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“ The Tarot has an unprecise relationship with the dimension of time. Contrary
to popular opinion the cards cannot be used to predict the future. If the future
were a definite and unalterable fact then the cards could be used to predict it.
But the future is not a predetermined and planned event; if it were it would
require a planner ([...] If the future were predetermined, then every detail of
every event would have to be considered in advance, in effect creating the future
in all its minutiae before it actually happens). What will happen tomorrow
varies, sometimes subtly, sometimes dramatically. It is constantly adapting and
changing, responding to the events and decisions made today. Viewed in this
way, the future is not a definite and unavoidable fact; what actually occurs is
one of a number of possibilities. The concept may be represented visually in the
shape of a cone[...]. ”

— The Ancient Egyptian Tarot, by Clive Barret.

“ Prediction is very difficult, especially if it is about the future. ”
— Attributed to Niels Bohr, Physicist.

“Predicting the future is as difficult as reconstructing the past. ”
— Result from Information Theory homework in Peter van Emde Boas’

course, UvA.
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Abstract

Transfer learning is about how learning from one domain or a collection of do-
mains can be applied to another. It is learning from similarities and parallels,
from experience. This paper is about a distribution free, data driven, extend-
able framework for transfer learning, based on the minimum description length
principle. We define transfer learning in terms of a specific framework, where we
have a collection of hypothesis from other application domains available, but not
the data, a learning algorithm consistent over domains and a new, previously
unseen learning task.



Chapter 1

Introduction

“ ’Begin at the beginning’, the King said, gravely, ’and go till you come to the
end; then stop.”’

— Lewis Carol, Alice in Wonderland

In this chapter we introduce the topic and the purpose of this paper and
define the basic concepts and notation.

1.1 Orientation and Outline
This paper is about an approach to a form of meta-learning, or transfer learning,
as applied to supervised learning. Meta-learning studies how learning algorithms
can increase their classification performance, as measured by e.g. error rate,
through knowledge about previous applications. The difference between meta-
learning and base-learning is in the way the algorithms obtain a bias on the
learning procedure: base-learners have a fixed bias while the meta-learner tries
to induce a proper bias for the specific learning task at hand, based on knowledge
about previously analysed tasks. An example of a fixed bias is “Small decision
trees are more probable than big decision trees”. An example of variable bias
would be “decision trees from this task-determined collection of trees are more
probable then others”. Base-learners seek to improve the quality of their learning
as the number of training examples in a task increases; meta-learners seek to
improve the quality of the learning-strategy as the number of tasks increases
also. We can view meta-learning as ’learning from experience’ where experience
is understood as knowledge obtained from analysis of several tasks. A survey of
meta-learning is given in [VD02].

The specific instance of meta-learning we will address in this paper is how we
transfer learning done over some collection of related tasks to a new task where
information about the datasets from the old tasks is withheld and only the
learned structures are available. To motivate our approach, we allude shortly to
our framework. First, we’ll give a couple of examples of what sort of problems
we have in mind.

Example Medical Diagnosis Hospitals have a diagnosis procedure for a condi-
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tion affecting an organ. Each hospital only has information about the measure-
ments it makes on its own patients. Other hospitals have made the same sort
of tests but because of privacy legislation cannot share their data. There are
no limitations on sharing knowledge not traceable to individuals, which they do
by making summarized information available in the form of learned structures.
Now, a clinic starts testing for this condition. How can it make its procedures
more effective by using experience gained on its own patients and the knowledge
about others experience?

Example Language acquisition A person knows Portuguese and Italian and is
learning Spanish. How can knowledge of the other two languages be of use?
That person can both benefit from associating grammatical rules (syntactics)
and word structures (semantics) from the languages already studied to the new
one, without referring to specific examples (words/sentences).

We formulate our approach to transfer learning as a communication problem
and use the Minimum Description Length (MDL) principle as the induction
principle. When we speak of knowledge we mean a hypothesis which will almost
always be uncertain, i.e. only true to a degree in relation to a dataset.

Consider the following scenario: I have some knowledge constructed from a
particular collection of related application domains1, which we term an envi-
ronment, and you have a dataset, perhaps a small one. You decide that your
learning task is in some way similar to the domains that I have knowledge of.
You therefore acquire the knowledge that I have but not the data. Based on
your data you decide what knowledge is applicable to your learning task, if any.
I can not show you my data, from which I learned. Whether we share which
learning algorithms were used is of no significance.

Furthermore, my knowledge must in some way simplify, or accelerate, your
learning task in the sense that the probability of error decreases. Otherwise
it is of no practical use to you. We like things to be as simple as possible, so
you will not adopt overly complex knowledge to describe your data. There are
two reasons to prefer simple explanations, all other things being equal: they
are easier to remember and have less risk of explaining noise.2 However, you
might like the knowledge you adopt to be slightly more complex then what you
would induce from your dataset alone. Otherwise you would just describe the
knowledge you can draw from your dataset in form of a hypothesis without my
assistance.

There must be some sort of a balance between the knowledge you adopt
from my collection and how well this knowledge describes your data. When you
adopt knowledge from my environment based on your limited data, you have
transferred knowledge to your learning task. In order to give the knowledge
which can be derived from your own dataset alone some part in our inference
procedure, you add that knowledge to the environment3. After all, you are

1In what follows, the term domain refers to something abstract and conceptual which is
assigned meaning by people. Domains do not have instantiations; example spaces, which are
defined later, do have instantiations in the forms of datasets or samples.

2Some disciplines are more prone to explaining noise then others: the financial press is
perhaps the most eager to offer explanations for everything. In general, every change (or lack
there of) has an explanation. Elaborate explanations of minute price movements (less then
1/1000 of a percent) abound.

3This may appear strange, but there are strong theoretical reasons for doing this, as will
become clear later. The exact way of doing this will be addressed in detail.
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hypothesizing that your dataset belongs to the environment. A formalization
and an exploration of a framework for inducing transfer along these lines is the
subject of this paper.

Why is transfer learning useful? Transfer learning is of use since we almost
never have enough data. Enough data would be so much data, that more data
would not give us any information that would be of practical use. This is a com-
mon problem of inference. For instance, in [BC91] they talk about n = 1000000
to get a estimate of variance correct to 10 bits4 from a normal distribution. By
including information about the environment from which the data originates,
we would hope to make up for the lack of data and obtain better hypothesis,
as measured by error rate, while guarding against inapplicable information. An
instance of this would be to obtain the same results with little data as with
much data.

The learning task may thus be phrased as:

Given a learner, a collection of hypotheses derived from related data-
generating domains and a dataset for a new task (hypothesized be-
ing) related to the given collection, find an optimal hypothesis de-
scribing the domain of the given dataset, such that it maximizes
performance on the new task.

We will elaborate on the terms used in the statement of the task to give it more
precise meaning as this paper develops. The important part is that the data
we are given is supposed to be of a similar kind as the domains giving rise to
the knowledge. We use parallels and similarities when solving tasks in our daily
lives. Doors to cars open in a very similar way to those of houses, although car
doors never open into the car, this is very common for doors to houses to do.
The omission of the data giving rise to the knowledge may seem restrictive, but
in a way emulates how humans operate. We’ve opened a lot of different doors
in our time and learned that there are basically only a few things to keep in
mind: first turn, twist or yank, then push or pull. When faced with a new door
we will not recall all those doors we’ve opened, just the main principles. If the
door is to a house and has a handle, try turning the handle, then push. When
successful, we have learned how to open yet another door. We frequently make
do with abstractions.

The development of the framework encapsulating this sort of inference pro-
cess described above will be based on minimizing the communication cost of the
knowledge used to describe the new data and the new data with respect to that
knowledge. The rationale for this sort of inference will be given in Section 1.3
on MDL.

In order to give expressions about the scenario described above precise mean-
ing we will need definitions from measure and learning theory which are intro-
duced in the next section. Then, after discussing the MDL principle for predic-
tion and learning, we can give a definition of transfer and give a meta-algorithm
for transfer learning. We are interested in asymptotic properties of the meta-
algorithm and we give a proof of convergence in the chapter thereafter. To
show how this framework might be put to work, we give an instantiation of the
meta-algorithm using decision trees and give examples of its use in the final
chapter.

4This is a far larger n then traditional statistical education would have us believe.
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1.2 Preliminaries and Notation
We are liberal in notation and will use xa to mean concatenation of the symbols
x and a. A little more formally, xa ∈ X×A, where typically X is some cartesian
product of the set A; A is frequently referred to as an alphabet. For instance,
if x = 10011 ∈ B5 and a = 0 ∈ B, then xa = 100110 ∈ B6. where B = {0, 1}.

We define a measure:

Definition 1.2.1 Let Ω be a set and F ⊂ P(Ω), where P(Ω) is the set of
all subsets of Ω. A measure is a function μ : F → [0,∞[ such that for any
enumerated sequence {Ei} of disjoint sets from F we have countable additivity:

μ(∪∞i=1Ei) =
∞∑

i=1

μ(Ei)

A probability measure is a measure taking values in [0, 1], such that μ(∅) = 0
and μ(Ω) = 1.

We have the usual definition of conditioning on measures:

μ(y|x) =
μ(xy)
μ(x)

.

Two functions, or random variables, x, y : X → R, X an object space, are
independent with respect to a measure μ iff μ(xy) = μ(x)μ(y).

We will refer to a anti-semi measure property of some estimators and pre-
dictors:

Definition 1.2.2 A semi measure is a function μ : Ω∗ → [0, 1], such that
μ(∅) ≤ 1 and μ(x) ≥∑a∈Ω μ(xa).

Semi measures thus allow for ’probability leaks’.5 The anti-semi measure prop-
erty corresponds to the last inequality in the definition reversed. When dealing
with binary classification problems the set Ω is {0, 1}.

When we talk about probability measures we always have a σ-algebra in
mind:

Definition 1.2.3 A σ-algebra F on Ω is a collection of subsets of Ω which
satisfies ∅ ∈ F ,

Closure under countable unions: ∀i ∈ I ⊆ N (si ∈ F) −→ ⋃
i∈I si ∈ F and

Closure under complementation: s ∈ F −→ s̄ ∈ F ,

where s̄ denotes the complement of the set s and N is the set of the natural
numbers.

The space (Ω,F) is called measurable and (Ω,F , μ) is called a measure
space, where μ is a measure on F .

5Semi measures arise naturally in Solomonoff’s universal induction, see [Sol64], and account
for undecidable problems, which again are reflected in the uncomputability of Kolmogorov
complexity of a given input because of the halting problem. In this paper we are mainly
concerned with computable approximations so we will abstain from further computability
theory. As it happens, roulette wheels in casinos have probability leaks too, where the ’missing’
probability of a player winning is what makes running a casino good business.
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We need to restrict our attention to some proper subset of P(Ω) when talking
about measures over subsets of the set Ω, since generally if we accept the axiom
of choice and countable additivity there are non-measurable sets in P(Ω). A
σ-algebra is such a restriction which has the desirable properties for dealing
with outcomes of trials. 6

We don’t need the full measure theoretic heavy machinery to obtain our
results. We can make do with the following definition of an expectation:

Definition 1.2.4 The expectation of a function ϕ : Ω → R with respect to a
measure μ is, for all ω ∈ Ω,

E ϕ = Eμ ϕ(ω) =
∑
ω∈Ω

ϕ(ω)μ(ω).

The subscript μ is left unspecified when there is no risk of confusion.
When we are learning from data, we need some input to learn from, and

when we are learning under supervision we also have some class labels of the
input data. Our data comes from an example space, which reality generates.

Definition 1.2.5 Reality7 generates the pairs (x1, y1), (x2, y2), (x3, y3), . . . of
examples. We call xi an object and yi a (class) label. The objects and labels
are from measurable spaces X and Y named object space and label space,
respectively8. We require X �= ∅ and an σ-algebra on Y different from {∅, Y }.
An example space9 is then Z =def X×Y. A sample or dataset Sn is a particular
set of observed values of Zn.

This definition implies that there are no missing observations in our samples.
The requirement on the σ-algebra over Y is because, were it not satisfied, there
is no learning to be done, since there is essentially just one label to choose from.
An object consists of features or attributes. If |X | = n then we have n features,
referred to by ξi,1, ξi,2, . . . , ξi,n for the ith object.

A function μ : X → Y , which may have generated the data, is called a
concept and is necessarily measurable10 If such a function doesn’t exist, there
is no learning to be done. We will only be interested in stochastic concepts, for
which either the concept is noisy itself or the observation process is not exact.

In what follows all functions will be assumed to be measurable, unless oth-
erwise stated.

Definition 1.2.6 A learning algorithm, or a learner, L is a function L : Zn →
HL, where HL is a set of available concepts for the algorithm to learn. Each
h ∈ HL is a function from X to Y , from the objects to the labels. We call HL a
hypothesis space. A hypothesis space is complete if it contains the true concept
that generated the data.

6We note that a σ-algebra corresponds to a set of computable inputs to a fixed universal
Turing machine.

7We won’t attempt a definition of this thing and trust the readers intuition.
8In what follows, we use X instead of Ω above and view random variables and their domains

as essentially the same thing.
9Sometimes referred to as input-output space.

10If it were not measurable, it wouldn’t be computable and thus the concept not learnable.
We leave the issue of whether trying to learn an uncomputable concept makes any sense
untouched.
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An instance of a learner is a classifier, i.e. given a sample Sn from Zn we
have L(Sn) = h, where h ∈ HL, so a classifier is a function L(Sn) = h and is
applied to objects to be classified by L(Sn)(x) = h(x) ∈ Y .

The subscript for the hypothesis space will be omitted when there is no
ambiguity. If a space contains all functions from the input space to the output
space, it is obviously complete.

When have a dataset from an example space and want to construct a classifier
to classify previously unseen objects, we face a learning problem, or a task, in
which we try to recover (learn) a concept which presumably generated the data.
Learning can be done in either realizable or non-realizable setting, depending on
whether the true hypothesis is available to the learner or not, respectively. The
learner solves this learning problem and produces a classifier. The learner does
this by searching through a space of functions available to the algorithm for a
function that best fits the evidence of the dataset in some sense. This space
is frequently unstructured and the search procedure is subject to converging to
local optima. Thus we would like to influence the search for a good hypothesis
by directing the search procedure in a certain way by inducing a search bias on
the learner.

Definition 1.2.7 A search bias on a learner is a partial ordering of H, i.e.
∀a, b, c ∈ H the following hold: a 
 a, a 
 b ∧ b 
 a → a = b and a 
 b ∧ b 

c→ a 
 c.

A bias of a learner A is stronger then that of B if |HLA | ≤ |HLB |.

The search bias is important, because we are often happy with methods that
stop at local optima and which local optima we get stuck in during the search
depends on the order. Later in this paper, we will use a description length
function to impose the order on H. In another light, we would like to impose
an ordering on H, s.t. we get a good h ∈ H early on in the search. An example
of such a bias are those of decision tree construction algorithms which do not
consider more complicated trees if they can make do with the simpler ones.

There are other types of bias concepts in use for learning theory: generally it
refers to “any basis for choosing one generalization over another, other then strict
consistency with the observed training instances” [Mit80]. The search bias is a
relative bias, as it does not exclude hypotheses but orders them. Another type of
bias is the strict, which excludes hypotheses from the space under consideration.
These are said to be strong or weak, depending on how aggressively they exclude
hypotheses, as indicated in the last definition.

Another characterization of bias is the inductive bias, which is the minimal
set of assertions B such that for any concept μ to be learned and the sample S for
the learning such that the classification of any object x ∈ X follows deductively.
That is

∀x ∈ X(B ∧ S ∧ x) � L(S)(x)

This differs from the earlier concepts of bias in that it doesn’t operate directly
on the hypotheses space.

In general, each learning algorithm has its own implicit bias in the way
it learns. Without a bias, an inductive learning algorithm cannot generalize
beyond the training data. For more on this, see [Mit80].
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There are various methodologies used to infer a function from some collection
based on data. In the next section we describe the minimum description length
principle (MDL), which is such a method. Another method related to the MDL
is described in 4.1.2 on decision tree learning. The decision tree method also
gives a nice way of representing the learned functions.

1.3 Minimum Description Length Inference
“ The fundamental idea behind the MDL Principle is that any regularity in a
given set of data can be used to compress the data, i.e. to describe it using fewer
symbols than needed to describe the data literally.”

— [Grü98]

“ We never want to make the false assumption that the observed data actually
were generated by a distribution of some kind, say Gaussian, and then go on
to analyze the consequences and make further deductions. Our deductions may
be entertaining but quite irrelevant to the task at hand, namely, to learn useful
properties from the data.”

— [Ris89]

When we want infer a mathematical description of some data generating
process which captures its underlying structure, we are inferring a function.
How we do that is based on the inference principle11 we adopt. Inference is
conceptually rather tricky. Consider the following example:

Example Given ’010101’ from {0, 1}∗, a set of arbitrary length strings of ’0’
and ’1’, which pattern should we infer when given a choice between

1. Repeat ’01’

2. Repeat ’010101’

3. Repeat ’010’?

Which explains the data best? Which is the simplest? What if we are also given
the strings ’01101’ and ’01010101’ as examples?

The function we are inferring, the “explanatory theory”, we call a hypothesis
and group together in hypothesis spaces12, which are collections of hypotheses.
When talking about models we usually have a specific restriction of the hy-
pothesis space in mind, as may be expressed by a parametrization of a specific
functional form such as the normal or beta-distribution.13We will use the term

11An inference principle is essentially the same as a bias.
12These are always required to be sets.
13Thus, model selection is the selection of a restriction of the space of all possible functions;

these restrictions may be disjoint or have a non-empty intersection. An example would be to
select the number of parameters to use for a model (i.e. degree of a polynomial, number of
parameters in regression). Hypothesis selection would then be the selection of a specific set
of values (points) from the model.
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classification model in the same way as hypothesis though and refer to param-
eterized models when we are talking about such things. The term knowledge in
this paper is also the same as hypothesis.

When inferring a hypothesis based on some data we need to state explicitly
the principle we are using on each occasion. There are essentially two ways of
dealing with this sort of scenario, each with its ancient advocate. The first is
to ’not multiply explanations beyond necessity’ and is referred to as Occam’s
razor and finds its modern embodiment in the MDL principle, which we adopt
in this paper. The second is the Epicurean principle of multiple explanations:
if more than one hypothesis is consistent with the observations, keep all of
those. Epicurus’ principle relates to Bayesian mixture probabilities, which will
be defined later, and prediction with expert advice, which will not be discussed
at all in this paper, but see e.g. [Vov98] for a discussion of this very interesting
approach.

The most intuitively appealing way of inferring a function which is to de-
scribe some datasource from sampled data is the Bayesian approach. Although
ideal, there are however considerable difficulties in specifying the prior prob-
abilities necessary for applications. This problem can be circumvented to an
extent by making the inference procedure as purely data-dependent as possible.
The Minimum Description Length (MDL) style of inference take that approach
and the strength of the inference procedures is almost as good as that of the
Bayesian. Instead of probability we use description length, which is equivalent
to probability as will be explained. For practical applications, MDL promises
to be a good approximation. 14

Why should we base an inference procedure on a description length concept?
This is motivated in a sender-receiver setting, where the sender has a dataset and
a set of hypotheses to describe the data with. The sender wants to communicate
the data as efficiently as possible to the receiver, and can use hypothesis to
describe his data more compactly. Thus, he uses the hypothesis to compress
the data and transmits the data by coding a model and the data w.r.t. the
model using a suitable encoding, or description method. We define the MDL
principle as follows:

Definition 1.3.1 Given a sample of data D and a countable collection of hy-
potheses H the MDL principle is to select the H ∈ H which minimizes the sum
of

• the bit length of the description of the hypothesis H and

• the bit length of the description of the data based on the hypothesis H15.

The first term is abbreviated as LC1(H) the second LC2(D|H) so the principle
is to select the hypothesis HMDL such that

HMDL = arg min
H∈H

{LC1(H) + LC2(D|H)},

where C1 is the description method for the hypothesis and C2 is the description
method describing the data w.r.t. the hypothesis.

14There are close similarities between the Bayesian method and MDL, but MDL deals
with codelengths while Bayes with probabilities and there exist some differences between the
inferences made. MDL has a existence separate from the Bayesian methodology. For more,
see [Grü04].

15This is called the stochastic complexity.
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We will not distinguish between the two description methods involved in the
definition and assume that the difference is understood.

An interesting thing is that every induction problem can be phrased as a bi-
nary sequence prediction problem and classification is a special case of sequence
prediction. This is the power of the universal Turing machine.

The MDL principle tries to strike a balance between how complex the hy-
pothesis is and how much it “explains” the data. The main motivation is to
avoid overfitting the hypothesis to the data, i.e. modelling the noise. We want
to factor out the regularities in the data by using our collection of hypotheses
but leave the (suitably random) noise. This could be phrased as selecting an
hypothesis that gives an optimal balance between how complex the hypothesis is
and how well that hypothesis explains the data and thus an instance of Occam’s
razor.

The MDL principle might seem a bit arbitrary. A justification of the prin-
ciple based on Bayesian learning theory follows.

When learning from data we have some collection of hypotheses H about
the data to choose from. Before observing any data we might claim some dis-
tribution over H, given by P (H). After observing some data we hopefully gain
some useful information about which hypotheses are more likely then others,
obtaining P (H |D). An appealing way to select a hypothesis from H is to select
the most probable one after observing the data. This gives the maximum a
posteriori (MAP) hypothesis:

HMAP = argmax
H∈H

{P (H |D)}

= argmax
H∈H

{
P (D|H)P (H)

P (D)

}
= argmax

H∈H
{P (D|H)P (H)}

= argmin
H∈H

{− log2 P (D|H)− log2 P (H)}

where we have dropped P (D) since it doesn’t depend on H . Observe that if
each H has the same probability we get the maximum likelihood estimator

HML = arg max
H∈H

P (D|H).

Now, to go from HMAP to the hypothesis selected by the MDL principle
we need to observe that codelengths are equivalent to probabilities. Thus, in a
sense, we obtain the Bayesian priors via codelengths. This relation is given by
a fundamental inequality from information theory, namely the Kraft inequality.
First, we define what is meant by a description method, and related concepts.

Definition 1.3.2 Let A be an alphabet. A coding system C is a relation be-
tween A and ∪k≥1{0, 1}k. If (a, b) ∈ C then we say that b is a codeword for a.
A description method is a coding system C such that for each b ∈ ∪k≥1{0, 1}k
there is at most one a ∈ A with (a, b) ∈ C The description length of a ∈ A
under a description method C is the cardinality of b, such that (a, b) ∈ C.

We are only concerned with prefix description methods, i.e. description methods
such that they don’t have codewords as their prefix: if x and y are any code-
words, then there doesn’t exist a codeword z such that zx = y. In what follows,
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whenever we talk of description methods, we are talking about prefix descrip-
tion methods. For details about MLD, see [Grü04] , for the Kraft inequality
giving the correspondence between prefix description lengths and probability
distributions:

Theorem 1.3.3 For any prefix description method C for a finite alphabet A =
{1, . . . , m}, the codeword lengths LC(1), . . . , LC(m) must satisfy∑

a∈A

2−LC(a) ≤ 1.

Conversely, given a set of codeword lengths satisfying the inequality, there exists
a prefix description method with these lengths.

A proof may be found in [CT91], Section 5.2.
This tells us that there exists a (defective) probability distribution 16

P (x) = 2−LC(x), ∀x ∈ Ω.

17 Of course, we choose the correspondence in such a way that short codelengths
correspond to high probability, and vice versa. With the correspondence be-
tween codelengths and probabilities we get the MDL principle as it is stated
above.

When using MDL for prediction there are three ways to proceed, all based
on the idea of using the best model from the class. We give descriptions of these
methods when we need to use them in Section 3.2

Much can be said about MDL and its relation to Kolmogorov complexity
(KC) but this is sufficient for our purposes. See e.g. [LV97] and [Grü04] for
more on KC and MDL.

Although a very powerful inference principle with solid theoretical and philo-
sophical foundations, the MDL principle does have some shortcomings. Criti-
cisms and a list of problems is for instance given in [HOGV04].

To conclude this chapter, we pick up the examples from Section 1.1 and see
what the MDL principle has to say about them intuitively. In the next chapter
we’ll give a definition of transferability based on MDL.

Example Language acquisition Consider a collection of grammatical rules from
Portuguese and Italian and a dataset consisting of sentences from Spanish, along
with their part-of-speech tagging. Inferring which rules apply sufficiently well
to justify using them to assist in acquiring Spanish can be done using MDL.
We evaluate the usefulness of the given grammatical rules by applying them to
the collection of sentences and seeing whether the sentences are described in
a shorter way by the help of the rules then without them. That is, if we can
compress the given corpus by using the rules. Or, in more common language,
if it is easier to remember the sentences by the help of a rules, that rule is
useful. As it happens, our brains seem to be wired especially well to deal with
grammatical rules.

16A defective probability distribution fails to satisfy
∑

x∈Ω P (x) = 1, Ω an outcome space,
but satisfies

∑
x∈Ω P (x) ≤ 1.

17The Shannon-Fano codes have these codelengths. Moreover, in Solomonoff’s universal
induction we have the universal prior by 2−shortest program length and we have in MDL the
priors by 2−shortest codelength.
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Next along the lines of the last example, we address the issue of transfer in
a MDL setting.
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Chapter 2

Transfer learning

Transfer learning deals with using knowledge obtained from one learning task
in another learning task. In general, transferring knowledge is difficult for us
humans. Teachers report that children don’t apply knowledge they obtained in
one subject to another until they have developed considerable cognitive abilities,
see e.g. [Has00] for a cognitive perspective.

In recent years researchers have started to focus on algorithms to transfer
learning and the momentum seems to be increasing. Prominent institutes such
as The Defense Advanced Research Projects Agency (DARPA), an agency of
the United States Department of Defense responsible for the development of
new technology for use by the military, have started to funnel funds to research
in that area. To quote the DARPA project description BAA05-29:

1.1 PROGRAM OBJECTIVES
The goal of the Transfer Learning Program solicited by this BAA is
to develop, implement, demonstrate and evaluate theories, architec-
tures, algorithms, methods, and techniques that enable computers
to apply knowledge learned for a particular, original set of tasks
to achieve superior performance on new, previously unseen tasks.
This goal reflects the observation that key cognitive abilities of hu-
mans include the abilities to generalize, abstract, reuse, reorganize
and apply knowledge learned in previous life experiences to novel
situations.

This agrees with our view that successful development of transfer learning
theories are a fundamental stepping stone towards a true machine intelligence.
Machines capable of transfer learning would display cognitive abilities far beyond
those seen so far. One might even venture so far as to say that when we have
good transfer learning paradigms the development of machine learning will first
take flight, perhaps on its own accord.

In this chapter we define our understanding of transfer, give a framework for
transfer learning and a meta algorithm for inducing transfer. We also address a
few issues related to transfer learning. Proof of a critical asymptotic property,
namely the convergence to a true distribution as more data in the dataset under
consideration becomes available and that distribution is in the hypothesis space,
is given in the next chapter and the steps necessary to instantiate the meta
algorithm described in this chapter in the chapter thereafter.
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2.1 Transfer learning
When we acquire a dataset from some example space, we think of the data
as arising from some domain that encapsulates some structure governing its
behaviour. This term “domain” is necessarily somewhat vague and subject to
interpretation. Two or more example spaces can be thought of as being related
if their domains are related. This relatedness concept is quantified with respect
to some task by the transferable notion defined in def. 2.1.2. 1

For instance, two medical diagnosis tests, i.e. classifiers, of diseases affecting
the same organ may be thought of as related domains, since the organ has some
structure governing the behaviour of the diagnosis. If we have one or more
histories of diagnosis test for some organ, and are devising a new test then
we would like to use the information already obtained about the structure of
diseases affecting that organ to speed up the learning of the structure for the
new test.2 In essence we would be transferring knowledge about the organ itself
since the diseases exploit weaknesses in organs. Thus, we would like to group the
other tests into an environment and transfer the learning from the environment
to the new application domain. We define an environment as follows:

Definition 2.1.1 An environment E is defined by E = (∅, Z1, Z2, . . . , Zn), n ∈
N, n > 0, where Zi, i ∈ {1, 2, . . . , n}, are example spaces.

We include the empty set for technical reasons. Including it allows for a default
behaviour of doing nothing.

1Another related point of view is provided by the hierarchical Bayes, which can be sketched
as follows in its basic form. Given several sequences of random variables x1, x2, . . . , xm, each
with corresponding length of ni, i = 1, . . . , m, ni ∈ N, which are unrestrictedly infinitely
exchangeable have a joint density

p(x1(n1), . . . , xm(nm)) =

∫
Θm

m∏
i=1

ni∏
j=1

p(xij |θi) dQ(θ1, . . . , θm),

where Q(θ1, . . . , θm) is the prior over Θm. In general, nothing can be said about Q. However,
if the xis are such that Q has interesting structure then various forms of hierarchical models
arise. Thus, we quantify the relatedness of the xis through the structure of Q. This leaves
it up to the modeler to decide which forms of Q are interesting. This might be quantified by
the Kullback-Leibler divergence between Q and a uniform distribution or a non-informative
prior of the same dimension, for instance. One interpretation of the KL-divergence between
two distributions P and Q is, that it is the expected number of extra bits needed to encode
an event from P if the code used corresponds to the distribution Q.

A generic density version of such a model might take the form:

p(x1, . . . , xk|θ1, . . . , θk) =
k∏

i=1

p(xi|θi) (2.1)

p(θ1, . . . , θk|φ) =
k∏

i=1

p(θi|φ) (2.2)

p(φ) (2.3)
The difference between this model and ordinary learning is that the bias of the learner, eq.
(2.2) is now conditioned on a hyper parameter φ and this has a hyper bias as represented by
the distribution in eq. (2.3).

This seems like a fruitful way to look at transfer; for the interpretation and further discus-
sion, see [BS94]. To make the connection with our framework, we would need to limit the
attention to sufficient statistics arising from the given sequences. This will not be further
pursued in this paper.

2This is related to comparing or combining clinical trials.
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Note that there is no mention of the example spaces being in any way related.
We would however hope that the underlying domains would be related in some
way, although it is difficult to quantify this3. Transfer should occur when there
is a computable relation between the domains. If there is no such relation, no
transfer should occur. The understanding of an environment given above also
permits a single non-empty domain to be used for transfer.

The primary goal of grouping example spaces into an environment is to draw
useful knowledge from it for transfer to a new domain and its example space.
This makes us wonder if we can require some of the features to be the same,
in some sense. However, that sort of requirement would always be superficial
at best. The features temperature and pressure occur in may domains4. We
have no reason to suspect that measurements of temperature and pressure in a
two different situations reflect knowledge from related domains. For instance,
one set of measurements might come from a situation where we are deciding
to play tennis. Another from a geological investigation of a geothermal drilling
hole drilled for deciding if to harvest the energy. Simple syntax is of little
use for grouping domains into environments; we need to consider why we are
solving particular classification problem. There is art in the construction of
useful environments.

We can however talk about knowledge contained in an environment without
complications:

Definition 2.1.2 Given an environment E = (∅, Z1, Z2, . . . , Zn), n ∈ N, the
environment knowledge5 is a collection of classifiers

ME = (h1, h2, . . . hm),

such that
∀i ∃j (hj = L(Zi)), j ∈ {1, 2, . . . , m},

i.e. there is at least one instance of a learner for each classification source con-
stituting the environment.

Say we have a new domain and an associated example space Zk+1. We
want to build a classifier for the new domain and have a dataset Sn

k+1, n ∈ N.
We suspect that Zk+1 belongs to an environment E = (∅, Z1, Z2, . . . , Zk). In
order to make use of the available information we need some measurement of
“transferability”. Also, as the dataset Sn

k+1 grows6, we would presumably like
to adopt more detailed or complex knowledge from the environment since our
confidence in the environment knowledge grows. Thus, we would like knowledge
of different complexity to choose from. We can induce knowledge of different
complexity from the environment knowledge by restricting attention to a subset
of the features available from each domain or a subset of the values that each

3This issue refers to the meta-meta-nature of the problem, similar to the way that transfer
learning refers to the meta-nature of the original learners.

4These have a well defined meaning in physics and obey the equation of state for an ideal
gas: PV = NkT , where P is pressure, V is volume, N is the number of molecules, k is
Boltzmann’s constant and T is temperature. In a classification setting objects get another
less quantifiable dimension: the purpose or goal of the task.

5The word “knowledge” is used to refer to uncertain, i.e. statistical, knowledge too.
6In the real world, we are frequently faced with a situation where more data becomes

available as time passes.
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feature can take. A formal definition of this sort of restrictions is technically
not straightforward and will not be attempted here. Selecting the features for
inclusion in a restriction of specific size is the feature subset selection problem,
which has been studied extensively.

A sensible way to partition the knowledge for use from each domain is to
take the most informative set of features, w.r.t. the dataset from that domain,
from each domain in increasing order of conditional complexity of the resulting
classifier, given the features already selected. So, we first select the single most
informative feature, then the two most informative features, the second condi-
tional on the first, and so forth. Thus we get the best quality of hypothesis for
each complexity, as measured by the hypothesis codelength, and a linear order-
ing of these optimal hypotheses with respect to the total codelength. These we
then evaluate with respect to data to choose a suitably sized hypothesis.

As an example, for decision trees constructed by an information theoretical
measure such as information gain, , defined in 4.1.2, this procedure takes place
quite naturally. There is no need for the learner to evaluate the informativeness
of restrictions of different sizes w.r.t. a dataset, as that information is encoded
into the tree when it is constructed.

An information measure quantifies the amount of regularity that a function
distills from a dataset, loosely speaking. Examples of such an information mea-
sure is information gain and the MDL codelength function. Our primary tool
for evaluating the usefulness of an environment is that of transferability which
we define in terms of a modified minimum description length principle. We
introduce weights over the environment knowledgeME to reflect that we have
more information then just the data alone. This information may be subjective.
The weights are functions from the environment knowledge to the positive reals.
These are discussed further in Sections 2.3 and 2.4.

Definition 2.1.3 Given environment knowledge ME and weights w(h) we say
that the knowledge contained in h ∈ ME is transferable with respect to the
dataset Sn

k+1, n ∈ N, if

Lwh
C (Sn

k+1) =def LC(Sn
k+1|h) + w(h)LC(h) ≤ LC(Sn

k+1).

The collection of all transferable classifiers we call the transferable set

Note that LC(∅) = 0 and we always have the empty set inME so the transferable
set contains ∅ at least. When selecting between two hypothesis of the same
complexity, we would of course consider the one which is more informative.
This is relevant for both construction of new hypotheses in ME and selection
of hypothesis for transfer.

When coding the data with respect to the empty hypothesis for a binary
classification problem, we will use one bit to designate the default class and
then code the exceptions from that class. This corresponds to a very naïve
Bayesian classifier which just uses the most frequent class as its prediction. The
encoder the codes the exceptions from this class. We give more detail on this
sort of scheme in Section 4.2.2.

Note also that Lwh
C (St

k+1) defines a linear order on any collection of hypothe-
ses H. Unless we have provably optimal codes for the objects under consider-
ation speaking of this hypothesis being x-times more transferable then another
doesn’t make any sense in our setting; we are only concerned with the order,
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not size. In most applications we have approximate codelengths but not optimal
ones.

Now we can answer the question: How do we select knowledge to be trans-
ferred?

Transfer h∗, s.t. h∗ = arg min
h∈ME

Lwh
C (Sn

k+1).

Before giving a statement of the proposed algorithm, we motivate it further
in a communication framework.

2.2 A Communication Framework for Transfer
Learning

In this section we will show how to extend the basic sender-receiver setting
underlying the minimum description length principle to cover the present setting
in line with our definition of transferability. We also illustrate the relation
between the algorithms involved in our framework.

We consider it our goal to perform well on the new task, for which we have
data, using the knowledge available from the environment as well as we can. This
may involve assigning different weights to the available hypotheses, depending
on how credible we think they are. For instance, hypothesis occurring in many
domains might be considered as more probable then others. We are minimizing
the communication cost of the new dataset to a receiver, which we use the prior
information to help us to do. We are not too concerned with time or memory
complexity; the only thing we require at this stage is computability.

Now, recall the discussion from Section 1.1. We are now ready to make
things a bit more precise, by using definitions given so far. When thinking about
transfer learning in terms of a communication framework we need to state who
communicates what to whom. Our problem is then to utilize the communication
channels as efficiently as possible. We do that by encoding our data as efficiently
as possible. To begin with, we’ll assume that all learners involved are using the
same learning algorithm. We’ll discuss how this assumption can be relaxed at
the end of this section.

Picking up from where we left of in Section 1.1, the situation is as follows:
I have a collection of hypotheses and you have a dataset and are looking for a
good hypothesis about your data. In line with the MDL principle, the combined
length of the description of the hypothesis you adopt and the description of the
data, w.r.t. your new knowledge should be minimized. The rationale behind
this is that this approach allows you to express the data itself as compactly
as possible, by using a hypothesis and the exceptions from that hypothesis. If
this minimization yields a hypothesis that is simple, and has no exceptions, you
are in luck and get a very concise way of expressing your data. If, however,
there is no good hypothesis to choose from in the collection of hypotheses I
propose with which to express your data, you end up using a hypothesis based
on your data alone, or, if everything else fails, no hypothesis at all. In any
case, if you can find a more compact way of expressing the data w.r.t. to some
hypothesis then without it, resources are saved. In all of this, the hope is that
by adopting knowledge from my environment you will be able to have superior
learning performance.
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If you like a hypothesis from the collection of hypotheses that I give you, you
may feel like combining more then one hypothesis into a more elaborate one.

The foregoing discussion raises a few questions for you:

• What are those theories or hypotheses?

• How do I decide that a hypothesis describes my data well?

• How do I describe a hypothesis?

• How do I describe my data w.r.t. a hypothesis?

• How can I gain confidence using that the knowledge I am adopting will
actually help me to learn the structure of the new learning task?

• Will I be adopting different theories from your environment, coming from
different domains, as my dataset grows?

• How can I gain more certainty in that any of your theories apply to my
domain?

The first two of these questions are the main concerns of this paper. The
theories to be considered are those that come from a learner which has been
applied to an environment. The theories that describe the data well are the
transferable hypotheses. The answers to the remaining questions are given by
our MDL inference principle.

For ease of discussion, lets say that I, call me A, have the knowledge from
an environment expressed as hypotheses from a learner. You, called B, have a
small dataset from a new domain, and you are communicating your data to a
third party, called C. The party C only plays a conceptual role in our scenario.
You and C share the feature data (the input objects) of the dataset, but C
doesn’t know the classes that each object belongs to. Thus, you only have to
communicate the class-labels to C. If the structure of B’s learning problem is
less rich then A has to communicate, B just ignores what is irrelevant. This
scenario is illustrated in Figure 2.1

L1S1 ME

f)

b) c) d)

L2S2

Lk+1Sk+1

e)

a)

A:Domain specific learning B: Bias evaluation and induction

C

Environment

g)

h1

h2

hk+1

Reality

HE L∗
k+1 C(h∗)

C(Sk+1)

Figure 2.1: The communication scenario for transfer learning The agents A, B
and C communicate the knowledge and data as shown

A few notes on Figure 2.1:
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a) Data Our data comes in the form of a sample from some datasource, which
presumably has some structure, Sk+1 is included, as per the assumption.

b) Learner The learners do their thing with the data, including Lk+1. In
general, we need only restrict the learners such that they have the same
representation of the learned hypothesis.

c) Each learner sends the learned hypothesis to ME .

d) ME : B is allowed to add hypotheses to ME , by deriving new hypothesis
from the given ones. In an adjusted measure of the applicability of the
hypothesis, each hypothesis is given weight according to their origin and
frequency, i.e. whether they come from the environment or induced from
the Sk+1 dataset. HE is thus the set of hypothesis proposed by the envi-
ronment, considering Sk+1 as a part of it.
HE represents the knowledge available to the agent B as offered by the
environment knowledge, the dataset under consideration and a cognitive
process in ME .

e) Sk+1: the new data is used to evaluate the hypotheses in ME and select a
single most relevant (partial) hypothesis.

f) L∗
k+1: agent B selects an optimal hypothesis from ME evaluated by Sk+1

and uses it as the hypothesis about the workings of the system under
observation. The agent B communicates the chosen MDL hypothesis, i.e.
the transferred knowledge, and the data with respect to that hypothesis
to the agent C. This information is sent as a code, from a given encoding
scheme. This where the minimum in MDL comes into play.

g) The minimum description length representation of the class-data w.r.t. h∗ ∈
ME is passed on to C, who only serves a conceptual purpose as a receiver.
h∗ is the transferred knowledge.

It might be asked what the position of the algorithm for inducing the transfer
is, in relation to item d) above and traditional algorithms. In Figure 2.2 the
flow of a implementation of this framework is shown.

As shown there, we can consider the base-learning algorithm (L), the algo-
rithm cooking up the hypotheses (M) and the transfer learning (TL) algorithm
separately. In a sense this is a wrapper framework, as it is not dependent on the
specific implementations. This we state as Algorithm 3, Transfer Inducer (TI),
which encapsulates what is shown on Fig. 2.2. We’ll refer again to this figure
when discussing the experiments.

2.3 A Meta-Algorithm
With the communication scenario from the previous section in mind, we now
state a meta version of the algorithm, as given in Alg. 1, 2 and 3.

In Algorithm 1 we like to keep the hk+1 separate for convergence reasons
discussed later.

In Algorithm 2 we need prior weights w. These prior weights reflect the
degree of belief of how probable each hypothesis is in the current task. How
do we motivate the assignment of the weights w(H)? The weights may be
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Algorithm 1: (M) A hypothesis grinder/combiner; partitions the
knowledge contained in a hypothesis into simpler hypothesis allowing
for combinations and assigns prior weights to each hypothesis. This
function should resemble a cognitive process

input : A set of hypotheses H = {h1, . . . , hk}, and a special
hypothesis hk+1

output: ME = {(hi, wi)}i∈I

% find more general hypothesis
M∗

1 ← chop(H)
M∗

2 ← chop(hk+1)

% each hi ∈ ME gets weight wi = n1 · wA + n2 · wB , ni the number of
occurrences of h in M∗

i , i.e. how many instances of h there are in M∗
i

ME ← combine((M∗
1, wA), (M∗

2, wB))

% Notes:
chop: this function “chops” the knowledge contained in a hypothesis
into components of less complexity, which constitute the output,
making it more general in the process since it covers less cases then
the original hypothesis. This function should not go beyond it’s input;
i.e. the union of all its outputs should be a subset of the input. The
term “chop” comes from how this function might behave on decision
trees, where we would chop the tree into subtrees.

Algorithm 2: (TL) Scheme for inducing transfer from a hypothesis-
collection and a dataset

input : A set of hypothesisME = {h1, . . . , hn} with associated
weights wi, learning algorithm L with the same hypothesis
representation asME , dataset S

output: h∗: MDL hypothesis overME w.r.t. S

%codelength of each hypothesis
for i← 1 to n do

lh[i]← LC(hi)
end
lh[n+1] ← LC(hi)

%codelength of data, given each hypothesis
for i← 1 to n do

lDh[i]← LC(S|H)
end

%(weighted) total codelength
for i← 1 to n do

tLC = lDh[i] + w[i]*ld[i]
end
%find the minimum description length

indexOfMinLC ← indexOf( min[tLC] )

returnME( indexOfMinLC )
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L(S)

hk+1

M(hk+1,H)

ME = {(hi, wi)}i∈I

TL(S,ME)

h∗

A

C

B

Figure 2.2: Relation between types of algorithms that appear in this paper,
which can be considered as a Transfer Inducer (TI, Alg. 3). H is a collection
of hypotheses h, L is a learning algorithm, S is a dataset, M is a hypothe-
sis induction algorithm, that might for instance make partial hypotheses from
those contained in H , and TL evaluates hypothesis for transfer producing a
single most probable hypothesis h∗. The A part of the figure corresponds to
ordinary learning, B to hypothesis space construction and C to the transfer
learning/evaluation.

thought of as mappings from the prior P (H) to a new prior P (H)1/(f+1), where
f is the frequency of the hypothesis in M, assigning f = 0 to the hypotheses
constructed from Sk+1. Thus, w(Lk+1(Sk+1)) = 1, and another hypothesis
h occurring once would get w(h) = 1/2, and so forth, by the correspondence
between codelengths and probabilities. The essence of transfer to the new task
is captured by these weights. Contrary to the approach in Statistical Learning
Theory, where the model is penalized by some regularization factor to prevent
overfitting, we discount the models that the environment indicates are more
probable.

In [Zha04] and [BC91] a modified information complexity minimization crite-

Algorithm 3: (TI) A transfer inducer; wrapper for the framework in
fig. 2.2.

input : S, L, M, TL as defined above
output: h∗, an optimal hypothesis

% Join the elements of the algorithm:
return h∗ = TL(S, M(L(S), H))
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rion7 is studied where the model complexity L(h) is assigned some regularization
parameter λ. The contribution of the model complexity to the total then be-
comes λL(H). This λ is used in a similar way as our w and has been shown
to make the estimation method more robust for λ > 1. Unfortunately, neither
paper offer any intuitive interpretation of this parameter and it only serves a
technical purpose to improve the bounds derivable. In this case, the ends justify
the means. It is not clear from either paper why, besides the technical justifi-
cation, we should allow for this parameter and sparse advise is offered on the
value to assign to λ.

The relevance of these results for our work is that it might be advisable to
use w(H) > 1 for all hypothesis. However, that undermines the purpose of
transfer, namely to adopt more complex hypotheses then the data alone give
rise to, as indicated by the environment.

Zhang’s results imply for us, that we put not too small of a prior weight on
a hypothesis that is close to the “truth” (even if such a hypothesis is not in the
space under consideration), so we should take care not to assign too low weight
to the empirical distribution, the distribution constructed form the new task,
since in general we expect the underlying learner to be convergent.

Since we have not included any information on the size of the dataset used
for constructing the hypotheses we would like substructures from each learner
(domain) to be available, since we may only have very limited data in Sk+1.
What sort of structures might these be?

One particularly appealing thing to do in Alg. 1 with the elements of H ,
the set of given hypotheses, is to construct less specific hypotheses from, i.e.
hypotheses based on fewer features and with fewer partitions of the input-space.
These hypotheses would represent a subset of the knowledge contained in each
hypothesis, allowing the algorithm to refrain from over generalizing based on
the limited data in Sk+1 and adopt a subset of the knowledge contained in each
hypothesis. Another appealing thing to do with the hypotheses is to join disjoint
hypotheses, allowing for overlap between two or more domains; specifically this
might be useful based on restricted hypothesis. We illustrate how this might
proceed in Section 4.4.

To use this algorithm we need to instantiate all the steps in the procedure,
which we give an example of in Chapter 4 using decision trees. The issue of
coding the relevant structure for the inference is usually quite tricky, but for a
decision tree implementation it turns out to be rather straight forward, see 4.2.

2.4 Discussion
Here we discuss the minimization of the code length for the environment as a
whole. In all cases, we have a new, previously unseen task to solve, given a new
dataset Sk+1, and the environment knowledgeME . The question addressed in
this section is what to optimize.

If we have available the datasets Si, i ∈ {1, 2, . . . , k}, k ∈ N, from the do-
mains used to construct the hypotheses inME , a sensible thing to do would be
to consider the new task as a part of the environment and solve:

arg min
H
{L(H) + L(H | ∪k+1

i=1 Si)} = H∗.

7The MDL principle is such a criterion.
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The hypothesis H∗ minimizes the total codelength for the whole environment.
If the datasets are not available, as we assume in this paper, we can consider

two distinct minimization problems to solve when finding an optimal hypothesis
for the new task. The first is the one considered in this paper:

argmin
H∈ME

{w(H)L(H) + L(Sk+1|H)},

where the weights w(H) are given positive reals and adjusted to allow for more
complex models then the data alone would.

The other might be formalized as follows. Still, ME is fixed, but there is
no need for specifying the weights w(H). From the environment knowledge, we
find the optimal hyper-hypothesis or -prior :

arg min
h∈Θ

{L(h) +
∑

j

L(Hj |h) + L(Sj |Hj)} = arg min
h∈Θ

{L(h) +
∑

j

L(Hj |h)} = h∗
a,

since the terms L(Sj |Hj) does not depend on h; Θ is the space for the hyper-
prior. Then, when we get new data Sk+1, which we consider to be a part of the
environment abstractly described by h∗

a, we solve

arg min
H
{L(h∗

a) + L(H |h∗
a) + L(Sk+1|H)} = arg min

H
{L(H |h∗

a) + L(Sk+1|H)},

to get the optimal description of the new data, when assuming that it originates
from the same environment.8 To apply this method, we need to specify the
hyper-prior, or a code length function for the hypotheses from Θ and L(H |h∗

a),
which does not appear to be obvious. This approach could be termed three part
MDL, and has close relations with the hierarchical Bayes method.

The approach taken in this paper appears to be more robust to misspecifica-
tion of the environment then when specifying a hyper-prior. Misspecification of
the hyper-prior would affect the codelength of the hypothesis given the hyper-
prior in a adverse way. The alternative optimization outlined in this section
does not concentrate on the new task, but on the environment as a whole when
viewing the new task as a part of it. It might be said that the method with
the weights concentrates on performing well on the new, current task, while the
other approach, outlined in this section, concentrates on finding good abstrac-
tions based on everything in the environment. One finds good predictions for
what happens next, the other constructs good models of the environment. If
there is even one domain that doesn’t group well with the other tasks9 then the
abstraction might be “confused”, while the method we devote this paper to does
not get so easily confused. It would seem that our method, with the weights,
concentrates on performing well on the new task, while the other on any unseen
task. The latter case is addressed in [Bax00]. Are these problems distinct? Is
the three part description length minimization better then weighing the prior
knowledge? A proof that our approach is better or not then the three part MDL
approach would be nice, but that is the subject of another paper.

In short, which optimization problem we solve, and what we assume, depends
on the purpose of our investigations: are we learning about the environment or
learning to solve the new task? In this paper, we concentrate on performing
well on the new task.

8This is slightly reminiscent of the expectation-maximization (EM) method [DLR77].
9In the hierarchical Bayes sense.
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Which learning algorithms? So far we have assumed that all learners are
using the same learning algorithm. Now we ask: what restrictions should be
imposed on the learners producing the hypotheses in ME? Basically the only
restriction is that we have a coding scheme to produce the codelengths of the
hypothesis so we can evaluate if the hypothesis is transferable or not. We are
not concerned with how the hypothesis are made, only whether they are useful
or not for the task at hand.

Taking a closer look at the framework, another thing reveals itself. The
usefulness of the hypotheses in ME , as measured by the transferability, can be
influenced by the construction of the hypothesis. But, if the hypotheses are bad
that will be reflected in poor transferability.

Further, we can repeatedly apply the TI algorithm to unexplained data, until
the transferable set is exhausted.

No Free Lunch and Transfer learning Researchers are sometimes con-
cerned with No Free Lunch (NFL) style results, see [WM95]. These results
rely on the premise that all inputs are equally likely a priory, observations are
i.i.d. and the problem spaces are finite, which is rarely the case. As concerns
our algorithm, the bias of the underlying algorithm is enriched with information
from an environment, which further directs the search for an optimal hypothesis
away from any sort of uniform prior.

To conclude this chapter, we recap that the whole of the bias is implemented
in ME , along with the weights, where the environment is given relative prefer-
ence over the structures rising from the current dataset, and only hypotheses
in ME are considered for the new task. Note that this is not really restrictive,
since we eventually have almost sure converge to the hypothesis constructed by
the new dataset when we have enough data in the sample and this turns out to
be the true hypothesis in the realizable case. We now turn our attention to this
issue.
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Chapter 3

Convergence

“The truth is not out there.”
— Not Agent Mulder from the television show The X-files.

In this chapter we address the asymptotic properties of our method. Why do
we need asymptotic properties? Without those we can’t state that our method
is actually of any use. If more data isn’t of use for our method, then it wouldn’t
really be adjusting to the properties of the data, or to the structure indicated by
the data. We are looking for algorithms that learn from data, so this is essential.
Asymptotic properties, however, do not necessarily tell us anything about small
sample properties: in practice these are the properties of real importance.

To provide formal grounds for the utility of our method we need theorem
3.2.4 which gives bounds for the divergence of a probability measure from a true
measure. Loosely speaking, this theorem tells us that if the true measure, or
classifier, is in the collection of hypotheses M then our method will recover it
eventually. This result hinges on the learning problem being realizable, using
MDL as the basis of inducing transfer and the underlying method being con-
vergent. These asymptotic results give us a guarantee of the behaviour of the
proposed framework but do not state anything about restricted size sample re-
sults It may very well be that a suspicious looking hypothesis will be selected for
transfer based on a sample, but eventually (in mean sum, as defined later) when
there is enough data, a wrong bias on the hypothesis space will be overcome.
In the end, there is only the data to base inference on.

The convergence results are due to Hutter and Poland [HP05] but adapted
to cover only our present setup, with some simplifications and more detail then
in the original paper. Their work draws on Solomonoff’s seminal paper [Sol78],
containing results from 1968(!), where he proves for the Bayes mixture distri-
bution ξ over any collection of measures C containing the true distribution μ,
ξ(x) =

∑
ν∈C wνν(x), that

∞∑
t=1

E
∑
a∈X

(μ(a|z)− ξ(a|z)) ≤ ln w−1
μ .

where z is sequence from X∗1, and an earlier paper by Hutter [Hut01] with
1An interesting account by Solomonoff of discoveries can be found at http://world.std.
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results from 1999:
∞∑

t=1

E
∑
a∈X

(μ(a|z)− ρnorm(a|z)) ≤ w−1
μ + lnw−1

μ ,

where
ϕnorm(a|z) =def

ϕ(a|z)∑
b ϕ(b|z)

=
ϕ(za)∑
b ϕ(b|z)

for any function ϕ : Zn → [0, 1], n ∈ N, where za is the sequence z with a added
to the end. The result we need is the convergence between the true measure
and a MDL predictor, which will be defined shortly.

This chapter is on the technical side but is nevertheless important since
without asymptotic statements about our algorithm we don’t know if they are
of any use.

3.1 Convergence Concepts
The proofs of convergence given in Section 3.2 are based on the concept of
convergence in mean sum. This we relate to the more familiar convergence in
probability, which is the probability theory equivalence of the measure theoretic
almost everywhere.

The following convergence concepts are of interest:

Definition 3.1.1 A sequence of random variables x1(ω), x2(ω), . . . from Ω con-
verges to x(ω), xi : Ω→ R

in probability if limt→∞ P ({ω ∈ Ω : |xt(ω)− x(ω)| > ε}) = 0

with probability one if P ({ω ∈ Ω : limt→∞ xt(ω) = x(ω)}) = 1

in mean sum (i.m.s.)
∑∞

t=1 E[(xt(ω)− x(ω))2] <∞
where P is a probability measure. Convergence with probability one is also re-
ferred to as almost sure and almost everywhere convergence.

Almost sure convergence is frequently used in probability theory and is the
concept used in the strong law of large numbers, which states that a sample
average tends to the mean of the distribution generating the observations almost
surely, loosely speaking.

These concepts are related by the following lemma, which shows that the
i.m.s. concept is the strongest of the three:

Lemma 3.1.2

1. Almost sure convergence implies convergence in probability.

2. Convergence in mean sum implies almost sure convergence .

Proof See [Ser80].

com/~rjs/dart.pdf
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Thus, our proofs of convergence i.m.s. imply convergence with probability one.
For a further discussion see [Ser80]. There are various other convergence con-
cepts in use, but these are sufficient for our purposes.

We are mainly interested in when a sequence of distributions converges to
a specific distribution: either the true distribution or some distribution which
is sufficiently close to such a distribution. For a discussion on what sufficiently
means in this context, see [RH06].

3.2 Proof of Convergence
We now show that under some conditions the MDL estimation method recovers
the true classifier μ, if there is such a thing. We follow the nomenclature of
Hutter and Poland but use slightly different notation2.

Consistent with the notation in previous Sections, we use y ∈ Y to denote
class labels and x ∈ X to denote the objects for classification. We always deal
with object-label pairs z = (x, a) ∈ (X, Y ) . We use xa or za to denote an object
corresponding to the label a. We use zn

a ∈ Xn × Y n−1 to denote a history of
n object-label pairs, but the label for a is missing; the missing observation is
the one corresponding to the t-th element of xt. We use zn

yk ∈ Xn × Y n−k to
denote a history of n object-label pairs, but the labels for a subset of k items
missing. When we use ϕ(xt|yt) the objects and labels are paired. As in the
MDL literature, the term xy, where x and y are from an alphabet X , refers to
the concatenated string.

This is slightly different from the normal situation when zt ∈ Zt = (X×Y )t,
which we’ll use at times, but there should be no risk of confusion. The foregoing
is the normal situation when using a classifier: first we build the classifier using
some training set with all the labels supplied, then we use the classifier on a
set with the labels missing. The application of the classifier to the situation
when the labels are missing is where the classifier actually becomes useful. We
assume that all examples are independently identically distributed.

We define an MDL estimator as

Definition 3.2.1 Let C be a countable class of measures and wν be (prior)
weights assigned to each ν ∈ C, s.t.

∑
ν∈C wν ≤ 1, wν > 0, ∀ν ∈ C. The MDL

estimator of a class label y, given its object is

ρ(y) = max
ν∈C
{wνν(y|xy)}

The correspondence of ρ to the two part description length has already been
described in the Section 1.3 (hint: think logarithms).

We need to see that the maximum in the definition is attainable. This we
show next

Theorem 3.2.2 The MDL estimator exists.

Proof See [HP05].

To prove the results we need MDL predictors. These are defined as:
2The point of this is to hopefully make the classification references more clear.
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Definition 3.2.3 The static MDL predictor is

ρstatic(a|zt
a) = ρyt−1

(a|zt
a) =

ρyt−1
(yt−1a|xa)

ρyt−1(yt−1|xa)

The dynamic MDL predictor is

ρdyn(a|zt
a) = ρyt−1a(a|zt

a) =
ρyt−1a(yt−1a|xa)
ρyt−1(yt−1|xt

a)

To ensure that the MDL predictors are indeed measures we normalize them
by

ϕnorm(a|za) =def
ϕ(a|za)∑
b ϕ(b|zb)

=
ϕ(zaa)∑
b ϕ(b|zb)

for any function ϕ : Zn → [0, 1], n ∈ N.
The difference between ρstatic and ρdyn is illustrated by

ρdyn =
maxν∈C(wνν(yt−1a|xt

a)
maxν∈C(wνν(yt−1|xt

a)
versus

maxν∈C(wνν(yt−1|xt
a)

maxν∈C(wνν(yt−1|xt
a)

= ρstatic

so the dynamic predictor is optimized for all possible outcomes a ∈ Y , while
the static one uses the estimate based only on the history yt−1.

The following theorem establishes bounds for the measures induced by our
classifiers. The importance of this theorem is, as theorem 3.2.11 states, that
it provides both necessary and sufficient conditions for the true distribution to
be recovered by the MDL-method in a rather strong sense. We’ll apply this to
decision trees in chapter 4.

Theorem 3.2.4 Let H be a countable collection of classification models and
C the set of probability measures induced by H containing the true measure μ.
Then for any given set of inputs zt ∈ Zt

∞∑
t=1

E
∑

a∈{0,1}
(μ(a|zt

a)− ρ(a|zt
a))2 ≤ 21w−1

μ

where ρ is the MDL dynamic predictor.

Before proving this theorem we first establish a few results. The Bayes
mixture distribution of a countable collection of distributions C over an example
space Ω, such that each distribution in C is associated with a weight wν is

ξ(x) =
∑
ν∈C

wνν(x), ∀x ∈ Ω. (3.1)

The weights can be interpreted as a prior on the distributions in C.
The first property of use follows trivially from the definitions of the quantities

involved:

Lemma 3.2.5 For the MDL estimator ρ and the Bayes mixture ξ, for any
yk ∈ Y k and any input zt

yk ∈ Xt × Y t−k we have

0 ≤ ρ(yk|zt
yk) ≤ ξ(yk|zt

yk) ≤ 1
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A few simple properties of the MDL predictor are the following:

Lemma 3.2.6 For any countable collection of measures C, labels y, a ∈ Y and
objects zt

ya from Xt × Y t−2

1. ρya(ya|zt
ya) =def ρ(ya|zt

ya) ≥ ρz(ya|zt
ya)

2. ρ is an anti-semi measure:
∑

a∈X ρya(ya|zt
ya) ≥∑a∈X ρy(ya|zt

ya)

3. |ρ− ρx| ≤ 1 and

4. For any yk ∈ Y k,
μ(yk|zt

yk)

ρ(yk|zt
yk)
≤ w−1

μ .

Proof All these item are simple to establish.

1. From the definition of the estimator, we have

ρ(ya|zt
ya) = max

ν∈C
{wνν(ya|zt

ya)} and

ρz(ya|zt
ya) = max

ν∈C
{wνν(z|zt

ya)}

so we see that ρzt

is a most equal to ρ, ∀zt ∈ Zt.

2. Follows directly from property 1. above.

3. Trivial, since both are in the interval [0,1].

4. We have μ(y|zy) ∈ C and since μ is the true distribution, we have that

wμμ(y|xy) ≤ wνy ν(y|zy) = ρ(y|zy)⇔
μ(y|zy)
ρ(y|zy)

≤ 1
wμ

= w−1
μ .

and we are done. �

The next lemma is a central tool.

Lemma 3.2.7 For any countable collection of measures C with μ ∈ C and inputs
zt

y ∈ Xt × Y t−1 and the Bayesian mixture predictor ξ defined as in 3.1.

ρy(y|zt
y)−

∑
a∈X

ρ(ya|zt
y) ≤ ξ(y|zt

y)−
∑
a∈X

ξ(ya|zt
y)

for all y ∈ Y k.

Proof In the proof we will make use of the fact from lemma 3.2.6 that ρya(ya|zya) ≥
ρy(ya|zya), ∀y, a ∈ Y, zya ∈ Zt − ya, to get the inequality. The interpretation
of ν(ya|zya) is, that it is the probability measure of ya, given the object/input
zya, i.e. a sample without the labels y and a.
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We have, that∑
a∈X

ξ(ya|zya)−
∑
a∈X

ρya(ya|zya) =
∑
a∈X

(ξ(ya|zya − ρya(ya|zya))

≤
∑
a∈X

(ξ(ya|zya)− ρy(ya|zya))

=
∑
a∈X

(∑
ν∈C

wν(ya)ν(ya|zya)− wνy νy(ya|zya)

)

=
∑
a∈X

⎛
⎝ ∑

ν∈C\{νy}
wνν(ya|zya)

⎞
⎠

=
∑

ν∈C\{νy}
wνν(y|zya) [C consists of measures]

=
∑
ν∈C

wνν(y|zya)− wνyνy(y|zya)

= ξ(y|zya)− ρy(y|zya).

So, we get ∑
a∈X

ξ(ya|zya −
∑
a∈X

ρya(ya|zya) ≤ ξ(y|zya)− ρy(y|zya)

⇔ ρy(y|zya)−
∑
a∈X

ρya(ya|zya) ≤ ξ(y|zya)−
∑
a∈X

ξ(ya|zya).

�

We note in passing that ξ − ρ is a semi measure.
The next couple of properties are slightly more difficult to establish. The

first gives bounds between the true measure and a normalized MDL predictor,
the second between two types of MDL predictors. The first is used in the proof
for 3.2.10, the second is used in the proof of the main theorem of this chapter.
Both he proofs are along the same lines, so only the second will be given. The
proof for the first assertion is given in detail in [HP05].

Lemma 3.2.8 For any countable collection of measures C, such that the true
measure μ is in C and any input z ∈ Zt we have

1. ∞∑
t=1

E
∑
a∈X

(μ(a|za)− ρnorm(a|za)) ≤ w−1
μ + lnw−1

μ .

2.
∞∑

t=1

E
∑
a∈X

∣∣∣ ρnorm(a|za)− ρ(a|za)
∣∣∣

=
∞∑

t=1

E

∣∣∣∣∣1−∑
a∈X

ρ(a|za)

∣∣∣∣∣ ≤ 2 w−1
μ .
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Proof Recall that (·)+ = max{0, ·}. To prove the second item, we begin by
noting

∑
a

|ρnorm(a|zt
a)− ρ(a|zt

a)| =
∑

a

ρ(a|zt
a)∑

b ρ(b|zt
b)

∣∣∣∣∣1−∑
b

ρ(b|zt
b)

∣∣∣∣∣
=

∣∣∣∣∣1−∑
b

ρ(b|zt
b)

∣∣∣∣∣
=

(
∑

a ρ(a|zt
a)− ρ(zt))+

ρ(zt
n)

+
(ρ(zt)−∑a ρ(a|zt

a))+

ρ(zt
n)

,

and, by taking expectation and summing over all t

∞∑
t=1

E
(
∑

a ρ(a|zt
a)− ρ(zt))+

ρ(zt
n)

+
∞∑

t=1

E
(ρ(zt)−∑a ρ(a|zt

a))+

ρ(zt
n)

=
∞∑

t=1

∑
zt∈Zt

μ(zt)(
∑

a ρ(a|zt
a)− ρ(zt))+

ρ(zt
n)

+
∞∑

t=1

∑
zt∈Zt

μ(zt)(ρ(zt)−∑a ρ(a|zt
a))+

ρ(zt
n)

≤ w−1
μ

∞∑
t=1

∑
zt∈Zt

μ(zt)(
∑

a ρ(a|zt
a)− ρ(zt))+

ρ(zt
n)

+ w−1
μ

∞∑
t=1

∑
zt∈Zt

μ(zt)(ρ(zt)−∑a ρ(a|zt
a))+

ρ(zt
n)

[by 3.2.6.4]

= w−1
μ

∞∑
t=1

∑
zt∈Zt

∣∣∣∣∣ρ(zt)−
∑
a∈X

ρ(yta|xt+1)

∣∣∣∣∣
= w−1

μ

∞∑
t=1

∑
zt∈Zt

(∑
a∈X

ρ(yta|xt+1)− ρ(yt|xt) + 2(ρ(yt|xt)−
∑
a∈X

ρ(yta|xt+1))+
)

= w−1
μ lim

n→∞

n∑
t=1

∑
zt∈Zt

(∑
a∈X

ρ(yta|xt+1)− ρ(yt|xt) + 2(ρ(yt|xt)−
∑
a∈X

ρ(yta|xt+1))+
)

≤ w−1
μ (2ξ(∅)−ρ(∅)︸ ︷︷ ︸

≤0

+ lim
n→∞

n∑
t=1

∑
zt∈Zt

(ρ(zt)− 2ξ(zt)︸ ︷︷ ︸
≤0

)) [by 3.2.7 and telescoping]

≤ w−1
μ (2ξ(∅))

≤ 2w−1
μ [ since ξ ∈ [0, 1] ],

where we have used that |u| = u+ + (−u)+ = −u + 2u+ and 1 ≥ ξ ≥ ρ ≥ 0. �

Yet another result necessary to obtain the proof of the main theorem is

Lemma 3.2.9 For any collection of measures C, such that the true measure μ
is in C and any input z ∈ Zt we have

∞∑
t=1

E
∑
a∈X

∣∣∣ ρza
norm(a|za)− ρza(a|za)

∣∣∣ =
∞∑

t=1

E

∣∣∣∣∣1−∑
a∈X

ρza(a|za)

∣∣∣∣∣ ≤ w−1
μ .

Proof The first equality holds because the normalized MDL predictor summed
over all possible outcomes sums to 1. Let l(x) denote the size of the example x.
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To get the inequality, we have by 3.2.7 and 3.2.6.4 for all n ∈ N

n∑
t=1

E

∣∣∣∣∣1−∑
a∈X

ρza

dyn(a|za)

∣∣∣∣∣ =
n∑

t=1

E
ρ(za)−∑a∈X ρ(zaa)

ρ(za)

=
n∑

t=1

∑
l(za=t−1)

μ(za)
ρ(za)−∑a∈X ρza(zaa)

ρ(za)

≤ w−1
μ

n∑
t=1

⎛
⎝ ∑

l(za=t−1)

ρ(za)−
∑
a∈X

ρza(zaa)

⎞
⎠

≤ w−1
μ

n∑
t=1

⎛
⎝ ∑

l(z=t−1)

ξ(z)−
∑
a∈X

ξ(za)

⎞
⎠

≤ w−1
μ

⎛
⎝ξ(∅)−

∑
l(za=n)

ξ(za)

⎞
⎠

≤ w−1
μ ,

since the series telescopes, i.e. successive positive and negative terms cancel each
other out in the length of the examples. Since this holds for all n ∈ N it also
holds in the limit. �

Now, for measurable functions f, g : Xn → [0, 1] and inputs and history
z ∈ Zt, define

Δza(f, g) =def

( ∞∑
t=1

E

{∑
a∈X

(f(a|za)− g(a|za))2
}) 1

2

.

Since Δu(·, ·) is proportional to the 2-norm, the triangle inequality Δza(f, h) ≤
Δza(f, g) + Δza(g, h) holds.

Lemma 3.2.10 For any countable collection of measures C, such that the true
measure μ is in C and any input and history z ∈ Zt we have

∞∑
t=1

E
∑
a∈X

(
μ(a|za)− ρy<t

dyn(a|za)
)2

≤ 8w−1
μ

i.e.
Δ2(μ(a|za), ρy<t

dyn(a|za) ≤ 8w−1
μ .

Proof Since
ln w−1

μ ≤ w−1
μ − 1 ≤ w−1

μ

we have by 3.2.8

Δ(μ, ρnorm) ≤
√

2w−1
μ .

Since by lemma 3.2.6.3 |ρdyn − ρnorm| ≤ 1, we get by multiplying both sides of
3.2.8 with that quantity, that

Δ(ρnorm, ρdyn) ≤
√

2w−1
μ .
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By the triangle inequality we get

Δ(μ, ρdyn) ≤ Δ(μ, ρnorm) + Δ(ρnorm, ρdyn) ≤
√

2w−1
μ +

√
2w−1

μ = 2
√

2w−1
μ

so
Δ(μ, ρdyn) ≤

√
8w−1

μ .

�

We are thus ready to prove the result in theorem 3.2.4, the main result.

Proof of Theorem 3.2.4 In order to get

∞∑
t=1

E
∑

a∈{0,1}
(μ(a|za)− ρ(a|za))2 ≤ 21w−1

μ

that is
Δ2(μ(y|zy), ρ(y|zy)) ≤ 21w−1

μ

we have from lemma 3.2.6 and by the triangle inequality that

∑
a∈X

|ρdyn(a|za)− ρza

static(a|za)| =

∣∣∣∣∣∑
a∈X

ρ(a|za)− ρza

static(a|za)

∣∣∣∣∣
≤

∣∣∣∣∣∑
a∈X

ρdyn(a|za)− 1

∣∣∣∣∣+
∣∣∣∣∣1−∑

a∈X

ρza

static(a|za)

∣∣∣∣∣
≤ 2w−1

μ + w−1
μ ,

with the last inequality obtained from lemma 3.2.8 and lemma 3.2.9. Therefore,
by 3.2.6.3

Δ2(ρdyn, ρstatic),≤
∞∑

t=1

E
∑
a∈X

|ρdyn(a|za)− ρza

static(a|za)| ≤ 3w−1
μ .

We also have, by lemma 3.2.10

Δ(μ(y|zy), ρdyn(y|zy)) ≤ 2
√

2w−1
μ

Since the triangle inequality holds for Δ(·, ·) we get, by squaring both sides
of the inequality:

Δ2(μ(a|za), ρza

static(a|za)) ≤ Δ2(μ(a|za), ρdyn(a|za)) + Δ2(ρdyn(a|zy), ρza

static(a|za))
+2 ·Δ(μ(a|za), ρdyn(a|za)) ·Δ(ρdyn(a|zy), ρza

static(a|za))

=
(

2
√

2w−1
μ

)2

+ 3w−1
μ + 2

(
2
√

2w−1
μ

)√
3w−1

μ

= 8w−1
μ + 3w−1

μ + 4
√

2
√

3w−1
μ

= 11w−1
μ + 4

√
6w−1

μ

≤ 21w−1
μ ,

since 2.5 ≥ √6, and we are done. �
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The following theorem establishes the relation between the bound in last
theorem and convergence in mean sum and thus completes our development of
convergence results.

Theorem 3.2.11 For any two measures ϕ and μ

ϕ
i.m.s.−→ μ⇔

∞∑
t=1

E
∑

a∈{0,1}
(μ− ρ)2 <∞.

Proof See [Ser80].

Convergence in mean sum is a very strong convergence concept, see lemma
3.1.2.

There is more information about our method to be distilled from theorem
3.2.4. In their paper, Hutter and Poland indicate how the rate of convergence
can be quantified, see [HP05], page 5.

Convergence and the Meta-Algorithm Our algorithm adds the hypothe-
sis obtained from the new dataset into the collection of hypotheses, which gives
rise to the collection of measures. This assures convergence of our method,
contingent on the convergence of the underlying classifier. As this is a meta-
algorithm, this seems all we could hope for. For completeness, we state this as
a theorem:

Theorem 3.2.12 Given a realizable learning problem, the algorithms given in
Algorithm 1 , 2 and 3 converge i.m.s. to the true hypothesis.

Proof Trivial, by theorem 3.2.4 and 3.2.11.

As an example, the hypothesis space for decision tree learners is complete,
so our method is complete also, i.e. converges to the true measure almost surely,
when implemented for decision trees.

In the next chapter we’ll illustrate the usage of the meta-algorithm.
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Chapter 4

Instantiation Of
Meta-Algorithm

In this chapter we describe how the meta-algorithm from Section 2.3 can be
instantiated with a decision tree algorithm, giving the L and TL algorithms of
Figure 2.2. We postpone M to the next chapter.

First we describe decision tree learning and an algorithm to construct deci-
sion trees. Then we describe how to obtain the codelengths from these constructs
and finally how to code exceptions in data from a tree. When we have discussed
these things we can try out the framework on data, which we’ll do in the next
chapter.

4.1 Decision Tree Learning
In this section we explain decision tree learning and its most popular embodi-
ment. After giving a brief overview of the main ideas, we’ll explain some sub-
tleties of how decision trees work in relation to a freely available implementation,
J48 in Weka [WF05], which we use in the next chapter. For a rigorous proba-
bilistic treatment of tree classifiers quite different from the one presented here,
see [DGL97].

4.1.1 General Ideas
Consider an example space consisting of a discrete input space X and a discrete
output space Y , linked by some function μ. Decision tree learning is a method
for learning such functions μ when presented with a set of training examples,
which can easily be adopted to a continuous input space. The learned structure
is represented as a tree.

Inputs are classified from the root down to a leaf node, which gives the class
of the object being classified. In each internal node, including the root, a test
is performed on the value of a feature of the example being classified and the
example travels down the tree until it reaches a leaf, which gives the class for
that example. These internal nodes do not necessarily need to test all features
to get a classification and can base them on a subset of available features.
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Decision trees themselves are just a structure for representing concepts, i.e.
functions, and as such have no preference for one structure or the other. A bias
is provided by the algorithms that are used to construct the trees. Usually they
take the form “use as short a tree as suitable”.

Most decision tree learning algorithms build their trees by recursively split-
ting the input data based on some feature depth-first, until either the examples
or the features are exhausted. These splits partition the input space into com-
plex decision boundaries, as is e.g. shown in Figure 4.1.

Figure 4.1: A partition of the input space for 2 features, one continuous, the
other discrete. Examples are represented as circles for a class of ’0’ and a disk
for ’1’. The class for the shaded region is ’1’, the other ’0’.

Decision trees are complete in the sense that for discrete input and output
spaces they can represent all functions between those. Decision trees are a
disjunction of conjunctions. Missing data is not dealt with in normal decision
tree procedures and needs to be handled specially.

4.1.2 C45 and Weka’s J48
Quinlan’s decisions tree algorithms have long been as close to “off the shelf”
machine learning as you can get, starting with ID3 and continuing to the present
C5.0. The reason for this is, in addition the properties discussed above, that
these algorithms are very versatile and robust. They handle both discrete and
continuous data, are not overly sensitive to the information criterion used to
construct the trees and have a very intuitive representation. A short description
of J48, an implementation of C4.5, version 8, follows.

Building

The procedure for building a tree proceeds by recursively splitting the dataset
based on some feature, which is selected according to an information measure,
until there is no feature left to split on or no more data with different labels in
the subset. The resulting leaf is assigned a class-label by majority vote. This
procedure is a locally optimal (i.e. greedy) so after the building is done we might
want to reconsider some structures, which is done by pruning or subtree raising.

There are basically two possibilities for an information criterion to split the
dataset: information gain and the gain ratio. Both are based on the entropy of
a dataset S.
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Definition 4.1.1 The entropy of a dataset S with outcomes in A↔ {1, . . . , n}, n ∈
N is

H(S) =
∑
a∈A

−pi log2(pi)

where pi is the probability of the i−th symbol. When the probabilities aren’t
known we make use of the relative frequency of each symbol in S.

Entropy measures how much we can compress a given dataset. More specifically,
it gives the upper bound for compression of the dataset. In some sense, it also
gives a measure of how much information is contained in a dataset. Entropy is
higher as the distribution on the symbols is more uniform.

Definition 4.1.2 The information gain of a feature A given a dataset S is

Gain(S, A) = H(S)−
∑

v∈V alue(A)

|Sv|
|S| H(Sv),

where V alue(A) represents the set of possible values of A and Sv the subset of
S corresponding to the value v of A, i.e. Sv = {s ∈ S|A(s) = v}.
The information gain measures the expected reduction of entropy by knowing
the value of the feature A. Thus it measures how much information we would
be extracting from the dataset by splitting on A.

This measure does not take into account how many different values the fea-
ture A takes. If A takes on a large number of values, knowing the value of A will
obviously greatly reduce the entropy of the dataset and also make the resulting
tree more complex. We wish to penalize this increase in complexity. This is to
some degree done by the gain ratio. First we define the split information:

Definition 4.1.3 The split information of a feature A given a dataset S is

SplitInfo(S, A) = −
c∑

i=1

|Si|
|S| log2

( |Si|
|S|
)

,

where S1, S2, . . . , Sc are the c subsets of examples resulting from partitioning the
dataset S by the c-valued attribute A.

This measures how broad and uniform the split on A is. To paraphrase [Mit97]:
SplitInfo is the entropy of S with respect to the values of a feature A, which is
in contrast to the use in Gain, where we considered only the entropy of S with
respect to the target feature whose value is to be predicted by the learned tree.

We use the split information to define the information gain ratio:

Definition 4.1.4 The information gain ratio of a feature A is

GainRatio(S, A) =
Gain(S, A)

SplitInfo(S, A)

When using this criterion to split the data we are looking for a suitable balance
between the Gain and the SplitInfo, such that when A takes on a large number
of values the gain is penalized. This sacrifices some of the elegance of simply
using the information gain but is more in the MDL style, which we prefer.
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To handle continuously valued features the J48 algorithm applies linear dis-
criminant analysis on one feature, selecting the single optimal splitting in one
dimension by simply selecting the value the gives the best split. For other ways
of doing this, see [DGL97].

The trees produced by this procedure tend to be overly specific since it con-
tinues the procedure until we have either finished the labels or exhausted the
data. Thus we overfit the tree to the data and have poor out of sample per-
formance. Instead of fixing this drawback to the procedure during the building
phase, we take another look at the tree after building it and prune the branches
as described next.

Generalizing after building

To prune a tree J48 offers rule post pruning. There is a bijection between a
decision tree and a set of rules. The pruning procedure maps a tree to a collection
of rules by making a rule from each leaf node to the root. Then generalize each
rule by removing those preconditions that give improved estimated accuracy
of the rule, as estimated by the data. This estimate can be obtained by any
non-parametric or out-of-training-sample method. Then, the rules are sorted
based on the estimated accuracy and applied in this order. The benefit of
using rules is that the (apparent) dependency on the order in which the features
are considered is removed, allowing for discrimination between the context in
which the rules are used in a more global way, resulting in better generalization
performance.

Subtree raising is another way to prune a constructed tree offered by J48.
This method involves deleting nodes, redistributing the training set over the
new tree and evaluating the usefulness of the construction (or, more properly,
the destruction). This method is computationally expensive.

Another way to prune a tree is to use the MDL principle. This is described
in [MRA95]. The results of using MDL to prune do not indicate that the
addition in complexity of the procedure justifies its use. The GainRatio can be
considered as an approximation to MDL.

4.1.3 Obtaining Measures from Trees
To apply the theorems from Chapter 3 we need to convert our decision trees
to probability measures. Consider an example space (X, Y ) and a sample Sn

drawn from this space. Each decision tree h : X → Y implicitly defines a
probability measure over the inputs x ∈ X , given a set of examples. For a given
input x the measure of a y ∈ Y is simply the relative frequency of y in the leaf
of the tree. For a binary classification problem this becomes

Ph(y = 0|Sn) =
|{x ∈ Sn : h(x) = 0}|

n
,

Ph(y = 1|Sn) = 1− Ph(y = 0|Sn).

This also gives us a predictor. The prediction of a label y ∈ Y given its
object x ∈ X is maxy∈Y P (y|x).

Example Say we have the tree depicted in Figure 4.2. X has the alphabet
{a, b} and Y the alphabet {s, t}. We have the input {((a, s), 0) , ((a, s), 0),
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((a, s), 1),((a, t), 0),((a, t), 1), ((a, t), 1), ((b, s), 0), ((b, s), 1), ((b, s), 1), ((b, s), 1),
((b, t), 0), ((b, t), 0), ((b, t), 0), ((b, t), 1)}. Then the induced probability distribu-
tion is P (0|(a, s)) = 2/3,P (0|(a, t)) = 1/3, P (0|(b, s)) = 1/4, P (0|(b, t)) = 3/4
with the remaining probabilities given by the complementary property of prob-
abilities.

a b

Y

X

Y
s t s t

2/3 1/3 1/4 3/4

Figure 4.2: Tree for example 4.1.3. Probabilities of class ’0’ in boxes.

Remark A proof of the convergence of a tree classifier can be found in [DGL97].

4.2 Coding Trees and Data
To apply our algorithm with decision trees we need to obtain codelengths for
trees and exceptions from the trees. This we describe now.

4.2.1 Coding Trees
To code the trees, we will use the following scheme, basically based on a paper
by Quinlan and Rivest, [QR89]. We are not concerned with tree construction,
so we can allow ourself a slight modification in the coding of exceptions and
default class labels by doing them in bulk, i.e. all at once. This gives us an
approximation to the optimal code, which has a relative bias towards smaller
trees.

As in Figure 2.1 we have two agents, B and C, such that B has the complete
data and C has the data, without the class-labels, B needs to compactly describe
a hypothesis, i.e. tree, and the exceptions in the data from a hypothesis, such
that the combined description length is minimized. Moreover, and perhaps most
importantly, B and C agree beforehand on the exact ordering of the values each
feature can take, so that when the we name an feature there is no need to name
the order in which it’s values appear, so that when we list whether the child of a
node in a tree are (proper) subtrees or leaves, there is no ambiguity about which
feature label each subtree belongs to. For inference purposes, the description
method itself is of no interest, only the length.

For simplicity, we will only consider binary classification problems, but will
account for non-binary trees. The extension to multiclass problems obscures
the basic ideas.

There are three things to code, two for the tree itself, the third for the data

1. (a) structure, the features selected at each node and

(b) cut values for continuously valued features
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2. default classes for leaves

3. exceptions in the data from the classes given by the tree

The method is recursive, depth first and is as follows:

1. Tree structure description

(a) Structure description
The length of the code is obtained by:
• the codelength for specifying the feature at each node is log(k),

where k is the number of features left to consider in the tree and
log is the logarithm to base 2. For continuously valued features,
we do not remove them from the set of available features when
coding. To see that this is indeed the length, note that after a
feature has been used in the tree, it cannot occur in the subtree
emanating from that node, except for numeric features which
may have other cut values. Call this length LA(k). We use
Q&R’s simple code, see [QR89], which uses one bit to designate
whether a node is a leaf or not.
• the codelength for a leaf is 1 (in addition the codelength for

specifying the class, which is coded globally)
• the codelength for a subtree (not including leaves) is 1 + LA(k)+

the codelength of the subtree thereunder.
(b) Cut value description

When using continuously valued features in a tree we cut the dataset
into two parts. Each example is then classified as being either larger
or smaller then this value. Each time we use a such a feature we
get a new cut-value. These values we need to communicate; in our
framework B is the sender and C is the receiver.
We can at least take two approaches. First, we can imagine that
B has an ordered list of values, in the order used in the tree (top-
bottom, left-right). This list defines the value of the cut for each
application of a feature, since C can pop the values of the list for
each application of the feature. This list needs to be sent to C, which
can be done by arithmetic or range encoding for instance.
Another way would be to view each cut value as a feature by itself.
This would entail a dynamic set of features for use in classification,
since the feature-set would be constructed after the samples are ob-
tained and thus B and C would not be able to share the features as
is conventionally done in such circumstances. This approach will not
be further addressed and we will stick to the first approach.
Use of arithmetic coding for transmitting the list of cut values adds
only little to the codelengths involved and complicates the implemen-
tation further. We will imagine that the list of cut values is shared by
B and C, since we are mainly concerned with inferring a good prior
fromM, see Figure 2.1 for instance.

2. Codelength for classes
Now we have a tree, with the position and number (k) of the leaves given.
We can then describe the default class for each leaf as follows:

39



• take the whole sequence of k leaves and give the position of l excep-
tions from the default class1. This can be done with L(·, ·) bits2. The
function L is given by

L(k, l) = log
(

k + 1
2

+ 1
)

+ log
(

k

l

)

and is elaborated on in Section 4.2.2 on coding strings of ’0’s and ’1’s

If one is concerned with the construction of trees, a more segmented ap-
proach may be beneficial, for instance to simplify the search problem. We
are only concerned with the descriptions of given trees in this paper so we
will employ this technique.

3. Coding exceptions

Recall that B and C share all inputs and B is to transmit only the class
of each example to C. To code exceptions from the data, we take as input
the whole data sequence (n things), the order of which is shared by B and
C. The specific order of the dataset does not matter, and it doesn’t seem
to be a limiting assumptions that the order is shared. After taking our
hypothesis into consideration, i.e. classifying with a decision tree, we have
some exceptions from the hypothesis, and those exceptions we encode as a
single sequence, which can be done with L(n, w) bits, where w is a wrongly
classified example.

Example To see that the codelength is as described and the code is indeed
prefix-free we’ll give a short example with the tree in Figure 4.3. By following

a b

Y

X

s t

Y
s t

k l
Z

m

Figure 4.3: A tree coded in example

the procedure described above, traversing the tree depth first from the root, left
to right, we get the code

1 X 1 Y 0 0 1 Z 0 1 Y 0 0 0

What if we are given the code above and want to reconstruct the tree, that
is to decode a message of that form? In words, we start by reading the first ’1’
and have the root X. Then, we have the left branch 3 consisting of the non-leaf
node (second ’1’) Y and then it’s two children are both leaves (the first two ’0’s).
Then, we regress back up the tree to the last non-leaf node, since there are no

1Recall, we only address the two class classification problem here.
2This may be inefficient for small tree sizes
3Left and right only need to be consistently used in the coding and decoding.
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n k L(n, k)
10 0 2.7004
10 1 6.0224
10 2 8.1923
10 3 9.6073
10 4 10.4147
10 5 10.6777
100 0 5.6865
100 10 49.6632
100 50 102.0352
1000 0 8.9701
1000 10 86.7718
10000 0 12.2881
10000 10 123.3677

Table 4.1: Some values of the codelength function L(n, k)

more non-leaf nodes in this subtree, which is X. We continue to construct the
rest of the tree in the same way.

There are other views on how to code trees, see [WP93] for a discussion of
Quinlan and Rivest’s paper and further analysis.

4.2.2 Coding strings of ’0’ and ’1’s
Here we describe the codelength function L(n, k) which can be used to code
exceptions from any hypothesis in a binary classification problem. In binary
classification problems, each bit tells us if a class is correctly described by a
hypothesis or not. Since we may assume that no more then half of the classes
are incorrectly described by a hypothesis, at least half of the bits are 1, denoting
that the class was correctly given by a hypothesis.

Now, I want to communicate a bit string of length n with k 1s, given an
upper bound b on k. First I transmit the value of k using log(b + 1) bits. This
is because we know that the value of k is no larger then b, so we need only
say which element of the set {0, 1, 2, . . . , b} we are referring to, which can be
done by bisecting the set until there is only one element remaining. This code
is sufficient for our purposes but we point out that there are quite a few codes
for coding the integers, see [Grü04].

Then, when I’ve told you k there are
(
n
k

)
possible strings of length n with

exactly k 1s. We both know the value of n beforehand, so the codelength
function L is given by

L(n, k) = log
(

n + 1
2

+ 1
)

+ log
(

n

k

)

Some values for this codelength function are given in Table 4.1.
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4.3 Instantiation of Meta-Algorithm
In this chapter we have thus far described decision tree learning, its most pop-
ular implementation and how to code decision trees. In other words, we have
described the L and TL algorithms of Figure 2.2. The methods given for the
coding of hypothesis are only dependent on the representation of the hypotheses
and may therefore be applied to any decision tree implementation.

We are now only left with specifying the M algorithm of Figure 2.2 to have
a full instantiation of our transfer learning framework. A very simple implemen-
tation of the M algorithm would be to simply limit the size of the decision trees.
The rationale for doing this is that these partial trees allow us to transfer the
most significant knowledge from the domains in increasing order of complexity
in a way that is relatively simple to implement. This is the version of M we
use for our experiments in the next chapter. Before turning to data, we discuss
what we are, or should be, optimizing.

4.4 How to Combine Environment Knowledge and
Task Specifics

To conclude this chapter, we give an illustration of how an application of our
framework could proceed. An appealing way of looking at transfer learning with
decision trees might be the following. We have some data and some environment
knowledge. We consider the environment to be relevant to our current task and
thus wish to initialize a decision tree with knowledge from the environment and
subsequently build on that basic knowledge with the data for the new task. This
might also be viewed as elaborating with task specifics on knowledge from the
environment. We might want to do this because there are some specifics in the
current task that are not in the previously analysed tasks or that the current
task has some features not seen previously. This sort of initialization is in effect
guiding the search for a good hypothesis towards the hypothesis suggested by
the environment, i.e. giving the learning a relative bias.

In general, injecting a bias by initializing the hypothesis in such a way would
require an invasive surgery of the learning algorithm with quite a few pitfalls to
look out for. In the case of decision tree learning, subsequent pruning of the tree
after the building would be quite elaborate, since the pruning procedure would
need to consider other things then just the relevance of the structure under con-
sideration w.r.t. the data. Our framework wraps around the underlying learning
algorithm obliterating the need to change the algorithm itself and exhibits the
behaviour described above very naturally.

To illustrate this behaviour, say we have some data S and simple environ-
ment knowledge consisting of a single hypothesis h, which partitions the data
as shown in Figure 4.4 (1)a. Now, in addition to this hypothesis h, we have
constructed a hypothesis from the data, but after considering the environment
we reach the conclusion, by calculating the minimum description length, that h
describes our task better. Thus we apply h to S and subsequently get the sets
S1, S21, S22 and S23 of examples. These examples we re-consider. For each
of these sets we repeat the process, but the only hypothesis from the environ-
ment has already been applied to this data and doesn’t need to be reconsidered.
Thus, we only need to consider the structures learned from each of these smaller

42



datasets and the empty hypothesis. If there is no learning to be done from the
data, as viewed by the learning algorithm, that branch is done. If some non-
empty hypothesis is relevant, as per the minimum description length, we apply
it to our data and repeat the process. In this way we might find a structure
applicable to a subset, such as depicted in Figure 4.4 (1)b.

(1) a. h S

S1 S2

S21 S22 S23

b. L(S21) S21

S211 S212 S213

(2) h∗ S

S1 S2

S21

S211 S212 S213

S22 S23

Figure 4.4: Relationship between datasets involved in inducing a decision tree
from a dataset and an environment in our framework. In (1)a. we use the
hypothesis h on the data S, which splits the data into the sets S1, S21, S22 and
S23, which might contain misclassified examples that we could use to improve
performance. In (1)b. we apply the learner L to the set S21, obtaining a
structure such as illustrated. In (2) we have combined all the learning done on
S in our framework into one structure.

When there are no more hypotheses to be evaluated, we are done. The
hypothesis we deem most suitable for the data, given the environment and our
subjective beliefs about it, for this hypothetical example is given in Figure 4.4
(2). This tree has as its most informative sections, as per the current task, the
knowledge transferred from the environment. For each of the nodes from the
transferred knowledge we considered local information to extend the tree, and
found one structure interesting enough to add to the tree, as measured by the
minimum description length. In this way we can use global properties of the
environment as the core of the knowledge about the current task and adopt to
specific local knowledge as warranted by the data. Intuitively, this feels like a
sensible thing to do and our framework is capable of capturing this behaviour in
a elegant way, striking a balance between global properties of the environment
and adapting to local ones.

Under which conditions would we observe this behaviour described above?
The hypothesis space would need to contain a decent hypothesis to start with
and the prior weights would need to be sensible. We are dependent on good
subjective judgement concerning the usefulness of the environment. However,

43



if the environment poorly fits our new task, it should not have a very adverse
effect on the performance of the underlying learning algorithm, although some
slow down is to be expected.

Taking a step back from the situation described above, it might be suggested
to first consider only hypothesis from the environment, excluding hypotheses
induced from the new task. Then, after deciding which hypothesis from the
environment best fits the new task, take a look at what might be induced from
the new data to extend that hypothesis. The bias put on the method like this is
quite strong and would be of use, if shown to be sensible. However, this is not a
very intelligent course of action for several reasons. If the environment is poorly
constructed, we might be forced to use hypotheses that are very ill-suited for the
new task. Further, this makes convergence to a true model contingent on the
truth being available from the start, which seems to be a very strict assumption.
By using the methodology advocated in this paper, each and every hypothesis
must earn its place and prior beliefs are tested against what can be induced
from the data at each and every step. Reference to Galileo, who struggled
against accepted “wisdom”, is in order: In questions of science the authority
of a thousand is not worth the humble reasoning of a single individual. Our
method is conservative in nature, not dogmatic.

Is the final structure given by our method optimal, in the sense that it
minimizes the probability of misclassification of examples from the current task?
If the subjective prior weights assigned to hypotheses from the environment
are in accordance with the current task, the sum total codelength for all the
hypotheses produced in each recurrence is less then that of h∗, the optimal
hypothesis according to our method, and our assumptions on the validity of the
MDL inference procedure agree with reality, h∗ does indeed minimize this error,
as shown above in Theorem 3.2.12.

Would we get the same structure if only considering the current task? Almost
certainly not, unless we have large amounts of data and the knowledge from the
environment is superfluous to the task. If this were not the case, our method
and transfer learning would be futile.

Next, we turn our attention to data.
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Chapter 5

Experiments

“ Torture the data long enough, and it will admit to anything you want. ”
— Unknown

Now it is time to try the ideas described so far on some data: perform some
experiments. The purpose of the experiments is twofold. On one hand, we
want to go through the hoops of implementation of the ideas described; to get
a feel for the workings of the algorithm; to see that it is actually usable from a
implementation standpoint. On the other hand, we are looking to see whether
our concept of transferability does anything at all from a learning standpoint.
To see behaviour different from the situation where there is no option of transfer.
To see if transfer can be induced by the MDL principle across domains in an
environment in this framework.

The point of the experiments is thus that knowledge from the environment
that fits the data may initially, with few examples, be better than knowledge
from the data only. This is because we are basing our inference on more infor-
mation then the data alone; we usually know more about the situation that the
data comes from then just the data itself1. We can almost always do with more
data, or knowledge , either to improve our hypotheses or to verify results. Data
is a bit like money: I don’t know anyone how has enough of either. The ex-
periments show that indeed the method produces hypothesis that are different
from the ones obtained from the data alone, have shorter codelength according
to our assumptions and recover the truth asymptotically.

In the next section we illustrate some properties of our method in as simple
a setting as possible. In the section thereafter we address a situation closer to
a real world setting.

5.1 Simple Simulated Example
Here we show how our method might behave on a artificial example. Without
tweaking, it finds the true distribution from the start with high probability.
This example also illustrates the asymptotics of our method: by adding the

1This is pretty much the subjective Bayesian viewpoint.
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empirical hypothesis, the one induced from the data alone, to the environment
with reasonable weights, the method has good asymptotic bounds.

Say we have a domain that generates symbols from the alphabet {a, b, c, d}
according to the distribution P , with the probabilities given in Table 5.1. We
want to learn the distribution for this source of data. For this little thought
experiment we will assume that we have several distributions that can be seen
as hypotheses from domains in an environment.

For simplicity, we use powers of one-half for the probabilities. The code-
lengths correspond to the powers of this number. The codelengths are Huffman
codes, or prefix free codes. The code-tree is shown in Figure 5.1.

Symbol (X) P (X) CP (X) Q(X) CQ(X) R(X) CR(X)

a 1/2 0 1/8 111 1/2 0
b 1/4 10 1/8 110 1/8 111
c 1/8 110 1/4 10 1/4 10
d 1/8 111 1/2 0 1/8 110

Table 5.1: Three distributions over {a, b, c, d} and corresponding prefix codes.

0
a

1

0
b

1

0
c

1
d

Figure 5.1: Huffman code tree for the distribution in Table 5.1

We see in that table that the distributions P and Q are further from each
other then P and R. How much further? We answer that by calculating
the Kullback-Leibler divergence between these two distributions. The KL-
divergence is defined by

D(f ||g) =
∑
x∈X

f(x) · log2

(
f(x)
g(x)

)

for any two probability measures f, g : X → [0, 1] and an countable X2.
What makes KL-divergence interesting is that we can interpret it as the

additional cost, in bits when using the base 2 logarithm, of coding a sequence
using g which was really generated by f3. The KL-divergence from P to Q and

2For uncountable X the sum is becomes an integral.
3Keeping the correspondence between codelengths and distributions discussed in Section

1.3 in mind.
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R is as follows:

D(P ||Q) =
∑

x∈{a,b,c,d}
P (x) · log2

(
P (x)
Q(x)

)

=
1
2
· log2

(
1/2
1/8

)
+

1
4
· log2

(
1/4
1/8

)
+

1
8
· log2

(
1/8
1/4

)
+

1
8
· log2

(
1/8
1/2

)
=

1
2
· log2 (4) +

1
4
· log2 (2) +

1
8
· log2 (1/2) +

1
8
· log2 (1/4)

= 7/8,

and in a similar way
D(P ||R) = 1/8.

Thus we incur an expected extra cost of 7/8 bits when coding from P under the
code for Q, and 1/8 for R.

To use TI, Algorithm 3, we need to encode the probabilistic model we are
working with. This we do by giving an index into a list of all possible models.
The number of different models that can arise for encoding a 4 symbol source
with a Huffman code is 2·4·3·2 = 48, where the first ’2’ comes from the fact that
there are essentially only two possible binary tree constructs possible4, the ’4’
from choosing the first letter to put into the tree, ’3’ from choosing the second
and the last ’2’ for choosing the second to last letter. Thus we can give an index
into this list of equiprobable models by using �log2(48)� = 6 bits.5 The learner
L is a simple empirical estimate of the probability and M has nothing to do.

Now we can run simulations. We use the Mergence Twister algorithm of
[MN98] to generate uniformly distributed numbers in the interval [0, 1] and
assign each symbol to a length of that interval corresponding to its probability.
An example of a single run is given in Figure 5.2. Several questions come to
mind concerning our method.

First, using our weighted two part measure of transferability, do we recover
the true distribution P when it is available in the hypothesis space? Yes, we
have a strong preference for the truth, although we adjust to variations in the
data and will occasionally prefer the empirical distribution. This is not the large
sample situation, as discussed below.

Second, do we ever like bad hypothesis? When we have a hypothesis that is
almost true, such as the distribution R, we will almost never select a very bad
hypothesis such as the distribution Q. If the bad hypothesis is bad enough, the
empirical one will out perform it from the start, as seen in Fig. 5.2.

Third, say that the truth isn’t available but the distribution R is. Will our
method select the distribution R as the best one? When, if ever, will the method
prefer the empirical distribution? As we see Figure 5.2, we will start by using
R as our working hypothesis about the domain under investigation. When we
get enough data, we will switch to the empirical distribution, which converges
to the true distribution, almost surely. In the limit, when we have infinite data,
we will be using the correct distribution as the hypothesis about the data. We

4Assuming non-zero probabilities for all symbols.
5Noting that the tree having all codelengths equal to two contributes nothing to actual

compression, we can also look at this such that we only use the other possible tree and use
one bit to designate whether we are coding with Huffman or not. The end result is the same
though, 6 bits.
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Figure 5.2: Codelength for a source P according to different models/hypotheses;
single simulated run. Lower is better.

note that in the case shown in Fig. 5.2, it holds for n ≤ 4 that the empirical
distribution is not worse then “R almost”. For n > 4 the empirical is better.

The KL-divergence is a measure of approximation error. How long does it
take for an estimate of a distribution to become good? We ran 100 simulations
on this, as shown in Figure 5.3. There we show the KL-divergence between a
simple frequency estimate of the probabilities and the true probabilities which
we happen to know for this example. We notice that the estimate becomes good
relatively quickly with not too wide error bounds6. On average, we only need
0.1 extra bits after about 20 observations and after about 100 less then 0.025
bits. In this situation the effective extra cost of using an empirical distribution
rather then the true one converges fast to zero, since the encoding method is
tolerant of minor variations in the underlying probability distribution. The one
standard deviation error bounds have the interpretation that we expect about
two-thirds of the examples to fall within this range; this is because of the central
limit theorem.

From this example we conclude that our method finds the correct distri-
bution fast when it is available, recovers via the empirical distribution (the
hypothesis learned from the data) rather quickly from being handed a good
bias, such as R, and almost immediately when handed a bad bias, as Q. It
prefers good biases (R) over bad ones (Q) and converges almost surely to the

6In the beginning of each simulated run, not all symbols in the alphabet have appeared
in the data and the empirical distribution in this example only estimates the probabilities of
the symbols as they appear. In a proper implemetation allowance should be made for unseen
symbols.
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Figure 5.3: KL-divergence between a distribution and its estimated distribution,
with one standard deviation error bounds, based on 100 simulated runs.

truth. Our method shows promise.

5.2 Decision Trees and Real World Data
Now we try instantiating the framework in a considerably more complex situ-
ation then considered in the last section. We build on the material from the
previous chapter, using one type of learner and a simple M function (see Figure
2.2), as described later in this chapter. First we describe shortly the implemen-
tation and how we prepared the data. Then we report on the data and results
of the experiments performed and conclude with some remarks on if we have
accomplished anything by these experiments.

5.2.1 Implementation
A stitch work of tools was used to run experiments. Decision trees were built
using Weka [WF05]7. Weka is open source so we were able to make the neces-
sary changes for our framework, namely to limit the depth of the generated trees
and add functions to obtain codelengths. To enrich the environment, which we
use to induce transfer, a restriction was applied to the building of trees such
that the depth of the trees was limited; this corresponds to the chop function
in Algorithm 1. In practice this entailed building a version of Weka for each
depth-restriction and running experiments with this build of the software. These
restricted-depth builds were then run on different sized datasets w.r.t. the do-
mains constituting an environment. This resulted in quite a few experimental
results as detailed in the tables in Appendix A.1. These results were written
into text-files and pre-processed for further analysis using shell-scripts. The
analysis was then done in Matlab8, with some large-number features added by

7http://www.cs.waikato.ac.nz/ml/weka/
8http://www.mathworks.com/
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stitching some Java-functions capable of large-number processing to it. Finally,
the graphs were generated using Matlab also.

For a full scale implementation a consistent environment would need to be
prepared, for instance by adding features to Weka, and a robust database back-
end would be necessary. The number of dimensions in the problem is such that
it is difficult to imagine larger scale experiments without those.

The effort invested in doing a careful large scale implementation would not
go unrewarded. There would be no need to adjust the learning procedure or
structures already in place in such a system when faced with a new problem,
hypothesis set or learning algorithm: the system always returns a minimum
description length hypothesis. When extending such a system with a e.g. a new
learning algorithm (L in Figure 2.2) then the framework only needs to know
how to encode the knowledge representation of the algorithm to apply it. Thus,
problem solving skills can be grown incrementally step in this framework.

5.2.2 Data and Pre-Processing
Unfortunately, appropriate datasets are difficult to come by, especially since the
application domains envisioned are usually very concerned with privacy.

For our experiments we used the Adult dataset from the UCI Machine Learn-
ing Repository, see [DNM98]. The task for this dataset it to predict whether
a person makes over USD 50K per year. This prediction can be based on 14
features, detailed in Table 5.2. In this table we see that the ’native-country’
feature has quite a few possible values, so the information gain ratio is more
suitable for this dataset then the information gain measure as the criterion for
splitting, which is the one used by J48. Also, there are six continuous features.

To make the dataset amenable to our experiments we split the data into
different “domains” based on the occupation feature. This gives a collection
of 14 datasets, which can then be considered as domains of an environment.
One of the datasets arising from this feature-based split is designated as the
one being used for learning (the new data) and the other 13 constitute an
environment from which we may transfer hypotheses. We note that the Priv-
house-serv domain only contains 3 instances of income greater then USD 50K
out of a total 232, so the J48 tree is trivial and we omit this domain from
further calculations in this paper. The Adult dataset was found to be suitable
for conducting experiments, since it is readily available on-line, has features that
could be interpreted as arising from different domains and has sufficient data to
allow such splitting. We feel that this gives an adequate dataset for trying out
our framework, although it leaves something to be desired in its realism.

Statistics on the split-dataset are given in Table 5.3. For the whole dataset
the frequencies are 24.78% with income higher then 50k,75.22% with less.
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age continuous
workclass Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-

gov, Without-pay, Never-worked
fnlwgt continuous
education Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm,

Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-
6th, Preschool

education-num continuous
marital-status Married-civ-spouse, Divorced, Never-married, Separated, Widowed,

Married-spouse-absent, Married-AF-spouse
occupation Tech-support, Craft-repair, Other-service, Sales, Exec-managerial,

Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical,
Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv,
Armed-Forces

relationship Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried
race White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black
sex Female, Male
capital-gain continuous
capital-loss continuous
hours-per-week continuous
native-country United-States, Cambodia, England, Puerto-Rico, Canada, Germany,

Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China,
Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Viet-
nam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos,
Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua,
Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru,
Hong, Holand-Netherlands

Table 5.2: Features and their values for the Adult dataset

Domain nr. Occupation (domain) Nr. of datapoints
1 Adm-clerical 5540
2 Armed-Forces 14
3 Craft-repair 6020
4 Exec-managerial 5984
5 Farming-fishing 1480
6 Handlers-cleaners 2046
7 Machine-op-inspct 2970
8 Other-service 4808
x Priv-house-serv 232
9 Prof-specialty 6008
10 Protective-serv 976
11 Sales 5408
12 Tech-support 1420
13 Transport-moving 2316

Table 5.3: The domains and number of datapoints used for experiments
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5.2.3 Experimental Results
Having prepared our data, we can apply the implementation. We are looking to
see transfer taking place, which would be reflected in an adopting a hypothesis
from another domain then the dataset under evaluation. If we see transfer take
place at all, we have “empirical evidence” by the construction of our domains
that the method does detect similarities between domains and induce transfer.
That is, if transfer takes place, our concept is of some use, or, it works because
it works9.

Before taking a look at the numerical results, we give a few examples of the
elements of ME . Recall that transfer in our setting involves selecting a single
decision tree from a collection of decision treesME . In Figures 5.4, 5.5 and 5.6
all the trees of depth 1 obtained during the experiments are shown. As can be
seen they tend to be rather similar, frequently choosing capital gain as the most
informative feature. The split of the data given in the tree in Figure 5.6 might
appear to be irrelevant, but further construction with this tree reveals that this
split is useful (too big to be printed). So, how do we go about getting results?

As described above, we generate trees of different depths and evaluate the
transferability of the domains to the ’Exec-Man’ domain by calculating the
two-part codelength using different sizes of this set. In this way we obtain the
codelengths of the decision trees, for each domain and depth of tree, as detailed
in Table 5.6. In order to see how transferability behaves with different sizes of the
dataset we also obtained a series of tables giving the codelength of the data w.r.t.
each of these trees, as detailed in the tables in Appendix A.1. The expected
behavior is confirmed: the tendency is to select more detailed knowledge for
transfer from the available domains and the probability of selecting the empirical
distribution, the distribution constructed form the new task, from the task under
consideration increases as the dataset grows, which was one of the things the
algorithm was designed to capture. As mentioned, reporting and visualization
is a bit tricky, so only a snapshot of the relevant numbers is presented.

Now for some more detailed results. We’ll discuss the unweighted codelength
measure first and address the adjusted weighted codelength measure, where
hypotheses get weight in the codelength according to their domain-origin and
frequency, a little later in this section. First, there is the codelength of the trees
of varying depth from different domains. These numbers are given in Table
5.6 and plotted in Figure 5.7. In Figure 5.7 we see that the codelength grows
more or less linearly in the depth of the tree10. Constant codelength between
depths in this table means the available data in that domain doesn’t warrant
more complex hypotheses. The variability of the codelength of the hypotheses
of the same depth is because more labels for a feature mean larger codelength,
since we need to code each and every leaf with a bit indicating that it is a
leaf. The codelength of the hypotheses gives an ordering of the complexity of
the hypotheses under consideration. Figure 5.7 gives an indication of nature
of the complexities of the hypotheses of the models from the domains under
consideration.

9The proof of the pudding is in the eating.
10Incidentally, naïve application of linear regression over the dataset, without repeated

datapoints, gives a relationship of the kind: codelength = -117 + 61* treeDepth, see Figure
A.1 in appendix. This tendency is explained by the role played by the logarithm in the
codelength functions.
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We note that the data is exhausted for all domains, since we see that relaxing
the restriction of depth to 14 does not increase codelength, i.e. that the largest
tree the algorithm is willing to construct has already been constructed11. This
means that the underlying decision tree construction algorithm is of the opinion
that there is no more knowledge to be extracted from that data.

To continue collecting results for analysis, after having obtained the code-
length for the trees themselves, we add the codelength for the data given the
trees for each tree. Then, we select the minimum over all domains and depths
for and transfer that tree to our current task as the most useful hypothesis
available given the data. If our method is to be considered to be of any use, we
should select hypotheses different from the ones selected by the base learner,
preferably from a different domain on some occasions12. This is indeed the case,
as shown in Table 5.5.

Examples of codelengths are given in Table 5.7 and plotted in Figure 5.8
for the situation where there are 2000 examples in the dataset. The transferred
hypothesis in this case comes from domain nr. 11 (Sales) and has depth 5.
Transfer from another domain then the one under consideration is taking place
in this case. The codelength for this domain is plotted in Figure 5.9 to show
how the total codelength behaves. This sort of a convex-ish graph is what we
like to see when applying MDL. It shows that the optimal tradeoff between the
hypothesis complexity and the complexity of the data w.r.t. the hypothesis is
obtained by balancing those two, not taking either to the extreme. As concerns
transfer, this figure shows that the hypothesis adopted for transfer is different
from the one constructed by looking solely at the available Exec-Man data.
Transfer does take place in this setting so we have an indication that the method
works.

Now for something slightly different. Lets imagine that we have a datasource
giving us more and more data and we want to observe how our framework
transfers knowledge from the other domains. To start with, we have a dataset,
so we have little “confidence” in adopting knowledge to the new task, so we
would expect smaller trees to be selected. Also, we would expect progressively
larger trees to be selected as the dataset grows. This is indeed the case, as seen
in Table 5.4. Underlying tables are given in detail in Appendix A.1.

Table 5.4 summarizes which hypotheses are selected for each size of the
dataset used to induce transfer, both for the normal codelength and the adjusted
codelength. The empirical distribution is never selected for the data considered
here. The adjusted codelength measure discounts the more frequent hypothesis
inME and accounts for the tree constructed by using the dataset alone, adjusted
to favor the hypotheses arising from the given environment13 over the ones
arising from the given dataset. This table also includes a column of results
if a “self referring” hypothesis is included, i.e. the complete dataset of Exec-
man is treated as the other domains. These results are interesting because
these hypotheses reflect our best guess at the structure of the dataset under
investigation. The last column in Table 5.4 gives the total codelength when
applying J48 to the dataset by itself without using a hypothesis for putting the

11Although this occurrence of the same codelength does not occur more then once for one
of the domains, the data is exhausted for that one too.

12This is not a criteria for the usefulness of the method, it would just be nice to see that
sort of a behaviour, since it is to be expected in practice.

13Recall that this is required for convergence reasons, see chapter 3.
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other numbers into some context.
We notice in Table 5.4 that when the self-referring hypothesis is included

(hypothesis built by using the whole data of Exec-Man), the unweighted code-
length settles on that domain when the dataset grows. That is, the method
selects hypotheses of different depth from the domain that gives the best esti-
mate of the underlying distribution. This is good news. If the framework would
not settle on the domain that data is actually from, we would be faced with
rather pathological behaviour in a simple setting, although the method may
refrain from adopting as comprehensive a hypothesis as if only having the data.

However, when the self-referring hypothesis is not included, as in the second
set of results in Table 5.4, the hypothesis selected for transfer is from other
domains, and the size of the hypotheses selected then is quite a bit smaller
then when the self referring one is included, indicating a worse fit then with the
self referring one. The method still selects the same domain for transfer over
dataset-size ranges, so it shows some stability in its preference of models.

When we come to the weighted measure, as in the third set of results in
Table 5.4, we notice that the tendency is to select larger hypotheses and not
to concentrate on one particular hypothesis as is done in the unweighted case.
Which do we prefer? One feels that the adjusted measure behaves most like
one would prefer. The reason is that it makes the most allowances for the
environment; giving knowledge from the environment more chance of being
adopted for transfer, based on its relevance to the current task as estimated by
the data, which is the whole point of the exercise.

Next, we have Table 5.5, comparing the hypotheses selected for different
dataset sizes against the hypotheses constructed by using the dataset alone.
Here we note that the complexity of the models selected by our method is
increasingly larger compared to that constructed by just using the data. We also
note that the ratio between the total codelength of the transferred hypothesis
to the empirical one is getting closer to 1, at which point the method will start
selecting the empirical hypothesis. Apparently not very much more data is
needed to start selecting the empirical model.
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1. (a) capital-gain

≤ 6849
> 50K(114/3)

> 6849
≤ 50K(5426/645)

(b) education-num

≤ 13
≤ 50K(11/1)

> 13
> 50K(3)

2. (c) capital-gain

≤ 5013
≤ 50K(5798/1146)

> 5013
> 50K(222/13)

(d) capital-gain

≤ 6849
≤ 50K(5419/2305)

> 6849
> 50K((565/3)

3. (e) capital-gain

≤ 5013
≤ 50K(1434/131)

> 5013
> 50K(46/5)

(f) capital-gain

≤ 4650
≤ 50K(2016/114)

> 4650
> 50K(30/9)

4. (g) capital-gain

≤ 4101
≤ 50K(2882/304)

> 4101
> 50K(88/27)

(h) capital-gain

≤ 6849
≤ 50K(4776/166)

> 6849
> 50K(32/2)

5. (i)
≤ 50K(232/3)

(j) capital-gain

≤ 6849
≤ 50K(5444/2144)

> 6849
> 50K(564/4)

6. (k) capital-gain

≤ 5060
≤ 50K((5112/1168)

> 5060
> 50K(296/9)

(l) capital-gain

≤ 5013
≤ 50K(2238/408)

> 5013
> 50K(78/8)

Figure 5.4: Trees produced of depth 1: (a) Adm-clerical (b) Armed-Forces
(c) Craft-repair (d) Exec-managerial (e) Farming-fishing (f) Handlers-cleaners
(g) Machine-op-inspct (h)Other-service (i)Priv-house-serv (j)Prof-specialty (k)
Sales (l) Transport-moving
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Selected Hypotheses
Self-ref inc. W/o Self-ref Weighted

|Sk+1| D-Nr. Depth Lh
C D-Nr. Depth Lh

C D-Nr. Depth Lh
C LC(Sk+1)

20 1 1 32 1 1 32 1 1 26.5 32
50 13 1 61 12 12 61 12 1 51.5 116

100 13 1 102 12 1 102 12 1 92.5 199
200 13 1 183 12 1 183 12 1 173.5 278
500 13 1 441 12 1 441 9 2 426 740

1000 4 3 827 9 2 835 9 2 819 987
2000 4 3 1614 9 2 1648 11 5 1628.5 1915
5984 4 6 4639 9 2 4832 9 8 4761 5358

Table 5.4: Domain selected for different dataset sizes from Exec-man including
the self-referring one (hypothesis built by using the whole data of Exec-Man,
nr. 4). The first column (|Sk+1|) is the size of the subset of the Exec-Man
dataset used for the evaluation. Each of the next three sets of results has a
column for the domain number (D-Nr.) the maximum depth of the selected tree
(Depth) and the codelength of the selected model (LC). The first set of model
selection results (“Self-ref inc.”) shows the results of the model selection when
we have the self-referring model (hypothesis built by using the whole data of
Exec-Man, model number 4) included. The second set (“W/o Self-ref”) does not
have model nr. 4 available. The third set of results (“Weighted”) has the self-ref
model available for selection, but here we have the weighted codelength, where
we apply different weights to the models, depending on origin and frequency in
the environment. The final column has the codelength of the dataset by itself
without any model, for comparison purposes.

Remarks For every algorithm there is a dataset that the method performs
well on. Performance results are always to be taken lightly. Some authors go
even further, such as [DGL97]: “Simulations on particular examples should never
be used to compare classifiers.” In line with those standpoints our experiments
are more to experiment with the implementation itself then to get results.

Never the less, our method seems to be able to do something useful. It
induces transfer as shown in Table 5.3 and is successful in that sense. This is
however just a small sample of the experiments to be done to fully evaluate
this way of doing transfer learning; to see if it is capable if doing something
useful. The sampling methodology is naïve at best and out of training sample
performance is not quantified. Again, there are considerable implementational
difficulties, which seem for the experiments to require a proper database and
considerable computational power for a full evaluation. Further, it is uncertain
how to properly test such an framework on-line.

In the beginning of this chapter we stated that in order for our method so
show any promise, we would at least need to see behaviour different from the
situation when there is no possibility of transferring any knowledge. Do our
experiments show this behaviour? The adjusted codelength measure exhibits
exactly this sort of behaviour and certainly feels appropriate.

The method defaults to the model generated by the dataset available in
the absence of further evidence to support transfer so we avoid pathological
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Transferred Empirical
n D-nr. Depth L(h) Lwh

C (Sn) L(h) ELwh
C (Sn) Lwh

C (Sn)/ELwh
C (Sn)

20 1 1 21 27 11 32 0.8281
50 12 1 52 52 71 116 0.4440
100 12 1 100 93 110 199 0.4648
200 12 1 199 174 109 278 0.6241
500 9 2 410 426 326 740 0.5757
1000 9 2 803 819 226 987 0.8298
2000 11 5 1557 1629 408 1915 0.8504
5984 9 8 4482 4761 905 5358 0.8886

Table 5.5: Comparison of hypotheses selected with environment knowledge
available and without. The first column contains the number of examples in
the dataset used (n). Then we have the transferred results, D-nr is the do-
main number, L(h) is the unweighted hypothesis codelength and Lwh

C (Sn) is
the weigthed two part codelength. Then we have the corresponding numbers
based on only the data from the dataset with n observations, and unweighted
two part code length (w = 1). Finally we have the ratio between the two total
codelengths.

behaviour14. Does it perform better then other learners? There is nothing in
our experiments that allows us to state that. However, algorithms and data to
compare our framework are not widely available and the experiments do show
that the framework is flexible enough to learn across domains. MDL can be
used to induce transfer in our framework.

14As with all statistical methods, it is possible to get “unlucky” and have a sample that
gives rise to the wrong behaviour, but that’s the nature of the game.
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Chapter 6

Conclusions and Discussion

Transfer learning is about how learning from one domain or a collection of do-
mains can be applied to another. It is learning from similarities and parallels. It
is learning from experience. This paper is about a distribution free, data driven,
extendable framework for transfer learning, based on the minimum description
length principle. We define transfer learning in terms of a specific framework,
where we have a collection of hypothesis from other application domains avail-
able, a learning algorithm consistent over domains and a new, previously unseen
learning task.

The given collection of domains, from which the hypotheses originate, we
term an environment for the algorithm. The proposed method makes allowances
for the specifics of the new task by considering the new task as a part of the
environment. The applicability of the available hypotheses is evaluated w.r.t. the
new task and the method proposed is biased towards adopting hypotheses from
the environment in which it is embedded. How strongly we prefer hypotheses
from the environment to the ones induced from the current task is subjective
and left to the modeler as the framework stands. In this sense the framework
induces an bias on the learner, based on the environment.

Our framework consists of 3 algorithms: a base learner, a hypothesis space
digester/cognisizer that produces less specific hypothesis from the ones given
by the environment and may combine them into more complex ones, and a
MDL based evaluator of the available hypotheses w.r.t. the current task, and a
learner.

We showed that, under the assumption that the learning problem is real-
izable and the underlying learner converges to the true distribution between
the input-output spaces, our method converges to the true distribution as more
data becomes available for the new task. This is the guaranteed worst case
performance of our framework. By the general motivation for transfer learning
the hope is that the environment is rich enough to contain solutions to our tasks
that give better small sample performance.

We tried our framework in two situations on data. The first was a very
simple simulation based on a distribution on four symbols. This illustrated
how our framework prefers “truth” to empirically constructed hypothesis and
hypothesis that did not generate the data. When the “truth” was not avail-
able in the environment, our framework prefers near truth, as quantified by
KL-divergence, to more far fetched explanations for the data and eventually
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accepting the empirically constructed hypothesis as the true one. The empirical
hypothesis converged to the true distribution almost surely in this case.

Then we gave an example of how our proposed framework might be imple-
mented using a decision tree algorithm, a simplistic hypothesis space digester,
which produced trees of varying restricted depth from a given tree, and a en-
coding scheme for decision trees and exceptions from the tree, giving the two
part MDL codelength. This implementation we tried on artificially segmented
data from the real world, giving encouraging results, albeit not spectacular.
The overall impression from experiments is that this sort of a modified MDL
inference principle can certainly be used to induce transfer between domains.

Several issues have not been addressed. We have not quantified the rate of
convergence and under what conditions assurances can be given on the rate of
convergence. Baxter presents a framework in [Bax00] where bounds are given
for performance on any unseen task from a environment, and data is available
from all domains. This is different from our framework, where we are concerned
with previously unseen tasks, i.e. we know what task we are dealing with at the
moment and only have hypothesis available but not the data. Baxter works in
the PAC framework, which is very different from the MDL approach to learning.

We have not given a general quantification of the hyper-prior, or the distri-
bution of the domains which we use to construct an environment. This is for a
good reason. In our setting that would entail constructing a coding scheme of a
model for the hypotheses, which is far from obvious how to do and can only be
addressed case by case. Moreover, our method is essential distribution free, so
specifying the distribution would undermine that strength of the method. How-
ever, specifying a distribution allows for quantification of how the domains in
an environment are related, and an approach based on hierarchical Bayes seems
to be the most fruitful approach.

We have not addressed the issue of confidence of the predictions, i.e. how
much probability we believe there to be of making a false prediction of a class
of an object. This should be addressed for real world applications. A promis-
ing way of assessing the confidence of the predictions is given in [GV02], which
assigns two measures to each individual prediction called confidence and credi-
bility. It has the additional benefit of wrapping around the learning algorithm.

A strength of the MDL approach to inference is that it induces a single
hypothesis from the hypothesis space. In our framework this means in principle
that we do not need to worry about the hypothesis space being full of junk,
or irrelevant information for the task at hand: the data will simply show the
irrelevant information to be of no use and either discard all knowledge in the
hypothesis space or adopt the most suitable one.

A difficult part of the proposed framework is to make a good hypothesis
space digester or cognisizer, which produces more useful or usable hypotheses
from the environment. Specifically, as the framework is presented in the pa-
per, the digester would need to combine compatible hypothesis into larger ones
to get a more comprehensive or complex hypotheses. There is a way around
this complicated, ill describable combining step. We can consider the available
hypotheses as features and emulate the way decision tree construction algo-
rithms work, without being restricted to decision tree learners. This would be
done in the following way: First, construct as many partial hypothesis as the
environment warrants, limited by the data itself. Then, for the given dataset
and learner, apply the framework, selecting the best hypothesis according to
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the two part codelength. While there is enough misclassified data according to
the selected hypotheses, reapply the framework. In this way, we would recur-
sively filter out all the regularity in the data as warranted by the hypothesis
space and data. This looks like a interesting approach to try to implement and
closely resembles decision tree construction. Also, this recursive application of
the framework is slightly reminiscent of ensemble methods, in that it concen-
trates on the difficult areas of classification. We illustrated how this might be
carried out with decision trees, but did not apply this method to data.

In conclusion, we feel that our framework is usable for collecting and using
experience in an efficient way.

66



Appendix A

In these appendices we produce various material not suited for inclusion in the
main text.

A.1 Experimental Result Tables
Here we reproduce some of the tables generated by our algorithm for the Adult
dataset in more detail then in the text, complementing the results from 5.3.
These tables are the unweighted total codelengths obtained by running our
algorithm. In all cases the self-referring hypothesis, the hypothesis built when
using the whole of the Exec-Man dataset, is included and the lowest codelength
is highlighted for the cases when the self-referring hypothesis is included and
not.
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A.2 Relation between tree depth and codelength
Figure A.1 shows the relation between the codelength and the depth of the
generated trees along with an regression line obtained by linear regression on
the dataset from Table 5.7 with out repeated points. From the figure, there
appears to be a linear relationship, or at least not a strong exponential explosion
in the complexity of the hypotheses as the depth of the hypotheses is increased.
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Figure A.1: Codelength versus tree depth for the Adult dataset.
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