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Abstract

We define a nontrivial variety of boolean algebras with operators such that every
member of the variety is atomless. This shows that not every variety of boolean alge-
bras with operators is generated by its atomic members, and thus establishes a strong
incompleteness result in (multi-)modal logic.
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1 Introduction

One of the basic negative results in the theory of modal logic is that not every modal logic
is complete with respect to its class of Kripke frames, cf. Thomason [6]. Algebraically, this
means that not every variety of boolean algebras with operators (baos) is complete, that is,
generated by those of its members that are complete, atomic and have completely additive
operators, cf. Goldblatt [3]. For general context on modal logic and its algebraic side we
refer to Blackburn, de Rijke & Venema [1].

One might wonder whether some weaker form of general completeness might hold. For
instance, suppose that we drop the (second order) conditions of completeness and complete
additivity from the requirements on the generating class of algebras. Will we find that every
variety of baos is generated by its atomic members? The aim of this note is to show that the
answer to this question is negative; in fact, we can prove something stronger:

Theorem 1 There exists a nonempty variety V of boolean algebras with operators such that
all members of V are atomless.

In terms of modal logic, this implies there is a (multi-)modal logic which is incomplete
with respect its class of discrete general frames (a general frame is called discrete, or atomic,
if all singletons are admissible). Theorem 1 can thus be read as a strong incompleteness result
in modal logic.

The key step in the proof of Theorem 1 is the construction of a particular bao A =
(A,∨,−,⊥, (fi)i∈I) and the definition of a unary term π(x) such that the formula

∀x (⊥ < x→ ⊥ < π(x) < x) (α)

holds in A. The proof of Theorem 1 then proceeds through a fairly standard argument using
the theory of discriminator varieties.

The ideas underlying our construction are similar to, yet obtained independently of, those
in Kracht & Kowalski [5]. The authors of this paper intend to define a variety of modal
algebras containing no atomic members, but unfortunately, a number of errors makes it
difficult to judge whether their approach might succeed or not. Observe that our Theorem 1,
stating the existence of a variety in which every member is atomless rather than non-atomic,
is a strengthening of the result announced in [5].

Acknowledgements I would like to thank Mai Gehrke and Bjarni Jónsson for discussions
on this issue.

2 The construction

In this section we give a step by step definition of the algebra A. We start with an informal
explanation of the basic idea.
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The basic idea The starting point of our construction is a countable, atomless BA. Recall
that all such algebras are isomorphic; we wrote ‘a’ countable, atomless BA since we make
good use of a rather particular representation of this algebra.

Consider the sets 2<ω and 2ω of finite (infinite, respectively) strings over the alphabet
2 = {0, 1}. Given a finite string x, let x⇑ be the collection of infinite strings that have x as
an initial segment; sets of the form x⇑ will be called i-cones. It is well-known (and not very
difficult to show) that the collection Ω of finite unions of i-cones forms an atomless boolean
algebra O under the standard set-theoretical operation.

Basically, our aim would be to define a map H : Ω→ Ω such that for all non-empty U ∈ Ω
we have that ∅ ⊂ H(U) ⊂ U . The crucial idea underlying our construction is that if U is
an i-cone, say U = x⇑, we could define H(x⇑) = x0⇑. For a finite union U =

⋃
x∈X x⇑ we

would like to define H(U) =
⋃
x∈X x0⇑ but the problem is that there may be various ways to

represent U as a finite union of i-cones. This problem will be avoided by canonically choosing,
for an element U ∈ Ω, a set ZU such that U =

⋃
z∈ZU z⇑; this set ZU will be called the origin

of U . Given this, it is easy to show that the following map H, given by

H(U) =
⋃
z∈ZU

z0⇑,

indeed satisfies ∅ ⊂ H(U) ⊂ U for all non-empty U ∈ Ω.
Hence, if we could expand O with a number of operators in such a way that the map H

is term definable, we would have established our goal. Unfortunately, this problem seems to
be very hard and may in fact be impossible to solve directly; the reason for this is that our
definition of H crucially involves finite strings, and these are not directly ‘available’ in O. A
solution to this problem is to somehow add finite strings to the algebra.

In an earlier incarnation of this paper, we constructed a ‘hybrid’ boolean algebra H as a
particular field of sets over the disjoint union of the sets 2<ω and 2ω. More precisely, H itself
was the direct product of the algebra O with the boolean algebra of the finite and cofinite sets
of finite strings. Note however, that such an algebra cannot satisfy (α) since it has atoms; as
a consequence, the algebra H could only be used to show the existence of varieties that do
not contain atomic members. In order to prove that there are atomless varieties, we need to
work with a boolean algebra that has no atoms at all.

The construction in the present paper is based on the product W = 2<ω × 2ω of the sets
of finite and infinite strings, respectively. The domain of our algebra A will be the collection
A of those subsets a of W of which each slice as = {σ ∈ 2ω | (s, σ) ∈ a} is a finite union
of i-cones. The boolean part of our algebra will thus be a countable, atomless subalgebra of
P(W ); the additional operations will be induced by some relations on the set W . As we will
see in a moment, this particular representation of the countable, atomless boolean algebra will
allow us to associate an admissible subset of W with each finite set of strings, and conversely.

Finally, in our product perspective, an arbitrary admissible set corresponds to a 2<ω-
indexed family of finite unions of i-cones, rather than to a single element of Ω. Can we still
associate a single origin with an admissible set? The idea here is to find for a non-empty
admissible set, the first non-empty slice — ‘first’, that is, in some fixed enumeration of 2<ω.
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Preliminary definitions Let α ≤ ω be an ordinal, and recall that 2 denotes the set {0, 1}.
Elements of the set 2α are called strings of length α; we define 2<α =

⋃
β<α 2β, so 2<ω is the

set of finite strings. In the sequel we use lower case roman letters (x, y, z, s, t, . . . ) to denote
finite strings, and lower case greek letters (σ, τ , . . . ) for infinite strings. The proper initial
segment relation ≺ on 2<ω ∪ 2ω is a strict partial order on the set of all strings.

Given a finite string x we let, for i ∈ {0, 1}, xi denote the string x extended with the
symbol i; the length of x is denoted as |x|. We also assume that we have an enumeration
(sn)n∈ω of the set of all finite strings. (To be concrete, we could define s0 as the empty string
ε, and let sn+1 be the string denoting n in binary notation.) This means that any set of finite
strings has a first element.

An i-cone is a set of the form x⇑ = {y ∈ 2ω | x ≺ y}; Ω denotes the collection of finite
unions of i-cones. In order to find a canonical representation of an arbitrary element of Ω,
first observe that (i) for any two finite strings x and y we have x ≺ y iff y⇑ ⊂ x⇑, and (ii)
for any finite string x, it holds that x0⇑ ∪ x1⇑ = x⇑. Using these two observations we can,
given a representation of an element a ∈ Ω as a =

⋃
x∈X x⇑, step by step simplify the index

set X, until we obtain a representation of a in the form a =
⋃
z∈Z z⇑ where Z is minimal in

the sense that y⇑ ⊆ a for no proper initial segment y of any string z ∈ Z. It can be shown
that such a set Z is uniquely determined by a; we call it the origin of a, notation: ZU . The
canonical representation of an element U ∈ Ω is defined through this origin of U : simply
write U =

⋃
z∈ZU z⇑. For future reference we mention the following fact:

for all nonempty U ∈ Ω:
⋃
z∈ZU

z0⇑ is a proper, nonempty subset of U. (1)

The boolean part We define W as the set 2<ω × 2ω. Given a subset a ⊆ W and a finite
string s, we define the s-slice of a as the set as = {σ ∈ 2ω | (s, σ) ∈ a}, and the support set
of a as the set Wa = {s ∈ 2<ω | as 6= ∅}.

A subset a ⊆ W is called small if Wa is finite; atom-based if Wa is a singleton; digital
if each of its slices is either empty or equal to 2ω. A subset a of W is admissible if as ∈ Ω
for each finite string s; the collection of admissible sets is denoted as A. Observe that every
digital set is admissible. The proof of the following proposition is straightforward.

Proposition 1 The collection A of admissible subsets of W is closed under the standard
set-theoretic operations: (A,∪,−W ,∅) is a boolean algebra.

Relations and operations We will expand the boolean algebra (A,∪,−W ,∅) with some
additional operations that are defined via the following binary relations on W :

(s, σ) < (t, τ) if s occurs before t in the enumeration of finite strings,
(s, σ) < (t, τ) if s ≺ t,
(s, σ) � (t, τ) if s ≺ τ,
(s, σ)L(t, τ) if s = t0.

The converses of the relations <, < and � will be denoted by =, > and �, respectively.
Observe that the relations <, < and L only depend on the first coordinates of points in W ;
these relations can be seen as the induced liftings of natural relations on finite strings.
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Given a relation R on W , we define the following operations on the power set P(W ) of
W :

〈R〉Y = {w ∈W | wRu for some u ∈ Y },
[R]Y = −W 〈R〉−WY

〈R〉Y =
{
〈R〉Y if Y is small,
W otherwise.

Clearly, any operation of the form 〈R〉 is an operator (that is, it preserves all finite unions).
That the same holds for 〈R〉 immediately follows from the fact that the collection of small
sets is closed under taking finite unions.

The following Proposition is the key towards the definition of our algebra A.

Proposition 2 The collection A of admissible subsets of W is closed under the operations
〈=〉, 〈>〉, 〈L〉, 〈�〉 and 〈�〉. As a corollary, the structure

(A,∪,−W ,∅, 〈=〉, 〈>〉, 〈L〉, 〈�〉, 〈�〉)

is a boolean algebra with operators.

Proof. We leave it for the reader to verify that A is closed under the operations 〈=〉, 〈>〉,
〈L〉 and 〈�〉; the key fact needed is that each of these operations map admissible sets to
digital ones. In order to check that A is closed under 〈�〉 as well, we may confine our
attention to admissible sets that are small. Now every small set is the finite union of sets
of the form {s} × x⇑, so by additivity of 〈�〉 it suffices to show that for each x, s ∈ 2<ω,
the set 〈�〉({s} × x⇑) is admissible. This is in fact easy to check, since 〈�〉({s} × x⇑) =
〈�〉({s}× x⇑) = {(t, τ) | s ≺ τ}; that is, every slice of 〈�〉({s}× x⇑) is of the form {s}× x⇑.

This shows that the structure, as defined in the statement of the Proposition, is indeed an
algebra, and hence, a boolean algebra with operators (as we saw already that all extra-boolean
operations are operators). qed

Hence, we are ready to define the key algebra of the paper:

A := (A,∪,−W ,∅, 〈=〉, 〈>〉, 〈L〉, 〈�〉, 〈�〉).

3 Results

Now that we have constructed our bao A, all that is left is to come up with a term π(x) for
which the formula (α) holds in A. For the definition of π, we extend the language of boolean
algebras with five unary operation symbols, 3=, 3>, 3L, 3�, and 3�.

Consider the following terms, the meaning of which will become clear in the proof of
Proposition 3 below:

ϕ(x) = x ∧ ¬3=x,

ζ(x) = 2�x ∧ ¬3>2�x,

δ(x) = 3�3L x,

π(x) = ϕ(x) ∧ δ(ζ(ϕ(x))).
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We now have all the necessary material to state and prove the key technical result of this
paper. Note that the algebra A is an appropriate structure for the language just described.

Proposition 3 The formula (α) holds in A:

A |= ∀x (⊥ < x→ ⊥ < π(x) < x).

Proof. We first prove three claims that will clarify the meaning of the terms ϕ, ζ and δ,
respectively. Recall that each term β(x1, . . . , xn) is interpreted in A as a map βA : An → A.

The first claim states that ϕA is a function mapping each nonempty subset a of W to an
atom-based subset of a. We leave the straightforward proof as an exercise to the reader.

Claim 1 Let a be a nonempty subset of W , and let f ∈ 2<ω be the first finite string (in our
fixed enumeration of 2<ω) in Wa. Then

ϕA(a) = af .

Now let a = {s} × U be an atom-based admissible subset of W ; recall from our earlier
discussion that ZU , the origin of U , is a finite set of finite strings which forms a unique
representation of U . The next claim states that for such a, the set ζA(a) is the manifestation
of ZU in its A-disguise.

Claim 2 Let a = {s} × U be an atom-based subset of W . Then ζA(a) = ZU × 2ω.

Proof of Claim If a is small, then by definition of A we have that

ζA(a) = [�]a ∩ −W 〈>〉[�]a. (2)

Using this, the proof of the Claim is routine. J

Conversely, our last Claim shows that δA transfers information from finite strings to infinite
strings.

Claim 3 Let a be a small subset of W . Then

δA(a) = 2<ω ×
⋃
x∈Wa

x0⇑.

Proof of Claim Let a be an arbitrary small subset of W . Then 〈L〉a = 〈L〉a, and since

〈L〉(a) = {(x0, τ) | x ∈Wa}, (3)

the set 〈L〉(a) is small as well. Thus

δA(a) = 〈�〉〈L〉(a).

Now, by the definition of 〈�〉 and 〈L〉, we have, for an arbitrary element (s, σ) of W :

(s, σ) ∈ 〈�〉〈L〉(a) iff x0 ≺ σ for some x ∈Wa.

This proves the claim. J
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Now we are ready to prove the Proposition itself. Let a be an arbitrary, nonempty,
admissible subset of W . We have to show that πA(a) is a nonempty, proper subset of a.

Let f be the first finite string in Wa. It follows from Claim 1 that

ϕA(a) = af . (4)

Note that af is an atom-based, nonempty subset of a; say, af = {f}×U . By the admissibility
of af it follows that U is a finite union of i-cones; in particular, we may represent U via its
origin ZU as U =

⋃
z∈ZU z⇑. It follows from Claim 2 and (4) that

ζA(ϕA(a)) = ZU × 2ω.

In particular, we see that ζA(ϕA(a)) is small and digital, with the set ZU forming its support
set. Thus by Claim 3 we obtain that

δA(ζA(ϕA(a))) = 2<ω ×
⋃
z∈ZU

z0⇑,

which, together with (4), yields

πA(a) = {f} ×
⋃
z∈ZU

z0⇑.

But then πA is clearly a nonempty subset of af ; and it follows from (1) that it is a proper
subset of af , and thus, of a. This finishes the proof of the Proposition. qed

Now we are ready for the proof of our main result.

Proof of Theorem 1. Let K be the class of algebras that satisfy (α), and on which γ(x)
is a unary discriminator term for K, cf. Jipsen [4]. That is, assume that every algebra in K
satisfies

γ(x) =
{
⊥ if x = ⊥,
> if x > ⊥. (∆)

If there is no such term γ, then expand the similarity type with a new unary function symbol
and interpret this function symbol as the operator defined by (∆).

Let V be the variety generated by K; since our algebra A belongs to K, V is not trivial.
It is well known that V, being a discriminator variety, is semisimple; that is, every algebra
in V is a subdirect product of simple algebras. In order to show that all algebras in V are
atomless, we need a slightly stronger result.

Let B be an arbitrary algebra in V. It follows from Theorem 2.3 of Givant [2] that there
is a family (Bi)i∈I of simple algebras in K, and a subdirect embedding e : B→

∏
i∈I Bi. Let

ei : B→ Bi denote the induced surjective homomorphism.
In order to show that B is atomless, take an arbitrary nonzero element b of B. First

observe that since K |= π(x) ≤ x, the same holds for the variety V, and thus for B. That is,
we have

πB(b) ≤ b. (5)
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Now by the subdirectness of the embedding and the fact that b 6= ⊥, there must be some
index i ∈ I such that ei(b) 6= ⊥i. Since every Bi belongs to K, and thus, satisfies (α), we find
that

⊥i < πBi(ei(b)) < ei(b). (6)

But ei is a homomorphism, so πBi(ei(b)) = ei(πB(b)). From this and (6) it is immediate that
πB(b) 6= ⊥ and πB(b) 6= b, so with (5) this gives

⊥ < πB(b) < b, (7)

showing that b is not an atom. Since b was an arbitrary nonzero element of B, this proves
that B is atomless. In fact, it follows from (7) that B |= α. qed
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