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Chapter 1

Introduction

1.1 The Exponent w of Matrix Multiplication

Matrix multiplication is a fundamental operation in linear algebra. For any given field K,
the (asymptotic) complexity of matrix multiplication over K is measured by a real parameter
w(K) > 0, called the exponent of matriz multiplication over K, which is defined to be the small-
est real number w > 0 such that for an arbitrary degree of precision € > 0, two n x n K-matrices
can be multiplied using an algorithm using O(n“*¢) number of non-division arithmetical oper-
ations, i.e. less than some constant > 1 multiple of n*“ ¢ number of multiplications, additions
or subtractions. The notation w(K) indicates a dependency on the ground field K, but we
usually have in mind the complex field K = C, which is general enough for most purposes.
It is proved that w determines the complexities of many other linear operations, e.g. matrix
inversion, determinants, etc., and these are concisely covered by Biirgisser et. al., Chapter 16

in [BCS1997).

If we denote by Mg (n) the total number of arithmetical operations for performing n x n
matrix multiplication over a field K, then by the standard algorithm, Mg (n) = 2n3 — n? =
O(n?), because one needs to perform n® multiplications, and n3 — n? additions of the resulting
products. This is equivalent to an upper bound of 3 for w. Since the product of two n x n

matrices consists of n? entries, one needs to perform a total number of operations which is at

least some constant > 1 multiple of the n? entries. This is written as Mg (n) = Q(n?), which



is equivalent to a lower bound of 2 for w. Strassen in 1969 obtained the first important result
that w < 2.81 using his result that 2 x 2 matrix multiplication could be performed using 7
multiplications, not 8, as in the standard algorithm [STR1969, p. 355]. In 1984, Pan improved
this to 2.67, using a variant of Strassen’s approach [PAN1984, p. 400]. It has been conjectured
for twenty years that w = 2, but the best known result is that w < 2.38, due to Coppersmith
and Winograd [CW1990, p. 251]. In all these approaches, estimates for w depend on the

number of main running steps in their algorithms.

1.2 Groups and Matrix Multiplication

In a recent series of papers in 2003 and 2005, Cohn and Umans put forward an entirely different
approach using fairly elementary methods from group theory to describe the complexity of

matrix multiplication.

The approach is based on two important facts.

1.2.1 Realizing Matrixz Multiplications via Finite Groups

(I) A (nontrivial) finite group G which has a triple of index subsets S, T, U C G of sizes

|S| = n, |T| = m, |U| = p, such that s’ s 't w'u! =1g <= s's 1 =t't' =du™! = 1g,
for all elements s',s € S, ¢ ,t € T, u',u € U, realizes multiplication of n x m by m X p matrices
over C, in the sense that the entries of a given n x m complex matrix A = (A4;;) and an
m X p matrix B = (By;), can be indexed by the subsets S, T, U as A = (Asy), g, and
B = (Bt,’“)t’eT,u eU ?

elements A= .  Agis 't and B = S Byt 'u, and the matrix product AB can
seS,teT t'eT,uelU

be computed by the rule that the s”, u"-th entry (AB) . is the coefficient of the term s 1"

in the group algebra product AB = > > AgBy usflttlflu (see Theorem 4.13).
stvtETt/eT,ueU ’
In this case, by definition, G is said to support nxm by m X p matrix multiplication, equivalently,

then injectively embedded in the regular group algebra CG of G as the

to realize the matrix tensor (n,m,p), whose size we define as nmp, and the subsets S, T, U



are said to have the triple product property (TPP) and be an index triple of G corresponding
to the tensor (n,m,p) (see Chapter /).

1.2.2 Wedderburn’s Theorem

(IT) By Wedderburn’s theorem there is an isomorphism CG 2 @  C%*de of the regular
0 € Irrep(QG)

group algebra CG of G, where &) Cde*de is a block-diagonal matrix algebra of dimension
o € Irrep(G)

> d2=|G|, and the C%*% are its irreducible subalgebras of dimensions d2, and the d,
0 € Irrep(QG)

are the degrees of the distinct irreducible characters of G, i.e. the dimensions d, = Dim g of the
distinct (inequivalent) irreducible representations g € Irrep(G) of G. Any such isomorphism
constitutes a group discrete Fourier transform (DFT) for G, and, further, we can deduce that

|G| < R(m,) < > ( )‘ﬁ((dg,dg,dg)), where R(m_,) and R ((dp, dp, dp)) are the ranks of
o€ Irrep(G

the bilinear multiplication maps m_, and {(d,,d,, d,) in CG and C%*% respectively.

1.2.3 A Group-theoretic DFT Algorithm for Matrix Multiplication

This suggests the following group-theoretic DFT algorithm for n x n matrix multiplication via
a finite group G realizing n x n matrix multiplication via subsets S, T', U C G having the triple

product property.

1. Injectively embed n x n complex matrices A = (Am)l@.’jgn and B = <Bj/’k> .
into CG as elements A = Y Ags'tand B= Y. Byt tuvia S, T, U (as
seS,teT t'heT,uelU

described in (I)).

2. Use a discrete group Fourier transform (DFT) for G, DFT : CG = ®  Cdexde to
o € Irrep(G)

compute the transforms A = DFT(A) and B =DFT(B).
3. Compute the block-diagonal matrix product of transforms, C = AB.

4. Recover the vector AB = C = DFT~! (6) from its transform by the inverse group DFT.



5. Fill the matrix AB from AB= ) Y. AgBy us_ltt,_lu by the rule that for
seS,teT ¢eT uelU ’

each s” € S,u" €U, the s ,u"-th entry (AB) g = coefficient > A,;B,  of the term
t,t'eT

/ "

st 1y in AB for which s = s, t=t, u=1u.

1.2.4 The Complexity of Matrix Multiplications Realized by Groups

In the approach we describe, estimates for w can be derived from certain numerical parameters
relating to the efficiency with which groups realize matrix multiplications, and also to the

degrees of their irreducible characters.

(1) Pseudoexponents a(G), defined by a(G) := log,/ (173 |G|, where <n/,m/,p'> is a matrix
tensor of maximal size zI(G) = n'm'p’ > 1 realized by G, and uniquely determining
a(G). We prove that |G| < 2'(G) < |G|%, which is equivalent to 2 < a(G) < 3, and that
a(G) = 3 whenever G is Abelian. The a(G) are measures of the efficiency with which the
groups G realize or embed matrix multiplication, and the closer a(G) is to 2 the higher

the embedding efficiency (section 4.2.1).

(2) Parameters «(G), defined by ~(G) := ing\G]% = d (G), where d (G) is any maximal
v

irreducible character degree of GG, for which we can easily prove that 2 < 2% <
v(G) < 2%, where ¢(@) is the class number of G, and that 2 < 2% <
7(G) < 2%, iff G is non-Abelian ((section 4.2.2))

(3) Sums of powers of irreducible character degrees, D, (G) = >, dy,r>0. Facts from

o € Irrep(G)
representation theory are that Do(G) = ¢(G), and D2(G) = |G| (section 3.2.).

1.2.5 Relations and Results for the FExponent w

The four most important relations which we prove using single groups G are the following.



(1.1) ]G|$ < D, (G) this is equivalent to 2 < w < a(G) log|g Du(G)
=2)

(1.2) D,(G) < |G| @ ™ real 7 > 2
(1.3) (nmp)% < d/(G)l_% |G\% if G realizes a tensor (n,m,p)
(14) w<al@) (at) | (@) <(0)

By applying these relations, we have also been able to derive a number of results about how

to prove estimates for w using non-Abelian groups. These are listed below.

Proposition 1.1 w < t < 3 for some t > 2, if there is a non-Abelian finite group G with
pseudoexponent a(G) and parameter v(G) such that o(G) < v(G) and o(G) (%) <t.
An equivalent, but more precise statement is that w <t < 3, for some t > 2, if there is a non-
Abelian finite group G realizing matriz multiplication of maximal size z/(G) and with a mazimal

’ t
irreducible character degree d (G) such that zl(G)% > d (@) and |G| < %. (Corollary
4.28)

Proposition 1.2 If {Gy} is a family of non-Abelian groups such that o (Gy) = o, = 2+ 0(1),
and v (Gg) = v, =240(1), and o, —2 = o(y, —2), as k — oo, thenw = 2. (Corollary 4.29)

Proposition 1.3 Let {Gy} be a family of non-Abelian groups Gy, realizing matriz multiplica-
tions of largest sizes z;f = z/(Gk) and with largest irreducible character degrees al;€ = d;C(G).
Then, (1) w = 2 if |Gi|* — 28 = o(1) and (|Gx| — 1)% — d, = o(1) such that |Gy|¥ — =3 =
0 <(|G;€\ - 1)% - d;c) as k — oo.  And more generally, (2) w =2 if |G| — 00 as k — o0
and there exists a sequence {Cy} of constants Cy for the Gy such that 2 < Cy < |Gk| — 1,
Gl > Cic (14 g1 ), G — 00, G = olGa]), (1GH] — Ci)* — df = o(1), |GalF — 2% = o(1)

11 ,
and ]Gk\% -z =o0 <(|Gk] — Ck)% - dk>, as k — oo. (Theorem 4.50)

1.2.6 Realizing Stmultaneous, Independent Matrix Multiplications via Groups

In Chapter 5, we introduce a more general concept of simultaneous triple product property

(STPP) (also due to Cohn and Umans, [CUKS2005]). To be more precise, a collection

9



{(Si,T3,U;)}, . ; of triples (S;,T;,U;) of subsets S;,T;,U; € G, of sizes |S;| = my, T3] = pi,
|U;| = g; respectively, is said to satisfy the simultaneous triple product property (STPP) iff it is
the case that each triple (S;,T;, U;) satisfies the TPP and s;sglt;t;u;{u;l =lg=1i=j =k,
for all s;s;" € Q(Si,85), tity, € Q(Ty,Tk), upu; € QUx,Us), 4,5,k € I. In this case, G is
said to simultaneously realize the corresponding collection {(m;,p;, i)}, . ; of tensors through

a corresponding collection {(S;, T;, U;)} which is called a collection of simultaneous index

iel
triples.  The importance of STPP is that it describes how a finite group may realize several
independent matrix multiplications simultaneously such that the total complexity of these sev-
eral matrix multiplications cannot exceed the complexity of one multiplication in its regular

group algebra. The first set of important results about w relating to the STPP are summarised

by the following proposition.

Proposition 1.4 If {(m;,pi,q)}i_1is a collection of r tensors simultaneously realized by a

group G then

T

(1)2 (mipigi)® < Dyu(G) ( part (1) of Corollary 5.2)
i—1

7

and if these tensors are all identical, say, (m;,pi,q;) = (n,n,n), for all 1 <i <r, then

< log |G| —logr.

(2) w< (Corollary 5.3)

logn

The most useful types of groups for estimates for w using the STPP seem to be wreath
product groups H 1 Sym,, for which we prove that Dy, (H1Sym,,) < (n))“~' |H|" (Lemma 5.7).
Using the latter result, the most general result which we’ve obtained (Proposition 5.10) in this

regard involves the wreath product groups H ! Sym, where H is Abelian.

Proposition 1.5 For any n triples S;,T; Ui C H of sizes |S;| = mi, |Ti| = pi,|Ui| = ¢,
1 <i < n satisfy the STPP in an Abelian group H, there is a unique number 1 < k, < (n!)3 of
triples of permutations, oj,7;,v; € Sympy, 1 < j < ky, such that the k, permuted product triples
Zﬁlsgj(i) 2 Symn,iﬁlTTj(i) 2 Symn,iﬁlUvj(i) LSymy,, 1 < j <k,, satisfy the STPP in H Symy,

10



n n n
and such that H ! Sym,, realizes the square product tensor <n! [Tmi,n! ][] pi,n! Hq1> k, times
i=1 i=1 i=1
stmultaneously, such that

nlog |H| — logn! — log ky,
w < .

- n
log &/ [ mipig;
\ i=1

1.2.7 FEstimates for the Exponent w

In Chapter 6, we give several estimates for w using Abelian groups H or wreath products

involving them, H { Sym,,.

w < | Group Reference

2.93 Cyczﬁg ! Symeo section 6.2.2

2.82 (C’ycﬁf’) *™ ) Symaom | section 6.2.3

2.82 | Cycjd section 6.2.1

><2'"/
We conclude with the observation that (C’yc,f3) ") Syman (i.e. ((Cycf’) Xn) X Syman)
realizes the product tensor <2”! (n—1)"" 27 (n—1)"*" 27 (n — 1)"2n> some 1 < kon <
(2”!)3 times simultaneously such that

2" log n3" — log 2! — log kan
w
- 2"nlog (n —1)

n 3n__ n . . o e
For example, if kgn = (21)* then w < 2 lgfslog(sioff ! the latter achieving a minimum of

2.012 for n = 6. In general, for the groups (Cyc,f?’) ") Syman the closer kgn is to (2"!)3, the

closer w is to 2.012 (from the upper side).

It is one of the original suggestions in the thesis that given an Abelian group H with a
given STPP family {(S;,T;U;)};_, it is therefore useful to know the how to choose triples of
permutations oj,7;,v; € Sym, in order that a maximum number 1 < &, < (n!)3 of triples
iﬁ[lsgj(i) ! Symn,il;n[lTTj(i) 2 Symn,iﬁ[lUvj(i) L Symy, 1 < j < k,, satisfy the STPP in H { Sym,,.
Using such groups and their triples in this way, the sharpest upper bounds for w will occur

where the ratio ky,/ (n!)? is highest.

11



Chapter 2

Algebraic Complexity of Matrix
Multiplication

In section 2.1 we describe matrix multiplication as a bilinear map describing multiplication in
matrix algebras, and introduce a certain measure of the complexity of matrix multiplication
defined in terms of the concept of rank of bilinear map. Then, in section 2.2 we introduce the
exponent w as an asymptotic, real-valued measure of complexity, and conclude by describing

the fundamental relations between the bilinear and the asymptotic measures.

2.1 Bilinear Complexity of Matrix Multiplication

2.1.1 Matrix Multiplication as a Bilinear Map

If U and V are two K-spaces of dimensions n and m, respectively, with bases {u;},;-,, and
{vi}, <j<m respectively, then for any third space W, a map ¢ : U x V. — W which satisfies

the condition

¢ (K1u1 + Kavi, K3ug + K4v2)

= K1Kk3¢ (u1,u2) + K1Kka¢ (U1, v2) + Kakao (v1, u2) + Kekag (v1, v2)

12



for all scalars k1, ko, k3, k4 € K and vectors uji,us € U, v1,v2 € V, is called a K-bilinear
map, or simply, a bilinear map, on U and V. The map K™*™ x K™*P — K"*P describing
multiplication of n x m by m X p matrices over K is such a bilinear map, which we denote by
(n,m, p) ;. We call the integers n, m, p the components of the map (n, m, p), which is also called

a tensor, ([BCS1997, p. 361].

For a K-space U, the set of all linear forms (functionals) f : U — K on U, i.e linear maps
of U into its ground field, forms a K-space U*, equidimensional with U, called its dual space.
The matrix vector space K™*™ has the basis {EU} 1<i<n , Where F;; is the n X m matrix with

1<j<m
a 1in its (7,7 )th entry and a 0 everywhere else, and the dual space K™*™ has the dual basis
{e;‘j} 1<i<n Where €7 is a map K™™ — K which sends any n x m matrix A over K to its
1<j<m
(i,5)™ entry (A);;- We denote the zero n x m matrix of K™*™ by Opxm.

2.1.2 Rank of Matrix Multiplication

The set Bilg (U, V; W) of all bilinear maps on two K-spaces U and V into a third space W
also forms a K-space, e.g. (n,m,p), € Bilg (K™™ K™ P, K™P) If U=V =W, we write
Bilg (U) for Bilg (U, V;W). For any ¢ € Bilg (U, V; W), there is a smallest positive integer

r such that for every pair (u,v) e U X V, ¢ (u,v) has the bilinear representation

v) =) [ Wg @)w
i=1

where f e U*, g7 € V*,w; ¢ W correspond to ¢, and the sequence of r triples, f{, g}, wr;
15,95, w25 o s £, gk, wy is called a bilinear computation for ¢ of length r [BCS1997, p. 354].
The bilinear complexity or rank R (¢) of ¢ is defined by

R(p) = mln{reZ+|¢)uv Zfl u) gi (v)wi, (u,v) eUXV}.

where f* e U*, g7 € V*,w; ¢ W uniquely correspond to ¢, i.e. R (¢) is length r of the shortest

bilinear computation for ¢ [BCS1997, p. 354]. For example, if U =V =W = Kgfag, where

Kgfaz is the space of all n x n diagonal matrices over K with pointwise multiplication, then

13



fF=g =€} wi=FE; 1<i<r and r =n. In the same way, the rank R ((n,m,p)) of the
tensor (n,m,p), i.e. the rank of n x m by m X p matrix multiplication, is the smallest positive
integer r such that every product AB ¢ K™*P of an n X m matrix A ¢ K™ and an m X p

matrix B € K™*P has the bilinear representation
i=1

where fF e K™™' gf ¢ K™*P" C; e K™P 1 < i <r. For example, R(¢) = n for any
¢ € Bilg (Kg?;;), e.g. R ((n, n,n}Diag) = n, where (n,n,n)p,,, is the multiplication map
of n x n diagonal matrices.. For example, if K" is the n dimensional space of all n-tuples
over K, with a pointwise multiplication map (n) : K™ x K" — K" of rank R ((n)) = (n)
then R (¢p) = n for any ¢ € Bilg (K") if ¢ =i (n). This shows that R ((n,n,n)) > n,
because K™ =y Kgfar; <k K™™.  Another property of tensors (n,m,p) is invariance under
permutations of their components, [BCS1997, pp. 358-359].

Proposition 2.1 R ((n,m,p)) =R ((pu(n),n(m),u(p))), for any permutation p € Syms.

For bilinear maps ¢ € Bilx (U, V; W) and qb/ € Bili (U/, V' W,>, ¢ is said to be a restriction
of gb/, and we write ¢ <k gb/, if there exist linear maps (K-space homomorphisms) a : U —
U,B:V — V', 4 : W — W such that ¢ (u,v) =7 0¢ o (ax ) (u,v), for all (u,v) €

U x V. In this regard, a basic result is the following.

Proposition 2.2 For any bilinear maps ¢ € Bilg (U, V; W) and ¢ € Bil (U/, V' W,), o <k
¢ implies R () < R <¢)

Proof. For bilinear maps ¢ ¢ Bil (U,V: W) and ¢ ¢ Bils (U’, e W’) with ranks % (¢) =
r and R (qb,) = r’, respectively, the assumption that ¢ <x qb,, by definition, implies there are
linear maps o : U — U, 3:V — V', 4" : W' — W such that ¢ (u,v) = ’y/ogb/o(a x ) (u,v),

14



for all (u,v) e U x V. By these maps, for an arbitrary (u,v) e U x V

Y 0@ o (a x B) (uv)
= 7 (¢' (e x B) (wv)))
= 7' (¢ (e, B)))

= ~ ijl* (o (u)) g;-* (B (v) w,
j=1

!

- iv (7" (@ (W) g5 (8 (v)) wy)
=1

= S gy @wy (+)
j=1
= ¢(U7U)7

where fj/* e U*, i € v, w; € W,1<j <7, and f],-*,g;*,wj; f],-* € U,*,g;* € V/*,w;- €
W', 1 < j < is the minimal bilinear computation for ¢ . Since we must have o (u,v) =
zrjfi* (u) gF (v) w;, where fF, g, wi; e U* gf € V*;w; e W, 1 <i <r is the minimal bilinear
z;)inputation for ¢, the minimum number r of terms which can occur in sums of the type (+)

. ’
must be <r,ie. r<r. m

Two bilinear maps ¢ € Bilg (U, V; W) and ¢/ € Bilg (U/, V' W/) are said to be isomorphic
if there exist isomorphisms o : U — U, 8 : V — V', and vy: W — W' such that
yo¢ = gb' o (ax f3), [BCS1997, p. 355]. The following proposition is a basic result for

isomorphism of bilinear maps.

Corollary 2.3 For any bilinear maps ¢ € Bilg (U, V; W) and (ﬁl € Bilk (U/, V' W’), X=3e (;5'
implies & <x & and ¢ <y &, in which case also R(p) =R (¢l>.

Proof. Consequence of Proposition 2.2. m

As an example of restrictions, consider the matrix spaces U = K™*™ V = K™*P W =

K™ and U = K">m' V' = gmod

! !

! / ’ ’
= K"*P wheren <n,m<m,p<p,

15



and ¢ = (n,m,p) and ¢/ = <n/,m/,p/>. Then, there is a natural, injective linear map
o KM —s Knlxm/ which embeds an n x m matrix A into K"IX’”/ as an n’ x m’ matrix A’
having A as an n X m block in its top-left corner and 0’s everywhere else. There are analogous
injective linear embedding maps 5 : K™*P — Km % and v : K™P — K xp for K™xP
and K"™*P respectively. The product map o x 8 : K™ x K™*P — K"lxm/ X Km/ xp will
be injective and there will be a natural surjective linear map v : K n'xp' __, KnXP which is
the identity map on left upper n x p blocks of n x p/ matrices. Hence we have a restriction
(n,m,p) =+ o <n,,m/,p'> o(ax p) of <n,,m/,p,> to (n,m,p). Informally, we have proved
the following [BCS1997, p. 357 & 362].

Proposition 2.4 Ifn<n',m<m',p<p then (n,m,p) <k <n/,m/,p/>, and R ((n,m,p)) <

w (o))

If U and V are two algebras of dimensions n and m, respectively, then their direct sum U $V
is an n + m dimensional K-space which has as a basis the union of the bases {(u;,0)};<;<,
and {(0,v;)}, <, where {ui},<,<,, and {v;},_,,, are the bases of U and V respectively,
and their Kronecker product U ® V is an nm dimensional K-space of sums of dyads u ® v,
u e U, v e V, which has as a basis {u; ®vj}1§?§n. If U and V are two algebras of di-
mensions n and m, respectively, then U @ V blegcfrg;s an nm-dimensional algebra with mul-
tiplication with the property that (u® v) (u/ ® U’> = <uul ® vvl> for any pair of elements
w@v,u ®v e U®V. For bilinear maps ¢ ¢ Bilx (U,V:W) and ¢ ¢ Bilx (U’,V’;I/V),
their direct sum ¢ @ qbl € Bilg (U U . VeV ,Wa W/) and Kronecker product ¢ ® gzbl €
Bilg (U QU VOV:We W’) can be defined and satisfy R (¢ @ ¢’) <R (P) + R (¢) and
R (gb ® ¢/> <R(p)R <¢/> [BCS1997, p. 360]. An important fact here is that to each bilinear
map ¢ € Bil (U, V; W) there exists one and only one unique tensor t4 € U* @ V* @ W, called
the structural tensor of ¢, [BCS1997, p. 358], i.e. Bil (U, V; W) 2 U*®@ V*®@ W. Therefore,
the isomorphism of two bilinear maps, as described before Corollary 2.3, is equivalent to the
isomorphism of their corresponding structural tensors, and therefore, the rank of a bilinear map

is equal to the rank of its structural tensor.

For tensors we have an important but easily provable result [BCS1997, pp. 360-361].
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Proposition 2.5 For tensors (n,m,p) and <n',m/,p/>,
(1) <na m7p> > <nl7m,7p/> SK <n + n,,m + m,ap +pl>

and

(2) <n7m7p> ® <n,7m/7pl> =K <nn,7mm,7pp/> .

Direct sums of matrix tensors describe block diagonal matrix multiplication, and Kronecker
products of tensors describe block matrix multiplication. A basic result which we will use is

the following, as defined in [BCS1997] just before Def. (14.18).

Proposition 2.6 For tensors (n,m,p) and <n',m/,p/>,

! ’

(1) R <(n,m,p) & <n ,m ,p,>> <R ({(n,m,p)) +R <<n,,ml,p/>>

and

(2) R’ <<n, m,p) ® <n/,m,,p,>> <R ((n,m,p)) R (<nl,m,,p/>> )

2.1.3 Matrix Algebras

A K-algebra A is a vector space A defined over a field K, together with a vector multiplication
map ¢4 : A X A — A which is bilinear on A, in the sense described above, with a unique
unit 14 which coincides with the unit of A as a multiplicative monoid. (Here, by definition
an algebra A has a unit.) The dimension of the algebra A is defined to be its dimension as a
vector space. We denote the unit of A by 14. A is called associative iff ¢ 4 is associative, and
commutative iff ¢, is commutative. The rank R (A) of A is defined to be the rank R (¢4) of
¢4, and is a bilinear measure of the multiplicative complexity in A. For example, the matrix
space K™ ™ is a matrix K-algebra iff n = m. K"*" is an n? dimensional matrix K-algebra
with a bilinear map (n,n,n) describing multiplication of n x n by n x n matrices. We say that

n is the order of the algebra K™*".
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If A and B are two K-algebras then a linear map ¢ : A — B which carries vector
multiplication in A onto vector multiplication in B is called an algebra homomorphism, or
simply, an algebra morphism, between A and B, i.e. if for any a,a’ € A, ¢(a,a’) = ¢ (a) ¢ (a,),
and ¢ (14) = 1p. A simple example is the inclusion homomorphism sz of the algebra K%ffg of
all diagonal 2 x 2 matrices over K into the algebra K2*2 of all 2 x 2 matrices. ¢ is an algebra

isomorphism A = B iff ¢4 Zx ¢ (= R(p4) = R(¢p)), [BCS1997, p. 356]. For example,

(2,2,2) p0g <k (2:2:2) and R ((2,2,2) ) = 2 < R((2,2,2)), and R ((2,2,2) ) =2 =

R ((2)) because K%);fg =~ K2, where K? <j K?*2. In general, for any n-dimensional algebra

A it is the case that R (¢4) = n iff A 2 K", or equivalently iff ¢4 =g (n), [BCS1997, p. 364].

The following is a general result for matrix algebras.

Proposition 2.7 For positive integers n, n,
(1) if n <n' then (n,n,n) <g <n/,nl,n,> and R ((n,n,n)) <R <<n/,n/,n,>)

and

(2) (n,n,n) =k <n',n’,n/> and R ((n,n,n)) :9‘{(<n’,n,,n/>) iffn=n.

If {K™*™} is a finite collection of matrix algebras K"i*™ of orders n;, then @K"*"
7

is a direct sum matrix algebra of order » n;, in which multiplication is block diagonal and
i

is described by the direct sum tensor @ (n;,n;,n;) = <an,2nl,2n,>, and @K™ X" is a
i i i i i

Kronecker product matrix algebra of order [[n;, in which multiplication is described by the
i

Kronecker product tensor ® (n;, ni, n;) = <an, [T, Hn2> Using Proposition 2.6, we have
i i i i

the following result.
Proposition 2.8 For a finite set of positive integers n;

(1) % (@ (i) ) < SR s mm)

7
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and

(2) R <<§> (mmam)) < E[%((ni,ni,m)).

When n; = n, for 1 < i < r, we shall denote by (n,n,n)®" the r-fold Kronecker product

® (n,n,n). By part (2) of Proposition 2.5 (n,n,n)*" = (n",n",n") and R ((n,n,n)*") =
1<i<r

R ((n",n",n")). The following is a relevant proposition.

Proposition 2.9 For positive integers r,n, R ((n",n",n")) <R ((n,n,n))".

2.1.4 The Rank of 2 x 2 Matrix Multiplication is at most 7

We explain here Strassen’s result that the rank of 2 x 2 matrix multiplication is at most 7. If

A A Bi1 B , .
= and B = are given 2 X 2 matrices, then by the formulas
A21 A22 BZl B22
P = (A1 + A) (B + B),

Py = (A2 + A2) B,

Py = Ay (B2 — Ba),

Py = (—Ann+ A2) (B + Br2),
Ps = (A1 + Aia) Bo,

Ps = A (—Bi+ Ba),

P; = (Ai2 — Agz) (Ba1 + Ba2)

. . Cn Cr2
we will be able to recover their product AB =C = by the formulas

Co1 Ca

Cin = P+ Ps— Ps+ Py,
Cio = P33+ B,
Co = P+ B,

Co = Pr— P+ P3+ Py,
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using a total of 7= # { Py, P, P3, Py, Ps, Ps, Py} multiplications and 18 additions/subtractions
[PAN1984, p. 394].

If we then define 7 paired linear forms f, g’ € K2 1<i<T7, by

fi(A)=An+ A ¢i(B)= B+ B
J5(A) = A1+ Asx g3(B) = B

f3(A) = An 93(B) = B2 — By
fi(A) = —An + Aar g3(B) = B + Bz
J5(A) = A+ A1 g3(B) = B

f§(A) = As 96(B) = —B11 + B
f7(A) = A1z — A g7(B) = Ba1 + B

then there are matrices C; € K22, 1 < i < 7, such that

7

AB = Zfi*(A)gf(B)Cz’

=1

hence R ((2,2,2,)) <7 [BCS1997, pp. 10-13]. We state this formally, for future reference.
Proposition 2.10 R ((2,2,2,)) <7.

In general, if n = 2m, this algorithm allows us to multiply 2m x 2m matrices with 7
multiplications and 18 additions/subtractions of m x m matrices, for m > 1. We define an

integer function T (n) by

(2.1) T (n) := miriL two n x n matrices can be multiplied using t multiplications, additions,
teZ

or subtractions.

If n is some power 2™ of 2, then we can partition two 2™ x 2™ matrices into four 2™~ x 2m—1
blocks each, and view these blocks as inputs to the original algorithm, and by a recursive
application of this procedure we obtain for Tk (n) the following recursion formula [BCS1997,

pp. 12-13].
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(2.2) T (n) < TTx (4n) + 18 (3n)%.

In 1971, Winograd proved a stronger result that R/ ((2,2,2,)) =7, [WIN1971].

2.2 Asymptotic Complexity of Matrix Multiplication

Here we introduce the exponent w describing the asymptotic complexity of matrix multiplica-
tion, including Strassen’s estimate of w < 2.81, and conclude with some fundamental relations
between w and the ranks of matrix tensors, which we shall use later in our analysis and estimates

of w in Chapter 6.

2.2.1 The Exponent of Matrix Multiplication

We denote by Mg (n) the total number of arithmetical operations { x, +, —} needed to multiply

n x n matrices over K. This is defined more formally as:

(2.3) MK (TL) = L?TX,Y} (n) = L?EX,Y] ({ Z Xin}k;; 1 < ’i,k < n}) s

1<j<n

where K[X,Y] is the ring of bivariate polynomials over K, and the expression on the right
is an ezact measure of the total number tot of arithmetical operations {x,+,—} needed to
multiply two n x n matrices of a given set of indeterminates X;;, Y;, € K, 1 <14,5,k < n, over

K without divisions [BCS1997, p. 108, p. 126, p. 375].

The exponent of matriz multiplication over K is the real number w (K) > 0 defined by
(2.4) w(K):=inf {h e R | Mg (n) =0 (n"), n — oo}.

The notation w (K) is intended to indicate a possible dependency on the ground field K.

It has been proved that w(K) is unchanged if we replace K by any algebraic extension K
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[BCS1997, p. 383]. It has also been proved that w (K) is determined only by the characteristic
Char K of K, such that w(K) = w(Q) if Char K = 0, and w(K) = w(Z,) otherwise, where
Zy is the finite field of integers modulo a prime p, of characteristic p, [PAN1984].. Since Char
C = Char R = Char Q = 0, this means that w(C) = w(R) = w(Q). In this chapter, we
shall continue to indicate the ground field dependency in writing w (K), but in later chapters
we shall drop this formalism and simply write w, since our concern will be with complex matrix

multiplication, which is general enough for most purposes.

Returning to M (n), by the standard algorithm for n x n matrix multiplication, the n?

entries Cj, of an n x n matrix product C' = AB are given by the formula Cj, = > A;;Bjp,
1<j<n

for all 1 <4,k < n. In using the standard algorithm, we will be using n® multiplications, and

n?—n? additions of the resulting products, which yields an upper estimate My (n) = 2n3—n? <
2n3 = O(n?), ie. Mg (n) < C'n3 for the constant C' = 2, and implies an upper bound of 3
for w [BCS1997, p. 375]. For the lower bound, we note that since the product of two n x n
matrices consists of n? entries, one needs to perform a total number of operations which is at
least some constant C' > 1 multiple of the n? entries, which we denote by Mg (n) = Q(n?),
and is equivalent to a lower bound of 2 for w [BCS1997, p. 375]. (Our focus will be on the

upper bounds for Mg (n) since we are interested in worst case complexity.) Informally, we

have proved the following elementary result.

Proposition 2.11 For every field K, (1) 2 < w(K) < 3, and (2) w(K) = h € [2,3] iff
Q(n"*) = Mg (n) = O (nh+5), where h is uniquely minimal for any given degree of precision

e > 0.

The connection between the exponent w and the concept of bilinear rank is established by

the following important proposition, [BCS1997, pp. 376-377].

Proposition 2.12 For every field K
w(K)= inf{h e RY | R({n,n,n)) =0 (nh) , n— oo}
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This means for any given degree of precision € > 0, with respect to a given field K, there
exists a constant Cx. > 1, independent of n, such that R ({(n,n,n)) < CxnFE)*e for all
n. It is conjectured that w (C) = 2, [CU2003]. Henceforth, w shall denote w (C) and in the
concluding sections we shall describe some important relations between w and the concept of
tensor rank, introduced earlier, which describe the conditions for realizing estimates of w of

varying degrees of sharpness.

2.2.2 Relations between the Rank of Matrixz Multiplication and the Expo-

nent w

Taking tensor product powers in the estimate R ((2,2,2)) < 7 (Proposition 2.10) we have, by
part (2) of Proposition 2.9,

R((27,2",2") = R ((2,2,2)°") <R ((2,2,2))" < 7"

Since for all positive integers n > 2, n < 2M1°8271 = 4 ¢ where €, > 0 is a residual depending

on n, and [-] denotes the ceiling function for real numbers, using Proposition 2.9 again we have

R((n,n,n)) < R <<2“°g2“172[10g2n172(log2n]>)
< M((2,2,2))lEn
< llogzn]
< Tplosa T o 7,2807

By Proposition 2.12 this gives Strassen’s estimate w < 2.81 [STR1969, pp. 354-356]. The best
estimate of w is Coppersmith and Winograd’s result that w < 2.38 [CW1990, p. 251].

Assume that R ((n, m,p)) < s for positive integers n, m, p, and s. By Proposition 2.1 and

part (2) of Proposition 2.5, (nmp, nmp, nmp) = (n, m,p) @ (m,p,n) ® (p,n,m). Then, we see
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that

R ((nmp, nmp, nmp))
= R((n,m,p) ® (m,p,n) ® (p,n,m))
< %(nmp )
< R((n,m,p))’
<

i.e. that (nmp)” < s, which is equivalent to (nmp)% < s. We have proved the following result,
which we shall repeatedly use later [BCS1997, p. 380]. Since R ({n,m,p)) is, by definition, a

positive integer, and R ((n,m,p)) < R ({(n, m,p)), we have proved the following.

w
3

Proposition 2.13 (nmp)3 <R ((n,m,p)) for any positive integers n,m, p.

log R({n,m,p))
log(nmp)/®

occurs in a group-theoretic context as shown in Chapter 4. Informally, we can understand nmp

This is equivalent to w < for any positive integers n, m, p, a consequence which
. . . 1. . 1 .
to be ”size” of n x m by m X p matrix multiplication, and (nmp)3 to be the (geometric) mean

of this size. The above proposition has as a generalization the following statement.

Proposition 2.14 Z(nlmlpz)% < R <€B (ni,mi,pi>>, for any finite set of positive integer
i i

triples n;, m;, p;.

This is a formulation in terms of ordinary rank R of Schonhage’s asymptotic direct sum
inequality involving the related but approximative concept of border rank R, which we shall
not discuss further [BCS1997, p. 380]. In essence, Proposition 2.1/ means that the complexity
of several, simultaneous independent matrix multiplications is at least the sum of the mean
sizes of the multiplications to the power w, a consequence which occurs in a group-theoretic

context as shown in Chapter 5.
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Chapter 3

Basic Representation Theory

We start with some basic theory of representations and character theory of finite groups, focus-
ing in particular on various relations and estimates for sums of powers of the distinct irreducible
group character degrees, which will be important in the central analysis in Chapter 4. Then we
proceed to describe basic facts about multiplicative complexity in regular group algebras, and
conclude with an outline of the discrete Fourier transforms for groups and their computational

complexities.

3.1 Basic Representation Theory and Character Theory of Fi-

nite Groups

3.1.1 Representations, CG-Modules and Characters

In this thesis, a (finite-dimensional) representation 7 of a finite group G is defined as a group
homomorphism 7 : G — GL(V'), where V is a finite-dimensional, complex vector space, and
where GL(V') is the group of all linear operators mapping V to itself. In particular, when
V =C" then GL (V) = GL (n,C), the group of all invertible n x n complex matrices, and 7 is
called a matrix representation of G. For example, G always has the trivial representation ¢ on
V, defined by g — 1gr(v), whenever g € G, where 15y is the identity automorphism of V.

If 7 is a representation of G we will call V the target space of m, and define the dimension of
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7 to be the dimension of V', i.e. Dim 7 := Dim V. For each g ¢ G, 7 (g) is an automorphism
V — V of V, and we note that 7 satisfies w(gh) = 7(g)m(h), 7(g~1) = (7(g)) ", forall g, h € G,
and that in particular, 7(1¢) = l1gr(v), the trivial automorphism of V. A representation of G,
the so-called (right) regular representation, exists when V.= C% = {f | f : G — C}, the |G|-
dimensional, associative C-algebra of all complex-valued maps f : G — C on G, with standard
basis Bg = {eg | eg € CC, eg(h) =dgn, h € G} of the |G| indicator maps e, «— g € G. CC% can
be identified with the set CG = ZG fs9 | f € CY f(g) = f, ¢ ofall formal linear sums of group
ge

elements with coefficients as their f-values, for each f ¢ C¥. CG constitutes a |G|-dimensional
vector space over C and it is a C-algebra called the reqular group algebra of G, admitting as
basis elements the elements of G itself, yielding the regular basis. The endomorphisms f =
/Z fg/g/ — gf = ,Z fg/ (gg/), f € CG, arbitrary fixed g € G, describe permutation left-
gc‘ecigns on regular b;si; iomponents of f e CG for elements g € G via their uniquely associated
permutations p, € Sym|q|, and have unique associated permutation matrices [g], € GL(|G|,C).

The regular representation of G, denoted by pcq, is the mapping g — [g]s = pca(9), 9 € G.

Let 7 be a representation of G on a vector space V. If W is a subspace of V' which
is invariant under the automorphisms 7(g), i.e. w(g)(W) C W, for all g ¢ G, then W is
called w-invariant. The restriction @ | W of 7w to a m-invariant subspace W of V produces a
representation p of G on W called a subrepresentation of m, which can be called a component
(representation) of m, and conversely, every subrepresentation p of a representation m of G on V/
is the restriction m | W of 7 to some m-invariant subspace W of V' depending on p: p is given by
p(g)(w) =m(g)(w), for all g e G, w e W. It follows that the dimension of a subrepresentation of
a representation of G cannot exceed the dimension of the representation. w is called irreducible
iff it contains no nontrivial subrepresentations, otherwise it is called reducible. G admits
always has the trivial 1-dimensional irreducible representation ¢1, as defined by ¢ — (1),
and conversely any 1-dimensional representation is irreducible; equivalently, the dimension of
a reducible representation is at least 2. If p is any other representation of G on a vector space
W, then 7 and p are called equivalent (notation 7 ~ p) iff there is a vector space isomorphism
T :V = W such that T'(gv) := T'(7(g)(v)) = p(9)T(v) =: gT'(v), for all g e G, v e V. Otherwise,

i.e. if such a T does not exist for m and p, they are called inequivalent, and we denote this by
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w ~ p. Equivalence of representations is an equivalence relation. If p and ¢ are two irreducible
representations of G' then we define the delta quantity d,. as 0, =1 iff p ~ ¢ and §,, = 0 iff

o0 ~*gq.

Given a representation m of G on a vector space V, there is a naturally defined multiplication
map G x V' — V describing left-action (g,v) — gv := 7 (g) v of G on V', which is associative:
(gh)(v) = g(hv); has a natural identity: 1gv = v for all v € V; is invertible: v = g~ 1(gv) =
g(g~1v); is homogenous with respect to scalar multiples of vectors: g(Av) = A(gv); and is
right-linear with respect to CG-multiplication: g(v + v') = gv + gv'; for all elements g,h €
G, vectors v, v € V, scalars A ¢ C. The space V under this multiplication is called a CG-

module, and its dimension is its dimension as a vector space. A special kind of CG-module,

geG
algebra of GG, discussed above. A subspace W of V is called a CG-submodule of V iff it is

called the regular CG-module, occurs when V = CG = > Agg | A\g € (C}, the regular group

closed under the map G x V. — V via w. A CG-submodule W of V' under the representation
7 always corresponds to some subrepresentation p of m. V' and the zero subspace {Oy}
always form trivial CG-submodules of V', and V is an irreducible CG-module iff it contains no
nontrivial CG-submodules. Two CG-modules V' and W, corresponding to representations
and p, respectively, of G, are called equivalent iff 7 is equivalent to p, otherwise they are called

inequivalent.

Given a representation 7 of G on a space V', the character x, of 7 (also, the character of V' as
a CG-module) stands for the map G — C defined by x.(g) := Tr (7(g)), g € G, where Tr(-) is
the trace map for operators. The degree d, of the character x, is defined to be the dimension of
its underlying representation 7, i.e. dr := x.(1g) = Tr(r(1g)) = Tr(lgLv)) = Dim 7 = Dim
V. For example, the character x,, of the trivial irreducible representation ¢; is defined by
g+— 1, g e G. The set of all characters x, of G is denoted by G. Characters of degree 1
are called linear. A character x, is said to be irreducible iff its underlying representation =
is irreducible, otherwise it is said to be reducible. All linear characters are irreducible. The
characters x, and x, of equivalent representations 7 and p, respectively, are the same, and,
conversely, 7 and p are equivalent if x, = x,. The character of the regular representation

pce of G, called the regular character of G, denoted by xcq, is the map G — C defined by
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g — Tr(xca(9)), g € G. Observe that xcq takes the value |G| if g = 1, and 0 otherwise.
It holds that d,.,

X Xp) =G 32 X0 (9) X, (9)-
geG

= |G|.  We define the inner product of two characters x, and x, of G by

3.1.2 Canonical Decompositions for Regular Representations, CG-Modules,

and Characters

A representation 7 of G is called completely reducible iff its target CG-module V is the direct

sum V = P R,_of a finite number of irreducible CG-modules R, , in which case
0, irreducible

7 is the direct sum of a finite number of irreducible representations p, of G, occuring with

multiplicity lr, = (X, 0x) > 0, called the irreducible components of 7, of dimensions d,_. The

following is a fundamental theorem in this regard [SER1977].

Theorem 3.1 (Maschke) Every finite-dimensional representation of a finite group is com-

pletely reducible.

The character . of 7 is said to completely reducible iff 7 is completely reducible, and will
take the form x, = > Xo.» and will have degree dr = > d,_, which is, by

0, irreducible o, irreducible
definition, the dimension of 7 and of V.

The following theorem is crucial here [HUP1998], [SER1977].

Theorem 3.2 (Frobenius) If G is a finite group then (1) the number of its distinct irre-
ducible representations o is equal to the number of its distinct conjugacy classes, denoted by
c(G), which is called its class number. (2) The characters x, of the irreducible representations
o form an orthonormal basis of CG, i.e. <ng X§> = 0y, for distinct irreducible representations
0 and . (3) An arbitrary representation m of G, or its target CG-module Vi, is irreducible iff
its character x . satisfies (X, Xz) = 1. (4) |Xg(g)‘ < ’XQ(lg)‘ =d,, g € G, for any irreducible
character x, of G.
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There are exactly ¢(G) distinct irreducible representations ¢ upto equivalence, ¢(G) distinct
irreducible CG-modules R, upto equivalence, and ¢(G) distinct irreducible characters of G upto
equivalence. The collections of these are denoted by Irrep(G), Irrca(G), Irr(G), respectively.
It holds that for any o, ¢ € Itrep(G), <Xga Xg> = 0,c. We note the following result, [HUP1998].

Theorem 3.3 <X@G7X9> = Xg(lc) = d,, for each Xo € Irr(G).

<X(CG7XQ> is the multiplicity of an ¢ € Irrep(G) in peg, which we denote by Ilcg,, the
above result states that every p € Irrep(G) occurs in the regular representation pcq exactly
lca,pe = Dim ¢ = d, number of times, where Icg,, > 1, since d, > 1. This means, equivalently,
that every distinct irreducible CG-module R, € Irrcg(G), and distinct irreducible character
Xo €1 rr(G), occur in CG and xcg, respectively, all occur with positive multiplicity equal to

lcg,, = do.  The peg, CG, and xcg decompose into a direct sum of isotypic components
d d d

{ 8 o | o€ Irrep(G)}, { & Ry | o€ Irrep(G)}, and { & Xoloce Irrep(G)} respectively,
o=1 ip=1 ip=1

lo=
in the following way:

do
(3.1) Pca = S, dQQ: D @ 0,
o € Irrep(G) 0 € Irrep(G) ip=1
dg
(3.2) CG = @& dyR,= ® D Ry,
o € Irrep(G) 0 € Irrep(G) ip=1

d,
(3.3) Xca= 2 doxo= 2 2 Xe

o € Irrep(G) 0 € Irrep(G)ip=1

If we put deg = Dim pcg = Dim CG = xcq(la), then we get:

(34) deg = |G’ = Z lca,odo = Z dz.
do € cd(G) do € cd(G)

This shows that df, < |G, for any g € Irrep(G).
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3.1.3 Induced and Restricted Representations, CG-Modules, and Charac-

ters

A representation 7w of a group G, with target CG-module V; and character x,, is said to be

an induction of a representation 6 of a subgroup H < G if V; = @ W,, where G/H
keG/H
stands for the set of [G : H| = % distinct left G-cosets k = s, H of H with the s, € G being

their distinct coset representatives, Wy, = W is a Res%w—invariant subspace of V' such that
0 is the representation 6 : H — GL(Dim W,C); {Wy}, /g is the set of [G : H] distinct,
Dim W-dimensional subspaces of V, given by W, = n(sx)(W), k € G/H [SER1977]. In

this case, every v € V; has the form > wy; m is the direct sum 7 = & 0, of
keG/H, w, e Wy keG/H
the subrepresentations 6, of G on the components W, of V; of the form g — [g], (wx), K

¢ G/H, [g], € GL(Dim W,,C); 7 is said to be induced by 6 and denoted by = = Ind%0;
W becomes a CG-module Wy and a CG-submodule of Vy; Vi is of dimension [G : H] - Dim
Wy and is said to be induced by Wy and denoted by V, = I nd%We. I nd%@ will have the

canonical decomposition P Urnac e 00, its character xj, a0 will have the decomposition
o € Irrep(G) H™ H
XInd$o = > llndge,gxga and dimension dlndge = > llndge,gde =[G : H]- Dim
o € Irrep(G) o € Irrep(G)

Wy = %d@, where Iy, 464 , = <X1ndg(9a Xg> are the multiplicities of the ¢ € Irrep(G) in Ind%0,
not all simultaneously equal to 0 [SER1977]. The following proposition summarizes some
elementary properties of dimensions of induced representations.

Proposition 3.4 For any representation 0 of a subgroup H < G: (1) dlndge = %d@,’ for any
o € Irrep(G), (2) d, | ArpaGos (3) dp = drnaco iff lnaGo. = dc.o for all ¢ € Irrep(G), i.e. iff
Ind%& is an irreducible representation of G equivalent to (or coinciding with) exactly one o €

Irrep(G).

A representation £ of a subgroup H < G is said to be the restriction of a representation
7 of G if £(h) = w(h) for all h ¢ H, and this is denoted by ¢ = Res%m, in which case the
target CG-module U of £ is said to be a restriction of the CG-module V; of m denoted by
Us = Res%V, [SER1977]. Res%m will have the canonical decomposition S et rg?

¥ e Irrep(H)
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its character x ResGr will have the decomposition XResGr = > ool ResGm0X9> and it will
¥ e Irrep(H)

have the dimension dResgﬂ =d, = > lResgﬂ,ﬂdﬂ’ where lResgn,ﬁ = <XResngﬁ> are
¥ e Irrep(H)

the nonnegative multiplicities of the 9 ¢ Irrep(H) in Res$, not all simultaneously equal to 0.
The following proposition summarizes some elementary properties of dimensions of restricted

representations.

Proposition 3.5 For any representation m of G > H, (1) dr = dReSgw; for any ¥ € Irrep(H),
(2) dy < dy if IResGr > 0; (3) dy = dr iff LResGmp = Opw for all p € Irrep(H), i.e. iff ResGm

is an irreducible representation of H equivalent to (coinciding with) exactly one ¥ € Irrep(H).

The following is a famous theorem of Frobenius describing a reciprocity between induction

and restriction of irreducible representations.

Theorem 3.6 (Frobenius) For a subgroup H < G, and any ¥ € Irrep(H) and g € Irrep(G),

lResg 09 — lg,[ndgﬁ :

This is called the Frobenius reciprocity law, and in this thesis is useful in deriving information
about size estimates relating to the dimensions of the distinct irreducible representations of

groups.

3.1.4 Irreducible Character Degrees

Henceforth, let us denote by cd(G) the set of degrees of the distinct irreducible characters of a

finite group G. Formally:
(3.5) cd(G) :={d, = x,(1a) | x, € Irr(G), ¢ € Irrep(G)}.

We call cd(G) the character degree set of G, where we know |cd(G)| = |Irrep(G)| = ¢(G)

holds. The following is a fundamental theorem about irreducible character degrees [HUP1998].
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Theorem 3.7 For any d, € cd(G), (1) d, divides [G : A] where [G : A] is the index of any
mazimal Abelian normal subgroup A of G (1t6), (2) d, divides |G : Z(G)], where Z(G) is the
centre of G, and (3) d, divides |G]|.

(2) is a consequence of (1) since if p is irreducible, then d, must divide [G : Z(G)] where
Z(G) < A for some maximal Abelian normal subgroup A of G. (3) is a consequence of (2) since

if p is irreducible then d, | [G : Z(G)] by (2) and therefore d, | |G| =[G : Z(G)] [Z(G) : 1¢].

Let us consider the irreducible character degrees of finite Abelian groups. Until section
3.1.5 G will be a finite Abelian group. Then every conjugacy class g& of every element g € G
contains only g as its element, and therefore, there are in G exactly as many distinct conjugacy
classes as there are elements, i.e. |cd(G)| = ¢(G) = |G|. Also, Z(G) = G, |G : Z(G)] = 1,
and by Theorem 3.7, for any d, € cd(G), d, | [G : G] = 1, which means that d, = 1, i.e.
the dimension of every irreducible representation and every irreducible CG-module, and the
degree of every irreducible character, of a finite Abelian group G is 1. Thus, the dimension

d, of an arbitrary representation 7w of GG, and of its target CG-module V, is given by d, =

> (X Xp)de = > mX,) = Y. lxg, i.e. the sum of the multiplicities
0 € Irrep(G) o € Irrep(G) o € Irrep(G)

of the irreducible components of w. For each g € ITrep(G), and a given g € G, the matrix o(g)
of o at g will be a 1 x 1 matrix given by (Xg(g)), and its character x, ¢ Irr(G) will have an
inverse Xgl, defined by xgl (9) = x, (g_l) = m, so that Xgl = X,; the character set G
will then form, under pointwise multiplication, a multiplicative Abelian group isomorphic to G,

called its dual or character group.

3.1.5 Estimates for Sums of Powers of Irreducible Character Degrees

We derive here a number of estimates relating to sums of powers of irreducible character degrees

of a finite group G, for which we introduce a map D,.(G) : RT — R* defined by:

(3.6) D.(G)= > d,= Y. dy= > X(1ae), r>1.

do € cd(G) 0 € Irrep(G) X, € Irr(G)
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D,(G) records the sum of the 7* powers of the distinct irreducible character degrees of

G. Forr =0, Do(G) = ¢(G). For t > 0 the t'* power of D,.(G) is given by D,(G)' =
t

( > dg) , 7> 1, and we define D,.(G)? :=1. Forr =2, ¢t =1, (3.6) occurs as the case:

dy € cd(G)

(3.7) D2(G)= ¥ dj =G| = xcg (1)
do € cd(G)

Every nontrivial group G has at least two distinct irreducible characters, each of degree

> 1, and there is always at least one d, € cd(G) such that d, = 1, e.g. if o = ¢;. Therefore,

D(G)" = ( > d9> contains all terms dj, of D,.(G) besides other cross-product terms > 1.

do € cd(G)
Therefore:
(3.8) D,(G) < Di(G)", r>1.
Similarly the sum product D,(G)Ds(G) = > d, > dZ contains all terms dj, and

do € cd(G) ds € cd(G)
d? of D,(G) and Ds(G) respectively, besides other cross-product terms > 1, and therefore

(3.9) D,+5(G) < D, (G)Ds(G), r,s > 1.
From (3.9) we can write the following.
(3.10) D.(G) < D2(G)D,_2(G) = |G| Dr—2(G), r>2.

For a fixed group G, D,(G) is a convex function of the inverse % of the index r > 1, meaning

that:
(3.11) Ds(G)Y* < D,.(G)'/", 1<r<s.

There is a useful monotonicity result for sums of powers of irreducible character degrees of

subgroups.
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Lemma 3.8 For any subgroup H < G, D,(H) < D,(G), and D,(H) < D,(G) iff H < G,

for all real v > 1.

Proof. For any o € Irrep(G) and ¢ € Irrep(H), by Frobenius reciprocity (Theorem 3.6),
llndgﬁg = lReng’ﬁ, and, further, by Proposition 3.5, dy < d, if llndgﬁ,g = lResgg’ﬁ > (. Fixing

a o € Irrep(G), we have:

Z dﬁ = Z dﬁ < Z lResgg,ﬁdﬂ = dResgg = d@'

¥ € Irrep(H), 1 >0 9 elrrep(H), 1, c >0 ¥ e Irrep(H)

I'nd%'ﬂ,g ’ RESH.Q-,’&

Taking r*" powers in the above estimate, for r > 1, by the reasoning in (3.11), we obtain:

r T

> dr > dg | < Yo lreGoodo | = dp

9 e Irrep(H) >0 9 € Irrep(H), lReng,ﬂ>0 9 e Irrep(H)

IN

’ lResg 0,9

If, in the above estimate, we sum over all ¢ € Irrep(G) and omit the intermediate sums, we

obtain:
¥ Y 4 ¥ 4-n@
o € Irrep(G) ¥ € Irrep(H), LpesG ,0>0 o € Irrep(G)
es§ro,
Since Y, dy < > > dy, we obtain the estimate:
9 € Irrep(H) o€ Irrep(G) ¥ e Irrep(H), Ly, c, 4>0
esfo,
b~ Y G Y Y 4c Y 4-n@
9 € Irrep(H) o € Irrep(G) O € Irrep(H), lRngg >0 o € Irrep(G)
sG o,

This proves the first part of our claim. For the second part, we note that H = GG implies that
D.(H) = D,(G). If H < G, i.e. is a proper subgroup of G, then H C G and |H| < |G|, and
Dy (H) < D; (G) (proof left to the reader), and using the first part, it can easily be seen that
D,(H) < D,(G) forallr >1. m

3.1.6 Estimates for Maximal Irreducible Character Degrees

Here, we derive lower and upper estimates for the maximal irreducible character degree d

of a finite group G with character degree set c¢d(G). First, we note that (3.10) may be
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sharpened further using d'. By definition, d < d for all d e ¢d(G), so that for r > 2,

D(G)= Y dy= Y 4B <d?. Y & =d"2Dy(G) = d72G|l. We
do € cd(G) do € cd(G) do € cd(G)

record this for later use:

(3.12) D,.(G) < d"2Dy(G) =d"2|G|, r>2.

For convenience, we denote ¢(G) by c¢. For each d, € cd(G) we know that d, | |G| and
1 < d2 < |G|, and therefore, that there is an integer 0 < e, = |G| — d2 such that d2 + e, = |G,
ie. that d, = (|G| — eg)l/ 2. We denote by ¢, the trivial irreducible representation of G of
dimension d,, = 1, so that e,, = |G| —d? = |G| —-1. Ife, = |G| —d5 = 0 for any d,
¢ cd(G) then |G| = d2 and G has only the one irreducible representation ¢ = ¢1, which is
true iff G is trivial. Thus G is nontrivial iff all the e, > 1. If we let ¢ = |G| — d? then
1<d = (]G\ —e/)I/Q < (|G| - 1)1/2. The case d = 1 means that d, = 1 for all d, €
cd(G), which is true iff G is Abelian. We have d > 2 whenever G is non-Abelian. The case

¢ =1« d = (|G| —1)"/% > 1, is exceptional: this forces |G| = 3 d2 to be the sum
do € cd(G)

|G| = d? + a2 = d? +1, where d = Dim ¢ for some ¢ € Irrep(G) of maximal dimension.
However, since d | |GJ, it must be that d | 1, which means that d = 1, |G| = 2, G must be a
cyclic group of order 2. Thus, d = (|G| — 1)1/ 2> 1 can occur only for d = 1 with G cyclic of
order 2. Thus, the case 2 < d < (G| — 1)1/ ? holds iff G is a non-Abelian group, which shows
that ¢ =2 < d < (|G| = 1)/? implies that |G| > 6. The case 1 =d < (|G| — 1)"/? is true iff

G is an Abelian group of order > 2.

Now we turn to the lower estimate for d', for which 1 is always a trivial value. A tighter
lower bound may easily be obtained as follows. By definition, d, < d for all d, € cd(G).

Then, since |G| = Do(G) = > d2< Y d?=d?- Y 1=cd? we have that
dy € cd(Q) dy € cd(G) dy € cd(G)

, 1/2
d > (@) , where 1 < ¢ < |G|. We consider necessary and sufficient conditions for G such

} 1/2 , 1/2
that d reaches the lower bound (@) exactly. The case d = (‘—f') is equivalent to the

case |G| = > di= cd?, and since 1 < ¢ < |G|, this can only occur iff all d, = d = 1,
do € cd(G)

1/2 ,
which is true iff G is Abelian. Thus, when G is Abelian, (@) —1=d < (|G| -1)"?, with
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1/2
an additional equality on the right iff G is cyclic of order 2. This shows that (@) =1=

7 / 1/2
d < (|G| - 1)Y? iff G is Abelian of order > 2. The case d = (‘—(5') > 2, with G Abelian,
is impossible, since G' always has the trivial irreducible character x,, of degree d,, = 1, so that

/ 1/2 /
|G| = d2 + > d2 # cd?. Thus, (‘—f') < d iff G is non-Abelian, which is true iff
dy € cd(G)\d,,
¢ ¢

, 1/2 /2
d > 2,inwhichcase 1 < ¢ < |G|and 1 < (‘Gl) also. Thus, 1 < <|G|> <d < (|G| - 1)1/2

holds iff G is non-Abelian, and implies that |G| > 6. Thus, we have proved the following result.

Theorem 3.9 For a nontrivial finite group G with a maximal irreducible character degree d/(G)

and class number ¢(G) it holds that

7z,
(1) 1< (C‘(GG‘)> <d(G) < (|G| - 1)1/2 general case
7z, . . _
(2) 1= <C‘(GG‘)> =d(G) < (|G| - DY? | iff G is Abelian
3) 1= (L R d(Q) = (|G| = VY2 | iff G is eyclic of order |G| = 2
- @) Y
4) 1= G|\ d(G) < (|G| = VY2 | iff G is Abelian of order |G| > 2
9 172
(5) 1< (C‘(%‘)) <d(@) < (1G] = )Y2 | iff G is non-Abelian (= |G| > 6)

(Note: (2) — (4) are trivial.)
From the upper bound for d (G) and the estimate (3.12), we obtain the estimate:

r—2
2
Y

(3.13) D, (G) <|G|(|G] —1) for all r > 2.

3.2 Regular Group Algebras

3.2.1 Canonical Decomposition

Our main reference here is [BCS1997]. The g € Irrep(G) linearly extend to injective (C-algebra)

homomorphisms F, : CG — C%*% of dimensions Dim F, = d, defined by:

36



~

(3.14) f= ZGf(g)g — Fo(f) = X f(9)elg) = f(o)s f € CG, o e Irrep(G).

geG

By the irreducibility of the ¢ € Irrep(G) the F, define distinct irreducible matrix represen-
tations of CG, and form a complete set Irrep(CG) of such representations. The direct sum

homomorphism F = @ Fo: CG — &5 Cdexde of dimension |G| = > d?)
o e Irrep(G) o € Irrep(G) o € Irrep(G)
defined by:

(3.15) f= X flgg—T=FHH= & Y fl@ele)= & flo), [feCG,

geG o elIrrep(Glg e G 0 € Irrep(G)

is injective and surjective, and, therefore, the isomorphism:

(3.16) F= @ F,:CG= @  Cloxde
o € Irrep(G) o € Irrep(G)

This results in Wedderburn’s theorem about the canonical decomposition of CG as an
isomorphic direct sum of ¢(G) complex matrix algebras of orders the ¢(G) distinct irreducible
character degrees d, of G. Taking dimensions on both sides of (3.16) this gives us another
version of (3.4). The matrix algebra on the right of (3.16), whose elements are block-diagonal
matrices, is called the target algebra of CG. Iff G is Abelian all its irreducible character degrees
will be of size 1, the matrices of the target algebra of its regular algebra CG will be diagonal
of order |G|, and multiplication in CG will be pointwise and equal in complexity to that of

diagonal matrix multiplication of order |G|.

3.2.2 Multiplicative Complexity and Rank

The (bilinear) multiplication maps of isomorphic C-algebras are isomorphic, in the sense of

Corollary 2.3, which is also true for algebras, and by (8.16), we have:

(3.17) m, =c © (do, dy, dy) ,
o € Irrep(G)
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where these are the multiplication maps of CG and its target algebra, respectively. The rank
of CG is defined to be rank R(m,) of its bilinear multiplication map m, : CG x CG — CG,
which is defined to be the length of the minimal bilinear computation needed to express the
product of any two elements of CG (see section 2.1.2 in Chapter 2), and, therefore, cannot be
less than Dim CG = |G|. But, |G| is also simultaneously the rank ¢ and the dimension of
the vector space C!¢l which forms an algebra under pointwise vector multiplication. Thus, we
have the relation:

(3.18) Ry = |G < R(m,,) = R ( ® <d9,d9,d9>) <Y R(dydydy).
o € Irrep(G) o€ Irrep(G)

Equality above holds as |G| = R(m,,) = > R({(L,L1)) = > R((dp,dy,dy))
o € Irrep(G) o € Irrep(G)
iff G is Abelian.

3.3 Generalized Group Discrete Fourier Transforms

3.3.1 Generalized Group Discrete Fourier Transforms

Any C-algebra isomorphism F of the form (3.16) is called a generalized discrete Fourier trans-
form (DFT) on CG, equivalently, a generalized group discrete Fourier transform on G, and
defines a |G|-dimensional matrix representation of CG on its target algebra also of dimension
|G|, where CG is called the time domain of F and the target algebra ©  Cdexde i called
its frequency space or Fourier domain [BCS1997, p. 327]. F is of (Eiierrf;;esﬁ(ocg Dim F = |G|,
and has an invertible |G| x |G| block-diagonal matrix of full rank |G| denoted by [F], called a
DFT matrix for CG, w.r.t. any fixed bases of CG - e.g. its regular basis G - and of its target
algebra. Every choice of such distinct basis pairs yields a distinct DFT and a DFT matrix
for CG. Any DFT F on CG has a unique direct sum decomposition &) F,, where the
F, are the irreducible components of F in (3.16), with each F, faith%fllj}irzgping CG onto
Cdexde, Given a DFT F on CG, for an f ¢ CG, F(f) = f is called the Fourier transform of f,

-~

for a fixed ¢ € Irrep(G), f(o) defined by the formula (8.14) is called the Fourier transform of f
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at o, and the elements of {f(g)} Ioren() are called the Fourier coefficients of f which define
oelrrep

]?. There is an inversion formula for recovering f from its transform [SER1977].

(3.19) fl9)=1GI"" 5 dy-Tr |Flo)elg™)], geG.
celrrep(G)
This formula defines the inverse DFT of an f ¢ CG. If G is Abelian all the d, = 1, so
that the 1-dimensional p € Irrep(G) may be replaced, in (3.14) and (3.21), by their irreducible

characters x,, all of degree 1. This yields the familiar Fourier transform and inverse transform

formulas for finite Abelian groups [SER1977].

-~

(3:20) Fxo) = 2. Fl9)X,(9): ¢ € Irrep(G),
(3.21) f(9)=1GI"" ¥ Flx)x,(9), geG.
oelrrep(G)

A DFT F on CG has an invertible matrix [F] of order |G|, whose columns correspond to
the group elements g € G, and whose rows correspond to the distinct irreducible representations
0 € Irrep(G). For any g € G and any o € Irrep(G), o(g) is an invertible matrix of order d,
indexed by 1 < ky,1, < d,, whose dz number of entries 0(g)x,, occur in [F] by the following
formula [SER1977].

(3.22) [Fly kim0 = Dkl

Every choice of basis pairs in CG and its target algebra yields a distinct DFT F and a
DFT matrix [F| for CG, and the class {[F]} of all DF'T matrices [F| for CG is determined
uniquely by the g € Irrep(G).
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3.3.2 Dsiscrete Fourier Transform on Syms;

Here we present the example of [BCS1997, pp. 329-330]. Consider Symgs, the symmetric
group of all permutations of 3 symbols. The 6 permutation elements of Symgs are the identity
permutation (1), the three transpositions (12), (13), and (23), and the two cycles (123) and
(132), and these three subsets of elements form the three distinct conjugacy classes Ce, Cy, and
C., respectively, of D3, where e denotes the no-change permutation, ¢t denotes a transposition,
and c a 3-cycle. Syms has the trivial 1-dimensional irreducible representation ¢ corresponding
to e, which is defined by g — (1), the nontrivial 1-dimensional irreducible representation o

corresponding to ¢, which is defined by g — sgn(g), and the 2-dimensional irreducible repre-

10 0 1
sentation A which is defined explicitly by the mappings: (1) — , (12) — ,
0 1 1 0
-1 0 1 -1 0 -1 -1 1
(13) — , (23) — , (123) — , (132) — . The
-1 1 0 -1 1 -1 -1 0

distinct irreducible character degrees of Syms are d, = 1, d, = 1, and da = 2, such that
d? +d2 + dZA = 6. By (3.16) the regular group algebra CSyms of Syms then has the canonical
decomposition CSyms ¢ Ch*% @ Cloxdo g Claxda = C1¥1 ¢ C*1 @ C2*2. The DFT ma-
trix [F] for CSymg, w.r.t. canonical bases in the components of its target algebra, by formula

(8.24), will be the 6 x 6 matrix:

(1) (12)  (13)  (23) (123)  (132)

war |11 1 1 1 1]
oin |11 1 -1 -1 -1
A |1 0 -1 0 1 —1
Ay |0 -1 1 1 -1 0
Ay |1 1 -1 1 0 -1
Agy |1 -1 0 0o -1 1

We see that formula (8.24) prescribes that the entries of the column corresponding to a g
€ Symg are the coefficients of the linear forms obtained from the entries of the matrices ¢(g),

a(g), and A(g).
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3.3.3 Complexity and Fast Fourier Transform (FFT) Algorithms

For a given finite group G with regular group algebra CG, we can think about a discrete Fourier
transform F on G as a linear transformation defined by DFT (f) = ffor any given f ¢ CG,
where fis a matrix valued function on Irrep(G), e.g. f(g) € Clexde for any o € Irrep(G). We
see that a DF'T on G is described by the product of a |G| x |G| matrix by a vector of length
|G|. If we write Mr (G) as the total number of arithmetical operations {x,+, —} required to

implement a given group DFT F on G, then we see that

(3.23) |G| < Mz (G) < 2|G]*.

An efficient group DFT algorithm, also called a fast Fourier transform (FFT), is one which
minimizes My (G) for any given Fourier transform F, i.e. by reducing the upper limit 2 |G|?.
The famous Cooley-Tukey algorithm is an FFT to compute the DFT on the cyclic group Z/nZ
in Mz (Z/nZ) = O (nlogn) operations [MR2003, p. 283]. It is out of the scope of this thesis
to discuss the FFTs on groups further, but we will conclude by noting that according to Maslen
and Rockmore, who present an up-to-date survey of the field, Mr (G) < O (|G|log|G|) holds
for all Abelian groups G, and for arbitrary groups G they conjecture that there are constants C;
and Cs such that Mz (G) < C1|G|log® |G|, [MR2003, p. 286]. This was perhaps suggested
by the discovery for symmetric groups Sym, that Mgz (Sym,) = O (n!10g2 n!) [MR2003, p.
286].
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Chapter 4

Groups and Matrix Multiplication I

Here we introduce the basic group-theoretic approach of embedding matrices into group algebras
via triples of subsets of the groups having the so-called triple product property, and studying the
complexity of matrix multiplication in terms of certain numerical parameters relating to the size
of groups, the degrees of their irreducible characters, and the sizes of the matrix multiplications
realized by them. The methods discussed here pertain to the group algebra embedding of
a single arbitrary pair of matrices, and the recovery of their product via multiplication in
the group algebra, while in the sequel to this chapter, Chapter 5, we describe methods for
the simultaneous embedding into a group algebra of several pairs of matrices, and recovering
their independent products simultaneously via a single multiplication in the algebra. In the
concluding part 4.8 of the chapter, we describe a number of ways of proving estimates for w

using the methods outlined earlier.
4.1 Realizing Matrix Multiplication via Groups

4.1.1 Groups and Index Triples

Henceforth, G shall always denote a nontrivial, finite group. For any nonempty subset S C G

its right-quotient set, denoted by Q(S5), is defined as:

(4.1) Q(S) := {3/3*1 | 5,5 € S}.
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By the definition above, 1 € Q(S) necessarily for all right-quotient sets of subsets S of G.

The relation

(4-2) |Q(S)| = |5]

is a simple consequence of (4.1) since a fixed s € S the elements s's™1, for arbitrary s € S,

are distinct elements of S. Equality in (4.2) always holds for any subgroup S < G.

A triple (S, T, U) of nonempty subsets S, T, U C G is said to have the triple product property
(TPP) if the following condition holds.

/ ! !

(4.3) ssHtWul=1g<e=sst=tt=uul=1g, ss1eQ(9), tt! e Q(T),
wuteQU).

A subset triple (S, T,U) of G which has the triple product property is called an index triple

of G, for which we can derive an elementary property.

Corollary 4.1 If (S,T,U) is an index triple of G then the mapping (x,y) — x "'y on any
distinct pair X, Y € {S, T, U} is injective.

Proof. Since S, T, U C GG, by assumption, satisfy the triple product property, for arbitrary
s,s €S, t,t €T, u,u eU,itis the case that s s 't wul=1lg<e=s =s,t =t,u = w.

Then for arbitrary elements s, s eSandt, t eT,u, u €U, we see that

We can prove, in the same way, the injectivity of this mapping for all other distinct pairs in

{S, T, U}. m
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For any triple of subgroups S, T, U < (G the triple product property condition may be
expressed as: stu = lg iff s=t=u=1g,se¢ S, teT, uelU,since Q(S)=3S5, QT) =T,
QU)=Uiff S,T,U <G.

The following is a trivial result.

Lemma 4.2 If G is any group then (1) G, {1}, {1lg} is a triple of subroups having the triple
product property, and (2) G x {1g} x {lg},{la} x G x {lg},{la} x {lg} X G is a triple of

subgroups having the triple product property in G*3.

For Abelian groups there is an equivalent characterization of the triple product property by

maps, as expressed in the following lemma.

Lemma 4.3 If G is Abelian, then (S,T,U) is an index triple of G iff the triple product map
Y :SXT xU — G, defined by (s,t,u) — stu, is injective.

Proof. Let G be Abelian. If subsets S, T, U C G satisfy the triple product property, then

for any two elements (s, t,u), (s ,t,u') € S x T x U:

w(s,,t,,ul) = Stu =stu= W(s,t,u)
ss et = 1g

!/ / !
ss = 1a, tt = 1a, wut= 1q

b1

(st ,u) = (s, t,u).

The converse is also true. If v is injective on S x T' x U then for any two elements (s, t,u),

(st u)eSxTxU:

sstr Wut = 1q
- sty = stu
= (s/,t/,u’) = (s,t,u)

-1 '—1 -1
— ss =lg, tt " =1g, uu - =l1g.
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The following is an elementary corollary:

Corollary 4.4 If G is Abelian and (S, T,U) is an index triple of G, then |S||T||U| < |G].
Equivalently, if (S,T,U) is an index triple of G such that |S||T||U| > |G| then G is non-
Abelian.

Proof. By Lemma 4.3, the triple product map % on an index triple (S,7,U) of an Abelian
group G is necessarily injective and, therefore, S x T' x U = Im1 C G. Taking cardinalities
on either side, we have that |[S x T'x U| = |S||T'| |U| < |G|. The equivalent statement follows

from the negation of the previous statement. m

The property of G having an index triple is invariant under permutations of the components

of the triple.

Lemma 4.5 A subset triple (S,T,U) is an index triple of G iff any permuted triple (pu (S) , 1 (T) , 1 (U))
is an index triple of G, for a permutation p e Sym{S,T,U}.

!

Proof. Assume (S, T,U) has the triple product property. Then, for all s's™' ¢ Q(S), t't~!
e Q(T), uu= e Q(U)

! ! !
— ss Mt uul= 1q

1 o o
— ssl=ttl'=uu 121@.

This shows that (T',S,U) has the triple product property if (S,7,U) does, and in the same
way, we can show that (S, U, T) has the triple product property, and so do all other permuted
triples (T, U, S), (U,S,T), (U,T,S), because (T,S,U) and (S,U,T) generate the permutation
group Sym{S,T,U}. m
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4.1.2 Extension Results for Index Triples

We start with a basic statement about index triples of subgroups.

Proposition 4.6 If (S,T,U) is an index triple of a subgroup H < G then (S,T,U) is an index
triple of G.

This follows from the definition (4.8) of an index triple of G. Index triples of groups can
also be obtained as extensions of index triples.of normal subgroups and of their corresponding

factor groups.

Lemma 4.7 If (S1, 52, S3) is an index triple of H < G and (Uy,Us,Us) is an index triple of
G/H, then there exists a subset triple (Th,T2,T3) of G, corresponding to (U1,Us, Us), such that
the pointwise product triple (S1T11, S2T%,S3T3) is an index triple of G, where the T; C G are
lifts to G of the U;.

Proof. Elements of G/H are left-cosets gH of H in G, the subsets Uy, Uy, U3 C G/H are
of form

UiZ{uiZUiH"UiGG}, 1§i§3.

We define lift subsets T; C G of the U; by
T; = {t; € G| t; = v;h;, some h; € H, and u; = v;H € U;, some v; € G}, 1<qi<3.

The T;, which are not necessarily unique for the U;, have the properties that (1) t;H = u,,
for all t; e T; and w; € Uy, (2) U; 2 T;, and (3) t € T; implies T; NtH = {t}, 1 <i < 3. Let
81,Sl1 € Sl,tl,tll € Tl,ul,ull e U1, and 32,3/2 € Sg,tg,tlz € T2,U2,u/2 € Us, and 33,35 € Sg,tg,té
¢ T3,u3,uz € Us be arbitrary elements. Then slltlltflsflS;t;tglsgls%tétglsgl = 1g implies
syt T s  entoty Lsy sgtats tsg L H = H, which implies t) H (tyH) ™' to H (toH) " toH (t3H) ' =
H, which implies u;uflu;uglu;ugl = lg/p, which implies u; = u; (assumption of TPP for

the U; in G/H) which implies t;H = t;H, which implies t;- = t;, which implies, by the first
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inequality, 81181_181282_18;’83?1 = 1py, which implies s; = s; (assumption of TPP for the S; in

H<dG) =

In general, the pointwise product of two index triples of GG is not necessarily an index triple

of G.

We define the set J(G) to be the collection of all index triples of G. Formally:

(4-4) 3(G) :={(S,T,U) | S, T, U C G satisty the triple product property (4.3)}.

By Proposition 4.5 we have:

(4.5) 3(H) C 3(G), H <G,
and:
(4.6) [3(H)| < [3(G). H<G.

Now we have an important extension result for the index triples of direct product groups.

Lemma 4.8 If groups G1 and G2 have index triples (S1,11,U1) and (Sa2,Ts,Us) respectively
then the direct product of these triples, (S1 x Sa,Th x T, Uy x Us), is an index triple of G1 X Gs.

Proof. For any subsets S1,7T1,U; € G1 and S3,75,Us C Go, we define for G; x Gs
the subsets S; x Sy = {(s1,82) | s1 € S1, s2 € So}, Th x To = {(t1,t2) | t1 € T, ta € T},
Up x Uy = {(u1,u2) | uy € Uy, ug € Uy} C G1 x Ga. We call (S1 x Sy, T1 x Ty, Uy x Up) the
direct product (S, 71, U1) x (Sa, Tz, Us) of the triples (S1,T1, Ur) and (Sa, Ta, Us). It is sufficient

simply to assume the triple product property for the triples (S1,71,U1) and (Se, 1%, Us), and
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. / / / / / /
then, for arbitrary si,s; € S1, t1,t; € 11, u1,u; € Uy, 52,59 € Sa, ta,ty € To, ua,uy € Uz, we see

that:
ro—1, -1 —1 ro=1 -1 —1
8187 tity Tuguy T = 1gy, S98g Ttaly uguy = lg,
ro_q 1 r_q | [ | [a—
= 5187 =tt] =uu; = 1g,, S98y 0 =toly T = ugu, = lg,
! ! ! li ! li
< 81 =51, t; =11, U] = U1, Sg = 82, Iy =12, Uy = U2
’ ’ -1 ’ ’ -1 ’ ’ 1
— (31752) (s1,82) = (f1,t2) (t1,t2) = <U1,U2) (u1,u2)
= (1G171G2)
= Lty Yot Mgy !
= 5131 1 U1U1 78232 2lo U2U2
-1 r -1 ’ ’ -1
= (sl,s2> (s1,52) <t1,t2) (t1,t2) <u1,u2) (u1,u2)
]

If we denote by J(G1 x G2) the set of index triples of G1 x Ga, by Lemma 4.8 we have the

following.

(47) j(Gl X GQ) D) j(Gl) X j(Gg)

(4-8) [3(G1 x G2)| = [3(G1)]|3(G2)] -

4.1.3 Groups and Matrixz Tensors

From Chapter 2, we recall the definition of the stuctural tensor, or simply, the matrix tensor
(n,m,p) as the K-bilinear map (n,m,p), : K™ x K™*P — K"*P  which describes the
multiplication of n X m matrices by m X p matrices over K, with resulting product matrices
in the matrix vector space K™*P. We omit the subscript K and say that G realizes a tensor
(n,m,p) via an index triple (S,T,U), iff |S| = n, |T| = m, |U| = p, where these are positive
integers, and, by definition, (S,7,U) has the triple product property. In this case, the index
triple (S,T,U) said to correspond to the tensor (n,m,p). Loosely speaking, as will become

clear later, this means that G ”supports” the multiplication of n x m by m X p matrices indexed
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by subsets S, T, U C G, in the sense of fact (I), section 1.3, Chapter 1. By assumption G is
nontrivial, so that by Lemma 4.2, G always realizes the tensors (1,1,1) and (2 < |G|, 1,1), and
G*3 always realizes the tensor (|G|, |G|, |G|). The following describes an elementary property

for tensors of subgroups.

Proposition 4.9 If (n,m,p) is a tensor realized by a subgroup H < G, then (n,m,p) is also

realized by G.

For G we define the set S(G) as:

(4.9) S(G) :={(n,m,p) | G realizes the tensor (n,m,p)}.

S(QG) is the set of all tensors (n, m,p) realized by G. By (4.5)-(4.6) we have the following

results.

(4.10) &(H) C &(G), H <G,
and:

(4.11) |&(H)| < |&(C)|, H<G.

S(Q@) is necessarily finite by the finiteness of J(G).

For arbitrary tensors (n,m,p) and permutations p € Syms we denote by p ((n,m,p)) the

permuted tensor (u (n),pu(m),u(p)). Then we have an elementary result.

Lemma 4.10 A group G realizes a tensor (n,m,p) iff it realizes any permuted tensor p ((n,m,p)) =
(1 (n),p(m),pu(p)), where e Syms.

Proof. A consequence of Lemma 4.5. ( The reader will note the similarity between this
lemma and Proposition 2.1. It will be shown that this is, in fact, a group-theoretic version of

Proposition 2.1.) m
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This means that if G supports multiplication of n xm by m X p matrices over K it simultane-
ously supports multiplication of matrices, over K, of all possible permutations of the dimensions
n X m and m X p, i.e. it also supports multiplication of n X p by p x m matrices, of m x n by
n X p of matrices, of m X p by p x n matrices, of p x n by n x m matrices, of p X m by m X p ma-
trices. As an example, we note that by Lemma 4.1, any group G realizes the tensors (|G|, 1, 1),
(1,|G],1), (1,1,|G]). We denote M ({n,m,p)) to be the set {u({(n,m,p)) | u € Syms} of all
permutations of a given tensor (n,m,p). If we write a tensor (n,m,p) in a "normal” form,
where n < m < p, then (n,m,p) can be taken to be the representative of the set M ({n,m,p)).
Thus, (n,m,p) € 6(G) implies that M ({n,m,p)) C &(G), and therefore S(G) can be rewritten

as:

(4-12) S(G) := U M({n,m,p)).

G realizes (n,m,p), n<m<p

For arbitrary tensors (nj,mi,p1) and (ng, mg, p2) we define a pointwise multiplication op-
eration - defined by (ni, m1,p1) - (n2, ma, p2) := (n1n1, mima, p1p2), which is associative, com-
mutative, and has the unit (1,1,1). &(G) need not be closed under pointwise products. This

operation allows us to characterize certain important extension results about tensors.

4.1.4 FExtension Results for Matrix Tensors

Lemma 4.11 If a normal subgroup H <1 G and the corresponding factor group G/H realize
the tensors (ny,ng,ng) and (my, ma, ms), respectively, then G realizes the tensor (ni,na,ns) -
(m1,ma, mg) = (nymy, noma, ngms), where (ny,na,n3) and (my, ma, mg) correspond to certain
representative index triples of H and G/H resp., and (ni,n2,ns) - (mi, ma, ms) corresponds to

the pointwise product of these index triples.
Proof. A consequence of Lemma 4.7. m

An analogous result applies to direct product groups.
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Lemma 4.12 If groups G1 and Go realize tensors (ni, mi,p1) and (ng,me,p2), respectively,
then their direct product G1 X G realizes the pointwise product tensor (ni, my,p1)-(ne, ma, p2) =
(n1ng, mime, p1p2), where (ny,mi,p1) and (na, ma, p2) correspond to certain representative in-
dex triples of G1 and Gg resp. and (ny,my,p1) and (ny, ma, p2) corresponds to the direct product

of these index triples.
Proof. A consequence of Lemma 4.8. m

Thus:

(4.13) 6(G1 x G2) 2 6(G1) - 6(Ga).

4.1.5 Group-Algebra Embedding and Complexity of Matrixz Multiplication

The following is a fundamental result describing the embedding of matrix multiplication into

group algebras via the triple product property.

Theorem 4.13 If (n,m,p) e &(G) then (1) (n,m,p) <k mgg and (2) R ((n,m,p)) < R (mgqg).

Proof. Assume that G realizes (n,m,p) through an index triple (S,7T,U), i.e. subsets
S,T,U C G have the triple product property, and |S| = n, |T| = m, |U| = p. First we prove
that there exists a restriction of mgg to (n,m,p), where mg is the (K-bilinear) multiplication
map of the group K-algebra KG of G. Let A = (A;;) € K"*™ and B = (Bj;) € K™*P be
arbitrary n x m and m x p K-matrices respectively. The product of A and B is the n X p
K-matrix AB = C = (Cj) with entries Cj; determined by the formula Cj, = ) A;Bjg,
1<i<n,1<k<p Weindex the entries of A by S and T, and of B by T and Uj;sj/follows:

A = Agy, s=s(1),t=1t(y);1<i<n,1<j<m;

Bj, = By t =t () u=uk):;l<j <m1<k<p.

t
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We define linear maps a : K" — KG and b : K™*P — KG for embedding the matrices
A= (As:) and B = <Bt/ u) into the group K-algebra KG of G as follows:

a(d) = A= > Aus't
seS,teT

b(B) = B= Y Byt 'u
t/eT,ueU

The injectivity of the mappings (s,t) — s 't and (t,u) — t'u on S x T and T x U
respectively, proved in Lemma 4.1, means that Ker a = {Oyxn} and Ker b = {Op,x,}, where
O, xm and Oy, are zero matrices of dimensions n x m and m x p respectively, which proves
the injectivity of a and b. We index the n x p matrix product AB = C = (Cy) by S and U as
follows:

Cit = Csus s=s(),u=u(k);1<i<n,1<k<p

We define an injective linear embedding map ¢ :K"*P — K G as follows:

The product of A and B in KG is given by:

AB = Z A57t871t' Z Bt/7ut/71u

seS, teT t/eT,ueU

> > AgBy st

seS,teT ¢ eT,uelU

= Z Z AS,tBt/’utt/_l s .

seS,uelU \tt' eT

Clearly, for each distinct pair s € S, u e U, Csyy = >, Ag¢Biy. By assumption, (S,T,U)
t=t' €T
is an index triple of GG, which means that for arbitrary elements s €S, u eU, s =

sl "y = §'s 1t " tun/ T = 1g is true iff s = s, ¢ = ¢, ' = u. But the sum of those

terms of AB for which ¢ = ¢ all have the group term s ~'u and the coefficient 3. A o 1B
t=t' eT
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corresponds 1-to-1 with the (i, k)" entry Cjj, of C' in K™*P as given above. Thus,
¢(C)=C = AB = a(A)b(B).
Then, we define an extraction map ¢ : K™*P «—— KG by:
1(AB) = C = (Cir)

where the C/,, are coefficients of the terms sl in AB, for 1 < i = z'l(s/) <n, 1< k=
K (t/) <p,seS, t'eT. Clearlyr =a '-b~!, and by r we will recover the desired matrix product
C = AB from AB. By the injectivity of the maps a and b it follows that x = a=!-b~! = ¢~1.
Since, for each (A, B) e K™™ x K"™*P_ we have the composition r o mgg o (a x b) (A,B) =C
e K™ P it follows that:

romgg o (axb)=(n,m,p).
ie. (n,m,p) <g mgqg, which proves (1). (2) follows from applying Proposition 2.2 to (1). m

If K = C then we have an elementary corollary.

Corollary 4.14 If (n,m,p) € 6(G) then (1) (n,m,p) <c mcc =c ® (dg,dg,dy), (2)
o € Irrep(G)

(nmp)3 < R((n,m,p)) < R(meg) < 5 R((dp,dg, o)), and (3) (nmp)3 < R((n,m, p)) <
o € Irrep(Q)
|G| if G is Abelian.

Proof. For (1) we apply (3.17) to part (1) of Theorem 4.13. For (2) we apply (3.18),
Proposition 2.6, and Proposition 2.13 to part (2) of Theorem 4.13. For (3) we note that if G
is Abelian then R(mcg) = |G|. From the latter case, we can also deduce that w < bg'G‘w

— log(nmp)
if G is Abelian and (n,m,p) € 6(G). =
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4.2 The Complexity of Matrix Multiplication Realized by Groups

4.2.1 Pseudoexponents

For tensors (n,m,p) we define their size or order by z({n,m,p)) = nmp, and we write for
their ¢ powers (nmp)", where ¢t > 0 is any real number. If t = % then (nmp)1/3 is just the
geometric mean of the components of (n,m,p), i.e. the mean size or mean order of (n,m,p).
We define by & (G) the set of all tensors of size > 1 realized by a nontrivial group G, i.e.
S'(G) = 6(G)\{(1,1,1)}, and for any tensor (n,m,p) e & (G), nmp > 2. Since G is nontrivial,
by Lemma 4.1, G always realizes the tensor (2 < |G|, 1,1) and ‘GI(G)) > 1.

We define for G a number called its pseudoexponent a(G) by:

(4.14) a(G):=  min <log(nmp)1/3|G|>Elog (o8 1G-

(n,m,p) € GI(G) (n,m,p) € 6/(G)

By the definition and finiteness of &' (G), a(G) necessarily exists. From above, we see that
a(@) is uniquely determined by a mazimal tensor <n/,m',p/> # (1,1,1) realized by G, i.e.
a tensor <n,,m/,pl> ¢ 6'(@) such that n'm'p > nmp for all other tensors (n,m,p) € & (G).

Formally:
(4.15) z/(G) =z (<n/,m/,p/>> = max  nmp.
(n,m,p) € GI(G)
It follows that:
(4.16) 1 < nmp <n'm'p, (n,m,p) € S(Q).

/

T

’ ’ ’ / .
=n, :m,‘U’:p of a maximal

The components of <n,,m/,pl> are the sizes }S/
index triple (S/,T/, U,) of G, which need not be unique. «(G) can be redefined as:

(4-17) a(G) :=1log 1 (s |G-
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This is equivalent to:
(4.18) 2 (G) = |G|7®.

We note that z'(G) can be understood as the maximal size of matrix multiplication sup-

ported by G, and zl(G)% is the geometric mean of this maximal size.

It follows from Proposition 4.9 that:
(4.19) 2 (H) < 2 (G), H<G.
The following is an immediate consequence of Lemma 4.11.
(4.20) 2 (G1)7' (G2) < 2(G), G = Gy x Gs.
It follows from (4.14) that:

(4-21) o(G) < log,,, 131Gl (n.m.p) € &(G).

nmp

For any positive integer n it follows that:

(4-22) o(Q) < log, |G, (n,n,n) e 6(G).

The lower and upper bounds for a(G) are determined by the following fundamental lemma.

Lemma 4.15 For any group G, 2 < o(G) < 3. If G is Abelian then a(G) = 3.
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Proof. By Lemma 4.2 G realizes the tensor (1, 1, |G|) of size |G|, which shows that a(G) < 3
by (4.21). For the lower bound, we note first that, for any index triple (S,7,U) € J(G) with
associated tensor (n,m, p) € &(G), by Lemma 4.1, the mappings (s, t) — s~ ¢, (s,u) — s~ lu,
(t,u) — t~luon SxT, SxU, and T xU respectively, are injective, which means that nm < |G|,
np < |G|, and mp < |G|. We now prove that if equalities hold in these inequalities then p = 1, or
m =1, or n = 1, respectively, starting with nm < |G|. Assume that nm = |G| <= S~!T = G.
Then, for arbitrary elements u, v ¢ U and s ¢ S and t ¢ T, there exist unique s € S and

/ ’ / ’ . . . ro_ 1, r 1o ’_ _ r
t € T such that s7't = s luu ~'t, which implies s s "t ¢t luu™t =ss tuu Mt luut =

we " ut = 16, Hence, wul = 1g, and u = u, i.e. |[Ul =p = 1. In the same way we
can prove that np = |G| = m = 1, and mp = |G| = n = 1. Hence, if (n,m,p) ¢ 6(G)
then not all of n, m, p = 1, so that not all of nm, np, mp = |G|, i.e. if G realizes an index
triple (S,7T,U) corresponding to a tensor (n,m,p) then (nm}o)2 < \G|3 and, therefore, nmp <

|G|% Therefore, 2 (G) < |G|% maximally, and a(G) = log,/(g)i/s |G| > log 13 |G| = 2.

(Ie1*%)

Finally, if G is Abelian and has the maximal matrix tensor <n/, m, p/> of size 2 (G) = n'm'p
then, by the Corollary 4.4 to Lemma 4.3, 2 (G) < |G|. This implies that log|G\1/3 |G| =3 <
log,/ (/s |G| = a(G), i.e. a(G) = 3. The negation of the preceding statement is that a(G) < 3

implies that G is non-Abelian. m

This leads to an elementary corollary.

W=
NI

Corollary 4.16 If (n,m,p) € 6(G), (nmp)3 < |G|2.
By Lemma 4.15:
(4-23) |G| < 2(C) < |G

The following is another elementary result.

Corollary 4.17 «(G) < 3 iff 2 (G) > |G|. Equivalently, a(G) < 3 iff nmp > |G|, for some

tensor (n,m,p) € & (G).
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Thus, the closer z'(G) is to |G|, the closer a(G) is to 3 and G is close to being the 37 power
of the maximal mean order of matrix multiplication that it supports. The closer z/(G) is to
|G |3/ 2 the closer a(@G) is close to 2 and G is close to being the 2" power of maximal mean
order of matrix multiplication it supports. For example, if G; and Gy are two finite groups
such that a(G1) < a(G2), then G is at least as "efficient” in supporting matrix multiplication

as Ga, or more efficient if a(G1) < a(G2).

For subgroups we have an easy result.

Lemma 4.18 For any nontrivial subgroup H < G, a(G) < 10g/ (#y1/3 G: H|+a(H).

Proof. |G| =[G : H]|H|, and from (4.19) z'(H) < z'(G). Therefore,

log |G
a(G) = log 2 (G)1/3 z/g(|G)|1/3
_ log|G: H] log |H |
~ log 2 (G)Y3 7 log 2 (G)V/3
log [G : H| log |H |
log 2/ (H)Y/3 ~ logz' (H)/3
log [G : H|

= log 2 ()17 +a(H).

For normal subgroups we have the following basic result.

Lemma 4.19 For any nontrivial normal subgroup H <@ G and corresponding factor group

G/H, a(G) < max(a(H),a(G/H)).

Proof. Let <m/1,m/2,m;,> e 6(H) and <p/1,p/2,p/3> e 6(G/H) be the maximal tensors
realized by H <1 G and its factor group G/H, respectively, and let <nl1,n,2,n;)> € 6(G) be the

maximal tensor realized by G. Then, by (4.18), we have the identities:

Z(H)UD = |HP, 2(G/H) T =|q/H], 2 (@)D =GP
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By Lemma 4.11 <m/1p/1, m;p;,m;’pé> = <m/1,m,2,m;)> . <p/1,p/2,p/3> e 6(G), and therefore:

2 (H)2 (G/H)

= =z (<m17m27m3> . <p17p27p3>>

= Zz (<m1p1,m2p2,m3p3>)

’ ! I !’ ! ’

= M1P1MaoPaM3P3

/ / /

< nyngng

= z(G)

by the maximality of <n'1, Ny, n/3> for G. Then also

!

(z’(H)z’(G/H))a(G) = (H)O(G/H)™OD < ;' (G)*D,
Using the identities |H||G/H| = |G|, and |H|* |G/H|* = |G|*, we see that:
2 ()9 = 2 (H)*UD (G /H)E/H),
If max(«(H), a(G/H)) = a(H) and o(G) > a(H) then:

(= (H)z’(G/H))“(G) _

i.e. a contradiction. Similarly, if max(a(H),a(G/H)) = a(G/H) and a(G) > a(G/H) then:

(z’(H)z’(G/H))a(G) — 2



also a contradiction. Thus it must be that a(G) < a(H), o(G/H), which means that:
a(G) <max(a(H),a (G/H)).

Equality above holds trivially if G is Abelian. m

For direct product groups we have the following result.

Lemma 4.20 o (G**) < a(G), where G*¥ is the k-fold direct product of G.

Proof. By (4.20) 2 (G*¥) > 2'(G)*. Then

a(GXk> = log,/(gxryiss

S logzl(G)k/g ‘G’k

ka’

= Zlogz’(c)l/ﬂG‘
= a(G).

This means that for £k = 1,2,3,.... we have a descending sequence of pseudoexponent in-
equalities, ... < « (GX3) < o (GXQ) < a(G). We do not know of general conditions on
the G** for making this sequence strict, though it would require a strict ascending sequence,

2 (GQ) < 2 (G*?) < 2 (G*3) < ..., for the corresponding maximal tensors z (G**) of the G**.

For explicit estimates of the exponents of specific types of groups we refer the reader to
sections 5-7 in [CU2003], since for the derivation of estimates of the exponent w we have found
the simultaneous triple product property more useful. However, we do give some estimates for

the exponents of the symmetric groups in sections 6.1.2-6.1.8 in Chapter 6.
4.2.2 The Parameters v

Let d'(G) be the largest degree of an irreducible character of a group G. We define for G the
number v(G) by:
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(4-24) ~(G) = int {7 e RY | |G]" =d (@)}

By Theorem 3.10 d (G) < (|G| — 1)Y/? < \G!l/Q, hence it follows from the definition (4.24)

that y(G) > 2. Since for a fixed group G, lim |G|Y? =1, and d'(G) = 1 for an Abelian
=00

group G, we, therefore, define v(G) = oo if G is an Abelian group.

always be computed as:

(4-25) 7(G) =logy ¢ |G|

We note that v(G) can

provided we know d (G). An example: d (Syms) = 2, and therefore v(Syms) = log, 6 ~

2.585.

2
By Theorem 3.10 we know that (ﬂ> <d(G) < (|G| - 1)1/2 iff G is non-Abelian, and,

c(G)

therefore, the bounds for the «(G) of non-Abelian groups G, are given by:

(4.26) 210g(|gm <7(G) < 210g\G|§Tc(G)'

log|Syms]| o 210g6
log(|Syms|—1) — “logh

~ ~ log6 log| Syms|
log 6 & 2.585 < 5.17 ~ 2g% s = 2 Bl s,

For example, ¢(Syms) = 3, and therefore 2

This is a basic result for normal subgroups.

~ 2.226 < y(Syms) =

Lemma 4.21 For any nontrivial normal subgroup H < G such that d (G) > max (d/(H), d/(G/H)) ,

(G) <~(H) +v(G/H).

Proof. For a nontrivial normal subgroup H <1 G the assumption of d (G) > max (d/ (H),d (G/H ))

means that

log |G|

logd' (G)

log|H| _ log|G/H]|
logd (G) = logd (G)
log|H|  log|G/H|
logd (H) logd (G/H)
— (H) +A(G/H).

1(G) =
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This is a basic result for direct product groups.

Lemma 4.22 v(G**¥) = 4(G), where G** is the k-fold direct product of G.

Proof. We observe first that d (G*F) = d (@)%, [SER1977]. Then

’Y(GXk) — logd/(ka) GXk;‘

= logy gy leli

= Zlogd/(g)|Gl
= (G).

4.3 Fundamental Relations between «, v and the Exponent w

Here we derive important relations between the exponent w and the parameters o and ~.

4.3.1 Preliminaries

Let w be the usual exponent of matrix multiplication over C. The following is an important

result.

w

Theorem 4.23 |G|ﬁ = Dy(G)>@ < D,(G).

Proof. Let <n/,m/,p’> ¢ 6(G) be the maximal tensor realized by G of size z (G) =

!/ o / / o i
n m p uniquely determining «(G), and by definition (4.18) z (G) =nmp = |G|*@ . Using

61



Proposition 2.13 and Corollary 4.14:

IN

(o' )
> R

o € Irrep(G)

N—

i)' = e

IN
Y

4 d@v d@)) .

From Theorem 4.13 (n,m,p) <k & (dy, dy,d,) and taking r'" tensor product powers
0 € Irrep(G)

on either side we obtain

<nr7mr’pr> <K @ <dQ1”'er7d91 '”er’dLh '”er>‘

By Proposition 2.12 for each € > 0 there exists a constant C; > 1 such that for all £ we have:
R ((k,k, k) < CE“He.
Hence, taking ranks on either side of () we obtain that:

TW

D2 (G) a(G)

IN

Co| > dyt*

o € Irrep(G)
C:D e (G)"

for some C. > 0 depending on some ¢ > 0. Taking the 7 root on either side we obtain

Dy(G)a@ < {/CDyy- (G).

If we take the limit as r — oo, and then the limit as € — 0 we obtain finally that:

w

Dy(G)™@ < D (G).

By the maximality of <nl, m,7 p/> in &(G) we have an elementary corollary.



1

< Dy, (G)w, and (2) (nmp)

ol
Wl

Corollary 4.24 If (n,m,p) € 6(G) then (1) (nmp) < d'(G)k% |G]%

Proof. For any (n,m,p) € &(G), by (4.16) and Theorem 4.23, (nmp)% < Z(@)3F <
Dg(G)ﬁ < D,(G), and taking w'* roots, we have the result. Part (2) is a consequence of

applying (3.12) to the right-hand side of (1). m

Theorem 4.23 can be reexpressed as the relation.
(4.27) |G|"@ < D,(G)%.

Using (4.18) we know:
(4-28) G179 < D.(G)E < |G,

In the impossible case that o(G) = 2 we would have that |G|% < Dw(G)% < ]G|%, which

would imply that w = 2.  However, since by Lemma 4.15 «(G) > 2 always it follows that
1

|G|+ < |G ]% always and, therefore, the first estimate in (4.28) will be strict if w could be

pushed to 2.

The following is a useful result.

r—2
Corollary 4.25 D, (G) < |G|Wle forr > 2.

Proof. By (3.12) D,(G) < d (G)"~2|G| for r > 2, and by (4.25) d (G) = |G\ﬁ Then

(1e7) " 1]

— |GpoT!,

D (G)

IN

Using the above, we can prove the following fundamental relation.
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Corollary 4.26 IfG is a non-Abelian group such that a(G) < v(G) thenw < a (GQ) (%)

Proof. By Theorem 4.23 \G|% < Dy(G). For r = w in Corollary 4.25 D,(G) <

w=2 _w w=2
|G|W(G>+1, from which we derive |G|>(@ < |G\7(G)+1. This implies that —“ < 922 11, which

= a(G) = ~(G)
is equivalent to w (ﬁ 7(G)> <1- 'y(QG)' Since 7(G) — a(G) > 0 by assumption, it follows
that <a— L ) > 0. Dividing both sides of the previous estimate by ( © ﬁ) we get
_ (G)=2
ws (1~ v(G)> (e — 5te) = (@) (5

4.3.2 Fundamental Results for the Exponent w using Single non-Abelian

Groups

Corollary 4.27 If G is a non-Abelian group such that |G|ﬁ > Dg(G)% then w < 3. Equiv-
alently, w < 3 if z/(G)% > D3(G)%.

1 1
Proof. If |G|*©@ > Dg(G)%, by (4.28), D3(G)% < |Gl@ < DW(G)%, which implies
that by the convexity property (3.11), w < 3. The second part follows from the fact that
1 l
G|7@ =2 (G)3 (see (4.18)). m

This is a trivial result because it has been proven that w < 2.38 [CW1990]. More useful is

the following.

Corollary 4.28 (1) w <t < 3 for some t > 2, if there is a non-Abelian group G such that
a(G) < v(Q) and o(Q) (%) <t. (2) An equivalent, but more precise statement is that
w <t <3, for some t > 2, if there is a non-Abelian group G such that z,(G)% > d (GQ) and

z,(G)%
d (G)t—2 2G.

Proof. By Corollary 4.26 w < a(G) (%) if a(G) < y(G). This means that if, in

addition, a(Q) (%) < t for some 2 < ¢t < 3 then w < ¢. (2) From (4.17), (4.23), and
(4.25), we see that a(G) < ~(G) is equivalent to z' (G)% > d (G). By (1) the additional condi-

: ¥(G)—2 : : log|G| log|G|
tion a(G) (7(G)—a(G)> < t needed to prove w < t is equivalent, to o2 (O)173 (logd,(G) 2) <

( lolgill?c‘;) _ logl;)/g(g)'l/3> t. Dividing both sides of the inequality by log |G| we will still have

a term on the left with numerator log |G|, and making it the subject of the inequality on
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the left, this becomes log |G| < tlog z/(G)% +(2—1t) logd/(G) — log z/(G)% B logd/(G)(t—2) _

J(G)3

log Ok Taking antilogarithms we have the result. m

For any given group G, from (4.23) we see that |G\é < z’(G)% < |G\%, and from part (5)
of Theorem 3.10 c(G)_% ]G|% < d(G) < (|G| - 1)% if G is non-Abelian. The intersection
of these intervals lies in the open interval (C(G)_% |G|% , |G|%), and Corollary 4.29 will let
us prove w < t < 3 for some t > 2 if we can find a non-Abelian group G realizing matrix
multiplication of largest size z (G) and with an irreducible character of largest degree d (&)

’ t
such that ¢(G)"% |G[* < d(G) < #(G)% <G> < = Oy,

T—
2

4.3.3 Fundamental Results for the Exponent w wusing Families of non-

Abelian Groups

The following results describe ways of proving that w = 2 via families of non-Abelian groups.

The first is as follows.

Corollary 4.29 If {Gy} is a family of non-Abelian groups such that a (Gy) = o = 2 + o(1),

and v (Gg) = v, =2+ 0(1), and a, — 2 = o(y, — 2), as k — o0, then w = 2.

Proof. Assuming the conditions ap = 2 4+ o(1), v, = 2+ o(1), ax, — 2 = oy, — 2), as

k — oo, for the family {G}}, we will have

(% — &)
= (e —2)— (7 —2)
= o(m—2) —(n—2)

1
< —5(’7k—2)<0
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for sufficiently large k. Then by Corollary 4.26, as k — oo, we will have

Vi — 2

v o= ak<'7k_o%>

o,
(1= (ok—2)/ (v —2))

2+0(1)

1—0(1)/0(1)
2+0(1)
1-0(1)
— 2T

/ _1_ ’ _1_
From (4.18), z (G)% = |G|«@, and from (4.25), d (G) = |G|7<1G), and for a family {Gy}
of non-Abelian groups Gy, realizing matrix multiplications of maximal sizes z;c = zl(Gk) and

maximal irreducible character degrees d;, = d (G},), the conditions oy, = 2 + o(1) and 7, =

oGl _ 1 4 ),

1
2 4+ o(1) are equivalent to the conditions % =1+ o(1) and log d
k

log zk3

1 11 1 /
respectively, which are implied by the conditions |G|2 —2,° = o(1) and (|G| — 1)2 —d,, = o(1),
respectively. Here, we describe a specific result for a family of non-Abelian groups satisfying

the latter conditions.

Theorem 4.30 Let {Gy} be a family of non-Abelian groups Gy, realizing matriz multiplications
of mazimal sizes z, = 2 (Gy) and with mazimal irreducible character degrees d, = d,(G).
Then, (1) w = 2 if |Gal* — 20 = o(1) and (|Gx| — 1)% — d, = o(1) such that |Gy|* — 2,0 =
0 <(|Gk| - 1)% - d;c) as k — oo.  And more generally, (2) w = 2 if |G| — o0 as k — o0
and there ezists a sequence {Cy} of constants Cy for the Gy such that 2 < Cy < |G| — 1,
Gl > i (14 gy ), Gk — 00, Cie = o((Gil), (1G]~ Ci)F —dy = o(1), |Ghl* — 2, = o(1)
and ]Gk\% — z,;% =o <(|Gk] — Ck)% - d;;), as k — oo.

Proof. For an arbitrary group G, if we compare (4.16) and (4.25), we see that a(G) < v(G)
iff 2(Q)s > di(@), a(G) = v(G) iff 2'(G)F = d (@), and 7(G) < a(G) iff 2(@)z < d (G).
Moreover, a(G) is close to 2 iff z/(G)% is close to \G\%, and (@) is close to 2 iff d (G) is close
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to |G|z.

N

(1) By Theorem 3.10, (ﬁ) <d (@) < (|G| - 1)% < |G|% for a non-Abelian group G,

c(G)
therefore, for the non-Abelian family {G} the most that we can have is d;, — (|Gx| — 1)%7,
as k — oo. But d;, — (|Gy] —1)%_, as k — oo implies v, — logq ;)12 |G| =
2log (G, -1y Gkl — 27, ie. v, = 2+ o(1), and if, in addition, z;ﬁ —>.\Gk|%_ faster
than d, — (|Gi| — 1)%7 as k — oo then o = 2+ o(1) and 7, = 2 + o(1) such that
ar —2 = o(y; —2). This can also be written as |Gk]% - z;ﬁ =o(1), (|Gg| — 1)% —d, = o(1)
and |Gk|g —z,;% =o0 <(|Gk| — 1)% - d;ﬂ), as k — oo, which implies oy, = 2+0(1), v, = 2+0(1)

and a — 2 = o(y;, — 2), as k — oo, which, by Corollary 4.29, implies that w = 2.

(2) Assume all the conditions in (2). In particular, for the constants 2 < Cy < |G| —
1, the condition |Gg| > C (l—l—ﬁ) means that v, = logd;C |G| < 10gd;€ (|IGx| — Ck) +
logd; Ck. Then, the condition (|Gg| — Ck)% —d, = o(1), implying d;,, — (|Gy| — Ck)%_, as
k — oo, together with |G| — oo, Cx, — o0, Cy = 0o(|Gk|), as k — oo, implies that
Vi — 2 (loquk‘,Ck) (IGk| = Ck) +1og(1Gy|—cy) Ck) =2+0(1), as k — oo. In addition, the
conditions |Gk|% - z;ﬁ = 0(1) and |Gk|% - z;ﬁ =o0 <(|Gk| - Ck)% - d;), k — oo, imply that
ar — 2% faster than v, — 2% as k — o0, i.e. ax =2+ 0(1) and v, = 2 + o(1) such that

ar — 2 =o(y, — 2), as k — oo, which, by Corollary 4.29 implies that w =2. =
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Chapter 5

Groups and Matrix Multiplication II

Here we extend the methods introduced in Chapter 4 to study the complexity of simultaneous
independent multiplications of several pairs of matrices via a single group using the concept of
simultaneous triple products. We derive some important results that bound the exponent w
in terms of the sizes of simultaneously realized tensors of single groups in relation to the sizes
of the groups. In our analysis, it appears that the sharpness of estimates for w is positively
related to the number of simultaneous matrix multiplications supported by a group, and also
that the best groups, in this regard, seem to be groups which are wreath products of Abelian

groups with symmetric groups.

5.1 Realizing Simultaneous, Independent Matrix Multiplica-

tions in Groups

5.1.1 Groups and Families of Simultaneous Index Triples and Tensors

We define the right-quotient set Q(X,Y") of any pair of subsets X, Y of a finite group G by:

(5.1) QX,)Y)={ay ' |zeX, yeY}.
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Let I be a finite index set. A collection {(S;,T;,U;)}, . ; of triples (S;,T;,U;) of subsets
S, T;,U; C G, of sizes |S;| = my, |T;| = pi, |Uil = q; respectively, is said to satisfy the
simultaneous triple product property (STPP) iff it is the case that:

(5.2) each (S;,T;,U;) satisfies the TPP and s;sglt;t;u;u;l =lg=i=j=k

for all s;5; € Q(S:,S;), tity € Q(Ty, Tk), uyu; € Q(Ux, Us), 4,5,k € I. In this case, G is
said to simultaneously realize the corresponding collection {(m;,pi, i)}, . ; of tensors through

the collection {(S;,T;,U;)} which is called a collection of simultaneous index triples. For

iel
such collections, the triple product property (4.3) becomes a special case of the simultaneous
triple product property when |I| = 1. Thus, every triple in a collection {(S;,T;,U;)}, . ; of
simultaneous index triples of G is an index triple of G, though there is no converse for collections
of index triples. The i** tensor (m;, p;, ¢;) in {(m;, p;, ¢i)}; . r is the matrix multiplication map
Crixmi x CMixPi — C"i*Pi_and the significance of the simultaneous triple product property
is that it describes the property of G realizing the collection of tensors {(m;,p;,¢i)}, . ; via a
collection {(S;,T;,U;)}; . ; of index triples in such a way that |I| simultaneous, independent

matrix multiplications can be reduced to one multiplication in its regular group algebra CG,

with a complexity not exceeding the rank of the algebra.

5.1.2 Group-Algebra Embedding and Complexity of Simultaneous, Inde-
pendent Matrix Multiplications

Theorem 5.1 If {(mi,pi,qi)} C 6(G) is a collection of tensors simultaneously realized by

el =
a group G then

W9 (2 lmipa)) <Rmca) S S Rl{duded)

o € Irrep(G)

7

and iff in addition G is Abelian then

(2) ® (%9 <miapi7%>> < |G| = R(meg).
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Proof. The procedure used here is a natural generalization of Theorem 4.13. 1f S,,T,,U, C
G, 1 < v <, is a collection of r triples satisfying the simultaneous triple product property,
and {(Ay, By)},_; is a given collection of r pairs of m, x p, and p, X ¢, matrices A, = (4;,j,)

and B, = (Bj:} k:v> respectively, then we embed these pairs in CG as

a (Ay) = Ay= > Agps 't
Sy € Sy, ty € Ty
by, (B,) = B,= >, By by M

!
t, € Ty, uy € Uy

via pairs of injective, linear embedding maps a, : C"**P» — CG and b, : CP»*% — CG,
using the triples S, Ty, Uy, one triple for each pair, just as described in Theorem 4.13. For
cach v, the (i, k)" entry C; , of the product C,, = A,B, is given by Civjo = > AijuBjok,-

jv:jzl;
The product of 4, and B, in CG is given by

A,B, = Z Agyty50 s - Z Btl’wt;luv

Sy € Sy, by € Ty t:JeTv,uver

— § E -1, 41
= Asvvtht;,uvsv tvt,u Uy

’
Sy € Sy, ty € Ty ty €Ty, uy € Uy

_ '—1 | -1
= E E As, to Bt;Mtvtv S, Uyp.

Sy € Sy, Uy € Uy tmt; e T,

As in the proof of Theorem 4.18 for a given v, we can recover the matrix product C, = A, B,
from A,B, by a linear, injective extraction map r, : C™**% «— CG defined on the fact that
for arbitrary slv € Sy, u; e U,, the sum of those terms of A,B, for which t; = t, all have

the group term s, 'u,, and the sum of coefficients of these terms, 3 Ay, B, ., cor-

n v by, Uy,
ty=t, € Ty

responds 1-to-1 with the (i, k, )" entry C; 1, of C, = A,B,. If ¢, denotes the embedding
map C™ X% — C@, this shows that r,(4,B,) = C, = ¢! (61,). For each v, we have the
composition r, o mgg o (a, x by) (Ay, By) = Cp € C"™*% by which we have the restrictions

Toomeg o (ay X by) = (My, Py, @) of meg to (Mo, Dy, @), ie. (Mo, Pu, @) <c Mcg, by which we

deduce R ((my, pv, @) <c R (mcg) (Proposition 2.2).
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Now we prove that these restrictions are simultaneous and independent. We define the

direct sum matrices A = 69 A, € 69 (Cm”Xp”, and B = EB B, ¢ 69 CPv*%  The product AB
= v=1 v=1

€ EB C™v*4v ig the direct sum EB A, B, of the r block products A,B, of blocks A, and B, of
v=1 v=1

dimensions m,, X p, and p, X g, respectively. We embed A and B in CG by linear embedding
maps a and b defined by

a(A) = Z:i Y Aguns, tv_ZA

v=1sy € Sy, ty € Ty

b(B) = B=Y. >, Byt uU:ZR.
v=1

v:lt; € Ty, uy € Uy

T T
Clearly, a = > a, and b = > b,, and are injective by the injectivity of the a, and b,. The
v=1 v=1

product of A and B in CG is given by:

roor
= 2> 2 S A By bt

v=1w=1sy € Sy, ty € Ty t{w € T, uw € Uy

T T
= ZZ Z Z As, tUB wo bobw -1 sgluw.

v=1lw=1 \sy € Su, ty € Tv t! € Ty, uy € Uy

If we use a third index 1 < [ < r, then by the simultaneous triple product property, for

-1

/ / !_
arbitrary sl €S, ul € Uy, it is the case that 31 ul =5, 1tvt Uy = sls = tvtujl = Uyl L=

1 <=1 =v=w. This means that for each v, and s, ¢ 5, and u, € U,, the coefficient of the

term s lu, in the product AB is > A, +,Btyu, = (AyBy)

V) Sy, Uy’
ty € Ty

the r block products A; By, A2 Bs, ...., A, B, simultaneously from AB, and each block A,B, will

In this way, we can recover

be the v*" diagonal block on the block diagonal product AB. If we define an extraction map

r: C™* «— CG based on this rule, then ¢ = é tv where C™*? = é C™v*% and we have
v=1 v=1

shown the following restriction r o mgg o (a x b) (A, B) = AB ¢ C™* of mgg to (m,p,q),

ie. (m,p,q) <c meg, by which we deduce R ((m,p,q)) < R (mcqg) (Proposition 2.2). By
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T

T T
Proposition 2.5, (m,p,q) = <vaa > Pus qu> =
v=1 v=1

v=1

D=

(My, pv, @), and by Proposition 2.2

v

R < él <mvapv7Qv>> < R(meg)-

This takes care of (1). For (2) we note that note that R (mcg) = |G| iff G is Abelian. =

An immediate consequence is the following.

Corollary 5.2 If {(mi,pi,q:)}; . 1 € 6(G) is a collection of tensors simultaneously realized by
a group G then

and if G is Abelian
2) Y (mipiai)® < |G

iel

Proof. Assume that {(m;,pi,q)}; .; € 6(G) is a collection of tensors simultaneously

realized by G. (1) By part (1) of Theorem 5.1, (3.18) and Proposition 2.1}

i€

Z (mipigi)® < i)%< ¢ <miapia%‘>> < R(meg) < Z R ((dg, dy, dp)) -

iel o € Irrep(G)
(1) On the right-hand side, by Proposition 3.18 D, (G) = >, a4y < R ((dy, dp, dp))-
o € Irrep(G) o€ Irrep(G

Since (my, pi,q;) € S(G), by Corollary 4.16, it follows that (mipiqi)% < ]G|% = Dy (G)% <
D, (G)% Thus,

Z (mipig))® < |1 D (G)?

iel
=
2
w 2 w\”
> (mipig)s < | w<Z(mipiQi)3> <Dy, (G)
iel tel

(2) Dr(G) = |G| for all r > 1 iff G is Abelian, and the result follows by (1). =

Part (2) of Corollary 5.2 points to the usefulness of Abelian groups for estimates of w, for

which we have the following useful corollary.
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Corollary 5.3 If {(n,n,n)}._; is a collection of r identical square tensors (n,n,n) simultane-

ously realized by an Abelian group G then

log |G| — logr

1 <
() ws= logn

and

(2) w=2if |G| =n® and r = n.

Proof. Consequence of part (2) of Corollary 5.2. m

5.1.3 FExtension Results

The following is a basic extension of the simultaneous triple product property to direct product

groups.

Lemma 5.4 If groups G and G’ have collections of simultaneous index triples {(S;, T, U)ticrs

{(S’;,,]}l,, Ui/,)}‘ v of sizes T and 1 resp., then their direct product G x G’ has the collection
il €

of rr’ simultaneous index triples {(Sz X S;-,,Ti X Til,, U; x Ui/)}

iel ilel

Proof. For arbitrary indices 4,7,k € I and i',j/, k' e I', and elements | s;, s;, € S; x S;,,
(Ej,g;-,) € S % S;-,, (tj, ) € Tj x T,, (fk,fk/> e T) x T,;,, (uk,u;g,) e U x U,;,, (ﬂi,ﬂ;,) €
U; x Ul-',, and the assumption of the simultaneous triple product property for both the collections

{(S:,T;,Us)}; . ; and {(S;,,ﬂ/,, Ui/,)} , it is the case that:

il el

-1 , SN | , T !
(sz, ) (sj, ]> (tj,tj,) (tk,tk/> (uk,uk,) (ui,ui,)
’ - ’ o ro_ -1
= (SZ j 5 7,’3’ )(tjtk ,t]/tk/ )(uku.l’uk,ui/ )

1 r =1 =1 1—1
= < 3 t; tk‘ Uk-u ,SZ/SJ/ t/tk/ Uk/u 1 ) = (1G71G/)

r_r—11 =1 1

— _ =
<~ Slgj t]tk U]cui = ].G’, S; /SJ/ t: /tk/ uk/uZ,/ = 1G/
N —1 _ ;=1 =1 /-1
- zsj 1t]tk Ukui ! = ].G, 82/8_7/ t. /tk/ Uk./’LLZ,/ = 1G/ and
. . . . ./ . . ! .
i = ],j:k,kz:z,z:j,j:k,k:z.
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This has an equivalent statement in terms of tensors.

Corollary 5.5 If groups G and G have collections of simultaneously realized tensors {(m;, p;, a@ticr
and {<m;/,p,-/, q;/>}‘/ v of sizes r and v’ resp., then their direct product G x G’ has the collec-
1€

tion of rr’ simultaneously realized pointwise product tensors {<mim;,,p¢p;,,qiq;,>}‘ L p
iel, ie

Lemma 5.4 and Corollary 5.5 are also independent consequences of Lemma 4.8 and Lemma

4.12 using the simultaneous triple product property (5.2).

5.2 Some Useful Groups

Here we describe some special types of finite groups of particular interest to our problem.
5.2.1 The Triangle Set A, and the Symmetric Group Sym,(4+1)/2

For an arbitrary fixed n > 1, we define the triangle set A, by:

(5.3) A, := {x = (21,72,23) e N3 | oy + 29+ 23 =1 — 1}.

n
A, isofsize [Ap|= > k=14+2+----4+n=n(n+1)/2. The following is a table for As
k=1
(n = 5) written lexicographically:

x| X2 | 3 | T1H+2x0o+T3 T | X2 | 23 | T1+To+T3 T | X2 | X3 | v1+T2+x3
1.14]101|0 4 6 2102 4 11. | 0 | 4] O 4
2.3 1110 4 7 11310 4 12.10 | 3 |1 4
3131011 4 8 1121 4 13.1] 0| 2| 2 4
4.12 12 1]0 4 9 1112 4 4.1 0|11 3 4
5.1 2 |1 |1 4 10. | 1 10| 3 4 15,100 | 4 4
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The smallest triple in A, is (0,0,7 — 1) and the largest (n — 1,0,0). The i** component z;
of any triple (z1,x2,x3) € A, can take any one of n values 0,1,2,....,.n — 1, and for any value
0 <k <n-—1and component index 1 < ¢ < 3, there are exactly n — k triples (x1,x2,x3) €
A, with the " component z; = k. This is a representation of Ay as a triangular array or

pyramid of dot elements:

[ ]
1. (4,0,0)
[ [ ]
2. (3,1,0) 3. (3,0,1)
[} [} [}
4. (2,2,0) 5.(2,1,1) 6. (2,0,2)
[ ] [ ] [ ] [ ]
7. (1,3,0) 8. (1,2,1) 9. (1,1,2) 10. (1,0,3)
[} [} [} [} [}
11. (0,4,0) 12. (0,3,1) 13. (0,2,2) 14. (0,1,3) 15. (0,0,4)

Counting the rows of this pyramid from the lowest, for 0 < k < n — 1 = 4, the k** row of
dots correspond to the subset of triples in Ay with 1% component z; = k, and in the &k row
each element is ordered component-wise descending order from left to right. This is precisely
the lexicographic (dictionary) ordering of the elements of A,. Symy,(,41)/2 can be understood
as the permutation group of A, and we may write Sym,,(,41)/2 = Sym(An). Sym(A,) is of
order (3n(n+1))!. Elements p e Sym(A,) are bijective maps A, = A, and their actions on
the components of triples x = (z1,z2,23) € A, is defined by x; — p(z);, 1 < i < 3, where
p(x); denotes the i*" component of the permuted triple p(x). Graphically, the permutations
w e Sym(A,) are bijective transformations, such as rotations or reflections, of A,, or of any

subset of points of A,,.

We define the subsets Sym;(A,) C Sym(A,) by:
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(5.4) Symi(Ay) == {p e Sym(Ay) | p(z)i =z, © e Ay}, 1<i<3.

Each Sym;(A,,) forms a fixed-point subgroup of Sym(A,) consisting of those permutations
of A, leaving the i*" components of triples = € A, fixed. For any value 0 < k < n — 1 and
index 1 < i < 3, there are exactly n — k triples in A,, with i component z; = k, there are
(n — k)! permutations of these triples, and for each 1 < ¢ < 3, there are n!(n — 1)! - - . -2!1!
permutations of A,, which fix the 7*" components of triples x ¢ A,, and |Sym;(A,)| = n!(n—1)!-
---2111. Graphically, the subgroups Sym;(A,) < Sym (A,) are collections of permutations ; €
Sym (A,,) transforming A,, solely along the diagonal rows parallel to its i'* side, one subgroup

for each side. The following is a diagram for Sym;i(As), Syma(As), Syms(As) on As.

L ]

1. (4,0,0)
L ]

5.(2,1,1)

L ] L ] L ] [ ] [ ]
11. (0.4,0) 12. (0.3,1) 12. (0.2,2) 14. (0.1,3) 15. (0,0.4)
>y

H;

The diagram above makes it clear that these fixed point subgroups have the triple product

property.

Lemma 5.6 The subgroups Symi(Ay), Syma(A,), Syms(A,) < Sym (4A,,), defined in (5.2),

form an index triple of Sym (Ay).
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Proof. Since Sym;(A,) < Sym(A,), 1 < i < 3, to prove the triple product property for
these, it suffices to prove for arbitrary u, € Symi(Ay), uy € Syma(Ay), and pg € Syms(Ay)
that pquous = 1 implies that u; = py = pz = 1. For a p e Sym(A,,), we define its fixed
point set as fiz () = {z € A, | u(z) = 2} € A,, and its i*" component fixed point set fiz; (1)
as fix; (u) = {x e A, | p(z); = x;} C A,. For arbitrary u € Sym(A,,), the sets fiz (u) and
fiz; (p) are such that pu = 1iff fiz (u) N fix; () = Ay, for all 1 <4 < 3, where 1 is the identity
permutation of A,. Moreover, fix (u) C fix; (). Then, from puqpopus = 1 it follows that
fiz (pypiaps) N fiz (pypops) = fiz (pipgpg) = Ap, 1 <4 < 3. Since fizy (py) = fiza (pug) =
fizs (us) = Ay, it follows that fiz (uy) = fiz (uy) = fix (u3) = A,. Together, fix (ppops) =
Ap and fiz (p;) = Ap, 1 <4 < 3, implies that fiz; (uipe) = fizi (pops) = fizi (pips) = An,
1 <4 < 3, which implies that fix (uuy) = fix (ops) = fix (ups) = An, 1 < i < 3, which

implies that p; e = poptg = pyp3 = 1, from which we deduce that 1y =y =3 =1. m

This shows that Sym(A,) realizes the tensor <H k!, H k!, H k'>, which means that it
k=1 k=1

n
supports square matrix multiplication of order [] k!, and, therefore, by (4.21), we have:
k=1

log( 5n(n+1)
(5.5) a(Sym (Bn)) < bz

This yields concrete estimates for a(Sym,,), to be described in Chapter 6.

5.2.2 Semidirect Product and Wreath Product Groups

A group G is said to be the (internal) semidirect product A x B of a subgroup B < G by a
normal subgroup A < G, it AN B = {lg} and G = AB. Each elements g ¢ G = A x B
has the form g = ab for a unique element a ¢ A and a b ¢ B depending on a, and by A4 < G,
it is the case that b'g = b~'ab ¢ A. For a fixed b ¢ B, the mapping a — bab™' = a?,
a € A, defines an automorphism o of A which is conjugation of A by b, and the mapping
b+—— ap, b € B, is a group homomorphism « : B — Aut(A) defining the conjugation action

of B on A, such that multiplication of elements g = (ab),g = (a'b’) € G can be expressed as

g9 = (ab)(a'b) = (aba'b='bb") = (aa’®)(bb') = (acy(a’))(bb'), and inverses of elements g = ab
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are given by g1 = o-1(a"1)b7!. If B< G alsothen G =AxB=AxB. If Aand B are
arbitrary groups, then for any homomorphism ¢ : B — Aut(A) there is a unique (external)
semidirect product A x B of B by A, with underlying set A x B, for which oy, = ¢(b) for any b €
B,and A= Ax{lp} =[A] < AxBand B = {14}xB = [B] < Ax B such that [A]N[B] = {1¢}
and G = [A][B]. Every external semidirect product A x B of groups A and B is the internal
semidirect product [A] x [B] of the subgroups [A] < Ax B,[B|< AxB. If r:G— GL(V)
is any nontrivial representation of G, and ¢4 denotes the inclusion homomorphism A — G =
A x B, then m4 = 7oy is the representation A — GL(V') of A equidimensional with 7 and
a nontrivial subrepresentation of 7. If w4 is irreducible then m must be irreducible, while any
irreducible representation gz of B extends to a unique irreducible representation o of G. For
an Abelian subgroup A < G and a subgroup B < G there is a proper subgroup C' < B such that

an irreducible representation of A <1 G.extends to an irreducible representation of G = A x B.

A special kind of semidirect product group G = A x B exists when A = H", the n-fold
direct product of H, with H being a group, and B = Sym,, where multiplication in H" is
component-wise multiplication of n-tuples h = (h;);"_; of elements of H, and multiplication in
Sym,, is the composition of permutations p of n elements. This group G = H™ x Sym,, is called
the wreath product of Sym, by H", denoted by H ! Sym,, where the action of Sym, on H, is
from the right, defined by the mapping h —— h* := (hy;);_,, for n-tuples h = (h;);_; ¢ H" and
permutations p € Symy,, i.e. , Symy, acts on H, by permuting the components of its n-tuples.
We sometimes write (h), for the i'® coordinate h; of an h = (h;)}_, e H". H is called the base
group of H ¢ Symy, and if we identity H™ with the subgroup {hlgsym, | h € H"} < H ! Symy,
then H" < H ! Sym, and H ! Sym, becomes an internal semidirect product. Multiplication
in H Symy, is given by (hu)(h'p') = (hh'P ") (up') = (hih/u_li)?:l(,uu/), and inverses (hu) !
by bt~ = (hy)?, pt, for elements (hp), (h'p') € H1Sym,,. The following is an elementary

result about the sums of w” powers of the irreducible character degrees of H ! Sym,,.

Lemma 5.7 For an Abelian group H, Dy,(H { Symy) < (n))* ™" |H|™.

Proof. For an Abelian group H, and the wreath product group H!Sym,,, every irreducible

representation ¢ € Irrep(H ! Sym,,) is induced from an irreducible representation of the base
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group H™ < H ! Symy, which has the index [H ! Sym, : H"| = |Symy,| = n!, [HUP1998].
Therefore, the index [H ! Sym,, : N] of any maximal Abelian normal subgroup N < H { Sym,,
is at most n!, and by Theorem 3.7, Dim o < n! for any ¢ € Irrep(H ! Sym,). Then:

D, (HSym,) = > d
o € Irrep(H1Symy)

- > g

o € Irrep(H1Symy,)

< (nh)¥? Z d2

o € Irrep(HISymn,)

IN

Since H is Abelian D, (H) = |H|, and the result follows. m

We conclude with some extension results.

Theorem 5.8 If {(S;,T;,U;)}_y C J(H) is a collection of n simultaneous index triples of a
n n n
group H then the triple <H5'1 LSymy, [T 0 Symp, [[Ui Symn> e J(HSymy,).
i=1 i=1 i=1
Proof. Assume a collection {(S;,T;,U;)}i; C J(H) of index triples of H. By Lemma
n n n
4.8 the n-fold direct product of these triples, <HSz =S, [1T:=T,[]U: = U> is an index
i=1 = =
triple of H™. Assume further that the triples (S;, T;, U;) have the simultaneous triple product

property (STPP). We claim that the subsets

S Symy, ={(so) | seS, o€ Sym,},
T Symy, ={(tr) |teT, 7€ Symp},
UilSymy, : ={(uv) |uelU, veSymy,},
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satisfy the triple product property (TPP) in H ! Sym,,. To see this, let s1071, 8,1011 e S1Symy,

toTo, t/2712 e T Symy, usvs, u%vg € U Sym,, be arbitrary elements. Then

<3/10l1> (s101)7" (t/27—l2) (taTa) ™" (Ulsvlza) (uzv3) ™"

o //01_1//72_1//1}3_1
= 51015] 01 taT9T9 Ty UgUzU3 Vg

li —1 ! -1 ! —1
_ ooy 1, ToTy S —1 / vgug T 1
= 515 0107 toty ToTg  Ugliz V33
= 1
r r r
= 0,0, 17'27'2 1v3v3 L—1.
Puttin =007l and v = 0,07 Mo, ! we have that
utting @ = 0104 = 0101 TaTy
’ 0—10-1_1 ’ —~1,’ 7—/27—2_1 [ U;Ugl ’ 1
5181 0107 taly® © ToTy ugug® ° v3zvg

= 1
. uglsll (Sl—lt/2>“ (t;lué)y =1
1 / —1 / —1 ! _
= (uz), (51>,~ (s1 )m' (t2)m (t27). (u?’)m‘ =1
— pi=vi=1,1<i<n (STPP for {(S;,T;,U;)} ;)
= pu=v=1

/ / /
< 01 =01,T2 = T9,U3 = Ug.

Thus

ro_
vV, —1

/-1 1
0-10-1 ! /
UpUg VU4

/-1
’ A TN % R |
5181~ 0109 tity T Ty

= 1
ro_1 1
=  515; 1t2t2 1u3u3 =1

= 51 = 81,ty = o, uy = uz (TPP for {(S;, T3, Ui)}" ;)

Putting these two together we deduce that for sjo71, 8,10'/1 € SUSymy, taTo, tIQTIZ € TUSymy, usvs,
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uév; e U Sym,, it is the case that

!/

(5/10/1> (s101)7" (t/leg) (taT2) ™" (U§U3> (ugva) ™!

r_q A
1 / 7-17—1 / -1 / Ulvl / —1
bty - TaTy wuy Uiy

/Ulo_lf
= 881 ogy07

1°1 1%1
= 1

! ! ! ! !/ !
< 310'1 = 3101,t2T2 = t2T2,'LL3'U3 = uzvs.

This proves our claim. =

Corollary 5.9 If {(m;,pi, i)}y C & (H) is a collection of n tensors simultaneously realized

by an Abelian group H then

(1) <n!Hmi,n!Hpi,n!qu'> e & (H1 Symy)
1=1 7 =1

=1

and
< nlog |H| — log n!

- n
log ¢/ [Tmipigi
=1

Proof. If n triples S;,T;U; C H, 1 < i < n, of sizes |S;| = my, |1},

(2) w

= pi, Uil = @,

1 < ¢ < n, satisfy the STPP in an Abelian group H then by Theorem 5.8 H1Sym,, realizes the
n n n

product tensor <n! [Tmi, n! [ pi,n! Hq2> once, and in addition, by Corollary 5.2 and Lemma
i=1 i=1 i=1

5.7,

n n n g
(n!Hmi T n!Hqi)
L =1 =1

=1

w
n
= (7%13 Hmipi%)
\ i=1

D,(H Symy,)

IN

< () H™.
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Taking logarithms, this is equivalent to

n
w log (n! S Hmipiqi>
V i=1

n
wlogn! +wlog &/ [[mipi¢i < wlogn! —logn!+ nlog|H| <
i=1

IN

(w—1)logn! +nlog |H| <=

nlog|H| — logn!

< .
- n
log ¢/ [T mipiq;
i=1

The bound for w in Corollary 5.9 suggests that w is close to 2 if we could find an Abelian

. .. log|H|—logn! .
group H simultaneously realizing n tensors (m;, p;, ¢;) such that M is close to 2, and
log ? Hmipi%'
=1

the following proposition is an obvious extension.

Proposition 5.10 For any n, given n triples S;, T; U C H of sizes |Si| = my, |T;| = pi, |Ui| =
g, 1 <1 < n satisfying the STPP in an Abelian group H, and the corresponding product triple
ﬁ SitSymy, ﬁ T;0Symy, ﬁ U;1Symy, satisfying the TPP in the wreath product group H1Symy,,
zt;l,lere s a ma,:z;@um numbz(;rll <k,< (n!)3 triples of permutations, oj,7j,v; € Symp, 1 < j <
kn, such that the k, permuted product triples ilf[lSUj(i) LSymy,, iﬁ1TTj(i) LSymy,, z‘lfllUUj (6) LY,
1 < j < ky, satisfy the STPP in H ! Sym,, and H ! Sym,, realizes the square product tensor
<n!ﬁ1mi,n!ﬁlpi,n!ﬁlqi> kyn times simultaneously, such that
i= i= =

nlog |H| —logn! —log &,
w < .

- n
log ¢ [Imipigi
\/ =1

The proof of this result once again uses the result D, (H ! Sym,) < (n))*~|H|" for an

Abelian group H (Lemma 5.7), in combination with Corollary 5.2, as described in the proof
of Corollary 5.9. By Theorem 5.8 we know that k, > 1 for any given n, given n STPP triples
Si, Ti,Ui € H of sizes |Si| = my, |Ti| = pi, |Ui| = q;, 1 < i < n. If the 0j,7j,v; € Symn,
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1 <j < k,, are taken independently of each other in Symn, there are a maximum number
(n!)® of permuted triples HSU (6) L SYMn, H TT(Z L Symy,, H Uiy 1 Symn, 0,7,v € Symy, and
if these satisfy the STPP in H ! Symn, it leads to the condltlonal estimate w < 2.012 using the
wreath product group (Cycg ) ! Symas, as described in section 6.2.3. For a given n, there
is no known general method of determining k,, for the group H ! Sym,,, with H being Abelian
and having a family of n STPP triples S;,T; U; C H of sizes |S;| = my, |Ti| = pi, |Uil = @,

1 <7 < n. The objective is to find the number 1 < k,, < (n!)3 of these triples of permutations
nlog|H|—log n!—log ky,

n
log i/H mMiP;iG;
=1

that Theorem 7.1, [CUKS2005], is a special case of Proposition 5.10 for k, = 1, except there

in Sym, such that the bound w < is as tight as possible. It so happens

the group is not required to be Abelian.
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Chapter 6

Applications

In this chapter, we apply the methods and general results in Chapters 4-5 to describe the general
conditions needed to prove results for w using the parameters o and -y of concrete families of non-
Abelian groups or of single non-Abelian groups. We conclude with a number of concrete upper

estimates of w in the region 2.82—2.93. However, our most important result is a general estimate

n 3n __ n|__ n . . .
that w < 2108 T;nnlz‘)gg(ijl)log kan for some undetermined 1 < kgn < (21)3, where this kgn is the

x 2™
number of times the wreath product group (C’yc7f3) ™M) Syman (i.e. ((Cyc;fg) Xn) X Syman )
realizes the product tensor <2”! (n—1)"" 271 (n —1)™" 2™ (n — 1)n2n> simultaneously, and

the closer kon is to (21)? the closer w is to 2.02 (from the upper side).

6.1 Analysis of a and v for the Symmetric Groups

Here we derive upper estimates of a and « for the symmetric groups Sym (Ay,) = Symy,(n41)/2,

and generally for Sym,,. We start with v (Sym (Ay)).

6.1.1 Estimates for v (Sym(A,))

Our first estimate for (Sym (A,)) follows from McKay’s estimate of d (Sym,,) [MCK1976, p.
631).
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n(n+1)

+1 n(n T n(n+1) , n(n L
(6.1) 2\/6<n(n2+1)) r . [nndd) (17 /13) - nindDE < d (Sym (Ay)) < ( ,7271'67%)

n(n+1)

S]]
/N
N

This yields the following result for y(Sym (A,)).
Corollary 6.1 v(Sym (Ay)) =2+ O(2).

Proof. Applying (4.26) and (5.6) to (6.1), and using Stirling’s formula, we have the initial
estimate

2 1.2
(Sym(Ay)) > _logn—gn(1+1log2)+0(nlogn)

n(nt1) 1 n(n+1)+1
log ( 27re*T)2(n(n2+l)) i ]

n*logn — $n? (1 +log2) + O (nlogn)
B n(n+1)
log |2/ (Mol oy M (8 VE) e

2

Y(Sym (Ay) <

Dividing numerator and denominator on both sides above by n?logn — %nQ (1 +log2), and

then dividing O(nlogn) by n?logn, we arrive at the result. m

A second estimate of v (Sym (A,)) follows from Vershik and Kirov’s estimate of d (Sym (A,))
[VK1985, p. 21].

(6.2) ¢ V"5 \/('“";1)>' < d (Sym (An) < e FV5 \/<n<nQ+1>) ]

where C1, Cy > 0 constants independent of n.

Corollary 6.2 v(Sym (A,)) =2+06 <#>

nlogn

Proof. Consequence of (6.2).

n*logn — $n? (1 +log2) + O (nlogn)

—%\/w + In2logn — 312 (1 +1log2) 4+ 30 (nlogn)
n*logn — $n? (1 +log2) + O (nlogn)

—%\/% + In2logn — 312 (1 +1log2) 4+ 30 (nlogn)
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for positive constants C; and Cs. Dividing numerator and denominator on both sides by

n?logn, we obtain the result. m

6.1.2 An Upper Estimate for o(Sym (A,)

The main result here is that a(Sym (A,)) <2+ O(loén).

Lemma 6.3 o(Sym (A,)) <2+ O(-1-).

logn

Proof. [Sym(A,)| = (3n(n+1))!, and < ITEY TTRY T k!> e S (Sym(Ay)) (Lemma 5.6),
k=1 k=1 k=1

. . log(%n(nJrl))! C e .
and implies that a(Sym (A,)) < RSB by (4.22). By Stirling’s asymptotic formula

logn! ~nlogn —n+ O (logn), as n — oo, we have

log (;n(n + 1))! . én(n +1)log <;n(n + 1)) _ %n(n +1)+0 (log @n(n + 1)>>

1
= n?logn — §n2 (1+1og2)+ O (nlogn).
For log (n!(n — 1)!- - - -2!1!) we have the estimate:

log (n!(n —1)!- - -2111) = log (2" 13" 2...n)
= (n—1)log2+ (n—2)log3+ .... +2log (n — 1) + logn
= n(log2+....+logn) — (log2+2log3 +.... + (n — 1) logn)

= nlog(n!) — (log2+2log3 +....+ (n — 1) logn).

Now, nlogn! = n?logn — n? + O (nlogn), and (log2+ 2log3 + .... + (n — 1)logn) is the
result of the evaluation of the definite integral [|"(z —1)logz dz + O (nlogn), which be-
— %fln e—1)? dx + O (nlogn) when we integrate by parts. We find

xT

1 2 "
comes 3 {(m -1) logx]l

n
1 T

that 3 {(m — 1)2loga:} -3 ED* g2 4 O (nlogn) = $n?logn — in* + O (nlogn). Thus,

(log2 +2log3 + ... + (n — 1) logn) = in?logn — in% + O (nlogn) which implies the estimate
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for log (n!(n — 1)! - - - -2!1!) of

log (n!(n — 1)!--.-2111)

= mnlog(n!) — (log2+2log3 + .... + (n — 1) logn)

1 1
= n?logn —n?+ 0 (nlogn) — §n210gn—|— ZnQ — O (nlogn)

1 3
= §n210gn - EnQ + O (nlogn).

log(%n(n+1))!

Then for a o —Tyr—am

y we have the estimate:

log (3n(n +1))!
log (n!(n —1)!--.-211!)
n*logn — n? (1 +log2) + O (nlogn)

sn?logn — 3n2+ O (nlogn)
141og 2 1
2 - log07gz +0 (ﬁ)

L= 3t 0 (3)

1 3 1
= (2—(1+1log2)— ) (1+=
< (1+1og )logn>< +2logn>+0

2 — log 2 1
2-log2 <2>
logn (logm)

. 2+o< ! )
logn

- 924

<(1og1 n)2>

If we denote by z' (Sym (A,)) the size of the maximal tensor realized by Sym (A,), then

we have following corollary.

Corollary 6.4 n3n +0oMm) (26)7%"2

< 2 (Sym(An))3 < n3" 0w (2¢)7i

Proof. |Sym (A,)| = (3n(n+1))!, and by (4.23) (3n(n + 1))! < 2 (Sym (A,)) < ((An(n+ 1))')%

Taking logarithms on all sides, and substituting the estimate log (%n(n + 1))! = n?logn —

%n2 (1 +1og2)+ O (nlogn) from Lemma 6.3, and taking antilogarithms, we obtain the result.

’ 1. . . . T .
z (Sym (Ay))3 is the maximal mean size of matrix multiplication supported by Sym (Ay,),

and the result describes bounds for these in terms of the order of Sym (4A,), which grows

exponentially with n. =
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Lemma 6.3 shows that it suffices to work with the symmetric groups Sym (A,) since for

every integer m > 2, there exists an integer n > 1 such that (3n(n+ 1))! | ml.

6.1.3 An Upper Estimate for o(Sym,)

Following Lemma 6.3 we show that a similar estimate applies to the a(Sym,) of arbitrary
symmetric groups Sym,.

Corollary 6.5 a(Sym,) <2+ 0O <#) +0 ((log%> +0 (W), for some m < n.

logm m)

Proof. It suffices to prove that a(Symy,) < a (Sym (An)) + O ( )), for some integer

1
mmF 1
m < n. By Lagrange’s theorem the order |H| of a proper subgroup H < G is a proper divisor
of the order |G| of G. For every integer n > 2, there exists an integer m > 1 such that
(m(m+1))! | nl. This is most obviously the case when n = f:k: =Zp = (3m(m+1)), ie.
when n is the sum of the first m positive integers for some m, in i;ﬁich case Symy,, = Sym (A,,),
and a(Sym,) = a (Sym (An)). If Z, <n < Zyy1 for some m, then im(m +1) <n—1 <
3 (m+1) (m+2), and this m is the least integer such that (3m(m + 1))! is the largest proper
divisor of n!. Consequently, for this m, Sym (A,,) occurs as the maximal subgroup of Sym,,

of order |Sym (Ap,)| = (3m(m+1))! < (n—1)l. We can deduce from these facts, by using
Lemma 4.19 that:

a(Symy) < a(Sym (Am)) + logz’(sym(Am))l/S [Symn : Sym (Am)]
log 3m(m +1) +1

S A By B}

 aSum (A ¢ 31f1g1i;n((gzmvz nll) :11)! (using (4.23))
~ a(Sym (Am)) + 21m(?1)n +1) Ei im j: B - 1

~ a(Sym (An)) + 2-17,1(:377”1)

= a(Sym(A,)) + O (M)

IN

2 —log?2 1 1
st (1 Y o0 1y
log m (logm) m (m+1)
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Lemma 6.5 shows that it suffices to work with the symmetric groups Sym (A,,).

6.1.4 Applications to w

Here we examine the implications of the above analysis for w using the groups Sym (A,,).

By Lemma 6.8 a(Sym (A,)) =2+ 2;2’%2 + 0 (m) =2+ O(loén). For as small as

n > 4, the leading term 2 + 21_02%2 < 3. The following is a table of values of 2 + %ﬁ for
2 < n < 10.

n | 18ym (A | e

2 6 3.88539

3 720 3.18955

4 3,628, 800 2.94270

5 | 1.30767 x 10'2 2.81199

6 | 5.10909 x 10 2.72937

7 | 3.04888 x 10% 2.67159

8 | 3.71993 x 10%! 2.62846

9 | 1.19622 x 10 2.59477

10 | 1.26964 x 107 2.56756

2—log2
logn

|Sym (A,)| — oo of the order of n™, much faster than 2 + — 2. Lemma 6.3 (or
Lemma 6.5) shows that a(Sym (A,)) —2 = O (v (Sym (Ay))), which is contrary to the limit
condition of Corollary 4.28 needed to prove w = 2, i.e. we cannot prove w = 2 using the limit

results Corollary 4.30 or Theorem 4.31 for the family of groups Sym (A,).

However, the application of Corollary 4.29, and the estimate |Sym (A,)| = (MnTJFD)' =
1
pani+Kn (26)_5”2, where K is some constant independent of n, this yields the following open

question.
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Problem 6.6 Is there a symmetric group Sym (Ay), for somen > 1, such that ' (Sym (An))% >
l i

d (Sym (Ay)) and % > panttKn (26)_%n2 , for some 2 < t < 3, where K is a con-

stant independent of n?

6.2 Some Estimates for the Exponent w

Here we derive a number of estimates for w, using wreath products of Abelian groups with
symmetric groups. We start with the Abelian group Cyc® = Cye, x Cyc, x Cycy, for which

we start with a basic lemma.

Lemma 6.7 For the Abelian group CycX® the subset triples (S1, Ty, Ur) and (S, Ts, Us) defined

by
S1 = Cyc,\ {1} x {1} x {1}, T1 := {1} x Cyec,\ {1} x {1}, Uy := {1} x {1} x Cyc,\ {1},
Sy ¢ ={1} x Cye,\ {1} x {1}, To:= {1} x {1} x Cycp\ {1}, Uz := Cyc,\ {1} x {1} x {1},

(1) have the triple product property, and (2) have the simultaneous triple product property.
Proof. (1) For arbitrary elements (s/, 1, 1) ,(8,1,1) € S1 = Cye,\ {1} x{1} x{1}, (1,t/, 1) ,(1,¢,1)
e Ty = {1} x Cye,\ {1} x {11, (1, 1,u’) (1,1,u) e U = {1} x {1} x Cye,\ {1}, the condition
(s’,1,1) (5,1,1)"" (1,t’,1) (1,t,1)7" (1,1,u’) (1,1,u)"" = (s’s—l,t’t—l,u’u—l) — (1,1,1) can
only occur if s’ = s, t = ¢, v = u, which implies that (s', 1, 1) =(s,1,1), <1,t/, 1) =(1,¢,1),
<1, 1,u/> = (1,1,u). Thus, (S1,T1,U1) has the triple product property, and we can prove the
same for (Sz, T, Us).
(2) Refer to Proposition 5.2, [CUKS2005]. m

The following is an elementary corollary.

Corollary 6.8 The Abelian group CycX3 realizes the tensor (n —1,n —1,n —1) 2 times si-

multaneously.

Proof. Consequence of definition (5.2) with respect to the triples in Lemma 6.11. m
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6.2.1 w < 2.82 via Cycyy

By Corollary 6.12 Cyc,‘® realizes the identical tensors (n — 1,n — 1,n — 1) and (n — 1,n — 1,n — 1)
simultaneously, and, thereby, supports two independent, simultaneous multiplications of square

matrices of order n — 1, and by Corollary 5.3, we have the inequality

log n? — log 2

Y= log(n—1) °

The expression “E2=1%2 achieves a minimum 2.81553... for n = 16, i.e. w < 2.81554.

6.2.2 w < 2.93 via Cyc;y 1 Syms

From above, CycX? realizes the tensor (n —1,n —1,n — 1) 2 times simultaneously. By part
(1) of Corollary 5.9 CycX31 Symsy realizes the tensor <2 (n—12%,2(n-1)%2(n— 1)2> once,
and by part (2)

6logn — log 2
~ 2log(n—1) "

The minimum value w < 2.92613048... is attained for n = 41.

More generally, by Proposition 5.10 CycX31Syma realizes the product tensor <2 (n—12%2mn-1)%2(n—1

some 1 < ky < (2!) times simultaneously such that

6logn —log2 — log ko
- 2log (n—1)
6logn — log 2
2log (n —1)
< 2.93.

6logn—log2—logks _  6logn—logl6
2log(n—1) —  2log(n—1)

If, for example, ks = (2!)* we would have , which achieves

a minimum of 2.478495... at n = 6. The following table gives minima for the expression

6l°gg;1g?i2_zl)°gk2 for the values of 1 < ko < (2!)3:
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. 6log n—log 2—log k2
k2 | w < min ( 2log(n—1)

1 ] 29261
2.8163
2.7351

2.6700
2.6142
2.5647
2.5200
2.4785

O | | O | O | =W | N

Here we know only the case ko = 1 based ultimately on Theorem 5.8, and we conclude that
w < 2.9261, and for the values 2 < ko < 8 the table’s bounds for w are conditional on those

values of ks.

6.2.3 w <282 via (Cyczxf’)X25 L Symiazs

As before, we start we start with Cyc3, which realizes the tensor (n — 1,n — 1,n — 1) 2 times
simultaneously. By Corollary 5.5 the m-fold direct product (Cyc,f3) “™ realizes the pointwise
product tensor ((n —1)™,(n —1)™,(n —1)") 2™ times simultaneously. By part (1) of Corol-
lary 5.9 the group (Cyc,i?’) L Symaom (i.e. ( C’ycX?’ ) " X Symeom ) realizes the product
tensor <2m! (n—1)>"™ 27 (n — 1)?"™ 271 (n — 1)%" m> once, and by part (2)

2™ log 3™ — log 2™!
- 2mmlog (n — 1)
3mlogn —mlog2 +1

~

mlog(n —1)

If we let m — oo the right hand side tends to 2.815... we derive that w < 2.82, as good a

result as in section 6.2.1.

If we consider the n-fold direct product (Cycf) “" then more generally, by Proposi-
x2m
tion 5.10 (C’ycf')xn ! Syman (i.e. <(Cyc§3)xn> X Syman) realizes the product tensor
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<2”! (n—1)"2" 2" (n — 1)"" 27! (n — 1)”2n> some 1 < koo < (2713 times simultaneously

such that
2" log n3" — log 2! — log kan

Y= 2"nlog (n — 1)

If here kon = (2”!)3 then w < & l;,%gf:g?ﬁiof)zn!, the latter achieving a minimum of 2.012 for

n = 6. In general, for the groups (C’ycff’) “™) Syman the closer kgn is to (2”!)3, the closer we

could push w down towards 2.012 (from the upper side).

These results point to the utility of finding triples of permutations o, 7;,v; € Sym,, in order

n n
that a maximum number 1 < k,, < (n!)3 of permuted product triples [] S, ;)0 Symn, [1717;)1
i=1 i=1

n
Symn, [[Uy, ) 1 Symn, 1 < j < ky, satisfy the STPP in H ¢ Sym,,, where H is Abelian with
i=1
a given STPP family {(S;,T;U;)} ;. Using such groups and their triples in this way, the
sharpest upper bounds for w will occur where the ratio k,,/ (n!)3 is highest. Therefore, we pose

the following problem.

Problem 6.9 For any given n, and group H  Sym.,, with H being Abelian, and a given family

i LiUi)p_y of n triples o what 1s the largest number 1 < k, < (n!)” suc
{(S,T,U)}:l_1 f n STPP tripl f H, what is the larg ber 1 k (')3 h

n
that there are ky triples of permutations oj,7j,v; € Symy such that the ky triples HSUj(Z-) !
i=1

n n
Symn, [T, ) 0Syman, [TU; ) VSymn, 1 < j < ky, satisfy the STPP in H Symy, ?
i=1 i=1
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