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Abstract 
 

Although commercial search engine companies have reported a great deal of success 

in appropriating link-based methods, these methods have struggled to demonstrate 

significant performance improvements over content-only retrieval methods in several 

off-line Web IR evaluations.  In this thesis the effectiveness of link-based methods is 

assessed against content-only retrieval baselines.  Algorithms embodying established 

HITS, in-degree, realised in-degree, and sibling score propagation techniques are 

evaluated alongside variants of those algorithms.  The variant algorithms are devised 

to aid in three secondary lines of investigation relating to link-based methods: the 

effects of link randomisation, the utility of sibling relationships and the influence of 

link densities.  

 

All established link-based algorithms are demonstrated to improve on several content-

only retrieval baseline performance metrics with the realised in-degree algorithm 

proving to be particularly effective across all considered metrics.  In relation to the 

other lines of investigation, the experimentation reveals that: leveraging sibling 

relationships does not lead to significant performance improvements, higher link 

densities do not afford performance improvements and that algorithms are susceptible 

to link randomisation. 
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1. Introduction 
 

In many respects, content on the World Wide Web is no different to content in off-

line document collections.  For that reason, the approaches taken in traditional 

Information Retrieval are highly applicable to the Web. 

 

The nature of the Web introduces a number of challenges to traditional Information 

Retrieval but alongside those challenges are opportunities for exploiting sources of 

evidence not present in other contexts.  Examples of this evidence are structured 

documents facilitating richer abstracted representations, and document usage data 

provided by Web servers.  Hyperlinks are a particularly valuable source of 

information.  Due to the fact that hyperlink authors are often not the authors of 

documents that are the targets of their hyperlinks, potentially impartial judgments on 

documents can be discerned.  From the perspective of Web Information Retrieval, the 

payload of hyperlinks is two fold.  Firstly, the hypertext associated with hyperlinks 

enable the representation of target documents to be enriched with typically terse 

annotations.  Secondly, collectively – hyperlinks allow otherwise unconnected 

documents to be modelled as nodes within a graph, yielding valuable topological 

properties for those documents. 

 

The value of topological properties has been exalted by commercial Web search 

engine companies such as Google who use topological link-based methods to improve 

their search results.  Although search engine companies remain positive about the 

value of link-based methods, many attempts to verify the effectiveness of these 

methods with a number of test collections have been unsuccessful.  The divergence 

between what has been reported by search engine companies and neutral empirical 

evidence has raised some doubt as to whether link-based methods really do work.   

 

The primary goal of this thesis is to analyse the effectiveness of a variety of 

topological link-based methods by contrasting their performance with content-only 

retrieval baselines. 

 

Four particular link based methods are focused on: 
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 In-degree 

 Realised In-degree 

 HITS 

 Sibling score propagation 

 

In addition to implementations of these methods, a number of variations are 

introduced and evaluated.   The variants are designed to help fulfil three secondary 

research goals: 

 

 Determine the utility of sibling relationships 

 Determine the influence of link density 

 Determine the effects of link randomisation 

 

Additionally, an insight into the tuning of all algorithms is sought.  A detailed account 

of experimental aims can be found in section 3.1. 

 

The remainder of the thesis is organised into four additional chapters: 

 

 In chapter 2:  The fundamentals of Web IR and link structure analysis are 

introduced through an overview of influential and introductory literature in the 

field. 

 

 In chapter 3:  The aims, setup and scope of experimentation is presented.  

Specifically, all evaluated algorithms are introduced and the evaluation 

environment detailed. 

 

 In chapter 4:  The results of experimentation pertaining to all research aims are 

presented. 

 

 In chapter 5:  Conclusions relating to all research aims are drawn and a 

number of suggestions for further work presented. 
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2. Overview of Web Information Retrieval 
 

Web search engines are typically extensions of Information Retrieval (IR) systems 

which were established long before the Web came into existence.  With the rapid 

growth of the Web in the 1990s, a need for search capability became imminent and by 

the mid 1990s rudimentary appropriations of IR systems for the Web surfaced from 

early adopters such as AltaVista (who claim to have delivered the Internet’s first Web 

index [AltaVista]). 

 

Even before Web searching, searching of other Internet information sources was 

possible.  Archie facilitated searching of FTP files by name and Veronica offered 

keyword search of Gopher menu titles. 

 

Although today’s Web search engines are tailored for searching Web data, their roots 

lie in IR and many of the techniques established in IR remain characteristic of Web 

search engines. 

 

In this section we start by briefly reviewing classic IR approaches before introducing 

a number of challenges posed by the Web.  An account is then given of the evaluation 

of Web IR systems.  An overview of the uses of Web hyperlinks (links) is presented 

before an account of the application of links for the purpose of Web IR is presented.  

Finally an overview is presented of how link and other sources of Web evidence are 

incorporated in typical Web IR implementations. 
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2.1 Information Retrieval 
 
A number of retrieval models have been devised to abstract the processes underlying 

Information Retrieval systems.  Models in which formal queries specify precise 

criteria for retrieved documents are said to be exact-match models, whereas best-

match models return a ranked list of documents for a query conveying suitable 

documents.  Exact-match models such as the Boolean model in which queries are 

formulated as logic expressions are more popular in legal and scientific search 

systems than Web search engines.  The Web’s user base generally demand less-

rigorous, informal querying and are willing to sacrifice certainty in exchange.  

Popular contemporary Web search engines in tune with their user base therefore tend 

to be underpinned by best match retrieval models. 

 

Perhaps the three most prominent best match models are the vector space model 

[Salton1968], probabilistic model [Robertson1977] and the language model 

[PonteCroft1988].  In the vector space model, queries and documents are modeled as 

vectors in a high-dimensional Euclidean space where each axis corresponds to a 

distinct term and the co-ordinate along the axis is a weight determined by statistical 

occurrence data for the term.  Once encoded in vectors, similarities between queries 

and documents can be deduced according to vector arithmetic.  Often the inner 

product of vectors is used in this regard.  Term weighting schemes are key to 

performance in these models since terms carry varying levels of significance 

depending on context.  Typically the weight of a term in a document or a query is 

determined by a combination of its local profile within the document or query, its 

global profile within a wider context (the document collection as a whole) and a 

normalization factor compensating for discrepancies in the length of documents.   

 

The probabilistic model takes a more conceptually intuitive approach.  Instead of 

being based on relatively abstract vector arithmetic, relevance rankings are based on a 

probabilistic measure of searchers’ relevance classifications given a query and 

document.  The measure used is the likelihood ratio for relevant classifications of the 

query and document and is formulated as P(R|Q,D)/P(NR|Q,D) (that’s the probability 

of a relevant classification by searchers divided by the probability of non-relevant 

classification by searchers).  Under the assumption that term occurrences are 
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independent - a little manipulation of this measure involving application of Bayes 

rule, reveals that a proportional approximation of it can be derived from estimates of 

the probability that the document’s terms feature in relevant classification ( 

formulated as P(t|R) ) and non-relevant classifications ( formulated as P(t|NR).  These 

estimates are typically sourced from maximum likelihood data taken from relevance 

feedback or from collection-wide term occurrence data. 

 

Similar to the probabilistic model is the language model in which relevance rankings 

for documents are based on the probability that a searcher had that particular 

document in mind when generating their query, this is formulated as P(D|Q).  Under 

the assumption that query terms occur independently and some manipulation with 

application of Bayes rule it follows that the measure can be approximated using 

estimates for the probability that query terms feature in the document ( formulated as 

P(t|D) ) along with a prior probability for the document (formulated as P(D) ).  

Typically, maximum likelihood estimates taken from document term frequency data 

are used in estimating query-term probabilities whilst document lengths are used in 

estimating document prior probabilities.  In the context of Web Retrieval, authority 

measures are more prudent document priors. 

 

Irrespective of the retrieval model underlying an IR system, an inverted index is 

conventionally used to store representations of documents within the document 

collection.  This structure typically consists of an index of terms with pointers to the 

documents in which they occur and additional metadata pertaining to those 

occurrences.  The process of creating an index is dubbed indexing. 

 

Research into the tuning of classic Information Retrieval systems for various 

document collections and query-sets can be useful for optimizing Web search engines.  

A study by Salton and Buckley on vector space model weighting schemes 

[SaltonBuckley1988], revealed that for short queries, schemes in which the local 

weight for query-terms do not vary significantly perform better since each query-term 

is important.   Since Web queries are characteristically short, these findings could be 

valid for Web searches also. 
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2.2 Web Retrieval Challenges 
 

The nature of the Web poses a number of challenges to classic IR systems.  Several of 

these are outlined in this section. 

 

Crawling 

 

Web content is distributed across countless Web servers scattered across the Internet, 

therefore unlike IR collections it is a prerequisite to assemble a snapshot of the Web’s 

content (a crawl) before constructing a representation of it through indexing.  

Typically snapshots are assembled by automated applications which engage in 

crawling; the process of recursively fetching documents using a pool of document 

locations (URLs) which is replenished with discoveries of new URLs referred to in 

the hyperlinks of fetched documents.  Although implementing rudimentary crawlers is 

relatively straight forward, Google [BrinPage1998-B] intimate that industry strength 

crawlers capable of assembling the large crawls typical of major search engines 

requires a great deal of engineering. 

 

Diverse Search Requirements 

 

In tandem with developments in Web technology and Web programming, the Web is 

increasingly functioning as a platform for a growing number of on-line services and 

Web applications such as Internet banking and Web mail.  Changes in the use of the 

Web induce changes in the intent of Web searchers.  Broder [Broder2002] presents 

evidence that informational searches – as formulated in the context of traditional IR 

[SchneidermanByrdCroft1997] account for less than 50% of all searches.  The 

majority of searches are explained by Broder to be either navigational search in which 

a specific URL such as a corporate homepage is sought or transactional searches in 

which access to an interactive process (such as on-line shopping) is sought.  Broder 

concludes that search engines are challenged by the need to respond to the different 

classes of search differently. 
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Although the category of informational searches is common to both IR and Web IR, 

the abundance of content on the Web demands greater discrimination when returning 

results for broad-topic searches of this type.  A shift in emphasis towards a topic 

distillation approach to satisfying these queries is advocated by Chakrabarti 

[Chakrabarti1998-B].  By topic distillation, Chakrabarti refers to an approach in 

which potential search results are evaluated according to how well they represent a 

topic as opposed to how similar they are to the topic.   Chakrabarti experiments with a 

means to identify this representative quality by analysing topological data.  Although 

numerous techniques for capturing the representative quality of a document through 

topological analysis have been devised, Marchiori [Marchiori1997] challenges the 

fairness of these approaches.  Instead of topological analysis, he advocates using 

hyper-information in discerning the added-value of a document, where hyper-

information is described as the information that can be obtained through browsing 

additional content that is hyperlinked. 

 

Search Engine Persuasion 

 

Search Engine Persuasion, coined SEP by Marchiori [Marchiori1997] refers to 

deliberate manipulation of Web search engines in order to boost the ranking of 

documents in search results.  SEP is far more common on the Web than in traditional 

IR contexts where there is relatively little competition for the attention of collection 

audiences.  Due to the commercial motives of traffic hungry Web site owners, 

manipulation of this sort ranges from being deceptive to fraudulent.  The implicit use 

of neutral quality judgments in the form of hyperlinks countered the effects of 

primitive SEP methods such as hidden text.  In more advanced SEP hyperlinks are 

manipulated also.  Understandably, efforts made by commercial search engines to 

maintain the integrity of their search results tend not to be made public. 

 

Incorrect Content 

 

Since there are generally no content controls on material published on the Web there 

is a higher chance that Web documents contain incorrect information than traditional 

IR collections.  Web searchers tend to feel more assured by information that emanates 
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from important sites.  The challenge of retrieving correct content is therefore closely 

tied to that of retrieving authoritative content. 

 

Duplication 

 

Duplication of content is far more likely in the context of the Web than it is well 

controlled collections.  Duplication poses a problem for both Search engines and 

searchers alike.  Search engines are computationally burdened by the crawling, 

indexing and storage of duplicate content and Internet searchers find the presence of 

duplicates amongst retrieval lists a nuisance.  There are generally two approaches to 

duplicate elimination.  Fine-grained duplication elimination concentrates on 

discovering duplicate pages where as coarse-grained duplicate elimination places an 

emphasis on identifying duplicate resource directory trees (mirrors).   

 

 
 
2.3 Web Retrieval Evaluation 
 

There are a variety of outlooks on what constitutes a good Web search engine.  Many 

suggestions for performance metrics are somewhat less formal than the criteria used 

in assessing Information Retrieval systems. 

 

[Clevedon1966] identifies 6 criteria for the evaluation of information retrieval 

systems. 

 

i. Coverage 

ii. Time Lag 

iii. Recall 

iv. Precision 

v. Presentation 

vi. User Effort 

 

Empirical studies on Web user behavior indicate that Web users are impatient and 

have a tendency to abort their requests within the first 20 seconds 
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[RossiMelliaCasetti2003].  In light of this figure ‘Time Lag’ is naturally a key 

performance factor.  However variations in network latency at different points on the 

Internet make the evaluation of ‘Time Lag’ for Web Search engines unreliable.  

[GwizdkaChignell1999] intimate further problems with ‘Time Lag’ metrics due to 

variations in Internet load.   

 

Although ‘coverage’ (scope of searchable content), ‘presentation’ and ‘user effort’ are 

important from a searchers perspective, they pale into insignificance when compared 

to precision.  [JansenSpinkSaracevic2000] report that 58% of searchers view no more 

than the first 10 results returned for a query and that the mean number of pages 

examined is 2.35.  These facts intimate the need for high precision in Web IR. 

 

In their discussion on Web IR evaluation [Gwizdka&Chignell1999] suggest that ‘user 

effort’ can be approximated to the search length method introduced by Cooper 

[Cooper1968].  As it’s defined by Cooper, search length corresponds to the number of 

irrelevant documents encountered before arriving at a relevant document.  A more 

elaborate version of the metric is ‘expected search length for n’, which is defined as 

the number of documents it is necessary to traverse before finding ‘n’ relevant 

documents.  [vanRijsbergen1979] adds some mathematical fines to Cooper’s expected 

search length formulation.   

 

Presentation of retrieval results has an impact on the precision and user effort a 

searcher experiences and for that reason is also a valuable metric.  According to 

[GwizdkaChignell1999], the vast majority of Web search engines return a linear 

ranked list of results and even when there is an attempt to convey that several 

documents share the same rank – users are oblivious to it.  Some research has gone 

into how best to present search results, but as so many search engines opt for the same 

linear ranked list presentation – it would be impossible to differentiate them in that 

regard. 

 

Fundamental in evaluating recall and precision are relevance judgments, indicating 

which documents are relevant for each query.  Attaining accurate or even estimated 

relevance judgments can be a sizable task particularly when the corpus in question is 

the Web.  For that reason, alternative methods for ranking Information Retrieval 
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Systems without a base requirement for relevance judgments have been proposed.  

[WuCrestani2003] present a number of variations of ranking methods in which the 

quality of an individual search engine is based on how well its rankings correlate with 

those of other evaluated ranking methods.  To this end, the notion of a reference count 

is introduced as a measure of how many other evaluated search engines also rank a 

document that is ranked by an evaluated system.  A sum of reference counts for all 

retrieved documents is then used as the basis for ranking the candidate search engines.   

 

Other useful non-human, relevance judgment search engine ranking methods feature 

click-through data.  Where click-through data can be loosely defined as data 

pertaining to the activities of searchers, such as which retrieved pages they visit.  

[Joachims2002] presents a method for assessing the quality of two counterpart 

systems based on how a user interacts with a neutral retrieval result list featuring an 

even mix of results from each search engine.  Joachim’s research demonstrates that 

the approach produces equivalent results to those obtained through traditional 

relevance judgments under a number of plausible assumptions which are empirically 

verified.  One such assumption is that users click more frequently on relevant links 

than irrelevant links. 

 

 

 

2.4. Link Structure Analysis 
 

Social network theory is concerned with the application of graph theoretical 

properties to problems involving social structures in which entities are involved in ties 

with one-another.  A common objective in both social network theory and Web IR is 

the identification of important entities.  Since the Web can be modeled as a social 

network in which documents are connected through hyperlinks, research on issues of 

importance from the former discipline are often useful.  Amongst the various types of 

importance, that which is most relevant in Web IR is prestige.  Moreno formalized the 

notion of prestige as early as 1934 in stating that “A prestigious actor is one who is 

the object of extensive ties” [Moreno1934],  This is clearly a valuable concept in the 
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context of Web IR and a number of prestige measures emanating from social network 

analysis research have found their way into link-based Web IR methods.   

 

Aside from Web IR, link analysis also plays a part in a number of other Web related 

disciplines including Webometrics, Web crawling and Web clustering.  As the Web 

becomes a more integral part of society, a better understanding of its form becomes 

vital.  To that end, Webometrics yields information on the structural properties of the 

Web such as its theoretical diameter and size.  [Broder2000] intimates that such 

information can be utilized to improve Web crawler design and identify important 

phenomena that could be useful in managing the growth of the web.  Broder’s study 

most notable for it’s bow-tie model of the Web’s structure in which there is a strongly 

connected core (SCC) of about 66m pages with a set of 44m pages linking into it (IN 

set) and another set of 44m pages linked to by it (OUT set).  A number of pages that 

are totally isolated from the core then pertain to tentacles that hang off the IN and 

OUT sets. 

 

Yet another application of Web link analysis is in Web clustering and categorization 

algorithms which grouping similar pages together.  [Chakrabarti1998] demonstrates 

that links and their surrounding anchor text can be used to develop an automatic 

resource compiler with performance that is compatible to the manual Web directory 

Yahoo!.  Clustering of Web pages also feature in Web meta search engines such as 

Vivisimo [Vivisimo] which further categorize search results for the convenience of 

searchers. 

 

A more novel application of Web links is introduced by IBM Research [Amitay2003].  

They apply temporal link data in identifying significant trends and events in matters 

pertaining to a query.  A temporal link is introduced as a dated in-link, before a clear 

example of how profiling the distribution of dated in-links (by date) can be revealing.   

The study concludes by demonstrating the utility of dated in-links to Web IR.  An 

HITS algorithm in which links are weighted according to their temporal relevance is 

shown to produce more contemporary results than standard HITS. 
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2.5 Link Structure Analysis in Web IR 
 
Generally link-based methods in Web IR fall into two categories, local link structure 

techniques and global link structure techniques.  Local link structure techniques focus 

on links within a sub-graph pertaining to a query whereas global link structure 

techniques operate on the links of an unrestricted graph independent of any query.  

Further, global link based methods essentially incorporate the global status of a web 

page amongst all other web pages into retrieval assessments.  The results of such 

global link analysis techniques are combined with the results of content focused 

analysis in determining an overall relevance score. 

 

The status or importance that Web pages enjoy can be approximated in several 

manners.  Perhaps the most simple of these is a citation count approximation 

rendering the page with the highest number of in-links as that with the highest status.  

The idea central to this, that each in-link to a page is an equally important 

endorsement of it, featured in academic citation analysis as early as 1972 

[Garfield1972] and implementations of the technique have been employed in 

applications as diverse as speculating on future winners of the Nobel Prize 

[Sankaran1995].  

 

Another class of link based methods are A mature variant of citation count (or in-link 

count in the context of the Web) is the iterative PageRank1 computation 

[BrinPage1998] for a page in which the endorsement value of individual links vary 

according to their position within the Web graph. The intuition here is that the 

magnitude of endorsement contributed by a link should be proportional to the source 

pages own status and inversely proportional to the total number of endorsements 

offered by that source page. 

 
 Amongst the most widely cited link-based algorithms is HITS (Hyperlink Induced 

Topic Search) [Kleinberg1998].  At the heart of the HITS algorithm is an attempt to 

solve two fundamental problems of content based web retrieval.  The first of these 
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problems is introduced by Kleinberg as the abundance problem and is described as 

occurring when in his words; “The number of pages that could be reasonably relevant 

is far too large for a human to digest”.  He notes that this problem arises when 

applying content-only retrieval to “broad topic” queries with a large representation on 

the Web.  In developing his extension of HITS; ARC (Automatic Resource 

Compilation), [Chakrabarti1998] describes the analogous challenge of a “Topic 

Distillation”.  Secondly, Kleinberg notes the phenomena of relevant documents which 

are elusive to content-only retrieval methods.  A Web search engine home page is 

given as an example of a page that is unlikely to contain terms in common with a 

query such as “search engine” and thus evade retrieval by content-only retrieval 

methods.  HITS approach to addressing both of these issues is to identify high quality, 

authoritative documents amongst self-descriptive and possibly non self-descriptive 

relevant documents by augmenting content retrieval methods with link structure 

analysis.  Key to the link structure analysis is the distinction between hubs and 

authorities and the mutually reinforcing effect they have on one another.  A hub is a 

document with out-links to authorities.  The more plentiful and authoritative the out-

linked sites are the better the hub is.  Likewise an authority has in-links from many 

hubs.  Should those in-links be plentiful and originate from good hubs then the better 

the authority is. 

 

The meta-algorithm underlying HITS is characteristic of many other link analysis 

algorithms. 

 

i. Start with a query focused set of lexically similar retrieved documents, 

referred to as a root set. 

ii. Speculate on a set of potentially relevant documents related to root set 

members and expand the root set with these to produce a base set. 

iii. Apply link analysis to the sub-graph structure pertaining to the base set in 

producing judgments on the authority of these documents. 

 

The first stage of the meta-algorithm is inevitable since retrieving lexically similar 

documents provides a set of potentially relevant documents from which to progress. 
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The value in augmenting the root set in the second phase is two fold.  Principally, 

there is a broadening of the scope of candidate authorities from just lexically similar 

ones which introduces the possibility of retrieving otherwise elusive documents.  

Additionally, the link density of the sub-graph will be increased as a consequence 

which is likely to be beneficial to subsequent link-analysis.  Beyond stating the 

intention to keep the size of the base set relatively small for computational efficiency, 

Kleinberg gives little consideration to its construction.  Interestingly, 

[NgZhengJordan2001], show that changes in the linkage patterns within a base set 

could cause considerable changes in HITS authority results.  

 

A number of heuristics have been implemented to better refine the semantics of links 

within the base set sub-graph.  Kleinberg suggests that links from one site to a 

particular page on an external site should not signify the same degree of endorsement 

as when those in-links are from a variation of sites.  In the former case all the in-links 

are likely to represent one particular author’s endorsement of the site, whereas in the 

latter case the endorsements are widespread and thus more valuable.  

[HenzingerBharat1998] makes the same over-influential author observation in the 

implementation of a refinement to HITS in which the influence of multiple intra-site 

links is tempered.  In her experiments, this refinement renders a 25% improvement in 

average precision.   

 

A clear semantic distinction between the authority conveyed between inter-site links 

and intra-site links is also intimated by Kleinberg in suggesting that inter-site links 

very often exist only to allow for navigation of the infrastructure of a site and thus 

unlike external links should not convey authority.  Both [HenzingerBharat1998] & 

[Chakrabarti1998] note that an HITS analysis can result in a loss of focus on the 

original query, often referred to as topic-drift.  This is demonstrated to occur in cases 

where suitably connected components infiltrate into the base set and emerge as 

authorities although they are off-topic.  [Chakrabarti1998] tackles topic drift by 

weighting the links of the sub graph according to the relevance to the query of anchor 

and anchor-neighbouring text associated to the link.  In this sense, the endorsement 

that a linked page gets is proportional to it’s relevance as can be discerned from the 

similarity between its associated text and the query.  

[HawkingCraswellRobertson2001] as well as numerous TREC participants report 
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good performance of anchor text only retrieval in entry page finding tasks, where an 

entry page is the home page of a site.  

 

[HenzingerBharat1998] go a step further by weighting links in accordance to the 

similarity between the query and the content of the link target.  This approach offered 

an improvement when compared to standard HITS as does another introduced content 

analysis heuristic that prunes irrelevant documents from the sub graph prior to link 

analysis.  Interestingly, Henzinger and Bharat reveal that a combination of these two 

methods does not lead to a further improvement. 

 

 

An effect similar to topic drift is introduced by [Lempel2000] as the tightly knit 

community effect or TKC.  Lempel shows HITS to be susceptible to small clusters of 

highly connected nodes.  Due to their high link density, the nodes of these clusters 

score higher under HITS authority assessment than nodes from larger connected 

clusters with more relevance.  This phenomenon is well illustrated through examples 

before a stochastic approach is shown to alleviate the problem. 

 

In essence, Lempel’s link analysis method considers a site’s authority scores to be the 

product of its in-degree and the size of its community where a community is defined 

in terms of the connected component the link belongs to.  Allowance is thus given for 

a site with a high in-degree amongst a small community to have comparable authority 

with a site of lower in-degree amongst a larger community.   

 

Although Lempel’s results are largely positive, he is cautious over their merits when 

evaluations extend beyond early-precision measures such as precision at 10 to 

precision at 200. 

 

[RichardsonDomingos2002] and [Haveliwala2002] advocate the combination of 

multiple pre-computed topic-biased page rank vectors in constructing authority 

assessments biased towards queries.  The idea of biasing page rank scores had already 

been conceived in [BrinPage1998] introductory paper for the purpose of 

personalization.  In Havelinwala’s approach 16 PageRank vectors are computed each 

biased according to a topic of the Open Directory Project [ODP] Web directory.  At 
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query time a scoring function is used which sums the vector score of each of the 16 

topic biased PageRank’s weighted by the probability of the topic’s relevance to the 

query.  This probability is calculated using a unigram language model and utilizes 

maximum likelihood estimates for parameters. 

 

The scores are shown to be equivalent to the PageRank vector corresponding to a 

standard random walk except that instead of users jumping to pages with uniform 

probability when not following out-links, the jump is biased towards pages belonging 

to classes probabilistically more relevant to the query. 

Topic sensitive re-ranking of URLs matching queries are demonstrated by Haveliwala 

to consistently better standard PageRank re-rankings.  These results are especially 

encouraging when considering the efficiency and insusceptibility to link spam of topic 

sensitive scoring. 

 

 

 

2.6 Typical Web IR Implementations 
 

In a technological survey of Web IR systems compiled by Huang [Huang2000], three 

components are said to be characteristic of Web search engines; an indexer, a crawler 

and a query server.  Huang explains that together the crawler and indexer work to 

produce a representation of the Web which is optimized for efficient use by the query 

server.  That much is true of IR systems in general.  Where Web IR implementations 

differ from IR systems significantly is in the variety of information they exploit in 

retrieval, much of which is unavailable in traditional IR collections.  Although the 

exact details of their systems are generally kept in-house, commercial Web search 

engines are known to leverage several Web-rich sources of information such as 

hyperlinks, document structure, document meta-data and usage data from Web 

servers. 

 

Some consideration was given to document meta-data by Amento, Terveen and Hill 

in investigating how well a number of measures were able to predict document quality 

[AmentoTerveenHill2000].  In their experiments, simplistic meta-data such as number 
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of images and number of documents on site were demonstrated to be effective.  A 

similar study [KraaijWesterveldHiemstra2002] found URL form to be particularly 

effective for entry page (home page) finding tasks.   

 

Document structure is perhaps more readily available than meta-data. The vast 

majority of content on the web is structured in conformance with mark-up languages 

such as HTML and increasingly XML.  Mark-up offers implicit contextual 

information which facilitates richer modelling of documents than the typical bag-of-

words suited to plain text documents.  Typically, this representation replaces the 

standard term frequency meta-data associated with terms occurring in a document 

with term frequency vectors where each co-ordinate of the vector represents the 

number of occurrences of the term within designated context classes.  Retrieval 

algorithms can then take this context information into account during relevance 

evaluations, so that occurrences of terms within certain context classes are more 

valuable than those occurring within others.  Whilst focusing on HTML mark-up, 

[CutlerShihMeng1997] demonstrate that ‘strong’ and ‘anchor’ text are particularly 

effective descriptors of Web pages. 

 

  

In XML retrieval, context is important from an addition perspective also.  Not only 

can context aid with retrieval performance, it is also key to meeting a searcher’s 

requirements.  Typically the unit of retrieval in XML retrieval is a particular fragment 

of an XML document not necessarily the whole document itself.  XML queries 

therefore often feature strict structural constraints so that not only are terms specified 

in queries but also the required contexts of those terms. The quality of retrieval is 

consequently not only based on the content resemblance of a fragment to a query but 

also on the context resemblance where the notion of context resemblance can be 

expanded in a number of ways.  A popular context measure is longest common 

subsequence which is defined as the how many consecutive components within a 

context definition match. 

 
McBride’s World Wide Web Worm was the first Web search engine to make use of 

anchor text.  Subsequently anchor text use has proved to be a successful means of 
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improving Web IR systems.  In an insight into the architecture of their Web search 

engine [BrinPage1998-B], Google confirm that they index anchor text.  Further, 

structural information pertaining to terms such as font and capitalization are used to 

enhance their index entries.  Terms appearing in URLs and meta-tags are also 

distinguished within Google’s index structure.  From the insight given by Google it is 

clear that commercial search engines must also concern themselves with optimizing 

efficiency and eradicating duplication.  

 

TREC Web Track participants are more open about their techniques than Web search 

engine companies and their Web IR research publications are well cited.  Participants 

from the University of Twente [KraaijWesterveldHiemstra2002] are believed to be 

the first to have published details on the effectiveness of applying URL form evidence 

in entry page searches [HawkingCraswell2004], a technique which is thought to have 

since been adopted in commercial Web search engines.   

 

 

 

2.7 Chapter Summary 
 
In this chapter an overview of literature in the areas of Web IR and link-structure 

analysis has been presented.  Introductory and influential literature in these areas have 

been overviewed to provide the fundamental background knowledge underpinning 

and motivating the research carried out in this thesis.  With the background material 

established, the next chapter goes on to clarify the research questions posed by this 

thesis and details the experimentation carried out in addressing them. 
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3. Experimentation 
 

In this chapter we start by re-stating and clarifying the aims of the experimentation 

carried out in this thesis.  Next, in section 3.2 the test collection used for experiments 

is introduced and detailed.  The content baselines and algorithms featuring in 

experiments are then described in sections 3.3 and 3.4. 

 

At the end of the chapter a list of all runs yielded by the experiments is presented 

along with an overview of the experimental architecture implemented to produce 

them. 

 

 

 

3.1 Experimental Aims 
 

The experimentation carried out is designed to meet two primary objectives: 

 

 Evaluate the effectiveness of link-based methods 

 Gain an insight into the tuning of algorithms 

 

In addition to established link-based methods, a number of variations on them are 

introduced and the performance and tuning of these will also be investigated.  The 

variant algorithms are specifically devised with the following secondary objectives in 

mind: 

 

 Determine the utility of sibling relationships 

 Determine the influence of link density 

 Determine the effects of link randomisation 

 

In the remainder of this section all objectives are further expanded. 

 

Evaluate the Effectiveness of Link-Based Methods 
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A selection of four familiar link-based methods has been chosen to represent link-

based methods in general.  The four selected methods are listed below. 

 

 HITS Authority  

 Realised In-Degree 

 In-Degree 

 Sibling Propagation   

 

Although many retrieval systems have featured these techniques there is little 

evidence of extensive independent appraisal of them.  Amento’s study [Amento2000] 

is perhaps one of the most widely cited works of this nature.  However, his 

experimentation featured an arguably insufficient total of 5 queries in a tailor-made 

topic distillation task. 

 

By comparing the performance of several link-based algorithms against content-only 

retrieval baselines the aim is to determine whether link-structure analysis is beneficial.  

Additionally, some insight into the relative merits of the evaluated algorithms is 

sought.  The emphasis of the experimentation is on the added-value offered by link 

structure analysis in addition to content analysis as demonstrated by implemented 

algorithms.  To this end, the methodological choice is made to restrict algorithms to 

using only evidence obtained through link-structure analysis in supplementing ready-

made content-only retrieval similarity information.  Any improvements on pure 

content-only retrieval performance can then be attributed directly to link-structure 

analysis. 

 

Gain Insight into Tuning of Established Algorithms and Their Variants 

 

By varying parameter values, an understanding of which configuration of parameters 

lead to optimal performance on a per-algorithm basis is sought.  As is a general 

impression of how changes in parameter values impact the performance of individual 

algorithms. 

 

Determine the Utility of Sibling Relationships 

 



 26

In contrast to link relationships, there is far less evidence of the employment of 

sibling relationships in Web IR algorithms.  

 

A handful of TREC Web Track participants have experimented with sibling 

relationships.  The University of RMIT developed an algorithm for 1999’s TREC-8 

which re-ranked the results of a content retrieval run by propagating the weighted 

scores of retrieved document siblings.  A modification of their sibling score 

propagation approach which limited the influence of sibling endorsements when re-

ranking was also submitted for TREC-8 evaluation.  Both RMIT sibling based runs 

failed to improve on their content-only run’s average precision.  A subsequent un-

submitted run in which the influence of siblings were further restricted showed more 

promise.  The University of Twente unveiled an algorithm in TREC-9 which also 

made use of sibling relationships, but once again their technique failed to better the 

content-only baseline.   

 

By altering several familiar algorithms to use sibling relationships, some insight on 

the utility of siblings in algorithms is sought.  The aim is to determine if the inclusion 

of sibling relationships in algorithms (through a variety of means) lead to performance 

improvements. 

 

Determine the Influence of Link Density 

 

The specific question addressed here is if and how the link density of graph structures 

analysed by link-based algorithms significantly influences the performance of those 

algorithms.  The indication from prior research is that link-densities may have an 

effect on link-structure analysis. 

 

[EversonFisher2003] have carried out experimentation on the impact of link density 

on link-based algorithms for information access tasks.  Although the experiments 

were specifically focused on the task of text classification, they suggest that their 

findings have similar implications in the area of Information Retrieval.  In their 

experiments the performance of a text classification algorithm, given a low link-

density corpus, a high link-density corpus and a randomized link corpus was 

compared.  The experiments were repeated on two separate corpuses, firstly a crawl 
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of homepages from the Computer Science departments of selected US universities 

and secondly a subset of already classified Web pages relating to Computer Science 

research.  The results of both sets of experiments reflected one another – higher link 

densities lead to far better classification success, the improvements being more 

pronounced in the corpus with a higher innate link density.  The link densities were 

lowered by removing links randomly and raised by adding ‘friendly’ links connecting 

documents of similar topics.  In their paper, the authors state that the reason they were 

unable to concentrate their experimentation on a Web IR task as opposed to text 

classification was due to a lack of suitable data sets.  However, in light of their 

findings, similar experimentation for a Web IR task is valuable. 

 

It has been suspected that the failure of TREC-8 participant’s link based algorithms 

was partly due to sparse inter-server linkage in the WT2g test collection 

[BaileyCraswellHawking2001].  Bailey et al. suggest that inter-server links are of a 

higher quality (from the perspective of link based algorithms) than intra-server links 

and that there were too few of these in the WT2g corpus.  In engineering the 

subsequent WT10g corpus for TREC-9, some attention was given to improving inter-

server link density.  Although there were no significant improvements for link-based 

algorithms in TREC-9, Bailey et al. demonstrate the benefit of the new corpus in a 

home page finding experiment.   

 

[EversenFisher2002] suggest that the link density in the newly created WT10g corpus 

is still insufficient for the purpose of their link-density experiments, since it still falls 

some way short of the link densities considered in their own experimentation.   

 

The .GOV test collection available since 2002 has higher inter-server link densities 

than WT10g and is perhaps better suited for density related experiments. 

 

Determine the Effects of Link Randomisation 

 

Aside from link-densities, Eversen and Fishers’ experiments also focus on the effects 

of link randomisation on text classification tasks [EversenFisher2002].  The 

randomisation of links was achieved by replacing actual links with arbitrary links 

between URLs with the intention of reducing the quality of links in the resulting 
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graph.  The effect of the link randomisation was a huge drop in classification 

performance far greater than the decline caused by lowering link densities. 

 

By experimenting with random link structures, the aim is to determine how 

randomizing link structures affect algorithm performance. 

 

 

 

3.2  Experimental Setup 
 

Three consecutive year’s Topic Distillation tasks from the TREC (Text Retrieval 

Evaluation Conference) WebTrack are appropriated for evaluations carried out in this 

thesis.  Partially due to contributions from Web search engine companies, TREC Web 

related task results are increasingly becoming true indicators of Web IR performance 

and are widely employed in industrial and academic research. 

 

TREC WebTrack Topic Distillation tasks challenge participants to find relevant 

documents (key resources) for a number of queries.  A list of relevant documents for 

each query is pre-determined by a panel predominantly constituted by retired or active 

information professionals such as CIA analysts.  The queries (topics) together with 

their relevance judgments provide a basis for evaluating the performance of 

participant retrieval systems submitting up to 1,000 ranked results per query.  

Performance metrics such as precision at 10, r-precision and average precision are 

evaluated for submissions and based on mean averages across all query submissions.  

Ranked results for all participant submissions are evaluated and subsequently made 

publicly available. 

 

A test collection, several query sets and relevance judgments for those query sets 

(collectively referred to as qrels) are appropriated for the experimentation carried out 

in this thesis.  In addition, topological data corresponding to the test collection’s graph 

structure is extracted for use by algorithms.  In the remainder of this section, the test 

collection, qrels and additional topological data used in experiments are introduced. 
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Test Collection 

 

Since 2002, TREC WebTrack evaluations have featured a test collection of over 

1,000,000 documents crawled from the .GOV top level Internet domain.  The 18G 

large collection (referred to as .GOV) crawled in early 2002, is distributed by the 

University of Glasgow who assumed responsibility from former distributors CSIRO 

(Commonwealth Scientific and Industrial Research Organisation) in 2005 

[UniversityGlasgowIRDistribution].  Properties of the .GOV collection are listed in 

Table 1. 

Table 1: TREC .GOV collection properties 

Number of Pages 1,247,753
Number of pages by mime type  
    text/html 1,053,110
    application/pdf 131,333
    text/plain 43,753
    application/msword 13,842
    application/postscript 5,673
    other (containing text) 42
Average page size 15.2 KB
Number of hostnames 7,794
Total number of links 11,164,829
Number of cross-host links 2,470,109
Average cross-host links per 
host 317

 
 
 

Queries and Relevance Judgements (QRELS) 

 

Three consecutive year’s TREC Topic Distillation tasks are used in the experiments 

carried out here: TREC-2002, TREC-2003 and TREC-2004.  A fourth task was 

synthesized by concatenating the topics, and qrels of the three official tasks.  This 

synthesized task, referred to as TREC-0000, is essentially a combined Topic 

Distillation task.  To avoid the overlap between TREC-2003 and TREC2004 topic 

numbers causing confusion, the topic numbers for TREC2004 topics were offset by 

100.  This allowed topic numbers 1 to 50 to exclusively designate TREC-2003 topics. 

 

Details of the four tasks are listed in Table 2. 
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Table 2: TREC task details 

  
Number of 

Queries 

Median Average 
Relevant 

Resources 

Total 
Relevant 

Resources 
TREC-2002 49* 22 1574
TREC-2003 50 8 516
TREC-2004 75 13 1600
TREC-0000 174 13 3690
*A 50th query has been discounted since it did not have any relevant documents 

 

A significant difference between the relevant documents of the TREC-2002 task and 

later years is the inclusion of non-homepages.  Since 2003’s task, the hypothetical 

searchers information need for a topic distillation query such as ‘cotton industry’ is 

modelled as: ‘give me an overview of .gov sites about the cotton industry, by listing 

their homepages’, whereas previously it would have had a more ad-hoc interpretation 

along the lines of  ‘give me all .gov URLs about the cotton industry’.  The shift in 

emphasis towards home pages subsequently resulted in fewer relevant documents per 

query.  Although an attempt to counter that effect was made by introducing broader 

queries, the two queries detailed below illustrate the gulf between the relevance 

judgments of TREC-2002 and TREC-2004. 

 

Table 3 

Task Query 
Relevant 

Resources 
TREC-2002 US immigration history demographics 126 
TREC-2004 Federal and state statistics 86 
The two queries only had 1 relevant resource in common  

 

The TREC-2002 query ‘US immigration history demographics’ could be considered a 

subtopic of the TREC-2004 query ‘Federal and state statistics’, but yet many more 

relevant documents have been identified for it. 

 

Topological Data 

 

Of the links between .GOV collection documents, only inter-site links are considered 

in experimentation.  Links within site are ignored because often those links are put in 

place purely for the purposes of site navigation and are less likely to confer authority 

or recommendation.  
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For the purposes of this thesis an inter-site link is defined as a link between two URLs 

in which (ignoring the hostname portion of the URL’s domain part, typically ‘www’), 

either one domain part is a sub-domain of the other or they are the same.  For 

example, a link between www.nlm.nih.gov/home and http://www.nich.nih.gov/home 

is not considered an inter-site link, whereas a link between 

www2.nlm.nih.gov/portal/public.html and www.nih.gov/home is.  Data on all inter-

site links from the .GOV collection is extracted for use by algorithms performing link-

structure analysis.  The link graph corresponding to this data is referred to as the 

‘inter-site.GOV’ graph. 

 

Soboroff demonstrates that the power law in-degree and out-degree distributions 

observed by Broder et al. for Web URLs [Broder2000] are reflected in the .GOV 

collection [Soboroff2002].  A further observation by Broder is that distributions are 

almost equivalent when intra-site links are discounted.  From Figure 1 and Figure 2 it 

is clear that in- and out-degrees for the .GOV collection are distributed according to a 

power law whether only inter-site or all links are considered.  Aside from link 

relationships, sibling relationships also feature in this work.  Interestingly, the same 

observation largely applies to sibling-degrees, where a power law distribution can be 

seen for inter-site links (Figure 2) and for all links except where degree levels are 

below approximately 100 (Figure 1). 
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Figure 1: Distribution of degree levels in the Web’s .GOV top-level domain.  Log scale plot. 

 

Figure 2: Distribution of URL degree levels within the Web’s .GOV top-level domain (restricted 
to inter-site link topology).  Log scale plot. 
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Further evidence of similarities between in-degrees and sibling-degrees is apparent 

when considering degree correlations for the 65,000 URLs with the highest sibling 

degrees (Table 4).  The correlation between in-degree and sibling-degree is 0.66, but 

understandably there is far less correlation where out-degree of URLs is concerned.  

The correlation figures quoted in Table 4 are calculated according to the formula 

presented in Appendix A. 

 

Table 4: Degree correlation of the 65,000 URLs with highest sibling-degree 

  In-Degree Out-Degree 
Sibling-
Degree 

In-Degree 1.00   
Out-Degree 0.04 1.00  
Sibling-Degree 0.66 0.08 1.00

 

In addition to the inter-site.GOV graph, two random mutations of that graph were 

created for experimentation.  The first (dubbed ‘Random.GOV’) interchanged real 

links with arbitrary links ensuring that the in- and out-degrees for individual URLs 

were preserved.  The second (dubbed ‘RandomX.GOV’) interchanged real links with 

arbitrary links ad-hoc with the only proviso being that the overall number of links was 

preserved. 

 

 

 

3.3 Content-Only Retrieval Baseline Runs 

 
Content-only retrieval results are the standard baseline against which the performance 

of link-based algorithms is contrasted.  Since, link-based algorithms typically enrich 

content analysis with link-structure analysis; the expectation is that they improve on 

content-only baselines. 

 

Aside from acting as performance baselines for effectiveness comparisons, the 

content runs serve two further purposes.  Firstly they constitute the root sets of link-
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based algorithm runs and secondly they are combined with link based algorithm runs 

to produce fusion runs.  A complete overview of all runs is detailed in section 3.5. 

 

The University of Amsterdam’s Perl implemented FlexIR Information Retrieval 

system [MonzdeRijke2002] was used to produce the content retrieval runs.  Pre-

processing consisted of the removal of HTML-tags, punctuation marks, and Snowball 

stemming [Snowball2003]. 

 

Three sets of content-only retrieval runs were produced for each of the three official 

TREC topic distillation task topic sets TREC200[2-4].  A fourth set of three content-

only retrieval runs corresponding to the combined TREC0000 task was synthesized 

by concatenating the retrieval results of the three official task runs.   

 

The first of the three sets of content-only retrieval runs feature a statistical language 

model [Hiemstra2001] with a uniform query term importance weight of 0.35.   These 

language model runs are referred to as LM runs in section 3.5’s run list. 

 

The second set of content-only retrieval runs feature an Okapi weighting scheme 

[RobertsonWalkerBeaulieu2000] with tuning parameters of k=1.5 and b=0.8.  These 

runs are referred to as OKAPI runs in section 3.5’s run list. 

 

The third set feature an Lnu.ltc weighting scheme [BuckleySinghalMitra1995] with 

slope parameter set at 0.2 and pivot parameter set to the average number of unique 

terms per document.  Lnu.ltc runs are abbreviated to LNU content runs in section 3.5.  

 

 

 

3.4 Featured Algorithms 

 
Six familiar algorithms have been selected for implementation and evaluation; they 

are listed below with their abbreviations. 
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 In-Degree (id) 

 Realised In-Degree (rid) 

 HITS Authority (ha) 

 RMIT (Rs) 

 RMIT2 (R2s 

 RMIT3 (R3s) 

 

The RMIT sibling score propagation algorithms (RMIT, RMIT2 and RMIT3) provide 

three ready made representative sibling algorithms. 

 

The meta-algorithm underlying the other three algorithms is the same. 

 
i. Start with a query focused set of lexically similar retrieved documents, referred to as a root 

set. 

ii. Speculate on a set of potentially relevant documents related to root set members and expand 

the root set with these to produce a base set. 

iii. Apply link analysis to the sub-graph structure pertaining to the base set in producing 

judgments on the authority of these documents which can be applied in re-ranking. 

 

The key detail in which the algorithms differ is in step iii of the meta-algorithm where 

they take different approaches to re-ranking members of the base set.  In phase ii, all 

algorithms that expand their root set select in- and out-linked documents for 

augmenting the root set in no particular order.  By altering the details of this phase, 

variations of algorithms can be obtained.  Instead of selecting in- and out-linked 

documents, alternatively related documents (augmentation relationship) can be 

selected and instead of ad-hoc selection of these an order of precedence can be 

applied to selection (augmentation precedence).   Further variant algorithms can be 

obtained by altering the degree measures applied in the degree algorithms In-Degree 

and Realised In-Degree.  The final means for varying algorithms is to interchange the 

link graph they were presented with from the standard Inter-site.GOV link graph to 

either the Random.GOV link graph or the RandomX.GOV link graph.   

 

By using different combinations of values from Table 5 for the augmentation 

relationship, augmentation precedence, degree measure and link graph, nine variant 

algorithms were produced to add to the six familiar algorithms already listed.  In table 
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5, the ranking approach ‘global degree’ refers to a collection level degree measure as 

opposed to a degree measure that’s relative to the base set (local degree).  The 

‘Sibling and parent’ augmentation relationship refers to the interleaved selection of 

siblings of root set documents and the parents of those siblings (common in-links), the 

intention being to render a higher link density in the base set than achieved through 

sibling expansion. 

 

The nine variant algorithms are listed below with their abbreviations. 

 

 Sibling Degree (sd) 

 Realised Sibling Degree (rsd) 

 Realised Sibling & Parent Degree (rspd) 

 HITS Sibling Authority (hsa) 

 HITS Sibling & Parent Authority (hspa) 

 HITS Low Density Authority (hlda) 

 HITS High Density Authority (hhda) 

 HITS Authority (ha) 

 HITS Random Authority (hra) 

 HITS Random X Authority (hrxa) 

 

Details of how all 15 algorithms (six familiar and nine variants) vary according to the 

5 attributes presented in Table 5 are summarized in Table 6. 

 

 

 

 

 

 

 

 

 

 

 



 37

Table 5: Algorithm attributes 

Algorithm Variation Description Possible Values 

Ranking Approach Refers to which method for ranking 
base set documents is used. 

 Sibling Propagation 
 Global Degree 
 Realised Degree 
 HITS 

 

Augmentation 
Relationship 

Refers to the relationship between 
root set documents and documents 
selected to augment root set. 

 Sibling 
 Random 
 In & Out Link 
 Sibling & Parent 

 

Augmentation Precedence 
 

Refers to the order of precedence 
applied when selecting documents 
to augment root set. 

 High Global Degree 
 Low Global Degree 
 None 
 High Co-Citation 

Degree 
 

Degree Measure Refers to the type of degree 
measure used, 

 In-Degree 
 Sibling-Degree 

 

Link Graph Refers to the link graph relating 
URL relationships. 

 Inter-site.GOV 
 Random.GOV 
 RandomX.GOV 

 
 

Table 6: Algorithm variations (variant algorithms are italicised) 
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HITS High Density Authority selects in and out linked documents by descending 

order of combined degree (sum of in- and out-degrees), whilst HITS Low Density 

Authority selects by ascending order of combined degree.  The intention is to render 

higher link densities in the base set of HITS High Density Authority than in the base 

sets of HITS Low Density Authority. 

 

The variant algorithms have been devised with the three secondary objectives listed in 

section 3.1 in mind.  The obvious interpretation of the connection between the 

algorithms and those objectives is pronounced in Table 7.  The table lists potentially 

valuable performance comparisons that can be made between algorithms in the last 

three columns, since those algorithms vary only in terms of the algorithm attribute 

listed in the second column. 

 

Table 7: Directed like-comparisons between algorithms 

Objective 
Key Algorithm 

Attribute  
1st 

Comparator 
2nd 

Comparator 
3rd 

Comparator
Utility of Siblings Degree Measure* rsd or rspd rid   
Utility of Siblings Degree Measure* sd id   

Utility of Siblings 
Augmentation 
Relationship rsd rspd   

Utility of Siblings 
Augmentation 
Relationship hsa hspa ha 

Influence of Link 
Density 

Augmentation 
Precedence hlda hhda ha 

Effects of 
Randomisation Link Graph* hra hrxa ha 

*NB: Comparison only valid when root set is unexpanded 
 

In the remainder of this section further details of the six established algorithms: In-

Degree, Realised In-Degree, HITS Authority, RMIT, RMIT2 and RMIT3 are 

presented. 

 

In-Degree 

 

A major advantage of in-degree when compared to PageRank is that it is 

computationally less demanding.  Additionally, the in-degree of a page can be pre-
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computed and reused when re-ranking content retrieval results, precluding the query-

time need for link structure analysis required by algorithms such as HITS.   

 

A simplistic use of in-degree is applied in the In-degree algorithm implemented here.  

A more principled approach might be to use in-degree prior relevance probabilities in 

a language model framework.  The algorithm takes a root set of documents from a 

text retrieval algorithm, expands it into a base set by including in- and out-linked 

documents before re-ranking the base set according to the in-degree of its members.  

Pseudo code for the algorithm is presented in Algorithm 1 with ‘d’ and ‘t’ parameter 

values as defined in [Kleinberg1998]. 

Algorithm 1:  Pseudo-code for In-Degree algorithm 

Let t denote maximum size of root set 

Let x denote number of top scoring documents to return 

 

<construct base set> 

Set RootSet = GetRetrievalResults(ContentRetrieval, t) 

Set BaseSet = RootSet 

For each page p є RootSet 

 BaseSet = BaseSet U SelectInLinks(p, d) 

 BaseSet = BaseSet U SelectOutLinks (p,d) 

End 

 

<calculate in-degrees> 

For each p є RootSet 

 Score[p]=Indegree(Corpus, p) 

End 

 

<re-rank BaseSet based on in-degrees> 

Return TopScores(BaseSet, Score, x) 

 

 

HITS Authority 
 

Like in-degree scores, HITS authority scores are a highly established measure of 

quality.  Although HITS hub scores are also valuable, authority scores tend to be 

better predictors of key resources [Amento2000].  It’s for this reason that HITS 

authority scores have been selected ahead of hub scores.  The details of the HITS 

implementation are in Algorithm 2 with ‘d’ and ‘t’ parameters as defined in 

[Kleinberg1998]. 
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Algorithm 2: Pseudo code for HITS Authority algorithm 

Let t,d denote maximum size of root set and maximum in/out-links considered per document 

respectively 

 

Let k be a natural number denoting the number of iterations after which Hub and Authority scores 

converge 

 

Let x denote number of top scoring documents to return 

 

<construct base set> 

Set RootSet = GetRetrievalResults(ContentRetrieval, t) 

Set BaseSet = RootSet 

For each page p є RootSet 

 BaseSet = BaseSet U SelectInLinks(p, d) 

 BaseSet = BaseSet U SelectOutLinks(p,d) 

End 

<initialize authority and hub vectors> 

For each p є BaseSet 

 HubScore[p]=1 

 AuthorityScore[p]=1 

End 

 

<calculate Hub and Authority scores> 

For s = 1 to k 

 <recalculate hub scores> 

 For each p є BaseSet 

  For each o є OutLinks(BaseSet, p) 

   HubScore[p] = HubScore[p] + AuthorityScore[o] 

  End 

 End 

 <recalculate authority scores using updated hub scores> 

 For each p є BaseSet 

  For each i є InLinks(BaseSet, p) 

   AuthorityScore[p]= AuthorityScore[p] + HubScore[i] 

  End 

 End 

 <normalize Authority and Hub score vectors> 

 Normalize(AuthorityScore) 

 Normalize(HubScore) 

End 

 

<Return top Hubs and Authorities> 

Return TopScores(BaseSet, AuthorityScore, x) 

 

 

Realised In-Degree 

 

Realised in-degree is a measure introduced by the University of Amsterdam in their 

TREC2002 Web Track offering [KampsMonzdeRijke2003].  The measure 

corresponds to the square of the local in-degree (where a document’s local in-degree 
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is the number of in-links originating from documents in the base set) divided by a 

document’s global in-degree (collection-wide number of in-links for the document).  

The resulting product is suggested by Kamps et al. to reflect both the topicality and 

relative importance of the document.  The pseudo code for the algorithm is detailed in 

Algorithm 3 in which ‘d’ and ‘t’ variables are as defined by Kleinberg 

[Kleinberg1998]. 

Algorithm 3: Pseudo code for Realised In-Degree Algorithm 

 

Let t,d denote the size of root set and maximum in/out-links considered per document respectively 

 

Let k be a natural number denoting the number of iterations after which Hub and Authority scores 

converge 

 

Let x denote number of top scoring documents to return 

 

<construct base set> 

Set RootSet = GetRetrievalResults(ContentRetrieval, t) 

Set BaseSet = RootSet 

For each page p є RootSet 

 BaseSet = BaseSet U SelectInLinks(p, d) 

 BaseSet = BaseSet U SelectOutLinks (p,d) 

End 

<compute relevance scores> 

For each p є BaseSet 

 Score[p] = InDegree(BaseSet, p) * InDegree(BaseSet, p) / 

   InDegree(Corpus, p) 

End 

<return top scoring documents> 

Return TopScores(BaseSet, Score, x) 

 

 

RMIT,  RMIT2 and RMIT 3 

 

RMIT University’s TREC-8 Web Track submissions were the product of two sibling 

propagation algorithms [Fuller+1999].  A further algorithm was developed after the 

TREC-8 submission deadline.  Their three algorithms have been selected for 

implementation and evaluation because of their reliance on sibling relationships.  

They are referred to here as RMIT, RMIT2 and RMIT3. 

 

RMIT is the simplest of the three algorithms and is based on an elementary sibling 

propagation approach in which the content similarity (relevance) scores of content-

retrieved documents are supplemented with a weighted sum of the similarity scores of 
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other retrieved siblings.  The formalization of this approach is presented below in the 

form it was defined by RMIT. 
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where simc(q,d) is d’s content similarity score for query q, sib(d) is the set of d’s siblings and ret(q) is 

the set of documents retrieved for the query. 

 

RMIT2 addresses a concern over documents with poor content being overly endorsed 

in cases where they had several good siblings.  The approach taken in RMIT2 is to 

limit the total endorsement from siblings and to only allow endorsements from top 

scoring documents.  This is formalized below in a more terse form than presented by 

RMIT [Fuller+1999]. 
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where simc(q,d) is d’s content similarity score for query q, sib(d) is the set of d’s siblings and ret(x,q) is 

the set of the ‘x’ top documents retrieved for the query. 
 

Their final algorithm (RMIT3) further restricts sibling endorsements by only allowing 

sibling score propagation from the best sibling providing that sibling is an overall top 

scoring document.  Although this is not formalized in their paper, the obvious 

interpretation is presented below. 
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where simc(q,d) is d’s content similarity score for query q, sib(d) is the set of d’s siblings and ret(x,q) is 

the set of ‘x’ top documents retrieved for the query. 

 

All three algorithms can be abstracted to a single algorithm with suitable constant 

parameters.  The pseudo code for that algorithm template is presented in Algorithm 4. 

 

The constant settings that differentiate RMIT, RMIT2 and RMIT3 algorithms are 

outlined in table 8.  These constant settings are obtained directly from RMIT’s 

experimentation.   In practice the root set size of 2000 was reduced to 1000 in line 

with the settings of the content retrieval baseline runs. 
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Table 8: RMIT algorithm constant settings 

Algorithm 
 't' (Root 
Set Size) 

 'k' (Propagation 
Factor) 

 'L' (Propagation 
Limited?) 

 'x' (Top 
Results) 

 'y' (Top 
Siblings) 

RMIT 1000 50 No Unbound Unbound 
RMIT2 2000 10 Yes 500 Unbound 
RMIT3 2000 10 No 20 1 
 

  

Algorithm 4: RMIT, RMIT2 and RMIT3 algorithm template 

Let t denote the size of the root set 

Let k denote the propagation factor 

Let L denote whether propagation scores are capped 

Let x denote the number of top retrieved documents from which propagation is allowed 

Let y denote the number of top siblings from which propagation is allowed 

Let n denote the number of documents to be returned 

 

<Initialise RootSet> 

Set RootSet = GetRetrievalResults(ContentRetrieval, t) 

For each p є RootSet 

 Score[p] = GetRetrievalScore(ContentRetrieval, p) 

End 

 

<calculate document scores> 

For each p є RootSet 

 Propagated[p] = 0 

 If L = Yes  

       Then Limit[p] = Score[P] 

       Else Limit[p] = infinite 

end 

 For each s є TopSiblings(p,y) ∩ TopRetrieved(x) 

   If (Propagated[a] + Score[s]) < Limit[p]  

    Then Score[p] = Score[p] + (Score[s]/k) 

    Else Score[p] = Score[p] + (Limit[p]-Propagated[p]) 

 End 

End 

 

<return top scoring documents> 

Return TopScores(BaseSet, n) 

 

 

 

3.5  List of Experiments 
 

The product of the experimentation is a series of runs produced by the various 

algorithms; each run roughly corresponds to a distinct experiment.  In total 4752 runs 

were produced and a further 12 baseline content-only runs were pre-computed.   
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Runs vary according to the task (topic set) they were presented with, the link-based 

algorithm involved and the parameters passed to algorithms.  All runs are given a 

unique run id which is an encoding of the algorithm and parameters it was invoked 

with. 

 

The four parameters used in algorithm invocations are presented in Table 9.  

Table 9:  Algorithm parameter values 

Parameter Description Possible Values 

Content 
Determines which of the 
retrieval runs are used in 

forming a set and is used in 
producing fusion runs. 

LNU, LM, Okapi 

D 
Refers to a maximal limit on 

documents selected to 
augment a root set, applying 

to each root set member. 

0,10, 50, I (where I denotes an 
uncapped  D value) 

T Refers to the size of the root 
set. 10, 50 

Weight 
Refers to whether the run is a 

non-fusion run, or a fusion 
run. 

T (denotes a non-fusion run), F9, 
F8, F7 (refers to fusion runs with 
content weight 0.9,0.8 and 0.7 

respectively) 

 

A summary of all runs corresponding to each of the four tasks TREC-

2002/2003/2004/0000 is presented in Table 10. 
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Table 10:  Summary of runs 

Algorithm Abbreviation Run ID TREC-
2002 
Runs 

TREC-
2003 
Runs 

TREC-
2004 
Runs 

TREC-
0000 
Runs 

Content Baseline [content] UA[content]C 3 3 3 3

RMIT Rs UA[content]Rs[weight] 12 12 12 12

RMIT2 R2s UA[content]R2s[weight] 12 12 12 12

RMIT3 R3s UA[content]R3s[weight] 12 12 12 12

In-Degree i UA[content]i[t][d][weight] 96 96 96 96

Realised In-
Degree 

ri UA[content]ri[t][d][weight] 96 96 96 96

Realised Sibling-
Degree 

rsd UA[content]rsd[t][d][weight] 96 96 96 96

Sibling-Degree sd UA[content]sd[t][d][weight] 96 96 96 96

HITS Authority ha UA[content]h[t][d]a[weight] 96 96 96 96

HITS High 
Density Authority 

hhda UA[content]h[t][d]hda[weight] 96 96 96 96

HITS Low 
Density Authority 

hlda UA[content]h[t][d]lda[weight] 96 96 96 96

HITS Sibling 
Authority 

hs UA[content]h[t][d]sa[weight] 96 96 96 96

HITS Random 
Authority 

hra UA[content]h[t][d]ra[weight] 96 96 96 96

HITS Random X 
Authority 

hrxa UA[content]h[t][d]r2a[weight] 96 96 96 96

HITS Sibling & 
Parent Authority 

hspa UA[content]h[t][d]spa[weight] 96 96 96 96

Realised Sibling 
& Parent Degree 

rspd UA[content]rspd[t][d][weight] 96 96 96 96

Total     1191 1191 1191 1191
NB: [content], [t], [d] and [weight] refer to run parameters 

 

Some of the runs in Table 10 are identical.  The HITS algorithms using the Inter-

site.GOV link graph (ha, hlda, hhda, hs, hspa) produce identical runs given the same 

‘content’, ‘t’, and ‘weight’ parameters when the ‘d’ parameter is 0 (in which case 

there is no root set expansion).  Likewise, when the ‘d’ parameter is I (infinite) the 

HITS algorithms that use in and out links for root set augmentation (ha, hlda, hhda) 

produce identical runs given the same content, t and weight parameters. 
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3.6 Implementation Details 
 

The fifteen evaluated algorithms were implemented in Perl.  The algorithms are 

supported by a Perl module (WebRetrieval.pm) which provides a high level interface 

to .GOV collection components such as topics, relevance judgments and link structure 

data.  Additionally, the module offers procedures and functions that abstract on 

common Web IR algorithm routines such as vector normalization and root set 

expansion.  Routines for fusion combination of runs and performance metric 

calculations are also made available through the module.  Together, the module and 

algorithms constitute over 2000 lines of Perl code. 

 

The fusion combination (fusion) of link-structure analysis algorithm runs with content 

runs is integrated into the fifteen algorithm scripts.  They therefore require only 3 of 

the 4 parameters listed in Table 9: ‘t’, ‘d’ and content.  The ‘weight’ parameter is not 

required since a different run is produced for each possible ‘weight’ parameter value.  

Invoking an algorithm therefore results in four runs, a pure non-fusion link-structure 

analysis run (sometimes referred to as topology run) and three runs corresponding to 

fusions of that run and the content run denoted by the content parameter (fusion runs).  

Of the various methods for fusion of runs proposed in [FoxShaw1994], the 

‘CombSum’ summation function in which a document’s combined relevance score is 

the sum of its normalized relevance scores from each run is used.  

 

The final file produced as a result of algorithm invocations (referred to as ‘.stat’ file) 

reports details on each of the four outputted runs, including performance metrics and 

pertinent operational data such as base set size and link density.  The reports consist 

of granular data for each query as well as aggregate and average data over all queries.  

 

Although ‘.stat’ files are structured in a tabular CSV (comma separated values) 

format, they are not ideal for reporting.  A more robust representation of run data is 

made available through an Oracle relational database which is uploaded with data 

from the ‘.stat’ files through a Perl DBI [PerlDBI] interface script.  Once in Oracle, 

performance reports are compiled with SQL scripts.   
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In addition to performance reports, correlation data is also reported.  The ‘.stat’ CSV 

format file is uploaded into a Microsoft Excel spreadsheet for statistical correlation 

analysis via the Excel Analysis ToolPak [ExcelToolPak].  A full report of empirical 

correlations between the data pertaining to runs is presented in Appendix A. 

 

The architecture summarised above is illustrated in Figure 3. 

Figure 3: FlowChart of experimentation architecture 
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3.7  Chapter Summary 

 
In this chapter, the experimentation carried out in this research has been detailed.  The 

background aims and goals directing experiments were clarified before the evaluated 

algorithms, baselines, architecture and product of experimentation were presented.  In 

the next chapter the results yielded from experimentation will be reported. 
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4. Results 
 

In this chapter, the results of experimentation will be sequentially reported in five 

sections, each corresponding to one of the research objectives presented in section 

3.1. 

 

As is typical in Web IR evaluations, the emphasis is placed on early precision 

measures in this chapter.  Precision at 10 scores will be the primary criteria when 

judging performance but other precision measures evaluated are precision at 5, 

precision at 20, r-precision and average precision.  Average precision scores often add 

a valuable alternative perspective on performance since they are influenced by recall 

assessments. 

 

The performance of an algorithm will either be judged by its best scoring run which 

corresponds to how it performs under optimal configuration of parameters or by its 

mean average score over a number of non-fusion runs.  Only non-fusion runs are 

considered when comparing mean average run scores because results before fusion 

are more characteristic of the link structure analysis performed.  All non-fusion runs 

produced by algorithms are used as points in mean average run calculations.  The 

exception is where the mean average score is restricted to unexpanded runs in which 

case only runs with a ‘d’ parameter value of 0 are considered. 

 

Of the four topic distillation tasks used in evaluation, results from the unofficial 

combined task (TREC-0000) will be quoted most often.  Since that task is constituted 

by the topics of the three official tasks TREC-200[2-4], it gives a reasonably fair 

indication of overall performance.  The fact that the TREC-2004 task has roughly 

50% more topics than previous years (75 topics - compared to 49 in 2002 and 50 in 

2003) means that its topics are likely to have a strong influence on TREC-0000 results 

as will the TREC-2002 task topics for which there are the most relevant documents 

(see Table 2, section 3.2). 

 

The tables presented in this chapter are largely self-explanatory although a number of 

points may need some clarification.  Firstly, the value ‘topology’ appearing in 
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‘weighting’ columns denotes a non-fusion run.  Secondly, a ‘d’ parameter value of ‘I’ 

denotes infinite and appears for runs in which root set expansion is uncapped.  

Finally, where a table’s row value is blank, the previous specified value in the column 

should be taken. 

 

 

 

4.1 Algorithm Performance 
 

In this section the performances of all evaluated algorithms are reported.  The section 

starts by detailing the content-only retrieval run baseline scores against which the 

performances of algorithms are compared.  With the baseline scores established, the 

section continues by assessing the performance of algorithms against the baseline runs 

whilst putting scores into context through contrasts with official TREC submissions.  

Finally a comparison is made between the performances of the RMIT algorithms as 

evaluated here and as evaluated during TREC-8. 

 

Baseline Runs 

 

The performance of the three baseline content-only retrieval runs (LNU, Okapi, and 

LM) in the four tasks is detailed in Table 11. 

Table 11: Baseline content-only retrieval runs 

Task Algorithm Precision 
at 5 

Precision 
at 10 

Precision 
at 20 

Average 
Precision

r-
Precision 

lnu 0.1701 0.1443 0.1152 0.1191 0.1348 
okapi 0.1563 0.1351 0.1075 0.1139 0.1227 0000 
lm 0.0966 0.0828 0.0730 0.0670 0.0816 
okapi 0.2776 0.2510 0.1908 0.1922 0.2111 
lnu 0.2612 0.2224 0.1724 0.1559 0.1799 2002 
lm 0.2041 0.1735 0.1480 0.1221 0.1569 
lnu 0.1080 0.0860 0.0690 0.1087 0.1143 
okapi 0.0960 0.0740 0.0580 0.0901 0.0845 2003 
lm 0.0480 0.0440 0.0370 0.0417 0.0530 
lnu 0.1520 0.1320 0.1087 0.1019 0.1189 
okapi 0.1173 0.1000 0.0860 0.0785 0.0903 2004 
lm 0.0587 0.0493 0.0480 0.0479 0.0514 

NB: Ranked by Precision at 10 
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LNU offers the best performance in all but 2002’s task for which Okapi is best.  

 

Since there were far more key resources in 2002’s task, precision scores are 

noticeably higher than other years (refer to section 3.2 for an account of task 

differences). 
 

Algorithm Performance 
 

Table 12 ranks each of the algorithm’s best runs in the combined TREC Topic 

Distillation task (TREC-0000) and compares these to the top scoring TREC-0000 

content-only run, which acts as a performance baseline.  The run id and parameters 

used to produce the top scoring runs can be found in Appendix B. 

 

Table 12:  Algorithm optimal scores compared with baselines (TREC-0000 task) 

  Precision at 5 Precision at 10 Precision at 20 Average Precision R-Precision 
Rank Algorithm Score Algorithm Score Algorithm Score Algorithm Score Algorithm Score 
1) rid  0.2011 rid 0.1644 rid    0.1276 ha     0.1233 rid  0.1406 
2) id   0.1943 id 0.1638 id     0.1261 rid    0.1224 id   0.1405 
3) sd   0.1908 sd 0.1603 sd     0.1227 hhda   0.1223 Rs   0.1393 
4) hspa 0.1862 hspa 0.1592 hspa   0.1210  = hlda     R2s  0.1388 
5) ha   0.1828 ha 0.1540 ha     0.1207 R3s    0.1218 R3s  0.1380 
6)  = hhda  hhda 0.1534  = hhda     R2s    0.1216 hlda 0.1368 
7)  = hlda   = hlda    = hlda     id     0.1213 rspd 0.1364 
8) R3s  0.1805 rsd 0.1506  = hra      hspa   0.1212 sd   0.1358 
9) hsa  0.1793  = rspd   rsd    0.1181 sd     0.1208 rsd  0.1353 
10) rsd  0.1782  = hra    = rspd     Rs     0.1205 ha* 0.1342 
11)  = rspd 0.1782 R3s 0.1500 R3s    0.1178 rspd   0.1200 hhda* 0.1339 
12) R2s  0.1747 hsa 0.1494 hsa    0.1175 rsd    0.1198 hspa* 0.1332 
13) Rs   0.1724 R2s 0.1483 R2s    0.1172 hsa    0.1195 hrxa* 0.1305 
14) hra*  0.1701 Rs 0.1477 Rs     0.1170 hra* 0.0967 hra* 0.1300 
15)  = hrxa* 0.1701 hrxa 0.1454 hrxa*   0.1152 hrxa* 0.0965 hsa* 0.1279 
Baseline: lnu 0.1701 lnu 0.1443 lnu 0.1152 lnu 0.1191 lnu 0.1348 

*Algorithm unable to better baseline score     
 

All except the two random algorithms (HITS Random Authority and HITS Random X 

Authority) consistently improve on baseline scores.  The only familiar (non-variant) 

algorithm that failed to improve on a baseline score was HITS Authority which 

marginally fell short of the LNU baseline run’s r-precision score. 
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Realised In-Degree is the best performing algorithm across all metrics except average 

precision where HITS Authority excels.  Other high achieving algorithms are In-

Degree, HITS Authority and Sibling-Degree which have average ranks of 3, 4.8 and 

5.2 across all metrics respectively.  

 

To put these scores into perspective, a comparison between the top run from this 

thesis and the top scoring runs submitted for official TREC evaluation is detailed in 

Table 13. 

 

Table 13: Comparison between top thesis runs and top TREC submitted runs 200[2-3] 

  Top Scoring TREC Run Top Scoring Thesis Run 

TREC Task 
Ranking 
Metric Run ID Score 

Run ID 
(Algorithm) Score TREC Rank 

TREC 2002 P_10 thutd5 0.2510 UAlnurid5050F8 0.2265 6th 
TREC 2003 P_R csiro03td03 0.1636 UAlnurid5050F8 0.1130 11th 
TREC 2004 P_A uogWebCAU150 0.1790 UAlnurid5050F8 0.1065 12th 

 

The top scoring run in this thesis (UAlnurid5050F8) was produced by the Realised In-

Degree algorithm with content, weight, t and d parameters set to lnu, 0.7, 50 and 50 

respectively.  Accounts of the TREC 2002, 2003 and 2004 runs referred to in Table 

13 are given in TREC Web Track overview papers 

[CraswellHawkingWilkinsonWu2004], [CraswellHawking2005], 

[CraswellHawking2003].  Interestingly, all top scoring TREC submitted runs in Table 

13 use a combination of additional sources of evidence including title indexes, anchor 

text indexes and URL forms.  The focus in this thesis is on link-structure analysis, so 

the comparisons in Table 13 only serve as an indication of the potential effectiveness 

of link-structure analysis compared to more extensive techniques. 

 

RMIT Run Comparisons 

 

Interestingly, there is little correlation between the relative precision at 10 

performances of the three RMIT University algorithms in TREC-8 as reported by 

RMIT [Fuller+1999] 2 and as observed here in the combined TREC task (TREC-

0000).  In Table 14, it can be seen that the best run produced by the RMIT2 algorithm 

                                                 
2 RMIT, RMIT2 and RMIT3 correspond to mds08w2, mds08w1 and max-sibling runs referred to in 
[Fuller+1999]   
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(in terms of precision at 10) in the TREC-0000 task scores higher than the best run 

produced by both the other two algorithms although this was not the case when RMIT 

experimented with the algorithms in TREC-8. 

Table 14: RMIT algorithm TREC-8 and TREC-0000 optimal performance comparisons 

Algorithm TREC-8* Precision at 10 TREC-0000 Precision at 10 
RMIT 0.386 0.1477
RMIT2 0.412 0.1483
RMIT3 0.436 0.1477
*RMIT runs taken from TREC-8's small web task 

 

When considering the mean average performance (across all runs), the results are 

mixed.  RMIT3 (R3s) is consistently the worst across all metrics and RMIT2 (R2s) is 

best in all metrics except for precision at 10 where RMIT is marginally better (Table 

15). 

Table 15: RMIT sibling propagation algorithm mean average performance (across all runs) 

Algorithm 
Average 
Precision 

at 5 

Average 
Precision 

at 10 

Average 
Precision 

at 20 

Average 
- 

Average 
Precision 

Average 
r-

Precision 

Rs 0.1475 0.1259 0.1024 0.1018 0.1149 
R2s 0.1494 0.1257 0.1024 0.1028 0.1152 
R3s 0.1387 0.1226 0.1023 0.0950 0.1090 
NB: Ranked by Precision at 10 

 

 

4.2 Algorithm Tuning 
 

In this section, findings pertaining to each of the 4 algorithm parameters introduced in 

section 3.5 (Table 9) are presented.  ‘t’ and ‘d’ parameter findings have been reported 

together in the final sub-section, whereas the content parameter and fusion weighting 

parameter findings are reported in separate sub-sections. 

 

Content parameter 

 

Of the four key run parameters: d, t, content and weight introduced in Table 9 (refer 

back to section 3.5).  The type of content retrieval root set used (content parameter) is 

understandably the most significant.  Its significance is illustrated in Table 16, where 

it can be seen that over all runs, the precision of the root set correlates significantly to 
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the early precision scores of runs.  A full explanation of the correlation figures 

presented in Table 16 can be found in Appendix A. 

 

Table 16: Correlation between run performance metrics and root set precision and recall 

Correlation 
Between Root 
Set Attributes  

and Run* 
Performance 
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N
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O
O
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R
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A
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O
T 
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AVERAGE 
PRECISION 0.13 0.65 

R-PRECISION 0.40 0.40 

PRECISION@5 0.49 0.22 

PRECISION@10 0.58 0.09 

PRECISION@20 0.58 0.24 

*Fusion and content runs excluded 
 

 

Interestingly there seems to be a clear difference between the top performing 

algorithms when only LNU content retrieval root set runs are considered and when 

only Okapi content retrieval root set runs are considered.  Tables 17 and 18 illustrate 

this incongruity in terms of precision at 10 for the combined-TREC task (TREC-

0000).  From table 17, it’s clear that Realised In-Degree performs the best when only 

LNU root set runs are considered whilst the sibling propagation algorithms perform 

best when only Okapi root set runs are considered. 
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Table 17:  Best lnu content run rankings per algorithm (precision at 10 for TREC-0000 task) 

Precision at 10 Algorithm 
Content 
Type T  D  Weighting RUN_ID 

0.1644 rid lnu 50 50 ct73 UAlnurid5050F7 
     ct82 UAlnurid5050F8 

0.1638 id lnu 50 0 ct73 UAlnuid500F7 
     ct82 UAlnuid500F8 

0.1603 sd lnu 50 0 ct73 UAlnusd500F7 
0.1592 hspa lnu 50 I ct73 UAlnuh50IspaF7 

0.154 ha lnu 50 50 ct82 UAlnuh5050aF8 
0.1534 hhda lnu 50 50 ct82 UAlnuh5050hdaF8

  hlda lnu 50 50 ct82 UAlnuh5050ldaF8 
0.1506 hra lnu 50 I ct73 UAlnuh50IraF7 

  rsd lnu 50 0 ct82 UAlnursd500F8 
  rspd lnu 50 0 ct82 UAlnurspd500F8 

0.15 R3s lnu 0 0 ct82 UAlnuR3sF8 
0.1494 hsa lnu 50 0 ct73 UAlnuh500saF7 

     ct82 UAlnuh500saF8 
0.1483 R2s lnu 0 0 topology UAlnuR2sT 
0.1477 Rs lnu 0 0 topology UAlnuRsT 
0.1454 hrxa lnu 50 10 ct91 UAlnuh5010rxaF9 

     50 ct91 UAlnuh5050rxaF9 
     I ct91 UAlnuh50IrxaF9 

0.1443 lnu lnu 0 0 content UAlnuC 
NB: ct-n-x=fusion run with content weight 0.n and topology weight 0.x 
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Table 18: Best Okapi content run rankings per algorithm (precision at 10 for TREC-0000 task) 

Precision at 10 Algorithm 
Content 
Type T D Weighting RUN_ID 

0.1425 R2s okapi 0 0 topology UAokapiR2sT 
  Rs okapi 0 0 topology UAokapiRsT 

0.1391 R3s okapi 0 0 ct73 UAokapiR3sF7 
0.1362 hra okapi 50 10 ct73 UAokapih5010raF7

  id okapi 10 10 ct73 UAokapiid1010F7 
      ct82 UAokapiid1010F8 
      ct91 UAokapiid1010F9 
     50 ct73 UAokapiid1050F7 
      ct91 UAokapiid1050F9 
     I ct73 UAokapiid10IF7 
      ct91 UAokapiid10IF9 

0.1351 ha okapi 10 0 topology UAokapih100aT 
  hhda okapi 10 0 topology UAokapih100hdaT 
  hlda okapi 10 0 topology UAokapih100ldaT 
  hrxa okapi 10 0 ct73 UAokapih100rxaF7
      ct82 UAokapih100rxaF8
      ct91 UAokapih100rxaF9
      topology UAokapih100rxaT 
    50 0 ct73 UAokapih500rxaF7
      ct82 UAokapih500rxaF8
      ct91 UAokapih500rxaF9
  hsa okapi 10 0 topology UAokapih100saT 
  hspa okapi 10 0 topology UAokapih100spaT 
  okapi okapi 0 0 content UAokapiC 
  rid okapi 10 0 topology UAokapirid100T 
  rsd okapi 10 0 topology UAokapirsd100T 
  rspd okapi 10 0 topology UAokapirspd100T 
  sd okapi 10 0 topology UAokapisd100T 

NB: ct-n-x=fusion run with content weight 0.n and topology weight 0.x 
 

 

Further, although there is no significant correlation between the rank of each 

algorithm’s optimal run in the TREC-2002 task and other year’s tasks (Table 19 and 

Table 20).  The correlation becomes significant when the rankings are restricted to 

only Okapi runs (Table 21 and Table 22) and LNU runs (Table 23 and Table 24).  The 

correlation figures quoted in Table 19,21 and 23 are calculated as described in 

Appendix A. 
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Table 19: Optimal run correlations Table 20: Optimal algorithm run - rank & score 

 TREC 2002 TREC 2003 TREC 2004 2002 Optimal Run Rank 
& Score 

Correlation Score Rank 
Score 0.34  2003 
Rank  0.39 
Score 0.43  2004 
Rank   0.37 

Algorithm Score Rank Score Rank Score Rank 
 Rid 0.251 8.5 0.1040 1 0.1693 1 
Id 0.2531 1 0.1020 2 0.1653 2 
Sd 0.251 8.5 0.0980 6.5 0.1587 3 

Hspa 0.251 8.5 0.1000 3 0.1573 4 
ha 0.251 8.5 0.0980 6.5 0.1507 6 
hhda 0.251 8.5 0.0980 6.5 0.1493 7.5 
hlda 0.251 8.5 0.0980 6.5 0.1493 7.5 
hra 0.251 8.5 0.0980 6.5 0.1373 13.5 
rsd 0.251 8.5 0.0880 14 0.1467 10 
rspd 0.251 8.5 0.0880 14 0.1480 9 
R3s 0.251 8.5 0.0880 14 0.1533 5 
hsa 0.251 8.5 0.0980 6.5 0.1373 13.5 
R2s 0.251 8.5 0.0900 11.5 0.1427 11 
Rs 0.251 8.5 0.0920 10 0.1387 12 
hrxa 0.251 8.5 0.0900 11.5 0.1347 15 

 

 

Table 21: Optimal LNU run correlations Table 22: Optimal algorithm LNU run – rank & score 

2002  
Optimal LNU Run 

Rank & Score 
Correlation Score Rank 

Score 0.87  2003 
Rank  0.90 
Score 0.57  2004 
Rank   0.50 

 TREC 2002 TREC 2003 TREC 2004 

Algorithm Score Rank Score Rank Score Rank 

rid 0.2306 1.5 0.1040 1 0.1693 1 
id 0.2306 1.5 0.1020 2 0.1653 2 
sd 0.2265 7 0.0980 6.5 0.1587 3 
hspa 0.2286 3.5 0.1000 3 0.1573 4 

ha 0.2265 7 0.0980 6.5 0.1507 6 
hhda 0.2265 7 0.0980 6.5 0.1493 7.5 
hlda 0.2265 7 0.0980 6.5 0.1493 7.5 
hra 0.2286 3.5 0.0980 6.5 0.1373 13.5 
rsd 0.2245 11 0.0880 14 0.1467 10 
rspd 0.2245 11 0.0880 14 0.1480 9 
R3s 0.2224 13.5 0.0880 14 0.1533 5 
hsa 0.2265 7 0.0980 6.5 0.1373 13.5 
R2s 0.2204 15 0.0900 11.5 0.1427 11 
Rs 0.2224 13.5 0.0920 10 0.1387 12 

hrxa 0.2245 11 0.0900 11.5 0.1347 15 

LNU Runs Only 
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Table 23: Optimal Okapi run correlations 

Table 24: Optimal algorithm Okapi run – rank & score 

 TREC 2002 TREC 2003 TREC 2004 
Algorithm Score Rank Score Rank Score Rank 
rid 0.251 8.5 0.0740 10.5 0.1093 5 

id 0.2531 1 0.0840 1 0.1160 3 
sd 0.251 8.5 0.0740 10.5 0.1040 6 
hspa 0.251 8.5 0.0740 10.5 0.1000 12.5 
ha 0.251 8.5 0.0740 10.5 0.1000 12.5 
hhda 0.251 8.5 0.0740 10.5 0.1000 12.5 
hlda 0.251 8.5 0.0740 10.5 0.1000 12.5 
hra 0.251 8.5 0.0780 3.5 0.1013 7.5 
rsd 0.251 8.5 0.0740 10.5 0.1000 12.5 
rspd 0.251 8.5 0.0740 10.5 0.1000 12.5 
R3s 0.251 8.5 0.0780 3.5 0.1120 4 
hsa 0.251 8.5 0.0740 10.5 0.1000 12.5 
R2s 0.251 8.5 0.0780 3.5 0.1187 2 
Rs 0.251 8.5 0.0780 3.5 0.1253 1 
hrxa 0.251 8.5 0.0780 10.5 0.1013 7.5 

Okapi Runs Only 

2002 
 

Optimal Okapi 
Run Rank & 

Score Correlation Score Rank 
Score 0.76  2003 
Rank  0.52 
Score 0.34  2004 
Rank   0.32 

 

 

Although the same behaviour doesn’t hold for LM content-retrieval root set runs, 

Tables 19-24 collectively present anecdotal evidence that given LNU and Okapi root 

sets the success of algorithms relative to one another (algorithm ranks) is somewhat 

independent of the task (topic set).  It seems for example that whilst Realised In-

Degree generally works better than In-Degree given LNU content retrieval root sets, 

the opposite is true where Okapi content retrieval root sets are used. 

 

It would be reasonable on this evidence to further speculate that the properties of 

documents that make them attractive to a particular content-retrieval algorithm could 

also make those documents attractive to a particular link-structure analysis technique 

and that compatible combinations of content-retrieval and link-structure analysis 

algorithms could boost results.   

 

 

Fusion Weighting Parameter 

 

It is clear from Table 25 that without fusion, only the Sibling Propagation algorithms 

can improve on content retrieval run baselines.  The other algorithms all fair better 
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when a fusion with a content run is applied (refer back to Table 12).  The data in 

Table 25 corresponds to the TREC-0000 task, but the same is true of all the three 

official tasks TREC-200[2-4] (refer to appendix B for details). 

 

Table 25: Best non-fusion run per algorithm compared with baseline 

  Precision at 5 Precisoin at 10 Precision at 20 Average Precision R-Precision 
Rank Algorithm Score Algorithm Score Algorithm Score Algorithm Score Algorithm Score 
1)  R2s*  0.1747 R2s* 0.1483 R3s*  0.1193 R2s* 0.1216 Rs* 0.1393 
2)  Rs* 0.1724 R3s* 0.1477 R2s* 0.1178 Rs* 0.1205 R2s* 0.1388 
3)  id 0.1678  = Rs*            Rs* 0.1172 R3s  0.1106 R3s   0.1273 
4)  R3s  0.1609 Id 0.1408 id 0.1009 id 0.0703 id 0.1038 
5)  sd 0.1598 hsa 0.1241 rid 0.0828 rid 0.0592 sd 0.0846 
6)  rid 0.154 Rid 0.1213 sd 0.0822 sd 0.0572 rid 0.0840 
7)  hspa 0.1264 hspa 0.1115 hspa 0.0767 hspa 0.0544 hspa 0.0772 
8)  ha 0.1241 Sd 0.1092 ha 0.0764 hld 0.0532 ha 0.0758 
9)   = hhd       Rsd 0.1029  = hhd       ha 0.0529  = hhd       
10)   = hld       rspd 0.0948  = hld        = hsa         = hld       
11)   = hsa       ha 0.0931  = hsa       hhd 0.0528  = hsa       
12)  rsd 0.1034  = hhd         rsd 0.0707 rsd 0.0458 rsd 0.0649 
13)   = rspd        = hld         = rspd        = rspd         = rspd       
14)  hrxa 0.0816 hra 0.0753 hra 0.0644 hrxa 0.0403 hra 0.0596 
15)  hra 0.0805  = hrxa         = hrxa       hra 0.0400  = hrxa       
Baseline lnu 0.1701 lnu 0.1443 lnu 0.1152 lnu 0.1191 lnu 0.1348 

*Algorithms that were able to better baseline scores are highlighted 

 

Figure 4 conveys the effect that a 0.9 content weighted fusion has on the average 

performance of algorithms in the TREC-0000 task.  The observations made here for 

the TREC-0000 task are reflected in the three official TREC tasks (TREC-200[2-4]).   

 

A 0.9 content weighting for fusion was used in Figure 4 because on average 0.9 

weighted fusions lead to greater performance increases than 0.8 and 0.7 weighted 

fusions (Figure 5). 
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Figure 4:  Mean average algorithm performance with and without fusion  
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Figure 5: Mean average performance improvement after application of fusion 
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T and D Parameters 

 

The table of optimized algorithm runs is dominated by runs in which the higher ‘t’ 

parameter value of 50 features (Table 26).  Although for all of the HITS family 

algorithms a high d parameter value of 50 or infinite is prudent, the opposite is true of 

the degree algorithms for which optimal results are attained when using lower ‘d’ 

parameter values.  Realised In-Degree is the exception, since its optimal run was 

attained with a d parameter setting of 50.  The high ‘t’, low ‘d’, parameter value 

combination is also successful for precision@5, precision@20 and r-precision 

metrics, however for average precision - higher ‘d’ parameter values are typical in 

optimal runs (Table 27). 
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Table 26: Optimal precision at 10 run per-algorithm (TREC-0000 task) 

Precision at 10 Algorithm 
Content 
Type T D Weighting RUN_ID 

0.1644 rid lnu 50 50 ct73 UAlnurid5050F7 
     ct82 UAlnurid5050F8 

0.1638 id lnu 50 0 ct73 UAlnuid500F7 
     ct82 UAlnuid500F8 

0.1603 sd lnu 50 0 ct73 UAlnusd500F7 
0.1592 hspa lnu 50 I ct73 UAlnuh50IspaF7 

0.154 ha lnu 50 50 ct82 UAlnuh5050aF8 
0.1534 hhda lnu 50 50 ct82 UAlnuh5050hdaF8

  hlda lnu 50 50 ct82 UAlnuh5050ldaF8 
0.1506 hra lnu 50 I ct73 UAlnuh50IraF7 

  rsd lnu 50 0 ct82 UAlnursd500F8 
  rspd lnu 50 0 ct82 UAlnurspd500F8 

0.15 R3s lnu 0 0 ct82 UAlnuR3sF8 
0.1494 hsa lnu 50 0 ct73 UAlnuh500saF7 

     ct82 UAlnuh500saF8 
0.1483 R2s lnu 0 0 topology UAlnuR2sT 
0.1477 Rs lnu 0 0 topology UAlnuRsT 
0.1454 hrxa lnu 50 10 ct91 UAlnuh5010rxaF9 

     50 ct91 UAlnuh5050rxaF9 
     I ct91 UAlnuh50IrxaF9 

0.1443 lnu lnu 0 0 content UAlnuC 
0.1351 okapi okapi 0 0 content UAokapiC 
0.0828 lm lm 0 0 content UAlmC 

NB: ct-n-x=fusion run with content weight 0.n and topology weight 0.x

Table 27: Optimal average precision run per-algorithm (TREC-0000 task) 

Average 
Precision Algorithm Content Type T D Weighting RUN_ID 

0.1233 ha lnu 50 10 ct73 UAlnuh5010aF7 
0.1224 rid lnu 50 50 ct82 UAlnurid5050F8 
0.1223 hhda lnu 50 50 ct73 UAlnuh5050hdaF7

     I ct73 UAlnuh50IhdaF7 
  hlda lnu 50 I ct73 UAlnuh50IldaF7 

0.1218 R3s lnu 0 0 ct82 UAlnuR3sF8 
0.1216 R2s lnu 0 0 topology UAlnuR2sT 
0.1213 id lnu 50 0 ct82 UAlnuid500F8 
0.1212 hspa lnu 50 50 ct73 UAlnuh5050spaF7
0.1208 sd lnu 50 0 ct73 UAlnusd500F7 
0.1205 Rs lnu 0 0 topology UAlnuRsT 

0.12 rspd lnu 50 50 ct82 UAlnurspd5050F8 
0.1198 rsd lnu 50 50 ct82 UAlnursd5050F8 

     I ct82 UAlnursd50IF8 
0.1195 hsa lnu 50 0 ct73 UAlnuh500saF7 
0.1191 lnu lnu 0 0 content UAlnuC 
0.1139 okapi okapi 0 0 content UAokapiC 
0.0967 hra lnu 50 50 ct82 UAlnuh5050raF8 
0.0965 hrxa lnu 50 0 ct73 UAlnuh500rxaF7 

      ct82 UAlnuh500rxaF8 
      ct91 UAlnuh500rxaF9 

0.067 lm lm 0 0 content UAlmC 
NB: ct-n-x=fusion run with content weight 0.n and topology weight o.x 
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4.3 Influence of Link Density 
 

The intention in devising HITS High Density Authority and HITS Low Density 

Authority was to produce runs in which typical base set link densities were different 

to those from HITS Authority runs.  On average both HITS High Density Authority 

and HITS Low Density Authority runs feature a lower link density than HITS 

Authority which selects in and out linked documents in the order they form when 

links are sequentially extracted from documents (thus better preserving natural Web 

link clusters). 

 

It is clear from Table 28 that the mean average performance of the algorithms across 

different metrics is mixed.  The higher density algorithm (HITS Authority) performs 

well in average precision and r-precision assessments, whilst the lowest density 

algorithm (HITS Low Density Authority) performs better in precision@5, 

precision@10 and precision@20 assessments.  The performance differences across all 

metrics are less than emphatic. 

 

Table 28: Density HITS algorithm performance summary 

Algorithm  
Average Base 

Set Link 
Density 

Average 
Expand 
Set Size 

Average 
Precision 

at 5 

Average 
Precision 

at 10 

Average 
Precision 

at 20 

 Average 
- 

Average 
Precision

Average   
r-

Precision

hlda 0.5632 35.54 0.0783 0.0708 0.0572 0.0367 0.0567
ha 0.6743 44.25 0.0778 0.0703 0.0571 0.0372 0.0575
hhda 0.6241 35.5 0.0716 0.0655 0.0525 0.0346 0.0534

NB: Ordered by Average Precision at 10. 
 

These inconclusive results are reflected in the marginal differences between the 

optimal runs for each of the three algorithms (refer back to Table 12).   

 

Perhaps surprisingly, there is a significant negative empirical correlation between the 

link densities of base sets for the runs of these algorithms and the various performance 

metrics (Table 29).  The correlation figures quoted in Table 29 are calculated using 

the formula given in Appendix A. 
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Table 29: Correlations between performance metrics and base set link densities. 

Correlations Base Set Link Densities 

Average Precision -0.2596
R-Precision -0.2724

Precision at 5 -0.5250
Precision at 10 -0.6185
Precision at 20 -0.3406

HITS Density Related Algorithms: hhda,hlda,ha 

 

A likely explanation for this correlation is that runs in which root sets are unexpanded 

(and therefore have lower link densities) perform better than runs in which root sets 

are expanded.  Since root sets are expanded using in and out links, the link densities 

of the poorer performing expanded root set runs are consequently higher. 

 

What is more conclusive is that both the precision and recall of the expand set are 

higher when the density of the base set is higher (Table 30 and Table 31).  This means 

that HITS Authority algorithm runs (with their higher link densities) augmented their 

root set with more relevant documents. 

 

Table 30: Average expand set precision for density related HITS algorithm runs 

Algorithm Average Base Set 
Link Density 

Average Expand 
Set Size 

Average Expand Set 
Precision 

ha 0.6743 44.25 0.0140 
hhda 0.6241 35.50 0.0135 
hlda 0.5632 35.54 0.0132 
NB: Ranked by average expand set precision 

 

Table 31:  Average expand set recall for density related HITS algorithm runs 

Algorithm Average Base Set 
Link Density 

Average Expand 
Set Size 

Average Expand Set 
Recall 

ha 0.6743 44.25 0.0140 
hhda 0.6241 35.50 0.0135 
hlda 0.5632 35.54 0.0132 
NB: Ranked by average expand set recall 
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4.4 Effects of Randomisation 
 

Table 32 contrasts the random link graph featuring HITS RandomX Authority and 

HITS Random Authority algorithms (refer to Table 6 for differences) with the natural 

link graph based HITS Authority algorithm firstly over all runs and then secondly 

over all runs in which the root set was unexpanded (as is the case when the ‘d’ 

parameter is set to 0).  Restricting the analysis to runs in which root sets were not 

expanded emphasizes the effect of differences in link semantics, or lack of link 

semantics in the case of the random HITS algorithms.  In these unexpanded root set 

runs, the randomisation of links affected by the HITS RandomX and HITS Random 

algorithms lead to relatively small falls in mean average precision (over all 

unexpanded runs) when compared to the HITS Authority algorithm (Table 32).   
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Randomization Related HITS Algorithm Mean Average 
Run Performance
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Figure 6: Randomisation related HITS algorithm mean average performance over 
all/unexpanded root set runs 

 
Table 32: Randomisation related HITS algorithm run, mean average performance data 
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ha         0.0996 0.0778 0.1018 0.0703 0.0642 0.0571 0.0400 0.0372 0.0625 0.0575 
hrxa       0.0839 0.0486 0.0929 0.0489 0.0596 0.0383 0.0339 0.0233 0.0550 0.0375 
hra        0.0837 0.0430 0.0929 0.0438 0.0595 0.0362 0.0339 0.0213 0.0550 0.0326 
ha to hrxa 
decrease 15.76% 37.53% 8.74% 30.44% 7.17% 32.92% 15.25% 37.37% 12.00% 34.78% 
ha to hra 
decrease 15.96% 44.73% 8.74% 37.70% 7.32% 36.60% 15.25% 42.74% 12.00% 43.30% 
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When root set expansion is taken into account, the effect of randomisation is 

understandably dramatic since documents with no semantic relation to root set 

documents dilute the base set.   

 

It is noticeable that the mean average performance of runs from the HITS RandomX 

algorithm is marginally better than that of the HITS Random algorithm.  This 

indicates that preserving document degrees does not counter the effect of polluting 

link semantics, but may in fact exaggerate it. 

 

From the perspective of optimal runs produced by the random HITS algorithms, 

fusion with content tends to offset the degradation caused by the randomisation of 

links meaning that although performance is largely poorer than other algorithms (refer 

back to Table 12) it is still comparable with some most noticeably when precision at 

10 performance is considered (refer back to Table 26). 

 

 

 

4.5 Utility of Siblings 
 

Table 33 overviews a number of comparisons between sibling and non-sibling 

approaches taken in the experimentation.  It is clear from the table that overall, the 

classical non-sibling approaches produce better results than the trialled sibling 

approaches.  In the remainder of this section details of the comparisons are presented. 
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Table 33: Comparisons between Sibling and Non-Sibling approaches 

  Mean Average Performance Optimal Run Performance 
Comparison Sibling Non-Sibling Sibling Non-Sibling 

Global Degree Algorithm 
Performance x   x 

Global Degree Algorithm 
Performance (without root set 
expansion) 

 x  x 

Realised Degree Algorithm 
Performance  x  x 

Realised Degree Algorithm 
Performance (without root set 
expansion) 

 x  x 

HITS Algorithm Performance x  x  
Augmentation Set Precision x    
Augmentation Set Recall  x   

 

 

Global Degree Algorithm Performance 

 

Here we compare the performance of all In-Degree algorithm runs with Sibling-

Degree algorithm runs.  The two algorithms vary by both the way they expand their 

root set and the degree measure they use in re-ranking. 

 

It is apparent from Table 12 (refer back to section 4.1) that the best runs produced by 

the In-Degree algorithm outperform the best runs produced by the Sibling-Degree 

algorithm across all 5 metrics.  However, from the perspective of mean average 

performance over all runs (excluding fusion runs) - Sibling Degree averaged better 

runs across all metrics (Table 34). 

 

Table 34: Sibling-Degree and In-Degree algorithm runs mean average performance scores 

Algorithm  Degree 
Measure 

Average 
Precision 

at 5 

Average 
Precision 

at 10 

Average 
Precision 

at 20 

Average 
- 

Average 
Precision 

 Average   
r-

Precision 

sd 
sibling-
degree 0.0748 0.0796 0.0546 0.0329 0.0547 

id in-degree 0.0429 0.0463 0.0414 0.0254 0.0390 
NB: Ranked by average precision at 10   
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Global Degree Algorithm Performance (without root set expansion) 

 

Table 35 contrasts the effectiveness of sibling-degree and in-degree measures for re-

ranking.  Only runs produced by the In-Degree and Sibling-Degree algorithms for 

which no root set expansion occur are considered.  By concentrating on runs with no 

root set expansion, the different expansion techniques are prevented from factoring in 

the results. 

 

Table 35: Comparison between in-degree and sibling-degree re-ranking mean average 
performance across unexpanded root set runs 

Algorithm  Degree 
Measure 

Average 
Precision  

at 5 

Average 
Precision 

at 10 

Average 
Precision 

at 20 

Average - 
Average 
Precision 

 Average    
r-

Precision 

id in-degree 0.1358 0.1207 0.0746 0.0512 0.0781

sd 
sibling-
degree 0.1180 0.1076 0.0667 0.0427 0.0648

NB: Ranked by average precision at 10   
 

Across all metrics, in-degree re-ranking betters sibling-degree re-ranking. 

 

From the perspective of the (optimal) best run produced by each algorithm, the In-

Degree runs are again better across all metrics (Table 36). 

 

Table 36: Optimal global degree algorithm comparison 

Algorithm Precision at 5 Precision at 10 Precision at 20 Average Precision R-Precision 

In-Degree UAlnuid500F7 0.1943 UAlnuid500F7 0.1683 UAlnuid500F7 0.1261 UAlnuid500F8 0.1213 UAlnuid500F9 0.1405 

Sibling-
Degree UAlnusd500F7 0.1908 UAlnusd500F7 0.1603 UAlnusd500F7 0.1227 UAlnusd500F7 0.1208 UAlnusd500F7 0.1337 

 

 

Realised Degree Algorithm Performance  

 

The results when comparing Realised Sibling-Degree with Realised In-Degree runs 

are similar to the global degree findings.  Mean average performance of Realised In-

Degree runs is better than that of Realised Sibling-Degree (Table 37). 

 

Table 12 (refer to section 3.1) reveals that optimal Realised In-Degree runs far 

outperform Realised Sibling-Degree runs across all five metrics. 
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Table 37: Realised degree algorithms mean average performance comparison 

Algorithm  Degree 
Measure 

Average 
Precision  

at 5 

Average 
Precision 

at 10 

Average 
Precision 

at 20 

Average 
- 

Average 
Precision 

 Average   
r-

Precision 

rid in-degree 0.1083 0.0887 0.0646 0.0416 0.0647 

rsd 
sibling-
degree 0.0672 0.0718 0.0504 0.0306 0.0485 

NB: Ranked by average precision at 10   
 

Realised Degree Algorithm Performance (without root set expansion) 

 

Table 38 compares the effectiveness of realised sibling-degree and in-degree 

measures in re-ranking results.  Runs in which the root set was expanded are filtered 

out, since the algorithms Realised In-Degree and Realised Sibling-Degree expand 

their root sets differently.    

 

Table 38:  Mean average performance of realised degree algorithms across unexpanded root set 
runs  

Algorithm  Degree 
Measure 

Average 
Precision  

at 5 

Average 
Precision 

at 10 

Average 
Precision 

at 20 

Average 
- 

Average 
Precision 

 Average   
r-

Precision 

rid in-degree 0.0998 0.1018 0.0642 0.0398 0.0624 

rsd 
sibling-
degree 0.0929 0.0977 0.0619 0.0365 0.0575 

NB: Ranked by average precision at 10   
 

The results from Table 38 reflect the results of the earlier comparison between global 

degree algorithms (Table 35) except the margin between the in-degree reliant 

Realised In-Degree algorithm and the sibling-degree reliant Realised Sibling-Degree 

algorithm is narrower. 

  

From the perspective of optimal runs, Realised Sibling-Degree outperforms Realised 

In-Degree in all metrics except precision at 10 (Table 39).   
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Table 39: Realised degree algorithm optimal unexpanded root set run performance 

Algorithm Precision at 5 Precision at 10 Precision at 20 Average Precision R-Precision 

Realised In-
Degree UAlnurid500F7: 0.1770 UAlnurid500F8: 0.1529 UAlnurid500F8: 0.1178 UAlnurid500F7: 0.1181 UAlnurid500F8: 0.1281 

Realised 
Sibling-
Degree UAlnursd500F7: 0.1782 UAlnursd500F8: 0.1506 UAlnursd500F9: 0.1181 UAlnursd100F9: 0.1185 UAlnursd100F7: 0.135 

 

 

HITS Algorithms Performance 

 

The three HITS based algorithms HITS Sibling Authority, HITS Sibling & Parent 

Authority and HITS Authority only differ in terms of how they perform root set 

expansion.  The mean average performance of these algorithms over 24 equivalently 

configured runs is contrasted below. 

 

Table 40: Comparison of HITS algorithm run mean average performance 

Algorithm  Augmentation 
Relationship 

Average 
Precision  

at 5 

Average 
Precision 

at 10 

Average 
Precision 

at 20 

Average 
- 

Average 
Precision 

 Average   
r-

Precision

hsa sibling 0.0851 0.0885 0.0603 0.0376 0.0603

hspa 
sibling & 
parent 0.0955 0.0869 0.061 0.0412 0.0637

ha in & out link 0.0778 0.0703 0.0571 0.0372 0.0575
NB: Ranked by average precision at 10   

 

HITS Sibling & Parent Authority exhibits the best mean average performance for all 

metrics excepting precision at 10 and on average comfortably improves on HITS 

Authority scores (by nearly 20% for precision at 10).  Interestingly, HITS Sibling 

Authority runs are also on average better than HITS authority.  The success of HITS 

Sibling & Parent authority is also reflected in the precision at 10 rankings of optimal 

runs produced by the two algorithms (refer to Table 12, section 4.1), where the top 

HITS Sibling & Parent authority run outperforms it’s HITS Authority counterpart. 

 

Augmentation Set Precision 

 

An analysis of the precision of the expand set (set difference between the base set and 

root set) offers more insight into the merits of the different methods of expanding the 

root set. 



 71

 

In table 41 the mean average precision of all expand sets derived through either in- 

and out-link, sibling, sibling and parent or random link (in the case of random link 

graph algorithms) expansion are contrasted. 

Table 41: Comparing mean average expand set precision for different expansion techniques 

Augmentation Relationship Average Expand 
Set Size 

Average Expand 
Set Precision 

sibling & parent 44.7778 0.0187 
in & out link 54.3444 0.0183 
sibling 20.1111 0.0172 
random 74.9167 0.0001 
NB: Ranked by average expand set recall     
sibling expansion algorithms={sd,rsd,hs}  
sibling & parent expansion algorithms={rspd,hspa} 

in & out_link expansion algorithms={id,rid,ha,hlda,hhda} 

random expansion algorithms={hra, hrxa}  
 

Expand sets obtained through sibling and parent expansions are marginally more 

precise than those obtained through in and out link expansions.  Expand sets obtained 

randomly are almost totally imprecise. 

 

Augmentation Set Recall 

 

Table 42 contrasts the recall of the different types of expand sets, where recall of an 

expand set is defined as the fraction of all relevant documents in the expand set. 

 

Table 42: Comparison of expand set recall for different expansion methods 

Augmentation Relationship Average Expand Set Size 
Average 
Expand 

Set 
Recall 

in & out link 54.3444 0.0501
sibling & parent 44.7778 0.0310
sibling 20.1111 0.0181
random 74.9167 0.0003
NB: Ranked by average expand set recall  
sibling expansion algorithms={sd,rsd,hs}  
sibling & parent expansion algorithms={rspd,hspa} 

in & out_link expansion algorithms={id,rid,ha,hlda,hhda} 

random expansion algorithms={hra, hrxa}  
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In and out link expansion comfortably outperforms the others, whilst random expand 

sets are almost baron of relevant documents. 

 

 

 

4.6 Chapter Summary 
 

In this chapter findings from experiments have been organised and reported in relation 

to the earlier established research objectives.  The chapter serves to detail key results 

from the experimentation; a thorough analysis of those results is reserved for the next 

chapter. 
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5. Conclusion 
 

This chapter features analysis of the results from the experimentation presented in the 

previous chapter.  In section 5.1, results relating to the primary research objective of 

evaluating the effectiveness of link-based methods are analysed.  Additionally, results 

pertaining to the tuning of algorithms are summarised.  Results relating to the utility 

of sibling relationships proved to be extensive and section 5.2 is dedicated to 

analysing that particular secondary research objective.  The analysis of results is 

completed with the final two secondary research objectives (determining the influence 

of link density and effects of link randomisation) in section 5.3.  Finally, in section 

5.4 a number of proposals for further research in relation to link-based methods for 

Web Retrieval are proposed. 

 

 

 

5.1 Effectiveness of Link-Based Methods 
 

A range of link-structure analysis techniques as embodied by evaluated algorithms 

have proven able to improve on the performance of content-only retrieval baselines. 

 

Of the familiar link-based algorithms evaluated – Realised In-Degree, In-Degree, 

RMIT, RMIT2 and RMIT3 produced runs (under optimal configuration) that 

improved on baseline content-only retrieval runs across all considered performance 

metrics; precision at 5, precision at 10, precision at 20, average precision and r-

precision.  The remaining familiar algorithm - HITS Authority, produced runs that 

bettered content-only retrieval run baseline scores across all considered performance 

metrics bar r-precision where the content-only retrieval baseline run scored 

marginally higher (0.1348 compared to 0.1342, as seen in Table 12).  Realised In-

Degree was the top performing algorithm from the perspective of the early precision 

measures: precision at 5, precision at 10, precision at 20 and r-precision where it 

produced runs bettering content-only retrieval baseline run scores by 18.2%, 13.9%, 

10.8% and 4.3% respectively.  Improvements were less dramatic in terms of the 
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average precision performance metric where HITS Authority was superior producing 

a run that bettered the content-only retrieval baseline score by 3.5%. 

 

The value of link-structure analysis was further emphasised by the performances of 

the variant algorithms (excepting HITS Random Authority and HITS Random X 

Authority which experimented with randomised link structures).  HITS High Density 

Authority, HITS Low Density Authority, HITS Sibling Authority, Sibling Degree, 

Realised Sibling Degree and Realised Sibling & Parent Degree, all produced runs 

improving on content-only retrieval baseline scores across the metrics: precision at 5, 

precision at 10, precision at 20 and average precision.  Although R-precision 

improvements on content-only retrieval baseline runs were more elusive since the 

HITS based variant algorithms including HITS Authority itself were the only variants 

unable to yield improved runs. 

 

It is noticeable that improvements on content-only retrieval baselines were more 

elusive in the official TREC-2002 task than in the later TREC-2003 and TREC-2004 

tasks (refer to Appendix B).  Only the In-Degree algorithm was able to improve on 

the precision at 10 Okapi content-only retrieval baseline in 2002’s task.  

Improvements in algorithm performance at TREC-2003 and TREC-2004 tasks 

correspond to the change in the nature of the topic distillation task itself.  Unlike 

2002’s task, the later tasks restricted relevant resources to home pages and the topic 

distillation task therefore had strong navigational search characteristics 

[CraswellHawking2005-B].  Navigational search is a category of search that link-

based methods have already been shown to be effective in [SinghalKaszkiel2001] 

[KraaijWesterveldHiemstra2002].  The effectiveness of in-degree was demonstrated 

by [KraaijWesterveldHiemstra2002] who show that the use of in-degree priors in a 

language model ranking method improves on content-only retrieval in the TREC-

2001 Home Page Finding task.  In the experimentation carried out by 

[SingelKazkiel2001], link-structure analysis was not clearly demarcated since 

commercial Web search engines were used as representative link-structure analysis 

systems although such search engines typically mix link-structure analysis with 

anchor text indexing and other factors.   
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The experimentation carried out here has demonstrated that combining link-structure 

analysis with content analysis improves on content-only retrieval in topic distillation 

searches.  However, to answer the broader question of how effective link-structure 

analysis is in Web IR as a whole, a better understanding is needed of how 

representative topic distillation and navigational searches (a category of search in 

which link-structure analysis has already been shown to be effective) are of Web 

searches in general.  Suggestions from studies [Broder2002] are that these categories 

of search could account for more than 50% of all searches; which underlines the value 

of link-structure analysis in the broader context. 

 

In addition to confirming the effectiveness of link-based methods the experimentation 

has yielded some insight into the tuning of algorithm parameters.  Although optimal 

configurations for algorithms vary on a case to case basis, generally fusion content 

weights of 0.8 and 0.7, ‘t’ parameter values of 50 and ‘d’ parameter values of 0 have 

proven to be characteristic of the top runs produced by algorithms (refer back to Table 

26).  

 

A few exceptions to the trend are seen in the sibling propagation algorithms which 

generally do not improve as a result of fusion and the Realised In-Degree algorithm 

which works best with higher ‘d’ parameter values.  The local degree factor in 

realised degree calculations are likely to counter the effects of topic drift that usually 

result from high ‘d’ parameter values. 

 

 

 

5.2 Utility of Sibling Relationships 
 

Various studies [Davison2000][Menczer2001] have concluded that linked pages are 

likely to be more similar than a random selection of pages.  Davison goes a step 

further in revealing that when considering only inter-domain links (almost equivalent 

to inter-site links); co-cited URLs are likely to be more similar than linked URLs. 
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The University of Twente produced data on the indirect relevance of documents based 

on propagated in- and out-link relevance as part of their TREC-9 Web Track efforts 

[KraaijWesterveld2000].  

 

∑
∈

=
)( )(deg

)()(
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=
)( )(deg

)()(
dinlinksi dreein
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In their formulations relevancy(i) is a binary function mapping relevant documents to 

the value 1.  A similar formulation not considered by Twente is indirect relevance 

based on propagated sibling relevance. 

 

∑
∈

=
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Table 43 details Twente’s findings in relation to TREC-8 relevance judgments 

alongside indirect in-, out-link and sibling relevance for the combined TREC-0000 

task. 

Table 43: Mean average indirect relevance scores across all relevant .GOV documents 

 
Average 
InLinkRel(d) AverageOutLinkRel(d) AverageSiblingRel(d) 

TREC-0000 0.011745 0.014800 0.011107 
TREC-8 0.064735 0.026876  

 

It is noticeable that there is more indirect out-linked relevance than indirect in-linked 

relevance for relevant documents for TREC-0000 which is very different to Twente’s 

findings for TREC-8 and could indicate that relevance judges in later years have 

followed out-links from relevant documents when finding more relevant documents.  

The more pertinent observation is that the indirect sibling relevance of relevant 

documents is less than the indirect in- or out-link relevance of those documents, 

which somewhat contradicts Davison’s findings.  The implications of that result is 

that augmenting the root set with a given number of siblings is no more likely to 

prevent topic drift than augmenting with the same number of in- or out-linked 

documents.  Table 41 (refer back to section 4.5) bears out this finding, since the 

average precision of expand sets obtained through sibling expansion is shown to be 

lower than that obtained through in- and out-link expansion. 
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Table 41 also reveals that the sibling and parent expansion technique leads to 

marginally more precise expand sets than in- and out-link expansion which goes some 

way to explaining the success of employing sibling and parent expansion in the HITS 

Sibling and Parent algorithm.  All other algorithm variants in which sibling or sibling 

and parent expansion were trialled did not improve on the performance of their in/out-

link expansion counterparts. 

 

When comparing the algorithms featuring degree measure re-ranking, the mean 

average performance of the Sibling-Degree algorithm was around 70% better than 

that of its In-Degree counterpart.  Although this suggests sibling-degree is a more 

useful re-ranking criterion, a closer examination of Sibling-Degree algorithm runs 

reveals that far fewer base-set documents were re-ranked in comparison to In-Degree 

algorithm runs.  Of the top 10 base set documents only 1 document was changed as a 

result of re-ranking in the case of Sibling-Degree whereas an average of 5 changes 

resulted from In-Degree re-ranking.  The more conservative re-ranking applied by the 

Sibling-Degree algorithm leaves more reliable content-retrieval judgments in tact, 

hence the higher scores.  However fusion with a content run rewards the less 

conservative re-ranking performed by the In-Degree algorithm, hence the superior 

optimal run scores produced by In-Degree.  The reason that Sibling-Degree re-ranking 

is more conservative is clear from table 44 where it can be seen that the probability 

that a document has a sibling and hence a non-zero sibling degree is far lower than the 

probability that a document has an in-link and thus a non-zero in-degree. 

 

Table 44: Probability of having relation 

Relation Total Documents with Relation Probability of Having Relation 
In-Link 806,551 0.646402774 
Out-Link 153,908 0.123348131 
Sibling 35,371 0.028347758 
Only Inter-site links considered: Total number of documents is 1,247,753 

 

Figure 7 confirms that the potential to discern relevance through sibling-degree is 

about the same as through in-degree.  The graph is plotted on a log scale and clearly 

illustrates that rises in all three degree levels lead to roughly equivalent rises in the 

probability of document relevance. 
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Figure 7:  Prior probability of link degrees for combined TREC-0000 tasks 

 
 

To conclude, in the combined TREC-0000 task, siblings offer neither better topic 

locality (as seen in table 43) nor better degree-level to relevance probability ratios (as 

seen in Figure 7) and as a result the trials of sibling-based variant algorithms were 

largely unsuccessful.  Where sibling algorithms were able to improve on standard 

in/out link approaches their success tends to be due to conservative re-ranking owing 

to the relative scarcity of documents with sibling relationships compared to in/out-link 

relationships (as seen in Table 44). 

 

 

 

5.3  Link Density and Link Randomisation 
 

We start this section with an analysis of results relating to link density manipulation 

experiments before moving onto link randomisation. 
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Results from the experimentation tentatively refute the suggestion that higher link 

densities are as valuable in the context of Web IR as they are in Clustering 

[EversonFisher2002].  The higher base set density driven approach to root set 

expansion experimented with in the HITS High Density Authority algorithm lead to 

generally poorer performance than the opposite approach trialled in the HITS Low 

Density Authority algorithm.  The positive effect that higher base set densities have 

on expand set and correspondingly base set precision are not reflected in overall 

precision measures. 

 

In reference to randomisation - as expected, both randomisation-based HITS 

algorithms that were trialled lead to poorer performance than standard HITS.  Further, 

the preservation of document in- and out- degrees featured in the HITS Random 

algorithm did not offset the deterioration of link semantics since performance was no 

better than the HITS Random X algorithm which did not preserve link degrees. 

 

Interestingly, once fusion with content results is applied the optimal performances of 

both random algorithms are comparable with content-only retrieval baselines and 

even manage to improve on the precision at 20 baseline score (refer back to Table 12).  

This suggests that after fusion, link-structure analysis methods such as HITS are 

somewhat resilient to perturbations in link structure. 

 

 

 

5.4 Further Work 
 

Two areas for further research related to this thesis have been identified; 

 

 Correlation Analysis of Link-Based Algorithm Runs 

 Combining Content-Retrieval and Link-Analysis Methods 

 

Correlation Analysis of Link-Based Algorithm Runs 
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Correlations between a number of the numeric attributes pertaining to the runs 

evaluated in this thesis are presented in Appendix A.  The attributes range from 

overlap between top 10 base set documents before and after re-ranking to 

performance metrics. 

 

Many of the correlations are co-incidental and do not denote causation.  Other 

correlations may offer helpful insights into optimizing and developing improved link-

based methods.  A thorough examination of the correlations between data pertinent to 

runs, based on perhaps more extensive data than presented in appendix A is a 

worthwhile exercise. 

 

Combining Content-Retrieval and Link-Analysis Methods 

 

When considering combining link-analysis and content-retrieval methods, the focus 

tends to be on fusion of result sets [Yang2001].  In section 4.1, tentative evidence was 

presented of ties between content retrieval methods and link-analysis methods.  

Specifically, there was evidence that a root set sourced from an Lnu.ltc vector model 

content retrieval had more positive implications for Realised In-Degree algorithms 

than sibling propagation algorithms.  Such allegiances between link-analysis and 

content retrieval implementations could be due to interesting phenomena such as 

document properties that are favourable to instances from both classes of algorithms 

(perhaps as simple as document length).  An understanding of which pairings of link 

and content analysis methods are particularly compatible and why would be helpful in 

optimizing the performance of link-based algorithms on a particular collection given 

prior knowledge of the performance of content-based algorithms on that collection.  
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Appendix A Empirical Correlations 
 

A number of attributes and performance metrics pertaining to each run were collected 

and formed into data sets.  The data points within data sets correspond to the mean 

average attribute or metric value over all of a run’s queries.  Only runs from the 

combined TREC-0000 task were considered. 

 

The correlation figures quoted in Table 45 and Table 46 are produced by the 

Microsoft Excel Analysis ToolPak [ExcelToolPak] and measure the covariance of a 

pair of data sets divided by the product of their standard deviations.  
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Correlation values approach 1 when larger values of one set are associated with the 

larger values of the other and approach -1 when larger values of one set are associated 

with the smaller values of the other.  A correlation value near 0 denotes no relation 

between associated data set values. 

 

Correlations between pairs of run attributes are tabulated in Table 45 and correlations 

between run attributes and run performance metrics are tabulated in Table 46.  The 

term expand set used in several attributes refers to the set difference between the base 

set and root set. 
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Table 45: Correlations in-between run-attribute pairs 
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BASE SET 
LINK 
DENSITY 1.00             

ROOT SET 
SIZE -0.16 1.00            

BASE SET 
SIZE 0.03 0.96 1.00           

EXPAND 
SET SIZE 0.69 -0.07 0.20 1.00          

ROOT SET 
PRECISION 0.07 -0.31 -0.34 -0.13 1.00         

BASE SET 
PRECISION -0.39 -0.24 -0.35 -0.39 0.79 1.00        
EXPAND 
SET 
PRECISION 0.37 -0.20 -0.20 -0.01 0.26 0.08 1.00       

ROOT SET 
RECALL -0.01 0.77 0.82 0.22 -0.32 -0.27 -0.33 1.00      

BASE SET 
RECALL 0.12 0.73 0.80 0.31 -0.34 -0.32 -0.22 0.98 1.00     
EXPAND 
SET 
RECALL 0.64 -0.12 0.00 0.45 -0.16 -0.30 0.53 -0.01 0.19 1.00    

ROOT SET 
RELEVANT 
DOCS 0.00 0.74 0.77 0.18 -0.08 -0.08 -0.21 0.83 0.81 -0.05 1.00   
BASE SET 
RELEVANT 
DOCS 0.12 0.70 0.76 0.26 -0.07 -0.11 -0.12 0.82 0.82 0.09 0.98 1.00  
TOPIC 
RELEVANT 
DOCS 0.11 0.00 0.02 0.08 0.70 0.54 0.17 0.02 0.00 -0.09 0.41 0.42 1.00 
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Table 46: Correlation between attributes and performance metrics 
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AVERAGE 
PRECISION -0.20 0.62 0.57 -0.16 0.13 0.27 -0.10 0.65 0.63 -0.05 0.72 0.70 0.29 

R-PRECISION -0.21 0.41 0.33 -0.24 0.40 0.51 0.05 0.40 0.37 -0.09 0.58 0.57 0.50 

PRECISION@5 -0.25 0.24 0.17 -0.25 0.49 0.66 0.00 0.22 0.19 -0.14 0.40 0.38 0.52 

PRECISION@10 -0.37 0.17 0.08 -0.33 0.58 0.81 -0.02 0.09 0.04 -0.23 0.30 0.27 0.52 

PRECISION@20 -0.21 0.27 0.19 -0.29 0.58 0.65 0.09 0.24 0.20 -0.15 0.48 0.46 0.63 

*Fusion and content-only baseline runs excluded 
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Appendix B  Algorithm Optimal Run Performance Reports 

 
In this appendix 20 SQL reports are presented.  The reports are extracted from the 

Oracle relational database set up to house data on algorithm runs.  They detail the 

parameter combinations and run ids of the best scoring run(s) produced by each 

algorithm for all pairs of evaluation metrics and tasks.  The metrics assessed are: 

precision at 5 (referred to in reports as precision_5), precision at 10 (precision_10), 

precision at 20 (precision_20), average precision (precision_A) and r-precision 

(precision_R) and the tasks are 0000 (for the synthesized combined-task), 2002, 2003 

and 2004 for the three official TREC tasks. 

 

The reports are largely self-explanatory although a number of points may need some 

clarification.  Firstly, the value ‘topology’ under the ‘weighting’ column denotes a 

non-fusion run, the values ct73, ct82 and ct91 are used for fusion runs with content 

weightings of 0.7, 0.8 and 0.9 respectively.  Secondly, a ‘d’ parameter value of ‘I’ 

denotes infinite and appears for runs in which root set expansion is uncapped.  

Finally, where a row value is blank, the previous specified value in the column should 

be taken. 
 

 

Optimized-Algorithm Rankings: precision_10 

========================================== 

 

TREC Topic Distillation Task: 0000 

 

PRECISION_10 ALGORITHM    CONTENT_TYPE      T D    WEIGHTING  RUN_ID 

------------ ------------ -------------- ---- ---- ---------- ---------------------- 

       .1644 rid          lnu              50 50   ct73       UAlnurid5050F7 

                                                   ct82       UAlnurid5050F8 

       .1638 id           lnu              50 0    ct73       UAlnuid500F7 

                                                   ct82       UAlnuid500F8 

       .1603 sd           lnu              50 0    ct73       UAlnusd500F7 

       .1592 hspa         lnu              50 I    ct73       UAlnuh50IspaF7 

       .1540 ha           lnu              50 50   ct82       UAlnuh5050aF8 

       .1534 hhda         lnu              50 50   ct82       UAlnuh5050hdaF8 

             hlda         lnu              50 50   ct82       UAlnuh5050ldaF8 

       .1506 hra          lnu              50 I    ct73       UAlnuh50IraF7 

             rsd          lnu              50 0    ct82       UAlnursd500F8 

             rspd         lnu              50 0    ct82       UAlnurspd500F8 

       .1500 R3s          lnu               0 0    ct82       UAlnuR3sF8 

       .1494 hsa          lnu              50 0    ct73       UAlnuh500saF7 

                                                   ct82       UAlnuh500saF8 

       .1483 R2s          lnu               0 0    topology   UAlnuR2sT 

       .1477 Rs           lnu               0 0    topology   UAlnuRsT 

       .1454 hrxa         lnu              50 10   ct91       UAlnuh5010rxaF9 
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                                              50   ct91       UAlnuh5050rxaF9 

                                              I    ct91       UAlnuh50IrxaF9 

       .1443 lnu          lnu               0 0    content    UAlnuC 

       .1351 okapi        okapi             0 0    content    UAokapiC 

       .0828 lm           lm                0 0    content    UAlmC 

 

Optimized-Algorithm Rankings: precision_10 

========================================== 

 

TREC Topic Distillation Task: 2002 

 

PRECISION_10 ALGORITHM    CONTENT_TYPE      T D    WEIGHTING  RUN_ID 

------------ ------------ -------------- ---- ---- ---------- ---------------------- 

       .2531 id           okapi            10 10   ct82       UAokapiid1010F8 

                                                   ct91       UAokapiid1010F9 

                                              50   ct91       UAokapiid1050F9 

                                              I    ct91       UAokapiid10IF9 

       .2510 R2s          okapi             0 0    ct73       UAokapiR2sF7 

                                                   ct82       UAokapiR2sF8 

             R3s          okapi             0 0    ct82       UAokapiR3sF8 

             Rs           okapi             0 0    ct73       UAokapiRsF7 

                                                   ct82       UAokapiRsF8 

             ha           okapi            10 0    topology   UAokapih100aT 

             hhda         okapi            10 0    topology   UAokapih100hdaT 

             hlda         okapi            10 0    topology   UAokapih100ldaT 

             hra          okapi            10 0    ct73       UAokapih100raF7 

                                                   ct82       UAokapih100raF8 

                                                   ct91       UAokapih100raF9 

                                                   topology   UAokapih100raT 

                                           50 0    ct73       UAokapih500raF7 

                                                   ct82       UAokapih500raF8 

                                                   ct91       UAokapih500raF9 

                                              50   ct91       UAokapih5050raF9 

                                              I    ct91       UAokapih50IraF9 

             hrxa         okapi            10 0    ct73       UAokapih100rxaF7 

                                                   ct82       UAokapih100rxaF8 

                                                   ct91       UAokapih100rxaF9 

                                                   topology   UAokapih100rxaT 

                                           50 0    ct73       UAokapih500rxaF7 

                                                   ct82       UAokapih500rxaF8 

                                                   ct91       UAokapih500rxaF9 

             hsa          okapi            10 0    topology   UAokapih100saT 

             hspa         okapi            10 0    topology   UAokapih100spaT 

             okapi        okapi             0 0    content    UAokapiC 

             rid          okapi            10 0    topology   UAokapirid100T 

             rsd          okapi            10 0    topology   UAokapirsd100T 

             rspd         okapi            10 0    topology   UAokapirspd100T 

             sd           okapi            10 0    topology   UAokapisd100T 

       .2224 lnu          lnu               0 0    content    UAlnuC 

       .1735 lm           lm                0 0    content    UAlmC 

 

Optimized-Algorithm Rankings: precision_10 

========================================== 

 

TREC Topic Distillation Task: 2003 

 

PRECISION_10 ALGORITHM    CONTENT_TYPE      T D    WEIGHTING  RUN_ID 

------------ ------------ -------------- ---- ---- ---------- ---------------------- 

       .1040 rid          lnu              50 10   ct82       UAlnurid5010F8 
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                                              50   ct82       UAlnurid5050F8 

       .1020 id           lnu              50 0    ct82       UAlnuid500F8 

       .1000 hspa         lnu              50 50   ct73       UAlnuh5050spaF7 

                                              I    ct73       UAlnuh50IspaF7 

       .0980 ha           lnu              50 0    ct73       UAlnuh500aF7 

             hhda         lnu              50 0    ct73       UAlnuh500hdaF7 

             hlda         lnu              50 0    ct73       UAlnuh500ldaF7 

             hra          lnu              50 10   ct73       UAlnuh5010raF7 

             hsa          lnu              50 0    ct73       UAlnuh500saF7 

             sd           lnu              50 0    ct73       UAlnusd500F7 

                                                   ct82       UAlnusd500F8 

       .0920 Rs           lnu               0 0    topology   UAlnuRsT 

       .0900 R2s          lnu               0 0    topology   UAlnuR2sT 

             hrxa         lnu              50 10   ct73       UAlnuh5010rxaF7 

                                              50   ct73       UAlnuh5050rxaF7 

                                              I    ct73       UAlnuh50IrxaF7 

       .0880 R3s          lnu               0 0    ct91       UAlnuR3sF9 

             rsd          lnu              50 0    ct82       UAlnursd500F8 

                                                   ct91       UAlnursd500F9 

             rspd         lnu              50 0    ct82       UAlnurspd500F8 

                                                   ct91       UAlnurspd500F9 

       .0860 lnu          lnu               0 0    content    UAlnuC 

       .0740 okapi        okapi             0 0    content    UAokapiC 

       .0440 lm           lm                0 0    content    UAlmC 

 

Optimized-Algorithm Rankings: precision_10 

========================================== 

 

TREC Topic Distillation Task: 2004 

 

PRECISION_10 ALGORITHM    CONTENT_TYPE      T D    WEIGHTING  RUN_ID 

------------ ------------ -------------- ---- ---- ---------- ---------------------- 

       .1693 rid          lnu              50 50   ct73       UAlnurid5050F7 

       .1653 id           lnu              50 0    ct73       UAlnuid500F7 

       .1587 sd           lnu              50 0    ct73       UAlnusd500F7 

                                                   ct82       UAlnusd500F8 

       .1573 hspa         lnu              50 50   ct73       UAlnuh5050spaF7 

                                              I    ct73       UAlnuh50IspaF7 

       .1533 R3s          lnu               0 0    ct73       UAlnuR3sF7 

       .1507 ha           lnu              50 10   ct73       UAlnuh5010aF7 

                                              50   ct82       UAlnuh5050aF8 

       .1493 hhda         lnu              50 50   ct73       UAlnuh5050hdaF7 

                                                   ct82       UAlnuh5050hdaF8 

                                              I    ct73       UAlnuh50IhdaF7 

             hlda         lnu              50 I    ct73       UAlnuh50IldaF7 

       .1480 rspd         lnu              50 10   ct82       UAlnurspd5010F8 

       .1467 rsd          lnu              50 0    ct73       UAlnursd500F7 

                                                   ct82       UAlnursd500F8 

       .1427 R2s          lnu               0 0    topology   UAlnuR2sT 

       .1387 Rs           lnu               0 0    topology   UAlnuRsT 

       .1373 hra          lnu              50 50   ct73       UAlnuh5050raF7 

                                              I    ct73       UAlnuh50IraF7 

             hsa          lnu              50 0    ct73       UAlnuh500saF7 

                                                   ct82       UAlnuh500saF8 

       .1347 hrxa         lnu              50 10   ct82       UAlnuh5010rxaF8 

                                              50   ct82       UAlnuh5050rxaF8 

                                              I    ct82       UAlnuh50IrxaF8 

       .1320 lnu          lnu               0 0    content    UAlnuC 

       .1000 okapi        okapi             0 0    content    UAokapiC 
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       .0493 lm           lm                0 0    content    UAlmC 

 

NB: ct-n-x=fusion run with content weight 0.n 

 

 

 

 

Optimized-Algorithm Rankings: precision_5 

========================================== 

 

TREC Topic Distillation Task: 0000 

 

PRECISION_5 ALGORITHM    CONTENT_TYPE      T D    WEIGHTING  RUN_ID 

----------- ------------ -------------- ---- ---- ---------- ---------------------- 

      .2011 rid          lnu              50 50   ct73       UAlnurid5050F7 

      .1943 id           lnu              50 0    ct73       UAlnuid500F7 

      .1908 sd           lnu              50 0    ct73       UAlnusd500F7 

      .1862 hspa         lnu              50 10   ct73       UAlnuh5010spaF7 

                                             50   ct73       UAlnuh5050spaF7 

      .1828 ha           lnu              50 I    ct73       UAlnuh50IaF7 

            hhda         lnu              50 I    ct73       UAlnuh50IhdaF7 

            hlda         lnu              50 I    ct73       UAlnuh50IldaF7 

      .1805 R3s          lnu               0 0    ct73       UAlnuR3sF7 

      .1793 hsa          lnu              50 0    ct73       UAlnuh500saF7 

      .1782 rsd          lnu              50 0    ct73       UAlnursd500F7 

            rspd         lnu              50 0    ct73       UAlnurspd500F7 

      .1747 R2s          lnu               0 0    topology   UAlnuR2sT 

      .1724 Rs           lnu               0 0    topology   UAlnuRsT 

      .1701 hra          lnu              10 0    ct73       UAlnuh100raF7 

                                                  ct82       UAlnuh100raF8 

                                                  ct91       UAlnuh100raF9 

                                          50 0    ct82       UAlnuh500raF8 

                                                  ct91       UAlnuh500raF9 

                                             10   ct82       UAlnuh5010raF8 

                                             50   ct82       UAlnuh5050raF8 

                                                  ct91       UAlnuh5050raF9 

                                             I    ct82       UAlnuh50IraF8 

                                                  ct91       UAlnuh50IraF9 

            hrxa         lnu              10 0    ct73       UAlnuh100rxaF7 

                                                  ct82       UAlnuh100rxaF8 

                                                  ct91       UAlnuh100rxaF9 

                                             10   ct91       UAlnuh1010rxaF9 

                                             50   ct91       UAlnuh1050rxaF9 

                                             I    ct91       UAlnuh10IrxaF9 

                                          50 0    ct73       UAlnuh500rxaF7 

                                                  ct82       UAlnuh500rxaF8 

                                                  ct91       UAlnuh500rxaF9 

                                             10   ct82       UAlnuh5010rxaF8 

                                                  ct91       UAlnuh5010rxaF9 

                                             50   ct82       UAlnuh5050rxaF8 

                                                  ct91       UAlnuh5050rxaF9 

                                             I    ct82       UAlnuh50IrxaF8 

                                                  ct91       UAlnuh50IrxaF9 

            lnu          lnu               0 0    content    UAlnuC 

      .1563 okapi        okapi             0 0    content    UAokapiC 

      .0966 lm           lm                0 0    content    UAlmC 

 

Optimized-Algorithm Rankings: precision_5 

========================================== 
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TREC Topic Distillation Task: 2002 

 

PRECISION_5 ALGORITHM    CONTENT_TYPE      T D    WEIGHTING  RUN_ID 

----------- ------------ -------------- ---- ---- ---------- ---------------------- 

      .2898 hra          okapi            50 50   ct73       UAokapih5050raF7 

                                             I    ct73       UAokapih50IraF7 

      .2816 R3s          okapi             0 0    ct82       UAokapiR3sF8 

            hrxa         okapi            10 10   ct82       UAokapih1010rxaF8 

                                                  ct91       UAokapih1010rxaF9 

                                             50   ct82       UAokapih1050rxaF8 

                                                  ct91       UAokapih1050rxaF9 

                                             I    ct82       UAokapih10IrxaF8 

                                                  ct91       UAokapih10IrxaF9 

                                          50 10   ct82       UAokapih5010rxaF8 

                                             50   ct82       UAokapih5050rxaF8 

                                             I    ct82       UAokapih50IrxaF8 

            id           okapi            10 10   ct73       UAokapiid1010F7 

                                                  ct82       UAokapiid1010F8 

                                                  ct91       UAokapiid1010F9 

                                             50   ct73       UAokapiid1050F7 

                                                  ct82       UAokapiid1050F8 

                                                  ct91       UAokapiid1050F9 

                                             I    ct73       UAokapiid10IF7 

                                                  ct82       UAokapiid10IF8 

                                                  ct91       UAokapiid10IF9 

                                          50 10   ct73       UAokapiid5010F7 

                                                  ct82       UAokapiid5010F8 

                                                  ct91       UAokapiid5010F9 

                                             50   ct73       UAokapiid5050F7 

                                                  ct82       UAokapiid5050F8 

                                                  ct91       UAokapiid5050F9 

                                             I    ct73       UAokapiid50IF7 

                                                  ct82       UAokapiid50IF8 

                                                  ct91       UAokapiid50IF9 

      .2776 R2s          okapi             0 0    ct91       UAokapiR2sF9 

            Rs           okapi             0 0    ct73       UAokapiRsF7 

                                                  ct91       UAokapiRsF9 

            hspa         lnu              50 10   ct73       UAlnuh5010spaF7 

            okapi        okapi             0 0    content    UAokapiC 

            rid          lnu              50 50   ct73       UAlnurid5050F7 

                                             I    ct73       UAlnurid50IF7 

                                                  ct82       UAlnurid50IF8 

      .2694 ha           lnu              10 10   ct73       UAlnuh1010aF7 

                                          50 0    ct73       UAlnuh500aF7 

                                             10   ct73       UAlnuh5010aF7 

                                             I    ct73       UAlnuh50IaF7 

            hhda         lnu              10 50   ct73       UAlnuh1050hdaF7 

                                          50 0    ct73       UAlnuh500hdaF7 

                                             I    ct73       UAlnuh50IhdaF7 

            hlda         lnu              50 0    ct73       UAlnuh500ldaF7 

                                             50   ct73       UAlnuh5050ldaF7 

                                             I    ct73       UAlnuh50IldaF7 

            hsa          lnu              50 0    ct73       UAlnuh500saF7 

                                             10   ct73       UAlnuh5010saF7 

                                             50   ct73       UAlnuh5050saF7 

                                             I    ct73       UAlnuh50IsaF7 

            sd           lnu              10 0    ct73       UAlnusd100F7 

      .2612 lnu          lnu               0 0    content    UAlnuC 
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            rsd          lnu              10 0    ct73       UAlnursd100F7 

                                                  ct82       UAlnursd100F8 

                                                  ct91       UAlnursd100F9 

            rspd         lnu              10 0    ct73       UAlnurspd100F7 

                                                  ct82       UAlnurspd100F8 

                                                  ct91       UAlnurspd100F9 

      .2041 lm           lm                0 0    content    UAlmC 

 

Optimized-Algorithm Rankings: precision_5 

========================================== 

 

TREC Topic Distillation Task: 2003 

 

PRECISION_5 ALGORITHM    CONTENT_TYPE      T D    WEIGHTING  RUN_ID 

----------- ------------ -------------- ---- ---- ---------- ---------------------- 

      .1280 rid          lnu              50 10   ct82       UAlnurid5010F8 

      .1240 hspa         lnu              50 50   ct82       UAlnuh5050spaF8 

                                             I    ct82       UAlnuh50IspaF8 

            id           lnu              50 0    ct82       UAlnuid500F8 

      .1200 ha           lnu              50 10   ct82       UAlnuh5010aF8 

                                                  ct91       UAlnuh5010aF9 

            sd           lnu              50 0    ct73       UAlnusd500F7 

      .1160 Rs           lnu               0 0    topology   UAlnuRsT 

            hhda         lnu              50 0    ct82       UAlnuh500hdaF8 

                                             10   ct73       UAlnuh5010hdaF7 

            hlda         lnu              50 0    ct82       UAlnuh500ldaF8 

            hra          lnu              50 10   ct82       UAlnuh5010raF8 

            hsa          lnu              50 0    ct82       UAlnuh500saF8 

      .1120 R2s          lnu               0 0    topology   UAlnuR2sT 

            R3s          lnu               0 0    ct82       UAlnuR3sF8 

            rsd          lnu              50 0    ct82       UAlnursd500F8 

                                                  ct91       UAlnursd500F9 

            rspd         lnu              50 0    ct82       UAlnurspd500F8 

                                                  ct91       UAlnurspd500F9 

      .1080 hrxa         lnu              10 0    ct73       UAlnuh100rxaF7 

                                                  ct82       UAlnuh100rxaF8 

                                                  ct91       UAlnuh100rxaF9 

                                             10   ct91       UAlnuh1010rxaF9 

                                             50   ct91       UAlnuh1050rxaF9 

                                             I    ct91       UAlnuh10IrxaF9 

                                          50 0    ct73       UAlnuh500rxaF7 

                                                  ct82       UAlnuh500rxaF8 

                                                  ct91       UAlnuh500rxaF9 

                                             10   ct73       UAlnuh5010rxaF7 

                                                  ct82       UAlnuh5010rxaF8 

                                             50   ct73       UAlnuh5050rxaF7 

                                                  ct82       UAlnuh5050rxaF8 

                                             I    ct73       UAlnuh50IrxaF7 

                                                  ct82       UAlnuh50IrxaF8 

            lnu          lnu               0 0    content    UAlnuC 

      .0960 okapi        okapi             0 0    content    UAokapiC 

      .0480 lm           lm                0 0    content    UAlmC 

 

Optimized-Algorithm Rankings: precision_5 

========================================== 

 

TREC Topic Distillation Task: 2004 

 

PRECISION_5 ALGORITHM    CONTENT_TYPE      T D    WEIGHTING  RUN_ID 
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----------- ------------ -------------- ---- ---- ---------- ---------------------- 

      .2053 rid          lnu              50 50   ct73       UAlnurid5050F7 

      .1973 sd           lnu              50 0    ct73       UAlnusd500F7 

      .1920 id           lnu              50 0    ct73       UAlnuid500F7 

      .1787 R3s          lnu               0 0    ct73       UAlnuR3sF7 

            ha           lnu              50 50   ct73       UAlnuh5050aF7 

                                             I    ct73       UAlnuh50IaF7 

            hhda         lnu              50 I    ct73       UAlnuh50IhdaF7 

            hlda         lnu              50 I    ct73       UAlnuh50IldaF7 

            hspa         lnu              50 10   ct73       UAlnuh5010spaF7 

      .1760 rsd          lnu              50 0    ct73       UAlnursd500F7 

            rspd         lnu              50 0    ct73       UAlnurspd500F7 

      .1653 hsa          lnu              50 0    ct73       UAlnuh500saF7 

      .1627 R2s          lnu               0 0    topology   UAlnuR2sT 

      .1547 hrxa         lnu              50 10   ct91       UAlnuh5010rxaF9 

                                             50   ct91       UAlnuh5050rxaF9 

                                             I    ct91       UAlnuh50IrxaF9 

      .1520 Rs           lnu               0 0    topology   UAlnuRsT 

                         okapi             0 0    topology   UAokapiRsT 

            hra          lnu              10 0    ct73       UAlnuh100raF7 

                                                  ct82       UAlnuh100raF8 

                                                  ct91       UAlnuh100raF9 

                                          50 0    ct82       UAlnuh500raF8 

                                                  ct91       UAlnuh500raF9 

                                             10   ct73       UAlnuh5010raF7 

                                             50   ct91       UAlnuh5050raF9 

                                             I    ct91       UAlnuh50IraF9 

            lnu          lnu               0 0    content    UAlnuC 

      .1173 okapi        okapi             0 0    content    UAokapiC 

      .0587 lm           lm                0 0    content    UAlmC 

 

NB: ct-n-x=fusion run with content weight 0.n 

 

 

 

Optimized-Algorithm Rankings: precision_20 

========================================== 

 

TREC Topic Distillation Task: 0000 

 

PRECISION_20 ALGORITHM    CONTENT_TYPE      T D    WEIGHTING  RUN_ID 

------------ ------------ -------------- ---- ---- ---------- ---------------------- 

       .1276 rid          lnu              50 10   ct73       UAlnurid5010F7 

       .1261 id           lnu              50 0    ct73       UAlnuid500F7 

       .1227 sd           lnu              50 0    ct73       UAlnusd500F7 

       .1210 hspa         lnu              50 10   ct73       UAlnuh5010spaF7 

                                                   ct82       UAlnuh5010spaF8 

       .1207 R3s          lnu               0 0    ct73       UAlnuR3sF7 

             ha           lnu              50 10   ct73       UAlnuh5010aF7 

                                              50   ct73       UAlnuh5050aF7 

                                              I    ct73       UAlnuh50IaF7 

             hhda         lnu              50 50   ct73       UAlnuh5050hdaF7 

                                              I    ct73       UAlnuh50IhdaF7 

             hlda         lnu              50 I    ct73       UAlnuh50IldaF7 

       .1181 rsd          lnu              50 0    ct91       UAlnursd500F9 

             rspd         lnu              50 0    ct91       UAlnurspd500F9 

       .1178 R2s          lnu               0 0    topology   UAlnuR2sT 

       .1175 hsa          lnu              50 0    ct73       UAlnuh500saF7 

                                                   ct82       UAlnuh500saF8 
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       .1172 Rs           lnu               0 0    ct73       UAlnuRsF7 

                                                   topology   UAlnuRsT 

       .1170 hra          lnu              50 50   ct82       UAlnuh5050raF8 

                                              I    ct82       UAlnuh50IraF8 

       .1152 hrxa         lnu              50 0    ct73       UAlnuh500rxaF7 

                                                   ct82       UAlnuh500rxaF8 

                                                   ct91       UAlnuh500rxaF9 

             lnu          lnu               0 0    content    UAlnuC 

       .1075 okapi        okapi             0 0    content    UAokapiC 

       .0730 lm           lm                0 0    content    UAlmC 

 

Optimized-Algorithm Rankings: precision_20 

========================================== 

 

TREC Topic Distillation Task: 2002 

 

PRECISION_20 ALGORITHM    CONTENT_TYPE      T D    WEIGHTING  RUN_ID 

------------ ------------ -------------- ---- ---- ---------- ---------------------- 

       .1939 R3s          okapi             0 0    ct73       UAokapiR3sF7 

       .1918 Rs           okapi             0 0    ct73       UAokapiRsF7 

       .1908 R2s          okapi             0 0    ct73       UAokapiR2sF7 

             hra          okapi            50 0    ct73       UAokapih500raF7 

                                                   ct82       UAokapih500raF8 

                                                   ct91       UAokapih500raF9 

                                              10   ct91       UAokapih5010raF9 

                                              50   ct91       UAokapih5050raF9 

                                              I    ct91       UAokapih50IraF9 

             hrxa         okapi            50 0    ct73       UAokapih500rxaF7 

                                                   ct82       UAokapih500rxaF8 

                                                   ct91       UAokapih500rxaF9 

             id           okapi            10 10   ct73       UAokapiid1010F7 

                                                   ct82       UAokapiid1010F8 

                                                   ct91       UAokapiid1010F9 

                                              50   ct73       UAokapiid1050F7 

                                                   ct82       UAokapiid1050F8 

                                                   ct91       UAokapiid1050F9 

                                              I    ct73       UAokapiid10IF7 

                                                   ct82       UAokapiid10IF8 

                                                   ct91       UAokapiid10IF9 

                                           50 10   ct73       UAokapiid5010F7 

                                                   ct82       UAokapiid5010F8 

                                                   ct91       UAokapiid5010F9 

                                              50   ct73       UAokapiid5050F7 

                                                   ct82       UAokapiid5050F8 

                                                   ct91       UAokapiid5050F9 

                                              I    ct73       UAokapiid50IF7 

                                                   ct82       UAokapiid50IF8 

                                                   ct91       UAokapiid50IF9 

             okapi        okapi             0 0    content    UAokapiC 

       .1816 rid          lnu              50 10   ct73       UAlnurid5010F7 

       .1776 hlda         lnu              50 50   ct91       UAlnuh5050ldaF9 

             hspa         lnu              50 10   ct73       UAlnuh5010spaF7 

                                                   ct82       UAlnuh5010spaF8 

       .1765 ha           lnu              50 10   ct73       UAlnuh5010aF7 

                                                   ct91       UAlnuh5010aF9 

                                              50   ct91       UAlnuh5050aF9 

                                              I    ct73       UAlnuh50IaF7 

                                                   ct91       UAlnuh50IaF9 

             hhda         lnu              50 50   ct91       UAlnuh5050hdaF9 
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                                              I    ct73       UAlnuh50IhdaF7 

                                                   ct91       UAlnuh50IhdaF9 

             sd           lnu              50 0    ct73       UAlnusd500F7 

                                                   ct82       UAlnusd500F8 

       .1755 rsd          lnu              50 0    ct91       UAlnursd500F9 

             rspd         lnu              50 0    ct91       UAlnurspd500F9 

       .1745 hsa          lnu              50 0    ct91       UAlnuh500saF9 

       .1724 lnu          lnu               0 0    content    UAlnuC 

       .1480 lm           lm                0 0    content    UAlmC 

 

Optimized-Algorithm Rankings: precision_20 

========================================== 

 

TREC Topic Distillation Task: 2003 

 

PRECISION_20 ALGORITHM    CONTENT_TYPE      T D    WEIGHTING  RUN_ID 

------------ ------------ -------------- ---- ---- ---------- ---------------------- 

       .0790 rid          lnu              50 10   ct73       UAlnurid5010F7 

       .0770 id           lnu              50 0    ct73       UAlnuid500F7 

       .0730 hspa         lnu              50 50   ct73       UAlnuh5050spaF7 

                                                   ct82       UAlnuh5050spaF8 

                                              I    ct73       UAlnuh50IspaF7 

                                                   ct82       UAlnuh50IspaF8 

       .0720 hlda         lnu              50 10   ct73       UAlnuh5010ldaF7 

                                                   ct82       UAlnuh5010ldaF8 

                                                   ct91       UAlnuh5010ldaF9 

                                              50   ct73       UAlnuh5050ldaF7 

                                                   ct91       UAlnuh5050ldaF9 

             hrxa         lnu              50 10   ct82       UAlnuh5010rxaF8 

                                              50   ct82       UAlnuh5050rxaF8 

                                              I    ct82       UAlnuh50IrxaF8 

       .0710 R3s          lnu               0 0    ct73       UAlnuR3sF7 

             ha           lnu              50 0    ct73       UAlnuh500aF7 

                                                   ct82       UAlnuh500aF8 

                                              50   ct73       UAlnuh5050aF7 

                                                   ct91       UAlnuh5050aF9 

                                              I    ct73       UAlnuh50IaF7 

                                                   ct91       UAlnuh50IaF9 

             hhda         lnu              50 0    ct73       UAlnuh500hdaF7 

                                                   ct82       UAlnuh500hdaF8 

                                              50   ct73       UAlnuh5050hdaF7 

                                                   ct91       UAlnuh5050hdaF9 

                                              I    ct73       UAlnuh50IhdaF7 

                                                   ct91       UAlnuh50IhdaF9 

             hsa          lnu              50 0    ct73       UAlnuh500saF7 

                                                   ct82       UAlnuh500saF8 

             sd           lnu              50 0    ct73       UAlnusd500F7 

                                                   ct82       UAlnusd500F8 

                                                   ct91       UAlnusd500F9 

       .0700 Rs           lnu               0 0    topology   UAlnuRsT 

             hra          lnu              50 10   ct73       UAlnuh5010raF7 

                                              50   ct91       UAlnuh5050raF9 

                                              I    ct91       UAlnuh50IraF9 

             rsd          lnu              50 10   ct91       UAlnursd5010F9 

                                              50   ct91       UAlnursd5050F9 

       .0690 R2s          lnu               0 0    ct73       UAlnuR2sF7 

                                                   ct82       UAlnuR2sF8 

                                                   ct91       UAlnuR2sF9 

                                                   topology   UAlnuR2sT 
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             lnu          lnu               0 0    content    UAlnuC 

             rspd         lnu              10 0    ct73       UAlnurspd100F7 

                                                   ct82       UAlnurspd100F8 

                                                   ct91       UAlnurspd100F9 

                                           50 0    ct91       UAlnurspd500F9 

                                              50   ct91       UAlnurspd5050F9 

                                              I    ct91       UAlnurspd50IF9 

       .0580 okapi        okapi             0 0    content    UAokapiC 

       .0370 lm           lm                0 0    content    UAlmC 

 

Optimized-Algorithm Rankings: precision_20 

========================================== 

 

TREC Topic Distillation Task: 2004 

 

PRECISION_20 ALGORITHM    CONTENT_TYPE      T D    WEIGHTING  RUN_ID 

------------ ------------ -------------- ---- ---- ---------- ---------------------- 

       .1247 rid          lnu              50 10   ct73       UAlnurid5010F7 

       .1220 sd           lnu              50 0    ct73       UAlnusd500F7 

       .1213 id           lnu              50 0    ct73       UAlnuid500F7 

                                                   ct82       UAlnuid500F8 

       .1207 R3s          lnu               0 0    ct73       UAlnuR3sF7 

       .1180 ha           lnu              50 10   ct73       UAlnuh5010aF7 

                                              50   ct73       UAlnuh5050aF7 

             hhda         lnu              50 50   ct73       UAlnuh5050hdaF7 

       .1173 R2s          lnu               0 0    topology   UAlnuR2sT 

             hlda         lnu              50 50   ct73       UAlnuh5050ldaF7 

                                              I    ct73       UAlnuh50IldaF7 

             hspa         lnu              50 10   ct73       UAlnuh5010spaF7 

                                                   ct82       UAlnuh5010spaF8 

       .1153 Rs           lnu               0 0    topology   UAlnuRsT 

       .1140 rsd          lnu              50 0    ct82       UAlnursd500F8 

             rspd         lnu              50 0    ct82       UAlnurspd500F8 

       .1120 hsa          lnu              50 0    ct73       UAlnuh500saF7 

                                                   ct82       UAlnuh500saF8 

       .1113 hra          lnu              50 50   ct82       UAlnuh5050raF8 

                                              I    ct82       UAlnuh50IraF8 

       .1087 hrxa         lnu              50 0    ct73       UAlnuh500rxaF7 

                                                   ct82       UAlnuh500rxaF8 

                                                   ct91       UAlnuh500rxaF9 

             lnu          lnu               0 0    content    UAlnuC 

       .0860 okapi        okapi             0 0    content    UAokapiC 

       .0480 lm           lm                0 0    content    UAlmC 

 

NB: ct-n-x=fusion run with content weight 0.n 

 

 

 

Optimized-Algorithm Rankings: precision_A 

========================================== 

 

TREC Topic Distillation Task: 0000 

 

PRECISION_A ALGORITHM    CONTENT_TYPE      T D    WEIGHTING  RUN_ID 

----------- ------------ -------------- ---- ---- ---------- ---------------------- 

      .1233 ha           lnu              50 10   ct73       UAlnuh5010aF7 

      .1224 rid          lnu              50 50   ct82       UAlnurid5050F8 

      .1223 hhda         lnu              50 50   ct73       UAlnuh5050hdaF7 

                                             I    ct73       UAlnuh50IhdaF7 
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            hlda         lnu              50 I    ct73       UAlnuh50IldaF7 

      .1218 R3s          lnu               0 0    ct82       UAlnuR3sF8 

      .1216 R2s          lnu               0 0    topology   UAlnuR2sT 

      .1213 id           lnu              50 0    ct82       UAlnuid500F8 

      .1212 hspa         lnu              50 50   ct73       UAlnuh5050spaF7 

      .1208 sd           lnu              50 0    ct73       UAlnusd500F7 

      .1205 Rs           lnu               0 0    topology   UAlnuRsT 

      .1200 rspd         lnu              50 50   ct82       UAlnurspd5050F8 

      .1198 rsd          lnu              50 50   ct82       UAlnursd5050F8 

                                             I    ct82       UAlnursd50IF8 

      .1195 hsa          lnu              50 0    ct73       UAlnuh500saF7 

      .1191 lnu          lnu               0 0    content    UAlnuC 

      .1139 okapi        okapi             0 0    content    UAokapiC 

      .0967 hra          lnu              50 50   ct82       UAlnuh5050raF8 

      .0965 hrxa         lnu              50 0    ct73       UAlnuh500rxaF7 

                                                  ct82       UAlnuh500rxaF8 

                                                  ct91       UAlnuh500rxaF9 

      .0670 lm           lm                0 0    content    UAlmC 

 

Optimized-Algorithm Rankings: precision_A 

========================================== 

 

TREC Topic Distillation Task: 2002 

 

PRECISION_A ALGORITHM    CONTENT_TYPE      T D    WEIGHTING  RUN_ID 

----------- ------------ -------------- ---- ---- ---------- ---------------------- 

      .1930 id           okapi            10 50   ct73       UAokapiid1050F7 

                                             I    ct73       UAokapiid10IF7 

      .1924 R2s          okapi             0 0    ct91       UAokapiR2sF9 

            Rs           okapi             0 0    ct82       UAokapiRsF8 

                                                  ct91       UAokapiRsF9 

      .1922 okapi        okapi             0 0    content    UAokapiC 

      .1911 R3s          okapi             0 0    ct91       UAokapiR3sF9 

      .1598 hspa         lnu              10 10   ct82       UAlnuh1010spaF8 

      .1594 hlda         lnu              50 50   ct73       UAlnuh5050ldaF7 

                                                  ct82       UAlnuh5050ldaF8 

      .1593 ha           lnu              50 I    ct73       UAlnuh50IaF7 

            hhda         lnu              50 I    ct73       UAlnuh50IhdaF7 

      .1587 rid          lnu              50 10   ct91       UAlnurid5010F9 

      .1583 sd           lnu              10 0    ct73       UAlnusd100F7 

      .1579 hsa          lnu              50 50   ct82       UAlnuh5050saF8 

      .1559 lnu          lnu               0 0    content    UAlnuC 

            rsd          lnu              10 0    ct73       UAlnursd100F7 

                                                  ct91       UAlnursd100F9 

            rspd         lnu              10 0    ct73       UAlnurspd100F7 

                                                  ct91       UAlnurspd100F9 

      .1509 hra          okapi            50 0    ct73       UAokapih500raF7 

                                                  ct82       UAokapih500raF8 

                                                  ct91       UAokapih500raF9 

            hrxa         okapi            50 0    ct73       UAokapih500rxaF7 

                                                  ct82       UAokapih500rxaF8 

                                                  ct91       UAokapih500rxaF9 

      .1221 lm           lm                0 0    content    UAlmC 

 

Optimized-Algorithm Rankings: precision_A 

========================================== 

 

TREC Topic Distillation Task: 2003 
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PRECISION_A ALGORITHM    CONTENT_TYPE      T D    WEIGHTING  RUN_ID 

----------- ------------ -------------- ---- ---- ---------- ---------------------- 

      .1225 ha           lnu              50 10   ct73       UAlnuh5010aF7 

      .1176 hlda         lnu              50 10   ct82       UAlnuh5010ldaF8 

      .1169 hspa         lnu              50 50   ct73       UAlnuh5050spaF7 

      .1167 hhda         lnu              50 50   ct73       UAlnuh5050hdaF7 

      .1146 sd           lnu              50 0    ct73       UAlnusd500F7 

      .1123 Rs           lnu               0 0    topology   UAlnuRsT 

      .1116 rid          lnu              50 I    ct82       UAlnurid50IF8 

      .1107 R2s          lnu               0 0    topology   UAlnuR2sT 

            id           lnu              50 0    ct91       UAlnuid500F9 

      .1099 R3s          lnu               0 0    ct82       UAlnuR3sF8 

      .1088 rsd          lnu              10 0    ct73       UAlnursd100F7 

            rspd         lnu              10 0    ct73       UAlnurspd100F7 

      .1087 lnu          lnu               0 0    content    UAlnuC 

      .1024 hsa          lnu              50 0    ct73       UAlnuh500saF7 

      .0955 hra          lnu              50 I    ct82       UAlnuh50IraF8 

      .0951 hrxa         lnu              50 10   ct82       UAlnuh5010rxaF8 

                                             50   ct82       UAlnuh5050rxaF8 

                                             I    ct82       UAlnuh50IrxaF8 

      .0901 okapi        okapi             0 0    content    UAokapiC 

      .0417 lm           lm                0 0    content    UAlmC 

 

Optimized-Algorithm Rankings: precision_A 

========================================== 

 

TREC Topic Distillation Task: 2004 

 

PRECISION_A ALGORITHM    CONTENT_TYPE      T D    WEIGHTING  RUN_ID 

----------- ------------ -------------- ---- ---- ---------- ---------------------- 

      .1111 rid          lnu              50 10   ct73       UAlnurid5010F7 

      .1098 R3s          lnu               0 0    ct73       UAlnuR3sF7 

      .1079 rspd         lnu              50 50   ct82       UAlnurspd5050F8 

      .1077 rsd          lnu              50 I    ct82       UAlnursd50IF8 

      .1071 R2s          lnu               0 0    topology   UAlnuR2sT 

      .1069 ha           lnu              50 0    ct73       UAlnuh500aF7 

            hhda         lnu              50 0    ct73       UAlnuh500hdaF7 

            hlda         lnu              50 0    ct73       UAlnuh500ldaF7 

            hsa          lnu              50 0    ct73       UAlnuh500saF7 

            hspa         lnu              50 0    ct73       UAlnuh500spaF7 

      .1063 id           lnu              50 0    ct73       UAlnuid500F7 

      .1046 sd           lnu              10 50   ct73       UAlnusd1050F7 

      .1040 Rs           lnu               0 0    ct73       UAlnuRsF7 

      .1019 lnu          lnu               0 0    content    UAlnuC 

      .0811 hra          lnu              50 0    ct91       UAlnuh500raF9 

                                             10   ct82       UAlnuh5010raF8 

                                             50   ct91       UAlnuh5050raF9 

            hrxa         lnu              50 0    ct73       UAlnuh500rxaF7 

                                                  ct82       UAlnuh500rxaF8 

                                                  ct91       UAlnuh500rxaF9 

      .0785 okapi        okapi             0 0    content    UAokapiC 

      .0479 lm           lm                0 0    content    UAlmC 

 

NB: ct-n-x=fusion run with content weight 0.n 

 

 

 

Optimized-Algorithm Rankings: precision_R 

========================================== 
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TREC Topic Distillation Task: 0000 

 

PRECISION_R ALGORITHM    CONTENT_TYPE      T D    WEIGHTING  RUN_ID 

----------- ------------ -------------- ---- ---- ---------- ---------------------- 

      .1406 rid          lnu              50 50   ct91       UAlnurid5050F9 

      .1405 id           lnu              50 0    ct91       UAlnuid500F9 

      .1393 Rs           lnu               0 0    topology   UAlnuRsT 

      .1388 R2s          lnu               0 0    topology   UAlnuR2sT 

      .1380 R3s          lnu               0 0    ct73       UAlnuR3sF7 

                                                  ct82       UAlnuR3sF8 

      .1368 hlda         lnu              50 10   ct82       UAlnuh5010ldaF8 

      .1364 rspd         lnu              50 10   ct82       UAlnurspd5010F8 

      .1358 sd           lnu              50 10   ct73       UAlnusd5010F7 

      .1353 rsd          lnu              50 10   ct91       UAlnursd5010F9 

                                             50   ct91       UAlnursd5050F9 

                                             I    ct91       UAlnursd50IF9 

      .1348 lnu          lnu               0 0    content    UAlnuC 

      .1342 ha           lnu              50 10   ct82       UAlnuh5010aF8 

      .1339 hhda         lnu              50 50   ct73       UAlnuh5050hdaF7 

                                                  ct82       UAlnuh5050hdaF8 

      .1332 hspa         lnu              50 I    ct82       UAlnuh50IspaF8 

      .1305 hrxa         lnu              50 10   ct82       UAlnuh5010rxaF8 

                                             50   ct82       UAlnuh5050rxaF8 

                                             I    ct82       UAlnuh50IrxaF8 

      .1300 hra          lnu              50 0    ct73       UAlnuh500raF7 

                                                  ct82       UAlnuh500raF8 

                                                  ct91       UAlnuh500raF9 

      .1279 hsa          lnu              50 0    ct91       UAlnuh500saF9 

      .1227 okapi        okapi             0 0    content    UAokapiC 

      .0816 lm           lm                0 0    content    UAlmC 

 

Optimized-Algorithm Rankings: precision_R 

========================================== 

 

TREC Topic Distillation Task: 2002 

 

PRECISION_R ALGORITHM    CONTENT_TYPE      T D    WEIGHTING  RUN_ID 

----------- ------------ -------------- ---- ---- ---------- ---------------------- 

      .2122 R2s          okapi             0 0    ct91       UAokapiR2sF9 

            Rs           okapi             0 0    ct91       UAokapiRsF9 

      .2113 R3s          okapi             0 0    ct91       UAokapiR3sF9 

      .2111 id           okapi            10 10   ct82       UAokapiid1010F8 

                                                  ct91       UAokapiid1010F9 

                                             50   ct82       UAokapiid1050F8 

                                                  ct91       UAokapiid1050F9 

                                             I    ct82       UAokapiid10IF8 

                                                  ct91       UAokapiid10IF9 

                                          50 10   ct82       UAokapiid5010F8 

                                                  ct91       UAokapiid5010F9 

                                             50   ct82       UAokapiid5050F8 

                                                  ct91       UAokapiid5050F9 

                                             I    ct82       UAokapiid50IF8 

                                                  ct91       UAokapiid50IF9 

            okapi        okapi             0 0    content    UAokapiC 

      .1944 hra          okapi            50 50   ct73       UAokapih5050raF7 

                                             I    ct73       UAokapih50IraF7 

      .1935 hrxa         okapi            50 0    ct73       UAokapih500rxaF7 

                                                  ct82       UAokapih500rxaF8 
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                                                  ct91       UAokapih500rxaF9 

      .1891 rid          lnu              50 10   ct73       UAlnurid5010F7 

      .1852 hlda         lnu              50 50   ct91       UAlnuh5050ldaF9 

      .1851 hspa         lnu              50 10   ct73       UAlnuh5010spaF7 

                                             50   ct73       UAlnuh5050spaF7 

                                             I    ct73       UAlnuh50IspaF7 

      .1841 ha           lnu              50 50   ct73       UAlnuh5050aF7 

                                             I    ct73       UAlnuh50IaF7 

            hhda         lnu              50 50   ct73       UAlnuh5050hdaF7 

                                             I    ct73       UAlnuh50IhdaF7 

      .1825 sd           lnu              10 0    ct73       UAlnusd100F7 

      .1801 hsa          lnu              10 10   ct73       UAlnuh1010saF7 

      .1799 lnu          lnu               0 0    content    UAlnuC 

            rsd          lnu              10 0    ct82       UAlnursd100F8 

                                                  ct91       UAlnursd100F9 

            rspd         lnu              10 0    ct82       UAlnurspd100F8 

                                                  ct91       UAlnurspd100F9 

      .1569 lm           lm                0 0    content    UAlmC 

 

Optimized-Algorithm Rankings: precision_R 

========================================== 

 

TREC Topic Distillation Task: 2003 

 

PRECISION_R ALGORITHM    CONTENT_TYPE      T D    WEIGHTING  RUN_ID 

----------- ------------ -------------- ---- ---- ---------- ---------------------- 

      .1239 hlda         lnu              50 10   ct82       UAlnuh5010ldaF8 

      .1217 Rs           lnu               0 0    topology   UAlnuRsT 

      .1183 hrxa         lnu              50 10   ct82       UAlnuh5010rxaF8 

                                             50   ct82       UAlnuh5050rxaF8 

                                             I    ct82       UAlnuh50IrxaF8 

      .1174 id           lnu              50 0    ct91       UAlnuid500F9 

            rid          lnu              50 50   ct91       UAlnurid5050F9 

                                             I    ct91       UAlnurid50IF9 

      .1158 sd           lnu              50 10   ct73       UAlnusd5010F7 

                                                  ct82       UAlnusd5010F8 

                                                  ct91       UAlnusd5010F9 

                                             50   ct73       UAlnusd5050F7 

                                                  ct82       UAlnusd5050F8 

                                                  ct91       UAlnusd5050F9 

                                             I    ct73       UAlnusd50IF7 

                                                  ct82       UAlnusd50IF8 

                                                  ct91       UAlnusd50IF9 

      .1157 R3s          lnu               0 0    ct82       UAlnuR3sF8 

      .1149 hra          lnu              50 50   ct82       UAlnuh5050raF8 

                                                  ct91       UAlnuh5050raF9 

                                             I    ct82       UAlnuh50IraF8 

                                                  ct91       UAlnuh50IraF9 

      .1143 R2s          lnu               0 0    ct73       UAlnuR2sF7 

                                                  ct82       UAlnuR2sF8 

                                                  ct91       UAlnuR2sF9 

                                                  topology   UAlnuR2sT 

            lnu          lnu               0 0    content    UAlnuC 

            rsd          lnu              10 0    ct73       UAlnursd100F7 

                                                  ct82       UAlnursd100F8 

                                                  ct91       UAlnursd100F9 

                                          50 10   ct91       UAlnursd5010F9 

                                             50   ct91       UAlnursd5050F9 

                                             I    ct91       UAlnursd50IF9 



 105

            rspd         lnu              10 0    ct73       UAlnurspd100F7 

                                                  ct82       UAlnurspd100F8 

                                                  ct91       UAlnurspd100F9 

                                          50 10   ct91       UAlnurspd5010F9 

                                             50   ct91       UAlnurspd5050F9 

                                             I    ct91       UAlnurspd50IF9 

      .1108 ha           lnu              50 10   ct82       UAlnuh5010aF8 

      .1058 hhda         lnu              50 50   ct82       UAlnuh5050hdaF8 

                                             I    ct82       UAlnuh50IhdaF8 

      .1040 hspa         lnu              50 50   ct82       UAlnuh5050spaF8 

                                             I    ct82       UAlnuh50IspaF8 

      .0909 hsa          lnu              50 0    ct82       UAlnuh500saF8 

      .0845 okapi        okapi             0 0    content    UAokapiC 

      .0530 lm           lm                0 0    content    UAlmC 

 

Optimized-Algorithm Rankings: precision_R 

========================================== 

 

TREC Topic Distillation Task: 2004 

 

PRECISION_R ALGORITHM    CONTENT_TYPE      T D    WEIGHTING  RUN_ID 

----------- ------------ -------------- ---- ---- ---------- ---------------------- 

      .1371 rid          lnu              50 10   ct73       UAlnurid5010F7 

      .1334 id           lnu              50 0    ct73       UAlnuid500F7 

      .1301 sd           lnu              50 0    ct73       UAlnusd500F7 

      .1274 rsd          lnu              50 0    ct82       UAlnursd500F8 

            rspd         lnu              50 0    ct82       UAlnurspd500F8 

      .1270 R2s          lnu               0 0    topology   UAlnuR2sT 

      .1265 R3s          lnu               0 0    ct73       UAlnuR3sF7 

      .1235 hlda         lnu              50 10   ct91       UAlnuh5010ldaF9 

      .1232 Rs           lnu               0 0    topology   UAlnuRsT 

      .1225 ha           lnu              50 10   ct73       UAlnuh5010aF7 

      .1223 hsa          lnu              10 10   ct73       UAlnuh1010saF7 

      .1219 hhda         lnu              50 50   ct73       UAlnuh5050hdaF7 

      .1217 hspa         lnu              50 0    ct91       UAlnuh500spaF9 

                                             50   ct91       UAlnuh5050spaF9 

      .1189 lnu          lnu               0 0    content    UAlnuC 

      .1157 hra          lnu              50 10   ct82       UAlnuh5010raF8 

      .1149 hrxa         lnu              50 0    ct73       UAlnuh500rxaF7 

                                                  ct82       UAlnuh500rxaF8 

                                                  ct91       UAlnuh500rxaF9 

      .0903 okapi        okapi             0 0    content    UAokapiC 

      .0514 lm           lm                0 0    content    UAlmC 
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