
Formalizing Legislation in the Event Calculus:
The Case of the Italian Citizenship Law

MSc Thesis (Afstudeerscriptie)

written by

Marcello Di Bello
(born October 13, 1982 in Milano, Italy)

under the supervision of prof dr Michiel van Lambalgen, and submitted
to the Board of Examiners in partial fulfillment of the requirements for the

degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
June 13, 2007 prof dr Joost Breuker

prof dr Peter van Emde Boas
prof dr Michiel van Lambalgen
prof dr Frank Veltman

Contents

1 Introduction 2

2 Event Calculus 4
2.1 Syntax . 4

2.1.1 EC-L . 5
2.1.2 Axioms EC-A . 7
2.1.3 Scenarios EC-S . 8
2.1.4 Integrity Constraints EC-IC 9

2.2 Computing with EC . 9
2.2.1 Resolution in CLP . 11
2.2.2 CLP with IC . 15

3 Legislation and Event Calculus 16
3.1 Definitions and Events . 17
3.2 Time and Validity . 20

3.2.1 Applicability and Effectiveness 21
3.2.2 Validity or Activity . 22

3.3 Cross-referencing . 25
3.4 Exceptions . 26

4 Legislation Formalized 30
4.1 Preliminaries . 30

4.1.1 Notation . 30
4.1.2 Methodology . 31

4.2 The Formalization . 34
4.2.1 Acquiring Citizenship . 35
4.2.2 Exceptions and Cross-referencing 45
4.2.3 Applicability, Repeal and Enactment 48
4.2.4 The Global Picture . 53

5 Jurisprudence Formalized 56
5.1 The Case . 57

5.1.1 Relevant Legislation . 58
5.1.2 The Decision of the Court 59

5.2 Formalization . 61
5.2.1 Limited or Unlimited Retroactive Validity? 61
5.2.2 The Crucial Issue . 65

6 Conclusion 74

iv

2

1 Introduction

This thesis explores to what extent legal knowledge and legal reasoning can
be encoded in the Event Calculus (hereafter, EC), and how EC needs to be ex-
tended (if at all) to accommodate legal reasoning and knowledge. The locutions
‘legal knowledge’ and ‘legal reasoning’ gather a variety of disparate referents. A
working hypothesis of this thesis is that a considerable portion of legal knowl-
edge and reasoning is contained in legislative texts (laws, decrees, regulations,
directives, etc.). The primary task will thus be to formalize a piece of legislation
in the language of EC.

The reasons for wanting to formalize a piece of legislation with the aid of
a formal language like EC are numerous. I would like to remind the reader
of three of them. First, formalization enhances the precise understanding of
a text, in the sense that it helps single out ambiguities, unintended readings
or interpretations, etc. Second, when an actual reasoning implementation is
made available for the formalized piece of law, one can perform reasoning tasks,
such as consistency checking, computation of implicit inferences, and instance
checking or instance enumeration. Evidently, these are very valuable aids for
law drafters. Third, the formalization of a piece of text is an enterprise that
falls under the field of formal semantics as well. Legal texts might offer peculiar
or new linguistic data that are in need of explanation by formal semanticists.

Several pieces of legislation have been formalized by researchers at the Impe-
rial College London (see [14, 23, 3]) as early as the eighties. The most famous of
these attempts, the formalization of the British Nationality Act in Sergot et al.
[23], dates back to 1986. The language adopted to carry out the formalization
was logic programming,1 on the assumption that logic programming and legal
texts share many affinities (see Kowalski [18]). The same assumption is endorsed
in this thesis, and is pushed even further, by using a logic programming-based
formalism, the EC, to formalize legislation. I will not argue abstractly, or by
means of toy examples, whether or not EC is suitable for modeling the law.
A great deal of evidence for applying EC to the legal domain is provided by

1An alternative approach uses description logic and OWL (Ontology Web Language) to

formalize legislation and legal concepts; see Hoekstra et al. [13], and Breuker et al. [4]. For

reasons of time and space, I will not be able to compare this approach with the one proposed

here.

3

chapters 3 and 4. The former considers some recurrent features of legislative
texts and shows how they can be formally represented in EC. Chapter 4 is more
empirical. It considers as a case-study the Italian Citizenship Law [2], and a
sample of the formalization is given and discussed in detail.

It was said at the beginning that a working hypothesis of this thesis is
that legal knowledge and reasoning is contained in legislative texts. While this
is certainly the case, one should not be induced to think that legal texts are
self-sufficient, or that by formalizing a piece of law on Italian citizenship, it
will become possible to compute mechanically whether or not someone qualifies
for Italian citizenship. This is over-simplistic: the process of applying and
interpreting the law plays a crucial role in making the law usable to deliver
conclusions such as ‘X is an Italian citizen’. Chapter 5 applies the formalization
of the Italian Citizenship Law to a concrete case, which was discussed before a
court of law. The chapter investigates how additional interpretative principles
can be added to the formalization to yield or block certain conclusions from
being drawn.

Before engaging into the formalization of the law, the next chapter gives a
brief introduction to EC.

4

2 The Event Calculus

This chapter introduces the Event Calculus,1 its syntax and its proof-system.2

The Event Calculus (hereafter, EC) was initially designed to model common-
sense knowledge and reasoning about actions and events (see Kowalski & Sergot
[16] and Shanahan [24]). In order to achieve this, EC is divided into two parts:
one is a general axiomatic theory (call it EC-A) about events and causality;
the other is given by micro-theories or scenarios that are specific to the do-
main being modeled. To illustrate, the knowledge and the reasoning needed to
crack an egg can be taken as an example.3 The axioms of EC suffice to capture
the general theory of causality involved in cracking an egg, but the domain-
dependent knowledge such as ‘cracking an egg will cause it to break’ must be
made explicit elsewhere. Hence, the set of axioms is augmented with an addi-
tional set of formulas which is called a scenario, following the terminology in
[28]. This means that any EC-formalization will contain the axiomatic part EC-
A and a scenario—the former being domain independent and the latter domain
dependent.

2.1 Syntax

Formulas of EC are either axioms in EC-A or scenario formulas, written in an
appropriate scenario language (call it EC-S). The complex EC-A + EC-S makes
up the language of EC. For expository purposes, it is useful to introduce an
underlying language (call it EC-L), of which both EC-A and EC-S are subsets.
This underlying language is a multi-sorted rule language. It is a multi-sorted
language since the entities talked about are not only individuals, but also events,
fluents and quantities, as we shall see. It is a rule language since only rule-
like formulas count as well-formed formulas. However, EC-L cannot be used
directly as the language in which EC-formulas are written, because it allows the
construction of formulas which may lead to loops in the computations. For this
reason, well-formed formulas of EC are restricted to EC-A +EC-S.

Although EC-L is too expressive and its subset EC-S + EC-A is sufficient
for modeling purposes, it is useful to add an integrity constraint language (call

1I will base my presentation on van Lambalgen & Hamm [28].
2The semantics is left out as it is not essential to understand the material presented in this

thesis. The interested reader is referred to [28].
3This example is used in Shanahan [25].

2.1. Syntax 5

it EC-IC) which plays a role in modeling statements with deontic operators.
The presentation of the language of EC will so proceed: first, the underly-

ing language EC-L; next, the axiom system EC-A as well as the language for
scenarios EC-S; finally, the integrity constraint language EC-IC.

2.1.1 EC-L
The alphabet consists of the symbols:

Constants in lower case letters, e.g. acquiring, italy;
Variables in upper case letters, e.g. X, T;
The symbols: =, <,+,×;
The numerals: 0 and 1;
Connectives: ¬,∧,←;
Universal quantifier: ∀;
Auxiliary symbols: (,).

Terms are either atomic or complex. Atomic terms are:
Constants for individuals, quantities, events and fluents;
Variables for individuals, quantities, events and fluents;
1-place predicate initially;
2-place predicates happen and holdAt;
3-place predicates initiate, terminate, clipped, release;
4-place predicate trajectory.

Two observations are in order. First, I shall use the convention of denot-
ing variables for time points by ‘T, S, T1, T2’, and variables for fluents and
events by ‘F, F1, F2, E, E1, E2’; the symbols ‘t, s, t1, t1, f, f1, f2,

e, e1, e2’ are to be understood as metavariables for time points, fluents and
events constants. Second, constants and variables for individuals can occur as
arguments of fluent or event terms; for example, ‘citizen(X)’ is a one-argument
fluent term, with ‘X’ a variable for individuals. If constants or variables for quan-
tities occur within a fluent, then the fluent is called parametrized; for example,
‘distance(N)’ is a parametrized fluent, with ‘N’ a variable for a quantity.

For complex terms, two recursive clauses apply. First, if t is an event term
with k arguments, and t1, . . . , tk are fluent or event terms, or a combination of
both, then t(t1 . . . , tk) is an event term. Second, if t is a fluent term with k

arguments, and t1, . . . , tk are fluent or event terms, or a combination of both,
then t(t1 . . . , tk) is a fluent term.

The distinction between fluents and events is crucial. Intuitively, the for-
mer are extended over time (they are states); the latter are ‘happenings’ and
they possess a more point-wise nature. Examples are, respectively, ‘know’ and
‘come-to-know’; ‘be-injured’ and ‘hit’. In addition, fluents and events can be
embedded into other fluents or events, following the definition of complex terms.
For example, ‘know(hit)’ or ‘come-to-know(hit)’ are allowed as constructions.

2.1. Syntax 6

Formula Intended meaning

initially(f) Fluent ‘f’ holds from time ‘0’
happen(e, t) Event ‘e’ occurs at time ‘t’
holdAt(f,t) Fluent ‘e’ holds at time ‘t’
initiate(e,f,t) Fluent ‘f’ starts to hold after event ‘e’

at time ‘t’
terminate(e,f,t) Fluent ‘f’ ceases to hold after event ‘e’

at time ‘t’
clipped(t1,f,t2) Fluent ‘f’ ceases to hold between

time ‘t1’ and ‘t2’
release(e,f,t) Fluent ‘f’ is not subject to inertia

after event ‘e’ at time t’
trajectory(f1,t1,f2,d) If fluent ‘f1’ starts to hold at time‘ t1’,

then fluent ‘f2’ starts to hold at time ‘t1+d’

Table 2.1: Informal explanation of the meaning of EC-L atomic formulas (see
[24]). Bear in mind that, properly speaking, these atomic formulas receive their
meaning only in the context of the axioms of EC.

Formulas are either literals or rules. A literal L is either an atomic formula A
or a negated atomic formula ¬A. Atomic formulas are:

Equalities between constants or variables;
Formulas in the language of the structure 〈N, <,+,×, 0, 1〉;4
initially(f), happen(e,t), holdAt(f,t);
initiate(e,f,t), terminate(e,f,t);
clipped(t1,f,t2), release(e,f,t); and
trajectory(f1,t,f2,d),

where ‘f,f1,f2’ are fluents, ‘e’ is an event, and ‘t,t1,t2,d’ are quantities.

Rules are formulas of the shape: A←L1 ∧ · · · ∧ Lk, where A is an atom and
L1, . . . , Lk are literals. An alternative notation is A←L1, . . . , Lk, where commas
replace conjunctions. It is customary to call the consequent A the head of the
rule; and the antecedents L1, . . . , Lk the body of the rule. Note that any variable
occurring in a rule is bound by a universal quantifier scoping over the entire rule.
A rule without a body is called a fact.

Definition 1 (Formulas). The set of EC-L formulas is the smallest set con-
taining literals and rules.

The reader unfamiliar with EC may benefit from consulting table 2.1 which
spells out informally the intended meaning of EC-L atomic formulas.

4In [28], the structure 〈R, <,+,×, 0, 1〉 is used instead. I have chosen to use N and not R,

because the quantities I will be concerned with are days only, and these can be represented

discretely by the natural numbers.

2.1. Syntax 7

2.1.2 Axioms EC-A
Intuitively speaking the axioms EC-A formalize the notions of causality and

change typically employed in everyday reasoning. These assume a näıve for-
mulation of the principle of inertia, which says: Normally, things don’t change;
they only change under the influence of an event or a force. As a matter of
fact, two notions of change are involved in EC-A, instantaneous and continuous
change. The former is captured by axioms 2 and 3, and the latter by axiom
4. Before explaining the difference further, I will give the list of axioms. Each
axiom is paired with an informal explanation of its intended meaning. Recall
that variables (in uppercase letters) are meant to be universally quantified, since
each axiom has the shape of a rule.

Ax1: holdAt(F,0) ← initially(F).

A fluent holds at time 0, provided it holds initially.

Ax2: holdAt(F,T2) ← T1<T2 ∧ holdAt(F,T1) ∧ ¬clipped(T1,F,T2).

A fluent still holds at an instant in time, provided it started to hold pre-
viously, and the fluent has not been clipped in the meantime.5

Ax3: holdAt(F,T2) ← happen(E,T1) ∧ initiate(E,F,T1) ∧ T1<T2 ∧
¬clipped(T1,F,T2).

A fluent still holds at an instant in time, provided an event previously
occurred which initiated the fluent, and the fluent has not been clipped in
the meantime.

Ax4: holdAt(F2,T2) ← happen(E,T1) ∧ initiate(E,F1,T1) ∧ T1<T2

∧ T2=T1+D ∧ trajectory(F1,T,F2,D) ∧ ¬clipped(T,F1,T2).

A fluent ‘F2’ holds at an instant in time, provided (i) an event previously
occurred which initiated another fluent ‘F1’; (ii) the fluent ‘F1’, as long as
it has not been clipped in the meantime, has triggered fluent ‘F2’.

Ax5: clipped(T1,F,T2) ← happen(E,S) ∧ T1<S<T2

∧ (terminate(E,F,S) ∨ release(E,F,S)).6

A fluent is clipped during a period of time, provided an event initiated the
fluent but afterwards the same fluent was terminated or released (from the
law of inertia), and this occurred during the considered period of time.

The first notion of change—instantaneous change—can be best illustrated with
an example. Suppose someone plants a tree, or—in EC terminology—the event
‘plant-a-tree’ initiates the fluent ‘tree-be-on-the-ground’. From this sce-
nario, common sense sanctions the inference that, as long as nothing occurs
which may interfere with the initial situation (e.g., someone uproots the tree),
the tree will remain where it was planted, i.e., the fluent ‘tree-be-on-the-ground’

5This is a simplified version of axiom 2, as presented in [28].
6Strictly speaking, there is no disjunction in the language. So axiom 5 should be written

as two axioms.

2.1. Syntax 8

will still hold. This reasoning based on inertia is taken care of by axiom 3. Ax-
iom 2 captures the same kind of reasoning, but without making reference to a
fluent being initiated by an event.7

The second notion of change—continuous change—is related with changes
taking place in concomitance with the continuous exercise of a force, which trig-
gers a form of acceleration and ‘trajectorial’ change. If someone kicks a ball,
the ball will start moving in a certain direction: a force is communicated and
as long as it exercises its influence, the ball will trace a trajectory in space that
is dependent upon the force being exercised. In the language of EC the situa-
tion can be phrased as follows. The event ‘kick-the-ball’ initiates the fluent
‘the-ball-move’; this fluent, in turn, is connected with another fluent describ-
ing the position of the ball, e.g., the parametrized fluent ‘distance(ball,N)’,
with ‘N’ the distance expressed in, say, meters. The value of ‘N’ will increase
continuously as time passes, and as long as nothing unexpected happens (e.g.,
the ball hits an obstacle). The reasoning based upon this conceptualization is
taken care of by axiom 4. The remaining axiom 5 captures the ordinary under-
standing of phrases such as ‘something that may interfere occurs’ or ‘something
unexpected happens,’ which is rendered in EC by the predicate ‘clipped’.

2.1.3 Scenarios EC-S
As anticipated at the beginning of this chapter, the axioms only provide a

general theory of change and causality, and they must be complemented with
domain-dependent formulas. These are particular rule-like formulas which com-
pose scenarios.

In the following, the definition of scenario is preceded by the definitions of
state and of chain of a rule. The notion of chain of a rule is useful as to avoid
the construction of cyclic programs such as {p←p1, p1←p2, p2←p} which may
cause loops in the computations.

Definition 2. For a rule R, let b[R] and h[R] denote the set of formulas oc-
curring in the body and head of R.

(a) The chain of a rule R is the smallest set of rules, such that: (i) if h[R′] ⊆
b[R], then R′ is in the the chain of R; (i) whenever a rule Q is in the chain
of R, if h[Q′] ⊆ b[Q], then Q′ is in the chain of R.

(b) The ordered chain of R is a strict partial order ≺ such that Q ≺ Q′ iff Q′

is in the chain of Q, with Q,Q′ in the chain of R.

Definition 3. States are conjunctions of formulas of the shape:
Atoms ‘happen(e,t)’ and ‘holdAt(f,t)’, or their negations;
Equalities between fluent or event terms;
Formulas in the language of the structure 〈N, <,+,×, 0, 1〉.

Definition 4. Scenario rules are rules with the shape: initially(f)
7Although it is standard in EC to conceive of fluents as being initiated by events, there

may be fluents which hold but have not been initiated by an event (e.g., parametrized fluents

driven by a dynamics as given in axiom 4; see the second notion of change).

2.2. Computing with EC 9

happen(e,t) ← σ(t)

initiate(e,f,t) ← σ(t)

terminate(e,f,t) ← σ(t)

release(e,f,t) ← σ(t)

trajectory(f1,t,f2,d) ← σ(f1,f2,t,d),
where ‘σ(t)’ and ‘σ(f1,f2,t,d)’ are states with the constants ‘f, f1, f2,

t, d’ occurring in them. Furthermore, one restriction on the construction of
scenario rules apply. The restriction uses the notion of ordered chain given by
definition 2 and they are meant to avoid loops in the computations.

If a scenario rule is of the shape ‘happen(e,t) ← σ(t)’, then the event
‘e’ cannot occur in b[R], and in no formula in Q, where R ≺ Q.

Whenever a piece of knowledge is being modeled, its EC-representation will
consist of the axiom set EC-A and a set of scenario rules, or a scenario, which
is a subset of EC-S. Typically, a set of rules and facts is called a program P , so
every scenario will have the form of a program.

2.1.4 Integrity Constraints EC-IC
The addition of an integrity constraint language on top of EC-A + EC-S is

motivated by the need to model deontic statements. For now, the only concern is
with the syntactic presentation, but it suffices to say that the usage of integrity
constraints to express deontic notions has been put forward by Kowalski [18].

Definition 5. Given a rule A←L1, . . . , Lk, integrity constraint formulas are:
?A succeed ← ?L1, . . . , Lk succeed;
?A succeed ← ?L1, . . . , Lk fail;
?A fail ← ?L1, . . . , Lk succeed;
?A fail ← ?L1, . . . , Lk fail.

2.2 Computing with EC

This section outlines the proof system of EC. The primary task of the proof
system is as follows: Given the set of axioms EC-A and a scenario in the form
of a program P , determine whether the literal L can be derived from P . If L is
derivable from P using the axioms of EC, I shall write ‘P `EC L’.

The derivation process exploits the method of resolution based on backward
chaining. I shall first look at how resolution works for a restricted language.
In the propositional case, resolution is applicable whenever, for a query ?L
and a program P , there is a rule such that its consequent is identical with
L. Now, suppose we are given the query ?A and the rule A←L1, . . . , Lk in
P . Since A is identical with the consequent of the given rule, resolution—via
backward chaining—yields the new query ?L1, . . . , Lk. As long as there are
new rules available in P to which resolution is applicable, new queries can be
generated. When all applicable rules have been used up, resolution terminates;

2.2. Computing with EC 10

which means: (a) we reached the empty query8 or (b) we are left with a rule to
which resolution cannot be applied.

To define the derivation process, we need some more machinery. Resolution
can be thought of as the process of constructing rooted trees, in which each
node is labeled with a query. Trees are constructed and labeled as follows:

1. The root is labeled with the initial query.
2. The successive nodes are labeled according to three expansion rules:

i) Given a node labeled with the query ?A, and an applicable rule such
as A←L1, . . . , Lk, a successor node is constructed and labeled with
the query ?L1, . . . , Lk. If k > 1 rules are applicable to ?A, then the
tree splits into k branches.

ii) Given the query ?L1, . . . , Lk, two sucessor nodes, on the same branch,
are constructed and labeled with ?L and ?L2, . . . , Lk.

iii) Given the query ?¬A, a sucessor node is constructed and labeled with
the query ?A.

3. The leaves of the tree are labeled with ‘succeed’, if the immediately pre-
ceding node is labeled with an empty query; if otherwise, they are labeled
with ‘fail’, provided the immediately preceding node is labeled with a
query to which no expansion rule is applicable.

It is useful to single out paths of nodes over rooted trees. Maximal paths
or branches—i.e., those going from the initial query up to one of the leaves—
are of special interest, since they can be used to express success and failure of
queries qua nodes. Preliminarily, a maximal path is successful iff it ends with
‘success’ and contains an even number of negated formulas, or it ends with
‘fail’ and contains an odd number of negated formulas. Likewise, a maximal
path is unsuccessful iff it ends with ‘success’ and contains an odd number of
negated formulas, or it ends with ‘fail’ and contains an even number of negated
formulas. With this terminology in place, it is easy to define when an initial
query succeeds or fails.

Definition 6. The initial query ?A fails iff all maximal paths are unsuccessful;
it succeeds iff some maximal paths are successful. Accordingly, A is derivable
from P iff ?A succeeds w.r.t. P ; A is not derivable iff ?A fails. In case of ¬A,
the query ?¬A succeeds iff ?A fails, and viceversa.

The fact that ?¬A succeeds if ?A fails indicates that the negation used in EC

is a form of negation as failure. I give an example of the resolution process to
clarify. Consider the program P = {p←¬q1, p←r1, q1←q2, r1←r2, r2}. The tree
generated by posing the query ?p is given in figure 2.1. One can see that the
tree has two branches, both successful. The left-most one is successful because
it ends with ‘fail’ but contains an odd number of negated formulas. The right-
most one is successful because it ends with ‘succeed’ and contains an even
number of negated formulas. Thus, the query ?¬p will fail, as ?p succeeds.

Note that the above works for the propositional language with ←,¬ and
∧. EC is, in addition, a first-order language, and so the method of resolution

8For a program P , a query ?A is an empty query iff A is a fact of P .

2.2. Computing with EC 11

fail

q1←q2

((

?q2 succeed r2

xx
?q1 ?r2 r1←r2

xx
p←¬q1

**

?¬q1 ?r1 p←r1

tt?p

uuuuuuu

EEEEEE

Figure 2.1: The resolution tree for the query ?p relative to the program P =
{p←¬q1, p←r1, q1←q2, r1←r2, r2}. The dotted arrows connect a given query to
the applicable rule or fact in P .

should be extended to handle first-order rules. Following the choice made in
[28], I shall use constraint logic programing (hereafter, CLP).

2.2.1 Resolution in CLP

To explain CLP, a constraint language (hereafter EC-C) will be extracted out
of the language EC-A + EC-S. Constraint formulas in EC-C are:

- formulas in the language of the structure 〈N, <,+,×, 0, 1〉;
- formula securing the Unique Name Assumption;
- equalities or inequalities between terms;

and they will be denoted by C. I shall use over-lined symbols, e.g. ‘x’, to denote
sequences of symbols, e.g., ‘x1, . . . , xk’; the substitution of, say, the constant ‘a’
for the variable x will be denoted by ‘[a/x]’.

The main differences between resolution in the propositional case and in CLP

are two. The first difference is due to CLP being a first-order language. In the
propositional case, given a query ?L, resolution is applicable if L is identical
with some consequent L′ of a rule in P ; in CLP, we speak of L being unifiable
with L′:

Definition 7. Two literals L(a, x), L(y, b) in EC-L (which are not in EC-C)
are unifiable, if there is a substitution, e.g., [a/y] and [b/x], which makes them
identical.

Note that substitutions can almost equivalently be written as constraint
formulas; for example, the substitution ‘[a/x]’ can be written as the constraint
‘a = x’. This brings us to the second difference, which is related to the fact
that CLP is a constraint language. For, in CLP, applications of resolution may
result in the addition of a constraint formula ‘C’ in the new generated query,
so that the iteration of resolution leads to an accumulation of constraints. In

2.2. Computing with EC 12

fail succeed

Q1(x)←Q2(x)

**

?Q2(x), ι = x ι = x R2(x)

uu
?Q1(x), ι = x ?R2(x), ι = x R1(x)←R2(x)

uu
P (x)←¬Q1(x)

,,

?¬Q1(x), ι = x ?R1(x), ι = x P (x)←R1(x)

rr?P (ι)

nnnnnn
QQQQQQ

Figure 2.2: The resolution tree for the query ?P (ι) relative to the program P =
{P (x)←¬Q1(x), P (x)←R1(x), Q1(x)←Q2(x), R1←R2(x), R2(x)}. The dotted
arrows connect a given query to the applicable rule or fact in P ∗.

fact, resolution is dependent upon successful unification (corresponding to the
addition of a constraint), as follows:

Definition 8. Given the query ?A,C, resolution is applicable iff there is a rule
A′←L1, . . . , Lk, C

′, such that A and A′ are unifiable under the constraint C ′′.
As a result, the new query will have the shape ?L1, . . . , LK , C, C

′, C ′′.

Resolution in CLP will terminate when we have reached a query that only
contains a set of satisfiable constraint formulas (in this case the successive node
is labeled with ‘succeed’) or a query to which resolution is not applicable (in
this case the successive node is labeled with ‘fail’). The tree construction is
the same as in the propositional case, and success, failure and derivability are
defined as in definition 6.

Two Examples of Resolution in CLP

The first example (which uses rules written in a simple first-order language9)
is only preparatory to the second (which uses formulas in the language of EC).
Consider the program:

P ∗ = {P (x)←¬Q1(x), P (x)←R1(x), Q1(x)←Q2(x), R1←R2(x), R2(x)},

where variables are universally quantified. Posing the query ?P (ι), for some
individual ι, generates the tree in figure 2.2. The query ?P (ι) succeeds, as the
tree contains at least one successful branch, and so ?¬P (ι) fails.

For the second example in the language of EC, consider the program P ∗∗:

initiate(plant(X,tree),be-on(tree,ground),T).

terminate(uproot(X,tree),be-on(tree,ground),T).

9There is not need to define this language precisely. It suffices to say it is a rule language

with negation, where the literas composing rules are allowed to be first-order formulas.

2.2. Computing with EC 13

happen(plant(ι1,tree),1990).

happen(uproot(ι2,tree),2006).

The program P ∗∗ describes the scenario in which someone planted a tree in
1990, and someone else uprooted it in 2006. The description is very simplistic
(for example, it assumes that there is only one tree termed ‘tree’), but it is
good enough to show how resolution works in EC. In the previous two exam-
ples, the derivations were given in the form of trees (see figures 2.1 and 2.2).
With formulas of EC, drawing trees becomes more difficult, and so I will use an
alternative, more informal way to represent derivations. I shall illustrate it as I
go on. Suppose we pose the query:

?holdAt(be-on(tree,ground),2005).

The expected result is that the query succeeds. There are four rules that are ap-
plicable to this query, namely Ax1-Ax4. This will correspond to the construction
of a four-branched tree. However, the application of axiom 2 is what is needed.
Axiom 2 can be applied, provided the constraints ‘F=be-on(tree,ground)’ and
‘T2=2005’ are given. So the new query is as follows:

?F=be-on(tree,ground)

?T2=2005

?happen(F,T1)

?initiate(E,F,T1)

?T1<T2

?¬Clipped(T1,F,T2)

The first two queries in the list contain the constraints, and the other queries
contain the literals in the body of axiom 2. In order to understand the way I
am representing resolution, two conventions must be born in mind:
(C1) One is that the constraints are always added first in the list of new queries,

while the new queries (generated by the application of the rule) are added
below the constraints.

(C2) The second convention is that if the same variable name occurs in two
or more queries within the same list of queries, this means that the two
variables are actually the same (they are implicitly unified). For exam-
ple, ‘T2’ occurs in more than one query; in the second query above we
have ‘T2=2005’; this equality is implicitly transmitted to the variables ‘T2’
occurring in the other queries.

Note that the query ‘?happen(E,T1)’ and ‘?initiate(E,F,T1)’ can be elimi-
nated, because the program P ∗ contains ‘happen(plant(ι1,tree).1990)’, and
‘initiate(plant(X,tree),be-on(tree,ground),T)’. To carry out the elim-
ination, some constraints are to be added: ‘E=plant(X,tree)’, ‘T=1990=T1’,
‘X=ι1’, ‘F=be-on(tree,ground)’. So we have:

?F=be-on(tree,ground)

2.2. Computing with EC 14

?T2=2005

?T1<T2

?¬Clipped(T1,F,T2)
?E=plant(X,tree)’
?T=1990=T1’,
‘?X=ι1’,

The new list of queries contains a set of satisfiable constraints. So, for the initial
query to succeed, we only need to show that the query ‘?¬clipped(T1,F,T2)’
succeeds. By negation as failure, this means that we need to show that ‘?clipped(T1,F,T2)’
fails. Axiom 5 is the only applicable rule containing the ’clipped’ predicate in
the head. So we have:

?F=be-on(tree,ground)

?T2=2005

?T1<T2

?E=plant(X,tree)

?T=1990=T1,
?X=ι1,
?happen(E1,T1)

?T1<S<T2

?terminate(E1,F,S) ∨ releases(E1,F,S)

Consider the disjunctive query in the list above. (Strictly speaking, there are
no disjunctions in EC-L, but these can be expressed via syntactic sugar.) In the
program P ∗ there is no ‘release’ formula, but there is one ‘terminate’ for-
mula. The last query above can be eliminated and replaced with the constraint
‘E1=uproot(ι2,tree)’ and ‘S=2006’, we have:

?F=be-on(tree,ground)

?T2=2005

?T1<T2

?E=plant(X,tree)’
?T=1990=T1’,
‘?X=ι1’,
?T1<S<T2

?E1=uproot(ι2,tree)

?S=2006

By rewriting the constraints, we have ‘1990<2006<2005’, which is unsatisfiable.
Now observe that the program P ∗ does not contain any other way to make the
query ‘?terminate(E1,F,S)’ succeed and, thus, that query must fail. By nega-
tion as failure, this yields that ‘?¬terminate(E1,F,S)’ succeeds. This means
that ‘?clipped(T1,F,T2)’ fails, and so the initial query succeeds, as expected.
This concludes the second example. Later on in the thesis, I will represent

2.2. Computing with EC 15

derivations in the style of the second example, and adopt the two conventions
(C1) and (C2) on page 13.

2.2.2 CLP with IC
The language of EC includes integrity constraint formulas. Let I be an

integrity constraint formula, evidently it is non-sense to pose a query such as ?I.
In fact, integrity formulas are taken to be true beforehand and the program P is
forced to be updated so that the integrity constraints are satisfied. The notion
of integrity satisfaction, as well as those satisfiability and non-satisfiability can
be explained by means of the definition of failure and success of queries as given
in definition 6.

I shall adopt the notational convention of denoting the consequent and an-
tecedent part of I, deprived from the expression succeed or fail, by c[I] and
a[I].

Definition 9. Given a program P and an integrity constraint I, the integrity
constraint can enjoy three status:
Satisfied: The outcome of the queries ?a[I] and ?c[I] is in accord with I; or

the outcome of a[I] is not in accord with I. In the latter case I is only
vacuously satisfied.

Satisfiable: The formula I is not satisfied in P , but there is a way to update P
into P∗ such that I is satisfied in P∗.

Non-satisfiable: The formula I is not satisfied in P , and from any P∗ that
satisfies I the contradiction is derivable.

Summary

This chapter introduces the syntax and the proof-system of EC. The pre-
sentation of the syntax in section 2.1 is split in four parts, corresponding to
the different languages composing EC: the underlying language EC-L, axioms
EC-A, language for scenarios EC-S, and integrity constraint language EC-IC.
The proof system is briefly and informally outlined in section 2.2 by defining
resolution (for the propositional case first, and then for the first-order case suit-
able for the language of EC). Three examples of derivations based on resolution
are given (the first is based on a propositional rule language, the second on a
simple first-order rule language, and the third on the language of EC). The
chapter ends with definitions of the notions of satisfaction, satisfiability and
unsatisfiability of integrity constraints.

16

3 Legislation and Event Calculus

This chapter illustrates how EC can be used to formalize legislation.1 As
introduced in the previous chapter, EC is a formal system that captures the
ordinary, näıve understanding of change and causality. The examples given to
illustrate the axioms of EC were about actions and changes occurring within
(what may be called) the physical layer of reality—an egg being cracked, a
tree being planted, or a ball being kicked. But many of the objects talked
about in pieces of legislation—e.g., citizens, married couples, Presidents of the
Republic—or legal changes—e.g., acquiring citizenship, becoming the propri-
etary of a house—are not included in the physical layer. So, the connection
between EC and legislation does not seem to be straightforward.

However, the application of EC to the physical layer is one application among
others—and this chapter should convince the reader that EC can be applied to
different domains such as the legal one. A preliminary argument may point at
the fact that changes occurring within (what may be called) the legal layer of
reality follow more or less the same pattern as the changes occurring at the
physical layer. If someone acquires citizenship, she then becomes a citizen,
and she will continue to be so indefinitely, unless something occurs which may
terminate or interfere with her citizenship. As the reader can see, this reasoning
about a “legal change” is captured by axiom 3 of EC.

A concrete way to test more extensively the hypothesis that EC can be
applied to the legal domain, is by taking a conceptualization of (portions of)
the legal domain, and representing or modeling it with the language of EC.
Pieces of legislation are such conceptualizations.2 This means that the task of
representing or modeling the legal domain becomes the task of formalizing a
piece of (legal) text. The next chapter does this by taking as a case-study the
Italian Citizenship Law (hereafter, icl).

Engaging right away into the formalization of the text of icl may be dis-
persive. It is best to first get acquainted, in a more organized way, with some
recurrent expressions or features of legislative texts. A representative, though
incomplete, list of such features is as follows:

1The application of EC to the legal domain is inspired by the use of Logic Programming to

model the law: the affinities between Logic Programing and the law have been illustrated by

Kowalski [18], while others have expressed qualms, e.g., Valente [27] and Leith [19]. Counter-

evidence to their stance is given by the material presented in this and the following chapters.
2The legal domain has the advantage over other domains (like common-sense) that there

exist explicit conceptualizations of it in the form of statutes, laws, decrees, etc.

3.1. Definitions and Events 17

1. static vs. dynamic view (or definitional vs. event-based);
2. time w.r.t. to issues such as validity and applicability of the law;
3. cross-referencing between laws, articles and clauses in the legislation; and
4. exceptions.3

In what follows, each feature will be examined more closely and modeled in
the framework of EC. To this end, I shall consider these features mainly with
respect to icl. This will allow me to avoid unwarranted generalizations and at
the same time gently introduce the topic of the next chapter: the formalization
of icl in EC.

3.1 Definitional and Event-based View

The icl classifies the ways in which someone counts as an Italian citizen
and the ways in which she does not. The law is almost entirely composed
of articles in the form ‘person ‘a’ is an Italian citizen, provided ‘a’ satisfies
requirements ‘b’, ‘c’, etc.’ One could even contend that icl provides nothing
more than a classification of types of Italian citizenship. Although correct, this
view is too coarse. I shall argue that two types of legal classification are to be
distinguished—static and dynamic, or, definitional and event-based—and that
EC, when properly extended, can handle both of them. Consider the following
simplified version of articles 1 and 12 from the icl:

(3.1) The child of an Italian national shall be an Italian citizen as well.

(3.2) The Italian national who serves in the army of a foreign country shall
lose Italian citizenship.

The definitional renderings in first-order logic (hereafter, FOL) are:

(3.3) ∀x, y : child of(x, y) ∧ Italian citizen(y)→ Italian citizen(x).

(3.4) ∀x, y : serves in(x, y) ∧ Italian citizen(x) ∧ foreign army(y)→
lose(x, Italian citizenship).

Problems occur with this formalization in the following scenario:
3A remarkable absentee in this list of features and expressions recurrent in the law is given

by deontic notions (obligations, permissions, etc.). I cannot give a full treatment of deontic

notions as of now, but simply point at two possible directions of research.

In Kowalski [18] and van Lambalgen & Hamm [28, p. 100], it is proposed that obligations

(and deontic notions in general) be treated as integrity constraints on a database. On the one

hand, a database registers what happens or has happened, and, on the other, a set of integrity

constraints forces the database to be updated in a certain way, or it restricts the ways in

which the database can be updated. This distinction parallels the one between a language

for scenarios, EC-S, and an integrity constraint language, EC-IC (see chapter 2). There is an

alternative approach to deontics, based on deontic fluents. It has been worked out in the case

of Situation Calculus (see Reiter [22] for an introduction) by Demolombe & Parra [9]. The

same solution mutatis mutandis could be used for EC.

The abundant literature on the Chisholm’s paradox could be used to test these proposed

approaches, e.g., [5, 21].

3.1. Definitions and Events 18

(a) an individual ‘ι’ is a child of an Italian citizen, and
(b) ‘ι’ serves in a foreign army at a given time, say, ‘T=1999’.

The definitional FOL-formalization yields that, since ‘ι’ is a child of an Italian
national, ‘ι’ is an Italian citizen by (3.3); and also that, since ‘ι’ serves in a foreign
army, then ‘ι’ loses Italian citizenship by (3.4). Evidently, it is absurd that
someone has Italian citizenship, while losing it. So the definitional formalization
must be discarded as it sanctions an implausible conclusion.

On the other hand, a formalization of (3.1) and (3.2) that is restricted to an
event-based approach is not adequate either. Suppose that (3.1) is interpreted
as defining a condition that initiates Italian citizenship, and (3.2) as defining a
condition that terminates it; then the formalization will be as follows:

(3.5) initiate(start Italian citizen(X),italian citizen(X),T).

happen(start Italian citizen(X),T) ←
holdAt(child of(X,Y),T) ∧ holdAt(Italian citizen(Y),T).

(3.6) terminate(end Italian citizen(X),italian citizen(X),T).

happen(end Italian citizen(X),T) ←
happen(serve in(X,Y),T) ∧ holdAt(foreign army(Y),T).

In the problematic scenario, composed of (a) and (b), the new formalization
sanctions the right inferences.4 However, an adequate formalization should not
only capture the right inferences, but also resemble the wording of the law,
especially if different wordings mark conceptual distinctions. In fact, while
(3.2) appears to be adequately represented by (3.6), the formula (3.5) in the
new event-based formalization is not a good rendering of (3.1). The sentence in
(3.1) does not contain reference to any dynamics of initiating events; rather, it
is a static representation of what a citizen is, for which the definitional approach
seems to be more suitable. Note that the different wording of (3.1) and (3.2)—
the latter contains reference to an event, and the former is event-less—is not
limited to style or syntax: the different wording reflects a conceptual difference.
To appreciate the importance of this distinction, the reader will have to wait
until chapter 5, where a judgment based on the icl at the Tribunal of Turin is
analyzed. The text of the tribunal’s sentence pointed exactly at the difference
(in my terminology) between the definitional and event-based view of article 1
of the icl.5 To anticipate, it is worth quoting an excerpt:

4For if one poses the query ‘?holdAt(Italian cit(ι),2000)’, the query will fail. By fact

(a), sentence (3.5) and axiom 3 the query may succeed, but fact (b) and sentence (3.6) make

the ‘clipped’ formula in axiom 3 succeed. This blocks axiom 3 from generating inferences,

and hence the initial query fails, as excepted. (Incidentally, given ‘T=1999’ the initial query

will still succeed because fluents are actually terminated right after the terminating event has

taken place. This is due to how the axioms of EC are set up. See [28, p. 63] for a discussion

of this point.)
5The reader should be alerted that, in chapter 5, the assumption that there is only one cor-

rect interpretation of the law, and hence only one correct formalization, is strongly doubted.

However, even if one interpretation (formalization) does not exclude the other (e.g., the def-

initional formalization does not esclude the event-based one), the point made in this section

remains valid: there should a formal way to express definitional and event-based views of the

law.

3.1. Definitions and Events 19

On this matter, it should be made precise that . . . the right to acquire
Italian citizenship comes into being not at the event of the “birth”
. . . , but rather it is based on the situation of filiation from a parent
who is a citizen.6

The moral is that we need to combine en event-based rendering of (3.2)—
which we have already in (3.6)—and a definitional rendering of (3.1)—which
we do not have yet. Obviously, the overall formalization should not yield un-
acceptable conclusions in the case of scenarios like (a)–(b). A straightforward,
yet unsatisfactory, manner to formalize (3.1) in a definitional way is as follows:

(3.7) The child of an Italian national shall be an Italian citizen as well.
holdAt(Italian citizen(X),T) ←
holdAt(child of(X,Y),T) ∧ holdAt(Italian citizen(Y),T).

In the new formalization, the usage of initiating events is replaced by the repre-
sentation of a static relation between being the child of an Italian national and
being of Italian nationality. The formalization (3.7) is now textually precise,
and one problem has been solved. (Note that there is no essential difference
between the formalization (3.3) in FOL and the new formalization (3.7) in EC.
The only, non-substantial, difference lies in the predicate ‘holdAt’, because of
technical reasons due to the EC-framework.)

Unfortunately, if one considers the new formalization overall —composed of
(3.6) and (3.7)—an unacceptable conclusion, due to scenario (a)–(b), can be
derived. Suppose both facts (a) and (b) are the case. The query

?holdAt(Italian cit(ι),2000)

fails, by axiom 3, fact (b) and (3.6). However, the failure is overridden by
the fact that the same query succeeds by (3.7) and fact (a). This is clearly
counterintuitive. The solution I shall propose is to extend EC with the static
predicate ‘obtain’ and an additional axiom similar to axiom 2:

Ax6: holdAt(F,T2) ← T1<T2 ∧ obtain(F,T1) ∧ ¬clipped(T1,F,T2).

Axiom 6 says that if a fluent ‘F’ obtains at an instant in time, then the same
fluent will hold later on, unless something interferes with it in the meantime.
The difference between ‘obtain’ and ‘holdAt’ is that the former is not subject
to the principle of inertia and the latter is. Both ‘obtain’ and ‘holdAt’ apply
to fluents, and so they are both event-less, static predicates. The difference
between ‘obtain’ and ‘happen’ is that the predicate ‘obtain’ is used for flu-
ents and ‘happen’ for events, but none is subject to the principle of inertia.
The advantage of introducing the new predicate ‘obtain’ can be immediately
appreciated in this new, and satisfactory, formalization of (3.1):

(3.8) The child of an Italian national shall be an Italian citizen as well.
obtain(Italian citizen(X),T) ←
holdAt(child of(X,Y),T) ∧ holdAt(Italian citizen(Y),T).

6Deve essere precisato, in proposito, che il titolo di siffatto modo di acquisto . . . della

cittadinanza italiana è costituito, non già dall’evento ”nascita” . . . , bens̀ı dalla situazione di

filiazione da genitore cittadino. See [10].

3.2. Time and Validity 20

With the new formalization, composed of (3.6) and (3.8), every problem seems
to be sorted out: (3.6) has an event-based form and (3.8) has a definitional
form, in accordance with their textual wordings. Furthermore, in case both (a)
and (b) occurs, the intended conclusion can be derived. The query

?holdAt(Italian citizen(ι),2000)

fails, because ‘?clipped(1998,Italian citizen(ι),2000)’ succeeds by fact
(b), (3.6) and axiom 5. The ‘clipped’ formula blocks any possible inference
towards ‘holdAt(Italian citizen(ι),2000)’.

The nature of the difficulties I have been confronted with while modeling (3.1)
and (3.2) is twofold: on the one hand, it is essential to get the right inferences,
and on the other it is preferable to model legislative articles in a way that is as
close as possible to their natural language wording. Two requirements for good
modeling can thus be stated:

(R1) An adequate modeling sanctions only the right or intended inferences.

(R2) An adequate modeling is textually precise.

The EC, properly extended, turns out to be a well-equipped formalism to cope
with the interplay between a definitional and an event-based view of the legis-
lation, yet two general questions are still open. One is whether EC is expressive
enough to model any kind of definitional article. The other is whether EC is
expressive enough to model any kind of event-like article. These are empirical
questions, and a proper response would require one to model the entire avail-
able legislation.7 More modestly, from the formalization of icl given in the next
chapter, it will become apparent that EC is expressive enough.

3.2 Time and Validity

A difficulty with the EC-based formalization of the law is that rules are
assumed to hold unconditionally over time, without any temporal limitation.8

In legal reasoning, instead, certain articles (translated as rules) may have limited
applicability or validity. For instance, a law about social benefits can be valid
or active from January 1, 2007, be applicable to those who satisfied certain
requirements only between 1975–1980, and produce effects not before 2020 (e.g.,
the benefit can only be claimed after 2020). The example points out that there
are at least three periods of time to which rules should be relativized: period of
validity or activity, period of applicability, and period of effectiveness.9

7Clearly, EC cannot express sentences like ‘if X satisfies Y, then X is Z1 or X is Z2’,

because disjunctions are not allowed in the consequent of rules. This can be remedied by

using extended logic programming. The problematic rule becomes, for example, ‘If X satisfies

Y, and X does not satisfy Z1, then X satisfies Z2’, where ‘not ’ is classical negation.
8This observation is taken from Maŕın & Sartor [20]. The authors provide an alternative

solution to the one advocated here.
9In fact, the classification of three temporal periods is not complete. For example, it was

neglected the period of time during which the law is part, as a piece of text, of the legislative

3.2. Time and Validity 21

The period of validity or activity indicates when the law qua abstract object
is part of the legal system and has normative force. The event of enactment10

and repeal mark, respectively, the beginning and end of such a period. Yet the
date of enactment does not say anything about the time period in which the
rule is applicable or can produce effects. These are specified in the antecedent
and consequent of rules (formalizing legislation):

A(t1, t2)→ C(t3, t4).

The temporal parameters t1, t2 in the antecedent determine the period of ap-
plicability of the rule. The period of effectiveness, instead, is specified in the
consequent of the rule and demarcates the temporal beginning and end of the
effects triggered by the rule, t3, t4. In the example above, the period of appli-
cability was 1975-1980, and the period of effectiveness was 2020-onwards.

While validity, applicability and effectiveness should be kept apart, as they
are intensionally different, it is often the case that they are extensionally the
same, i.e., they cover the same set of points in time. For if an article does not
contain explicitly its period of applicability and effectiveness, it will be assumed
that these coincide (extensionally) with the period of validity, which should
always be specified in legislative texts. But there are cases, as the previous
example, in which the three periods are also extensionally different.

The question arises of how theses different temporal parameters are accom-
modated within the EC-framework. In one solution, they are attached to rules
as meta-data, i.e., they are not expressed in the object-language itself, but they
are specified at the meta-level. A more straightforward solution—the one I shall
adopt—does not make any distinction between language and meta-language,
and incorporates the temporal parameters within the rules themselves. I shall
give a sketch of how this might work.

3.2.1 Applicability and Effectiveness

Periods of applicability and effectiveness can be easily embedded as temporal
parameters within rules. Suppose an article applies between 1995-1999 and it is
effective between 2005-2010. The following schema of formalization should take
care of the applicability period 1995-1999, where ‘σ(T1,...,Tk)’ stands for the
(proper) antecedent of the rule with the related temporal parameters:

holdAt(cit(X),T) ←
σ(T1,..,Tk) ∧ 1995<T1,...,Tk<1999 .

The period of effectiveness 2005-2010 should be specified in the consequent, but
consequents can only be atoms, not conjunctions. Fortunately, this syntactic

corpus. Publication and repeal (or abrogation) mark the beginning and end of such a period.

The date of publication indicates when the law is added to the legislative corpus; date of

repeal (or abrogation) indicates when the law is removed. Equivocally enough, the event of

repeal marks also the end of the period of validity.
10There are quite a number of synonymous expressions denoting the event of enactment,

e.g., coming into force, coming into effect. In the rest of the thesis, I shall use them more or

less interchangeably.

3.2. Time and Validity 22

restriction does no harm, as one can use an equivalent formalization by using
three formulas instead of one, as follows:

2005<T1<2010.

T1=T2.

holdAt(cit(X,art1),T2) ← ...

A solution which distinguishes predicates of the object-language, e.g., ‘cit’,
from meta-level temporal attributes would be more elegant, while the solution
here outlined confuses the two levels. Nonetheless, the solution seems to be
acceptable enough in terms of the inferences that it sanctions, and in addi-
tion legislative texts themselves confuse object- and meta-level predicates or
attributes.11

3.2.2 Validity or Activity

Defining the period of validity or activity of a rule is not straightforward.
While in the case of applicability or effectiveness it was sufficient to add restric-
tions on the temporal variables in the head of a rule (for effectiveness), or in the
body (for applicability); in the case of validity, temporal restrictions are meant
to apply to the entire rule as a whole. A meta-level representation seems now
unavoidable. Still, there is a way to define the period of validity in the object
language.

Any legal qualification or predicate (e.g., being a citizen) will be indexed
to an article name (typically a number). The article name uniquely identifies
the article in the legal text which defines the meaning of the legal predicate,
or which defines the conditions for the legal predicate to hold. So I shall write
‘cit(X,ART)’ instead of simply ‘cit(X)’. The idea is to qualify the article num-
ber in the intended way, as to specify when the article (associated to a number)
is valid. The events of repeal and enactment determines the extremities of the
period of validity, and they can be specified as follows:

happen(repeal(ART),T);

happen(enact(ART),T).

By default, it is assumed that an article is made active or valid by the event of
its enactment:

(act) initiate(enact(ART),active(ART),T),

and it is made inactive or invalid by the event of its repeal:

(rep) terminate(repeal(ART),active(ART),T).

11For example, here is how article 18, from icl, mentions the period of applicability (under-

line added): The persons . . . who emigrated abroad before July 16, 1920 . . . are deemed aliens

of Italian origin.

3.2. Time and Validity 23

Clearly, as long as an article is not being repealed, it remains active. This form
of reasoning based on inertia is taken care of by axiom 3.

The solution here proposed can define the validity of an article (translated
as a rule or set of rules) within the object-language. Suppose we are given
a rule saying that someone, who is found abandoned in Italy, acquires Italian
citizenship:

happen(acquire cit(X,italy,art1),T) ← happen(found abandoned(X,italy),T)

Note that, given any moment in time, this rule grants acquisition of citizen-
ship to anyone who is found abounded in the territory of Italy. However, such a
“timeless” validity of the rule can be restricted by using (act) and (rep). For sup-
pose we have derived the conclusion (?) ‘happen(acquire cit(ι,italy,art1),1999)’
from the fact ‘happen(found abandoned(ι,italy),1999)’, by using the rule
above. By using (act) and (rep), and some facts about when ‘art1’ was enacted
and repeled (if at all), one is able to check whether or not the conclusion (?) is
legally valid, i.e., whether it is based on a valid or active article. One only needs
to pose the query ‘?holdAt(active(art),1999)’. In conclusion, rules as such
have timeless validity, but the inferences that are generated using them can be
distinguished in valid and invalid, depending upon the validity of the article on
which the inference is based.

Validity vs. Classificatory Reasoning

By indexing ‘cit’ to an article ‘ART’, if the query

?holdAt(cit(ι,art1),1999).

succeeds, this does not tell us anything about ‘ι’ being en actual citizen at time
1999. Being an actual citizen for ‘ι’ would correspond to the success of the
following query, where the article number has been dropped:

?holdAt(cit(ι),1999).

The above query will succeed provided there is an article granting Italian nation-
ality to ‘ι’, and this article is valid at time 1999. To connect citizenship granted
by an article with citizenship granted by a valid article (effective citizenship),
this rule can be used:

(val) holdAt(LEGAL FLUENT(X),T) ←
holdAt(LEGAL FLUENT(X,ART),T)∧holdAt(active(ART),T).

The new rule12 yields the conclusion ‘holdAt(cit(ι),1999)’, provided ‘ι’ is an
Italian national according to some valid article at time 1999.

12Rule (val) does not comply with the syntax for scenario given at page 8, definition 4, and

it is used here as an exceptional case. Except for the axioms, rules with ‘holdAt’ predicates in

the head should be used with extreme care. The problem with such rules is that, once their

antecedent is satisfied, the ‘holdAt’ will hold indefinitely because of axiom 2. In case of (val)

this is no problem, but it may be troublesome in other cases.

3.2. Time and Validity 24

The moral is that there are two kinds of reasoning: classificatory reason-
ing (definitional plus event-based; see section 3.1) and validity reasoning. The
former consists in the attribution of a legal qualification or property to an indi-
vidual at a given instant in time and according to a certain article of the law.
The latter builds on the result of the classificatory reasoning and requires in
addition that the articles used in the classificatory reasoning be valid.

The separation between classificatory and validity reasoning is a useful one,
because, among other things, it allows one to perform simulations, namely draw-
ing conclusions about what legal qualifications, rights, duties, etc., would hold,
regardless of the validity of the law. Unfortunately, such a distinction yields a
major complication. Suppose it has been proven that ‘ι’ is an Italian national,
according to article 1 at time ‘T=1999’, and that the proof involves articles 2
and 3. This means that the proof involved previous legal predicates which were
defined by article 2 and 3. For example, the proof may have used the rule:

happen(acquire cit(X,italy,art1),T) ←
happen(approval(president,art2),T)∧
happen(approval(state council,art3),T).

In order to know whether or not ‘ι’ counts as an effective Italian citizen, one
should verify the validity of articles 1, 2 and 3, and not only of article 1. For
no valid conclusion can follow from premisses which used invalid articles. The
difficulty is that, when ‘ι’ is proven to be Italian, according to article 1, there
is no trace (encoded in the language) that other articles have been used during
the proof. Yet, these other articles need to be checked for their validity.

One way out is to design a formal device that can dynamically keep track
of articles invoked during proofs, so that, at the end of a proof, one can check
the validity of the articles collected during the proof. Another approach to the
problem is to require that, during the formalization of the law, whenever legally
relevant fluents or events are written in the antecedent of rules, they should be
paired with fluents guaranteeing their activity or validity. So the above rule
should have been written:

happen(acquire cit(X,italy,art1),T) ←
happen(approval(president,art2),T) [∧holdAt(active(art2),T)] ∧
happen(approval(state council,art3),T) [∧holdAt(active(art3),T)].

The two legal fluents related with ‘art2,art3’ are paired with fluents between
square brackets guaranteeing the validity of ‘art2,art3’. This solution solves
the problems related with the validity reasoning, but destroys the possibility
to perform independent classificatory reasoning. A good solution would then
allow one to select which formulas to call during proofs. So, while performing
validity reasoning the formulas between square brackets are used, but they are
ignored while performing classificatory reasoning. How this can be achieved is
an unsolved problem in this thesis13

13A concrete example of how this problem can manifest itself is given at the end of chapter

5.

3.3. Cross-referencing 25

3.3 Cross-referencing

A distinguishing feature of legislative texts is the use of cross-referencing
between laws, articles, clauses, and phrases. Tentatively, cross-referencing is
a textual phenomenon such that sections, articles, etc. refer to other sections,
articles, etc., or to themselves. From the standpoint of formal linguistics, cross-
referencing can also be seen as a variant of anaphoric (and cataphoric) refer-
ence.14 Typically, anaphoric expressions such as pronouns refer to individual
entities that have been talked about previously in the discorse. Assuming that
legislation is an ongoing discourse, cross-referencing is the act of retrieving ar-
ticles that have been talked about elsewhere in other portions of the legislative
discourse (or legislative corpus). However, while anaphoric reference points at
well-defined individual entities, it is not equally clear what cross-referenced en-
tities are like in legislative texts. Certainly, they are articles—but what does
that mean exactly?

Roughly speaking, cross-referencing can be split into two components. First,
there is the proper reference, call it refn, to another article, section, etc. by use
of a number. Second, refn is “framed” within a certain linguistic construction:
‘refn shall apply ’, ‘according to the definition of . . . contained in refn’, ‘provided
the provisions given by refn have been satisfied ’, etc. Formalizing the linguistic
frame of refn should not be more difficult than modeling any other natural
language expression. The ultimate difficulty seems to reside in what the exact
reference of each refn consists of, and how the referred entity interacts with the
linguistic frame.

Unfortunately, there is no available categorization of the main linguistic con-
structions adopted in the multifaceted phenomenon of cross-referencing. This
absence makes it impossible to show, with some degree of generality, how cross-
referencing can be handled by EC. For the present purpose, it should suffice to
present and model only one illustrative example.

Recall that legally relevant predicates are associated with the article number
in which they are defined, e.g., ‘cit(X,ART)’. This device is simple and powerful
enough to deal with some elementary cross-referencing phenomena. Suppose we
are given the following articles (a simplified version of article 3 of the icl, clause
1 and clause 2):

(A) Those who are adopted by an Italian citizen, shall acquire Italian
citizenship.

(B) Article A applies also to those who were adopted before the date of
enactment of this law.

Under one posible interpretation, article B secures that the period of applica-
bility of article A can precede enactment, although by default it should initiate
at the same moment as enactment. Note, however, that the period of effective-
ness does not seem to be affected by what is stated in article B. An adequate

14I am grateful to Michiel van Lambalgen for suggesting this parallelism.

3.4. Exceptions 26

translation of (A) and (B) should capture this interplay between applicability
and effectiveness:

(A*) initiate(acquire italian cit(X,artA),italian cit(X,artA),T).

happen(acquire italian cit(X,artA),T) ←
happen(adopt(Y,X),T) ∧ holdAt(italian cit(Y),T).

(B*) happen(acquire italian cit(X,artA),T2) ← happen(enact(artA,ART),T1)

∧ T<T1 ∧ happen(apply(X,artA),T)

∧ T1<T2 ∨ T2=T1 [∧ happen(adopt(Y,X),T)].

Observe the constraints on the time variables ‘T’, ‘T1’ and ‘T2’ in (B*). Variable
‘T’ is bound to the applicability of (A), variable ‘T1’ to the date of enactment,
and variable ‘T2’ to the period of applicability. So, rule (B*) says that the period
of applicability of (A) extends itself retroactively before enactment—constraint
‘T<T1’—, but the effectiveness period is not modified by any retroactivity, and
so it follows (or coincides with) the period of activity—constraint ‘T1<T2 ∨
T2=T1’.

Rule (B*) contains the formula ‘happen(apply(X,artA),T)’, which should
be linked to article A as follows:

(B-A) happen(apply(X,artA),T) ←
happen(adopt(Y,X),T) ∧ holdAt(italian cit(Y),T).

A few words of comment are in order. First, the part between square brack-
ets in (B*) is superfluous, because it is already contained in the above rule.
Second, ‘apply(X,artA)’ is the key predicate used to handle the refA com-
ponent of cross-referencing, while rules (B-A) and (B*) take care of the lin-
guistic frame of refA. A more systematic and less ad hoc approach is called
for, but as long as no comprehensive body of linguistic data is available (e.g.,
a systematic classification of cross-referencing), such an enterprise is unfeasi-
ble. Third, the proposed approach sanctions the right inferences. Consider the
scenario in which the individual ‘ι’ is adopted by an Italian citizen in 1950,
while the law is enacted in 1992. By applying (B*), (B-A), and finally (A*),
the conclusion ‘happen(italian cit(ι,artA),1992)’ can be reached, as well
as ‘holdAt(italian cit(ι,artA),1993)’ by axiom 3, although the conclusion
‘happen(italian cit(ι,artA),1955)’ does not hold, as expected.

I have only illustrated a simple example of cross-reference; other examples
will be given in the next chapter when the text of icl is formalized.

3.4 Exceptions

The main technical device I shall adopt to handle exceptions is negation
as failure,15 which has the following, exception-like, procedural meaning: the
negated formulas are assumed not to hold, unless they are proven to obtain.

15The content of this section relies on and adapts ideas from Stenning & van Lambalgen

[26] and Kowalski & Toni [17].

3.4. Exceptions 27

To begin with, I will outline a general and EC-independent framework for
formalizing exceptions. Rules of the form ‘if ϕ, then ψ, unless χ’, where the
unless-clause marks an exception, can be easily rendered as follows:

ϕ ∧ ¬χ→ ψ.

However, it is often the case that unless-clauses are not explicitly stated. An
article may have the form ‘if ϕ, then ψ’, and another article the form ‘ψ cannot
obtain in case of χ’. The latter article is an exception to the former, but no
exception marker is used. This raises the question of how the rule ‘if ϕ, then ψ’
should be rendered. To accomodate exceptions that are not explicitly introduced
as exceptions in the text of the law, one may use exception markers, e.g, ‘ex’,
in any formal rendering:

ϕ ∧ ¬ex→ ψ.

The formula ‘ex’ is assumed to fail, unless it is triggered by something else, such
as:

χ ∧ ¬ex′ → ex.

The drawback of this approach is that, by default, it introduces exception mark-
ers where the text of the legislation may not contain any. This is a problem with
respect to requirement (R2) on page 20—that the modeling of the law should
be textually precise, and reflect the way the law is worded. One could say that
problems with (R2) arise only if we are seeking a literal formal translation of
the law; but, if capturing the intended meaning of the law is all we are seeking,
the formalization that uses default exception markers is adequate, albeit not
literal.16

I will now look at exceptions in the framework of EC. The advantage of EC

is that it can handle exceptions and be textually precise at the same time (also
when explicit exception markers are not mentioned in the text of the law).
Roughly speaking, heads of rules will (mainly) contain ‘happen’ or ‘obtain’
predicates.

If explicit exception markers are mentioned in the law, then one can use an
exception-fluent, e.g., ‘ex’, with at least two arguments, the article (number)
where the exception is stated and the article (number) to which the exception
applies. Rules with ‘obtain’ predicates in the head will look like the following:

16One textually precise approach would be to use a priority ordering between rules. In

this approach, rules ‘if ϕ, then ψ’ and ‘ψ cannot obtain in case of χ’ are rendered by the

rule-formulas ‘ϕ → ψ’ and ‘χ → ¬ψ’; subsequently, a priority ordering relation between

the rule-formulas is added, saying for example that the second formula overrides the first,

whenever conflicting outcomes arise. The main difficulty with this solution is that it adds

a further complication to the formalism, by reasoning about the rules, and thus introducing

a form of meta-level reasoning that I prefer to avoid. Besides, one may question whether

the solution based on ordering of formulas is cognitively adequate. What do we do when

we compute exceptions? Do we actually compute all the possible conclusions first, and then

decide which conclusion actually follows, on the basis of the ordering? Rather, is it not that

we immediately grasp one rule as an exception to the other, and so we compute only one

inference and ignore the others?

3.4. Exceptions 28

obtain(legal qualification(X,ART1),T) ←
. . .
not(holdAt(ex(X,ART1,ART2),T).

The ‘ex’ fluent contains reference to two articles in the legislation: ‘ART2’ is the
article where the exception is defined, and ‘ART1’ is the article affected by the
exception. It may be the case that the two articles are the same one, or that the
articles containing the exception are unknown; and in the latter case the fluent
‘ex’ cannot hold. Since ‘ex’ is a fluent, it may (but need not) be initiated by an
event:

initiate(start_ex(X,ART1,AR2),ex(X,ART1,ART2),T).

The treatment of exceptions in the case of ‘happen’ predicates in the head of a
rule can be accomplished along the same lines as above.

When no exception markers are mentioned in the law, the axioms of EC can
be used to block inferences, by adequately using the predicate ‘clipped’. Let
us look at rules with the ‘happen’ predicate in the head. For example, consider
the sentence ‘those who are born in Italian territory acquire Italian citizenship
on the date of birth’, and its formal rendering:

(3.9) initiate(acquire cit(X,italy),cit(X,italy),T).

happen(acquire cit(X,italy),T) ← happen(born in(X,italy),T).

Consider now the sentence ‘those who possess another nationality shall not
posses Italian nationality ’, which can be seen per se as a prohibition, but also
as an exception to the status of citizenship by birth in the territory of Italy.
Using the predicate ‘clipped’ allows one to formalize the exception:

(3.10) clipped(T1,cit(X,italy),T2) ← hold(cit(X,Z),T) ∧
neg(Z=italy) ∧ T1<T<T217.

Consider, now, the scenario in which the individual ‘ι’ is born in the territory
of Italy in 1995, but also is a citizen of Germany. We pose the query:

? holdAt(cit(ι,Italy),2000).

By axiom 3 and (3.9), the query may succeed, but the exception-sentence (3.10)
makes it fail; in the different scenario in which ‘ι’ was born in the territory of
Italy without being German, the query will succeed by axiom 3 and (3.9), as
expected.

The advantage of this alternative treatment of exceptions for ‘happen’ predi-
cates is that exception markers need not be written by default in the antecedent
of rules, but they can be added subsequently by means of ‘clipped’ clauses,
such as (3.10). An analogous treatment of exceptions can be given in the case
of the ‘obtain’ predicate: the appropriate usage of axiom 5 and 6, together with
the ‘clipped’ predicate, should do. For this solution to work, it is essential to

17This rules does not respect the syntax of scenario formulas. This is not a problem, unless

it causes unforeseen complications.

3.4. Exceptions 29

formalize articles as rules which contain either ‘obtain’ or ‘happen’ predicates
in their heads. As shown in section 3.1 before, where (3.2) was an exception to
(3.1), using the predicate ‘holdAt’ destroys the possibility of handling excep-
tions.

Summary

This chapter explores to what extent recurrent features and expressions of
legislative texts can be formalized in the language of EC. The features are: def-
initional vs. event-based view, time and validity, cross-referencing, exceptions.

Throughout the chapter, sparsely, some general observations are made. It
is worth summing them up. In section 3.1, it is suggested the EC be extended
with the predicate ‘obtain’ and the axiom:

Ax6: holdAt(F,T2) ← T1<T2 ∧ obtain(F,T1) ∧ ¬clipped(T1,F,T2).

In the same section, two general maxims for good modeling are formulated:

(R1) An adequate modeling sanctions only the right or intended inferences.

(R2) An adequate modeling is textually precise.

In section 3.2, a distinction between classificatory and validity reasoning is
made, and a rule to combine the two is given:

(val) holdAt(LEGAL FLUENT(X),T)

←holdAt(LEGAL FLUENT(X,ART),T)∧holdAt(active(ART),T).

The distinction between classificatory and validity reasoning raises an open
problem, namely: once the classificatory reasoning yields a certain (legal) con-
clusion (e.g., ‘ι’ is a citizen according to article 5), such a conclusion needs to
be checked with respect to its legal validity (i.e., whether the drawn conclusion
is based on valid articles). To perform the checking, the articles needed during
the classificatory reasoning which yielded the conclusion, are to be collected. So
the problem is to design a formal devise that can dynamically keep track of the
articles used during the classificatory reasoning.

30

4 Legislation Formalized

This chapter presents a sample of the formalization of the Italian Citizen-
ship Law.1 For each of the legislative features talked about in the previous
chapter (definitions and events, time and validity, cross-referencing, exceptions)
concerte examples taken from the Italian Citizenship Law (hereafter, icl) will
be given and formalized. To begin with, some preliminaries about notation and
methodology are in order.

4.1 Preliminaries

4.1.1 Notation

To facilitate the writing up of the formalization, I shall use a slightly different
notation than the one in chapter 2. Formulas are written in a Prolog-style
syntax. Constants (for predicates and individuals) begin with lower case letters,
and variables with upper case letters. Mnemonic notation will help understand
the intended use of variables, e.g., ‘T’ is used for instants in time, ‘ART’ for articles
in the legislation, ‘X’ or the like for individuals, ‘N’ or the like for numbers.
Sentential connectives are as follows: ‘,’ for conjunction, ‘;’ for disjunction,
‘not’ for negation as failure, and ‘:-’ for reversed implication. No specific symbol
is used for quantifiers, even though rules are always universally quantified. Rules
have the following shape:

consequent:-

antecedent_1,

antecedent_2,

antecedent_3,

...

antecedent_k.

No distinction between fluents and events is made apparent at the level of the
syntax, but suggestive names are adopted, e.g., ‘acquire_citizenship’ for
an event and ‘citizen’ for a fluent. The axioms of EC should be rewritten
accordingly.

1The formalization is based on an English translation of the Italian text [2]. The unofficial

English translation I followed can be found at http://www.legislationline.org/. However, I

have amended it, whenever I considered it to be necessary.

4.1. Preliminaries 31

4.1.2 Methodology

The methodological choices made for the formalization were essentially twofold.

Bottom-up vs. Top-down

First, the modeling of the law followed a bottom-up approach, supplemented
with a trial-and-error procedure (following Sergot et al.[23]). A bottom-up
methodology means that, first, each single article qua isolated piece of text is for-
malized, and subsequently the different bits of the formalization are assembled
to form the global model of the law. Trial-and-error procedures are necessary
whenever the isolated formalizations need to be adjusted, more or less drasti-
cally, to fit in the global model.2 An alternative, top-down, approach—which
could avoid most of the trial-and-error procedures—consists of constructing a
preliminary representation of the entire legislation, and subsequently carrying
out the formalization of single articles, in view of the preliminary representa-
tion.3 This approach is certainly better in that it avoids the trial-and-error.
However, it brings along the different complication of designing a method for
constructing a preliminary model of the law.

One more reason to prefer a bottom-up methodology comes from a further
requirement for a good formalization:4

(R3) A good formalization should be maintainable: as the texts of the law
evolves, so does the formalization.

If the formalization is bound to a preliminary model of the entire law, whenever
the law changes incrementally by means of the addition of new articles,5 it may
very well be that the existing formalization of old articles needs to be revised
as well, despite the fact that these were not modified. Suppose a legal system
is composed of two normative statements:

(R1) Walking on the grass is prohibited.

(R2) Owners of dogs are allowed to walk on the grass.

The two statements as a whole, in a top-down approach, can be formalized in
FOL as follows:

(R12) ¬(own(x , y) ∧ dog(y))→ prohibited(walk on grass(x))

But suppose a new statement is added:

(R3) Owners of dogs younger than 6 months are not allowed to walk on the
grass.

2 It would be best to avoid trial-and-errors, but this cannot always be the case. Indeed,

if the formalization of one article needs to be revised once the global picture is in place, this

makes the approach partly, albeit not entirely, top-down.
3The distinction between top-down and bottom-up methodology is also used by Bench-

Capon et al. [3, p.193], although the authors use the same terminology in the reversed way.
4Other requirements were spelled out in section 3.1, on page 20.
5To keep things simple, I disregard the case in which the law changes decrementally, i.e.,

when articles are repealed.

4.1. Preliminaries 32

The addition will require to throw away rule (R12) and replace it with:

(R123)
¬(own(x , y) ∧ dog(y)) ∨ (own(x , y) ∧ dog(y) ∧ younger than(y , 6 months))

→ prohibited(walk on grass(x))

The difficulty with a top-down approach is that the formalization evolves in a
way that is not uniform to the changes made to the legal text. In the exam-
ple above, the existing statements (R1) and (R2) were not removed after the
addition of (R3), whereas the old formalization (R12) had to be replaced by
(R123). The lack of uniformity between the law and its formal representation
has drawbacks with regard to maintainability: when new articles are added to
the legislation, the old formalization may have to be revised or replaced entirely.
This raises questions as to how the revision should be carried out, which por-
tions of the formalization should be given up, how to single them out efficiently,
etc.

More elegantly, the addition of new articles should simply correspond to the
addition of new rules in the formalization, with no further complication. Above
that, it is true that when (R3) was added, (R1) and (R3) were not modified
as pieces of texts (as syntactic objects), but their “meaning” shifted after the
addition. A formal representation should be able to mirror the same kind of
phenomenon: after the addition of new formulas (formalizing added articles),
the old formulas (formalizing existing articles) continue to be the way they were,
but their “meaning” changes in concomitance with the addition. I contend that
a bottom-up approach, combined with the use of negation as failure, is the most
suitable candidate that can meet these desiderata.6

Statements (R1) and (R2) can be formalized as isolated units, in a bottom-up
way, as follows:

(R∗
1) prohibited(walk on grass(x))

(R∗
2) own(x , y) ∧ dog(y)→ allowed(walk on grass(x))

Unfortunately, the combination of (R∗
1) and (R∗

2), applied to owners of dogs,
yields the unacceptable conclusion that owners are prohibited and allowed to
walk on the grass. This problem was avoided in the top-down approach by
formalizing (R1) and (R2) in one go. A solution to this problem, within the
bottom-up approach, is offered by negation as failure:

(R∗∗
1) ¬ex1 → prohibited(walk on grass(x))

(R∗∗
2) own(x , y) ∧ dog(y) ∧ ¬ex2 → allowed(walk on grass(x))

The formulas ‘¬ex1’ and ‘¬ex2’ have been added in the antecedent of (R∗
1) and

(R∗
2). In general, ‘¬exi’ reads ‘there is no proven exception to Ri’, where ‘¬’ is

negation as failure. The final step to solve the problem is to make explicit that
(R2) is an exception to (R1):

6What follows is based on the work by Stenning and van Lambalgen on the suppression

task [26].

4.1. Preliminaries 33

(ex12) own(x , y) ∧ dog(y)→ ex1

The combination of (R∗
1), (R∗

2) and (ex12), when applied to dog owners, does
not yield the prior unacceptable conclusion, because (ex12) blocks the conclusion
‘prohibited(walk on grass(x))’.

The addition of (R3) is unproblematic and corresponds to the addition of
one rule formalizing (R3), along with a rule specifying that (R3) is an exception
to (R2):

(R∗∗
3) own(x , y) ∧ dog(y) ∧ younger than(y , 6 months) ∧ ¬ex3

→ prohibited(walk on grass(x))

(ex23) own(x , y) ∧ dog(y) ∧ younger than(y , 6 months)→ ex2

Both desiderata are met: the addition of new article corresponds to the simple
addition of new formulas, and the “meaning” of the formulas changes as new
formulas are added. The latter point can be made more perspicuous if ‘meaning’
reads ‘sanctioned inferences’. Given a scenario in which the individual ‘ι’ owns
a dog younger than 6 months, the set of formulas given by (R∗∗

1), (R∗∗
2), and

(ex12) yields the conclusion that ‘allowed(walk on the grass(ι))’ and ‘¬ prohib-
ited(walk on the grass(ι))’. After adding (R3) and (ex23), the new set of for-
mulas yields the different conclusion that ‘¬allowed(walk on the grass(ι))’ and
‘prohibited(walk on the grass(ι))’. As expected, the meaning of the formulas—
seen in terms of derivable inferences—changes as new formulas are added.7

7 A counter-counter argument to the bottom-up approach defended here, is that the size

of the formalization is larger than in a top-down approach (in the example above: 5 formulas

instead of only 1). This, in turn, may result in a blow-up of the complexity of the reasoning

needed to compute inferences. If the increase in size becomes a threat when inferences are

computed, a tentative solution could suggest that the bottom-up representation be translated

into a top-down one that will be used to compute inferences. A translation from bottom-up to

top-down representations is available, and it is known as completion (of a program) (see [28,

p.55]). Without entering into the technicalities, completion consists of two main steps: first,

rules with the same head, e.g., ϕ1 → p, ϕ1 → p, are merged into one rule whose body contains

the disjunction of the bodies of the original rules, e.g., ϕ1 ∨ ϕ2 → p; second, occurrences of

‘→’ are replaced by ‘↔’.

If completion is applied to ‘ex12’ and ‘ex23’, this yields two doubles implications.

(exc
12) own(x , y) ∧ dog(y) ↔ ex1

(exc
23) own(x , y) ∧ dog(y) ∧ younger than(y, 6 months) ↔ ex2

Moreover if an ex-formula does not occur in the head of any rule, as in the case of ex3, we

set by default:

(exc
3⊥) ⊥↔ ex3

The equivalences given by (exc
12), (exc

23) and exc
3⊥ can be applied to the rules (R∗∗1), (R∗∗2),

and (R∗∗3), so we obtain:

(R∗∗1c) ¬(own(x , y) ∧ dog(y)) → prohibited(walk on grass(x))

(R∗∗2c) own(x , y) ∧ dog(y) ∧ ¬(own(x , y) ∧ dog(y) ∧ younger than(y, 6 months)) →
allowed(walk on grass(x))

(R∗∗3c) own(x , y) ∧ dog(y) ∧ younger than(y, 6 months) ∧ >
→ prohibited(walk on grass(x))

From the new set of rules, the formalization (R123) can be derived immediately.

4.2. The Formalization 34

EC-specific Methodology

In the second place, the adopted methodology was shaped by the language
used for modeling the law, the EC. Unfortunately, no experimented method-
ology for modeling law, that is specific to EC, is available. One trend in the
literature is to use fragments of FOL to formalize pieces of legislative text (e.g.,
the language of Logic Programming as in [23, 18, 3]), but EC has never been
applied extensively to the domain of law.8 The EC-formalization of icl that is
presented here, thus, aims at being no more than a rudimentary prototype, based
on a not-yet-finally-shaped methodology. The tentative EC-specific bottom-up
methodology may be casted in this semi-algorithmic way:

1. While formalizing, consider each article in isolation, but according to the
order of occurrence in the legislative text;

2. Formalize each article as a set of one or more rules:
a. Pick out the part of the text which indicates what the head(s) of the

rule(s) should look like;
b. Since heads of rules are mainly of two kinds, ‘obtain’ or ‘happen’

predicates, textual evidence may suggest which one to prefer (e.g.,
if an event is mentioned, such as ‘was born’ or ‘acquire’, then the
‘happen’ predicate is preferable, but if a static representation like a
definition is expressed, then one should opt for the ‘obtain’ predi-
cate);

b. Write up the head(s) of the rules(s);
3. Finally, construct the global model by coherently assembling the rules:

a. Collect and group consequents of rules according to desired criteria;
b. Add formulas to make the formalization work with the axioms of EC.

Points 1–3 will be clarified throughout the rest of the chapter. Sections 4.2.1,
4.2.2, and 4.2.3 provide plenty of illustration for points 1 and 2. In these sections,
several articles from icl are formalized in isolation (or, at the most, the isolated
formalizations are connected only when an explicit cross-referencing from one
article to the other is given by the text of the law). The stage of assembling the
isolated formalizations in a coherent way for EC (point 3 above) is explained in
section 4.2.4.

4.2 The Formalization

What follows should be seen as the empirical counterpart to the material
presented in the previous chapter, in which issues such as cross-referencing, time
and validity, exception, etc. are dealt with in a rather abstract and general way.
In this section, the very same topics are encountered and discussed in the “lively
flesh” of the legislative text. As it will soon become apparent, deontic notions
will receive little or no attention;9 this choice was deliberate and intended to
show that, despite the vulgata in deontic logic, formalizing the legal domain

8The application of EC to the law has been suggested in e.g. Bench-Capon et al. [3].
9Permissions are formalized in case of article 3 (on citizenship by adoption).

4.2. The Formalization 35

does not only involve formalizing talks about obligations and permissions—it
involves much more.

The formalization of each article assumes a short-cut which needs to be
explained. In the previous chapter, it was suggested that each legal predicate,
e.g., ‘acquire cit’ or ‘cit’, should contain an argument indicating the number
of the article in which it is defined. I shall adopt the convention of writing
the article number which corresponds to most specific place in the legislation
(number of section, article, clause, etc.) in which the predicate is being defined.
For example, it is redundant to write two rules such as:

holdAt(cit(...,icl.art1), T) :- ...

holdAt(cit(...,icl), T) :- ...

The two rules indicate that the fluent ‘cit’ is being defined and occurs in icl,
article 1, and also in the entire icl. But the latter could be inferred from the
former. The dot between ‘icl’ and ‘art1’ can be seen as a navigation operator
through the hierarchical structure of the legislation: if a predicate occurs in a
certain article of the legislation, it also occurs in the entire legislation (since
the entire legislation hierarchically contains its own articles). In this way I
shall minimize the number of times the same predicate is paired with different
numbers.

I will divide the presentation of the formalized articles into three parts:
Acquiring Citizenship: This part include articles 1, 3, 4, 5 and 9. They determine

how Italian citizenship is acquired: by birth (art. 1), by adoption (art.
3), by residence (art. 4), by marriage (art. 5), by decree of the President
of the Republic (art. 9).

Exception and Cross-referencing: This part presents the formalization of articles
6 and 10. They concern ways in which acquisition if citizenship may be
precluded.

Application, Repeal, and Enactment: This part presents articles 18, 26 and 27.
Article contains provisions for acquiring or recovering Italian citizenship
which are related to the territorial situation of Italy immediately after
the second World War, and it was selected to show how applicability
restrictions occur in the law. Articles 26 and 27 deal with enactment of
icl and repeal of previous legislation.

4.2.1 Acquiring Citizenship

The range of representational issues raised by the first group of articles is
rather wide, e.g., definitional and event-based approaches (see, in particular,
citizenship by birth in article 1), cross-referencing (articles 3 and 9), usage of
the predicate ‘trajectory’ to handle deadlines (articles 3, 4, 5 and 9). In what
follows, for each article, I will quote the text of the article or portions thereof,
then give the related formalization, and finally comment on it. The writing
between brackets accompanying the number of the article is not part of the text
of the law (it was added to enhance clarity).

4.2. The Formalization 36

Article 1 (birth):

1. Citizen by birth is:
a) the child of a father or a mother, who are Italian citizens;
b) a person who was born in the territory of the Republic if both parents

are unknown or stateless [. . .]
2. The child of unknown parents who is found abandoned in the territory of

the Republic shall, provided possession of another citizenship is not proved,
be deemed citizen by birth.

%clause 1.a

obtain(cit(X,italy,birth,art1.1.a),T):-

holdAt(child_of(X,Y),T),

holdAt(cit(Y,italy),T),

%clause 1.b

happen(acquire_cit(X,italy,birth,art1.1.b),T):-

happen(born_in(X,italy),T),

(

holdAt(unknown_child_of(X,Y),T1);

(holdAt(child_of(X,Y),T) , holdAt(stateless(Y),T))

),

(

holdAt(unknown_child_of(X,Z),T1));

(holdAt(child_of(X,Z),T) , holdAt(stateless(Z),T))

),

not(Y=Z).

%clause 2

happen(acquire_deemed_cit(X,italy,birth,art1.2),T):-

happen(found_in(X,Y),T),

holdAt(abandoned_in(X,italy,T),

holdAt(unknown_child_of(X,Y1),T)),

holdAt(unknown_child_of(X,Y2),T)),

not(Y1=Y2),

not(holdAt(cit_of(X,Z)),T),

not(Z=italy).

% Additional information

holdAt(unknown_child_of(X,Y),T):-

not(holdAt(child_of(X,Y),T)).

Comments:

The interpretation of article 1 is affected by a difficulty I have discussed in
section 3.1, with regard to the contrast definitional vs. event-based view. The
choice made here is that clause 1.a is definitional, while clauses 1.b and 2 are
event-base. Textual evidence warrants this choice: clause 1 does not contain
reference to events in a tensed form, while the other clauses do. Clause 1.a

4.2. The Formalization 37

was, thus, formalized by using a static representation involving only ‘obtain’
predicates; the remaining clauses, instead, were rendered, more dynamically, by
using ‘happen’ predicates in the consequents.

This discussion brings me to the problem of non-initiated fluents. Clause
1.a attempts to remain neutral as to when precisely the fluent ‘cit’ comes into
being, and so it was not formalized by means of a ‘happen’ predicate marking
an initiating event. Note, however, that article 1.a is not a definition strictu
sensu, and it should be understood as involving a certain degree of dynamicity.
For suppose it is a definition, then as soon as both Italian parents lose Italian
nationality10 their child stops being Italian. This is—I hold—an unintended
inference, whence clause 1.a cannot be seen as a definition strictu sensu . Inter-
estingly enough, in the EC the status of Italian citizen of the child would still
hold, even when both its parents lose their Italian nationality. This is the case
because of the principle of inertia captured by axioms 2 (once a fluent holds, it
persists through time).

Another crucial issue concerns the application of negation as failure. It was
used to express the sentence ‘provided possession of another citizenship is not
proved ’, and so the following formulas occur in the antecedent of the third rule:

not(holdAt(cit_of(X,Z)),T1),

not(Z=italy).

The locution ‘not proved ’ is very close to the procedural meaning of ‘not’ in the
formula ‘not(ϕ)’, where ‘ϕ’ holds if it is proved, and its negation holds if such
a proof is missing (the query ?ϕ fails).

Negation as failure was used for expressing the fact that the parents of a
child are unknown, i.e., by using ‘not(holdAt(son_of(X,Y),T1))’—the ratio-
nale being that if the unification of the variable ‘Y’ with any constant fails, then
no parent of ‘X’ is known.

A third observation is required as to avoid possible confusion surrounding the
meaning of the fluent ‘cit’ or the event ‘acquire cit’. The present formali-
sation implies, for example, that, when a child is born in Italy from unknown
parents, it acquires Italian citizenship (second rule, clause 1.b). By contrast,
some may hold that such an acquisition takes place after birth, once all offi-
cial documents have been submitted and approved by the competent authority.
This seems a minor point, but it is not. For suppose a child is born in Italy
from unknown parents; at the time of the birth, both parents are unknown,
but one of them shows up afterwards, and he or she holds another nationality.
Does that mean that the child cannot be considered an Italian citizen according
to article 1.1.a? The formalization tells us that it can. On the other hand,
if citizenship initiates when all documents have been submitted and approved,
the outcome may be different. If the parent shows up before the documents

10For example, one can lose Italian nationality if he serves in the army of a foreign country

during the state of war, according to 12 of icl.

4.2. The Formalization 38

have been submitted and approved for obtaining Italian nationality according
to clause 1.b, then the child will not be entitled to acquire Italian nationality
anymore. This example suggests that a further distinction needs to be made,
the one between being or becoming Italian, and qualifying for being or becoming
Italian. icl takes care only of the latter. As a consequence, fluents such as ‘cit’
(and similar events) should have been written in the form ‘qualify for cit’.11

Article 3 (adoption):

1. An alien, who is a minor, shall acquire Italian citizenship if he is adopted
by an Italian citizen.

2. Paragraph 1 also applies to persons who were adopted before this statute
came into force.

3. When revocation of the adoption is based on a fact of the adopted he loses
Italian citizenship,12 if he possesses another citizenship [. . .].

4. In the other cases of revocation the adopted maintains Italian citizenship.
Nevertheless, if revocation occurs when the adopted is of full age, the latter
will be entitled to renounce Italian citizenship within one year after the
revocation itself, if he possesses another citizenship or he regains it.

%clause 1

happen(acquire_cit(X,italy,adoption,art3.1),T):-

holdAt(minor(X),T),

happens(adopt(Y,X),T),

holdAt(cit(Y,italy),T).

%clause 2

happen(acquire_cit(X,italy,adoption,art3.2),T3):-

happen(apply(X,art3.1),T1),

happen(enact(icl,ART),T2),

T1<T2,

(T3=T2 ; T3>T2).

%clause 3

happen(lose_cit(ADOPTED,adoption_revocation,art3.3,T):-

happen(revocation(adoption(ADOPTED,ADOPTER),fact_of_adopted),T),

holdAt(cit(ADOPTED,Z),T),

not(Z=italy).

%clause 4 (permission-part)

11For article 25 of icl refers to further regulations to be implemented which finalize the

acquisition of citizenship.
12The phrase ‘based on a fact of the adopted’ may sound obscure. It is a close rendering

of the Italian ‘per fatto dell’adottato’. The locution simply indicates the case in which the

revocation of the adoption is due to a fact, an action, for which the adopted is responsible.

The provision does not specify what this “fact” might be like, and, in fact, the revocation

of the adoption (based on a fact of the adopted) is regulated by articles 305 and 306 of the

Italian Civil Code, and by Law n. 184/1993, on adoption, articles 52 and 53. So the provision

contains an implicit cross-reference to other pieces of legislation. Note that if the adoption is

revoked because of a fact of the adopter, the adopted does not lose Italian nationality.

4.2. The Formalization 39

happen(start_allowed(renounce(ADOPTED,cit(X,italy)),art3.4),T1):-

happen(revocation(adoption(ADOPTED,ADOPTER),Z1),T1),

not(Z1=fact_of_adopted),

holdAt(full_age(ADOPTED),T1),

(holdAt(cit(ADOPTED,Z2),T1) ; happen(acquire(cit(ADOPTED,Z2),T1)),

not(Z2=italy).

%clause 4 (end permission-part)

happen(end_allowed(renounce(X,cit(X,italy)),art3.4),T1):-

holdAt(allowed(renounce(X,cit(X,italy)),art3.4),T1),

holdAt(time_passed(

start_allowed(renounce(X,cit(X, italy)),art3.4),365),T1).

% Additional information

initiate(

start_allowed(renounce(X,cit(X,italy)),art3.4),

time_passed(start_allowed(renounce(X,cit(X,italy)),art3.4),0),

T).

release(

start_allowed(renounce(X,cit(X,italy)),art3.4),

time_passed(start_allowed(renounce(X,cit(X, italy)),art3.4),0),

T1).

trajectory(

allowed(renounce(X,cit(X,italy)),art3.4),

T,

time_passed(start_allowed(renounce(X,cit(X, italy)),art3.4),N+D),

D) :-

holdAt(time_passed(start_allowed(renounce(X,cit(X,italy)),art3.4),N),T).

Comments:

I will look at each clause separately, except for clause 1 whose formalization is
self-explanatory. Clause 2 states that the applicability of clause 1 is retroactive,
and its formalization is as follows:

happen(acquire_cit(X,italy,adoption,art3.2),T3):-

happen(apply(X,art3.1),T1),

happen(enact(icl,ART),T2),

T1<T2,

(T3=T2 ; T3>T2).

As discussed and motivated in section 3.3 on cross-reference phenomena, the
event ‘apply’ has to be linked to article 3, clause 1, to which it refers:

happen(apply(X,art3.1),T):-

happen(acquire_cit(X,italy,adoption,art3.1),T).

4.2. The Formalization 40

In clause 3, the predicate ‘lose_cit’ is used to express losses of citizenship due
to the revocation of the adoption. The loss of citizenship does not follow au-
tomatically from the revocation of the adoption, but it is restricted to cases in
which the adopted has committed a serious crime (a fact of the adopted) to the
detriment of the adopter, e.g., murder. This restriction is marked in the event
‘revocation(adoption(ADOPTED,ADOPTER),fact of adopted)’, which has two
arguments: the object or target of the revocation, ‘adoption(ADOPTED,ADOPTER)’,
and the reason for it, ‘fact of adopted’, where variables in upper case letters
have intuitive names.

Note, however, that the scope of the restriction—i.e., what kind of crime will
cause the citizenship of the adopted to be revoked—is not specified by icl, nor is
provided any explicit reference to other pieces of legislation. We are only given
a semantic cross-reference as opposed to a syntactic cross-reference in which
the number of the law is provided. Clearly, we need to rely on the existing
legislation concerning adoption, namely Law n. 184/1983 and Law n. 149/2001.
Yet the reference to the two laws on adoption is not made explicit. The content
of clause 3 and its exact meaning is made accessible, for the essential part, only
to legal practitioners and specialists.13 I consider this a fault of the legislator.
In fact, a simple phrase such as ‘according to law n. . . . and its successive mod-
ifications’ would have sufficed.

Finally, clause 4 is interesting for two reasons: it requires one to use the predi-
cate ‘trajectory’ and, secondly, it introduces the deontic notion of permission
with the fluent ‘allowed’.

The permission to renounce Italian citizenship is acquired by the adopted
whenever her adoption is revoked and she is of full age, provided she possesses
or regains another citizenship. However, such a permission lasts only for one
year. To capture this, I have devised two events:

start allowed(renounce(X,cit(X,italy)),art3.4) and
end allowed(renounce(X,cit(X,italy)),art3.4).

The meaning of the former event is straightforward, and it is defined clearly
in clause 4, and also in the fourth rule in the formalization. The formaliza-
tion of ‘end allowed’ is more laborious and requires the introduction of the
parametrized fluent ‘time passed’, which contains two arguments: the first is
the event with respect to which the passing time is measured, and the second
argument registers the time passed (in days) and functions as a counter of the
progression of time since the event contained in the first argument occurred. In
the formalization, the event ‘end allowed’ obtains when the second argument
of ‘time passed’ reaches the value of ‘365’, namely 1 year:

happen(end_allowed(renounce(X,cit(X,italy)),art3.4),T1):-

holdAt(allowed(renounce(X,cit(X,italy)),art3.4),T1),

13In general, it seems that there are two kinds of revocation of the adoption: One is based

upon deficiencies from the part of the adopter (e.g, she cannot maintain the adopted); the

other upon crimes committed by the adopted, as explained in article 51, Legge n. 184/1983,

to which clause 3 should have contained a reference.

4.2. The Formalization 41

holdAt(time_passed(

start_allowed(renounce(X,cit(X,italy)),art3.4),

365),T1).

The formalization of the article should stop here, but some additional in-
formation on how the value ‘365’ is arrived at is necessary (see the part under
‘additional information’ in the formalization). The counter of the parametrized
fluent is set at 0 when the permission to renounce citizenship is acquired, and
the progression from 0 to 365 is made possible by releasing it from the law of
inertia. This is represented by these two formulas:

initiate(

start_allowed(renounce(X,cit(X,italy)),art3.4),

time_passed(start_allowed(renounce(X,cit(X,italy)),art3.4),0),

T).

release(

start_allowed(renounce(X,cit(X,italy)),art3.4),

time_passed(start_allowed(renounce(X,cit(X,italy)),art3.4),0),

T1).

The rest of the job is done by the predicate ‘trajectory’ which determines the
progression of the value of the second argument in ‘time passed’:

trajectory(

allowed(renounce(X,cit(X,italy)),art3.4),

T,

time_passed(start_allowed(renounce(X,cit(X,italy)),art3.4),N+D),

D) :-

holdAt(time_passed(start_allowed(renounce(X,cit(X,italy)),art3.4),N),T).

The same pattern of formalization that adopts the fluent ‘time passed’ can
be reused in many different cases, whenever deadlines or cutoff points are in-
volved (see articles 4, 5, 9, and 10).

Article 4 (residency):

1. An alien or a stateless person, whose father or mother or one of the ascen-
dants in second degree were Italian nationals by birth, shall become Italian
national: [. . .]
(c) if, when he becomes of full age, he had his legal place of residence

in Italy for at least two years and he declares, within one year after
reaching the age of majority, that he wants to acquire Italian citizen-
ship.

% clause 1 (preamble)

happen(acquire_cit(X,italy,residence,art4.1),T1):-

(holdAt(alien(X),T1) ; holdAt(stateless(X),T1)),

(holdAt(child_of(X,Y),T1) ; holdAt(descendent(X,Y,second_degree)),T1),

4.2. The Formalization 42

holdAt(cit(Y,italy,birth),T2),

(T1=T2 ; T1>T2),

happen(met_provision(X,art4.1),T1).

%clause 1, letter c)

happen(met_provision(X,art41.c),T1):-

happen(reach(X,full_age),T3),

(T1=T3 ; T1>T3),

holdAt(time_passed(start_residence_in(X,italy),N),T3),

(N=365*2 ; N>365*2),

happen(declare(want(X,cit(X,italy)),T4),

holdAt(time_passed(reach(X,full_age),N2),T4),

(N2=365 ; N2<365),

T3<T4.

Comments:

The text of the article cited above and the related formalization contains only
clause (c), while clauses (a) and (b) were left out for brevity. The formalization
went quite smoothly, and again it shows the usage of parametrized fluents for
dealing with deadlines (see the expression ‘within one year ’ in 4.1.c). The fluent
‘time passed’ can be defined in similar ways as for article 3.

The point to be stressed is the introduction of the event ‘met provision’,
which is intended to connect the rule formalizing the preamble of the article to
the rule formalizing clause (c). Note that ‘met provision’ is useful to handle
cross-references such as ‘provided clauses (c) of article 4 are met ’.

Article 5 (marriage):

1. The spouse, who is alien or stateless, of an Italian national acquires Ital-
ian citizenship when he has had legal residence in the Republic for at least
six months, or after three years since the date of the marriage, provided
dissolution, annulment, divorce did not take place, and provided legal sep-
aration is not the case.

happen(acquire_cit(X,Y,italy,marriage,art5),T1) :-

holdAt(married_with(X,Y),T1),

holdAt(cit(Y,italy),T1),

holdAt(time_passed(start_residence_in(X,italy),N1),T1),

(N1=31*6 ; N1>31*6).

happen(acquire_cit(X,Y,italy,marriage,art5),T1) :-

holdAt(married_with(X,Y),T1),

holdAt(cit(Y,italy),T1),

holdAt(time_passed(marriage_with(X,Y),N2),T1),

(N2=365*3 ; N2>365*3),

not(happen(dissolve_marriage(X,Y),T2)),

not(happen(divorce(X,Y),T2)),

not(happen(annul_marriage(X,Y),T2)),

4.2. The Formalization 43

not(holdAt(separation(X,Y),T1)),

happen(mariage_with(X,Y),T3),

T3<T2<T1.

Comments:

Article 5 shows, once again, the usage of parametrized fluents for counting
the months of residency in Italy or the years of marriage that are necessary
to acquire Italian citizenship. In this case we are not dealing with a deadline,
but with the maturation of a certain amount of time (as married couple or as
resident) that is necessary to acquire citizenship. The pattern used to define
‘time passed’ in article 3 can be applied again (with small adjustments).

Two interpretative choices had to be made, as a consequence of interpreta-
tive problems. The connective ‘provided ’ suffers from scope ambiguity, and it
was interpreted as scoping only over ‘after three years since the date of the mar-
riage’, but not over ‘when he has had legal residence in the Republic for at least
six months’. To solve the scope ambiguity, the article was formalized by two
separate rules.

The second interpretive choice concerns when the events of dissolution, an-
nulment, etc. count as relevant for blocking the inference towards acquisition of
citizenship. It was assumed the these events are relevant if they occur between
the time of the marriage and the time of 3 years of marriage.14 As a consequence,
the sentence beginning with ‘provided ’ could be rewritten this way: [. . .] pro-
vided dissolution, annulment, divorce did not take place, in the meantime.

What is more, the reference to dissolution, annulment, etc. seems redundant.
For whenever a marriage is dissolved, annulled, etc., and hence terminated, the
acquisition of citizenship by marriage cannot take place by definition (there is
no valid marriage in the first place!), unless article 5 says that the acquisition
of citizenship by marriage can take place also when the marriage has been
terminated, except in the cases of dissolution, annulment, etc. This seems the
only interpretation under which mentioning dissolution, annulment, etc. would
not be redundant, but it is indeed an implausible one.

One argument to justify the reference to dissolution, annulment, etc. may
be that article 5 is intended to rule out the cumulation of the years of marriage.
For example, consider the case in which someone was married with an Italian
citizen for 2 years, then got divorced, and finally got married again with the
same person, but for only 1 more year. If this scenario is not to satisfy the
requirement of 3 years of marriage contained in article 5, this is because disso-
lution, annulment, etc. took place in the meantime, even though the marriage
still holds, and 3 (cumulative) years of marriage passed. A way to avoid the
cumulation of years is by guaranteeing, while counting the years of marriage,
that we are talking about the very same marriage, and not simply the marriage

14This explains the constraint ‘T3<T2<T1’ in the second rule, where ‘T3’ is bound to the date

of the marriage, ‘T2’ to dissolution, annulment etc., and ‘T1’ to the acquisition of citizenship.

4.2. The Formalization 44

with the same person; an alternative consists of securing that the 3 years are
uninterrupted.

Because of the above interpretive problems, article 5 may need to be rephrased
in a way that avoids the scope ambiguity of ‘provided ’ and the problematic ref-
erence to dissolution, annulment, etc.:

1. The alien or stateless person who is currently married with an Italian
national acquires Italian citizenship, provided

a) she has had legal residence in the Republic for at least six months, or
b) an uninterrupted period of three years have passed since the date of

the considered marriage.

To be precise, the rewriting of letter b) is slightly redundant: either ‘uninter-
rupted ’ or ‘considered ’ should be used, where the former secures that the three
years are uninterrupted, and the latter secures that we are talking about the
very same marriage. As the criteria of identity of marriage may be controversial
(e.g., one may claim that a marriage is the same iff it is with the same person),
I hold that using ‘uninterrupted ’ would be the best solution.

Article 9 (decree):

1. The President of the Republic, after consulting the State Council, on the
recommendation of the Minister of Internal Affairs, grants Italian citizen-
ship to:

a) an alien, whose father or mother or one of the direct ascendants in II
degree were Italian nationals by birth, or who was born in the territory
of the Republic and, in both cases, has had his legal residence in Italy
for at least 3 years, saving art. 4, clause 1, letter c) [. . .]

% Clause 1, preamble

happen(grant(president,cit(X,italy),art9.1),T1):-

holdAt(consulted(president,state_council,cit(X, italy)),T1),

holdAt(recommended(president,interior_minister,cit(X, italy)),T1),

happen(met_provision(X,art9.1.a),T1).

% Clause 1, letter a)

happen(met_provision(X,art9.1.a),T1):-

holdAt(alien(X),T1),

(

holdAt(child_of(X,Y),T1) ;

holdAt(descendent(X,Y,second_degree),T1);

(happen(born_in(X,italy),T) , (T=T1;T<T1))

),

holdAt(cit(Y,italy,birth)T2),

T2<T1,

holdAt(time_passed(start_residence(X,italy),N),T4),

(N=365*3 ; N>365*3),

T4<T1,

[not(happen(met_provision(X,art4.1.c),T1))].

4.2. The Formalization 45

Comments:

It is remarkable that some of the patterns used in formalizing other articles
can be applied quite mechanically in this case as well. These patterns are: the
use of the fluent ‘met provision’ (see article 4), and of the fluent ‘time passed’
(see articles 3, 4, and 5).

The cross-reference ‘saving art. 4, clause 1, letter c)’ deserves some discus-
sion. It was rendered with negation as failure by placing the following formula
in the body of the second rule:

[not(happen(met_provision(X,art4.1.c),T1))],

which implies that whenever the provisions of article 4.1.c are met, the con-
clusions deriving from article 9.1.a are blocked. This is not precisely what the
expression ‘saving . . . ’ means, but it is hard to see an appropriate formal ren-
dering of it. At any rate, as suggested by the use of the square brackets, I
will argue that the expression is unnecessary, yet its rationale is understandable
at first: article 9 requires 3 years of residence, while article 4 requiers only 2
years. So if the two articles apply to the same person, they will give different
outcomes, whence we add the expression ‘saving art. 4, clause 1, letter c)’ to
avoid divergent outcomes. However, article 3 on adoption could also apply to
the same person (an alien who married an Italian, had residence in Italy, and
was adopted by an Italian); article 3 states that the adopted becomes Italian
citizen at the time of the adoption, so with 0 years of residence. As a conse-
quence, one should add also ‘saving art. 3 ’—and there may be other articles
which apply to the same individual and give different outcomes. Moreover, it
does no harm if different articles give different outcomes as long as these are
not conflicting with each other15—and the most favorable outcome is the one
to prefer. For this reason, I consider the cross-reference ‘saving art. 4, clause
1, letter c)’ a redundant expression.

4.2.2 Exceptions and Cross-referencing

As phenomena of exception and cross-referencing are closely related, I will
deal with them at the same time. To say that article n is an exception to article
m involves a cross-reference between n and m, implicitly or explicitly. Here, I
shall focus on the formalization of (parts) of articles 6 and 10. They contain sim-
ilar constructions indicating exceptions combined with cross-referencing. Other
cross-referencing phenomena were modeled before, in article 3, clause 2, and
article 9, clause 1, letter c).

Article 6 (preclusion to citizenship by marriage):

1. Acquisition of citizenship pursuant to art.5 is precluded by:
a) conviction for one of the offences provided by book II, title I, parts I,

II, III, of the Penal Code; [. . .]
15On conflicting outcomes, see section 4.2.3 below.

4.2. The Formalization 46

2. Rehabilitation avoids the results of the sentence. [. . .]

% Clause 1, preamble

happen(block(acquire_cit(X,italy,marriage,art5),art6.1),T):-

happen(met_provision(X,art6.1),T).

% Clause 1, letter a)

happen(met_provision(X,art6.1.a),T):-

happen(conviction(

X,

CRIME,

PUNISHMENT_GIVEN,

AUTHORITY,

YEARS1,

EDITTAL_PUNISHMENT,

YEARS2,

ART

),

T1),

(

ART = penal_code.bookII.titleI.partI;

ART = penal_code.bookII.titleI.partII;

ART = penal_code.bookII.titleI.partIII

).

% Clause 2

happen(block(block(acquire_cit(X,italy,art5),art6.1),art6.2),T):-

happen(rehabilitation(X,PUNISHMENT,ART),T),

(

ART = penal_code.bookII.titleI.partI;

ART = penal_code.bookII.titleI.partII;

ART = penal_code.bookII.titleI.partIII

).

Comments:

The expression ‘precluded by ’ was rendered by the event ‘block’ in the first
rule above. Yet it is unclear what such a preclusion amounts to. To spell it out,
one can add the following rule:

clipped(T1,cit(X,italy,marriage,art5),T2) :-

holdAt(blocked(acquire_cit(X,italy,marriage,art5)),T),

T1<T<T2.

For the above to work, it is assumed that ‘initiate(block(...),blocked(...),T)’.
So, if the fluent ‘blocked’ is made true, this will terminate the fluent ‘cit’. This
approach is susceptible to two criticisms. One is that the above formula is not
allowed by the syntax of EC-S. Unless extending the syntax in the required way
leads to unforeseen complications, this should not be a major problem. Another

4.2. The Formalization 47

criticism is that preclusion mentioned in clause 1, letter a) is directed toward
the acquisition of citizenship, and not to the citizenship itself, contrary to what
the above formalization suggests.16 So a better rendering could be as follows:

initiate(acquire_cit(X,italy,marriage,art5),T2)

fail :-

holdAt(blocked(acquire_cit(X,italy,marriage,art5)),T)

succeed.

This rendering uses an integrity constraint, meaning: if the fluent ‘blocked’ ob-
tains, then the “initiation” of citizenship should fail. Unfortunately, this (more
textually precise) rendering may lead to inconsistencies.17 So the initial render-
ing should be preferred after all, in lack of better solutions.

The predicate ‘conviction’ needs some explanation, because of the 8 argu-
ments it contains. Fewer arguments would have been sufficient with respect to
the piece of law under formalization, but I added more arguments in view of
the other clauses of article 6, which are left out here for brevity.18 I followed
the idea of case semantics (which has been incorporated in EC; see Kowal-
ski [15]). Most of the arguments are self-explanatory. Those that are in need
of explanation are ‘PUNISHMENT GIVEN’, ‘EDITTAL PUNISHMENT’, ‘ YEARS1’ and
‘YEARS2’. In jurisprudence, one distinguishes between the punishment which
has been effectively inflicted by the competent authority (e.g., a court of law)

16For the predicate ‘clipped’ applies to ‘cit’ and not to ‘acquire cit’.
17That inconsistencies may arise can be shown by an example. Suppose an individual ι1

gets married with the Italian national ι2 and satisfies, for T=1998, the requirements—pursuant

to article 5—for becoming an Italian citizen. So the following holds:

happen(acquire cit(ι1,ι2,italy,marriage,art5),1998).

It is to be assumed that the event ‘acquire cit’ initiates the fluent ‘cit’. (This is not specified

in the formalization of article 5, but the formula ‘initiate(acquire cit(...),cit(...),T)’

is (and should be) added subsequently in order make the formalization work with EC. See

point 3 in the methodology, p. 34.) Thus, we have:

? initiate(acquire cit(ι1,ι2,italy,marriage,art5)

cit(ι1,ι2,italy,marriage,art5),

1998) succeed.

Moreover, suppose the individual ι1 has been convicted for one of the offences of the Penal

Code, according to article 6, clause 1, letter a). By the formalization of article 6, and the

integrity constraints of the shape (C), the following should be the case:

? initiate(acquire cit(ι1,ι2,italy,marriage,art5)

cit(ι1,ι2,italy,marriage,art5),

1998) fail.

This causes a loss of database integrity, because an (instance of) the integrity constraint has

been violated.
18Relative to clause a), three arguments for ‘conviction’ would have been enough: the

person ‘X’ who was convicted, the crime ‘CRIME’ for which she was convicted, and the article

‘ART’ of the law upon which the conviction is based. Clause b), instead, contains the notion of

edittal punishment (as opposed to the punishment effectively inflicted), and that of numbers

of years of punishment. This required to introduced additional argument: ‘PUNISHMENT GIVEN’,

‘EDITTAL PUNISHMENT’, ‘YEARS1’, and ‘YEARS2’.

4.2. The Formalization 48

and the punishment as it is prescribed in the legislation (this type of punish-
ment is called in Italian ‘edittale’, from which the English rendering ‘edittal’).
Likewise, the years of punishment will be distinguished according to the given
and the edittal punishment: ‘YEARS1’ and ‘YEARS2’ respectively.

The last remark concerns clause 2, which is an exception to clause 1, which,
in turn, is an exception to article 5—hence, clause 2 contains an exception to an
exception. Such a second-degree exception was rendered, in the third rule, by
the event ‘block(block(acquire cit(X,italy,art5),art6.1),art6.2)’. As
in the case of clause 1, a suitable rule needs to be added:

clipped(T1,blocked(cit(X,italy,marriage,art5)),T2) :-

holdAt(blocked(block(acquire_cit(X,italy,marriage,art5))),T).

The rules says that second-degree exceptions19 block first-degree exceptions
from producing their effects.

Article 10 (oath of fidelity):

1. The decree which grants Italian citizenship has no effects, provided the
person concerned, within six months after the notification of the decree,
does not take the oath of fidelity to the Republic, the Constitution and the
national law.

happen(block(grant(president,cit(X,italy),art9.1),art10),T):-

not(

happen(oath_of_fidelity(X,Y),T2),

(Y=republic, Y=constitution, Y=national_law),

holdAt(time_passed(grant(presiden,cit(X,italy),art10),N),T2),

(N=31*6 ; N<31*6),

T1<T2

).

Comments.

The proposed formalization uses the event ‘block’ to render the meaning of
‘has not effect ’. However, as in the case of article 6, the event ‘block’ needs to
be defined by an additional rule. The same pattern used for article 6 can be
applied for article 10 as well:

clipped(T1,cit(X,italy,decree_of_president_of_republic,art5),T2) :-

holdAt(blocked(grant(president,cit(X,italy),art9.1),art10),T).

4.2.3 Applicability, Repeal and Enactment

The final group of formalized articles I am going to present consists of articles
18, 26 and 27. Article 18 was selected because it contains an example of how
periods of applicability are specified in legislative texts. Article 18 is interesting

19Once again, it is assumed that initiate(block(...),blocked(...),T).

4.2. The Formalization 49

for two more reasons: it contains a new example of a cross-reference construct
(different from the ones analyzed in articles 3, 6, and 9), and arguably it provides
a piece of evidence that (unfortunately) the language of EC is not sufficient to
model legislation.20 The other articles, 26 and 27, are interesting because they
mention the events of repeal (of other statutes) and enactment (of icl).

Article 18 (applicability):

1. The persons who resided in the territories which were under the House of
Austria, and who emigrated abroad before 16 July 1920 [. . .] – pursuant
to art.9, clause 1, letter a) – are deemed aliens of Italian origin or born
in the territory of the Republic.

As anticipated, this article exceeds the expressive power of EC, because the
rule language upon which EC is based does not allow disjunctions to occur in
the head of rules. Article 18, instead, requires such a disjunction, for its logical
form can be given as follows:

IF someone resided in the territories which were under the House of
Austria and emigrated abroad before 16 July 1920 [. . .] – pursuant
to art.9, clause 1, letter a) – ,

THEN he will be deemed alien of Italian origin OR born in the
territory of the Republic.

I will now formalize article 18 by assuming that a disjunction can occur in the
head of a rule:

(

(holdAt(child_of(X,Y),T1) ; holdAt(descendent(X,Y,second_degree),T1)),

holdAt(cit(Y,italy,birth))

;

(happen(born_in(X,italy),T))

:-

holdAt(resident_at(X,Y),T2),

holdAt(territory_in(Y,house_of_austria),T2),

happen(migrate_abroad(X),T3),

T2<T3<1920.

Comments:

Let us look carefully at the head of the rule. It consists of two disjuncts.
The first one expresses ‘alien of Italian origin’. Article 18 does not state clearly
what this means, but it cross-refers to article 9, clause 1, letter c), where an
alien of Italian origin is presumably someone who is the child of an Italian citizen
by birth or someone who is descendent in second degree from Italian nationals.
Thus, the first disjunct is as follows:

20It has to be determined how widespread the syntactic construct used in article 18 is. If

it is not widespread, then the fact the EC cannot formalize it properly should not represent

a serious objection to the use of EC for modeling legislation. I will argue that this construct

introduces a form of uncertainty in the law, which is undesired.

4.2. The Formalization 50

(holdAt(child_of(X,Y),T1) ; holdAt(descendent(X,Y,second_degree),T1)),

holdAt(cit(Y,italy,birth)

Syntactically speaking, the first disjunct is a conjunction where one of the con-
juncts is a disjunction.21 This complicated construction is needed to express
‘alien of Italian origin’ in accordance with what is stated in article 9, clause 1,
letter c). The second disjunct in the head of the rule is ‘(happen(born in(X,italy),T))’,
and it easily expresses the notion of ‘born in the territory of the Republic’.

Why (if at all) should we need to have disjunctions in the head of rules for-
malizing legislation? Suppose an individual satisfies the body of the above rule,
then which disjunct shall be derived? Which one should be picked? Does it
make a difference? Placing a disjunction in the head of a rule seems to intro-
duce an undesired uncertainty in the law. For instance, an article saying ‘those
who reach their nineteenth year of age are entitled to free medical insurance or
to a 5 per cent increase in their pension’ does make sense, provided it grants the
right to a choice between, say, ϕ1 or ϕ2; if so, the disjunction can be replaced
by, for example, the formula ‘choose between(ϕ1, ϕ2)’.

On the other hand, the same article, when interpreted as yielding a simple
disjunction, commits us to the conclusion that there are disjunctive states of
affair (e.g., the disjunction of being entitled to ϕ1 or being entitled to ϕ2).
Without entering the controversial debate about disjunctive states of affairs, if
we restrict our attention to the legal domain, it does not seem to be acceptable
that laws talk about disjunctive state of affairs. Imagine an old man of nineteen
years old entitled to free medical insurance or 5 per cent increase of his pension.
He is entitled to the disjunction of the two, so that he is not really entitled to
any of the two, only to their disjunction. That would be a rather peculiar way
of living—being entailed to a disjunction!

So if the above reasoning is correct, disjunctions in the head of rules are to
be avoided, or, at least, used with parsimony. However, a fuller treatment of
the problem will require an in-depth discussion which falls outside the scope of
this chapter. In addition, it remains to be seen whether articles of the form
‘ϕ1 ∨ ϕ2←ψ’ are widespread in the legislation or not. For the time being, it
should suffice to have pointed out the problem.22

A further comment is that there is no explicit formalization of the expression
‘pursuant to art.9, clause, 1, letter c)’, except that the head of the rule was
written by looking at the body of the rule formalizing article 9. A way to make
the cross-reference apparent in the formalization is by adding an argument, in-
dicating the article number, to the predicates occurring in the body of the rule
for article 9 (thus far, the policy has been to indicate article numbers only in
formulas occurring in the head of rules).

21Recall that it is no problem to have conjunctions in the head of rules.
22One more aspect to take into account is that, in article 18, the disjunction in the con-

sequent occurs in the context of the deeming provision ‘be deemed aliens of Italian origin or

born in the territory of the Republic’.

4.2. The Formalization 51

Finally, as mentioned previously, the reason why article 18 was selected is that
it contains a restriction on its period of applicability, given by the expression
‘emigrated abroad before 16 July 1920 ’. Rendering this construction was fairly
straightforward, by adding these formulas in the body of the rule:

happen(migrate_abroad(X),T3),

T2<T3<1920.

Article 26 (repeal):

1. Statute 13 June 1912, n.555, statute 31 January 1926, n.108, royal law-
decree 1 December 1934, n.1997, converted by statute 4 April 1935, n.517,
art.143-ter civil code, statute 21 April 1983, n.123, art.39 of statute 4 May
1983, n.184, statute 15 May 1986, n.180, and every other provision which
is incompatible with this statute are repealed.[. . .]

happen(repeal(OTHER_LAW,art26.1),T1) :-

(OTHER_LAW=555 ; OTHER_LAW=108 ; OTHER_LAW=1997 ; OTHER_LAW=517 ;

OTHER_LAW=civil_code_art.143.ter; OTHER_LAW=129 ;

OTHER_LAW=statute4.art.39 ; OTHER_LAW=184 ; OTHER_LAW=180).

happen(repeal(OTHER_LAW,art26.1),T1) :-

happen(conflict(OTHER_LAW,icl),T1).

happen(enact(OTHER_Law),T2),

happen(enact(icl);T3),

T2<T3.

Comments:

When the number of articles or entire laws, which are to be repealed, is ex-
plicitly mentioned, the formalization goes smoothly: The event ‘repeal’ is the
inverse of ‘enact’, and one needs to specify which laws or articles are repealed,
by writing constraints of the form ‘OTHER LAW=555’. Unfortunately, problems
arise whenever no explicit mention of articles under repeal is given.23 This is the
case in the last sentence of clause 1, which says that if conflicts arise between icl

and older laws (actually it is written every other provision, so also future ones!),
the older laws are treated as if they had been repealed. This principle—used
in jurisprudence to cope with conflicting norms—is know as lex posterior (more
recent legislative texts take priority over older ones).24

The challenge is to capture the meaning of the event ‘conflict’, which is left
under-specified in the formalization. Negation as failure can cause problems if it

23Not by chance, guidelines for legal drafting strongly advise not to use vague cross-

referencing expressions such as ‘in any other provision’.
24Other principles used to cope with conflicting laws are lex specialis (more specific legisla-

tive texts take priority over more general ones) and les superior (more important legislative

texts take priority over less important ones). It is debated which priority ordering hold be-

tween the three principles themselves.

4.2. The Formalization 52

is used without care. For suppose the query ‘?holdAt(cit(ι,italy,icl),1999)’
succeeds, while the query ‘?holdAt(cit(ι,other law),1999))’ fails; then, there
are two explanations why the second query failed: one is that ‘other law’ con-
tains requirements to become Italian citizen that ‘ι’ does not met; the second ex-
planation is that ‘other law’ is about a matter that is completely different from
that of citizenship, and thus ‘other law’ cannot grant citizenship to anyone. In
the former case, there is incompatibility, but not in the latter case. So, formu-
las of the shape ‘holdAt(cit(X,law1),T) ∧not(holdAt(cit(X,law2),T))’,
for some variable assignment, need not represent a conflict between ‘art1’ and
‘art2’. The incompatibility between two pieces of law arises whenever they
deliver incompatible outcomes about the same matter, and in addition the two
pieces of law are about the very same matter (e.g., citizenship). A way to
capture this is as follows:

happen(conflict(OTHER_Law,icl),T):-

not(holdAt(F(X,OTHER_LAW),T)),

holdAt(cit(X,icl),T),

F=cit.

The key ingredient is the constraint ‘F=cit’, which secures that a conflict is
shown to exists only when the failure of ‘holdAt(F(X,OTHER LAW),T)’ concerns
the matter of citizenship. If the constraint were not satisfied, there would be no
conflict, as the event ‘conflict’ would not be derivable from the rule.

Article 27 (enactment):

1. This statute shall come into force after six months from its publication in
the Gazzetta Ufficiale.

happen(enact(icl,art27),T2):-

happen(publish(icl),T1),

holdAt(time_passed(publish(icl),N),T2),

N=6*31,

T1<T2.

Comments:

This article does not raise particular problems. There is one curious thing,
however. Article 27 gives rise to a liar-like paradox. If article 27 comes into force
(=is enacted) when icl is published, then icl is violated, since it prescribes of
itself and also of article 27 to come into force only after six months. Hence,
article 27 cannot come into force right after its publication; but if article 27
does not come into force, the entire law will not come into force either. So, does
icl come into force after all? One could say that article 26 only comes into
force after six months, and yet in order to make sure that this will be the case,
article 26 should have already come into force. This impasse is avoided in the
formalization, as the formulas cannot talk about themselves.

4.2. The Formalization 53

4.2.4 The Global Picture

Point 2 of the semi-algorithmic methodology (see section 4.1.2) was illus-
trated at length by the previous sections. It is now time to see how the isolated
pieces of the formalization modeling single articles come together in a global
and coherent formal representation of the law.

Once point 2 is completed, the result is a rather large set of rules in the
language of EC. These rules appear to be rather chaotic and in need of a
systematic arrangement. A quick look at the rules suggests that their heads
are of only two kinds, depending on the predicate, ‘happen’ or ‘obtain’, they
contain. This syntactic distinction can be refined further. For instance, many
of the rules with ‘happen’ in their head are about acquisition of citizenship. A
new rule can, thus, be devised which makes this commonality perspicuous:

happen(acquire_cit(X,italy,icl),T1):-

happen(acquire_cit(X,italy,birth,art1.1),T1);

happen(acquire_deemed(X,italy,birth,art1.2),T1);

happen(acquire_cit(X,italy,adoption,art3.1),T1);

happen(acquire_cit(X,italy,adoption,art3.2),T1);

happen(acquire_cit(X,italy,residence,art4.1.c),T1);

happen(acquire_cit(X,Y,italy,marriage,art5),T1).

The new rule provides a first general view of the law, relative to acquisition
of citizenship. In a similar way other rules with systematizing purposes can be
added. These new rules do not add anything to the content of the formalization,
but they can enhance its usability. For example, if another piece of law contains
a phrase such as ‘the ways in which citizenship is acquired according to icl shall
be inapplicable to those born after 2010 ’, this can be rendered as follows:

terminate(inapplicable(cit(X,italy,icl)),cit(X,italy,icl),T).

happen(inapplicable(cit(X,italy,icl),T):-

happen(born(X).T),

T>2010.

This illustrates how point 3.a in the methodology should be pursued and what
its application may be. As for point 3.b, once predicates in the consequents
are systematized in a general picture, some EC-formulas should be added to
make it possible to apply the axioms of EC. These formulas will mainly contain
‘terminate’ and ‘initiate’ predicates. Rather obviously, we want the event
‘acquire cit’ to initiate the fluent ‘cit’:

initiate(acquire_cit(X,Italy,icl),cit(X,italy,icl),T).

One can decide the level of granularity in which ‘initiate’ and ‘terminate’
predicates are to be used. For example, the above formula can be used for all
sub-types of acquisition of citizenship, or alternatively analogous formulas for
each type could be added, as follows:

initiate(acquire(X,Italy,birth,art1.2),

4.2. The Formalization 54

cit(X,italy,birth,art1.2),

T).

initiate(acquire_cit(X,Italy,adoption,art3),

cit(X,italy,adoption,art3),

T). ...

The second choice is more fine-grained and hence more flexible and precise, yet
it is more laborious.25

The addition of ‘initiate’ but also ‘terminate’ predicates should be com-
pleted in the obvious way for other events. An extended list of examples should
make this point clear. The initiating events ‘start allowed’ (art. 3), ‘block’
(art. 6), ‘enacted’ (art. 27) should be specified as follows:

initiate(block(...),blocked(...),T).

initiate(start_allowed(...),allowed(...),T).

initiate(enact(...),enacted(...),T).

The terminating events ‘lose cit’ (art. 3) and ‘end allowed’ (art. 3) should
be specified as follows:

terminate(loose(...),(...),T).

terminate(end_allowed(...),allowed(...),T)

With these additions in place, the axioms of EC can be applied to perform
reasoning, and the formalization is ready to be used.

Summary

This chapter presents a sample of the formalization of icl in the language
of EC (see section 4.2), The formalization is complemented by a discussion on
methodological issues (see section 4.1.2). It is argued that a bottom-up approach
is preferable over a top-down approach, as only the former meets the requirement
of maintainability:
(R3) A good formalization should be maintainable: as the texts of the law

evolves, so does the formalization.

While commenting on the formalization, several questions of detail emerged—
the use of parametrized fluents to express deadlines (articles 3, 4, 9, and 27);
the distinction between syntactic and semantic cross-referencing (article 3 on
adoption); the problem of disjunctive formulas in the head of rules, and of
disjunctive state of affairs (article 18); the problem of defining the notion of
conflict between two pieces of legislation (article 26).

25 Incidentally, in view of the laborious and repetitive procedures one may encounter during

the formalization, the usage of an editor may facilitate the process considerably (more on the

editor will be said in the conclusion of this thesis).

56

5 Jurisprudence1 Formalized

In the previous chapter, icl was modeled and formalized in the language
of EC. This chapter puts the formalization into use by looking at a precedent
involving the application of icl. The case can be succinctly described as follows.
An Argentinean citizen, X, child of Italian mother and Argentinean father, was
refused recognition of Italian citizenship by the Italian interior ministry. This
clearly contradicts the first article of icl:

Citizen by birth is the child of a father or a mother who are Italian citizens.

However, the interior ministry held that icl could not be applied to X, since
X was born before the date of enforcement of icl. Furthermore, the previously
enforced legislation on the same matter established that only a male citizen can
transmit Italian citizenship to the descendants. So—the ministry concluded—in
accordance with the old norm, X could not be considered an Italian national,
given that he was not born from an Italian father. On the other hand, X
objected that the Italian Constitutional Court declared the old norm discrimi-
natory and unconstitutional, and maintained that both female and male citizens
can transmit citizenship. On this ground, X claimed the right to acquire Italian
citizenship, because the judgment of the Constitutional Court retroactively abol-
ished the previous discriminatory legislation on the trasmission of citizenship.
The Interior ministry, in turn, objected that the judgment of unconstitutionality
has indeed retroactive validity, but such a validity cannot be extended before
the date of enactment of the Italian Constitution. As a matter of fact, X was
born before that date, and so the old legislation shall still apply.

The court in charge of the trial, the Tribunal of Turin of the Italian Republic
(hereafter, also referred to as ‘the court’), conceded that X was correct, and
condemned the Italian interior ministry. Roughly, the motivation was that the
date of birth is not the only time one can transmit citizenship. Although X’s
mother could not transmit Italian citizenship at the time of X’s birth, because
of the unfavourable legislation, she became entailed to do so as soon as a new
legislation was enforced which conferred such a right to her (e.g., at the time in
which the new icl came into effect).

1Here ‘jurisprudence’ means ‘case-law’, not ‘legal theory’. The term ‘jurisprudence’ is pre-

ferred over ‘case-law’, since the latter is mostly related to the English-speaking legal tradition

of common-law. In the civil tradition (to which Italy belongs), case-law is typically called

‘jurisprudence’.

5.1. The Case 57

In what follows, a more detailed description of the trial is given, in which
the facts, arguments and legal data put forward by both parties, as well as
the final judgment of the court, are reconstructed. The description will be in
natural language first, and then followed by a formalization. The main goal of
this chapter is to outline a “formal commentary” to the sentence of the Tribunal
of Turin.

5.1 The Case

The main document I shall use for the reconstruction of the case is the
sentence by the Tribunal of Turin (see [11]). The first part, ‘svolgimento del
processo’ (development of the trial), contains a thorough exposition of the rele-
vant legal facts that were taken into consideration in the court’s final judgment.

The Argentinean citizen, X, requested to acquire Italian citizenship on the
ground that:
(F1): He was born in the territory of the Argentinean Republic on August 18,

1942, with an Argentinean citizen as a father, and an Italian citizen as a
mother.

(F2): He was subsequently recognized by both his parents.
(F3): His mother was born in Argentina, on March 9, 1906, as legitimate child

of Italian citizens.
(F4): His mother has acquired Italian citizenship, albeit born in Argentina, be-

cause her parents were both Italian nationals.

The relevant legislation put forward by X comprises:
(L1): The old Italian Citizenship Law, Law n. 555/1912, precisely article 1,

clause 1, as it was modified by the Constitutional Court with sentence
n. 30 on February 9, 1983. The court amended the Law n. 555 in the
part in which it prescribes that only male Italian citizens may transmit
citizenship to their descendants.

(L2): The sentence n. 6227, on July 10, 1996, of the Italian Supreme Court
(Corte di Cassazione), which rejected the previously held interpretation
that the judgment of unconstitutionality is only valid from the date in
which the constitution came into effect.

The interior minister did not show any counter-evidence against (F1)-(F4). It
did not object to (L1) either, as this is a piece of law, amended by the Consti-
tutional Court, and that information is unquestionable. The interior minister,
instead, did move an objection against (L2), as the latter contains an interpre-
tation of the law, which can be disputed. The objection to (L2) is made by
referring to a different interpretation held by the supreme judiciary authority
on administrative matters (citizenship included), the State Council:
(L3): The State Council, during consultation n. 105/83, claimed that only those

born from an Italian mother after January 1, 1948 (when the Italian Con-
stitution came into force) can acquire citizenship from the part of the
mother.

5.1. The Case 58

5.1.1 Relevant Legislation

Upon first reading, the reason why (L3) is a rebuttal to (L2) may be ob-
scure. It is, thus, useful to quote passages from the legislation, or interpreta-
tions thereof, that were invoked by both parties to support their claims. The
unquestionable (L1) corresponds to an amended version of article 1, clause 1, of
Law n. 555/1912 (hereafter, old-icl). The original version of the article states:

Citizen by birth is the child of a father who is an Italian citizen.2

old-icl differs from icl in that it does not comprise the case of mothers trans-
mitting Italian citizenship.3 As stated in article 20, old-icl came into force
on July 12, 1912. Subsequently, on February 9, 1983, the Constitutional Court,
with sentence n. 30, established:

. . . article 1, clause 1, of the Law n. 555/1912, should be considered
unconstitutional with respect to the part in which it excludes the
case of a child of Italian mother becoming citizen by birth.4

As a result, the content of (L1) is given as follows:

Citizen by birth is the child of a father or a mother who are Italian citizens.

Note that the above has been incorporated literally into article 1 of icl. Now, we
face the problem of when the validity and applicability of (L1) should begin. On
this matter, qualified interpretations diverge, as is apparent from the conflict
between (L2) and (L3). A good idea of the content of (L2) is given by the
following excerpt of sentence n. 6227/1996, in which the Supreme Court, rather
confusingly, claims:

The declaration of constitutional illegitimacy of laws prior to the
Constitution gives rise to the effects that are proper of such types
of declaration—namely, the cessation of effectiveness, erga omnes5

and with retroactive effect (which implies the general prohibition
of application), of the norm declared constitutionally illegitimate,
relative to situations or relationships, to which the same norm would
still be applicable, if the sentence of unconstitutionality did not take
place.6

2È cittadino per nascita: il figlio di padre cittadino. See [1].
3As a matter of fact, old-icl allows mothers to transmit Italian citizenship only when the

father cannot transmit his own citizenship (e.g., see article 1, clause 2, of old-icl.)
4. . . deve essere dichiarata la illegittimità costituzionale dell’art. 1, n. 1, della legge n. 555

del 1912, nella parte in cui non prevede che sia cittadino per nascita anche il figlio di madre

cittadina. See [8].
5English renderings: in relation of everyone; towards all.
6La dichiarazione d’illegittimità costituzionale di leggi anteriori a Costituzione esplica gli

effetti propri di tale tipo di pronuncia: e cioè la cessazione di efficacia erga omnes con ef-

fetto retroattivo (che implica il generale divieto di applicazione) della norma dichiarata costi-

tuzionalmente illegittima relativamente a situazioni o rapporti, cui sarebbe ancora applicabile

la norma stessa, ove non fosse intervenuta la pronuncia di incostituzionalità. See [10].

5.1. The Case 59

In laymen terms, the Supreme Court contends that the judgment of unconstitu-
tionality has general retroactive effects, i.e., also before the date of enactment
of the Constitution. A different interpretative stance is offered by (L3). The
essential idea is given by this passage:

The validity of the sentence of the Constitutional Court cannot
“retroact” beyond the moment in which the contrast between the
law (or any legally binding act) and the Constitution has occurred
. . . that is, beyond January 1, 1948, the date of enactment of the
latter.7

It should now be clear why, in support of their claims, X endorsed (L2) and the
interior ministry endorsed (L3). For (L2) guarantees the unlimited retroactiv-
ity of the judgment of unconstitutionality, and hence the unlimited retroactive
applicability of (L1). This entitles X to claim Italian citizenship. On the con-
trary, (L3) restricts the retroactive applicability of (L1) to events occurring after
the date of enactment of the Constitution. Given that X was born before that
date—and on the assumption that the event of birth counts to determine the
applicability of (L1)—X is deprived of any right to claim Italian citizenship.

However, as anticipated, in view of the court’s final decision, deciding for (L2)

or (L3) was not crucial for deciding the issue at stake—the Italian citizenship
of X. This is because the court held that the assumption that the event of birth
determines the applicability of (L1), was misplaced. Let me explain this more
precisely.

5.1.2 The Decision of the Court

X went to court because the interior ministry refused to grant him Ital-
ian nationality. From the text of the sentence, it is clear that both X and
the interior ministry maintained that solving the case amounted to solving
the problem of the unlimited vs. limited retroactive validity of the sentence of
unconstitutionality—(L2) vs. (L3). The reasoning was along these lines: If the
sentence of unconstitutionality has limited retractive validity, namely not fur-
ther back than January 1948, then X cannot become an Italian national, given
that X was born before January 1948 from a Argentinean father (and, to repeat,
the valid legislation, back then, granted the privilege to transmit citizenship only
to male citizens). If, on the contrary, the sentence of unconstitutionality has
unlimited retroactive validity, then X can become an Italian national, because
his Italian mother acquired—via the sentence of unconstitutionality—the right
to transmit Italian citizenship, so to speak, ab initio.

7I was unable to retrieve the original text of the consultation n. 105/83 of the State Council.

I cited, instead, a relevant excerpt from the sentence by the Tribunal of Turin. Here is the

orignal Italian: L’efficacia del giudicato costituzionale non può in ogni caso retroagire oltre il

momento in cui si è verificato il contrasto tra la norma di legge o di atto avente la forza di

legge - anteriore all’entrata in vigore della Costituzione - dichiarata illegittima, e la norma o

il principio della Costituzione, cioè non può retroagire oltre il 1 gennaio 1948, data di entrata

in vigore di quest’ultima. See [11].

5.1. The Case 60

Note, however, that the above reasoning makes sense solely on the assump-
tion (shared by X and the ministry) that the acquisition of citizenship can only
take place at the time of the birth. Interestingly and surprisingly enough, the
sentence of the Tribunal of Turin denied that shared assumption. This yielded,
as a consequence, that X could acquire Italian citizenship as soon as a non dis-
criminatory legislation came into effect, e.g., when the Constitution came into
effect.

With respect to the dispute over (L2) or (L3), the court stood on the side
of the ministry and opted for (L3), because—after all—it is non sense to say
that the retroactive validity of unconstitutionality may overcome the scope of
validity of the Constitution itself: how could there be any unconstitutionality
without any Constitution being in place? Yet in its final judgment, the court
stood on the side of X who was granted Italian nationality, given that acquisition
of nationality is not limited to the time of the birth. More precisely, the court
sentenced that X acquired Italian nationality when his mother acquired the right
to transmit Italian citizenship, i.e., retroactively on January 1948 by means of
the sentence of unconstitutionality of article 1 of old-icl.

Why the court decided for (L3) rather than (L2) turned out to be an issue
of secondary interest, contrary to the expectations of both the ministry and X.
The crucial issue became, instead, the one of whether or not citizenship can be
transmitted after the time of the birth. The court sentenced that it can, and
based its decision on a previous sentence of the Supreme Court, n. 6297/96, and
on textual considerations concerning how article 1 of icl, equivalent to (L1), is
phrased. First, the sentence of the Supreme Court (emphasis added):

On this matter, it should be made precise that . . . the right to acquire
Italian citizenship comes into being not at the event of the “birth”
. . . , but rather it is based on the situation of filiation from a parent
who is a citizen.8

Second, the textual considerations:

Article 1, clauses 1 and 2, of Law n. 555/1912, as well as article 1,
letter a), of the Law n. 91/1992, does not contain reference to the
historical fact of the birth, but rather to the situation of filiation,
as it is evident from the usage of the expression “the child” . . . The
expression “citizen by birth” . . . presupposes the fact of the birth,
but it is not equivalent to the expression “citizen at the time of the
birth.”9

8Deve essere precisato, in proposito, che il titolo di siffatto modo di acquisto . . . della

cittadinanza italiana è costituito, non già dall’evento ”nascita” . . . , bens̀ı dalla situazione di

filiazione da genitore cittadino. See [10].
9L’art. 1, punti 1 e 2 della legge n. 555 del 1912, al pari del vigente art. 1 lett. a della legge

5 febbraio 1992 n. 91 non include nella fattispecie il fatto storico della nascita, ma piuttosto

la situazione di filiazione, come evidenzia l’uso dell’espressione “il figlio” . . . L’espressione

“cittadino per nascita” . . . presuppone il fatto della nascita ma non equivale necessariamente

all’espressione “cittadino dal momento della nascita”. See [11].

5.2. Formalization 61

5.2 Formalization

The court’s sentence included two decisions: the one about (L2) vs. (L3), and
the one about the status of X as an Italian citizen. As pointed out before, the
first decision (in favour of (L3) and against the arguments by X) did not affect
the second decision (in favour of X). So the first decision may be disregarded
because of its neutrality with respect to the second decision, that is the crucial
one. The two decisions, however, are interesting in their own, and I shall look
at them separately.

5.2.1 Limited or Unlimited Retroactive Validity?

The discussion about the limited or unlimited retroactive validity is a dis-
cussion about the law, its validity or retroactivity—it is not a discussion that
involves any reference to the events which occurred to X. For this reason, this
section does not use facts (F1)-(F4), but only legal data (L1)-(L3)(and some
more will be added).

As the name suggests, retroactivity is based on the notion of activity (or
validity) of the law10, but conceived of in a backward way—retroactively that
is. In what follows, I shall speak of retroactivity or retroactive validity rather
interchangeably, although the locution ‘retroactive validity’ is redundant. The
notion of activity in the word ‘retroactive’ contains already the notion of valid-
ity (for in section 3.2 activity and validity of the law are treated as synonymous
notions), and thus saying ‘retroactive validity’ is the same as saying ‘retroac-
tive activity’. So, a better synonym for ‘retroactivity’ would be for example
‘retrovalidity’.

Terminological worries aside, I will begin by giving a formal account of
retroactivity in the framework of EC. We need to add a new axiom to EC,
one that can express “retroactive initiation” of fluents:

Ax7: holdAt(F,T1) ← happen(E,T2) ∧ retroinitiate(E,F,T2) ∧ T1<T2 ∧
¬clipped(T1,F,T2).

Axiom 7 expresses a form of backward inertia, as opposed to the forward in-
ertia of axiom 3. The predicate ‘retroinitiate’ can be seen as the reversed
of ‘initiate’. Backward inertia as expressed by axiom 7 does not generally
apply, but there is a restricted range of legal phenomena to which it does, those
being for example the event ‘retro enact’ and the fluent ‘retro active’. The
following formulas, written symmetrically, give an account of retroactivity and
activity of articles in the law:

(act−) retroinitiate(retro enact(ART),retro active(ART),T).

(act) initiate(enact(ART),active(ART),T).

With this general machinery in place, the disagreement over (L2) and (L3)

can be given a formal rendering. First, the disagreement is based upon the
agreement on some trivial legal data:

10see section 3.2 on time and validity in chapter 3

5.2. Formalization 62

(L4) a sentence of the Constitutional Court (sentence n. 30/83) took place on
February 1983, and the sentence amended old-icl in such a way that the
first article was replaced by (L1);

(L5) the judgment of the Constitutional Court is retroactive.

The disagreement, instead, consists of whether the sentence is retroactive in a
unlimited or limited manner: (L2) vs. (L3).

The agreed legal data can be formalized by (L4f) and (L5f) below.11 The
predicate ‘sentence(CONT,AUTH,N)’ contains three variables: the content of the
sentence, the authority issuing the sentence, and the number of the sentence. In
(L4f) below, the three variables are replaced by constants using the constraints
‘N=30-83’, ‘AUTH=const court’ and ’CONT=L1’—for the content of the sentence
is given by (L1). In (L5f) only the constraint ‘AUTH=const court’ is used because
the intended meaning of the rule is that every sentence of the Constitutional
Court is retroactive.

(L4f): happen(sentence(L1,const court,30-83),1983)

(L5f): happen(retro enact(sentence(CONT,const court,N)),T) ←

happen(sentence(CONT,const court,N),T)

Note that I have used (and will use) the convention to treat time instants in a
rather simplified way: instead of writing February 9, 1983, I have written 1983.
To be fully precise, one would need a function that progressively maps every
date to a natural number. I will leave out this complication.

The disagreement over (L2) and (L3) can be finally formalized. (L2) does
not pose any restriction on the extension of the retroactivity of the sentence of
the Constitutional Court. It can be expressed as follows, where the superscript
‘f ’ indicates that (L2f) is the formal rendering of (L2):

(L2f) holdAt(retro active(sentence(L1,const court,30-83)),T).

The variable ‘T’ is not restricted by anything—the retroactivity is unlimited. In
fact, what is intended is that the retroactivity of the sentence of the Constitu-
tional Court is limited by only ‘T<1989’, where 1989 is the date of the sentence,
as stated in (L4f)-(L5f). Note that (L2f)—limited to ‘T<1989’—is redundant,
as it can be proven from the axioms of EC, axiom 7, and the agreed legal data
(L4f)-(L5f).12

(L3) is expressed by these two formulas

(L3f) happen(limit retro active(sentence(L1,const court,30-83),1948).

terminate(limit retro active(ART),retro active(ART)),T).

The first formula says that, at time 1948, the content (L1) of the sentence n.
80-83 of the Constitutional Court is subject to limited retroactivity (see the

11The superscript ‘f ’ indicates that (L4f) and (L5f) are formal renderings of (L4) and (L5).
12The proof can be given as a modification of claim 1 below, that is, by unproblematically

replacing the constraint ‘T1<1948’ with ‘T1<1989’ in claim 1, part (a).

5.2. Formalization 63

predicate ‘limit retro active’). The second formula, more generally, says
that the event ‘limit retro active’ has the effect of terminating the fluent
‘retro active’. Note that ‘ART’ is a placeholder for any legislative content,
inclusive of sentences of the Constitutional Court.

The disagreement of the two parties convened for the trial can be expressed
by different stances on the query:

(Q1) ?holdAt(retro active(sentence(L1,const court,30-83)),T1),T1<1948.

The interior ministry holds that (Q1) fails, and X holds that it succeeds. The
ministry bases its claim on (L3f), while the X’s claim follows from the agreed
legal data.

Claim 1. Assume (L4f)-(L5f):
(a) Then (Q1) succeeds (X’s stance).
(b) If (L3f) holds, then (Q1) fails (ministry’s stance).

Proof. The proof is straightforward, and only a sketch is given. For representing
derivations, I shall use the notational conventions (C1) and (C2) on page 13.
Query (Q1) becomes:

? holdAt(retro_active(sentence(L1,const_court,30-83)),T1),

? T1<1948.

Set the constraint ‘F=retro active(sentence(L1,const court,30-83))’; then
apply axiom 7. We have:

? T1<1948,

? F=retro_active(sentence(L1,const_court,30-83)),

? happen(E,T2),

? retroinitiate(E,F,T2),

? T1<T2

? not(clipped(T1,F,T2))

If we set ‘E=retro enact(sentence(CONT,const court,N))’, by applying (L5f),
we can erase the query ‘?happen(E,F)’, and replace it with the body of (L5f),
as follows:

? T1<1948,

? F=retro_active(sentence(L1,const_court,30-83)),

? retroinitiate(E,F,T2),

? T1<T2,

? not(clipped(T1,F,T2)),

? happen(sentence(CONT,const_court,N),T2).

The last query, given the constraints ‘T2=1983’, ‘CONT=L1’, and ‘N=30-83’ can be
eliminated by (L4f). The query ‘?retroinitiate(E,F,T2)’ succeeds by (act−),
given the constraints ‘E=retro enact(ART)’ and ‘F=retro active(ART)’. Thus,
we have:

5.2. Formalization 64

? T1<1948,

? F=retro_active(sentence(L1,const_court,30-83)),

? T1<T2,

? not(clipped(T1,F,T2)),

? T2=1983,

? E=retro_enact(ART),

? F=retro_active(ART).

The query ‘not(clipped(T2,F,T1))’ succeeds by negation as failure, as there
is no information that makes the ‘clipped’ formula true. Finally we have:

? T1<1948,

? F=retro_active(sentence(L1,const_court,30-83)),

? T1<T2,

? T2=1983,

? E=retro_enact(ART),

? F=retro_active(ART).

The variable ‘E’ is unified to two different fluent terms. However, by putting
‘ART=sentence(L1,const court,30-83)’, we can see that the above list of con-
straints is satisfiable, whence (Q1) succeeds.

The proof for (b) is the same as for (a) up to a certain point, namely when
the query ‘?not(clipped(T1,F,T2))’ succeeds. In the proof of (b), instead,
the same query will fail by (L3f), and so does (Q1). To see this, consider the
stage of the derivation of (a) where the formula ‘clipped’ was not erased yet:

? T1<1948,

? F=retro_active(sentence(L1,const_court,30-83)),

? T1<T2,

? not(clipped(T1,F,T2)),

? T2=1983,

? E=retro_enact(ART),

? F=retro_active(ART).

The ‘clipped’ formula can be removed by applying axiom 5. We now have:

? T1<1948,

? F=retro_active(sentence(L1,const_court,30-83)),

? T1<T2,

? T2=1983,

? E=retro_enact(ART),

? F=retro_active(ART),

? happen(E1,S),

? T1<S<T2,

? terminate(E1,F,S).

By (L3f) the queries ‘?happen(E1,S)’ and ‘?terminate(E1,F,S)’ can be re-
moved, given ‘E1=limit retro active(sentence(L1,const court,30-83))’ and
‘S=1948’. The updated list of queries is as follows:

5.2. Formalization 65

? T1<1948,

? F=retro_active(sentence(L1,const_court,30-83)),

? T1<T2,

? T2=1983,

? E=retro_enact(ART),

? F=retro_active(ART),

? T1<S<T2,

? E1=limit_retro_active(sentence(L1,const_court,30-83)),

? S=1948.

The above list of constraints is satisfiable, so the query ‘?clipped(T1,F,T2)’
succeeds; this means that ‘not(clipped(T1,F,T2))’ fails, whence (Q1) fails.

Some may lament that claim 1 does not settle the disagreement between the
ministry and X because the real issue is which principle, (L2) or (L3), should be
endorsed. Formally, the issue boils down to be whether (L3) should be accepted
or not, because (L2), rendered as (L2f), follows from the agreed legal data and
axioms. Obviously, our formalism cannot prove which position to take, and it
would be unreasonable to except a formalism to be able to do so.

Deciding between (L2) or (L3) would require to appeal to additional princi-
ples. For example, (L2) could override (L3) if we accept the principle that ‘any
rule based on more recent legislative sources shall take precedence over older
rules’ (also known as lex posterior), along with the fact that (L2) is more recent
than (L3). A fuller treatment of how to deal with conflicting rules or normative
statements falls outside the scope of this chapter. One suggestion is to look at
formal models of argumentation, where the choice of one rule over another is
debated between two players in an argumentation game.13

5.2.2 The Crucial Issue

The crucial disagreement between X and the ministry concerns the attribu-
tion of citizenship. The crucial issue can then be captured by the query (Q2):

% Q2

? holdAt(cit(X,italy,TYPE,ART),T),

? holdAt(active(ART),T),

? T=1999

The ministry contends that (Q2) should fail, and X contends that it should
succeed. For the query to succeed, there should be an article granting Italian
citizenship to X and this article should be applicable to X for ‘T=1999’ (date of
the trial). From the sentence of the court, it was apparent that deciding on the
query (Q2) did not require one to settle the dispute about (L2) or (L3), contrary

13 The interested reader may consult, among others, Gordon [12], in which legal reasoning

about rules in the context of argumentation theory is proposed.

5.2. Formalization 66

to what both parties thought. This results is mirrored by the formal treatment
that I am going to present.

To give a conclusive answer to (Q2), some more rules need to be written up.
These will comprise a formal rendering of (F1)–(F4). I will use the convention
to name X’s mother, father, grandmother and grandfather with the constants
‘mother, father, grandmother, grandfather’.

(F1f) happen(born in(X,argentina),1942).

holdAt(cit(father,argentina),1942).

(F2f) happen(recognize(mother,child of(X,mother),T)) ←T>1942.

happen(recognize(father,child of(X,father),T)) ←T>1942.

(F3f) happen(born in(mother,argentina),1906).

holdAt(mother of(grandmother,mother),1906).

holdAt(father of(grandfather,father),1906).

holdAt(cit(grandother,italy),1906).

holdAt(cit(grandfather,italy),1906).

(F4f) holdAt(cit(mother,italy),T)←T>1906.

Let’s now go back to the main point:

% Q2

? holdAt(cit(X,italy,TYPE,ART),T),

? holdAt(active(ART),T),

? T=1999

In accordance with the sentence of the court, this query succeeds:

Claim 2. Assume (F1f)–(F4f). Then, query (Q2) succeeds.

Proof. First, let’s concentrate on the first line of the query and apply axiom 6
(see page 19), by putting ‘F=cit(X,italy,TYPE,ART)’. This yields:

? F=cit(X,italy,TYPE,ART),

? obtain(F,T1),

? T1<T,

? not(clipped(T1,F,T)).

The query ‘obtain(F,T1)’ can be made to succeed by applying (L1), whose
content is given by the formalization of article 1.1.a of icl, as explained in the
previous chapter.14 The formalization is repeated here for convenience:

obtain(cit(X,italy,birth,art1.1.a),T):-

holdAt(child_of(X,Y),T),

holdAt(cit(Y,italy),T).

14(L1) and article 1 of icl boil down to the same.

5.2. Formalization 67

By setting ‘TYPE=birth’ and ‘ART=art1.1.a’, the formalization of article 1.1.a
can be applied. Thus we have:

? F=cit(X,italy,TYPE,ART),

? T1<T,

? not(clipped(T1,F,T)).

? TYPE=birth,

? ART=art1.1.a,

? holdAt(child_of(X,Y),T),

? holdAt(cit(Y,italy),T),

The formula ‘not(clipped(T1,F,T2)’ succeeds by negation as failure, and can
be erased. Moreover, given the convention (val), on page 23, that any fluent
which is not indexed to an article must be reduced to one that is, the query

? holdAt(child_of(X,Y),T)

should be replaced with

? holdAt(child_of(X,Y,ART2),T),

? holdAt(active(ART2),T).

The article defining ‘child’ is article 2.1. of icl. Thus, we can set the constraint
‘ART2=art2.1’. The new query will be:

? TYPE=filiation,

? ART=art1.1.a,

? holdAt(cit(Y,italy),T),

? holdAt(child_of(X,Y,ART2),T),

? holdAt(active(ART2),T).

? ART2=art2.1.

After setting ‘F=child of(X,Y,art1.2)’, remove the query

? holdAt(child_of(X,Y, ART2),T),

and replace it with the suitable antecedents of axiom 3, thus having:

? TYPE=filiation,

? ART=art1.1.a,

? holdAt(cit(Y,italy),T),

? holdAt(active(ART2),T),

? ART2=art2.1,

? F=child_of(X,Y,art1.2),

? happen(E,T1),

? initiate(E,F,T1),

? T1<T,

? neg(clipped(T1,F,T)).

Now article 2.1. of icl defines the event ‘become child’, as follows:

5.2. Formalization 68

happen(become_child_of(X,Y,art2.1),T1):-

happen(recognize(Y,child_of(X,Y)),T1),

hold_at(minor(X),T1).

So we can set ‘E=become child of(X,Y,art1.2)’ and replace the query

? happen(E,T1)

with the query:

? happen(recognize(Y,child_of(X, Y)),T1),

? hold_at(minor(X),T1).

The new query will be:

? TYPE=filiation,

? ART=art1.1.a,

? holdAt(cit(Y,italy),T),

? holdAt(active(ART2),T),

? ART2=art2.1,

? F=child_of(X,Y,art1.2),

? T1<T,

? neg(clipped(T1,F,T)),

? E=become_child_of(X,Y,art1.2),

? happen(recognize(Y,child_of(X,Y)),T1),

? hold_at(minor(X),T1).

The negated formula is true by negation as failure and the related query can be
removed. The queries:

? holdAt(cit(Y,italy),T),

? happen(recognize(Y,child_of(X,Y)),T1),

can be removed by (F4f) and (F2f), and by setting ‘Y=mother’, ‘T>1906’ and
‘T1>1942’. The updated query looks as follows:

? TYPE=filiation,

? ART=art1.1.a,

? holdAt(active(ART2),T),

? ART2=art2.1,

? F=child_of(X,Y,art1.2),

? T1<T,

? E=become_child_of(X,Y,art1.2),

? hold_at(minor(X),T1),

? Y=mother,

? T1>1942,

? T>1906.

5.2. Formalization 69

The query ‘?hold at(minor(X),T1)’ is problematic. Unfortunately, there is no
information about X being a minor at ‘T1’, the time of his recognition as a child.
Strictly speaking, this should cause the query (Q2) to fail. However, a charitable
interpretation of (F2f) (see the statement in natural language) suggests that X
was (almost) immediately recognized by his parents when he was born. Thus,
it can be safely assumed that ‘holdAt(minor(X),T1)’ obtains.

It is time now to consider the second and third line of (Q2), which were put
aside at the beginning of the proof:

? holdAt(active(ART),T),

? T=1999.

The application of axiom 3 and article 27 of icl:

initiate(start_active(icl,art27),active(icl,art27),T).

happen(start_active(icl,art 27),T):-

T=1992.

makes the above query succeed, by ‘ART=icl’ (where icl includes also any
article of icl). By the same token, the query ‘?holdAt(active(ART2),T)’
succeeds. Thus, the final query is:

? TYPE=filiation,

? ART=art1.1.a,

? ART2=art2.1,

? F=child_of(X,Y,art1.2),

? T1<T,

? E=become_child_of(X,Y,art1.2),

? Y=mother,

? T1>1942,

? T>1906,

? T=1999.

This query is satisfiable, whence (Q2) succeeds.

The first, obvious, question that arises is this: why was there a trial if a
rather straightforward derivation mechanism could have delivered just the same
conclusion? Recall that the main point in the court’s final judgment was that
the date of birth is not the only time citizenship can be transmitted, whereas
both parties convened for the trial thought it was. In the proof of claim 2, the
crucial step was the first one, in which axiom 6 and the following rule (call it
(L1s); ‘s’ for static) was applied:

% L1^s

obtain(cit(X,italy,birth,art1.1.a),T):-

holdAt(child_of(X,Y),T),

holdAt(cit(Y,italy),T),

5.2. Formalization 70

In accordance with the wording of article 1.1.a of icl, (L1f) does not contain any
reference to the event of birth. By contrast, suppose a different formalization
(call it (L1d); ‘d’ for dynamic), were used:

% L1^d

initiate(start_cit(X,italy,birth,art1.1.a),

cit(X,italy,birth,art1.1.a),

T).

happen(start_cit(X,italy,birth,art1.1.a),T):-

happen(born(X),T),

holdAt(child_of(X,Y),T),

holdAt(cit(Y,italy),T).

(L1d) contains a reference to the event of birth. Rules (L1s) and (L1d) reflect
the two different interpretations alluded by the Supreme Court. Let’s read the
passage one more time:

On this matter, it should be made precise that . . . the right to acquire
Italian citizenship comes into being not at the event of the “birth”
. . . , but rather it is based on the situation of filiation from a parent
who is a citizen.15

The contrast between a dynamic interpretation based on “the event of the birth”
and a static interpretation16 based on the “situation of filiation” is parallel by
(L1d) vs. (L1s). However, the parallelism does not go as far as we would expect:
it seems that, in the intention of the court, accepting the dynamic interpretation
should yield the failure of query (Q2), provided bounded retractive validity is
granted, namely principle (L3). Unfortunately, this is not the case from a formal
point of view:

Claim 3. First, assume the agreed principles, (F1f)–(F4f) and (L4f)–(L5f). Sec-
ond, assume (L1d). Then, query (Q2) succeeds.

Proof. I will only give a very rough sketch of the proof, and leave the details to
the reader. Now, X was born in 1942, so the application of (L1d) (along with
the agreed facts and principles) makes true the following:

happen(start_cit(X,italy,birth,art1.1.a),1942).

The above initiates the fluent:

cit(X,italy,birth,art1.1.a).

There are no interfering events on the way, so up until 1999 (date of the trial)
the fluent still holds, by axiom 3. Furthermore, in 1999 the law containing
article 1.1.a is active, so the query:

15Deve essere precisato, in proposito, che il titolo di siffatto modo di acquisto . . . della

cittadinanza italiana è costituito, non già dall’evento ”nascita” . . . , bens̀ı dalla situazione di

filiazione da genitore cittadino. See [10].
16Recall the discussion between definitional and event-based view in section 3.1.

5.2. Formalization 71

? holdAt(active(art1.1.a),1999)

succeeds, whence (Q2) succeeds.

The proof reveals how things developed for individual X, under our formal-
ization. The fluent

cit(X,italy,birth,art1.1.a)

is extended from 1942 onwards. However, the fluent has lacked legal force for a
while, because article 1.1.a was activated, by principle (L3), only from January
1948 (the date of enactment of the Constitution). This means that fluent ‘cit’
went through a long period of legal inactivity, from which it was “liberated” and
made active on January 1948. This picture is problematic because the event
initiating ‘cit’ was not legally active in 1942, and so it should not be possible
for a fluent to become legally active if it was initiated by a legally inactive event.

The reader may have noticed that we face a variant of the problem described
in section 3.2, on page 24, while dealing with the distinction between validity and
classificatory reasoning. To repeat, the problem is as follows: If a statement of
the form ‘ι is a citizen according to article n’ is the result of a legal classification
consisting of a proof where several articles are utilized; then, while performing
validity reasoning one has to check the validity of all the articles utilized during
the proof of ‘ι is a citizen according to article n’. The difficulty is that it is
unclear how to keep track of the articles utilized during proofs. The variant of
the problem here discussed adds a further element—it is not enough to check the
validity of the articles used during proofs, one also needs to know with respect
to which moments in time the validity of these article needs to be checked. In
the example here at hand, article 1, clause 1, letter a) of icl is used during the
proof of claim 3, as follows:

? happen(start_cit(X,italy,birth,art1.1.a),1942).

At the end of the proof of claim 3, that very same article is checked for its
validity at ‘T=1999’; and the validity checking yields a positive outcome. This is
not the validity checking that we need: the validity of article 1, clause 1, letter
a) should have been checked at time ‘T=1942’, not ‘T=1999’. How the problem,
and variants thereof, can be tackled remains an open question.

At any rate, suppose the technical problem of keeping track of the articles
utilized during proofs is solved; then, (Q2) will not succeed under the interpre-
tation (L1d). This brings me to the question why (L1d) should be preferred over
(L1s), or viceversa. The choice between the two should appeal to extra-principles
which are not contained in the text of the law itself, and so the dispute over
(L1d) or (L1s) cannot be solved by means of the sole formalization. Note, how-
ever, that the formalization given in the previous chapter of article 1.1.a used
the interpretation (L1s), which happened to be the same interpretation adopted
by the court. Nonetheless, other courts may prefer the interpretation (L1d), so

5.2. Formalization 72

that (L1s) is not the definitive word on the issue.17 The conclusion that can be
drawn from this is that a good formalism should be able to accomodate both
interpretations, and leave it open to the interpreters which one to select (see
the conclusion for a discussion).

Summary

This chapter attempts to apply the formalization of icl to a concrete case
that has been disputed before a court of law. The concrete case is described in
the first part of the chapter, section 5.1, and subsequently the formal apparatus
is introduced, section 5.2. By using the axioms of EC, formalizations of articles
from icl, facts that are specific to the case at hand, but also (sometimes conflict-
ing) interpretative principles such as (L2f) and (L3f)—it was possible to answer
simple queries about retroactivity (see claim 1), and X’s Italian citizenship (see
claim 2).

The axioms of EC are extended to deal with retroactivity, as follows:

Ax7: holdAt(F,T1) ← happen(E,T2) ∧ retroinitiate(E,F,T2) ∧ T1<T2 ∧
¬clipped(T1,F,T2).

A recurrent theme of the chapter—which did not receive a systematic treat-
ment, however—is the issue of how the law is interpreted (see for example the
opposition between dynamic and static interpretations: (L1s) vs. (L1d)). The
moral is that, in most cases, the text of the law, or a formalization thereof, is
insufficient to decide about a problematic case. The text of the law is not self-
contained. A formalism is thus needed which can handle the interaction between
the formalization of a piece of law and its possibly conflicting interpretations.

17In fact if one consults the web-site of the Italian Consulate in Argentina, under the heading

‘citizenship office’, one will find that the interpretation adopted by the consulate is (L1d). On

the web site, it is written: children born before January 1, 1948, are Italian citizen only if they

are born by Italian father, given that women can transmit Italian citizenship only beginning

January 1, 1948.

74

6 Conclusion

The reader should be convinced by now that EC can formalize non-trivial
parts of legislative texts, while preserving elementary requirements for a good
modeling, such as:
(R1) sanctioning the right or intended inferences;
(R2) precision and adherence to the text (sometimes termed “isomorphism”);
(R3) maintainability.

Chapters 3 and 4 have shown how legislative texts can be formalized in EC—the
former in a general and abstract way, and the latter by looking at a case-study,
the Italian Citizenship Law (icl). During the formalization, it was suggested to
augment EC with two more axioms. They are needed to cope with definitional
statements in the law (see section 3.1) and retroactivity (see section 5.2):

Ax6: holdAt(F,T2) ← T1<T2 ∧ obtain(F,T1) ∧ ¬clipped(T1,F,T2).

Ax7: holdAt(F,T1) ← happen(E,T2) ∧ retroinitiate(E,F,T2) ∧ T1<T2 ∧
¬clipped(T1,F,T2).

Chapter 5 can be seen as an attempt to model the process of applying and
interpreting the law, by examining a case which involved the use of the icl. The
process of interpretation was roughly described as the addition or removal of
certain interpretative principles, such as (L2f) or (L3f), or as the choice between
two competing formal renderings of the same piece of legal text, as in the case
of (L1s) and (L1d).

Future Work

One direction of future work concerns the interpretation of legal texts. In the
last chapter an example of competing interpretations of the same piece of law
is given, i.e., (L1s) and (L1d), the static and dynamic interpretation of article
1 of icl. In our set-up, they were two opposite interpretations, so that the
formalization could only contain one of them. To account for the interpretative
process, the formalization should instead be open to both (L1s) and (L1d).

When the law is interpreted, the text of the law does not change. So, a
desideratum for a theory of interpretation is that the formalization remains the
same and interpretative principles (also in the form of integrity constraints)
are added subsequently on a higher layer to constrain the formalization in the

75

intended way. Interpretative principles are retractable, while the formalization
of the law should not be so (unless it is modified by the legislator). This requires
that the underlying formalization be flexible enough and open to conflicting
interpretations.

To this proposed direction of work, one may object that intending the for-
malization as open to interpretation will defeat the purpose of the formalization
itself, as formalizing means disambiguating. A proper reply would require an
in-depth discussion of the purposes and ranges of application of formalizations
of the law. If one of the purposes is the understanding of how content and
meaning develop in legislative texts, the issue of interpretation cannot be es-
caped. On the other hand, if the purpose of the formalization is to make the
law fully precise and unambiguous, a theory of interpretation is certainly not
needed. I hold that it is not feasible to aim at disambiguating the law com-
pletely, without dooming the formalization process to biases from a particular
interpretation. Moreover, it follows by no means that formalizing coincides with
fully disambiguating. In fact, there is formal work about under-specification in
syntax and semantics (see for example Minimal Recursion Semantics [6, 7] to
deal with scope ambiguity), and hence formal renderings, in principle, can be
open to interpretation.

There are two more directions of future work I shall propose. On the technical
side, an implementation is the most needed one. Proofs given in this thesis
were straightforward and should be fully computational. The implementation
should be paired with an editor which can automatically generate Prolog-like
code for the implementation. Writing the formulas by hand is a tedious task,
often repetitive and subject to human errors. An editor to assist the process
of formalization will enable one to formalize larger pieces of legislation in the
EC. In fact, the formalization of the law becomes interesting only when a large
amount of legislation is formalized.

Other pieces of legislation to be formalized are those which are connected
with icl. The Italian citizenship law is not self-sufficient in that, for example,
it does not specify which documents one should submit and which procedures
one should follow to be granted Italian citizenship. These related pieces of
law are mainly regulative decrees, precisely two decrees of the President of
Republic, n. 572 on October, 12, 1993, and n. 362, on April 4, 1994. Formalizing
these other pieces of law will contribute to testing the maintainability of the
present formalization and, in addition, shape a more precise and full-fledged
methodology to formalize large scale legal texts with EC.

BIBLIOGRAPHY 76

Bibliography
[1] Legge 13 giugno 1912, n. 555 sulla cittadinanza italiana.

[2] Legge 5 febbraio 1992, n. 91. nuove norma sulla cittadinanza. In Gazzetta
Ufficiale, n. 38, 15 febbraio 1992.

[3] T. J. M. Bench-Capon, G. O. Robinson, T. W. Routen, and M. J. Sergot.
Logic programming for large scale applications in law: A formalisation of
supplementary benefit legislation. In ICAIL ’87: Proceedings of the 1st
international conference on Artificial intelligence and law, pages 190–198,
New York, NY, USA, 1987. ACM Press.

[4] Joost Breuker, Rinke Hoekstra, Alexander Boer, Kasper van den Berg,
Rossella Rubino, Giovanni Sartor, Monica Palmirani, Adam Wyner, and
Trevor Bench-Capon. OWL ontology of basic legal concepts (LKIF-Core).
Deliverable 1.4, Estrella, 2007.

[5] Roderick M. Chisholm. Contrary-to-duty imperatives and deontic logic.
Analysis, 24(2):33–36, 1963.

[6] Ann Copestake, Dan Flickinger, Rob Malouf, Susanne Riehemann, and
Ivan Sag. Translation using Minimal Recursion Semantics. In Proceedings of
the 6th. International Conference on Theoretical and Methodological Issues
in Machine Translation (TMI-95), Leuven, Belgium, July 1995.

[7] Ann Copestake, Daniel P. Flickinger, and Ivan A. Sag. Minimal recursion
semantics: An introduction. Manuscript, Stanford University: CSLI, 1999.

[8] Corte Costituzionale. 9 febbraio 1983. sentenza n. 30.

[9] Robert Demolombe and Maria del Pilar Pozos Parra. The chisholm paradox
and the situation calculus. In ISMIS, pages 425–434, 2005.

[10] Corte di Cassazione. 10 luglio 1996. sentenza n. 6297.

[11] Tribunale di Torino. Sentenza n. 12, aprile 1999.

[12] Thomas F. Gordon. Constructing arguments with a computational model of
an argumentation scheme for legal rules (draft). In ICAIL ’07: Proceedings
of the 11th International Conference on Artificial Intelligence and Law (to
appear). ACM Press, 2007.

[13] Rinke Hoekstra, Joost Breuker, Marcello Di Bello, and Alexander Boer.
The LKIF Core ontology of basic legal concepts. In Pompeu Casanovas,
Maria Angela Biasiotti, Enrico Francesconi, and Maria Teresa Sagri, edi-
tors, Proceedings of the Workshop on Legal Ontologies and Artificial Intel-
ligence Techniques (LOAIT 2007), June 2007.

BIBLIOGRAPHY 77

[14] Robert Kowalski. The treatment of negation in logic programs for repre-
senting legislation. In E. Rissland, editor, Proceedings of Second Interna-
tional Conference on AI and Law, pages 11–15, Vancouver, Canada, 1989.
ACM Press.

[15] Robert Kowalski. Database updates in the event calculus. Journal of Logic
Programming, 12(1-2):121–146, 1992.

[16] Robert Kowalski and Marek Sergot. A logic-based calculus of events. New
Generation Computing, 4:67–95, 1986.

[17] Robert Kowalski and Francesca Toni. Abstract argumentation. Artificial
Intelligence & Law, 4(3-4):275–296, 1996.

[18] Robert A. Kowalski. Legislation as logic programs. In LPSS ’92: Pro-
ceedings of the Second International Logic Programming Summer School on
Logic Programming in Action, pages 203–230, London, UK, 1992. Springer-
Verlag.

[19] P. Leith. Fundamental errors in legal logic programming. The Computer
Journal, 29(6):545–552, 1985.

[20] Rafaél Hernández Maŕın and Giovanni Sartor. Time and norms: a formal-
isation in the event-calculus. In ICAIL ’99: Proceedings of the 7th interna-
tional conference on Artificial intelligence and law, pages 90–99, New York,
NY, USA, 1999. ACM Press.

[21] Henry Prakken and Marek Sergot. Contrary-to-duty obligations. Studia
Logica, 57(1):91–115, 1996.

[22] Raymond Reiter. The frame problem in situation the calculus: a simple
solution (sometimes) and a completeness result for goal regression. In Arti-
ficial intelligence and mathematical theory of computation: papers in honor
of John McCarthy, pages 359–380, San Diego, CA, USA, 1991. Academic
Press Professional, Inc.

[23] M. Sergot, F. Sadri, R. Kowalski, F. Kriwaczek, P. Hammond, and T. Cory.
The british nationality act as a logic program. CACM, 29(5):370–386, 1986.

[24] Murray Shanahan. The event calculus explained. In M.J.Wooldridge and
M.Veloso, editors, Artificial Intelligence Today, pages 409–430. Springer,
1999.

[25] Murray Shanahan. An attempt to formalise a non-trivial benchmark prob-
lem in common sense reasoning. Artificial Intelligence, 153(1-2):141–165,
2004.

[26] K. Stenning and M. van Lambalgen. Human reasoning and cognitive science
(to appear). MIT Press, 2007.

BIBLIOGRAPHY 78

[27] André Valente. Legal Knowledge Management: An Engineering Approach.
IOS Press, 1995.

[28] Michiel van Lambalgen and Fritz Hamm. The Proper Treatment of Events.
Blackwell, 2005.

