to
introduce eventualities in a DRS is by means of the top node construction rule
2.A. Further, the only way to introduce conditions that relate eventualities is
by means of the aforementioned rule, or by means of the rules for the reference
time (all of them described in chapter 2). The third column (from left to right)
in table 4.B shows all the possible conditions introduced by such rules. The
rightmost column in that table shows the branches that can be constructed if
the conditions in the third column (from left to right) are found in the DRS. It
is not difficult to check that for each row that has more than one branch, either
only one of them determines a tense, or they all determine the same tense. This
completes the proof.
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Tense Feature
Combination

List of
Conditions

e′=Ref. time

Accepted
Branches

Simple
past

TP = −past
STAT = −STAT
TENSE = past

e′ < e
t < n
e ⊆ t

e ⊆ t
t < n

Future
TP = −past

STAT = −STAT
TENSE = fut

e′ < e
n < t
e ⊆ t

e ⊆ t
t < n

Simple
past

TP = −past
STAT = +STAT
TENSE = past

e′ ⊆ s
t < n
s© t

s© t e′ ⊆ s
t < n e′ < e

Present
TP = −past

STAT = +STAT
TENSE = pres

e′ ⊆ s
t = n
t ⊆ s

t ⊆ s e′ ⊆ s
t = n e′ < e

Future
TP = −past

STAT = +STAT
TENSE = fut

e′ ⊆ s
n < t
s© t

s© t e′ ⊆ s
n < t e′ < e

Past
Perfect

TP = +past
STAT = −STAT
TENSE = past

e′ < e
TPpt < n
t < TPpt

e ⊆ t

e ⊆ t
t < TPpt

Past
Future

TP = +past
STAT = −STAT
TENSE = fut

e′ < e
TPpt < n
TPpt < t

e ⊆ t

e ⊆ t
t < TPpt

Past
Perfect

TP = +past
STAT = +STAT
TENSE = past

e′ ⊆ s
TPpt < n
t < TPpt

s© t

s© t e′ ⊆ s e′ ⊆ s
t < TPpt e′ < e′′ t < e′

Simple
past

TP = +past
STAT = +STAT
TENSE = pres

e′ ⊆ s
TPpt < n
t = TPpt

t ⊆ s

t ⊆ s e′ ⊆ s e′ ⊆ s
t = TPpt e′ < e′′ t = e′

Past
Future

TP = +past
STAT = +STAT
TENSE = fut

e′ ⊆ s
TPpt < n
TPpt < t

s© t

s© t e′ ⊆ s e′ ⊆ s
TPpt < t e′ < e′′ e′ < t

• e′′ comes from a third sentence

• The rightmost branch is due to
the possibility of e′ = TPpt

Table 4.B: The Relation between the first and the second column is taken from
table 2.2.5. The relation between the second and third column is given by
the construction rule 2.A and the reference time rules. The rightmost column
contains the possible branches of the respective eventuality that could be found
in any arbitrary DRS.
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Now, let us get done the translation of our example. Instruction (4.3) will
predict the following modification in the II:

II
Jean[x]f
x = Jean

the sweater[y]f
y = the sweater

the room[z]f
z = the room

take off(t, x, y) comes from e is 〈−,−, +, +〉
warm(t, z) comes from s is 〈−,−,−, +〉
?HoldsAt(Jean[x]f , R1) succeeds
?x = Jean succeeds
?HoldsAt(the sweater[y]f , R2) succeeds
?y = the sweater succeeds
?HoldsAt(the room[z]f , R3) succeeds
?z = the room succeeds

Let us do in some detail the step carried out by instructions (4.4). We begin with
line ‘take off(t, x, y) comes from e is 〈−,−,+, +〉’. In looking up in DRS (3.1)
the conditions related with e by ⊆ or ©, we find e ⊆ t and e ⊆ s. Performing
the search of the conditions related with t and s by < or =, we find t < n. This,
according to table 4.A, implies that e is in the past tense. It is worth taking a
closer look at the list just made, that I present here in a tree-like diagram:

e

||yy
yy

yy
yy

""EE
EE

EE
EE

e ⊆ s

Â
Â
Â e ⊆ t

²²
t′ ⊆ s t < n

Note that the left horn does not lead to a valid list according to the definitions
in lemma 1. This is clear because the list κi,1, . . . , κi,ri should consists of the
eventualities related to κi by either < or =. In the left horn, however, the
relation between s and t′ is that of ⊆, which does not lead to the inclusion of
the condition t′ ⊆ s in the list. Therefore, the left horn does not lead to a
branch. Thus, there is only one branch, and this is e ⊆ t

t < n
. This, according to

table 4.A, implies that e is in the past tense.
Now, in working with line ‘warm(t, z) comes from s is 〈−,−,−,+〉’, we find

the branches t′ ⊆ s
t′ = e

, and e ⊆ s
t′ = e

. Both branches determine that s is in the past

tense.
From these results and the definitions in [19, ch. 8], and the rules we intro-

duced in §3.6, we find the following IC’s, which we introduce in II:

?HoldsAt(on[x, y]f , R4),Happens(take off [x, y], R4), R4 < now succeeds

?HoldsAt(warm[z]f , R5), R5 < now succeeds
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Now, it remains to link the times Ri on which we require the fluents repre-
senting objects to hold with the times Rj on which we require the eventualities
to hold. We can do it by taking certain information from the IC’s in II and
adding it to II. We do this by applying the following instructions to each IC:

(4.5)

If line is Follow instructions

?HoldsAt(f, R) succeeds (i) Decode the variables in f .
(ii) For each variable x decoded
in the previous step introduce line
‘x ⇒ R’ in II.

Then, after all the IC’s have been scanned, we perform the following operation
in II:

(4.6) If x ⇒ R and x ⇒ R′ are both in II, introduce in II:
?R = R′ succeeds.

This procedure yields the following II for our example:

II
Jean[x]f
x = Jean

the sweater[y]f
y = the sweater

the room[z]f
z = the room

take off(t, x, y) comes from e is 〈−,−, +, +〉
warm(t, z) comes from s is 〈−,−,−, +〉
?HoldsAt(Jean[x]f , R1) succeeds
?x = Jean succeeds
?HoldsAt(the sweater[y]f , R2) succeeds
?y = the sweater succeeds
?HoldsAt(the room[z]f , R3) succeeds
?z = the room succeeds
?HoldsAt(on[x, y]f , R4),Happens(take off [x, y], R4), R4 < now succeeds
?HoldsAt(warm[z]f , R5), R5 < now succeeds
x ⇒ R1

y ⇒ R2

z ⇒ R3

x ⇒ R4

y ⇒ R4

z ⇒ R5

?R1 = R4 succeeds
?R2 = R4 succeeds
?R3 = R5 succeeds

To finish up the construction of the IC, we need to go over the lines of II,
collect all the lines beginning with ?, and build up an IC with all of them. The
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application of this step in our example delivers the following (huge) IC:

?HoldsAt(Jean[x]f , R1),
x = Jean,

HoldsAt(the sweater[y]f , R2),
y = the sweater,

HoldsAt(the room[z]f , R3),
z = the room,

HoldsAt(on[x, y]f , R4),Happens(take off [x, y], R4), R4 < now,

HoldsAt(warm[z]f , R5), R5 < now,

R1 = R4,

R2 = R4,

R3 = R5 succeeds

This delivers the three important steps of the semantic representation in EC.

It is not difficult to see that the semantic representation just produced by our
translation algorithm is equivalent to the representation given in the previous
chapter.

4.2 Test on Other Past Tense Sentences

Consider the sentence

(4.7) A delegate arrived. She registered.

represented by the following DRS:

e n t x e′ t′ y

e ⊆ t
t < n
delegate(x)

e : arrive(x)

e′ ⊆ t′
t′ < n
e < e′

e′ : register(y)

x = y

In order to create the language in EC for this DRS we follow instructions (4.1),
obtaining the following II:
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II
delegate[x]f
x = delegate

arrive(t, x) comes from e
register(t, y) comes from e′

Here we anticipate a trouble. In the DRS, the condition x = y will make sure
that an appropriate referent is assigned to y. But we have not yet specified
instructions to take this information from the DRS, and if we do not do so, y
will be a free variable —i.e. the representation in EC will be wrong. We need
to add the following line to instructions (4.1):

If DRS Condition is: Follow instruction:

?x = y succeeds Introduce in II:
x = y.

We assume we have introduced x = y in II.
Assume the following database:

e 7→ 〈−,−, +, +〉
e′ 7→ 〈−,−, +, +〉

We then follow instructions (4.2), obtaining the following scenario:

{HoldsAt(C1[x]f , t) → Inititates(arrive[x]e, t, C1[x]f ),

HoldsAt(C2[y]f , t) → Inititates(register[y]e, t, C2[y]f )}

We can continue with instructions (4.3). Applying these instructions we obtain
the following II:

II
delegate[x]f
x = delegate

arrive(t, x) comes from e
register(t, y) comes from e′
?HoldsAt(delegate[x]f , R1) succeeds
?x = delegate succeeds
?x = y succeeds

We need now to follow instructions (4.4). With those instructions we find the
branch e ⊆ t

t < n
related with e. Thus, according to table 4.A, this eventuality is

in the past tense. We do something similar with e′. The branch determined by
it is e′ ⊆ t′

t′ < n
, which implies that e′ is also in the simple past tense. Carrying out

instructions (4.4), (4.5), and (4.6), we obtain the following II:
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II
delegate[x]f
x = delegate

arrive(t, x) comes from e
register(t, y) comes from e′
?HoldsAt(delegate[x]f , R1) succeeds
?x = delegate succeeds
?x = y succeeds
?HoldsAt(C1[x]f , R2),Happens(arrive[x]e, R2), R2 < now succeeds

?HoldsAt(C1[y]f , R3),HoldsAt(C2[y]f , R3),
Happens(register[y]e, R3), R3 < now succeeds

x ⇒ R1

x ⇒ R2

?R1 = R2 succeeds

It is straightforward to get the IC from this II. An important comment is
in place. Note that, according to instructions in §3.6, the IC-line in II for
the second sentence includes a HoldsAt clause for the result state of the pre-
vious sentence. At first sight this might strike as unnecessary, since the fi-
nal IC would make that clause true in any case. However, it turns out to
be of paramount importance for the temporal anaphora. It can be formally
proven, by means of EC axioms, that the introduction of this clause implies
the constraint R2 < R3 to hold. Doing so, however, would take us too long.
I will just give some brief remarks based on reasoning in a minimal model
that would guide such formal proof. Firstly, note that the IC require both
HoldsAt(C1[x]f , R2) and HoldsAt(C1[x]f , R3) to hold. This, clearly, implies
that R2 6= R3. We are left with two options: either R2 < R3 or R3 < R2. Note
that there is no event e such that a clause like either Initiates(e, t, C1[x]f )
or Terminates(e, t, C1[x]f ) belongs to the scenario. Thus, since we require
HoldsAt(C1[x]f , R2) to hold, we need to update the scenario with a clause
Initially(C1[x]f ). Since there is no event in the scenario whose occurrence
clip the clause HoldsAt(C1[x]f , t) with 0 ≤ t < R2, then by Axiom 1.1 and
Axiom 2.1 it follows that HoldsAt(C1[x]f , t) is true, for 0 ≤ t < R2. This
clearly implies that HoldsAt(C1[x]f , R3) cannot be true if R3 < R2. However,
since the IC requires it to be true, then we need to have R2 < R3. So much for
the temporal anaphora.

This example is also analyzed in [7]. We can elaborate it along similar lines.
That is, we can show that carrying out the translation of example (4.7) sentence
by sentence —i.e., getting the DRS for the first sentence and translating it in
EC, and then getting the DRS for the second sentence and translating it to EC—
achieves the same result as translating it altogether as we did before. We have
for the first sentence:
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e n t x

e ⊆ t
t < n
delegate(x)

e : arrive(x)

⇒

II
delegate[x]f
x = delegate

arrive(t, x) comes from e
?HoldsAt(delegate[x]f , R1) succeeds
?x = delegate succeeds
?HoldsAt(C1[x]f , R2),

Happens(arrive[x]e, R2), R2 < now succeeds
x ⇒ R1

x ⇒ R2

?R1 = R2 succeeds

Plus the scenario and IC determined by it. For the second sentence we have:

e′ n t′ y

e′ ⊆ t′
t′ < n

e′ : register(y)

y =??

⇒

II
register(t, y) comes from e′

?HoldsAt(C1[y]f , R3), HoldsAt(C2[y]f , R3),
Happens(register[y]e, R3), R3 < now succeeds

?y =?? succeeds

Plus the scenario and IC determined by it. The only difficult part in the previous
representation is the anaphoric pronoun y. Since the second sentence is to
be interpreted against the context given by the first, we can use a number of
procedures to give an appropriate referent to y. These procedures are explained
in [9, §1.1.1, p. 66 and ff]. Nothing precludes us to use these same procedures
in II. So, we can assume that ?y =?? succeeds is resolved with ?y =
x succeeds. It is not difficult to see that updating the first scenario with the
first IC, and then enhancing these result scenario with the second scenario and
updating it with the second IC produces the same result scenario as before.

4.3 Comments on DRT and EC

The translation algorithm here designed was successfully applied to two mini-
discourses:

(4.8) Jean took off the sweater. The room was warm.

(4.9) A delegate arrived. She registered.

The former is a sequence of an event (an achievement) followed by a state. The
latter is a sequence of two events (two achievements). We still need to test the
algorithm in sequences of sentences of the form ‘state + state’ and ‘state +
event’. (There is a minor difficulty with a sequence of the form ‘state + event’
that should be mentioned. DRT does not handle this sort of sequences —at least
not the version of DRT in [9]. In this case, though, it is not difficult to improve
on DRT’s definitions in order to handle it.) Also, all sort of ‘correct’ sequences
of aktionsarten should be tested, and the algorithm should be extended to the
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progressive, the past perfect tense, etc. We also need to test it with more than
two sentences.

It will also be important to assess whether DRT can be enhanced to deal
with aktionsarten in a more natural way, and from here, we could seek to im-
prove on the database for the aktionsarten (Cf. §4.1.2). This might be one
point where we could start looking for something better for the translation al-
gorithm. I mean the following. The aktionsarten of a sentence does not seem
to come from the verb, but from the whole VP, and this process does not seem
to be compositional (Cf. §6.1.2). It stands in need of exploration how much
of this non-compositionality can be handled by DRT, but it might as well be
an argument to seek for a different approach where this non-compositionality
squares better.

The limits of the path we have followed are precisely the limits of DRT. One
mayor difficulty in the path is the future tense. DRT is not well suited to handle
with this phenomenon.1 Examples like:

(4.10) John flies to Chicago tomorrow,

(4.11) Bill will throw himself off the cliff,

(4.12) Bill is going to throw himself off the cliff.

do not seem to be easily handled by DRT. The first one is a future tense, but
its grammatical form is present. Thus, in the syntactic tree of (4.10), the top
node will contain the information of the present tense. The information of the
future tense only comes from the adverb ‘tomorrow’. If we were to represent this
sentence in DRT, we will represent first the top node and then the adverb. The
relation between reference time, temporal perspective point, and eventuality
would be fixed by the algorithm according to the present tense. This is not
the way we want to represent (4.10). Other problem with DRT is that the
distinction between (4.11) and (4.12) resides on the satisfaction of a plan. But
DRT cannot represent a plan, and thus it does not seem clear whether DRT can
cope with the appropriate meaning of these cases.

Cases like (4.10-4.12) are of great interest to EC. So, if we want to analyze
them in a formal way, we need to come up with a better algorithm than the one
proposed here. Algorithm that does not rely on DRT, since this latter is unable
to do justice to them. This might serve as a motivation to explore different
alternatives to give EC a translation from natural language temporal discourse,
other than via DRT.

1I rely for this claim on a personal communication with Fritz Hamm.
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Construction Grammar and
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Chapter 5

Cognitive-Functional
Linguistics

5.1 The New Psychology of Language

Since Generative Grammar, the notion of language has been given a precise
answer. A language is a set of sentences generated by a finite set of rules from
a finite lexicon. This set of rules is said to be codified in the mind/brain, in the
form of a ‘mental organ’ independent of any other cognitive function. This last
tenet has been given the name of Autonomy of Syntax.

Recently, some tendencies in psychology and psycholinguistics have argued
conjointly against this tenet. One of the main arguments raised against it is that
it was introduced just for the sake of ‘mathematical elegancy’, and this reason
is not compelling enough to make it into a leading principle in the psychological
study of language (Cf. [17, p. x]). It is also argued that the data customarily
used in this approach is restricted to disembodied sentences and written dis-
course. This is inappropriate, according to this new tendencies, for it leaves out
what is considered to be central to the phenomenon of language, that is, real
discourse situations —discourse that has its own particular characteristics.

Autonomy of syntax is precisely the negation of what these new tendencies
consider to be the correct path to understanding language. Namely, natural
language is to be understood by means of both its function and more general
biological dispositions (Cf. [17], p. xi). Within this new approach, cognitive
and functional considerations are allowed to be brought to bear on syntax. The
notion of language that emerges from here deserves some attention. Note from
the outset that a language can still be considered as a set of sentences generated
by a finite set of rules. However, the set of atoms the rules are applied to, and
the characteristics of the rules, are given different interpretations. That is, both
atoms and rules are understood in terms of its function to convey meaning.
The concept often used to describe what a language is is that of ‘symbol’. The
following quote from [11, p. 2], is quite insightful as to what grammar is within
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the approach in question:
[...] grammar is per se a symbolic phenomenon, consisting of patterns for im-
posing and symbolizing particular schemes of conceptual structuring. It is held
that lexicon, morphology, and syntax form a continuum fully describable as as-
semblies of symbolic structures (form-meaning pairings), and consequently, that
all valid grammatical constructs have conceptual import.

There is a marked difference in emphasis regarding the way data is examined in
both approaches. The central question we ask ourselves when presented with a
sentence is not whether it sounds odd or not. But rather we ask ourselves what
the meaning of that sentence is, and which conceptual structures license that
sentence having that meaning. Thus, it is not surprising that the set of data
this new approach uses contains idioms, metaphors, and irregularities, and that
they form many of the cases of analysis.

The difference in emphasis and the kind of enterprise undertaken is expressed
by Tomasello [17, p.xii] in the following quote:

The ultimate goal is not to create a mathematically coherent grammar that
normatively parses the linguistic universe into grammatical and ungrammatical
sentences, but rather to detail the “structured inventory of symbolic units” that
make up particular natural languages.

This ‘new psychology of language’ is the approach under which we will work
in this second part of the thesis. The main goal here is to use formal tools
in the explanation of grammar as considered in the aforementioned approach.
It is important to note that this is an exploratory step, as there are —to my
knowledge— no other previous attempts to formalize this particular approach
to language.

Be that as it may, the change in the notion of language, and the new added
emphasis on the influence of cognitive structures on the form of language, all
bring about changes on the way formal methods are applied to the study of
natural language meaning. Several differences need to be assessed. The most
important —at least for the present work— are the characteristics of the atoms
the language is built up from, and the connection between meaning and form. In
the rest of this chapter I will devote my attention to these issues in turn, in order
to bring out the consequences of the change in approach, and to ‘reschedule’
the framework we used in the first part of this thesis to attach meanings to
sentences.

5.2 The New ‘Atoms’: Constructions

Recall that in the approach we are considering in this part the analysis resides
on a description of the symbolic units of the language. This does not bring
about a reduction on the number of elements that are already recognized as
constituents of the language. (These traditional types of symbolic elements are
words, markers on words1, word order, and intonation.2) On the contrary, other

1Markers on words are, for instance, the particle -s for making plurals, that exist in some
languages like English, Spanish and French.

2Cf. [17, p. xvi].
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symbolic units need to be recognized if we want to describe the whole inventory
of symbolic tools a language possess, and the whole range of linguistic data.

Those new elements in the inventory of symbolic units are called construc-
tions, and are the distinctive mark of Construction Grammar (CG from now
on). Here is how Adele E. Goldberg defines a construction:

A construction is defined to be a pairing of form with meaning/use such that
some aspect of the form or some aspect of the meaning/use is not strictly pre-
dictable from the component parts or from other constructions already estab-
lished to exist in the language.3

The defendants of CG spend a considerable amount of time arguing in favor of
the existence of constructions different from morphemes. Some of these argu-
ments are summarized in §6.1, but I will not do justice to a good defence of CG
—that is not the main objective of this thesis.

In this work I will focus on a few number of constructions: argument struc-
ture constructions. Moreover, I will only consider two of these constructions: the
Ditransitive Construction, and the Caused Motion Construction. To illustrate
them, consider the following examples:

(5.1) Margaret baked Peter some cookies.

(5.2) Martin sneezed the napkin off the nightstand.

Example (5.1) used the verb ‘bake’ with three arguments. Normally, this verb
has only two. This is what makes this sentence particular. However, we can
attach a clear meaning to it: Margaret baked some cookies with the intention
to give them to Peter. Note that thinking of this sentence in this particular way
is what helps us make sense of the recipient role in it, which is not provided
by the verb ‘bake’. This way of thinking of this sentence is precisely the sense
of the ditransitive construction. This construction would have been illustrated
clearer by means of example (5.3), but this last example does not have the
‘controversial’ flavor of (5.1):

(5.3) John gave Mary a present.

As for example (5.2), we are using here the verb ‘sneeze’, which is an intransitive
verb. But we can make sense of (5.2) in the way that Martin’s sneezing caused
—due to the strong exhalation of air— the napkin to go off the nightstand. This
way of understanding (5.2) is the Caused Motion Construction, and it is the one
that provides the sentence with two argument roles that the verb ‘sneeze’ does
not provide. This construction could have been illustrated by:

(5.4) Sam sent Cynthia to the market.

In the next chapter, I will present a brief overview of the traditional arguments
in favor of argument structure constructions.

3[6, p. 68].
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5.3 Syntax and Semantics

A few words concerning the relationship between syntax and semantics are in
place here. Four different positions regarding such relationship can be distin-
guished:

1. A first position can be identified as the complete precedence of syntax
over semantics. This position emerges from the Chomskyean approach
to language, and mainly from its Autonomy of Syntax tenet. This tenet
says that syntax is autonomous from semantics, in the sense that syntac-
tic representations are considered in isolation, without any intervention of
semantics, or any other cognitive function. Once the syntactic represen-
tations are in place, semantics can take over and provide semantic rep-
resentations built upon syntactic representations. This position is clearly
illustrated by the semantics of formal languages. There, the syntax is
completely specified by means of recursive rules, and is made before any
semantic definition is given. Once syntax is in place, a semantic rule is
attached to each syntactic rule, providing thus a semantic representation
to all well-formed formulas of the language. Another example is Lewis’
system, which explicitly relies on syntax [12, p. 169]:

‘On the hypothesis that all natural or artificial languages of interest to us
can be given a transformational grammars of a certain not-very-special sort,
it becomes possible to give very simple general answers to the questions:

(1) What sort of thing is a meaning?

(2) What is the form of the semantic rules whereby meanings of com-
pounds are built up from the meanings of their constituent parts?

2. A second position is more modest with respect to the autonomy and prece-
dence of syntax. Syntax still precedes semantics, although syntax is open
to some modifications required by the semantic theory. A clear case is
DRT, in which we require the top node of the phrase marker to have a lot
of semantic information, and where the phrase markers are progressively
modified into DRS’s.

3. A third position regards syntax as an instrument of semantics. Thus, the
precedence is inverted. Syntax is understood as ‘patterns for imposing
and symbolizing particular schemes of conceptual structuring’. So, it is in
function of conceptual structuring that we understand syntax. Semantics
is independent from syntax, and is given beforehand. This is the position
presented in §5.1. As I said, the order of precedence is inverted, but there
is still place for some independence of syntax, as explained by Tomasello
[17, p. xii]:

This functional approach does not mean that all structures in language are
determined by function in the sense that they are iconically related to their
meanings, as many generative grammarians misconstrue the claim [...] The
claim is simply that both cultural artifacts and biological structures are
understood primarily in terms of their functions, and so to leave them out
is to miss their point entirely.
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4. The last position is the one upholding a radical supremacy of semantics.
For this position, syntax is just an epiphenomenon of semantics. Cognitive
models can be given in isolation —that is, completely independent from
language. Besides, there is no well or ill formed sentences. Everything
goes as long as we are able to give it a semantic representation —in the
form of a cognitive model.

In the first part of the thesis we were working under the second position, and
we are moving on to the third position. There is no space here to assess the
changes and subtleties brought about by the inversion in precedence between
syntax and semantics. The foregoing comments can be taken just as a heads up
that something changed, and that we need to assess such a change. Furthermore,
this part of the thesis assumes the precedence of semantics over syntax. It is not
easy to say whether we will stay in the third or the fourth position described
above. The leading idea here is that EC can take the lead in the formalization
of language, and in particular, of CG. How much of CG can be formalized with
EC is not known yet, but I want to close this chapter with a brief argument that
points out that EC might not be enough, and that maybe we also should stay
in the more modest third position. The argument has to do with the syntactic
representation of argument structure constructions. Consider the ditransitive
construction. On the one hand, Goldberg [5] regards it as completely determined
by the sentence type NP V NP NP . It is worth noting that it is this approach
that we consider in here. On the other hand, Michaelis [13] argues that this
might not be that simple:

As Fillmore and Kay (1993: Chapter 8) point out, the constraints that define
the ditransitive construction are operative whether the recipient argument is
realized as a postverbal accusative NP, as in an active sentence, or as a preverbal
nominative NP, as in a passive sentence, e.g., We were given the book. For this
reason, we will assume, as they do, that the ditransitive is a schematic (i.e.,
non-lexically specified) verb entry, in which the grammatical functions of the
agent and recipient arguments are unspecified.

I quoted this passage because I do not understand altogether the reasons for
this change. But if such a change is necessary, or even more convenient, we
will face problems that are prima facie unsurmountable by EC. For instance,
consider examples (5.5-5.6):

(5.5) John gave Mary the book.

(5.6) Mary was given the book by John.

According to Michaelis, the argument structure of these examples is the ditran-
sitive construction. Clearly, the order of the NP’s is not enough to link ‘Mary’
with the recipient role. Which semantic information bounded to causal rela-
tions is able to determine that Mary is the recipient role in both sentences?
Why should there be any principled difference between the semantics of ‘John’
and ‘Mary’? If there were some difference, could it work out the same way if
we interchange in (5.5-5.6) the roles of ‘John’ and ‘Mary’? It seems that ‘John’

61



and ‘Mary’ are indistinguishable in semantic terms. This means that no seman-
tic information, that is not based on the structure of the sentence, is sufficient
to determine the recipient role of the sentences in question. If this intuition is
correct, then in order to formalize CG we would need more than EC, and even
more than any purely semantic information.
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Chapter 6

Bird’s eye view on
Construction Grammar

6.1 Argument Structure Constructions

I will briefly review in this section the most important points in the argumen-
tation given by Adele Goldberg [5] in favor of a CG approach. The leading
question of Goldberg is this: ‘What is the nature of verb meaning and what is
its relation to sentential meaning?’ This question has been given an answer un-
der the Fregean tradition: the relation between sentential and verb meaning can
be made explicit by the principle of compositionality. Accordingly, the meaning
of a verb is given by its contribution to the meaning of the sentences in which
it appears. Frege identified the meaning of a verb with a n-ary predicate that,
along with n arguments, yielded a proposition —which is the meaning of the
sentence in which the verb appears. Goldberg challenges this picture of verb
meaning that emerges from the principle of compositionality. She posits that
the verb’s argument structure is a linguistic entity on its own right and that it
has meaning independent of the meaning of the verb and the meaning of each
of the arguments. In order to make this more concrete, we can work with an
example. Consider the following sentence:

(6.1) John sneezed the napkin off the table.

The meaning of (6.1) depicts a situation in which John causes the napkin to
move by sneezing.1 The form of the argument structure of this sentence is ‘X
causes Y to move Z’.2 The controversial claim is that this argument structure is
independent of the verb, and has meaning on its own. Since the meaning of this
‘creature’ is not based on word meaning —because we got into it by stripping

1This is an odd sentence, since ‘sneeze’ is an intransitive verb. The interesting thing is
that as long as we can make sense of this sentence, we should account for the fact that we can
do so.

2Where X is John, Y is John’s sneeze and Z is the napkin.
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the words away— it is hard to fit it in a compositional picture. The meaning
of the sentence is no longer only predictable from the meaning of the words
that appear on it and the way they are put together, but we need in addition
the meaning of the (independent) argument structure. Moreover, particular
constraints or licenses are ascribed to the argument structure instead of the
verb, and thus argument structure plays an important role in grammar. More
on this below.

We can take a look at the argument structures Goldberg is mainly interested
in:

Ditransitive: X causes Y to receive Z,

Caused Motion: X causes Y to move Z,

Resultative: X causes Y to become Z,

Intransitive Motion: X moves Y,

Conative: X directs action at Y.

These entities are called constructions, and are intended to fit in the general
definition of constructions given in Construction Grammar.

6.1.1 Construction Grammar

Some general comments about constructions are in place. To begin with, there
are constructions whether one likes it or not: it is not difficult to see that mor-
phemes satisfy the aforementioned definition of a construction. Further, CG is
generative, since it tries to account for the whole infinite range of expressions
that are allowed and the infinite range of expressions that are disallowed. How-
ever, unlike traditional grammars, CG does not posit a privileged class of ‘core
cases’. All expressions of a language stand in the same level. For instance,
example (6.1) is an odd construction, but is not treated as an exception. In or-
der to handle with these cases, non morphemic constructions are posited, thus
aiming to account for the whole range of empirical data. Another remark is
that CG does not make a strict division between lexicon and syntax. They are
regarded as the same type of declarative represented data structure. Finally,
CG is not transformational. A deep structure of (6.1) could have been posited:
something like ‘John’s sneeze caused the napkin to get off the table’. This way
out is rejected by CG. There is no sentence’s deep structure.

6.1.2 A comparison with lexicosemantic rules

The main insight for the comparison between CG and lexicosemantic rules (LSR)
is that changes in argument structure are crucially semantic. In a LSR approach,
the argument structure is taken to be uniquely predictable from the semantic
representation of the verb. Therefore, if a verb is correctly used with different
argument structures, this reflects differences in the semantic representation of
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the verb. On the contrary, in the approach proposed by Goldberg, argument
structure is (relatively) independent from the verb. These two approaches are
compared with respect to a series of points with the aim to compel the reader
that the CG approach is more plausible than the LSR approach. These points
are taken in turn in what follows.

Implausible verb senses are avoided

Consider again example (6.1) and compare it with ‘John sneezes’. The latter is
an intransitive construction —in fact, ‘sneeze’ is an intransitive verb. The former
is a ditransitive construction. Since we have two different argument structures, a
LSR approach predicts different semantic representations of ‘sneeze’, one for the
transitive, ‘sneeze1’, and another for the ditransitive, ‘sneeze2’. This distinction
would make sense if there were a language with two different words, one with
the meaning of ‘sneeze1’, and another with the meaning of ‘sneeze2’. However,
this seems very implausible.

Under a CG approach, differences in meaning are due to different construc-
tions. So, in both sentences, ‘sneeze’ has the same meaning, and the differences
in meaning of the whole sentence can rather be attributed to the different con-
structions.

Circularity is avoided

Goldberg points out a circularity embedded in the LSR approach. To begin
with, she presents eight sentences with the verb ‘kick’, all of them with different
argument structure.3 Some of them are:

(6.2) Patrick kicked the ball,

(6.3) Patrick kicked his foot against the chair,

(6.4) Patrick kicked Mary a ball.

She claims that both the assertion that ‘kick’ has a particular n-argument mean-
ing and the explanation that ‘kick’ has n arguments come from the fact that
‘kick’ occurs in that particular n-argument structure. To make it clearer, the
circularity is that ‘kick’ is claimed to have a n-argument meaning because it
occurs with n arguments, and at the same time it is claimed that ‘kick’ occurs
with n arguments because it has a n-argument meaning.

Since in the CG approach the arguments are associated directly to the con-
struction, the circularity is avoided. For CG does not claim that ‘kick’ has a
n-argument meaning because it occurs with n arguments.

Explaining non-compositional cases

The principle of compositionality is criticized by Goldberg by means of two phe-
nomena: the Dutch impersonal passive construction and the way construction
in English. I will only discuss the Dutch impersonal passive construction.

3[5], p. 11.
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The Dutch impersonal passive construction: Consider the following examples:

(6.5) (a) Er werd gelopen,
There was run,

(b) *?Er werd naar huis gelopen,
There was run home,

(c) Er werd voordurend naar huis gelopen,
There was constantly run home.

The constraint seems to be that the impersonal passive is allowed for atelic
situations (like those in (6.5a, c)), and not for telic situations (like the one
in (6.5b)). This implies that this is a constraint on the whole expression,
and since the verb (‘gelopen’) is the same in all cases, it follows that the
constraint cannot be expressed as a lexical constraint. Postulating a telic
and an atelic meaning of the verb ‘gelopen’ would allow us to keep this
constraint as a lexical constraint. However, such a move would not allow
us to explain the behavior of the auxiliaries ‘zijn’ and ‘hebben’ (the former
used with telic and the latter with atelic verbs). They depend exclusively
on the aspect of the verb, independent of the aspect of the whole sentence.
Thus, a telic sense of (6.5a) is disallowed, which makes less plausible the
possibility of postulating different meanings of the verb ‘gelopen’.

Goldberg claims correctly that the principle of compositionality implies that
the meaning of an expression is determined only by the meaning of the lexical
units that occur in it. There is no other kind of meaning that contributes to
the meaning of the expression. (If we said that the meaning of an expression is
determined also by the meaning of a subexpression we would not add anything,
since the meaning of that subexpression is in turn determined by the meaning of
the lexical elements that occur in it.) The composition rules are, in this sense,
empty with respect to its contribution to the meaning of the expression —they
just sort of combine meanings, but they do not add meaning.

In trying to make sense as to how the Dutch impersonal passive construction
bears upon compositionality, we can think that the aspect of a situation is
an integral part of the meaning of a sentence. As an element of meaning,
compositionality implies that aspect should be determined at the lexical level
—and there is no other option that ascribing it but to the verb.4 Here is where
the problem lies, since aspect seems to be required distinctly for the verb and for
the whole sentence. Examples (6.5a-c) motivate a change in the aspect of the
whole sentence, whereas the auxiliary selection phenomenon motivates a fixed
verb aspect. Thus, where does the aspect of the whole sentence come from?

Under the CG approach the answer is: the aspect of the whole sentence comes
from the aspect of the construction. Goldberg has the following alternative claim

4This chain of reasoning works out as long as we consider the aspect of a sentence not to
be a composition of other sort of meanings. It is true, though, that it sounds strange to say
that aspect is made up from other things that are not aspectual meanings.
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to the principle of compositionality —which she claims to be a weak form of
compositionality: ‘The meaning of an expression is the result of integrating the
meanings of the lexical items into the meanings of constructions’.5

Supportive evidence from sentence processing

Goldberg upholds the hypothesis that the use of the same meaning of a verb in
different argument structures do not show the same processing effects that cases
of real lexical ambiguity do. Therefore, it seems plausible that we can measure
the LSR thesis that a difference in argument structure implies a difference in
verb’s meaning. For, in the face of a couple of sentences with different argument
structure like:

(6.6) Bill loaded the truck onto the ship,

(6.7) Bill loaded the truck with bricks,

the phenomenon predicted by LSR is that of lexical ambiguity, and not that of
same core meaning occurring in different argument structures. However, Carlson
and Tanenhaus found that the processing times of sentences like (6.6-6.7) are
different from sentences with real semantic ambiguity, like:

(6.8) Bill set the alarm clock onto the shelf,

(6.9) Bill set the alarm clock for six.

Their hypothesis is this: If a reader or hearer initially selects an inappropriate
sense of an ambiguous word like ‘set’, the processing load will increase. On
the other hand, if an inappropriate constructional use is selected, the reanalysis
will be relatively cost free since the sense of the verb remains constant and the
verb’s participant roles are already activated. The empirical evidence provided
by Carlson and Tanenhaus, summarized in [5, p.18] seems to support this thesis.

6.2 Verbs and Constructions

6.2.1 Verb meaning

Verb’s meaning is defined with respect to a frame or background. A frame
embodies a sort of world and cultural knowledge, and is highly structured. Let
me explain the notion of a frame, and one of the important concepts associated
with it —namely, the concept of profiling— by means of an example of a noun.
Consider the term ‘hypotenuse’. This term is an Euclidean geometric concept, so
it is possible to draw a mental picture of it. The interesting question regarding
this mental picture is this: Can you imagine what a hypotenuse is without
imagining the whole right triangle? It seems that the answer is: no. The triangle
(and the flat plane it is included in) is a frame, and the terms ‘hypotenuse’ and
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Figure 6.2.1: The frame semantics of the terms ‘Hypothenuse’ (left) and
‘Right Triangle’ (right). Adapted from [5], p. 26.

‘right triangle’ share such a frame, but profile different parts of that frame. See
figure 6.2.1.

With this in mind, we can turn to our discussion of verb’s meaning. To
begin with, we should note that verb’s meaning and noun’s meaning should not
be too different if we are to explain the phenomenon of nominalization. This
is why it is not altogether strange to say that verb’s meaning is also based
in frame semantics. Moreover, the fact that verb’s meaning depends on world
and cultural knowledge should easily come from examples like renege, marry,
boycott, riot, languish, laminate, etc. Thus, in Goldberg’s account, the meaning
of a verb is defined with respect to a frame, and the profiling of certain aspects
of it. See §6.2.3.

6.2.2 Construction meaning

The construction meaning is a particular combination of roles which designate
humanly relevant scenes. Following Langacker, Goldberg argues that construc-
tion’s meanings are certain recurrent and sharply differentiated aspects of our
experience which we normally use to structure our conceptions insofar as pos-
sible. Construction’s meaning is the same —or ‘remarkably similar’— to some
‘general purpose verbs’. So claims about the latter imply claims about the for-
mer. For instance, verbs like ‘do’, ‘go’, ‘make’, ‘put’ are not only learned early
crosslinguistically, but are also the most commonly used verbs in children’s
speech. This claim shows that these verbs have a ‘basic’ status. Goldberg uses
this fact to make the point that construction’s meanings —via their similarity
to these verbs’ meaning— designate scenes which are semantically privileged in
being basic to human experience.

Construction meaning is further shown to be polysemic. Constructions are
typically associated with a family of closely related senses rather than a single
one. Goldberg presents an example of construction meaning polysemy: the

5[5], p. 16.
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ditransitive construction. She says that this construction imply that the agent
argument acts to cause transfer of an object to a recipient. But it does not
always imply that the transfer is successful. There is a range of expressions in
which there is a transfer component, but it is either in the form of an intention,
or something occurring in the future, or something precluded, etc. The idea is
that there is a constellation of related senses of this ditransitive construction,
that turns around the basic meaning of a transference.

Goldberg rejects the approach that we could stick with the construction’s
central sense as the only construction’s meaning, and leave the related variations
as part of the verb’s meaning. The reason for the rejection is that it is highly
unlikely that we can get a central meaning that is at the core of all the possible
senses of the ditransitive construction.

6.2.3 Participant roles

The participant roles of a verb are defined as those in the frame semantics asso-
ciated with the verb. The participant roles are lexically determined and highly
conventionalized, they cannot be altered by context. Some of these participant
roles are profiled, in the sense that they are obligatory accessed and function
as focal points within the scene, achieving a special degree of prominence. The
example presented is that of ‘rob’ vs. ‘steal’. Both have three argument roles:
‘thief’, ‘target’, and ‘goods’. However, ‘rob’ profiles only ‘thief’ and ‘target’,
whereas ‘steel’ profiles only ‘thief’ and ‘goods’.

6.2.4 Argument roles

Argument roles are similar to participant roles. The main difference lies in the
fact that participant roles are the roles supplied by the verb, whereas argument
roles are supplied by the construction.

There is also a notion of profiling with respect to argument roles. Con-
structional profiling occurs as follows: Every argument role linked to a direct
grammatical relation is constructionally profiled.

The profiling of participant roles and the profiling of argument roles are
not of the exact same kind. The criterion for determining which of a verb’s
participant roles are profiled is that all and only obligatory expressed participant
roles are profiled. The test for which of a construction’s argument roles are
profiled is different. In the case of argument roles, all and only roles which are
expressed as direct grammatical relations are considered profiled.

6.3 Role Linking Principles

The following are some of the principles of integration between verbs and con-
structions:

• Constructions must specify in which ways verbs will combine with them.
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• They need to constraint the class of verbs that can be integrated with
them.

• They must specify the way in which the event type designated by the verb
is integrated into the event type designated by the construction.

The way in which verbs and constructions are combined together is by means
of a fusion between argument and participant roles. Which argument roles are
fused with which participant roles is determined by the two following principles:

1. The semantic coherence Principle: r1 and r2 are semantically compati-
ble if ri can be construed as an instance of rj (i 6= j). Whether a role
can be construed as an instance of another role is determined by general
categorization principles.

2. The correspondence principle: Each participant role that is lexically pro-
filed and expressed must be fused with a profiled argument role of the
construction. If a verb has three profiled participant roles, one of them
may be fused with a nonprofiled argument role of the construction.

The following example illustrates Goldberg’s representation of argument struc-
ture constructions:

Sem
CAUSE

RECEIVE

R

〈agt rec

Â
Â
Â
Â pat〉

R: instance,
means

PRED

²²

〈

²² ²²

〉

²²
Syn V SUBJ OBJ OBJ2

The semantics associated directly with the construction is ‘CAUSE-RECEIVE
〈agt pat rec〉’. PRED is a variable that is filled by the verb when a particular
verb is integrated into the construction. The construction specifies which roles of
the construction are obligatory fused with roles of the verb: these are indicated
by a solid line between the argument roles and the verb’s participant role array.
Roles which are not obligatory fused with roles of the verb —that is, roles
which can be contributed by the construction— are indicated by a dashed line.
The construction also specifies the way in which the verb is integrated into the
construction —what type of relation R can be. From now on, profiled roles are
represented by boldface letters.

There are several possible relations between the array of argument roles and
the array of participant roles, some of which we will illustrate by means of the
followin examples:
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Perfect match

Sem
CAUSE

RECEIVE

R

〈agt rec

Â
Â
Â
Â pat〉

R: instance,
means

HAND

²²

〈hander

²²

handee

²²

handed〉

²²
Syn V SUBJ OBJ OBJ2

In this case, both the argument and the participant roles are all profiled and
equal in number. So in this case the construction’s meaning is superfluous,
because the whole information is provided solely by the verb. Consider the two
following cases, in which there is a profiled role fused with a non profiled role.

A non profiled argument role

Sem
CAUSE
MOVE

R

〈cause goal

Â
Â
Â
Â theme〉

R: instance,
means

PUT

²²

〈puter

²²

put.place

²²

puttee〉

²²
Syn V SUBJ OBL OBJ

In this example, the profiled participant put.place role can be fused with the
non profiled goal argument role, because the other two participant roles are
instances of the other two argument roles. Besides, the correspondence princi-
ple asserts that if the three participant roles are profiled, one of them can be
fused with one non profiled argument role. Now, the following example which
represents the reciprocal situation.
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A non profiled participant role

Sem
CAUSE

RECEIVE

R

〈agt rec

Â
Â
Â
Â pat〉

R: instance MAIL

²²

〈mailer

²²

mailee

²²

mailed〉

²²
Syn V SUBJ OBJ OBJ2

Since the correspondence principle requires only profiled participant roles be
fused with profiled argument roles, and not the other way around, then the
previous example is a correct case of fusion. When the argument role is profiled,
then this status is inherited to the participant role. Now, the last example, with
a mismatch between number of roles:

Different number of roles

Sem
CAUSE

RECEIVE

R

〈agt rec

Â
Â
Â
Â pat〉

R: means KICK

²²

〈kicker

²² ²²

kicked〉

²²
Syn V SUBJ OBJ OBJ2

This structure is produced by sentences like ‘Joe kicked Bill the ball’, where the
rec argument is supplied by the construction.

6.4 Possible Relations Between Verbs and Con-
structions

Now we turn to a very important topic in the CG approach to argument struc-
ture as presented by Goldberg. Namely, the relation that should obtain between
verb and construction meaning in order for them to be able to be fused.

On a constructional approach to argument structure, in which the semantics of
the verb classes and the semantics of the constructions are integrated to yield
the semantics of particular expressions, the question arises as to what range of
verb classes can be associated with a given construction. Could any verb class
in principle be conventionally associated with a particular construction?
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The following is a list of allowed relationships between verb and construction
meaning. Let ec be the event type designated by the construction, and ev the
event type designated by the verb:

ev may be a subtype of ec. Commonly, the event type designated by the
verb is an instance of the more general event type designated by the con-
struction. For example, consider the use of ‘hand’ in

(6.10) She handed him the ball.

‘Hand’ lexically designates a type of transfer event; at the same time,
transfer is the semantics associated with the ditransitive construction.

ev may designate the means of ec. Verbs which do not directly denote the
meaning associated with the construction often denote the means by which
the action is performed. Consider the following example, in which kicking
is the means by which transfer is effected:

(6.11) Joe kicked Bob the ball.

ev may designate the result of ec. This follows from the ‘causal relation hy-
pothesis’: the meaning designated by the verb and the meaning designated
by the construction must be integrated via a (temporally contiguous)
causal relationship. Consider the following examples:

(6.12)

a. The wooden-legged man clumped into the room.

b. The train screeched into the station.

c. The fly buzzed out of the window.

Such verbs can be used freely when the sound is a result of the motion
and occurs simultaneously with the motion. Cases which violate this are:

(6.13)

a. *The bird chirped out of the cage.

b. *The dog barked into the room.

c. *The rooster crowed out of the barn.

ev may designate a precondition of ec. Verbs may also code particular precon-
ditions associated with the semantics of the construction. For example,
creation verbs designate an act of creation, which is a precondition for
transfer. Consider

(6.14) Sally baked Harry a cake.

This sentence does not entail that the baking itself was causally related
to the transfer. The baking does not cause the transfer, and the transfer
does not cause the baking. However, the creation of the cake is a necessary
precondition of the transfer.
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To a very limited extent, ev may designate the manner of ec, the means of
identifying ec, or the intended result of ec.

The way construction tends to be used with pure manner verbs only when
the manner is particularly salient and emphasized. Consider:

(6.15)

a. She kicked her way out of the room.

b. “. . .[anyone] watching would have thought he was scowling his way
along the fiction shelves in pursuit of a book.”

The conative construction also permits exceptions to the Causal Relations
Hypothesis:

(6.16)

a. Ethel struck ar Fred.

b. Ethel shot at Fred.

In this case the verb designates the intended result of the act denoted by
the construction.

Goldberg, following Matsumoto, introduces a further constraint in the relation
between verb and construction: it is obligatory for ec and ev to share at least
one role.
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Chapter 7

CG and EC

This chapter is devoted to the formalization of CG by means of EC. But ‘for-
malization’ might not be the correct word here. It will rather be something like
‘first attempt at formalizing CG’. Two constructions are examined here. The
ditransitive and the caused motion construction. Each of these constructions
are given a scenario in EC; scenario that is later subjected to modifications, in
an attempt to cope with the constraints that such constructions are subjected
to. The task of producing the semantic representation of some examples, taking
into account the constructions meaning, does nothing but bringing out the com-
plexity of the task at hand. After this analysis is presented, a recent attempt
at formalizing CG (Cf. [10]) is summarized, and a suggestion for the integration
with the present attempt is outlined. In the final section I take stock, and briefly
assess the results accomplished.

7.1 Ditransitive Construction in EC

The ditransitive construction is the following:

(7.1) X causes Y to receive Z.

The central sense is this: the agent successfully causes recipient to receive pa-
tient. In order to get to grips with this central sense it will be helpful to take a
look at some examples:

(7.2) Peter gave a present to his mother,

(7.3) John threw Mary the ball,

(7.4) Mary was given a pen by John.

It could also be useful to consider verbs whose meaning closely resembles the
meaning of the ditransitive construction. To begin with, we have verbs that
inherently signify acts of giving, like ‘give’, ‘pass’, ‘hand’, ‘serve’, ‘feed’, etc.
We also have verbs of instantaneous causation of ballistic motion, like ‘throw’,
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‘toss’, ‘slap’, ‘kick’, ‘poke’, etc. Finally, we have verbs of continuous causation
in a deictically specified direction, like ‘bring’ and ‘take’.

After considering the central meaning of the construction we can set about
to formalize it. The leading idea of the formal representation is this. We are
going to use a three-argument predicate Of(x, z, t) and we are going to reify
it as a fluent Of [x, z]f . The intended meaning of this predicate is that of
‘belonging’. So the fluent Of [x, z]f stands for the times t at which z belongs
to x. The act of giving —or to cause the transference— will be represented by
two things. Firstly, we need the simultaneous change in truth value, at time t1
say, between Of [x, z]f and Of [y, z]f , where the former comes to be false and
the latter comes to be true. Secondly, we will agree in saying that x successfully
causes y to receive z if x causes the development of a parameterized fluent
whose end point is t1, and which causes both the termination of Of [x, z]f and
the starting of Of [y, z]f .

The language in EC we need in order to formalize the latter intuition is the
following:

• We need a fluent Of [ , ]f of sort σf ,

• We need constants a and c of sort σR,

• We need an activity fluent trans[x]act of sort σact, and its corresponding
canonical events start and finish of sort σe,

• We also need a parameterized fluent pathz of sort σF and a monotone
increasing real function g of sort σR → σR.

trans[x]act

Of [x, z]f Of [y, z]f

pathz(a)

pathz(c)

start finish

pathz(g(t))

6 6

?

:
Releases

N

Causes

±

Figure 7.1: This is a visual presentation of the idea behind the formalization
of the Ditransitive Construction. The horizontal lines represent the time
line. The left square brackets represent the beginning and the right square
brackets represent the end of a predicate being true.
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The scenario that captures the intuitive formalization presented before is this:

{a < c,HoldsAt(pathz, r1, t) ∧HoldsAt(pathz, r2, t) → r1 = r2,

Initially(pathz, a), Initially(Of [x, z]f ), Initiates(start, trans[x]act, t),
Terminates(finish, trans[x]act, t),Releases(start, pathz, r, t),
HoldsAt(pathz, g(r1), t) →

Trajectory(trans[x]act, t, pathz, g(r1 + r2), r2)),
HoldsAt(trans[x]act, t) ∧HoldsAt(pathz, c, t) → Happens(finish, t),
Initiates(finish, Of [y, z]f , t),Terminates(finish, Of [x, z]f , t)}

With verbs whose meaning is that of ballistic motion we can use the predicate
Terminates(start, Of [x, z]f , t) instead of Terminates(finish,Of [x, z]f , t) in
the previous scenario.

The following constraints should also make part of the formalization of the
ditransitive construction:

• There is a constraint that the transfer be caused by the agent. This fol-
lows straightforwardly from the unification of the verb and the trans[x]act

activity, since it is that activity that causes the motion.

• The argument role z should be unified with some object to which we
can ascribe a parameterized fluent —which means that the object can be
ascribed a path, or an incremental change.

• We need to specify a set of constraints on the fluent Of [x, z]f that makes
it a plausible characterization of the predicate ‘Belonging’.

7.2 Using EC Ditransitive Construction

I will develope, in a very informal fashion, a possible way to translate a given
sentence in natural language to a semantic representation in EC, taking into
account our CG approach.

Consider example (7.3), here reproduced as:

(7.5)
John threw Mary the ball

John[x1]f throw[x4]e Mary[x2]f the ball[x3]f

We have supposed here that we already identified the semantic representation
of the lexicon. Now, we face the following problem:

1. How to match the free variables of the objects with the appropriate vari-
ables of the construction? (And how to choose the correct construction in
the first place?)

Since we are following Goldberg’s proposal, the ditransitive construction
is determined by the sentence type of the form NP V NP NP . Therefore,
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the free variables of the objects and the variables of the construction are
linked in a straightforward way.1

2. How to link the verb fluent with the scenario of the construction?

We will focus on one aktionsart, namely, accomplishments. The scenario
for this aktionsart provides an activity. It is this activity that we will
unify with the trans[x]act activity of the scenario of the construction.

The outcome of the process would look like a set of unification constraints. So,
for our example (7.3), the set of unifications would be this:

{x = x1; y = x2; z = x3;
trans[x]act = Throw[x4]act; x = x4}

This set of constraints can be added to the scenario determined by the construc-
tion and the lexical elements. If we could work out an integrity constraint from
the tense of the verb, we would have an interpretation of the sentence in EC.

Let us consider an example where the construction supplies argument roles
that do not have a corresponding participant role, and let us try to work it in
more detail. Consider the example:

Daniel kicked Tom the ball
Daniel[x1]f kick(x4, t) Tom[x2]f the ball[x3]f
x1 = Daniel Tense=past x2 = Tom x3 = the ball

We get a set of unification constraints between the objects and the participant
roles straightforwardly from the order of the objects:

{x = x1; y = x2; z = x3}
We need now to identify the aktionsart of the sentence. Since the sentence is
NP V NP NP , the relevant VP is given by the verb and the second NP in the
sentence. We can then look up in a database what its aktionsart is. I will assume
we identified in our example the aktionsart, which is an accomplishment. We
continue the representation by introducing EC constants for the accomplishment
and its respective scenario. The constants consist of the predicate kick(x4, t)
and the activity constructed from it: kick[x4]act. The unification of this activity
and the activity of the construction can be introduced just as another constraint:

trans[x]act = kick[x4]act

1This question takes on a more complicated form if we were following Michaelis. For the
linking between the objects of the sentence —that is, ‘John’, ‘Mary’, and ‘the ball’— and the
argument roles is not straightforwardly given by their order in the sentence. For one thing, in
the sentence:

(7.6) Mary was thrown the ball by John,

the link between the objects and the argument roles is not given by their order in the sentence.
Furthermore, there is no principle way in which we can distinguish ‘Mary’ from ‘John’. If our
criteria is purely semantic, we can make any of them the agent argument role. We will need
aid from the syntax of the sentence to link objects and argument roles.
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We can now build up a scenario out of the constraints on the constants for the
objects, the aktionsart of the VP, the scenario for the construction, and the
linking constraints. Adding the appropriate integrity constraint for the past
tense of an achievement we get the full semantic representation in EC.

Finally, consider a sentence like:

Patrick sleeps George the piano
Patrick[x1]f sleep[x4]f George[x2]f the piano[x3]f

This sentence cannot be represented. For one thing, the verb is a state, and
thus is represented by means of the fluent sleep[x4]f . This cannot be unified
with the activity trans[x]act. So the whole unification fails. This failure on
unification should be enough to discard a representation of this sentence. By
the same reason, no state can be represented this way. The proposal is to use
this mechanism of unification to handle with any other constraints we require
either on the argument roles of the construction or on the meaning of the verb.

Further constraints are needed, indeed. Consider the following example:

(7.7) *A gift was given Pat by Jennifer.

This sentence can be unified in the set up I have laid out so far. Since this
sentence is clearly wrong, we need to specify constraints that rule it out. A
constraint requiring the ‘recipient’ to be animate would certainly help us to
rule (7.7) out. However, this would be too strong, since we would rule out also
sentences which are grammatical, like:

(7.8) The music lent the party a festive air.

The way out taken by Goldberg is to keep the constraint on the ‘recipient’, and
treat (7.8) as a metaphor. The adequacy of this solution needs to be assessed
with care, since it is not clear how to treat metaphors within a formal framework.

7.3 The Caused Motion Construction in EC

The caused motion construction is this:

(7.9) X causes Y to move Z.

The basic semantics of this construction is that the causer argument directly
causes the theme argument to move along a path designated by the directional
phrase. Let us consider some examples:

(7.10) Frank pushed it into the box,

(7.11) Tony sneezed the tissue off the nightstand,

(7.12) George kicked the dog into the bathroom.
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I will go about formalizing the meaning of this construction in the following
way. I will base the analysis on a three-place predicate In(y, z, t). I will reify
it in order to get the fluent In[y, z]f . This fluent will represent the times t
at which y is in z. Here, z is intended to be a location, like ‘the box’, or
the ‘nightstand’. Thus, I understand that x directly causes y to move into z
if x causes the development of a parameterized fluent which ends in the true
of In[y, z]f . Similarly, I understand that x directly causes y to move off z if
x causes the development of a parameterized fluent that ends in the true of
In[y, z]f . Which one to use depends on the directional phrase.

The language in EC we need in order to formalize the latter intuition is the
following:

• We need a fluent In[ , ]f and its contradictory In[ , ]f , both of sort σf ,

• We need constants a and c of sort σR,

• We need an activity fluent mov[y]act of sort σact, and its corresponding
canonical events start and finish of sort σe,

• We also need a parameterized fluent pathz of sort σF and a monotone
increasing real function g of sort σR → σR.

mov[y]act

In[y, z]f In[y, z]f

pathy(a)

pathy(c)

V [x] - start finish

pathy(g(t))

6 6

?

:
Releases

N

Causes

±

Figure 7.3: This is a visual presentation of the idea behind the formalization
of the Caused Motion Construction. The horizontal lines represent the
time line. The left square brackets represent the beginning and the right
square brackets represent the end of a predicate being true.
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The scenario that captures the intuitive formalization presented before is
this:

{a < c,HoldsAt(pathy, r, t) ∧HoldsAt(pathy, s, t) → r = s,

Initially(pathy, a), Initially(In[y, z]f ), Initiates(start,mov[y]act, t),
Terminates(finish, mov[y]act, t),Releases(start, pathy, r, t),
HoldsAt(pathy, g(r1), t) →

Trajectory(mov[y]act, t, pathy, g(r1 + r2), r2)),
HoldsAt(mov[y]act, t) ∧HoldsAt(pathy, c, t) → Happens(finish, t),
Initiates(finish, In[y, z]f , t)}

If prepositions like ‘off’ occur in the directional phrase, we interchange In[y, z]f
by In[y, z]f in the previous scenario.

Another comment is in place. The verb of the sentence is not going to be
unified with the activity of the construction. Rather, it is the verb that causes
the activity to happen. That is what the ‘V [x] →’ stands for in the previous
diagram. The exact details of the causation of the movement on the part of
the verb need to be worked out along with the constraints on the nature of the
causation of the movement that apply to the whole construction. See below for
an elaboration on this point.

As it was in the case of the ditransitive construction, we have constraints on the
participant roles of the caused motion construction. But, in this case, we only
have a constraint on the causer role, namely, the causer can be an agent or a
natural force, but it cannot be an instrument. I don’t know how to handle this
using only the tools of EC.

On the other hand, Goldberg introduces five constraints on the nature of the
causation represented by the Caused Motion Construction. These constraints
are the following:

I. No cognitive decision can mediate between the causing event and the en-
tailed motion.

This constraint intends to explain the asymmetry found in the following
examples:

(7.13) Sam coaxed Bob into the room.

(7.14) *Sam encouraged Bob into the room.

If Bob is coaxed, it seems that his going into the room is not mediated by a
cognitive decision. If Bob is encouraged, his going into the room depends
on his willingness to go into the room, and then a cognitive decision takes
place between the causing event —Sam’s words of encouragement, say—
and Bob’s motion.

How do we go about formalizing this constraint? We might need to char-
acterize in some way the cognitive decisions of the theme argument role.
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This is not straightforwardly achieved, but what we can do is to block y’s
movement —that is, mov[y]act— from being caused by any of y’s plans.
Let ey be any event that is the result of any of y’s plan.2 We introduce
the following integrity constraint:

?Initiates(ey, mov[y]act, t) fails

In this way, we make sure that it is not up to the theme role to cause its
own motion. Finally, we should specify that it is precisely the agent role
that does cause the motion. We can do this by identifying the canonical
event of the verb’s aktionsart, and unifying it with the start event (that
is, we need to introduce the constraint ev = mov[y]act, where ev is the
canonical event of the aktionsart).

II. If motion is not strictly entailed, it must be presumed as a ceteris paribus
implication.

This constraint intends to explain the asymmetry found in the following
examples:

(7.15) Sam asked Bob into the room.

(7.16) *Sam begged Bob into the room.

We need to stop here for a moment and compare this constraint with the
previous one. To begin with, note that in example (7.15) the theme role
does make a cognitive decision in order to go into the room, and yet it is
a correct sentence. Thus, there seems to be a contradiction with the first
constraint. However, as Goldberg points out, Bob’s going into the room
is not directly caused by Sam’s asking. But that asking indeed ‘causes’
Bob’s going into the room, because that is why the sentence determines a
caused motion construction. The causation is thus some sort of ‘causation’,
although it may turn out that this ‘causation’ is not the sort of relation to
which we normally attribute the term ‘causation’. On the other hand, why
can we ascribe an ‘indirect causation’ to the verb ‘ask’ in (7.15), and not
to the verb ‘beg’ in (7.16)? Besides, what does it mean for the causation
to be ceteris paribus? The answer might be this. The relation between
Sam’s asking and Bob’s response is not a causation in the whole sense
of ‘causation’. However, the relation might be understood in terms of an
obligation that Bob acquires when he hears Sam’s request. Obligation is
not a ‘direct causation’, but we expect Bob, ceteris paribus, to answer in
the correct way. Yet, Bob might well ignore Sam’s request and not go into
the room. I believe that the tools with which EC provide us might not be
the more appropriate to handle this case. The reason is that obligation
is not the same as causation. There seems to be a prima facie difference
between what someone causes and what he is obliged to do. I am not

2This kind of events are the events that come from a dynamics between an activity whose
agent is y and a parameterized fluent. If I were to be rigorous, I would have to spell this out
by means of the appropriate scenario.
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saying that this cannot be handled in principle by EC. I am saying that if
EC is to cope with obligations, we need to introduce more tools than we
have available so far. This can be an interesting subject to be explored
further, but it is out of the scope of the present work.

III. Conventionalized scenarios can be cognitively packaged as a single event
even if an intervening cause exists.

This is not a constraint, but rather a clause that allows some examples to
be considered as caused motion constructions. Consider, for instance:

(7.17) The company flew her to Chicago for an interview.

This is Goldberg’s explanation of this example: ‘This is acceptable since
paying for and arranging a ticket for someone else are conventional ways
to have someone travel for interviews’.3

‘Packing’ many fluents into a single event is easily accomplished by EC by
means of hierarchical planning (see [19, p. 94]). The event so obtained can
be unified with the start event in the construction. On the other hand,
what the fluents are, and how to decide whether these are conventional is
not a task of EC.

IV. If the activity causing the change of state effects some incidental motion
and, moreover, is performed with the intention of causing the motion, then
the path of motion may be specified.

This means that the motion of the theme role might be a side effect of the
activity, but then the agent argument should have had the intention that
the motion took place in the specified path. Consider the examples:

(7.18) The butcher sliced the salami onto the wax paper.

(7.19) *Pat shot Sam across the room.4

(7.20) *Sam unintentionally broke the eggs onto the floor.

If the motion is a side effect of the event, this should be codified somehow
in the scenario of the event. That is, a clause similar to (7.21) should be
part of the description of the verb:

Happens(ev, t) → Happens(startm, t) (7.21)

where ev is the canonical event of the eventuality, and startm is the canon-
ical event of the motion that results from the eventuality. This is a lexical
information. For instance, ‘slice’ is an eventuality that determines a move-
ment. Its representation in a scenario will include an eventuality. Call it
ev. The movement determined by this eventuality should have an initial
event. Call it startm.

3[5, p. 169].
4Unacceptable on the interpretation that Pat shot Sam and the bullet forced him across

the room [5, p. 170].
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To cope with the constraint in question, we can just require that the event
startm be unified with the event start of the construction only if the ev

is product of an intentional act. (Intentional acts are characterized in EC
as the result event of a planning activity. See [19, §5.4, p. 127].)

V. The path of motion must be completely determined by the causal force.

This constraint does not concern us much for two reasons. Firstly, the
scenario of the construction completely specifies the path of motion of
the theme role. This is precisely how EC works: the activity specifies the
dynamics of the parameterized fluent. Secondly, this constraint has to do
more with pragmatics than with semantics. This is what Goldberg says:
‘Which paths count as being “completely determined” is in part a matter
of pragmatics.’5 Consider example (7.22):

(7.22) They laughed the poor guy into the car.

As it stands, it sounds odd (according to Goldberg). But it is completely
grammatical if the path of the poor guy is specified by the context, like
in the following situation. ‘[...] Imagine a group of teenagers crowded
around a man who is standing by the door of his car waiting for a friend.
The teenagers are intimidating the man by making jokes about him and
laughing.’6 In cases such as (7.22), it is a business of pragmatics to provide
the path of movement, if it need to be provided at all.

7.4 Using EC Caused Motion Construction

As an attempt at giving a semantic representation of an example, let us work
out example (7.18). Suppose given the following representation from the lexical
database:

The butcher sliced the salami
the butcher[x1]f slice(x6, t) the salami[x2]f

x1 = the butcher Tense=past x2 = the salami

Happens(eslice, t) → Happens(startm, t)

onto the wax paper
Onto[x3, x4] the wax paper[x5]f

x3 = the wax paper

The unification between the objects and the argument roles is carried out by
the syntax, from which we obtain the following unification constraints:

{x = x1; y = x2; z = x5; x3 = x2;x4 = x5}
Syntax also provides us with the VP, and an appropriate database tells us
that the VP is an accomplishment. This implies that ‘the salami’ determines

5[5, p, 173].
6Ibidem.
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a parameterized fluent, salami(t), and ‘slice’ determines a dynamics —using a
monotone decreasing function— in which the salami finally disappears. Since
the agent role is the subject of an activity, we can consider the slicing act as
an intentional act —the slicing coincides with the preparation activity required
by EC. Thus, the unification between the startm event of the verb and the
start event of the construction can be carried out by means of the constraint
startm = start. We can now collect all this constraints and the scenarios of
the constraint and the aktionsart in order to build up a single scenario. The
integrity constraint for the past tense of an accomplishment finishes the semantic
representation in EC.

7.5 An Improvement Using Grammar

My suggestion is simple: EC is not alone in the fight. We might need a whole
handful of allies in order to tackle these very difficult problems. (In §5.3, I gave
a suggestion that points out why EC might not be enough.) My proposal in
this work is just to show that EC might be helpful in the coalition that seeks
to formalize CG. The first part of the proposal is that it is helpful because it
can be used to provide (part of the) meaning of the constructions, and we can
derive some constraints from this meaning.7 The second part of the proposal
is to show that it can be integrated with other members of the coalition. For
this part, I use Kay’s proposal [10] of formalization of CG. In this section, I will
first give a brief summary of this8, and then I will suggest how the integration
between it and EC could be carried out.

7.5.1 Kay’s attempt at formalizing CG

Kay’s proposal is given within a Constraint-based framework. Therefore, we
need to make the distinction between the domain of formal objects among which
the grammar licences the constructs of the language and the feature descrip-
tions, which license the constructs of the grammar. In other words, the domain
of formal objects is a big set, and not all formal objects are licensed by the
language. We need, then, to specify a set of feature descriptions and a relation
of satisfaction between feature descriptions and possible constructions. The lan-
guage will be defined as the set of formal objects that are licensed by at least
one feature description.

7Two clear contributions are the ruling out of stative verbs in the ditransitive construc-
tion, and the integrity constraint that copes with the first constraint of the caused motion
construction. I am sure more can be done.

8I will not be one hundred per cent faithful to Kay’s presentation, mainly because I think it
is not very neat from a mathematical perspective. I will rather try to improve on the notation,
but I will not go into all the details of his proposal.
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Feature Structure Trees

The formal objects are Feature Structure Trees. In order to define them, we
need first to define what the Feature Structures are. In order to do so, we need
a finite family of finite sets A0, A1, A2, . . . , Ak of attributes and a set V of values,
together with a function ϕ : A0 → ℘(V ). By using these we define the features:

Definition (Features). 1. A feature of level zero is a pair 〈a, v〉 where a ∈ A0

and v ∈ ϕ(a) ⊆ V . The set of features of level zero is called F0.

2. A feature of level n+1 is a pair 〈a, v〉 where a ∈ An+1 and v ∈ ℘(
⋃n

i=0 Fi).
There is a requirement on v. If 〈a′, v′1〉, 〈a′, v′2〉 ∈ v, then v′1 = v′2. The set
of features of level n + 1 is called Fn+1.

Examples of features are the following. Suppose A0 = {num, per}, A1 = {agr},
V = {1st, 2nd, 3rd, sg, pl}, ϕ(num) = {sg, pl}, and ϕ(per) = {1st, 2nd, 3rd}. Fea-
tures of level zero are, for instance, 〈per, 3rd〉, or 〈num, pl〉. A feature of level
one is, for instance, 〈agr, {〈per, 3rd〉, 〈num, pl〉}〉.
Definition (Feature Structure). A Feature Structure is a subset F of

⋃k
n=0 Fn

such that for every a ∈ ⋃k
n=0 An, if 〈a, v1〉, 〈a, v2〉 ∈ F , then v1 = v2. The set

of all Feature Structures will be called FS.

Now we can give the definition of the formal objects. These formal objects
have a proper name: Feature Structure Trees.

Definition (Feature Structure Trees). A structure 〈N, <,M, φ〉 is a Feature
Structure Tree if:

• 〈N, <〉 is a strict partial ordered set (the set N is thought of as a set of
nodes),

• M is a partial function from N to N (M is the ‘mother of’ function),

• φ is a partial function from N to FS.

and the following conditions hold:

1. Exactly one node r ∈ N has no image by M (i.e., M(r) is undefined).
This node is called ‘the root’,

2. For distinct nodes ni, nj ∈ N , if M(ni) = M(nj), then ni < nj or nj < ni,

3. For every ni, nj ∈ N , if M(ni) < M(nj), then ni < nj.

4. For every n 6= r (with r the root) there is a k ∈ N such that M (k)(n) =
M ◦ . . . ◦M︸ ︷︷ ︸

k−times

(n) = r.

5. For every k ∈ N, it is not the case that M (k)(n) < n or n < M (k)(n).

Feature Structure Trees, or FT’s for short, can be defined by means of equa-
tions. Two different types of equations should be considered. We have CS
equations, that define the structure of the tree, and FS equations, that define
the function φ that assigns Feature Structures to the nodes of the tree.
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CS Equations

For motivation, consider the following set of equations:

M(n2) = n1 (7.23)
M(n3) = n1

n2 < n3

This set of equations define the following tree (the M function specifies the
edges and the < relation specifies the left-to-right order of the nodes):

n1

n2 n3

A set of equations that satisfies the requirements in the definition of FT defines
a tree. This is intuitive enough so we do not need to go into details.

FS Equations

Let F ∈ FS and a ∈ ⋃k
n=0 An. Note that, by definition of F , if there is a v

such that 〈a, v〉 ∈ F , then v is unique. This allows us to think of F as a partial
function with domain

⋃k
n=0 An. That is, F (a) = v iff 〈a, v〉 ∈ F . Suppose 〈a, v〉

is a feature of level n + 1. Then v is itself a set of pairs of features of level ≤ n,
where no two pairs share the same first component. So v is a partial function
with domain

⋃n
i=0 Ai. If a′ ∈ Ai, then we define v(a′) = v′ iff 〈a′, v′〉 ∈ v. This

process can be continued down to the level zero.
Let FT be a FT. We have a partial function φ from N to FS. For each

n in the domain of φ, φ(n) is a feature structure. Using the comments on
the previous paragraph, we can specify any such feature structure by a set of
equations.

For motivation, take the feature structure:

φ(n) = {〈phon,< walk >〉, 〈agr, {〈per, 3rd〉, 〈num, pl〉}〉} (7.24)

(7.24) can be specified by the following set of equations:

φ(n)(arg)(per) = 3rd (7.25)
φ(n)(arg)(num) = pl

φ(n)(phon) =< walk >

Descriptions

Note that a FT can be specified —and underspecified— using equations of the
form (7.23) and (7.25). Such sets of equations will be called descriptions. We
say that a description is satisfied in a set L of FT’s iff there is a FT in L that
satisfies the equations of the descriptions. If a description is satisfied by a FT,
we say that the description licenses that FT.
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We can understand now the idea of the previous formalization. We should
choose appropriate sets A0, . . . , Ak, V and an appropriate set G of descriptions
such that every FT which represents a sentence in the language (English, say) is
licensed by some combination of descriptions. Furthermore, every combination
of descriptions that should license an FT licenses a representation of a sentence
in the language.

7.5.2 Integration of Kay’s attempt with EC

My suggestion of integration comes in the form of an example. Consider exam-
ple:

(7.26) Daniel kicked Tom the ball.

In order to license this example we need to provide features out of which we can
build up appropriate FT’s. This task is out of the scope of the present work,
and I will just bring out some important points. I am particularly interested
in arguing that the link between objects and participant roles can be provided
within this combined approach.

To begin with, note that a set of constraints can be given in order to define
the tree of the sentence:

n1

n2

Daniel

n3

n4

kicked

n5

Tom

n6

the ball

M(n2) = n1

M(n3) = n1

M(n4) = n3

M(n5) = n3

M(n6) = n3

n2 < n3

n4 < n5

n5 < n6
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A set of equations can be given in order to define the FS assigned to each
node. The following is a very incomplete list:

φ(n1)(SEM)(tense) = past

φ(n2)(phon) =< daniel >

φ(n2)(SEM)(EC)(fluent) = Daniel[x1]f
φ(n2)(SEM)(EC)(variable) = x1

φ(n2)(SEM)(EC)(scenario) = {x1 = Daniel}

φ(n3)(SY N)(HEAD) = verb

φ(n3)(SY N)(val)(spr)(SEM)(index) = x1

φ(n3)(sem)(frame)(agent) = x1

φ(n3)(SEM)(EC)(scenario) = {. . .}

φ(n4)(phon) =< kicked >

φ(n4)(SEM)(EC)(predicate) = kick(x4, t)

Two things are worth noting. Firstly, the leafs can be assigned the semantics
given in EC simply by specifying the appropriate features. Secondly, the node
n3 has information that links the subject with the agent participant role and
the subject of the verb.

None of these foregoing constraints were explained, because I have not yet
explained the features used therein. Unfortunately, I am not in a position to
explain them. Though, what is important is the suggestion that EC represen-
tation can be reproduced in this framework by means of features, and that the
node n3 can be given the representation of the ditransitive construction. We
can use a representation of this construction such as figure 7.5.2, as given in
[13] (where I do not explain anyone of the features used therein either). Maybe
with these tools together we will be able to work out a coherent, but formal,
account of the licensing of sentences in the CG.

7.6 Comments on CG and EC

I want to finish this chapter with a sentence in Spanish:

Todav́ıa hay mucha tela para cortar.9

This means that we have still got a lot of work to do. Indeed, I believe that
nothing in this chapter can be considered as close to completion. However, that
was not the objective of this part of the thesis. The objective was rather to

9The literal translation is something like ‘there is still a lot of cloth to cut off.
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Figure 7.a: Ditransitive Construction adapted from [13], and extended with
features ranging on EC.

90



explore the possibility of giving EC a place in CG. The advantage of such an
approach, in case it can be worked out, is double. On the one hand, we will
give a formal way to go from natural language to EC. On the other hand, we
will give CG excellent formal tools with which we can formalize the construction
meaning.

I want to assess briefly the work done in this section. To do so, I will give two
lists. One list contains the positive results, i.e., these things that we gained
by following the present path. The other list contains things that need to be
improved, and these points on which we will need to use tools not provided by
EC.

Positive things: Some good results were achieved.

1. Once the meaning of the constructions we dealt with in this chapter
is identified, its coarse representation in EC is almost straightforward.
This might suggest that EC provides an appropriate framework for
the formalization of CG.

2. The language of EC is rich enough to characterize a number of con-
straints on the constructions that otherwise would be treated as prim-
itives. For instance, the ‘agentivity’ of the agent participant role —
tackled by means of the behavior of the activity fluents in EC—, the
division between events and fluents —which was helpful in the ditran-
sitive construction—, and the characterization of mediating cognitive
causes —used in the caused motion construction.

3. EC language is rich enough to allow us to take a glance at the end
point of the representation: a scenario full of constraints and dynam-
ics.

To improve: A lot of things need to be worked out.

1. The meaning of the constructions may not be altogether represented
in EC. Some examples are provided by the ‘belonging’ predicate —
which seems to be primitive, and with no clear relation with causation—
, the same goes for constraints that involve obligations instead of
causes —like in the caused motion construction—, and for constraints
that involve conventions and pragmatics.

2. It is not clear how we get the aktionsart for the VP. As it happened in
the first part, this link comes out of the blue, and is rather supposed
than analyzed.

3. The link between EC and other attempts at formalizing CG, like
Kay’s, need to be elaborated in detail. Here, I barely scratched the
surface.

4. The representation of other argument structure constructions need
to be worked out.
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Part III

A Brief Discussion
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Chapter 8

Cognitive Models and
Truth Conditions

8.1 Cognitive Models and Semantics

EC main theses are (i) the linguistic encoding of temporal notions can be studied
with the help of the notions of planning and causality; (ii) understanding a piece
of discourse involves constructing a cognitive model of that discourse.

A linguistic analysis in EC starts off by bringing out a linguistic phenomenon
involving temporal notions, say the distinction between sentences (8.1-8.3):

(8.1) Caroline flies to Chicago tomorrow,

(8.2) Caroline is going to fly to Chicago tomorrow,

(8.3) Caroline will fly to Chicago tomorrow,

Accordingly, the phenomenon is explained in terms of causality and planning.
For instance, the distinction in question is explained like this: (8.1) is a sort of
‘natural consequence’ of Caroline’s current situation —no plan involved here—,
(8.2) expresses a plan that Caroline has got —which might be called off, even
by Caroline—, and (8.3) expresses a plan that Caroline should not call off.

According to (ii), since understanding is explained in terms of a cognitive
model, a cognitive model of these different causes and planes should be given.
This is delivered in the form of minimal models for appropriate scenarios and
integrity constraints. Given a scenario, its minimal models (usually) can be
‘computed’1 and, for this reason, minimal models are intended to be cognitive
representations.

It is important to bear in mind that tenet (i) is independent from tenet (ii).
An analysis of the temporal notions and its linguistic encoding need not to be

1This means that a formula φ is true in a minimal model for the scenario if and only if it
can be derived in Constraint Logic Programming.
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given in terms of cognitive models. Prima facie, it is possible to elaborate on
the aforementioned intuitive description of the meaning of temporal discourse.
And, if a more systematic explanation is sought, we could try out an explanation
based on truth conditions.

Leaving this possibility open seems important to me. Mainly, because the
notion of a cognitive model is somewhat obscure, and I find it difficult to accept
that a cognitive model explains meaning. Let us discuss tenet (ii) in a bit more
detail. It can be paraphrased in the following way. A person’s understanding
of a piece of discourse consists, among other things, in the construction of a
cognitive model of that discourse. When a person hears/reads a piece of dis-
course, a cognitive models comes up to his mind, and it is this model in which
his understanding of that piece of discourse consists.

My qualms with cognitive models basically refer to the possibility of judging,
or testing them. How can we know that a cognitive model in fact captures,
or represents the meaning of a discourse? When can a cognitive model fail
to represent the meaning of a discourse? Can two different models represent
the meaning of the same discourse? Can two persons have a different model
representing the same discourse? How do we know that? If we want to cope with
the communicability of thoughts, we assume that a communication is successful
if the hearer decodes from an utterance the same cognitive model that the
speaker codified in that utterance. So we assume that two persons should have
the same cognitive model of the same discourse in order for communication to
be successful. But how can we test that a given communication thus defined was
successful? We surely cannot scan people’s minds and compare their cognitive
models. It can be argued that we could provide indirect evidence that they
have the same cognitive model. The problem here is what counts as ‘indirect
evidence’ that someone has a particular cognitive model. Brain activity at most
gives insight as to what processes are likely to be carried out in the brain, but
it cannot be brought to bear in order to distinguish two models that use the
same computational process. Maybe behavioral clues in the form of systematic
answers to verbal stimulus, or in the form of social dynamics? But again, how
do we know that these evidence is evidence for a particular cognitive model?
Besides, why can’t this ‘evidence’ be rather taken as what we are looking for
instead of an intermediate step for an obscure cognitive model? Moreover, if
we had required that these persons were to have a different cognitive model, we
would have assumed so to begin with. There is no way for us to be wrong about
these assumptions. The problem is not that we make one of these assumptions.
The problem is that we cannot falsify them. Likewise, if we have a cognitive
model for a given discourse, how can we say that it is not the appropriate
cognitive model for it? If we have a sentence like (8.4):

(8.4) John kicked Mary the ball.

what is the appropriate cognitive model for it? Is it the dynamic of the path
described by the ball going from John to Mary? Is it just the instantaneous
action happening at the time John touches the ball with his foot with the
intention to send the ball to Mary? Is it the aforementioned dynamic preceded
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by a dynamic describing John’s plan —in the form of another dynamic? Or does
it consist of all of these dynamics? How can we decide this? By introspection?
What do I ‘see’, or imagine, when I read the sentence? I suppose each person has
a different ‘mental image’ of it. Which one is correct? The most frequent? Why
would any of them be the wrong ‘mental image’? On the other hand, although
there could be many ‘mental images’ of (8.4), it has only one meaning. There
is only one way to get the meaning of it correctly. But we do not have a way to
say that there is only one correct cognitive model that represents the sentence.
Suppose we skip this impasse, that is, suppose that we have a way to decide
which model is the correct one. Thus, each discourse is represented only by one
cognitive model. Is this model pre-wired in our minds or is it learned? How
do a child learn the meaning of (8.4), if it learns it at all? Certainly he cannot
learn it by ‘seeing’ the cognitive model his teacher has in his mind when he
utters that sentence. To be honest, I can see no use for a cognitive model when
teaching the meaning of a sentence. One can say that the appropriate cognitive
model shows up in the child’s mind when he has learned the meaning of (8.4),
but the cognitive model was of no use in the learning process. Furthermore,
how can the teacher corroborate that the child did learn the correct meaning of
the sentence in question?

A cognitive model is useless for teaching the meaning of a sentence, is useless
for testing whether someone correctly learned the meaning of a sentence, is
useless for testing whether a communication was successful. Thus, what is it
good for? There might be an answer to it. Cognitive models could render truth
conditions —because they are ‘models’, not because they are ‘cognitive’—, and
truth conditions are better candidates to give insight into the meaning of a
sentence. I will devote now my attention to a discussion of the truth conditions
given by EC.

8.2 EC Truth Conditions

This is not the place to argue that truth conditions are better than cognitive
models. It is just the place to show that EC can deliver truth conditions. In
order to do so, I will give a brief overview of EC formal tools that end up in the
definition of truth conditions given in [19, p. 105]. Next it follows a discussion
of that definition and an improvement of it is proposed. Some closing comments
complete this chapter.

8.2.1 Formal tools

Formal Language The first step of EC is the definition of a sufficiently rich
formal language. This language is far too complicated to be explained in this
section.2 It is enough to point out that it takes primitive constants of objects,
events, fluents (situations that evolve though time), and real-time coordinates.

2An explicit definition of it can be found in the appendix (Cf. §9).
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It also contains predicates that regulate the causal interaction between event
and fluents.

Scenarios and lexical specification A logic program can be given in order
to restrict the behavior of particular objects, events, and fluents. This restriction
is intended to make explicit —as much as causal interactions allow us— the
specification of lexical items in the language. The logic program that achieves
this is called a scenario.

Semantics The previous language is a First-Order Multi-Sorted Logic. How-
ever, the logic we intend to realize is non-monotonic. Therefore, we use a class
of partial Multi-Sorted models as a semantics for the formal language. This
class is not straightforwardly defined, but the idea is that the models of this
class are minimal, in the sense that nothing that has not been specified occurs.
A minimal model for a scenario can be defined as the smallest model of the
completion of the scenario (Cf. [19, p. 55]). The completion of a scenario S will
be denoted by S.

Syntactic deductions The syntactic counterpart of the semantics just de-
fined is Constraint Logic Programming with negation as failure. It can be shown
that this set of rules is sound with respect to the class of minimal models we
chose as our semantics. It is not complete, unfortunately, as there are deriva-
tions in Constraint Logic Programming that might loop.

Integrity constraints Given a scenario S and a formula φ which is consis-
tent3 with S, it is possible to define a ‘minimal’ success update, Ssucceeds, of
S in such a way that Ssucceeds ⊇ S and φ is true in any minimal model of
Ssucceeds. It is also possible to define a ‘minimal’ failure update Sfails in such a
way that Sfails ⊇ S and φ is false in any minimal model of Sfails. An Integrity
Constraint is defined to be a formula φ along with a request to preform either
a success or a failure update of S. This will be denoted by ?φ, and the update
of S according to ?φ, when successful, will be denoted by Sφ.

Truth conditions The language we have defined thus far already contains
truth conditions. But it is important to point out that EC does not define
the truth conditions of a natural language sentence S directly by using the
language’s truth conditions. This is due to the fact that, unlike say Montague
Grammar, we do not translate S into a formula in the formal language. The
translation of S consists of a scenario S and an Integrity Constraint ?φ. The
truth conditions of S are defined as follows. S is true iff the update of S
requested by ?φ is successful.4

3Consistence in this case is relative to any classical model, not a minimal model. Otherwise,
it would not make any sense to ask for a successful update of S.

4Since certain derivations might loop, this ‘iff’ is too strong. It should be broken down
into two clauses that define when a sentence is true and when it is false. Cf. [19], p. 105. For
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8.2.2 Truth

Suppose S is represented in EC by S and ?φ, and consider the following claim:

S is true iff the update of S with ?φ is successful (8.5)

Definition (8.5) has at least two problems. To begin with, it does not assert
what S is true of. In other words, it does not say against what we compare S in
order to decide whether it is true. It is not a remedy to replace the left-hand side
of it with ‘S is true in a given model A’. The reason being that the right-hand
side does not make use of A. The second problem, derived from the first one,
is that under this definition we cannot work out a coherent definition of falsity.
Let me explain a bit. A sentence is false if it is not true —intuitionistic worries
aside. When is S not true under definition (8.5)? This depends on whether the
request of update, i.e. ?φ, is a success or failure request. Suppose without loss
of generality that it is a request of success update. This means that S is false
when ?φ cannot update S in order for φ to be true in any minimal model of S.
This only happens when S and φ are inconsistent. But since only one S and
only one φ are assigned to each S regardless its actual context, then S is always
true or always false. This just does not make any sense —except for tautologies
or contradictions— for we need to make place for contingencies in any definition
of truth conditions.

Tarski used the notion of translation into a metalanguage in order to define
truth conditions. The conditions ‘P (a) is true iff aA ∈ PA’ is a clear example of
this: aA ∈ PA is a translation of P (a) in the metalanguage (given a model A).
A compositional definition of truth conditions is the key to give truth conditions
to a language specified by a grammar. This is the ‘traditional way’ in semantics,
so to speak. But, prima facie, we cannot follow this path in order to provide EC
with truth conditions. We would need a more indirect way to do so. We can,
instead, follow DRT’s proposal. That is, a sentence S determines a DRS K. It
is possible to define a model, BK , from K. Given any model A, we say that S
is true in A iff BK is a submodel of A.5 We can suggest a similar definition for
EC. A sentence S determines what I will call a semantic representation, that
is, a S and a ?φ. Updating S we obtain Sφ, and to it we can give a minimal
model, MS . Given a model A, we say S is true in A iff MS is a submodel of A.

A closing comment is in place. It is worth mentioning that in order to make
explicit the foregoing definition of truth conditions, we need to give a semantic
representation to each sentence in a systematic way. Such systematic assignment
of semantic representations assumes —for several reasons— a syntax specified
beforehand.6 This leads us into either the first or the second position with
respect to syntax and semantics (see §5.3). Thus, my critique of cognitive models

ease of presentation I will omit this technical detail.
5Truth conditions for DRT can be also defined in a more traditional way. Cf. [4, Ch. 6,

Vol. 2].
6Some of the reasons are the dealing with syntactic ambiguity, and the possibility of giving

representations to infinitely many sentences by finitistic means.
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and my interest in truth conditions preclude me to agree with the approach
worked on in the second part of this thesis, and suggests that improving on
the first part of the thesis —either insisting on DRT or not— might be a more
rewarding enterprise.
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Chapter 9

Appendix — Some details
of EC

9.1 The Language of EC

The language of EC is a 5-sorted First-Order language. The sorts are the fol-
lowing:

1. σR is the sort of reals,

2. σe is the sort of events,

3. σf is the sort of non-activity fluents,

4. σact is the sort of activity fluents.

5. σF is the sort of parameterized fluents.

Note that in this version there is no sort for objects. These are going to be
codified as a finite list of constants of sort σR (see below).

The following predicates make part of the language of EC:

1. All the usual predicates of L(R), particularly, the binary predicate ≤. If
R is a n-ary predicate in L(R), then it is of sort σR × . . .× σR︸ ︷︷ ︸

n−times

,

2. For each n ≥ 1, a countably infinite set of constants of n-ary predicates
of sort σR × . . .× σR︸ ︷︷ ︸

n−times

. We mentioned this in a separate item, since these

constants are intended to be used to codify VP’s that are to be transformed
into eventualities (Cf. §3.2).

3. A binary predicate Happens of sort σe × σR,

4. A 5-nary predicate Trajectory of sort σact × σR × σF × σR × σR,
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5. A ternary predicate Releasesσf

of sort σe × σf × σR.

For σ ∈ {σf , σact}:
6. An unary predicate Initiallyσ of sort σ,

7. A ternary predicate Initiatesσ of sort σe × σ × σR,

8. A ternary predicate Terminatesσ of sort σe × σ × σR,

9. A ternary predicate Clippedσ of sort σR × σ × σR,

10. A binary predicate HoldsAtσ of sort σ × σR.

For the parameterized fluents we require a ‘two-dimensional’ variety of the
previous predicates:

11. An binary predicate InitiallyσF

of sort σF × σR,

12. A 4-ary predicate InitiatesσF

of sort σe × σF × σR × σR,

13. A 4-ary predicate TerminatesσF

of sort σe × σF × σR × σR,

14. A 4-ary predicate ReleasesσF

of sort σe × σF × σR × σR.

15. A 4-ary predicate ClippedσF

of sort σR × σF × σR × σR,

16. A ternary predicate HoldsAtσF

of sort σ × σR × σR.

EC uses the functions + and · both of sort σR×σR → σR. We need a binary
function Π of sort σR × σR → σR, and functions π1 and π2 of sort σR → σR.

Let σ ∈ {σe, σf , σact, σF, σR, σN}. We assume a fixed, countably infinite set of
variables xσ, yσ, zσ, . . . of sort σ. We assume a constant 0σR of sort σR, and a
finite list of constants of sort σR. This list is intended to be a codification of
the objects to be used in the semantic representations.

The terms of the language of EC are built up inductively as follows:

1. Each variable of sort σ is a term of sort σ,

2. Each constant of sort σ is a term of sort σ.

3. If g is a n-ary function of sort σ1 × . . . × σn → σn+1 and t1, . . . , tn are
terms of sort σ1, . . . , σn respectively, then g(t1, . . . , tn) is a term of sort
σn+1.

The atomic formulas are defined as follows:

1. If t1, t2 are terms of sort σ, then t1 = t2 is an atomic formula,
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2. If R is a n-ary predicate of sort σ1× . . . σn and t1, . . . , tn are terms of sort
σ1, . . . , σn respectively, then Rt1, . . . , tn is an atomic formula.

The formulas of EC are the following:

1. Every atomic formula is a formula,

2. If ϕ is a formula so is ¬ϕ,

3. If ϕ and ψ are formulas so is ϕ ∧ ψ,

4. If xσ is a variable of sort σ, and if ϕ is a formula, then ∀xσϕ and ∃xσϕ
are formulas.

9.2 The Axioms of EC

In the first place, we need all the axioms of the real numbers1 for the functions
+ and · of sort σR× σR → σR, and the binary relation ≤ of sort σR× σR. Now,
we add to this set of axioms the following list of axioms, where e is a variable
of sort σe, f is a variables of sort σf , f is a variable of sort σact, F is a variable
of sort σF, and r, t, t′, d, g are variables of sort σR:

Axiom 1.1: Initiallyσf

(f) → HoldsAtσf

(f, 0)

Axiom 2.1:
(
HoldsAtσf

(f, r) ∧ (r < t) ∧ ¬∃s < r(HoldsAtσf

(f, s))

∧¬Clippedσf

(r, f, t)
) → HoldsAtσf

(f, t)

Axiom 3.1:
(
Happens(e, t) ∧ Initiatesσf

(e, f, t) ∧ (t < t′)

∧¬Clippedσf

(t, f, t′)
) → HoldsAtσf

(f, t′)

Axiom 4:
(
Happens(e, t) ∧ Initiatesσact

(e, f, t) ∧ (t < t′) ∧ (t′ = t + d)

∧Trajectory(f, t, F, g, d)∧¬Clippedσact

(t, f, t′)
) → HoldsAtσF

(F, g, t′)

Axiom 5.1:
(
Happens(e, s) ∧ (t < s < t′) ∧ (Terminatesσf

(e, f, s)

∨Releasesσf

(e, f, s))
) → Clippedσf

(t, f, t′)

We will also add a set of axioms i.2, which are the same as axioms i.1 (for
i = 1,2,3) but with predicates and variables of sort σact instead of σf . We also
add the following set of axioms for parameterized fluents (note that g plays the
role of the parameter for F):

Axiom 1.3: InitiallyσF

(F, g) → HoldsAtσF

(F, g, 0)

Axiom 2.3:
(
HoldsAtσF

(F, g, r) ∧ (r < t) ∧ ¬∃s < r(HoldsAtσF

(F, g, s))

∧¬ClippedσF

(r,F, g, t)
) → HoldsAtσF

(F, g, t)

1Those of a complete order field.
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Axiom 3.3:
(
Happens(e, t) ∧ InitiatesσF

(e,F, g, t) ∧ (t < t′)

∧¬ClippedσF

(t,F, g, t′)
) → HoldsAtσF

(F, g, t′)

Axiom 5.3:
(
Happens(e, s) ∧ (t < s < t′) ∧ (TerminatesσF

(e, F, g, s)

∨ReleasesσF

(e,F, g, s))
) → ClippedσF

(t, F, g, t′)

We need axioms to control the behavior of functions Π, π1 and π2, since
we want them to behave as ‘tuple coding’ function and its respective projection
functions. The axioms are:

1. π1 ◦Π(x, y) = x, and

2. π2 ◦Π(x, y) = y.

We define the code Πn(x1, . . . , xn) of a n-tuple (x1, . . . , xn) by induction on
n ≥ 2:

1. Π2(x1, x2) = Π(x1, x2),

2. Πn(x1, . . . , xn) = Π(Πn−1(x1, . . . , xn−1), xn).

The projection functions for Πn are defined by πn
i = π2 ◦ (π1)n−i (for i =

1, . . . , n), and it can be easily proven that EC ` πn
i ◦Πn(x1, . . . , xn) = xi.

We define the numerals on each sort by induction (though we will omit the
superscript referring to the sort):

1. 0 = 0,

2. n + 1 = Π(n, 0).

It can be easily proven that if n = m then n = m, and if n + 1 = m + 1 then
n = m.

Because of the particularities of our version of Feferman coding, we code
formulas in the σR ‘realm’. On the other hand, we have a many-sorted language
of events and fluents (recall that we have three types of fluents) that does not
have parameters. We use the Feferman coding to add parameters to these
events and fluents. However, in order to do so, we require extra tools in order
to translate the coding of formulas into terms of the appropriate sort. We need
to add some complete and decidible list of axioms in order to represent numerals
in each of the domains of sort σe, σf , σact, σF. We will add a constant 0σ and
the Presburger axioms of sort, for σ ∈ {σe, σf , σact, σF}.

We need also a list of axioms for the translation functions Iσ of sort σR → σ:

1. Iσ(0σN) = 0σ,

2. Iσ ◦ (·)′ = (·)′ ◦ Iσ. (where the (·)′ in the left-hand side is of sort σN and
the (·)′ in the right-hand side is of sort σ.)

Finally, we need to add the axioms for the truth predicates. This list is the
list presented in [19, p. 77].

This set of axioms is called EC.

102



Bibliography

[1] George S. Boolos & Richard C. Jeffrey 1989, Computability and Logic.
Cambridge University Press. Third Edition.

[2] Michael Dummett 1976, What is a Theory of Meaning? (II). In Dummett,
M. The Seas of Language. Oxford: 34-93. 1993.

[3] Solomon Feferman 1984, Toward Useful Type-Free Theories. I. In The Jour-
nal of Symbolic Logic, Vol 49, No. 1: 75-111.

[4] Gamut 1991, Logic, Language and Meaning. The University of Chicago
Press. Vols 1,2.

[5] Adele Goldberg 1995, Constructions: A Construction Grammar Approach
to Argument Structure. The University of Chicago Press: Chicago and Lon-
don.

[6] Adele Goldberg 1997. Construction Grammar. In E.K. Brown & J.E. Miller
(eds.), Concise Encyclopedia of Syntactic Theories. New York: Elsevier
Science Limited.

[7] Fritz Hamm, Hans Kamp, & Michiel van Lambalgen, There is no Opposi-
tion Between Formal and Cognitive Semantics. to appear.

[8] Ray Jackendoff 1996, Semantics and Cognition. In Shalom Lappin (Ed.),
The Handbook of Contemporary Semantic Theory, 539-559. Oxford, Black-
well.

[9] Hans Kamp & Uwe Reyle 1993, From Discourse to Logic, Introduction to
Modeltheoretic Semantics of Natural Language, Formal Logic and Discourse
Representation Theory. Kluer Academic Publishers.

[10] Paul Kay 2002, An Informal Sketch of a Formal Architecture for Construc-
tion Grammar. In Grammars 5: 1-19.

[11] Ronald Langacker 1998, Conceptualization, Symbolization, and Grammar.
In Tomasello, Michael (Ed.), The New Psychology of Language: Cogni-
tive and Functional Approaches to Language Structure. Lawrence Erlbaum
Associates: Mahwah, London.

103



[12] David Lewis 1972, General Semantics. In Davidson and Harman (Eds.),
Semanitcs of Natural Language. Reidel.

[13] Laura A. Michaelis. forthcoming. Construction Grammar. In K. Brown
(Ed.), The Encyclopedia of Language and Linguistics, Second Edition. Ox-
ford: Elsevier.

[14] Carl Pollard, 1996, The Nature of Constraint-Based Grammar. Pa-
cific Asia Conference on Language, Information and Computa-
tion. Kyung Hee University. Seoul, Korea. Dec. 20. Http link:
utkl.ff.cuni.cz/knihovna/pollard talk1.pdf

[15] Murray Shanahan 1999, The Event Calculus Explained. In Lecture Notes
in Computer Science, Vol. 1600: 409-431.

[16] Martin Stokhof & Jeroen Groenendijk 1991, Dynamic Predicate Logic. In
Linguistics and Philosophy, Vol. 14, no. 1: 39-100.

[17] Michael Tomasello 1998, Introduction: A Cognitive-Functional Perspective
on Language Structure. In Tomasello, Michael (Ed.), The New Psychology
of Language: Cognitive and Functional Approaches to Language Structure.
Lawrence Erlbaum Associates: Mahwah, London.

[18] Michiel van Lambalgen & Fritz Hamm 2003, Event Calculus, Nominalisa-
tion and the Progressive. In Linguistic and Philosophy, 26.

[19] Michiel van Lambalgen & Fritz Hamm 2005, The proper treatment of
Events. Blackwell Publishing.

104


