Axiomatization of ML and Cheq

MSc Thesis (Afstudeerscriptie)
written by
Gaëlle Fontaine
(born June 22nd, 1982 in Messancy, Belgium)
under the supervision of Nick Bezhanishvili and Yde Venema, and submitted to the Board of Examiners in partial fulfillment of the
requirements for the degree of
MSc in Logic
at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
10th November, 2006
Nick Bezhanishvili
Peter van Emde Boas
Dick de Jongh
Yde Venema

Institute for Logic, Language and Computation

Contents

1 Introduction 2
2 Preliminaries 4
2.1 Syntax and semantics of intermediate logics 4
2.2 Operations on Kripke frames 5
2.3 Jankov-de Jongh theorem 6
2.4 General terminology 7
2.5 Medvedev's logic 8
2.6 The logic Cheq 8
3 Medvedev's logic is not finitely axiomatizable 9
4 ML is not finitely axiomatizable over Cheq 16
5 Cheq is not axiomatizable with four variables 21
6 Further questions 30
6.1 Axiomatization of Cheq 30
6.2 The modal case 32
7 Conclusion 33

1 Introduction

Intuitionistic logic was introduced at the beginning of the 20th century. Its original goal was to describe the laws of constructive reasoning. The main principle of this approach is that in order to establish the truth of a statement, one has to produce a "constructive proof" for it (or less formally: to show the existence of something one has to provide a way of constructing it).

Around 1930, Brouwer gave an informal definition of the intuitionistic logic. Heyting [7] made Brouwer's ideas precise by introducing a formal calculus, the intuitionistic logic Int. Later Tarski [18] provided a topological interpretation of intuitionistic calculus, which was developed in the forties by McKinsey and Tarski $[13,14]$ into a full algebraic semantics for intuitionistic logic. In 1965, Kripke [10] introduced the relational semantics for intuitionistic logic.

Gödel [6] noticed that there are infinitely many logics between the intuitionistic logic and the classical logic. Since then these logics have been broadly studied and are nowadays called intermediate logics. Jankov [8, 9] showed that in fact there are continuum many intermediate logics. In this thesis we focus our attention on two intermediate logics, namely Medvedev's logic and the logic of chequered subsets of \mathbb{R}^{∞}.

The motivation behind Medvedev's logic is closely related to Brouwer's motivation for introducing intuitionistic logic. This logic was defined by Medvedev [15] in 1962. His idea was to consider intuitionistic formulas as finite problems. A finite problem is defined as a pair $\langle X, Y\rangle$, where $X \neq \emptyset$ is the set of possibles solutions to the problem and where $Y \subseteq X$ is the set of solutions. The operations on finite problems are defined as follows:

$$
\begin{aligned}
\left\langle X_{1}, Y_{1}\right\rangle \wedge\left\langle X_{2}, Y_{2}\right\rangle & =\left\langle X_{1} \times X_{2}, Y_{1} \times Y_{2}\right\rangle \\
\left\langle X_{1}, Y_{1}\right\rangle \vee\left\langle X_{2}, Y_{2}\right\rangle & =\left\langle X_{1} \uplus X_{2}, Y_{1} \uplus Y_{2}\right\rangle \\
\left\langle X_{1}, Y_{1}\right\rangle \rightarrow\left\langle X_{2}, Y_{2}\right\rangle & =\left\langle X_{2}^{X_{1}},\left\{f \in X_{2}^{X_{1}} \mid f\left(Y_{1}\right) \subseteq Y_{2}\right\}\right\rangle \\
\perp & =\langle\{\emptyset\}, \emptyset\rangle .
\end{aligned}
$$

Recall that $X \uplus Y$ is the disjoint union of X and Y and that X^{Y} is the set of all maps from Y to X. Given a formula φ, we interpret its propositional variables as finite problems, whereas its connectives are interpreted as described above. A formula is finitely valid if for any interpretation of its propositional variables, the result is a finite problem whose set of solutions is non-empty. The intermediate logic ML is the set of all finitely valid formulas. Medvedev [16] proved that it can be characterized in terms of Kripke semantics. He showed that there is a class of Kripke frames such that ML is the set of formulas that are valid in each of the frames. We will give this definition later and in fact, this definition will be the one that will be used throughout the paper.

It is known that ML has the finite model property, the disjunction property, contains the so-called Kreisel-Putnam and Scott logics, and is contained in the so-called logic of weak excluded middle (see, e.g., [3]). In the late 1970's Maksimova et al. [12] showed that ML is not axiomatizable by any set of formulas with finitely many variables. The question whether ML is decidable is one of the most long-standing open problems in the field of intermediate logics; see, e.g., [3, §16] for further discussion.

Recently, van Benthem et al. [1] introduced the modal $\operatorname{logic} \mathbf{L}_{\infty}$ of chequered subsets of the countable product of the real line \mathbb{R}^{∞}. The chequered subsets of \mathbb{R}^{∞} are the finite unions of products $\Pi_{i \in \mathbb{N}} C_{i}$, where each C_{i} is a convex subset of \mathbb{R} and all but finitely many C_{i} 's are equal to \mathbb{R} (recall that $C \subseteq \mathbb{R}$ is convex if for all $x, y \in C,[x, y]=\{z \mid x \leq z \leq y\}$ is a subset of $C)$. Given a modal formula, we can interpret its propositional variables as chequered subsets of \mathbb{R}^{∞}, the connectives \wedge, \vee and \neg as standard boolean operators and the modal operator \diamond as the closure operator (that is, it associates a set $X \subseteq \mathbb{R}^{\infty}$ with the smallest closed set containing X). A formula is \mathbf{L}_{∞}-valid if for any interpretation of its propositional variables, the result is equal to \mathbb{R}^{∞}. The modal $\operatorname{logic} \mathbf{L}_{\infty}$ is the set of all modal formulas that are \mathbf{L}_{∞}-valid.

Van Benthem et al. [1] showed that \mathbf{L}_{∞} has the finite model property, is not tabular and is a logic over the so-called Grzegorczyk logic. Moreover, they proved that there is a set of frames $\left\{\mathcal{F}_{n} \mid n \in \mathbf{N}\right\}$ characterizing \mathbf{L}_{∞} in the sense that a formula φ is \mathbf{L}_{∞}-valid iff φ is valid in any of the \mathcal{F}_{n} 's.

Litak [11] introduced the "intuitionistic counterpart" of \mathbf{L}_{∞}. This logic is defined using the standard correspondence between the modal logics over S4 and intermediate logics (see, e.g., [3, §9]). This correspondence associates an intermediate logic with a class of modal logics and maps a modal logic \mathbf{L} over $\mathbf{S} 4$ to an intermediate logic, called the intermediate fragment of \mathbf{L}. Litak denoted the intermediate fragment of \mathbf{L}_{∞} by Cheq and showed that it has the disjunction property and contains the Scott logic.

Medvedev's logic ML and Cheq have similar properties and they are both determined by recursive sequences of finite rooted frames. Besides, it is known that Cheq is contained in Medvedev's logic (see [11]). In fact, every finite rooted Cheq-frame is a p-morphic image of a finite rooted ML-frame. This raises a question how closely related the two logics are and whether the methods used to investigate ML could be applied to Cheq.

Litak [11] raised a question whether ML is finitely axiomatizable over Cheq. If this were the case, it would imply that Cheq is not finitely axiomatizable. We will give a negative solution to Litak's question by proving that ML is not finitely axiomatizable over Cheq. Thus, the connection between the Medvedev's logic and Cheq is not as strong as it first appeared.

It still remains an open problem whether Cheq is finitely axiomatizable. We looked at this question by using a similar approach to the one of Maksimova et al. [12]. At the moment, we can only prove that Cheq is
not axiomatizable with four variables. Decidability of Cheq is also an open question.

The thesis is organized as follows. In Section 2 we recall the basics of intuitionistic logic. In Section 3 we give the proof of Maksimova et al. that Medvedev's logic is not finitely axiomatizable. In Section 4 we show that ML is not finitely axiomatizable over Cheq. The proof that Cheq is not axiomatizable with four variables is given in Section 5. Finally, in Section 6 we investigate the modal companions of ML and Cheq and specify a problem which implies that Cheq is not finitely axiomatizable.

2 Preliminaries

2.1 Syntax and semantics of intermediate logics

We denote by P the set of propositional variables. The formulas of our language \mathcal{L} are given by the rule

$$
\varphi::=\perp|p| \varphi \vee \varphi|\varphi \wedge \varphi| \varphi \rightarrow \varphi
$$

where p ranges over elements of P. We let $\neg \varphi$ abbreviate $\varphi \rightarrow \perp$ and \top abbreviate $\neg \perp$.

The intuitionistic logic Int is the smallest set of formulas that contains the axioms
i. $p_{0} \rightarrow\left(p_{1} \rightarrow p_{0}\right)$
ii. $\left(p_{0} \rightarrow\left(p_{1} \rightarrow p_{2}\right)\right) \rightarrow\left(\left(p_{0} \rightarrow p_{1}\right) \rightarrow\left(p_{0} \rightarrow p_{2}\right)\right)$
iii. $p_{0} \wedge p_{1} \rightarrow p_{0}$
iv. $p_{0} \wedge p_{1} \rightarrow p_{1}$
v. $p_{0} \rightarrow p_{0} \vee p_{1}$
vi. $p_{1} \rightarrow p_{0} \vee p_{1}$
vii. $\left(p_{0} \rightarrow p_{2}\right) \rightarrow\left(\left(p_{1} \rightarrow p_{2}\right) \rightarrow\left(\left(p_{0} \vee p_{1}\right) \rightarrow p_{2}\right)\right)$
viii. $\perp \rightarrow p_{0}$
and closed under the inference rules

$$
\text { MP : } \frac{\varphi, \varphi \rightarrow \psi}{\psi} \quad \text { and } \quad \text { Subst }: \frac{\varphi\left(p_{0}, \ldots, p_{n}\right)}{\varphi\left(\psi_{0}, \ldots, \psi_{n}\right)} .
$$

A set of formulas closed under MP and Subst is called an intermediate logic if it is a subset of the classical logic and contains the intuitionistic logic. An intermediate logic \mathbf{L} is said to be finitely axiomatizable if there is a finite set of formulas Γ such that the least intermediate logic containing Γ is \mathbf{L}.

We briefly recall the basic notions of the Kripke semantics for intuitionistic logic. An intuitionistic Kripke frame is a pair $\mathcal{F}=\langle W, \leq\rangle$ such that W is a non-empty set and \leq is a partial order, that is, a reflexive, transitive and anti-symmetric binary relation on W. A valuation in a frame $\mathcal{F}=\langle W, \leq\rangle$ is a map V associating with each variable $p \in P$ some subset $V(p)$ of W such that, for every $x \in V(p)$ and $y \in W, x \leq y$ implies $y \in V(p)$. An intuitionistic Kripke model is a pair $\mathcal{M}=\langle\mathcal{F}, V\rangle$, where \mathcal{F} is an intuitionistic Kripke frame and V a valuation in \mathcal{F}.

Let $\mathcal{M}=\langle\mathcal{F}, V\rangle$ be a model and x a point in the frame $\mathcal{F}=\langle W, \leq\rangle$. We inductively define $x \Vdash \varphi$ as follows:

$$
\begin{array}{lll}
\mathcal{M}, x \Vdash p & \text { iff } & x \in V(p) \\
\mathcal{M}, x \Vdash \varphi \wedge \psi & \text { iff } & \mathcal{M}, x \Vdash \varphi \text { and } \mathcal{M}, x \Vdash \psi \\
\mathcal{M}, x \Vdash \varphi \vee \psi & \text { iff } & \mathcal{M}, x \Vdash \varphi \text { or } \mathcal{M}, x \Vdash \psi \\
\mathcal{M}, x \Vdash \varphi \rightarrow \psi & \text { iff } & \text { for all } y,(x \leq y \text { and } \mathcal{M}, y \Vdash \varphi) \text { implies } \mathcal{M}, y \Vdash \psi \\
\mathcal{M}, x \nVdash \perp . & &
\end{array}
$$

A formula φ is true in \mathcal{M} if $\mathcal{M}, x \Vdash \varphi$ for every $x \in \mathcal{F}$; in this case we write $\mathcal{M} \Vdash \varphi$. If φ is not true then we say that φ is refuted in \mathcal{M}. The formula φ is valid in a frame \mathcal{F} if φ is true in all models based on \mathcal{F}; in this case we write $\mathcal{F} \Vdash \varphi$. Next if \mathbf{L} is an intermediate logic, a frame \mathcal{F} is an \mathbf{L}-frame if all formulas of \mathbf{L} are valid in \mathcal{F}. Finally we say that φ is valid in a class of Kripke frames K, and write $K \Vdash \varphi$, if $\mathcal{F} \Vdash \varphi$, for every $\mathcal{F} \in K$. The logic $\log (K)$ is the set of formulas that are valid in K.

It is well-known that the set of formulas valid in all Kripke frames coincides with the logic Int.

2.2 Operations on Kripke frames

We recall some basic operations on Kripke frames and models.
Generated subframes A subframe of a frame $\mathcal{F}=\langle W, \leq\rangle$ is a frame $\mathcal{F}^{\prime}=\left\langle W^{\prime}, \leq^{\prime}\right\rangle$ such that W^{\prime} is a subset of W and $x \leq^{\prime} y$ iff $x \leq y$, for all $x, y \in W^{\prime}$. In that case, we say that the subframe \mathcal{F}^{\prime} is based on W^{\prime}.

Moreover, \mathcal{F}^{\prime} is a generated subframe of \mathcal{F} if \mathcal{F}^{\prime} is a subframe of \mathcal{F} and W^{\prime} is an upset (recall that W^{\prime} is an upset iff for every $x \in W^{\prime}$ and every $y \in W, x \leq y$ implies that y belongs to W^{\prime}).

If \mathcal{F}^{\prime} is a generated subframe of \mathcal{F} and if W^{\prime} is the least upset of W that contains some set X, we say that \mathcal{F}^{\prime} is generated by X. If \mathcal{F} is generated by some singleton $\{x\}$, then \mathcal{F} is said to be a rooted frame and x is called the root. A class K of Kripke frames is closed under rooted generated subframes if for any $\mathcal{F} \in K$ and any rooted generated subframe \mathcal{F}^{\prime} of \mathcal{F}, we have that \mathcal{F}^{\prime} is isomorphic to a frame in K.
p-morphisms A map f from \mathcal{F} to \mathcal{F}^{\prime} is a p-morphism if
i. for all $x, y \in \mathcal{F}, x \leq y$ implies $f(x) \leq f(y)$,
ii. for all $x \in \mathcal{F}$ and all $z \in \mathcal{F}^{\prime}, f(x) \leq z$ implies that there exists a $y \in \mathcal{F}$ such that $x \leq y$ and $f(y)=z$.

In case f is onto, we say that \mathcal{F}^{\prime} is a p-morphic image of \mathcal{F}. Moreover, f is a p-morphism from a model $\langle\mathcal{F}, V\rangle$ on a model $\left\langle\mathcal{F}^{\prime}, V^{\prime}\right\rangle$ if f is a p-morphism from \mathcal{F} to \mathcal{F}^{\prime} such that

$$
x \in V(p) \quad \text { iff } \quad f(x) \in V^{\prime}(p),
$$

for all $x \in \mathcal{F}$ and all variables p.
Recall that p-morphisms preserve validity. That is, if f is a p-morphism from \mathcal{F} onto \mathcal{F}^{\prime}, then

$$
\mathcal{F} \Vdash \varphi \quad \text { implies } \quad \mathcal{F}^{\prime} \Vdash \varphi,
$$

for every formula φ. Recall also that if f is a p-morphism from a model \mathcal{M} to a model \mathcal{M}^{\prime}, then

$$
\mathcal{M}, x \Vdash \varphi \quad \text { iff } \quad \mathcal{M}^{\prime}, f(x) \Vdash \varphi,
$$

for all $x \in \mathcal{F}$ and all formulas φ.

2.3 Jankov-de Jongh theorem

Both proofs concerning axiomatizations of ML and Cheq make use of the Jankov-de Jongh formulas. We recall the main property of these formulas; see, e.g., [2] and [3, Proposition 9.41]. In fact, the Jankov-de Jongh theorem can be formulated not only for Kripke frames but also for the so-called descriptive frames.

Theorem 1 (Jankov-de Jongh theorem). For every finite rooted frame \mathcal{F}, there is a formula $\chi(\mathcal{F})$ such that for every frame \mathcal{G},

$$
\mathcal{G} \nVdash \chi(\mathcal{F}) \quad \text { iff } \quad \mathcal{F} \text { is a p-morphic image of a generated subframe of } \mathcal{G} \text {. }
$$

The formula $\chi(\mathcal{F})$ is called the Jankov-de Jongh formula of \mathcal{F}.
We will only make use of the following corollary of Theorem 1.
Corollary 2. If K is a class of finite Kripke frames closed under rooted generated subframes, then for every finite rooted frame \mathcal{F},

$$
\mathcal{F} \Vdash \log (K) \quad \text { iff } \quad \mathcal{F} \text { is a p-morphic image of some frame in } K .
$$

Proof. Let K be a class of finite Kripke frames closed under rooted generated subframes and let \mathcal{F} be a finite rooted frame. For the direction from right to left, suppose that \mathcal{F} is a p-morphic image of $\mathcal{G} \in K$. Since p-morphisms preserve validity, all formulas valid in \mathcal{G} are valid as well in \mathcal{F}. In particular, any formula of $\log (K)$ is valid in \mathcal{F}.

Conversely, suppose that \mathcal{F} is not a p-morphic image of any of the members of K. Let $\chi(\mathcal{F})$ be the Jankov-de Jongh formula of \mathcal{F}. We show that for any $\mathcal{G} \in K, \mathcal{G} \Vdash \chi(\mathcal{F})$. Fix $\mathcal{G} \in K$. By the Jankov-de Jongh theorem, $\mathcal{G} \Vdash \chi(\mathcal{F})$ iff \mathcal{F} is not a p-morphic image of a generated subframe of \mathcal{G}. Thus, it is sufficient to show that \mathcal{F} is not a p-morphic image of a generated subframe of \mathcal{G}. Suppose for contradiction that \mathcal{F} is a p-morphic image of a generated subframe \mathcal{G}^{\prime} of \mathcal{G}. Let f be a p-morphism from \mathcal{G}^{\prime} onto \mathcal{F}. Since f is surjective, there is some $x \in \mathcal{G}^{\prime}$ such that $f(x)$ is the root of \mathcal{F}. It is not hard to see that f is a p-morphism from the subframe $\mathcal{G}^{\prime \prime}$ of \mathcal{G} generated by $\{x\}$ onto \mathcal{F}. Since K is closed under rooted generated subframes, $\mathcal{G}^{\prime \prime}$ belongs to K. Thus \mathcal{F} is a p-morphic image of $\mathcal{G}^{\prime \prime} \in K$, which is impossible. This completes the proof that for any $\mathcal{G} \in K, \mathcal{G} \Vdash \chi(\mathcal{F})$.

Therefore, $\chi(\mathcal{F})$ belongs to $\log (K)$. Note that \mathcal{F} is a p-morphic image of a generated subframe of \mathcal{F} (the identity map is clearly a p-morphism from \mathcal{F} onto \mathcal{F}). It follows from the Jankov-de Jongh theorem that $\mathcal{F} \nVdash \chi(\mathcal{F})$. Putting everything together we obtain that $\chi(\mathcal{F})$ is a formula in $\log (K)$ such that $\mathcal{F} \nVdash \chi(\mathcal{F})$. Thus $\mathcal{F} \nVdash \log (K)$.

2.4 General terminology

We recall some basic notation that will be used later. Suppose $\mathcal{F}=\langle W, \leq\rangle$ is a finite frame. The depth of \mathcal{F} is the maximal natural number n such that there is a chain of n points (recall that a set E is a chain if given two points x and y of E, either $x \leq y$ or $y \leq x$). The depth of a point $x \in W$ (denoted $d(x))$ is the depth of the subframe generated by x.

We say that $y \in \mathcal{F}$ is an immediate successor of $x \in \mathcal{F}$ if $x \neq y, x \leq y$ and there is no $z \notin\{x, y\}$ such that $x \leq z$ and $z \leq y$. The number of immediate successors of a point x is called the branching degree of x.

We will use the notation $x \uparrow$ to denote the principal upset $\{y \in \mathcal{F} \mid x \leq y\}$ and the notation $x \downarrow$ to denote the principal downset $\{y \in W \mid y \leq x\}$. We remark that with these notations, a frame is rooted if there is some x such that $x \uparrow$ is equal to \mathcal{F}. Special cases of rooted frames are trees. The frame \mathcal{F} is a tree if \mathcal{F} is rooted and for every $x \in \mathcal{F}$, the set $x \downarrow$ is a finite chain. We recall also that every rooted frame is a p-morphic image of some tree, which is finite if the rooted frame is finite (see, e.g., [3, Theorem 2.19]).

2.5 Medvedev's logic

As mentioned before there are several characterizations of Medvedev's logic. We will use the following definition.

Definition 3 (Maksimova et al. [12]). For a finite non-empty set D, let $\mathcal{P}^{0}(D)$ denote the Kripke frame

$$
\mathcal{P}^{0}(D)=\langle\{X \subseteq D \mid X \neq \emptyset\}, \supseteq\rangle .
$$

$\mathcal{P}^{0}(D)$ is the frame whose elements are non-empty subsets of D and whose relation is the reverse inclusion. We call $\mathcal{P}^{0}(D)$ a Medvedev's frame. The intermediate logic ML is the logic of all Medvedev frames, that is, the set of formulas that are valid in all Medvedev frames. As usual, a frame \mathcal{F} is called an ML-frame if all the theorems of ML are valid in \mathcal{F}.

It is not hard to see that the class of Medvedev frames is closed under rooted generated subframes. Let $\mathcal{P}^{0}(D)$ be a Medvedev frame and let \mathcal{F} be the subframe of $\mathcal{P}^{0}(D)$ generated by some $E(E \subseteq D)$. Clearly \mathcal{F} is isomorphic to the Medvedev frame $\mathcal{P}^{0}(E)$.

Therefore, by Corollary 2, a frame is an ML-frame iff it is a p-morphic image of some Medvedev frame.

2.6 The logic Cheq

We will use the following characterization of the logic Cheq.
Definition 4 (van Benthem et al. [1]). Let \mathcal{F} denote the two-fork Kripke frame shown in Figure 1. Let \mathcal{F}_{0} be the frame $\langle\{x\},\{(x, x)\}\rangle$ and let $\mathcal{F}_{n}=$ $\underbrace{\mathcal{F} \times \cdots \times \mathcal{F}}_{n \text { times }}$. The logic Cheq is the logic of $\left\{\mathcal{F}_{n} \mid n \in \mathbb{N}\right\}$, that is, the set of formulas valid in any of the \mathcal{F}_{n} 's. As usual, a frame \mathcal{F} is called a Cheq-frame if all the theorems of Cheq are valid in \mathcal{F}.

Figure 1: The frame \mathcal{F}_{1}.

We introduce some notation that we will use subsequently. Let x be an element of \mathcal{F}_{n}. We use the notation $x(j)$ to refer to the j th component of x. Next if x is an immediate successor of $\left(w_{0}, \ldots, w_{0}\right)$, it has only one component $x(i)$ that differs from w_{0} and we denote it by $\delta(x)$. Finally we denote by $N_{i}(x)$ the number of w_{i} that occur in x. One can easily show by induction on $N_{0}(x)$ that $d(x)=N_{0}(x)+1$. If $N_{0}(x)=0$, then x is
maximal and $d(x)=1$. If $N_{0}(x)=k+1$, then any immediate successor y of x is such that $N_{0}(y)=k$. So by induction, $d(y)=k+1$. Since $d(x)=\max \{d(y) \mid y$ immediate successor of $x\}+1$, we get that $d(x)=k+2$.

Now we show that the set of \mathcal{F}_{n} 's is closed under rooted generated subframes. Therefore, by Corollary 2, a frame is a Cheq-frame iff it is a p morphic image of some \mathcal{F}_{n}.

Proposition 5. The set of $\left\{\mathcal{F}_{n} \mid n \in \mathbb{N}\right\}$ of Kripke frames is closed under rooted generated subframes.

Proof. Suppose \mathcal{F} is a generated subframe of \mathcal{F}_{n} with root x. We have to show that \mathcal{F} is isomorphic to some \mathcal{F}_{l}. If x is maximal, then \mathcal{F} is isomorphic to \mathcal{F}_{0}. So from now on we suppose that x is not maximal. Without loss of generality, we may assume that $x=\left(w_{0}, \ldots, w_{0}, x(l), \ldots, x(n-1)\right)$, where $0<l<n$ and $x(j)$ belongs to $\left\{w_{1}, w_{2}\right\}$ for $j \geq l$. Define a map f from \mathcal{F} to \mathcal{F}_{l} by

$$
f(y)=(y(0), \ldots, y(l-1)) .
$$

We check that f is an isomorphism. It is sufficient to show that f is order preserving and to find an order preserving map $g: \mathcal{F}_{l} \rightarrow \mathcal{F}$ such that $f \circ g$ and $g \circ f$ are the identity maps. Define a map g form \mathcal{F}_{l} to \mathcal{F} by

$$
g(z)=(z(0), \ldots, z(l-1), x(l), \ldots, x(n-1))
$$

Obviously f and g are order preserving. Checking that $f \circ g$ is the identity map is trivial. Thus, it remains to prove that for all y above x, we have $g(f(y))=y$. Fix y in \mathcal{F} and $i<n$. We show that $y(i)=g(f(y))(i)$. If i is less than l, it is immediate that $g(f(y))(i)$ and $y(i)$ coincide. So suppose $i \geq l$. By definition, $g(f(y))(i)$ is equal to $x(i)$. Thus we have to show that $y(i)=x(i)$. Since y is above $x, y(i)$ is above $x(i)$. As $x(i)$ is either w_{1} or w_{2}, this can only happen in case $y(i)=x(i)$. This completes the proof that $g \circ f$ is the identity map.

3 Medvedev's logic is not finitely axiomatizable

In this section we give an overview of the result of Maksimova, Skvorcov and Shehtman (see [12]) that Medvedev's logic is not finitely axiomatizable.

The proof is organized as follows. First, for each $k \neq 0$ and each $i \leq k$, we introduce finite rooted frames \mathcal{G}_{k} and \mathcal{G}_{k}^{i}. Next we prove that the \mathcal{G}_{k} 's are not frames for the logic ML, whereas the \mathcal{G}_{k}^{i} 's make true all the theorems of ML. Finally we show that for any formula $\varphi\left(p_{1}, \ldots, p_{k}\right)$, there is a natural number i such that φ is valid in \mathcal{G}_{k} if and only if φ is valid in \mathcal{G}_{k}^{i}.

From these results, it is not hard to derive that ML is not finitely axiomatizable. Suppose for contradiction that there is a finite set of formulas axiomatizing ML. Without loss of generality we may assume that ML is
axiomatized by a single formula φ with k variables (for some natural number $k \neq 0)$. So there exists a natural number $i \leq k$ such that φ is valid in \mathcal{G}_{k} iff φ is valid in \mathcal{G}_{k}^{i}. Recall that \mathcal{G}_{k}^{i} is an ML-frame. Thus, φ is valid in \mathcal{G}_{k}^{i}. Therefore, φ is valid in \mathcal{G}_{k}. But \mathcal{G}_{k} is not an ML-frame. This contradiction proves that such a φ does not exist.

For each natural number $k \neq 0$ and each $i \leq k$, let \mathcal{G}_{k} and \mathcal{G}_{k}^{i} be the frames shown in Figure 2 and 3, respectively.

Figure 2: The frame \mathcal{G}_{k}.

Proposition 6. For each natural number $k>0$, the frame \mathcal{G}_{k} is not an ML-frame.

Proof. Recall that $\left\{\mathcal{P}^{0}(D) \mid D\right.$ finite non-empty set $\}$ is closed under rooted generated subframes. So by Corollary $2, \mathcal{G}_{k}$ is an ML-frame iff \mathcal{G}_{k} is a p-morphic image of some $\mathcal{P}^{0}(D)$. Suppose that \mathcal{G}_{k} is an ML-frame, i.e. there is some finite non-empty set D_{0} such that \mathcal{G}_{k} is a p-morphic image of $\mathcal{P}^{0}\left(D_{0}\right)$. In order to arrive at a contradiction, we prove the following claim.
Claim 7. Let D be a finite non-empty set and let \mathcal{F} be a finite rooted frame. If \mathcal{F} is a p-morphic image of some $\mathcal{P}^{0}(D)$, then either \mathcal{F} has some point with a single immediate successor or the branching degree of any x in \mathcal{F} is less than $2^{d(x)}$.

Proof. Assume that f is a p-morphism from $\mathcal{P}^{0}(D)$ onto \mathcal{F} and that no point of \mathcal{F} has a single immediate successor. First, we prove that for any x in \mathcal{F} there exists a subset E_{x} of D such that x is the image of E_{x} and the cardinality of E_{x} is less than $2^{d(x)}$. This is done by induction on the depth of x. The case $d(x)=1$ is easy. Indeed, for some $E \subseteq D$, we have that

Figure 3: The frame \mathcal{G}_{k}^{i}.
$f(E)$ is equal to x. Let e be a point in E and define E_{x} as $\{e\}$. Obviously the cardinality of E_{x} is less than $2^{d(x)}=2^{1}$. Also since E_{x} is a subset of $E, f\left(E_{x}\right)$ is above $f(E)=x$. As x is maximal, this can only happen if $f\left(E_{x}\right)=x$.

For the case $d(x)=n+1$, let E be a subset of D such that $f(E)=x$. Hence f is a p-morphism from the subframe of $\mathcal{P}^{0}(D)$ generated by E to the subframe of \mathcal{F} generated by x. That is, f is a p-morphism from $\mathcal{P}^{0}(E)$ to the subframe of \mathcal{F} generated by x. By induction, for any proper successor y of x, there is a subset E_{y} of E such that y is the image of E_{y} and the cardinality of E_{y} is less than $2^{d(y)}$.

Since no point of \mathcal{F} has a single immediate successor, we may assume that there are two distinct points x_{1} and x_{2} that are immediate successors of x. Therefore, there are subsets $E_{x_{1}}$ and $E_{x_{2}}$ of E such that $f\left(E_{x_{i}}\right)$ is equal to x_{i} and the cardinality of $E_{x_{i}}$ is less than $2^{d\left(x_{i}\right)}=2^{n}$.

Now consider the set $E_{x}=E_{x_{1}} \cup E_{x_{2}}$. Observe that the cardinality of E_{x} is bounded by the sum of the cardinality of $E_{x_{1}}$ and the cardinality of $E_{x_{2}}$. As the cardinality of $E_{x_{i}}$ is less than 2^{n}, we obtain that the cardinality of E_{x} is bounded by $2^{n}+2^{n}$. Thus the cardinality of E_{x} is less than $2^{n+1}=2^{d(x)}$.

Next we prove that $f\left(E_{x}\right)$ is equal to x. As E_{x} is a subset of $E, x=f(E)$ is below $f\left(E_{x}\right)$. Moreover, since E_{x} contains $E_{x_{i}}$, we get that $f\left(E_{x}\right)$ is less than or equal to $f\left(E_{x_{i}}\right)=x_{i}$. Putting everything together we obtain that x is below $f\left(E_{x}\right)$ and that $f\left(E_{x}\right)$ is below x_{1} and x_{2}. Since x_{1} and x_{2} are distinct immediate successors of x, this can only happen if $f\left(E_{x}\right)=x$.

It remains to show that the branching degree of any element x of \mathcal{F} is less than $2^{d(x)}$. Fix a point x in \mathcal{F}. Then, there is a set $E \subseteq D$ such that $f(E)=x$ and the cardinality of E is less than $2^{d(x)}$. By taking E as small as
possible, we may assume that there is no F strictly included in E such that $f(F)=x$. It is not hard to see that the branching degree of E in $\mathcal{P}^{0}(D)$ is equal to the cardinality of E. Thus, the branching degree of E is less than $2^{d(x)}$.

To show that the branching degree of x is less than $2^{d(x)}$, it is then sufficient to prove that the branching degree of x is less than or equal to the branching degree of E. Assume that x^{\prime} is an immediate successor of x. Then there is a subset E^{\prime} of E such that $f\left(E^{\prime}\right)=x^{\prime}$. Let $E^{\prime \prime}$ be an immediate successor of E, which contains E^{\prime}. Clearly, $f\left(E^{\prime \prime}\right)$ is above $f(E)=x$ and below $f\left(E^{\prime}\right)=x^{\prime}$. Thus either $f\left(E^{\prime \prime}\right)=x$ or $f\left(E^{\prime \prime}\right)=x^{\prime}$. Since there is no F strictly included in E such that $f(F)=x, f\left(E^{\prime \prime}\right)$ is equal to x^{\prime}. Therefore, with any immediate successor x^{\prime} of x, we can associate an immediate successor $E^{\prime \prime}$ of E. It immediately follows that the branching degree of x is less than or equal to the branching degree of E and this finishes the proof.

Using this claim together with the fact that \mathcal{G}_{k} is a p-morphic image of $\mathcal{P}^{0}\left(D_{0}\right)$, we obtain that the branching degree of any point x in \mathcal{G}_{k} is less than $2^{d(x)}$. But this contradicts the fact that the root of \mathcal{F} has depth $k+3$ and branching degree 2^{k+3}.

Proposition 8. For each natural number $k>0$ and each $i \leq k$, the frame \mathcal{G}_{k}^{i} is an ML-frame.

Proof. It is sufficient to show that \mathcal{G}_{k}^{i} is a p-morphic image of some $\mathcal{P}^{0}(D)$ and this will be done in two steps. First, we show in Claim 9 that the subframe of \mathcal{G}_{k}^{i} based on $(i, 0) \downarrow$ is a p-morphic image of some $\mathcal{P}^{0}(D)$. Next we prove that by adding two maximal points to the top of a frame which is a p-morphic image of some $\mathcal{P}^{0}(D)$, we obtain a frame that is a p-morphic image of some $\mathcal{P}^{0}(D)$.

More formally, here are the two claims.
Claim 9. If \mathcal{F} is a finite rooted frame with a greatest element, then \mathcal{F} is a p-morphic image of some $\mathcal{P}^{0}(D)$.
Claim 10. If a finite rooted frame $\mathcal{F}=\langle W, R\rangle$ is a p-morphic image of some $\mathcal{P}^{0}(D)$, then the frame $\mathcal{G}=\langle V, S\rangle$ defined by

$$
\begin{aligned}
V & =W \cup\{a, b\} \\
S & =R \cup\{(x, a),(x, b) \mid x \in W\}
\end{aligned}
$$

is also a p-morphic image of some $\mathcal{P}^{0}\left(D^{\prime}\right)$.
These two claims are sufficient to show that \mathcal{G}_{k}^{i} is a p-morphic image of some $\mathcal{P}^{0}(D)$. Indeed, by Claim 9, the subframe of \mathcal{G}_{k}^{i} based on $(i, 0) \downarrow$ is a p-morphic image of some $\mathcal{P}^{0}(D)$ (this subframe has $(i, 0)$ as maximum element). Moreover, it is easy to see that by applying repeatedly (i times)

Claim 9 to this subframe we will finally get that the frame \mathcal{G}_{k}^{i} is a p-morphic image of some $\mathcal{P}^{0}\left(D^{\prime}\right)$.

So it remains to prove the claims.
Proof of Claim 9. Let \mathcal{F} be a finite rooted frame with a greatest element 1. In case \mathcal{F} consists of a single element, Claim 9 is immediate. So from now we will assume that \mathcal{F} has at least two elements.

Recall also that any finite rooted frame is a p-morphic image of some finite tree. Thus, there is a finite tree \mathcal{T} and a p-morphism from \mathcal{T} onto $\mathcal{F} \backslash\{1\}$. Now consider the frame \mathcal{T}^{\prime} obtained by adding a greatest element 1 to the tree \mathcal{T}. Obviously, there is a p-morphism from \mathcal{T}^{\prime} onto \mathcal{F}. Consequently, it is enough to show that \mathcal{T}^{\prime} is a p-morphic image of some $\mathcal{P}^{0}(D)$. This will be done by induction on the depth (in \mathcal{T}) of the root r of \mathcal{T}.

The case $d(r)=1$ is immediate. As for the case $d(r)=n+1$, let r_{0}, \ldots, r_{k} be the immediate successors of r. By induction hypothesis there are finite sets E_{0}, \ldots, E_{k} so that the subframe of \mathcal{T}^{\prime} generated by r_{i} is a p-morphic image of $\mathcal{P}^{0}\left(E_{i}\right)$. Without loss of generality, we can assume that if $i \neq j$, then $E_{i} \cap E_{j}$ is empty.

For any $i \leq k$, let E_{i}^{\prime} be a finite set such that E_{i} is a proper subset of E_{i}^{\prime}. We may suppose that if $i \neq j$, then $E_{i}^{\prime} \cap E_{j}^{\prime}$ is empty. Let D be the union of the E_{i}^{\prime} 's.

First, we prove that for any $i \leq k$, there is a p-morphism g_{i} from $\mathcal{P}^{0}\left(E_{i}^{\prime}\right)$ onto the subframe of \mathcal{T}^{\prime} based on $\{r\} \cup r_{i} \uparrow$. Moreover, we show that there is only one point mapped to r and that if E contains $D \backslash E_{i}^{\prime}$ and $D \backslash E_{j}^{\prime}$, then $g_{i}\left(E \cap E_{i}^{\prime}\right)$ coincide with $g_{j}\left(E \cap E_{j}^{\prime}\right)$.

By the definition of the E_{i} 's, there is a p-morphism f_{i} from $\mathcal{P}^{0}\left(E_{i}\right)$ onto $r_{i} \uparrow$. Now define g_{i} by

$$
g_{i}(E)= \begin{cases}r & \text { if } E=E_{i}^{\prime} \\ f_{i}\left(E \cap E_{i}\right) & \text { if } E \neq E_{i}^{\prime} \text { and } E \cap E_{i} \neq \emptyset \\ 1 & \text { otherwise }\end{cases}
$$

for all $E \in \mathcal{P}^{0}\left(E_{i}^{\prime}\right)$. It is routine to check that g_{i} is a surjective p-morphism such that only E_{i}^{\prime} is mapped to r.

It remains to show that if E contains $D \backslash E_{i}^{\prime}$ and $D \backslash E_{j}^{\prime}$, then $g_{i}\left(E \cap E_{i}^{\prime}\right)$ coincide with $g_{j}\left(E \cap E_{j}^{\prime}\right)$. So suppose $i \neq j$ and E contains $D \backslash E_{i}^{\prime}$ and $D \backslash E_{j}^{\prime}$. Therefore E is a supperset of $\left(D \backslash E_{i}^{\prime}\right) \cup\left(D \backslash E_{j}^{\prime}\right)=D \backslash\left(E_{i}^{\prime} \cap E_{j}^{\prime}\right)$. From the construction of the E_{l}^{\prime} 's, it follows that $E_{i}^{\prime} \cap E_{j}^{\prime}=\emptyset$ and thus, E is equal to D. It is easy to see that for all $l, g_{l}\left(D \cap E_{l}^{\prime}\right)$ is equal to r; that is, $g_{l}\left(E \cap E_{l}^{\prime}\right)$ is equal to r. This completes the proof that $g_{i}\left(E \cap E_{i}^{\prime}\right)$ and $g_{j}\left(E \cap E_{j}^{\prime}\right)$ coincide.

Finally, we define f from $\mathcal{P}^{0}(D)$ onto \mathcal{T}^{\prime} and show that it is a p morphism. For all $E \in \mathcal{P}^{0}(D), f(E)$ is defined by

$$
f(E)= \begin{cases}g_{i}\left(E \cap E_{i}^{\prime}\right) & \text { if } E \text { contains } D \backslash E_{i}^{\prime} \\ 1 & \text { otherwise } .\end{cases}
$$

Recall that if E contains $D \backslash E_{i}^{\prime}$ and $D \backslash E_{j}^{\prime}$, then $g_{i}\left(E \cap E_{i}^{\prime}\right)$ coincide with $g_{j}\left(E \cap E_{j}^{\prime}\right)$. Thus f is a well-defined map. Next we show that f is a surjection. Suppose that x is an element of \mathcal{T}^{\prime}. If x is the root, then $f(D)$ is equal to x. If x belongs to $r_{i} \uparrow$, then there is a E^{\prime} in $\mathcal{P}^{0}\left(E_{i}^{\prime}\right)$ such that $g_{i}\left(E^{\prime}\right)$ is equal to x. Consider $E=E^{\prime} \cup\left(D \backslash E_{i}^{\prime}\right)$. It follows from the definition of f that $f(E)$ is equal to x.

For the forth condition of p-morphisms, suppose that $E \in \mathcal{P}^{0}(D)$ contains the set $E^{\prime} \in \mathcal{P}^{0}(D)$. We will prove that $f(E)$ is related to $f\left(E^{\prime}\right)$. If E^{\prime} contains some $D \backslash E_{i}^{\prime}$, then E also contains $D \backslash E_{i}^{\prime}$. Therefore, $f\left(E^{\prime}\right)$ is equal to $g_{i}\left(E^{\prime} \cap E_{i}^{\prime}\right)$ and $f(E)$ is equal to $g_{i}\left(E \cap E_{i}^{\prime}\right)$. Using the fact that g_{i} is a p-morphism, we may conclude that $f(E)$ is below $f\left(E^{\prime}\right)$. Suppose finally that E^{\prime} does not contain any of the $D \backslash E_{i}^{\prime}$'s. It follows from the definition of f that $f\left(E^{\prime}\right)$ is the greatest element and obviously, $f(E)$ is below.

For the back condition, suppose that $f(E)$ sees x^{\prime}. We have to show that there exists a non-empty subset E^{\prime} of D such that $E \supseteq E^{\prime}$ and $f\left(E^{\prime}\right)=x^{\prime}$. If $E=D$, take E^{\prime} as a subset of D which is mapped to x^{\prime}. So from now on we will assume that E is a proper subset of D. If E does not contain any of the $D \backslash E_{i}^{\prime}$'s, then $f(E)$ is the greatest element, which implies that x^{\prime} is also equal to 1 . So we can define E^{\prime} as E.

Finally, assume that E contains $D \backslash E_{i}^{\prime}$. Thus, $f(E)$ is equal to $g_{i}\left(E \cap E_{i}^{\prime}\right)$. We show that $E \cap E_{i}^{\prime} \neq E_{i}^{\prime}$. If not, E contains E_{i}^{\prime}. Putting that together with the fact that E contains $D \backslash E_{i}^{\prime}$, we obtain that $E=D$. This contradicts our assumption on E and completes the proof that $E \cap E_{i}^{\prime} \neq E_{i}^{\prime}$.

Recall that the only set mapped by g_{i} to the root is the set E_{i}^{\prime}. It follows that $g_{i}\left(E \cap E_{i}^{\prime}\right)$ is not equal to r and therefore, belongs to $r_{i} \uparrow$. Now $f(E)=g_{i}\left(E \cap E_{i}^{\prime}\right)$ is below E^{\prime}. Hence, E^{\prime} also belongs to $r_{i} \uparrow$. Putting everything together, we get that $g_{i}\left(E \cap E_{i}^{\prime}\right)$ and E^{\prime} belongs to $r_{i} \uparrow, g_{i}\left(E \cap E_{i}^{\prime}\right)$ is below E^{\prime} and g_{i} is a p-morphism from $\mathcal{P}^{0}\left(E_{i}^{\prime}\right)$ onto the subframe of \mathcal{T}^{\prime} based on $\{r\} \cup r_{i} \uparrow$. Therefore, there is some F in $\mathcal{P}^{0}\left(E_{i}^{\prime}\right)$ such that $E \cap E_{i}^{\prime}$ contains F and $g_{i}(F)=x^{\prime}$. It is then immediate that $E^{\prime}=F \cup\left(D \backslash E_{i}^{\prime}\right)$ is such that $E \supseteq E^{\prime}$ and $f\left(E^{\prime}\right)=x^{\prime}$.

Proof of Claim 10. Suppose that f is a p-morphism from $\mathcal{P}^{0}(D)$ onto \mathcal{F} and let \mathcal{G} be as in the statement of the claim. We may assume that D is a set of the form $\{1, \ldots, n\}$ for some n.

Now consider the set $D^{\prime}=\{0, \ldots, n\}$ and the map g from $\mathcal{P}^{0}(D)$ onto \mathcal{G} defined by

$$
g(E)= \begin{cases}a & \text { if } E=\{0\} \\ b & \text { if } E \subseteq D \\ f(E \cap D) & \text { otherwise }\end{cases}
$$

for all $E \subseteq D^{\prime}$. It is routine to check that g is a p-morphism.
This finishes the proof of Proposition 8.

Proposition 11. Let φ be a formula with k variables. There exists a natural number $i \leq k$ such that

$$
\begin{equation*}
\mathcal{G}_{k} \Vdash \varphi \quad \text { iff } \quad \mathcal{G}_{k}^{i} \Vdash \varphi . \tag{1}
\end{equation*}
$$

Proof. Assume that φ is a formula with k variables $(k>0)$. For each $i \leq k$, we define a map $f_{i}: \mathcal{G}_{k} \rightarrow \mathcal{G}_{k}^{i}$ by

$$
f_{i}(x)= \begin{cases}(i, 0) & \text { if } x=(i, 0) \text { or } x=(i, 1) \\ x & \text { otherwise }\end{cases}
$$

It is routine to check that f_{i} is an onto p-morphism. Since p-morphisms preserve validity, if φ is valid in \mathcal{G}_{k}, then φ is also valid in \mathcal{G}_{k}^{i}. Therefore, to prove that there is some $i \leq k$ that satisfies (1), it is sufficient to show that if φ is not valid in \mathcal{G}_{k}, then there is a natural number $i \leq k$ such that φ is refuted in \mathcal{G}_{k}^{i}.

Suppose that $\varphi\left(p_{1}, \ldots, p_{k}\right)$ is not valid in \mathcal{G}_{k}. Hence, there is a valuation V such that φ is not true in the model $\left\langle\mathcal{G}_{k}, V\right\rangle$. We prove that there is some i_{0} so that $\left(i_{0}, 0\right)$ and $\left(i_{0}, 1\right)$ agree on p_{1}, \ldots, p_{k}. Recall that two points x and y agree on p if

$$
x \Vdash p \quad \text { iff } \quad y \Vdash p .
$$

Assume that $(i, 0)$ and $(i, 1)$ do not agree on p; say for instance that $(i, 0) \Vdash p$ and $(i, 1) \nVdash p$. Since $V(p)$ is an upset containing $(i, 0)$, we obtain that for all x above $(i, 0), x \Vdash p$. So for all $j>i,(j, 0) \Vdash p$ and $(j, 1) \Vdash p$. In particular, $(j, 0)$ and $(j, 1)$ agree on p.

Next observe that $\mathcal{G}_{k} \backslash V(p)$ is a downset containing $(i, 1)$. So for all x below $(i, 1)$, we get that $x \nVdash p$. Therefore, for all $j<i,(j, 0) \nVdash p$ and $(j, 1) \nVdash p$. It follows that $(j, 0)$ and $(j, 1)$ agree on p.

Putting everything together we obtain that for all $j \neq i,(j, 0)$ and $(j, 1)$ agree on p. So for every propositional variable p, there is at most one i such that $(i, 0)$ and $(i, 1)$ do not agree on p. It follows that the cardinality of $\{i \mid(i, 0)$ and $(i, 1)$ do not agree on some $p\}$ is at most equal to the number of propositional variables, that is, is at most equal to k. Therefore, there is some i_{0} in $\{0, \ldots, k\}$ such that $\left(i_{0}, 0\right)$ and $\left(i_{0}, 1\right)$ agree on all propositional variables.

Define a valuation V^{\prime} on $\mathcal{G}_{k}^{i_{0}}$ by

$$
V^{\prime}\left(p_{j}\right)=V\left(p_{j}\right) \backslash\left\{\left(i_{0}, 1\right)\right\},
$$

for all $1 \leq j \leq k$. We show that $f_{i_{0}}$ is a p-morphism from $\left\langle\mathcal{G}_{k}, V\right\rangle$ onto $\left\langle\mathcal{G}_{k}^{i_{0}}, V^{\prime}\right\rangle$. It is in fact enough to prove that for all $x \in \mathcal{G}_{k}$ and all $1 \leq j \leq k$, we have

$$
x \in V\left(p_{j}\right) \quad \text { iff } \quad f(x) \in V^{\prime}\left(p_{j}\right) .
$$

Fix $1 \leq j \leq k$. Remark that for all $x \in \mathcal{G}_{k}, f(x)=x$ iff $x \neq\left(i_{0}, 1\right)$. Thus for any $x \neq\left(i_{0}, 1\right)$, it is obvious that $x \in V\left(p_{j}\right)$ iff $f(x) \in V^{\prime}\left(p_{j}\right)$. It remains then to show that $\left(i_{0}, 1\right) \in V\left(p_{j}\right)$ iff $f\left(\left(i_{0}, 1\right)\right) \in V^{\prime}\left(p_{j}\right)$. That is, $\left(i_{0}, 1\right) \in V\left(p_{j}\right)$ iff $\left(i_{0}, 0\right) \in V^{\prime}\left(p_{j}\right)$. This is immediate, since $\left(i_{0}, 0\right)$ and $\left(i_{0}, 1\right)$ agree on p_{j}.

Therefore, φ is true in $\left\langle\mathcal{G}_{k}, V\right\rangle$ iff φ is true in $\left\langle\mathcal{G}_{k}^{i_{0}}, V^{\prime}\right\rangle$. We can then conclude that φ is not valid in $\mathcal{G}_{k}^{i_{0}}$ and this finishes the proof.

4 ML is not finitely axiomatizable over Cheq

In this section, which is based on [5], we prove that $\mathbf{M L}$ is not finitely axiomatizable over Cheq. To show that, it is in fact enough to prove that \mathcal{G}_{k} is a Cheq-frame. Indeed, assume that for each $k>1, \mathcal{G}_{k}$ is a Cheqframe and suppose for contradiction that there is a finite set of formulas that axiomatizes ML over Cheq. Without loss of generality we may then assume that there is a single formula φ with k variables such that $\mathbf{M L}=\mathbf{C h e q}+\varphi$. By Proposition 11, there exists a natural number $i \leq k$ such that φ is valid in \mathcal{G}_{k} iff φ is valid in \mathcal{G}_{k}^{i}. By Proposition $8, \mathcal{G}_{k}^{i}$ is an ML-frame. Thus, φ is valid in \mathcal{G}_{k}^{i}. Therefore, φ is valid in \mathcal{G}_{k}. By our assumption, \mathcal{G}_{k} is a Cheq-frame. Thus, \mathcal{G}_{k} is a ML-frame, which contradicts Proposition 6. This finishes the proof that under the assumption that the \mathcal{G}_{k} 's are Cheq-frames, ML is not finitely axiomatizable over Cheq.

To show that the \mathcal{G}_{k} 's are Cheq-frame, we proceed by induction on k. The basic case is covered by Proposition 12 and the induction step is covered by Proposition 13. For every $k>0$ and every $l>0$, let $\mathcal{G}_{k, l}$ denote the frame shown in Figure 4 (note that $\mathcal{G}_{k}=\mathcal{G}_{k, 2^{k+3}-1}$).

Figure 4: The frame $\mathcal{G}_{k, l}$.

Proposition 12. For every $l>0$, the frame $\mathcal{G}_{2, l}$ is a p-morphic image of some \mathcal{F}_{n}. Moreover, there is a p-morphism f from \mathcal{F}_{n} onto $\mathcal{G}_{2, l}$ such that
$f^{-1}\{(3, i) \mid i \leq l\}$ is the set of all immediate successors of $\left(w_{0}, \ldots, w_{0}\right)$.
Proof. Fix $l>0$ and an arbitrary n so that $2 n \geq l+1$ and $n>3$. We show that there is a p-morphism f from \mathcal{F}_{n} onto $\mathcal{G}_{2, l}$ such that $f^{-1}\{(3, i) \mid i \leq l\}$ is the set of all immediate successors of $\left(w_{0}, \ldots, w_{0}\right)$. Since $2 n \geq l+1$, there is a map g from the set of immediate successors of $\left(w_{0}, \ldots, w_{0}\right)$ onto $\{(3, i) \mid i \leq l\}$.

Define f by

$$
f(x)= \begin{cases}r & \text { if } x=\left(w_{0}, \ldots, w_{0}\right) \\ g(x) & \text { if } x \text { is an immediate successor of }\left(w_{0}, \ldots, w_{0}\right) \\ (2,0) & \text { if } N_{0}(x)=n-2, x(i)=w_{1}, x(j)=w_{2} \text { and } i+j \text { is even } \\ (2,1) & \text { if } N_{0}(x)=n-2, x(i)=w_{1}, x(j)=w_{2} \text { and } i+j \text { is odd } \\ (1,0) & \text { if } x \text { is not maximal, } N_{1}(x)>1 \text { and } N_{2}(x) \leq 1 \\ (1,1) & \text { if } x \text { is not maximal, } N_{2}(x)>1 \text { and } N_{1}(x) \leq 1 \\ (0,0) & \text { if } x \text { is maximal and either } N_{1}(x)=1 \text { or } N_{2}(x)=1 \\ (0,1) & \text { otherwise. }\end{cases}
$$

Observe that if $N_{0}(x)=2$ then $f(x)$ belongs to $\{(2,0),(2,1),(1,0)(1,1)\}$. Indeed, if there are components $x(i)$ and $x(j)$ such that $\{x(i), x(j)\}=$ $\left\{w_{1}, w_{2}\right\}$, then $f(x)$ is either $(2,0)$ or $(2,1)$. Otherwise it is not hard to see that $f(x)$ is either $(1,0)$ or $(1,1)$.

Obviously, f is a well-defined onto map such that $f^{-1}\{(3, i) \mid i \leq l\}$ is the set of all immediate successors of $\left(w_{0}, \ldots, w_{0}\right)$. We show that f is a p-morphism; that is, if $f(x) \leq u$, then there is a y such that $x \leq y$ and $f(y)=u$ and if $x \leq y$, then $f(x) \leq f(y)$. First, we verify the former condition.

For $x \in \mathcal{F}_{n}$ and $u \in \mathcal{G}_{2, l}$, let $f(x) \leq u$. Then we need to find a $y \in \mathcal{F}_{n}$ such that $x \leq y$ and $f(y)=u$. If $f(x)=u$, then take y as x. So from now on we assume that $f(x)<u$. Since $\mathcal{G}_{2, l}$ is finite, there are $k \in \mathbb{N}$ and $u_{0}, \ldots, u_{k} \in \mathcal{G}_{2, l}$ such that $f(x) \leq u_{0} \leq \cdots \leq u_{k}=u, u_{0}$ is an immediate successor of $f(x)$ and each u_{i+1} is an immediate successor of u_{i}. We show the existence of y by induction on k. If $k=0, u$ is an immediate successor of $f(x)$ and there are nine cases possible.

1. $x=\left(w_{0}, \ldots, w_{0}\right)$. Take any y such that $f(y)=u$.
2. x is an immediate successor of $\left(w_{0}, \ldots, w_{0}\right)$ and $u=(2,0)$. Without loss of generality we may assume that $x\left(i_{0}\right)=w_{1}$. Since $n>3$, there is an index $i_{1} \neq i_{0}$ such that $i_{0}+i_{1}$ is even. Then take y such that $y\left(i_{1}\right)=w_{2}$ and $y(i)=x(i)$ for all $i \neq i_{1}$.
3. x is an immediate successor of $\left(w_{0}, \ldots, w_{0}\right)$ and $u=(2,1)$. Then the argument is similar to case (2).
4. $N_{0}(x)=n-2, x(i)=w_{1}, x(j)=w_{2}$ and $u=(1,0)$. Since $n>3$, there is an index i_{0} such that $x\left(i_{0}\right)=w_{0}$. Then take y such that $y\left(i_{0}\right)=w_{1}$ and $y(i)=x(i)$ for all $i \neq i_{0}$.
5. $N_{0}(x)=n-2, x(i)=w_{1}, x(j)=w_{2}$ and $u=(1,1)$. Then the argument is similar to case (4).
6. $N_{1}(x)>1, N_{2}(x) \leq 1$ and $u=(0,0)$. If $N_{2}(x)=1$, there exists an index i_{0} such that $x\left(i_{0}\right)=w_{2}$. Then take y such that $y\left(i_{0}\right)=w_{2}$ and $y(i)=w_{1}$, for all $i \neq i_{0}$. If $N_{2}(x)=0$, fix an index i_{0} such that $x\left(i_{0}\right)=w_{0}$ and take y such that $y\left(i_{0}\right)=w_{2}$ and $y(i)=w_{1}$ for all $i \neq i_{0}$.
7. $N_{2}(x)>1, N_{1}(x) \leq 1$ and $u=(0,0)$. Then the argument is similar to case (6).
8. $N_{1}(x)>1, N_{2}(x) \leq 1$ and $u=(0,1)$. If $N_{2}(x)=0$, then define y as $\left(w_{1}, \ldots, w_{1}\right)$. If $N_{2}(x)=1$, then there exists an index i_{0} such that $x\left(i_{0}\right)=w_{0}$. Take y such that $y\left(i_{0}\right)=w_{2}$ and $y(i)=x(i)$ for all $i \neq i_{0}$.
9. $N_{2}(x)>1, N_{1}(x) \leq 1$ and $u=(0,1)$. Then the argument is similar to case (8).

Next suppose that $k=k^{\prime}+1$. By the induction hypothesis, there is a y^{\prime} such that $x \leq y^{\prime}$ and $f\left(y^{\prime}\right)=u_{k^{\prime}}$. Recall that $u=u_{k^{\prime}+1}$ is an immediate successor of $u_{k^{\prime}}=f\left(y^{\prime}\right)$. In the same way as we showed above, we can prove that there is a y such that $y^{\prime} \leq y$ and $f(y)=u$. Therefore, we obtain that $x \leq y^{\prime} \leq y$ and $f(y)=u$.

Finally we verify that if $x \leq y$, then $f(x) \leq f(y)$. Suppose $x, y \in \mathcal{F}_{n}$ are two distinct points such that $x \leq y$. We show that $f(x) \leq f(y)$. There are six cases possible.

1. $x=\left(w_{0}, \ldots, w_{0}\right)$. Then $f(x)=r$ and $r \leq f(y)$.
2. x is an immediate successor of $\left(w_{0}, \ldots, w_{0}\right)$. By the definition of f, $f(x)$ is equal to some $(3, i)$. Since y is not an immediate successor of $\left(w_{0}, \ldots, w_{0}\right), f(y)$ is also not an immediate successor of r. Hence, $f(x) \leq f(y)$.
3. $N_{0}(x)=n-2, x(i)=w_{1}$ and $x(j)=w_{2}$. By the definition of f $f(x)$ is either $(2,0)$ or $(2,1)$. Since $x \leq y$, we can deduce that either $N_{1}(y)>1$ or $N_{2}(y)>1$. In both cases this implies that $f(y)$ belongs to $\{(1,0),(1,1),(0,0),(0,1)\}$. So $f(x) \leq f(y)$.
4. x is not maximal, $N_{1}(x)>1$ and $N_{2}(x) \leq 1$. From the definition of f it follows that $f(x)=(1,0)$. Moreover, since $x \leq y$, we also have that $N_{1}(y)>1$. So $f(y)$ belongs to $\{(1,0),(0,0),(0,1)\}$. In any case, $f(x) \leq f(y)$.
5. x is not maximal, $N_{2}(x)>1$ and $N_{1}(x) \leq 1$. Then the argument is similar to case (4).
6. $N_{1}(x)>1$ and $N_{2}(x)>1$. By the definition of f, we have that $f(x)=(0,1)$. Moreover, $x \leq y$ implies $N_{1}(y)>1$ and $N_{2}(y)>1$. So $f(y)$ is also equal to $(0,1)$.

Proposition 13. For every $k>1$, for every $l>0$, the frame $\mathcal{G}_{k, l}$ is a pmorphic image of some \mathcal{F}_{n}, where $n>2$. Moreover, there is a p-morphism f from \mathcal{F}_{n} onto $\mathcal{G}_{k, l}$ such that $f^{-1}\{(k+1, i) \mid i \leq l\}$ is the set of all immediate successors of $\left(w_{0}, \ldots, w_{0}\right)$.

Proof. The proof is by induction on k. If $k=2$, apply Proposition 12. Suppose $k=k^{\prime}+1$ and there is a p-morphism f from \mathcal{F}_{n} onto $\mathcal{G}_{k^{\prime}, l}$ such that $f^{-1}\left\{\left(k^{\prime}+1, i\right) \mid i \leq l\right\}$ is the set of all immediate successors of $\left(w_{0}, \ldots, w_{0}\right)$.

If $x \in \mathcal{F}_{n+1}, x^{-}=(x(0), \ldots, x(n-1))$ and $j \in\{1,2\}$, define $g(x)$ by

$$
g(x)= \begin{cases}\left(k^{\prime}+2,0\right) & \text { if } x=\left(w_{0}, \ldots, w_{0}, w_{j}\right) \\ \left(k^{\prime}+2, i\right) & \text { if } x \neq\left(w_{0}, \ldots, w_{0}, w_{j}\right), N_{0}(x)=n \text { and } \\ & f\left(x^{-}\right)=\left(k^{\prime}+1, i\right) \\ \left(k^{\prime}+1,0\right) & \text { if } N_{0}(x)=n-1, N_{0}\left(x^{-}\right)=n-1 \text { and } \delta\left(x^{-}\right)=x(n) \\ \left(k^{\prime}+1,1\right) & \text { if } N_{0}(x)=n-1, N_{0}\left(x^{-}\right)=n-1 \text { and } \delta\left(x^{-}\right) \neq x(n) \\ f\left(x^{-}\right) & \text {if } N_{0}\left(x^{-}\right)<n-1 .\end{cases}
$$

Intuitively, the frame $\mathcal{G}_{k^{\prime}+1, l}$ is obtained from the frame $\mathcal{G}_{k^{\prime}, l}$ by adding two points between the points of depth $k^{\prime}+1$ and the points of depth $k^{\prime}+2$. In general, if $x=\left(x^{-}, w\right)$ belongs to \mathcal{F}_{n+1}, we map x on the same point on which x^{-}was mapped before. The only exceptions are when $w \neq w_{0}$ and x^{-}is either $\left(w_{0}, \ldots, w_{0}\right)$ or an immediate successor of $\left(w_{0}, \ldots, w_{0}\right)$. In the case x^{-}is equal to $\left(w_{0}, \ldots, w_{0}\right)$ and w is either w_{1} or w_{2}, we map x to an immediate successor of r, namely $\left(k^{\prime}+2,0\right)$. In the case x^{-}is an immediate successor of $\left(w_{0}, \ldots, w_{0}\right)$ and w is either w_{1} or w_{2}, we map x to one of the two added points.

Obviously $g: \mathcal{F}_{n+1} \rightarrow \mathcal{G}_{k^{\prime}+1, l}$ is a well-defined onto map such that $g^{-1}\{(k+1, i) \mid i \leq l\}$ is the set of all immediate successors of $\left(w_{0}, \ldots, w_{0}\right)$. We check that g is a p-morphism. For $x \in \mathcal{F}_{n+1}$ and $u \in \mathcal{G}_{k, l}$, let $g(x) \leq u$. Then we need to find a $y \in \mathcal{F}_{n+1}$ such that $x \leq y$ and $g(y)=u$. As in the previous proof we may assume that u is an immediate successor of $g(x)$. There are five cases possible.

1. $g(x)=r$ and $u=\left(k^{\prime}+2, i\right)$. By the definition of g, we have that $x=\left(w_{0}, \ldots, w_{0}\right)$. Moreover, by the induction hypothesis, there is a s such that $N_{0}(s)=1$ and $f(s)=\left(k^{\prime}+1, i\right)$. Then put $y=\left(s, w_{0}\right)$.
2. $g(x)=\left(k^{\prime}+2, i\right)$ and $u=\left(k^{\prime}+1,0\right)$. If $g(x)=\left(k^{\prime}+2, i\right)$, then either $x=\left(w_{0}, \ldots, w_{0}, w_{j}\right)($ where $1 \leq j \leq 2)$ or $x=\left(x^{-}, w_{0}\right)$ and $N_{0}(x)=n$. If $x=\left(x^{-}, w_{0}\right)$ and $N_{0}(x)=n$, put $y=\left(x^{-}, \delta\left(x^{-}\right)\right)$. If $x=\left(w_{0}, \ldots, w_{0}, w_{j}\right)$ and j belongs to $\{1,2\}$, then define y as $\left(w_{j}, w_{0}, \ldots, w_{0}, w_{j}\right)$.
3. $g(x)=\left(k^{\prime}+2, i\right)$ and $u=\left(k^{\prime}+1,1\right)$. Then the argument is similar to case (2).
4. $g(x)=\left(k^{\prime}+1, i\right)$ and $u=\left(k^{\prime}, i^{\prime}\right)$. Then by definition of g, we get that $x=\left(x^{-}, w_{j}\right)$, where $N_{0}\left(x^{-}\right)=n-1$ and j belongs to $\{1,2\}$. Recall that by assumption on $f, f\left(x^{-}\right)$is equal to some $\left(k^{\prime}+1, i^{\prime \prime}\right)$. Since f is a p-morphism and $f\left(x^{-}\right)$is below u, there is some s such that $x^{-} \leq s$ and $f(s)=u$. We show that $N_{0}(s)$ is less than $n-1$. Since $f\left(x^{-}\right)=\left(k+1, i^{\prime \prime}\right)$ and $f(s)=\left(k^{\prime}, i^{\prime}\right)$ are distinct, we have $x^{-} \neq s$. Putting that together with the fact that x^{-}sees s, we obtain that $x^{-}<s$. Thus $N_{0}(s)$ is less than $N_{0}\left(x^{-}\right)$. As $N_{0}\left(x^{-}\right)=n-1$, this implies that $N_{0}(s)$ is less than $n-1$. Define y by $\left(s, w_{j}\right)$. Clearly, $x=\left(x^{-}, w_{j}\right)$ is below $y=\left(s, w_{j}\right)$. Since $N_{0}(s)$ is less than $n-1$, we have that $g(y)=f(s)$, that is, $g(y)=u$.
5. $g(x)=\left(i_{1}, i_{2}\right)$ and $u=\left(i_{1}-1, i_{2}^{\prime}\right)$, where $1 \leq i_{1} \leq k^{\prime}$. By the definition of g, we have that $x=\left(x^{-}, w_{j}\right)$, where $N_{0}\left(x^{-}\right)<n-1$ and $f\left(x^{-}\right)=g(x)$. Since f is a p-morphism and $f\left(x^{-}\right)$is below u, there is some s such that $x^{-} \leq s$ and $f(s)=u$. We show that $N_{0}(s)$ is less than $n-1$. Since x^{-}is related to $s, N_{0}(s)$ is less than or equal to $N_{0}(x)$. As $N_{0}(x)$ is less than $n-1$, so does $N_{0}(s)$. We put $y=\left(s, w_{j}\right)$. It is not hard to check that x is below y and $g(y)=f(s)$, that is, $g(y)=u$.

Next suppose that $x, y \in \mathcal{F}_{n+1}$ are two distinct points such that $x \leq y$. We show that $g(x) \leq g(y)$. Let x^{-}, y^{-}, j and j^{\prime} be such that $x=\left(x^{-}, w_{j}\right)$ and $y=\left(y^{-}, w_{j^{\prime}}\right)$. There are four cases possible.

1. $x=\left(w_{0}, \ldots, w_{0}\right)$. Then $g(x)=r$ and $g(x)$ is below $g(y)$.
2. x is an immediate successor of $\left(w_{0}, \ldots, w_{0}\right)$, that is, $N_{0}(x)=n$. As observed before, $g^{-1}\left\{\left(k^{\prime}+2, i\right) \mid i \leq l\right\}$ is the set of all immediate successors of $\left(w_{0}, \ldots, w_{0}\right)$. Thus, $g(x)$ is equal to $\left(k^{\prime}+2, i_{0}\right)$ for some i_{0}. Since y is not the root, $g(y)$ is not equal to r. Moreover, as y is not an immediate successor of $\left(w_{0}, \ldots, w_{0}\right), g(y)$ does not belong to $\left\{\left(k^{\prime}+2, i\right) \mid i \leq l\right\}$. Putting everything together, we obtain that $g(y)=\left(i_{1}, i_{2}\right)$, where $i_{1} \leq k^{\prime}+1$ and $i_{2} \leq 1$. Hence, $g(x)=\left(k^{\prime}+2, i_{0}\right)$ is below $g(y)=\left(i_{1}, i_{2}\right)$.
3. $N_{0}\left(x^{-}\right)=n-1$ and $x=\left(x^{-}, w_{j}\right)$, where $1 \leq j \leq 2$. By the definition of $g, g(x)$ is either $\left(k^{\prime}+1,0\right)$ or $\left(k^{\prime}+1,1\right)$. We show that that $N_{0}\left(y^{-}\right)$is less than $n-1$. Since y is above $x, y(n)$ is above $x(n)$. As $x(n)$ is either w_{1} or w_{2}, this can only happen in case $y(n)=x(n)$. Since $x \neq y$ and $x(n)=y(n), x^{-}$and y^{-}are distinct. Putting that together with the fact that x is below y, we obtain that $x^{-}<y^{-}$. It follows that $N_{0}\left(y^{-}\right)$ is less than $N_{0}\left(x^{-}\right)$. As $N_{0}\left(x^{-}\right)=n-1$, this implies that $N_{0}(s)$ is less than $n-1$. Thus $g(y)$ is equal to $f\left(y^{-}\right)$. As y^{-}is neither the root nor an immediate successor of $\left(w_{0}, \ldots, w_{0}\right)$, we can deduce that $f\left(y^{-}\right)$is equal to some (i_{1}, i_{2}), where $i_{1} \leq k^{\prime}$ (recall that $f^{-1}\left\{\left(k^{\prime}+1, i\right) \mid i \leq l\right\}$ is the set of all immediate successors of $\left.\left(w_{0}, \ldots, w_{0}\right)\right)$. It follows that $g(x)=\left(k^{\prime}+1, i\right)$ is below $g(y)=\left(i_{1}, i_{2}\right)$.
4. $N_{0}\left(x^{-}\right)<n-1$. By the definition of $g, g(x)$ is equal to $f\left(x^{-}\right)$. Also since x^{-}is below $y^{-}, N_{0}\left(y^{-}\right)$is less than or equal to $N_{0}\left(x^{-}\right)$. As $N_{0}\left(x^{-}\right)$is less than $n-1$, so does $N_{0}\left(y^{-}\right)$. Thus, $g(y)=f\left(y^{-}\right)$. Using the fact that f is a p-morphism, we obtain that $g(x)=f\left(x^{-}\right)$is below $g(y)=f\left(y^{-}\right)$.

Corollary 14. For each $k>1$, the frame \mathcal{G}_{k} is a p-morphic image of some \mathcal{F}_{n}. Thus, for each $k>1, \mathcal{G}_{k}$ is a Cheq-frame.

Proof. The result follows from Proposition 13.

5 Cheq is not axiomatizable with four variables

It is still an open problem whether Cheq is finitely axiomatizable. At the moment, by adapting the method used by Maksimova et al., we can only prove that Cheq is not axiomatizable with four variables.

The idea is the following. We define frames \mathcal{H}_{k} and \mathcal{H}_{k}^{i} (for each $k>0$ and each $i \leq k$). Next we prove that none of the \mathcal{H}_{k} 's is a Cheq-frame, whereas \mathcal{H}_{4}^{i} is a Cheq-frame (for any $i \leq 4$). Finally we show that for any set of formulas $\Gamma\left(p_{1}, \ldots, p_{k}\right)$, there is some i such that Γ is valid in \mathcal{H}_{k} if and only if Γ is valid in \mathcal{H}_{k}^{i}.

From these results we can deduce that Cheq is not axiomatizable with four variables. Suppose for contradiction that there exists a set of formulas $\Gamma\left(p_{1} \ldots, p_{4}\right)$ axiomatizing Cheq. Thus, there exists an $i \leq 4$ such that Γ is valid in \mathcal{H}_{4} iff Γ is valid in \mathcal{H}_{4}^{i}. Since \mathcal{G}_{4}^{i} is a Cheq-frame, Γ is valid in \mathcal{H}_{4}^{i}. Therefore, Γ is valid in \mathcal{H}_{4}. This contradicts the fact that \mathcal{H}_{4} is not a Cheq-frame.

For each natural number $k \neq 0$ and each $i \leq k$, let \mathcal{H}_{k} and \mathcal{H}_{k}^{i} be the frames shown in Figure 5 and 6, respectively.

Figure 5: The frame \mathcal{H}_{k}.

Proposition 15. For every $k \geq 1$, the frame \mathcal{H}_{k} is not a Cheq-frame.
Proof. In the preliminary section, we observed that $\left\{\mathcal{F}_{n} \mid n>0\right\}$ is closed under rooted generated subframes. So by Corollary $2, \mathcal{H}_{k}$ is a Cheq-frame iff \mathcal{H}_{k} is a p-morphic image of some \mathcal{F}_{n}. Suppose that \mathcal{H}_{k} is a Cheqframe, that is, is a p-morphic image of some \mathcal{F}_{n}. In order to arrive at a contradiction, we prove the following claim.

Claim 16. Let \mathcal{F} be a finite frame and let f be a p-morphism from \mathcal{F}_{n} onto \mathcal{F}. Suppose that every point in \mathcal{F} of depth two has branching degree two and that every point in \mathcal{F} of depth greater than two has branching degree greater than or equal to three. Then for every u in \mathcal{F}, the branching degree of u is less than or equal to $2\left(3^{d(u)-1}\right)$.

Proof. Let \mathcal{F} be as in the statement of the claim. First we show that for every u in \mathcal{F}, there is some x in \mathcal{F}_{n} such that $f(x)=u$ and $d(x)$ is less than or equal to $3^{d(u)-1}+1$. Recall that $d(x)=N_{0}(x)+1$.

This is done by induction on the depth of u. Suppose first that u is a maximal point. Since f is surjective, there is some x^{\prime} in \mathcal{F}_{n} such that $f\left(x^{\prime}\right)=u$. Define x as a maximal point in \mathcal{F}_{n} such that $x^{\prime} \leq x$. Then $f(x)$ is above $f\left(x^{\prime}\right)=u$. As u is maximal, this implies that $f(x)=u$. Moreover, since x is maximal, $d(x)=1$ and in particular, $d(x)$ is less than or equal to $3^{d(u)-1}+1=3^{0}+1$.

Suppose next that u is a point of depth two. Let $x^{\prime} \in \mathcal{F}_{n}$ be such that $f\left(x^{\prime}\right)=u$ and let u_{1} and u_{2} be the two immediate successors of u. We prove that there are $x_{1}, x_{2} \in \mathcal{F}_{n}$ such that $x^{\prime} \leq x_{i}, f\left(x_{i}\right)=u_{i}$ and x_{1}, x_{2} are two

Figure 6: The frame \mathcal{H}_{k}^{i}.
maximal points that do not agree on exactly one component (recall that x and y do not agree on the i th component if $x(i) \neq y(i))$.

Let $x_{1}^{\prime}, x_{2}^{\prime}$ be such that $x^{\prime} \leq x_{i}^{\prime}$ and $f\left(x_{i}^{\prime}\right)=u_{i}$. Define $x_{i}^{\prime \prime}$ as a maximal point in \mathcal{F}_{n} such that $x_{i}^{\prime} \leq x_{i}^{\prime \prime}$. Then $f\left(x_{i}^{\prime \prime}\right)$ is above $f\left(x_{i}^{\prime}\right)=u_{i}$. Since u_{i} is maximal, this can only happen if $f\left(x_{i}^{\prime \prime}\right)=u_{i}$. Thus, $x_{1}^{\prime \prime}$ and $x_{2}^{\prime \prime}$ are two maximal points in \mathcal{F}_{n} such that $x^{\prime} \leq x_{i}^{\prime \prime}$ and $f\left(x_{i}^{\prime \prime}\right)=u_{i}$.

For all $j \leq n$, define y_{j} by $\left(x_{1}^{\prime \prime}(0), \ldots, x_{1}^{\prime \prime}(j-1), x_{2}^{\prime \prime}(j), \ldots, x_{2}^{\prime \prime}(n-1)\right)$. As $x_{1}^{\prime \prime}, x_{2}^{\prime \prime}$ are maximal points above x^{\prime}, so are the y_{j} 's. Hence, $f\left(y_{j}\right)$ is a maximal point above $f\left(x^{\prime}\right)=u$; that is, $f\left(y_{j}\right)$ is either u_{1} or u_{2}. Next observe that $y_{0}=x_{2}^{\prime \prime}$ and $y_{n}=x_{1}^{\prime \prime}$. Thus, $f\left(y_{0}\right)=u_{2}$ and $f\left(y_{n}\right)=u_{1}$. Putting everything together, we obtain that $\left\{f\left(y_{j}\right) \mid j \leq n\right\}=\left\{u_{1}, u_{2}\right\}$. Therefore there exists some $j_{0}<n$ such that $\left\{f\left(y_{j_{0}}\right), f\left(y_{j_{0}+1}\right)\right\}=\left\{u_{1}, u_{2}\right\}$. Remark finally that for all $j<n, y_{j}$ and y_{j+1} do not agree on at most one component. So $y_{j_{0}}$ and $y_{j_{0}+1}$ are two maximal points above x^{\prime}, they do not agree on exactly one component and $\left\{f\left(y_{j_{0}}\right), f\left(y_{j_{0}+1}\right)\right\}=\left\{u_{1}, u_{2}\right\}$. This completes the proof that there are $x_{1}, x_{2} \in \mathcal{F}_{n}$ such that $x^{\prime} \leq x_{i}, f\left(x_{i}\right)=u_{i}$ and x_{1}, x_{2} are two maximal points that do not agree on exactly one component.

Without loss of generality we may assume that $x_{1}=\left(w_{1}, x_{1}(1), \ldots, x_{1}(n-\right.$ $1)$) and $x_{2}=\left(w_{2}, x_{1}(1), \ldots, x_{1}(n-1)\right)$. Define x by $\left(w_{0}, x_{1}(1), \ldots, x_{1}(n-1)\right)$. Since x_{1} is maximal, $N_{0}(x)$ is equal to 1 . Next we prove that $x^{\prime} \leq x$. Clearly for all $j>0, x^{\prime}(j) \leq x_{1}(j)=x(j)$. To prove that x^{\prime} is below x, it is then sufficient to show that $x^{\prime}(0) \leq x(0)$; that is, $x^{\prime}(0) \leq w_{0}$. Since $x^{\prime} \leq x_{1}$, we get that $x^{\prime}(0) \leq x_{1}(0)=w_{1}$. Using the fact that $x^{\prime} \leq x_{2}$, we can also show that $x^{\prime}(0) \leq w_{2}$. But this can only happen if $x^{\prime}(0)=w_{0}$.

So x^{\prime} is below x. Also it is immediate that $x \leq x_{1}$ and $x \leq x_{2}$. Hence, from the fact that f is a p-morphism, we can deduce that $u=f\left(x^{\prime}\right) \leq f(x)$,
$f(x) \leq f\left(x_{1}\right)=u_{1}$ and $f(x) \leq f\left(x_{2}\right)=u_{2}$. As u_{1} and u_{2} are two distinct immediate successors of u, this implies that $f(x)$ is equal to u. Thus, we found a point x in \mathcal{F}_{n} such that $x^{\prime} \leq x, f(x)=u$ and $N_{0}(x)=1$. Notice that $d(x)\left(=N_{0}(x)+1\right)$ is equal to 2 and in particular, $d(x)$ is less than or equal to $3^{d(u)-1}+1=3^{1}+1$.

For the induction step, suppose that u is a point of depth $k+1$ (where $k>1$). Let u_{1}, u_{2} and u_{3} be three distinct successors of u and let $x \in \mathcal{F}_{n}$ be such that $f(x)=u$. By taking a maximal such x, we can assume that there is no y such that $x<y$ and $f(y)=u$. Obviously f is a p-morphism from the subframe of \mathcal{F}_{n} generated by x onto the subframe of \mathcal{F} generated by u. Recall that $\left\{\mathcal{F}_{n} \mid n \in \mathbb{N}\right\}$ is closed under rooted generated subframes. In particular, the subframe of \mathcal{F}_{n} generated by x is isomorphic to some \mathcal{F}_{l}.

So $\langle x \uparrow, \leq\rangle$ is isomorphic to some \mathcal{F}_{l} and there is a p-morphism from $\langle x \uparrow, \leq\rangle$ onto the subframe of \mathcal{F} generated by u. By induction hypothesis there are x_{1}, x_{2} and x_{3} in $x \uparrow$ such that $f\left(x_{i}\right)=u_{i}$ and $d\left(x_{i}\right)$ is less than or equal to $3^{d\left(u_{i}\right)-1}+1=3^{k-1}+1$.

It remains to show that $d(x)$ is less than or equal to $3^{k}+1$, which is equivalent to prove that $N_{0}(x)$ is less than or equal to 3^{k}. Suppose for contradiction that $l=N_{0}(x)$ is greater than $3 k$. To make our notation easier, we will assume that x coincides with the n-tuple $\left(w_{0}, \ldots, w_{0}, x(l), \ldots, x(n-\right.$ 1)) (where $x(i)$ belongs to $\left\{w_{1}, w_{2}\right\}$ for $i \geq l$).

Recall that $N_{0}\left(x_{i}\right)=d\left(x_{i}\right)+1$ is less than or equal to 3^{k-1}. Hence $N_{0}\left(x_{1}\right)+N_{0}\left(x_{2}\right)+N_{0}\left(x_{3}\right)$ is less than or equal to 3^{k} and, in particular, is smaller than l. Next remark that the set $I=\left\{j \mid \exists 1 \leq i \leq 3, x_{i}(j)=w_{0}\right\}$ has at most $N_{0}\left(x_{1}\right)+N_{0}\left(x_{2}\right)+N_{0}\left(x_{3}\right)$ elements. Thus, its cardinality is less than l and there exists some j in $\{0, \ldots, l-1\}$ such that j does not belong to I. In other words, there is an index $j<l$ such that $x_{i}(j) \neq w_{0}$, for every $i \in\{1,2,3\}$. Since $\left\{x_{1}(j), x_{2}(j), x_{3}(j)\right\}=\left\{w_{1}, w_{2}\right\}$, there exist distinct $i_{1}, i_{2} \in\{1,2,3\}$ such that $x_{i_{1}}(j)=x_{i_{2}}(j)$. Without loss of generality, we may even assume that $j=0, i_{1}=1, i_{2}=2$ and $x_{1}(0)=w_{1}=x_{2}(0)$.

Consider now the n-tuple $y=\left(w_{1}, w_{0}, \ldots, w_{0}, x(l), \ldots, x(n-1)\right)$. We show that $x \leq y, y \leq x_{1}$ and $y \leq x_{2}$. Obviously, x is below y. Next for any $j>0$, we have that $y(j)=x(j) \leq x_{1}(j)$. Remark also that $y(0)=x_{1}(0)$. Putting everything together, we obtain that $y \leq x_{1}$. In a similar way, one can show that y is below x_{2}.

As f is p-morphism, it follows that $u=f(x) \leq f(y), f(y) \leq f\left(x_{1}\right)=u_{1}$ and $f(y) \leq f\left(x_{2}\right)=u_{2}$. Since u_{1} and u_{2} are immediate successors of u, this can only happen in case $f(y)$ is equal to u. Putting everything together, we obtain that $x<y$ and $f(y)=u$. But we defined x so that there is no $y>x$ that satisfies $f(y)=u$. We arrived at the desired contradiction.

It remains to deduce that the branching degree of any $u \in \mathcal{F}$ is less than or equal to $2\left(3^{d(u)-1}\right)$. Fix u in \mathcal{F}. We previously showed that there is a point x in \mathcal{F}_{n} such that $f(x)=u$ and $N_{0}(x) \leq 3^{d(u)-1}$. By taking a maximal x such that $f(x)=u$, we can also assume that there is no $y>x$
such that $f(y)=u$. It is not difficult to see that the branching degree of x is equal to $2\left(N_{0}(x)\right)$. Thus, the branching degree of x is less than or equal to $2\left(3^{d(u)-1}\right)$.

To prove that the branching degree of u is below $2\left(3^{d(u)-1}\right)$, it is then enough to show that the branching degree of u is less than or equal to the branching degree of x. Suppose that u^{\prime} is an immediate successor of u. Then there is some x^{\prime} in \mathcal{F}_{n} such that $x \leq x^{\prime}$ and $f\left(x^{\prime}\right)=u^{\prime}$. Let $x^{\prime \prime}$ be an immediate successor of x such that $x^{\prime \prime} \leq x^{\prime}$. Clearly, $f\left(x^{\prime \prime}\right)$ is above $f(x)=u$ and below $f\left(x^{\prime}\right)=u^{\prime}$. Thus either $f\left(x^{\prime \prime}\right)=u$ or $f\left(x^{\prime \prime}\right)=u^{\prime}$. Since there is no $y>x$ such that $f(y)=u, f\left(x^{\prime \prime}\right)$ is equal to u^{\prime}. Therefore, with any immediate successor u^{\prime} of u, we can associate an immediate successor $x^{\prime \prime}$ of x. It immediately follows that the branching degree of u is less than or equal to the branching degree of x and this finishes the proof.

It follows from Claim 16 that the branching degree of $x \in \mathcal{H}_{k}$ is less than or equal to $2\left(3^{d(x)-1}\right)$. This contradicts the fact that r has depth $k+3$ and branching degree $2\left(3^{k+2}\right)+1$.

Proposition 17. For any $i \leq 4, \mathcal{H}_{4}^{i}$ is a Cheq-frame.
Proof. As in the case of Medvedev's logic, this is done in three steps. First we show in Claim 18 that a frame with a unique maximal point is a p morphic image of some \mathcal{F}_{n}. Next we prove that the subframe of \mathcal{H}_{4}^{i} based on $(i, 0) \uparrow$ is a p-morphic image of some \mathcal{F}_{n}. Finally we put these two results together to show that \mathcal{H}_{4}^{i} is a p-morphic image of some \mathcal{F}_{n}.
Claim 18. If \mathcal{F} has a unique maximal point, then \mathcal{F} is a p-morphic image of some \mathcal{F}_{n}.

Proof. Suppose \mathcal{F} has a greatest element. By Claim $9, \mathcal{F}$ is a p-morphic image of a Medvedev frame. Recall that any Medvedev frame is a p-morphic image of some \mathcal{F}_{n} (see for instance [11]). Hence, \mathcal{F} is a p-morphic image of some \mathcal{F}_{n}.

Figure 7: The frame \mathcal{H}_{i}^{\prime}.

For each natural number $i>0$, let \mathcal{H}_{i}^{\prime} be the frame shown in Figure 7 . We show that \mathcal{H}_{4}^{\prime} is a Cheq-frame. In the proof, we will use the following definition. If X and Y are subsets of a frame \mathcal{F}, then $\left\{X_{0}, \ldots, X_{n-1}\right\}$ is a full n-partition of X with respect to Y if $\left\{X_{0}, \ldots, X_{n-1}\right\}$ is a partition of X and for all $0 \leq i<n$ and all $y \in Y$, there is some x_{i} in X_{i} such that $y \leq x_{i}$.

Claim 19. \mathcal{H}_{4}^{\prime} is a p-morphic image of \mathcal{F}_{4}.
Proof. For any $i \leq 4$, let D_{i} be the set of points of depth $i+1$ in \mathcal{F}_{4}. First we show that there is a full 2 -partition of D_{0} with respect to D_{1} and that for any $i \in\{1,2,3\}$, there is a full 3-partition of D_{i} with respect to D_{i+1}.

We begin by proving that there is a full 2-partition of D_{0} with respect to D_{1}. Define $D_{0,0}$ and $D_{0,1}$ by

$$
\begin{aligned}
D_{0,0} & =\left\{x \in D_{0} \mid N_{1}(x) \text { is even }\right\} \\
D_{0,1} & =\left\{x \in D_{0} \mid N_{1}(x) \text { is odd }\right\}
\end{aligned}
$$

Obviously $\left\{D_{0,0}, D_{0,1}\right\}$ is a partition of D_{0}. So it remains to show that for any $x \in D_{1}$ and any $i \in\{0,1\}$, there is some x_{i} in $D_{0, i}$ such that $x \leq x_{i}$. Let x be a point in D_{1}, that is, $N_{0}(x)=1$. Without loss of generality we may assume that $x=\left(w_{0}, x(1), \ldots, x(3)\right)$. If $N_{1}(x)$ is odd, define x_{1} by $\left(w_{1}, x(1), \ldots, x(3)\right)$ and x_{2} by $\left(w_{2}, x(1), \ldots, x(3)\right)$. If $N_{1}(x)$ is even, put $x_{1}=\left(w_{2}, x(1), \ldots, x(3)\right)$ and $x_{2}=\left(w_{1}, x(1), \ldots, x(3)\right)$. It is easy to check that $x_{i} \in D_{0, i}$ and $x \leq x_{i}$.

Now we prove that there is a full 3 -partition of D_{1} with respect to D_{2}. Note that we did not use any particular method to find this partition. We basically looked at random partitions and checked whether they were full. Define $D_{1,0}, D_{1,1}$ and $D_{1,2}$ by

$$
\begin{aligned}
D_{1,0}= & \left\{\left(w_{0}, w_{1}, w_{1}, w_{1}\right),\left(w_{1}, w_{2}, w_{1}, w_{0}\right),\left(w_{2}, w_{0}, w_{1}, w_{2}\right),\left(w_{0}, w_{2}, w_{2}, w_{2}\right)\right. \\
& \left(w_{2}, w_{2}, w_{0}, w_{2}\right),\left(w_{2}, w_{1}, w_{0}, w_{1}\right),\left(w_{2}, w_{0}, w_{2}, w_{1}\right),\left(w_{1}, w_{1}, w_{2}, w_{0}\right) \\
& \left.\left(w_{1}, w_{2}, w_{0}, w_{1}\right),\left(w_{1}, w_{0}, w_{1}, w_{2}\right),\left(w_{0}, w_{1}, w_{2}, w_{2}\right)\right\} \\
D_{1,1}= & \left\{\left(w_{1}, w_{0}, w_{1}, w_{1}\right),\left(w_{2}, w_{1}, w_{1}, w_{0}\right),\left(w_{0}, w_{2}, w_{1}, w_{2}\right),\left(w_{1}, w_{2}, w_{2}, w_{0}\right)\right. \\
& \left(w_{2}, w_{2}, w_{0}, w_{1}\right),\left(w_{2}, w_{0}, w_{2}, w_{2}\right),\left(w_{0}, w_{1}, w_{2}, w_{1}\right),\left(w_{1}, w_{1}, w_{0}, w_{2}\right) \\
& \left.\left(w_{0}, w_{2}, w_{1}, w_{1}\right),\left(w_{1}, w_{0}, w_{2}, w_{1}\right)\right\} \\
D_{1,2}= & \left\{\left(w_{2}, w_{0}, w_{1}, w_{1}\right),\left(w_{1}, w_{1}, w_{1}, w_{0}\right),\left(w_{2}, w_{2}, w_{1}, w_{0}\right),\left(w_{1}, w_{2}, w_{0}, w_{2}\right)\right. \\
& \left(w_{2}, w_{2}, w_{2}, w_{0}\right),\left(w_{2}, w_{1}, w_{2}, w_{0}\right),\left(w_{1}, w_{1}, w_{0}, w_{1}\right),\left(w_{1}, w_{0}, w_{2}, w_{2}\right) \\
& \left.\left(w_{2}, w_{1}, w_{0}, w_{2}\right),\left(w_{0}, w_{2}, w_{2}, w_{1}\right),\left(w_{0}, w_{1}, w_{1}, w_{2}\right)\right\}
\end{aligned}
$$

Although tedious, it is easy to check that these sets form a full partition of D_{1} with respect to D_{2}.

Next we prove that there is a full 3-partition of D_{2} with respect to D_{3}. Define $D_{2,0}, D_{2,1}$ and $D_{2,2}$ by

$$
\begin{aligned}
D_{2,0}= & \left\{\left(w_{1}, w_{1}, w_{0}, w_{0}\right),\left(w_{2}, w_{0}, w_{1}, w_{0}\right),\left(w_{0}, w_{2}, w_{2}, w_{0}\right),\left(w_{2}, w_{0}, w_{2}, w_{0}\right),\right. \\
& \left.\left(w_{1}, w_{0}, w_{0}, w_{1}\right),\left(w_{1}, w_{0}, w_{0}, w_{2}\right),\left(w_{0}, w_{2}, w_{0}, w_{1}\right),\left(w_{0}, w_{2}, w_{0}, w_{2}\right)\right\}, \\
D_{2,1}= & \left\{\left(w_{1}, w_{0}, w_{1}, w_{0}\right),\left(w_{2}, w_{2}, w_{0}, w_{0}\right),\left(w_{0}, w_{1}, w_{2}, w_{0}\right),\left(w_{0}, w_{2}, w_{1}, w_{0}\right)\right. \\
& \left.\left(w_{2}, w_{0}, w_{0}, w_{1}\right),\left(w_{2}, w_{0}, w_{0}, w_{2}\right),\left(w_{0}, w_{0}, w_{1}, w_{1}\right),\left(w_{0}, w_{0}, w_{1}, w_{2}\right)\right\}, \\
D_{2,2}= & \left\{\left(w_{1}, w_{2}, w_{0}, w_{0}\right),\left(w_{2}, w_{1}, w_{0}, w_{0}\right),\left(w_{0}, w_{1}, w_{1}, w_{0}\right),\left(w_{1}, w_{0}, w_{2}, w_{0}\right)\right. \\
& \left.\left(w_{0}, w_{1}, w_{0}, w_{1}\right),\left(w_{0}, w_{1}, w_{0}, w_{2}\right),\left(w_{0}, w_{0}, w_{2}, w_{1}\right),\left(w_{0}, w_{0}, w_{2}, w_{2}\right)\right\} .
\end{aligned}
$$

It is routine to check that these sets form a full partition of D_{2} with respect to D_{3}.

Finally we show that there is a full 3 -partition of D_{3} with respect to D_{4}. Remark that $D_{4}=\left\{\left(w_{0}, w_{0}, w_{0}, w_{0}\right)\right\}$. Thus any partition $\left\{D_{3,0}, D_{3,1}, D_{3,2}\right\}$ of D_{3} such that $D_{3, i} \neq \emptyset$, is a full partition of D_{3} with respect to D_{4}.

Now we define a map f from \mathcal{F}_{4} to \mathcal{H}_{4}^{\prime} by

$$
f(x)= \begin{cases}r & \text { if } x=\left(w_{0}, \ldots, w_{0}\right) \\ (i, j) & \text { if } x \in D_{i, j} .\end{cases}
$$

We check that f is a well-defined surjective p-morphism. Remark that if $\{i, j\} \neq\left\{i^{\prime}, j^{\prime}\right\}$, then $D_{i, j} \cap D_{i^{\prime}, j^{\prime}}$ is empty. Observe also that the union of the $D_{i, j}$'s is equal to $D_{0} \cup \cdots \cup D_{3}\left(=\mathcal{F}_{4} \backslash\left\{\left(w_{0}, \ldots, w_{0}\right)\right\}\right)$. Thus f is a well-defined total map. It is also easy to see that f is onto since none of the $D_{i, j}$'s is empty.

We show that f is a p-morphism; that is, if $x \leq y$, then $f(x) \leq f(y)$ and if $f(x) \leq u$, then there is a y such that $x \leq y$ and $f(y)=u$. First, we verify the former condition.

Fix x and y such that $x \leq y$. If $x=y$, then $f(x) \leq f(y)$. So from now on we will assume that $x<y$. Thus there exist i, i^{\prime} such that $i<i^{\prime}, x \in D_{i}$ and $y \in D_{i^{\prime}}$. Since x belongs to D_{i}, there is some j such that $f(x)=(i, j)$. Also, since y belongs to $D_{i^{\prime}}$, there is some j^{\prime} such that $f(x)=\left(i^{\prime}, j^{\prime}\right)$. Since $i<i^{\prime}$, we obtain that $f(x)=(i, j)$ is below $f(y)=\left(i^{\prime}, j^{\prime}\right)$.

Now we fix x and u such that $f(x) \leq u$. We have to find a y such that $x \leq y$ and $f(y)=u$. Note that if $f(x)=r$, then $x=\left(w_{0}, \ldots, w_{0}\right)$ and any y that satisfies $f(y)=u$ is such that $x \leq y$. So we may assume that $f(x) \neq r$. Since \mathcal{H}_{4}^{\prime} is finite, there are $k \in \mathbb{N}$ and $u_{0}, \ldots, u_{k} \in \mathcal{H}_{4}^{\prime}$ such that $f(x) \leq u_{0} \leq \cdots \leq u_{k}=u, u_{0}$ is an immediate successor of $f(x)$ and each u_{i+1} is an immediate successor of u_{i}. We show the existence of y by induction on k.

As for the case $k=0, u$ is an immediate successor of $f(x)$. Thus there exist i_{0}, j_{0} and j_{1} such that $f(x)=\left(i_{0}+1, j_{0}\right)$ and $u=\left(i_{0}, j_{1}\right)$. Note that this implies that x belongs to $D_{i_{0}+1}$. Recall that the $D_{i_{0}, j}$'s form a full
partition of $D_{i_{0}}$ with respect to $D_{i_{0}+1}$. Hence there is some y in $D_{i_{0}, j_{1}}$ such that $x \leq y$. So y satisfies $x \leq y$ and $f(y)=\left(i_{0}, j_{1}\right)$, that is $f(y)=u$.

Next suppose that $k=k^{\prime}+1$. By the induction hypothesis, there is a y^{\prime} such that $x \leq y^{\prime}$ and $f\left(y^{\prime}\right)=u_{k^{\prime}}$. Recall that $u=u_{k^{\prime}+1}$ is an immediate successor of $u_{k^{\prime}}=f\left(y^{\prime}\right)$. In the same way as we showed above, we can prove that there is a y such that $y^{\prime} \leq y$ and $f(y)=u$. Therefore, we obtain that $x \leq y^{\prime} \leq y$ and $f(y)=u$.

Before moving to the next claim, we recall the definition of a linear sum and a vertical sum (see, e.g., $[4, \S 1]$). The linear sum of $\mathcal{E}_{1}=\left\langle W_{1}, \leq\right\rangle$ and $\mathcal{E}_{2}=\left\langle W_{2}, \leq\right\rangle$ is the frame $\left\langle W_{1} \uplus W_{2}, \leq\right\rangle$ such that $W_{1} \uplus W_{2}$ is a disjoint union of W_{1} and W_{2} and for every $x, y \in W_{1} \uplus W_{2}$, we have

$$
\begin{array}{lll}
x \leq y \quad \text { iff } & \left(x \in W_{2} \text { and } y \in W_{1}\right) \\
& \text { or }\left(x, y \in W_{1} \text { and } x \leq y\right) \\
& \text { or }\left(x, y \in W_{2} \text { and } x \leq y\right) .
\end{array}
$$

The vertical $\operatorname{sum} \mathcal{E}$ of \mathcal{E}_{1} and \mathcal{E}_{2} is obtained from the linear sum of \mathcal{E}_{1} and \mathcal{E}_{2} by identifying the greatest element of \mathcal{E}_{2} with the least element of \mathcal{E}_{1} (provided they exist).

Figure 8: The vertical sum of \mathcal{E}_{1} and \mathcal{E}_{2}.

Claim 20. Let \mathcal{E}_{1} be a frame with a least element and \mathcal{E}_{2} a frame with a greatest element. Suppose that \mathcal{E}_{1} is a p-morphic image of $\mathcal{F}_{n_{1}}$ and that \mathcal{E}_{2} is a p-morphic image of $\mathcal{F}_{n_{2}}$. Then the vertical sum \mathcal{E} of \mathcal{E}_{1} and \mathcal{E}_{2} is a p-morphic image of some \mathcal{F}_{n}.

Proof. Let f_{1} be a p-morphism from $\mathcal{F}_{n_{1}}$ onto \mathcal{E}_{1} and let f_{2} be a p-morphism from $\mathcal{F}_{n_{2}}$ onto \mathcal{E}_{2}. Now let n be $n_{1}+n_{2}$ and define a map f from \mathcal{F}_{n} onto the vertical sum of \mathcal{F}_{1} and \mathcal{F}_{2}. If $x_{1} \in \mathcal{F}_{n_{1}}, x_{2} \in \mathcal{F}_{n_{2}}$ and $x=\left(x_{2}, x_{1}\right)$, then $f(x)$ is defined by

$$
f(x)= \begin{cases}f_{2}\left(x_{2}\right) & \text { if } x_{1}=\left(w_{0}, \ldots, w_{0}\right) \\ f_{1}\left(x_{1}\right) & \text { otherwise }\end{cases}
$$

We check that f is a surjective p-morphism. First we show that f is onto. Let $u \in \mathcal{E}$. If $u \in \mathcal{E}_{2}$, there is some x_{2} in $\mathcal{F}_{n_{2}}$ such that $f_{2}\left(x_{2}\right)=u$. Define x by $\left(x_{2}, w_{0}, \ldots, w_{0}\right)$. Clearly $f(x)=u$. If u does not belong to \mathcal{E}_{2}, there is some x_{1} in \mathcal{F}_{1} such that $f_{1}\left(x_{1}\right)=u$. We prove that $x_{1} \neq\left(w_{0}, \ldots, w_{0}\right)$. If not, $u=f_{1}\left(w_{0}, \ldots, w_{0}\right)$ is the least point of \mathcal{E}_{1}. In particular, u belongs to \mathcal{E}_{2}, which contradicts our assumption on u. Define x by $\left(w_{0}, \ldots, w_{0}, x_{1}\right)$. As $x_{1} \neq\left(w_{0}, \ldots, w_{0}\right)$, we obtain that $f(x)=u$.

We show that f is a p-morphism; that is, if $f(x) \leq u$, then there is a y such that $x \leq y$ and $f(y)=u$ and if $x \leq y$, then $f(x) \leq f(y)$. First, we verify the former condition.

For $x \in \mathcal{F}_{n}$ and $u \in \mathcal{E}$, let $f(x) \leq u$. Then we need to find a $y \in \mathcal{F}_{n}$ such that $x \leq y$ and $f(y)=u$. Suppose $x=\left(x_{2}, x_{1}\right)$, where $x_{1} \in \mathcal{F}_{n_{1}}$ and $x_{2} \in \mathcal{F}_{n_{2}}$. Assume first that $x_{1} \neq\left(w_{0}, \ldots, w_{0}\right)$. Then by definition of f, $f(x)=f_{1}\left(x_{1}\right)$. As $f(x)$ belongs to \mathcal{E}_{1}, so does u. Since f_{1} is a p-morphism, there is some y_{1} in $\mathcal{F}_{n_{1}}$ such that $f_{1}\left(y_{1}\right)=u$ and $x_{1} \leq y_{1}$. Define y as $\left(x_{2}, y_{1}\right)$. It is not hard to check that $x \leq y$ and $f(y)=f_{1}\left(y_{1}\right)=u$.

Next suppose that $x_{1}=\left(w_{0}, \ldots, w_{0}\right)$. Then $f(x)=f_{2}\left(x_{2}\right)$. If u does not belong to \mathcal{E}_{2}, take $y_{1} \in \mathcal{F}_{n_{1}}$ such that $f_{1}\left(y_{1}\right)=u$. We show that $y_{1} \neq\left(w_{0}, \ldots, w_{0}\right)$. If not, $u=f_{1}\left(y_{1}\right)$ is the least point of \mathcal{E}_{1}. Hence u belongs to \mathcal{E}_{2}, which is impossible. Define y as $\left(x_{2}, y_{1}\right)$. It is not hard to see that $x \leq y$ and $f(y)=u$. It remains to consider the case in which u belongs to \mathcal{E}_{2}. Since f_{2} is a p-morphism and $f_{2}\left(x_{2}\right) \leq u$, there is some y_{2} in $\mathcal{F}_{n_{2}}$ such that $f_{2}\left(y_{2}\right)=u$ and $x_{2} \leq y_{2}$. Define y as $\left(y_{2}, w_{0}, \ldots, w_{0}\right)$. Obviously $x \leq y$ and $f(y)=f_{2}\left(y_{2}\right)=u$.

Finally we verify that if $x \leq y$, then $f(x) \leq f(y)$. Suppose $x, y \in \mathcal{F}_{n}$ are two points such that $x \leq y$. We show that $f(x) \leq f(y)$. Suppose $x=\left(x_{2}, x_{1}\right)$ and $y=\left(y_{2}, y_{1}\right)$, where $x_{1}, y_{1} \in \mathcal{F}_{n_{1}}$ and $x_{2}, y_{2} \in \mathcal{F}_{n_{2}}$. Assume first that x_{1} and y_{1} are equal to $\left(w_{0}, \ldots, w_{0}\right)$. By the definition of f, we have that $f(x)=f_{2}\left(x_{2}\right)$ and $f(y)=f_{2}\left(y_{2}\right)$. Since f_{2} is a p-morphism and $x_{2} \leq y_{2}$, we obtain that $f(x)=f_{2}\left(x_{2}\right)$ is below $f(y)=f_{2}\left(y_{2}\right)$.

Next suppose that $x_{1}=\left(w_{0}, \ldots, w_{0}\right)$ and $y_{1} \neq\left(w_{0}, \ldots, w_{0}\right)$. Thus $f(x)=f_{2}\left(x_{2}\right)$ and $f(y)=f_{1}\left(y_{1}\right)$. As $f(x)$ belongs to \mathcal{E}_{2} and $f(y)$ belongs to \mathcal{E}_{1}, we get that $f(x) \leq f(y)$. Finally consider the case where $x_{1} \neq\left(w_{0}, \ldots, w_{0}\right)$ and $x_{2} \neq\left(w_{0}, \ldots, w_{0}\right)$. Then by the definition of f, $f(x)=f_{1}\left(x_{1}\right)$ and $f(y)=f_{1}\left(y_{1}\right)$. Since f_{1} is a p-morphism and $x_{1} \leq y_{1}$, we obtain that $f(x)=f_{1}\left(x_{1}\right)$ is below $f(y)=f_{1}\left(y_{1}\right)$.

Fix $i \leq 4$. We show that \mathcal{H}_{4}^{i} is a Cheq-frame. By Claim 18, the subframe \mathcal{H}^{\prime} of \mathcal{H}_{k}^{i} based on $(i, 0) \downarrow$ is a p-morphic image of some \mathcal{F}_{n}.

Let $\mathcal{H}^{\prime \prime}$ be the subframe of \mathcal{H}_{4}^{i} based on $(i, 0) \uparrow$. It is not hard to see that $\mathcal{H}^{\prime \prime}$ is a generated subframe of \mathcal{H}_{4}^{\prime}. By Claim 19, \mathcal{H}_{4}^{\prime} is a p-morphic image of \mathcal{F}_{4}. Thus $\mathcal{H}^{\prime \prime}$ is a p-morphic image of a generated subframe of \mathcal{F}_{4}. Recall that $\left\{\mathcal{F}_{n} \mid n>0\right\}$ is closed under rooted generated subframes. Thus any generated subframe of \mathcal{F}_{4} is isomorphic to some \mathcal{F}_{n}. Putting everything
together we obtain that $\mathcal{H}^{\prime \prime}$ is a p-morphic image of some \mathcal{F}_{n}.
Observe finally that \mathcal{H}_{4}^{i} is the vertical sum of $\mathcal{H}^{\prime \prime}$ and \mathcal{H}^{\prime}. Thus by Claim 20, \mathcal{H}_{4}^{i} is a p-morphic image of some \mathcal{F}_{n}. It follows immediately that \mathcal{H}_{4}^{i} is a Cheq-frame.

Proposition 21. Let Γ be a set of formulas with k variables. Then there exists $i \leq k$ such that

$$
\mathcal{H}_{k} \Vdash \Gamma \quad \text { iff } \quad \mathcal{H}_{k}^{i} \Vdash \Gamma .
$$

Proof. The proof is similar to the one of Proposition 11.

6 Further questions

6.1 Axiomatization of Cheq

To prove that Cheq is not finitely axiomatizable we tried to generalize the method used in Section 5 . This eventually led us to a combinatorial problem which is completely independent of intermediate logics. A positive solution to this problem would imply that Cheq is not finitely axiomatizable.

Recall that $\left\{X_{0}, \ldots, X_{n-1}\right\}$ is a full n-partition of X with respect to Y if $\left\{X_{0}, \ldots, X_{n-1}\right\}$ is a partition of X and for all $0 \leq i<n$ and all $y \in Y$, there is some x_{i} in X_{i} such that $y \leq x_{i}$. Also we denote by $D(i, j)$ the set of elements x in \mathcal{F}_{i} such that $N_{0}(x)=j$ (we recall that $N_{0}(x)$ is the number of w_{0} that occur in x).

Proposition 22. If for every $i>1$, there exists a 3 -full partition of $D(i, 1)$ with respect to $D(i, 2)$, then Cheq is not finitely axiomatizable.

Proof. The proof is organized as follows. First, we show that under the assumption that \mathcal{H}_{k}^{i} is a Cheq-frame, Cheq if not finitely axiomatizable. The second step is to prove that if the \mathcal{H}_{i}^{\prime} 's are Cheq-frames, so are the \mathcal{H}_{k}^{i} 's. Next we show that if for all $0<j<i$, there is a 3 -full partition of $D(i, j)$ with respect to $D(i, j+1)$, then the \mathcal{H}_{i}^{\prime} 's are Cheq-frames. We finish by proving that if for all $i>1$, there is a 3 -full partition of $D(i, 1)$ with respect to $D(i, 2)$, then for all $i>0$ and all $i>j>0$, there is a 3 -full partition of $D(i, j)$ with respect to $D(i, j+1)$. It is not hard to see that putting everything together, we obtain the desired result.

So the first step is to show that if the \mathcal{H}_{k}^{i} 's are Cheq-frames, then Cheq is not finitely axiomatizable. For, assume that the \mathcal{H}_{k}^{i} 's are Cheq-frames. Suppose for contradiction that Cheq is axiomatized by a formula φ with k variables. By Proposition 21, there is some $i \leq k$ such that φ is valid in \mathcal{H}_{k} iff φ is valid in \mathcal{H}_{k}^{i}. By our assumption, \mathcal{G}_{k}^{i} is an ML-frame. Thus, φ is valid in \mathcal{H}_{k}^{i}. Therefore, φ is valid in \mathcal{H}_{k}. But \mathcal{H}_{k} is not a Cheq-frame by Proposition 15. This contradiction proves that such a φ does not exist.

Next we prove that if the \mathcal{H}_{i}^{\prime} 's are Cheq-frames, so are the \mathcal{H}_{k}^{i} 's. Assume that the \mathcal{H}_{i}^{\prime} 's are Cheq-frames and fix $k \neq 0$ and $i \leq k$. It suffices to show
that \mathcal{H}_{k}^{i} is a p-morphic image of some \mathcal{F}_{n}. Observe that \mathcal{H}_{k}^{i} is the vertical sum of \mathcal{H}_{i}^{\prime} and the subframe of \mathcal{H}_{k}^{i} based on $(i, 0) \downarrow$. Thus by Claim 20, we only have to prove that \mathcal{H}_{i}^{\prime} and the subframe of \mathcal{H}_{k}^{i} based on $(i, 0) \downarrow$ are p morphic images of some \mathcal{F}_{n} 's. By assumption, \mathcal{H}_{i}^{\prime} is a Cheq-frame. Hence, by Corollary $2, \mathcal{H}_{i}^{\prime}$ is a p-morphic image of some \mathcal{F}_{n}. Finally by Claim 18 , the subframe of \mathcal{H}_{k}^{i} based on $(i, 0) \downarrow$ is a p-morphic image of some \mathcal{F}_{n}. This completes the proof that \mathcal{H}_{k}^{i} is a Cheq-frame.

Now we show that if for all $i>0$ and all $i>j>0$, there is a 3 -full partition of $D(i, j)$ with respect to $D(i, j+1)$, then the \mathcal{H}_{i}^{\prime} 's are Cheqframes. The idea is to generalize the method used to show that \mathcal{H}_{4}^{\prime} is a Cheq-frame. Suppose that for all $i>0$ and all $i>j>0$, there is a 3 -full partition of $D(i, j)$ with respect to $D(i, j+1)$. Fix $i>0$. We have to prove that \mathcal{H}_{i}^{\prime} is a Cheq-frame. For any $i>j>0$, there is a full partition $\left\{D_{0}(i, j), D_{1}(i, j), D_{2}(i, j)\right\}$ of $D(i, j)$ with respect to $D(i, j+1)$. Next define $D_{0}(i, 0)$ and $D_{1}(i, 0)$ by

$$
\begin{aligned}
& D_{0}(i, 0)=\left\{x \in D(i, 0) \mid N_{1}(x) \text { is even }\right\} \\
& D_{1}(i, 0)=\left\{x \in D(i, 0) \mid N_{1}(x) \text { is odd }\right\} .
\end{aligned}
$$

As in Claim 19, we can show $\left\{D_{0}(i, 0), D_{0}(i, 1)\right\}$ is a full partition of $D(i, 0)$ with respect to $D(i, 1)$.

Now we define a map f from \mathcal{F}_{i} to \mathcal{H}_{i}^{\prime} by

$$
f(x)= \begin{cases}r & \text { if } x=\left(w_{0}, \ldots, w_{0}\right) \\ (j, k) & \text { if } x \in D_{k}(i, j)\end{cases}
$$

As in Claim 19, we can prove that f is a p-morphism from \mathcal{F}_{i} onto \mathcal{H}_{i}^{\prime}. Hence \mathcal{H}_{i}^{\prime} is a Cheq-frame.

To finish the proof, it remains to show that if for all $i>1$, there is a 3 -full partition of $D(i, 1)$ with respect to $D(i, 2)$, then for all $i>0$ and all $i>j>0$, there is a 3 -full partition of $D(i, j)$ with respect to $D(i, j+1)$. Suppose that for all $i>1$, there is a 3 -full partition of $D(i, 1)$ with respect to $D(i, 2)$. We prove by induction on i that for all $i>j>0$, there is a 3 -full partition of $D(i, j)$ with respect to $D(i, j+1)$.

If $i=2$, then any partition $\left\{D_{0}(2,1), D_{1}(2,1), D_{2}(2,1)\right\}$ of $D(2,1)$ so that $D_{k}(2,1) \neq \emptyset$, is a 3 -full partition of $D(2,1)$ with respect to $D(2,2)=$ $\left\{\left(w_{0}, w_{0}\right)\right\}$.

As for the case $i=i^{\prime}+1$ (where $i^{\prime} \geq 2$), we show by induction on j that for all $i>j>0$, there is a 3 -full partition of $D(i, j)$ with respect to $D(i, j+1)$. If $j=1$, then it immediately follows from our assumption that there is a 3 -full partition of $D(i, 1)$ with respect to $D(i, 2)$.

Suppose $j=j^{\prime}+1$ (where $j^{\prime} \geq 1$). By the induction hypothesis, there is a full partition $\left\{D_{0}\left(i^{\prime}, j^{\prime}\right), D_{1}\left(i^{\prime}, j^{\prime}\right), D_{2}\left(i^{\prime}, j^{\prime}\right)\right\}$ of $D\left(i^{\prime}, j^{\prime}\right)$ with respect to $D\left(i^{\prime}, j\right)$ and there is a full partition $\left\{D_{0}\left(i^{\prime}, j\right), D_{1}\left(i^{\prime}, j\right), D_{2}\left(i^{\prime}, j\right)\right\}$ of $D\left(i^{\prime}, j\right)$
with respect to $D\left(i^{\prime}, j+1\right)$. For every k in $\{0,1,2\}$, we define $D_{k}(i, j)$ by

$$
D_{k}(i, j)=\left\{\left(x, w_{0}\right) \mid x \in D_{k}\left(i^{\prime}, j^{\prime}\right)\right\} \cup\left\{\left(x, w_{1}\right),\left(x, w_{2}\right) \mid x \in D_{k}\left(i^{\prime}, j\right)\right\} .
$$

We prove that $\left\{D_{0}(i, j), D_{1}(i, j), D_{2}(i, j)\right\}$ is a 3 -full partition of $D(i, j)$ with respect to $D(i, j+1)$. First we check that $\left\{D_{0}(i, j), D_{1}(i, j), D_{2}(i, j)\right\}$ is a partition of $D(i, j)$. Let x be an element of $D(i, j)$. We have to show that x belongs to $D_{k}(i, j)$, for some $k \in\{0,1,2\}$. If $x=\left(x^{-}, w_{0}\right)$, then x^{-}belongs to $D\left(i^{\prime}, j^{\prime}\right)$. Recall that $\left\{D_{0}\left(i^{\prime}, j^{\prime}\right), D_{1}\left(i^{\prime}, j^{\prime}\right), D_{2}\left(i^{\prime}, j^{\prime}\right)\right\}$ is a partition of $D\left(i^{\prime}, j^{\prime}\right)$. Thus there is a $k \leq 3$ such that x^{-}belongs to $D_{k}\left(i^{\prime}, j^{\prime}\right)$. It immediately follows that $x=\left(x^{-}, w_{0}\right)$ belongs to $D_{k}(i, j)$. Assume next that $x=\left(x^{-}, w_{l}\right)$ (where $\left.l \in\{1,2\}\right)$. Hence x^{-}belongs to $D\left(i^{\prime}, j\right)$. Since $\left\{D_{0}\left(i^{\prime}, j\right), D_{1}\left(i^{\prime}, j\right), D_{2}\left(i^{\prime}, j\right)\right\}$ is a partition of $D\left(i^{\prime}, j\right)$, there is a $k \leq 3$ such that x^{-}belongs to $D_{k}\left(i^{\prime}, j\right)$. By the definition of $D_{k}(i, j), x=\left(x^{-}, w_{l}\right)$ belongs to $D_{k}(i, j)$. This completes the proof that $\left\{D_{0}(i, j), D_{1}(i, j), D_{2}(i, j)\right\}$ is a partition of $D(i, j)$.

It remains to show that for all $x \in D(i, j+1)$ and all $k \in\{0,1,2\}$, there is some x_{k} in $D_{k}(i, j)$ such that $x \leq x_{k}$. Fix $x \in D(i, j+1)$ and $k \in$ $\{0,1,2\}$. Suppose first that $x=\left(x^{-}, w_{0}\right)$. Thus x^{-}belongs to $D\left(i^{\prime}, j\right)$. Since $\left\{D_{0}\left(i^{\prime}, j^{\prime}\right), D_{1}\left(i^{\prime}, j^{\prime}\right), D_{2}\left(i^{\prime}, j^{\prime}\right)\right\}$ is a full partition of $D\left(i^{\prime}, j^{\prime}\right)$ with respect to $D\left(i^{\prime}, j\right)$, there is a point x_{k}^{-}in $D_{k}\left(i^{\prime}, j^{\prime}\right)$ such that $x^{-} \leq x_{k}^{-}$. Define x_{k} as the i-tuple $\left(x_{k}^{-}, w_{0}\right)$. It is easy to check that $x \leq x_{k}$ and $x_{k} \in D_{k}(i, j)$.

Next assume that $x=\left(x^{-}, w_{1}\right)$. Hence x^{-}belongs to $D\left(i^{\prime}, j+1\right)$. Since $\left\{D_{0}\left(i^{\prime}, j\right), D_{1}\left(i^{\prime}, j\right), D_{2}\left(i^{\prime}, j\right)\right\}$ is a full partition of $D\left(i^{\prime}, j\right)$ with respect to $D\left(i^{\prime}, j+1\right)$, there is a point x_{k}^{-}in $D_{k}\left(i^{\prime}, j\right)$ such that $x^{-} \leq x_{k}^{-}$. Define x_{k}^{-} as the i-tuple $\left(x_{k}^{-}, w_{1}\right)$. It is not hard to see that $x \leq x_{k}$ and $x_{k} \in D_{k}(i, j)$. The case $x=\left(x^{-}, w_{2}\right)$ is similarly handled.

In proof of Claim 19, we showed that there is a 3 -full partition of $D(4,1)$ with respect to $D(4,2)$. It is unknown whether there is a 3 -full partition of $D(5,1)$ with respect to $D(5,2)$.

We will not prove it but by using the results of these two last sections, one can show that if there exists a 3 -full partition of $D(i, 1)$ with respect to $D(i, 2)$, then Cheq is not axiomatizable with i variables.

6.2 The modal case

With each intermediate logic we can associate its modal companions - modal logics obtained via the Gödel translation (see, e.g., [3, §9]). This translation maps every intuitionistic formula φ to a modal formula $T(\varphi)$ such that for any Kripke frame $\mathcal{F}, \mathcal{F} \Vdash \varphi$ iff $\mathcal{F} \Vdash T(\varphi)$. So, given an intermediate logic \mathbf{L}, we obtain the class of its modal companions; these are normal modal logics \mathbf{L}^{\prime} containing $\mathbf{S} 4$ and such that for any intuitionistic formula $\varphi, \varphi \in \mathbf{L}$ iff $T(\varphi) \in \mathbf{L}^{\prime}$. Note that the least modal companion of an intermediate logic
\mathbf{L} is the least modal logic containing $\mathbf{S} 4$ and $\{T(\varphi) \mid \varphi \in \mathbf{L}\}$. Moreover, if \mathbf{L} is characterized by a class K of finite frames, then the greatest modal companion of \mathbf{L} is the logic consisting of the modal formulas valid in K.

Shehtman [17] showed that none of the modal companions of ML is finitely axiomatizable. We sketch the proof, which is similar to the one for the intuitionistic case. First it is proved that for any modal companion \mathbf{L} of ML, a Kripke frame is an \mathbf{L}-frame iff it is an ML-frame. The second step it to show that $\mathcal{G}_{2^{k}-3,4^{k}-1}$ is not an ML-frame. In fact it can be proved in the same way as we established that \mathcal{G}_{k} is not an ML-frame. Next Shehtman shows that $\mathcal{G}_{2^{k}-3,2^{k}-1}$ is an ML-frame. The proof is rather long and involves some graph theory. The last step is done by proving that for any modal formula φ with k variables and for any $l \geq 2^{k}-1$, we have $\mathcal{G}_{m, l} \Vdash \varphi$ iff $\mathcal{G}_{m, 2^{k}-1} \Vdash \varphi$. The proof is similar to the one establishing that for any formula φ with k variables, there is some $i \leq k$ such that $\mathcal{G}_{k} \Vdash \varphi$ iff $\mathcal{G}_{k}^{i} \Vdash \varphi$.

From these results, one can show that no companion of ML is finitely axiomatizable. Fix a modal companion \mathbf{L} of $\mathbf{M L}$ and suppose for contradiction that there is a finite axiomatization of \mathbf{L}. We may assume that \mathbf{L} is axiomatized by a single formula φ with k variables (where $k \geq 2$). Recall that a frame is an \mathbf{L}-frame iff it is an ML-frame. As $\mathcal{G}_{2^{k}-3,4^{k}-1}$ is not an ML-frame, $\mathcal{G}_{2^{k}-3,4^{k}-1}$ is not an \mathbf{L}-frame. Hence φ is not valid in $\mathcal{G}_{2^{k}-3,4^{k}-1}$. Recall also that for any $l \geq 2^{k}-1$, we have $\mathcal{G}_{m, l} \Vdash \varphi$ iff $\mathcal{G}_{m, 2^{k}-1} \Vdash \varphi$. Since $4^{k}-1$ is greater than $2^{k}-1$, we can deduce that φ is not valid in $\mathcal{G}_{2^{k}-3,2^{k}-1}$. Therefore $\mathcal{G}_{2^{k}-3,2^{k}-1}$ is not an \mathbf{L}-frame. But this contradicts the fact that $\mathcal{G}_{2^{k}-3,2^{k}-1}$ is an ML-frame and that any ML-frame is an \mathbf{L}-frame. This completes the proof that \mathbf{L} is not finitely axiomatizable.

Note that all the statements formulated in the second paragraph of this section remain true for Cheq, except the one establishing that $\mathcal{G}_{2^{k}-3,2^{k}-1}$ is an ML-frame. In fact, we can only show that $\mathcal{H}_{2^{2}-3,2^{2}-1}$ is a Cheqframe. We can then deduce that none of the modal companions of Cheq is axiomatizable with two variables. In particular, \mathbf{L}_{∞} is not axiomatizable with two variables. We will skip the details.

Finally, we remark that if for every $i>1$, there exists a 3 -full partition of $D(i, 1)$ with respect to $D(i, 2)$, then no modal companion of Cheq is finitely axiomatizable.

7 Conclusion

We proved that ML is not finitely axiomatizable over Cheq, which shows that these two logics are not as closely related as previously thought. We also proved that Cheq is not axiomatizable with four variables and found a combinatorial problem a positive solution to which would imply that Cheq is not axiomatizable by any set of formulas with finitely many variables.

It still remains an open question whether Cheq is finitely axiomatizable and/or decidable. Of course, the decidability of ML is still an interesting (but difficult) open problem.

Acknowledgment. I would like to thank both my supervisors, Nick Bezhanishvili and Yde Venema. Thanks to Nick for introducing me to this nice subject and for his careful supervision (even when it was via skype). Thanks to Yde for his essential support and trust. I would like to thank the members of my committee: Johan van Benthem, Peter van Emde Boas and Dick de Jongh. Thanks also to Guram Bezhanishvili and Tadeusz Litak for their comments and their support in writing the paper for AiML 06 on which Section 4 of this thesis is based. Finally, I thank the FNRS (National Funds for Research in Belgium) for its financial support.

References

[1] J. van Benthem, G. Bezhanishvili, and M. Gehrke. Euclidiean hierarchy in modal logic. Studia Logica, 75:327-344, 2003.
[2] N. Bezhanishvili. Lattices of Intermediate and Cylindric Modal Logics. PhD thesis, Universiteit van Amsterdam, 2006.
[3] A. Chagrov and M. Zakharyaschev. Modal Logic. Clarendon Press, 1997.
[4] B. Davey and H. Priestley. Introduction to Lattices and Order. Cambridge University Press, 1990.
[5] G. Fontaine. ML is not finitely axiomatizable over Cheq. In Proceedings of Advances in Modal Logic, volume 6, pages 139-146. Guido Governatori, Ian Hodkinson and Yde Venema eds., King's College Press, 2006.
[6] K. Gödel. Zum intuitionistischen Aussagenkalkül. Akademie der Wissenschaften in Wien, 69:65-66, 1932.
[7] A. Heyting. Die formalen Regeln der intuitionistischen Logik. Sitzungberichte der preussischen Akademie der Wissenschaften, 31:42-56, 1930.
[8] V.A. Jankov. The relationship between deducibility in the intuitionistic propositional calculus and finite implicational structures. Soviet Math. Dokl., 4:1203-1204, 1963.
[9] V.A. Jankov. The construction of a sequence of strongly independent superintuitionistic propositional calculi. Soviet Math. Dokl., 9:806-807, 1968.
[10] S.A. Kripke. Semantical analysis of intuitionistic logic. I. In Formal Systems and Recursive Functions, Proceedings of the 8th Logic Colloquium, pages 92-130. North Holland, 1965.
[11] T. Litak. Some notes on the superintuitionistic logic of chequered subsets of \mathbb{R}^{∞}. Bulletin of the Section of Logic, 33:81-86, 2004.
[12] L. Maksimova, V. Shehtman, and D. Skvorcov. The impossibility of a finite axiomatization of Medvedev's logic of finitary problems. Soviet Math. Dokl., 20:394-398, 1979.
[13] J.C.C. McKinsey and A. Tarski. The algebra of topology. Annals of Mathematics, 45:141-191, 1944.
[14] J.C.C. McKinsey and A. Tarski. On closed elements of closure algebras. Annals of Mathematics, 47:122-162, 1946.
[15] Ju.T. Medvedev. Finite problems. Soviet Math. Dokl., 3:227-230, 1962.
[16] Ju.T. Medvedev. Interpretation of logical formulas by means of finite problems. Soviet Math. Dokl., 7:857-860, 1966.
[17] V. Shehtman. Modal counterparts of Medvedev logic of finite problems are not finitely axiomatizable. Studia Logica, 49:365-385, 1990.
[18] A. Tarski. Der Aussagenkalkül und die Topologie. Fund. Math, 31:103134, 1938.

