Space Complexity in Infinite Time Turing Machines

MSc Thesis (Afstudeerscriptie)

written by

Joost Winter
(born 20th of March, 1980 in Amsterdam, the Netherlands)

under the supervision of Benedikt Lowe, and submitted to the Board of
Examiners in partial fulfillment of the requirements for the degree of

MSc in Logic

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
14th of August, 2007 Peter van Emde Boas

Joel David Hamkins

Benedikt Lowe

Jouko Vadnanen

nTa
Eud

INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION

Contents

1 Introduction
1.1 Overview e
1.2 Notation e e e e e

2 Infinite time Turing machines
2.1 The standard model, ITTMy
2.2 ITTMjp-machines with variations in the tapes
2.3 ITTM;: different rules at limit points
2.4 Equivalence results for ITTM; and variants thereof
2.5 Equivalence of ITTMy and ITTM;

3 Clockability and writability
3.1 Definitions
3.2 Results.

4 Time and space complexity

4.1 Time complexity: definitions
4.2 The weak halting problem h
4.3 Godel’s constructible hierarchy
4.4 Space complexity: definitions
4.5 Invariance under different ITTM-models

4.5.1 Invariance of time complexity

4.5.2 Invariance of space complexity

5 The question P Z PSPACE
5.1 P C PSPACE for infinite time Turing machines
5.2 The question whether Py = PSPACE,
5.2.1 P, # PSPACE, for ordinalsup tow?
5.2.2 The case of recursive ordinals
5.2.3 The case of clockable ordinals
5.2.4 The case of suitable functions f.
5.2.5 However, P; = PSPACE; for ‘almost all’ f

6 Koepke machines
6.1 Definitions.
6.2 Variants on the Koepke machine architecture
6.3 Time complexity for Koepke machines
6.4 Space complexity for Koepke machines

=~ s W

[el=>]

12
13
27

29
29
30

38
38
39
40
42
43
43
45

7 Nondeterministic computation

7.1 Nondeterministic computation in the case of Hamkins-Kidder
machines
7.1.1 Time complexity
7.1.2 Time complexity: results,
7.1.3 Space complexity: definitions

7.2 The relationship between the classes NP and NPSPACE

7.3 Nondeterministic computation in the case of Koepke machines
7.3.1 Definitions o
732 Results

8 Conclusions

A Variations in the definitions of P; and PSPACE
A.1 Variations in the definitionof Py
A.2 Variations in the definition of PSPACE;

65

65
65
68
69
70
72
73
74

76

Chapter 1

Introduction

This Master’s thesis will deal with the concept of infinite time Turing machines,
as originally defined in [HaLe]. Infinite time Turing machines are defined in
a way similar to ordinary Turing machines, but can continue to operate at
transfinite ordinal stages. Although defined similarly, however, there are some
striking differences between some of the established results about infinite time
Turing machines, and the corresponding results for regular Turing machines.
For example, it has been shown in [Sc| that the infinite time analogue of the
problem P = NP is false, and it was proven in [HaSe| that infinite time Turing
machines with only one tape are less powerful than machines with n tapes for
any n > 1.

As it turned out that an analogue of a problem that is known to be extremely
difficult in the classical case—the question whether P = NP—is quite simple to
solve in the case of infinite time Turing machines, we may start to wonder if we
can do similar things for analogues of other problems, that are also known to
be ‘hard’ in the case of classical Turing computation. One such problem is the
question whether P C PSPACE, which will be one of the main questions dealt
with in this thesis. Another question we will consider—one which is solved in
the classical case—is the question whether, in the case of infinite time Turing
machines, the equality PSPACE = NPSPACE holds.

More precisely, in this thesis we will provide definitions for the classes
PSPACE; and NPSPACE; for functions f from sets of natural numbers
to ordinals, following the definitions in [Lo], and attempt to tackle a number of
open questions related to these classes, such as:

e For which functions f do we have P; = PSPACE,?
e For which functions f do we have PSPACE; = NPSPACE/?

Following this, we will also consider another model for infinite Turing compu-
tation, as provided by Peter Koepke, in which we do not only have computations
of infinite length, but also tapes which have the size of the class of all ordinals.
Here we will again consider similar questions about space complexity, and also
establish some relationships between these classes and the complexity classes of
the standard model.

1.1 Overview

In the second chapter of this thesis, we will restate the standard definitions of
the model of transfinite Turing computation that was originally defined by Joel
Hamkins and Jeffrey Kidder. Several variations on this model, involving varying
numbers of tapes, additional scratch cells, and modified rules for limit ordinals,
will be considered and, where possible, the equivalence of the computational
powers of these models will be proven.

In the third chapter, the notions of clockability and writability of ordinals
will be considered, and a number of important results will be restated.

In chapter 4, we will state the definitions of the space and time complexity
classes Py and PSPACE;y, as well as of the weak halting problem h. Following
this, we will show the invariance of some of these classes under the different
models of infinite time Turing machines, and under addition of extra tapes
and/or scratch cells.

In chapter 5, we will consider the question Py ~ PSPACE ¢ for a variety of
functions f: it will turn out that, for some functions f, P is a strict subset of
PSPACE;, and for other functions, the two classes are equal.

Following this, in chapter 6, we will consider Koepke’s model of transfinite
Turing computation; give definitions of the space and time complexity classes;
and state and prove a number of results.

In chapter 7, we will define the indeterministic space and time complex-
ity classes NP and NPSPACE, and consider the relationship between the
classes PSPACE; and NPSPACE¢, as well as between the classes NP ¢ and
NPSPACE;, for a variety of functions f, in the case of both the Hamkins-
Kidder model and the Koepke model.

Finally, in chapter 8 some general conclusions, remarks, and further ideas
will be provided.

I would like to thank to Benedikt Lowe, my thesis supervisor, Joel David
Hamkins and Philip Welch, as well as to the people present at the Bonn Inter-
national Workshop on Ordinal Computability in January 2007 for help, advice,
and/or critical reading.

1.2 Notation

In this thesis, the set N of natural numbers will always start with 0, and never
with 1. The symbol R will always refer to P(N), as usual in e.g. descriptive set
theory and all earlier literature on infinite time Turing machines, and the term
‘real’ will always refer to a subset of N.

At some points, we will consider natural numbers n as reals: here we consider
a natural number n as equal to the set {0,...,n — 1}, which clearly is a real
according to our definitions. We also will, on several occasions, identify the
natural numbers with the finite ordinals: the set N and the ordinal w refer to
the same object.

The classes P, NP, PSPACE, etc. will always refer to the infinite time
variants of these problems: no illusions about any breakthrough in the usual

P L NP problem should be entertained. Other than this, the notations in this
thesis will be in accord with the standard notations.

Whenever we say that something happens ‘cofinally often’ before a certain
ordinal «, this means that for every ordinal 8 < «, there is an ordinal v with
8 < 7 < «, such that the event happens at ~.

Besides the usual and familiar notions of ordinal addition and multiplication,
in a few cases we will also use the less common notion of ordinal subtraction:

Definition 1.1. If @ and g are ordinals, we say that « — § = 0 if a < 3, and
if « > 3, then a — 3 denotes the unique ordinal 7, such that §+n = «a.

Notions from set theory, in particular ordinal arithmetic, definitions by or-
dinal recursion, and proofs by ordinal induction, will be used quite freely in this
thesis.

We will use the letters a,b,d, e for finite sequences of Os and 1s; A, B,C
for arbitrary sets; i,k, m,n for natural numbers; v,w,z,y for reals; f,g for
functions; S, T for Turing machines; and «, 3,7, 6 for ordinals.

Chapter 2

Infinite time Turing
machines

In this chapter, we will start by defining the standard model of infinite time
Turing machines, which is essentially the same as the model described in [HaLe].
Following that, we will consider a number of variations on this model, differing
from the standard model in various ways: for instance, we will define machines
with a different number of tapes, machines with a different set of symbols that
could be written on the tape, and machines with a different type of operation,
and discuss a number of equivalence results.

2.1 The standard model, I'TTM,

The hardware of an infinite time Turing machine will be mostly identical to
that of a regular Turing machine, with the main difference that, in the standard
configuration, an infinite time Turing machine uses three tapes instead of one—
an input tape, an output tape, and a scratch tape. The computation, on the
other hand, differs in the important sense that we allow an infinite time Turing
machine to continue and finish, in principle, computations at any ordinal stage,
by means of special rules for the computation at limit ordinals. Definition 2.1
below will be effectively equal to, but more precise than, the one given in [HaLe].

Definition 2.1. An infinite time Turing machine, a Hamkins-Kidder machine,
or an ITTMy machine is defined by a tuple of the form

T - (Q7 5a an qlim) qf)

where

e () is a finite set of internal states. For the sake of convenience in a number
of proofs, we assume that Q C {g; : i € N}.

e ¢ € () is a special state called the initial state.
® giim € Q, with qum # gs, is a special state called the limit state.

e g € Q, with ¢f # ¢s and ¢r # qum, is a special state called the final, or
halting, state.

e §:(Q\{gr}) x {0,1}® — @ x {0,1}3 x {L, R} is a (total) function, called
the transition function. L and R here are fixed objects standing for left
and right respectively.

Unlike regular Turing machines, which represent functions on the natural
numbers, I'TTMs will represent functions over subsets of N, which in this thesis
will be called ‘reals’. We will now define the operations on an infinite time
Turing machine using ordinal recursion. Four different definite operations will
be defined:

e ¢ (x) denotes the state a machine T is in at stage 3, having started from
the input x.

e hI(x) denotes the position of the head at stage a, having started from the
input z.

. cZTa (x), where i € {1,2,3}, denotes the content of tape i at stage «, having
started from the input 2. Also, we will define another operation, ¢/ (),

which will be defined as 1 if n € ¢/, (x), and 0 otherwise.

e Of the three tapes we have, the first one will be called, and play the role
of input tape, and the second one will be used as output tape.

e We will regularly use the term the snapshot at « to refer to the tuple
of values (g7 (2), KT (2), T o (1), ¢ o (2), cF o (2)):

Definition 2.2. For any infinite time Turing machine 7" and any input x € R,
we define the operations ¢Z (z), hI(z), I (z) as follows for all ordinals «, using

» Vi
transfinite recursion:

o If o =0, we set ¢} (x) = g5, h(z) = 0, ¢ ,(2) = z, and ¢, (z) = 0 for
i€{2,3}.

o If there is some ordinal 8 < «a such that qg(x) = g, then ¢I(x), hI(x),
and ¢, (x) for i € {1,2,3} are undefined.

e Otherwise, if « is a successor ordinal 8+ 1, and hg(a:) = h, we look at the
value of the transition function

(q/’ (ala az, a3)7 A) = 5(qg('r)a (C{,h,ﬁ(w)’ Cg:h,,@(x)? C;h,ﬂ(x)))

and set:

/

— a5 (z)=¢

—hI(z) =h+1if A=R; hl(z) =h—1if A =L and h > 0; and
hI(z)=hif A= L and h = 0.

— For each i € {1,2,3}, cl(z) = cg(x)\{h} if a; =0, and cg(x) U {h}
if a; = 1.

e Otherwise, if « is a limit ordinal, we set ¢ () = qum, h%(z) = 0, and for
each i € {1,2,3}, cg(z) ={n e N:limsup,_gzcf, ,(z) =1}

7,

Taking into account the given interpretations of the operations ¢, h”, and
¢, Definition 2.2 can be read as follows: to perform an infinite time Turing
machine computation with a machine 7" on the real =, we start at the initial
state gs, with the head at position 0, with the real = on the first tape, and the
second and third tapes still empty. At successor ordinals, just like in the case of
regular Turing machines, we read the content each of the tapes at the current
head position, and find the appropriate transition using the function ¢ from the
current state ¢ we are in, and the content aq, as, az of the tape cells we are in.
The value of 6(q, (a1,as2,as)) now determines to which cell we move, what we
should write on the tape cells we just read, and whether to move the head left
or right. At limit ordinal stages, the head is set to position 0, the machine will
be in the special limit state ¢jim, and the content of each of the cells will be the
lim sup of the content of that cell at all earlier stages.

Like usual, we can, because infinite time Turing machines themselves are
hereditarily finite, assume the existence of a bijective coding function 7 that
assigns to each infinite time Turing machine 7' an unique natural number e.

We can now introduce the notion of halting for infinite time Turing machines,
and the notion of a function computed by an infinite time Turing machine:

Definition 2.3. We say that an infinite time Turing machine 7" halts, or ter-
minates, on input z if there is some ordinal a such that ¢%(x) = g;.

Definition 2.4. For any infinite time Turing machine T, we define the (partial)
function ¢ as follows:

¢ = {(z,y) € R? : 3a(Ord(a) A gL (z) = ¢ A cga(m) =)}

Because there can, as a result of the definition, only be one ordinal « such that
qX(x) = g, there can for any x be at most one y such that (z,y) € ¢r.

Furthermore we will, as usual, write ¢r(x) | if © € dom(¢r), and ¢r(z) 1
if x ¢ dom(¢pr). It follows directly from the definitions that ¢r(z) | is true if
and only if T" halts on input =x.

Definition 2.5. We say that a function f is computable by an infinite time
Turing machine if there is some infinite time Turing machine T', such that f =

or.
We now introduce a simple variation on the ITTM, model:

Definition 2.6. An ITTMg with stay option is defined identically to the ITTMj
model, with the following exceptions:

1. 6 now is a function from (Q\gf) x {0,1}? to @ x {0,1}3 x {L, R, 0}

2. In the definition of the operation hZ (w) at successor ordinals 8+ 1, if we
again have that hf(z) = h and

(q/a (a1,az,a3),A) = 5(‘15(36), (C1T,h,ﬂ($)a Cg:h,ﬂ(x)? C;{,h,g(l')))
we add the condition that, if A = 0, then hL(x) = h.

Proposition 2.7. For any function f, f is computable by an ITTMy with stay
option if and only if it is computable by an ITTM.

Proof. Say, the function f is computed by the infinite time Turing machine T
with stay option, so f = ¢r. We now construct a new infinite time Turing
machine, 77, in the following way:

1. Say, k = max{i: ¢; € Q}. We now set Q' = Q U {qi+r : ¢; € Q}. In other
words, the new set of states)’ will contain all of the states in @ as well
as, for every state ¢; € @), another state q; .

2. The special states g, qiim, and g¢ of T refer to the same elements in Q' to
which they referred in @ in T.

3. We construct &' from 4 as follows: for any ¢; € Q, and any a € {0,1}3,
such that the third component of 6(g;,a) is L or R, ¢'(g;,a) will be equal
to 6(gi,a). For any ¢; € @, and any a € {0,1}3, such that §(¢;, a) is equal
to (gj,b,0), we set ¢'(g;,a) to (qx+j,b, R). Finally, for any gy, i.e. any
element of Q'\Q, we set §'(qx+i,a) = (¢, a, L).

In other words, for every existing state ¢;, we have constructed a new state
qr+i such that, if we ever find ourselves in ¢x4; during the computation, the
machine will leave the tape content as it is, move the head left, and go on to
state ¢;. The new machine 7" thus simulates the stay option in a move from g;
to g; by first moving the head right, changing the tape content accordingly, and
going on to state g1 and then doing nothing except for going left again, and
going to g;. It should be clear that this new machine indeed simulates the stay
option.

For the other direction, the result is immediate, as any standard infinite time
Turing machine also fulfils the definition of an infinite time Turing machine with
stay option. O

Analogues of this proposition will also work for all of the other variations of
infinite time Turing machines that will be introduced later on.

2.2 ITTMgy-machines with variations in the tapes

In the model defined in section 2.1, we defined infinite time Turing machines
as consisting of exactly three tapes. One might wonder if the computational
abilities of infinite time Turing machines are somehow affected if we use less
tapes, or extra tapes; and/or if we add extra scratch cells that are not part
of any tape. Many of these questions have been dealt with in [HaSe], with a
number of equivalence results, and one striking non-equivalence. To begin with,
we need to make precise what we mean with ‘an infinite time Turing machine
with n tapes and m scratch cells’:

Definition 2.8. For any m > 1, and any n > 0, ITTMgs with m tapes and
n scratch cells (or, as we will alternately call them, ‘flags’) will be defined
identically to the model defined in section 2.1, with the following exceptions:
the transition function § will now be a function from @ x {0,1}™*" to Q x
{0,137+ x {L, R}. We again recursively define the operation ¢/, (x) for the
content of tape i at stage o on a computation starting from z, and now introduce
a new operation g:a (z) for the content of the ith scratch cell at stage « on the
computation starting from x. The operation at the successor ordinals will now

take into account the contents of all the tapes at the position of the head, as
well as the scratch cells (which are unaffected by the position of the head), and
again move left or right. The content of all the cells on the tapes at limit stages,
and all scratch cells, will again be defined as the lim sup of the earlier stages of
those cells.

In the special case where m = 1, the first (and only) tape will take over the
role of output tape; in all other cases, the second tape will be the output tape,
as in the earlier definition. Whenever we simply mention ‘an ITTM, with m
tapes’, we mean an ITTM, with m tapes without any scratch cells. We also
define ITTMgs with m tapes and n scratch cells and a stay option like in the
three-tape case.

Proposition 2.7 generalizes to machines with m tapes and n scratch cells:

Proposition 2.9. For any m and any n, a function f is computable by an
ITTMy with m tapes and n scratch cells if and only if it is computable by an
ITTM, with m tapes and n scratch cells and a stay option.

Proof. The proof of Proposition 2.7 works if we replace each occurrence of {0, 1}?
with {0, 1}m+n, O

Also, it is easy to see that scratch cells can be simulated with two extra
tapes:

Proposition 2.10. If a function f is computable by an ITTMy T with n tapes
and m > 1 scratch cells, then it is also computable by an ITTMy T" with n + 2
tapes and m — 1 scratch cells.

Proof. We use the first cell of the n + 2nd tape to simulate the scratch cell.
Furthermore, at the first w stages of the computation, we fill the n + 1st tape
with 1s. At stage w, we read a 1 at the first cell of the n + 1st tape while in the
limit state, and replace it again by a 0, never to change it back afterwards, and
start the actual computation. Whenever we need to access the scratch cell, we
write a 0 on the n + 1st tape at the current head position, move left until we
see the other 0 on that tape, access the scratch cell and perform any necessary
computations, move right again until we are back at the 0 signifying the head
position, and replace it again with a 1. When we find ourselves in the limit
state reading a 0 on the second tape, we just go on with the simulation, with
the knowledge that this situation corresponds to the simulated machine being
at a limit state.

In the case where n = 1, we furthermore need to make sure that the output
of the three-tape simulation of the one-tape machine appears on the second
tape. To do this, in the first w steps we copy the contents of the first tape to
the second tape while filling the first tape with 1s. From point w onward, we
then use the first tape to hold information about the current head position and
the beginning of the tape, and use the second tape to simulate the contents of
our original tape. O

With this definition, we can now turn to the following theorem, one of the
main theorems of [HaSe]:

Proposition 2.11. For any f, f is computable by a regular ITTMy (with three
tapes and no scratch cells) if and only if f is computable by an ITTMy with one
tape and one scratch cell.

10

Proof. [HaSe, Theorem 2.3] shows us that an ITTM, with only one tape and
one scratch cell can compute any function that is computable by a standard
ITTMy. For the other direction, Proposition 2.10 shows us that any function
that is computable by an ITTM, with one tape and one scratch cell is also
computable by an ITTMg with three tapes. O

Proposition 2.12. For any n > 2 and any function f, f is computable by an
ITTMq with n tapes if and only if it is computable by a regular ITTM.

Proof. See [HaSe, Corollary 2.4]. O
We can obtain an even stronger, and more general, result:

Proposition 2.13. For any n and any m, where n+m > 2 and m > 1, and
any function f, f is computable by an ITTMy with m tapes and n scratch cells
if and only if it is computable by a regular ITTMj.

Proof. First, note that it is either true that n > 1 and m > 1, in which case
it follows from Proposition 2.11 that every function computable by a standard
ITTM, can be computed by an ITTMy with n scratch cells and m tapes, simply
by ignoring any extra tapes we might have; or it is true that m > 2, in which
case the same argument can be applied to the result of Proposition 2.12.

We still need to show that for any such n and m, a function that is com-
putable by an ITTM, with n scratch cells and m tapes can also be computed
by a normal ITTM,. Here, repeatedly applying Proposition 2.10 gives us that
an ITTM, with m 4 2n tapes and no scratch cells can compute every function
f that is computable by an ITTMy with n scratch cells and m tapes. Now
Proposition 2.12 yields us the result that f can also be computed by a standard
ITTMq with three tapes. O

In stark contrast to the above equivalence results, we have the following
surprising difference between one-tape ITTMjys, and three-tape ITTMgs:

Proposition 2.14. The set of functions computable by ITTMgs with only tape
is strictly smaller than the set of functions computable by ITTMys with 3 tapes.

Proof. See [HaSe, Theorem 2.1]. O

In [HaSe], it is further noted that the set of functions computable by ITTMgs
with only one tape is actually only slightly smaller than the set of functions
computable by a regular ITTMg: it is shown that, for any function f, if f is
computable by an ITTM, then 1% f (that is, the function g, such that 1 € g(x)
for all z, and z + 1 € g(z) if and only if x € f(z)) is computable by an ITTM,
with only one tape. The main issue at hand here is that the one-tape machines
are not closed under composition. To see that this must be the case, consider the
following argument: if they were closed under composition, we could of course
first compute 1 % f, and compose this function with the ‘move everything left
one state’ function (which is easily computable even by a one-tape machine) in
order to obtain f. But there are cases where 1 * f is computable by a one-tape
machine while f is not, so we cannot have closure under composition. The issue
at hand here really seems to be a matter of a lack of space.

In summary, we find out that we can change the number of tapes, and the
number of scratch cells, in a large number of ways. Most importantly, we can,

11

when giving a computation, always add scratch cells and extra tapes at will,
without fundamentally affecting the computational power of infinite time Turing
machines. Just about the only thing that cannot be done without causing any
problems, is reducing the number of tapes to one without adding any scratch
cells.

2.3 ITTM;: different rules at limit points

Other than changing the number of tapes and possibly adding one or more
scratch cells, we can also conceive of other modifications in the infinite time
Turing machine architecture: for example, we may consider different operations
at limit states. In this section, we will introduce the ITTM;-architecture, in
which we get rid of the special limit state, and instead let the state gL (w) at
limit ordinals a be determined by the history of earlier visited states.

Definition 2.15. An ITTM; machine and its operations are defined identically
to the earlier ITTM, machines, with the following differences:

e There is no limit state qim.

e During the computation from w by a machine T, if we are at a limit
stage a, the current state g (w) will be defined as the limsup of all the
earlier states qg(w) : B < «. Because of this extra requirement, that
depends on the numerical value of the states, it becomes essential that the
earlier requirement that elements of @ can always be identified by natural
numbers, indeed holds.

Again, we define ITTM; machines with stay options, and ITTM; machines with
n tapes and m scratch cells analogously to how these variants were defined in
the ITTM, case.

Also for these ITTM; machines, and the variants with n tapes and m scratch
cells, an analogue of Proposition 2.7 holds true:

Proposition 2.16. For any m and any n, a function f is computable by an
ITTM; with m tapes and n scratch cells if and only if it is computable by an
ITTM; with m tapes and n scratch cells and a stay option.

Proof. The construction from Proposition 2.7 here also works, if we replace
each occurrence of {0,1}% with {0,1}™*" and leave out the clause about the
limit state. We just have to make sure that we rename the original states so
that they remain in the same order as they were, and that they all have higher
identifying numbers than the newly made states. Because of this, at a limit
stage, we always will find ourselves in the ‘correct’ state corresponding to the
set of original states, and the simulation will be carried out as intended. O

Beyond this, on a first glance, this modification seems to be quite restrictive,
and not to make things easier in any way: whereas in the earlier defined ITTM,
machines a program could always ‘see’ whether it was in a limit state or not,
we now seem to have lost this ability, because we have gotten rid of our limit
states. As of yet, we have not yet proven that this is indeed the case: we may
try to tackle this problem by using special ‘signal’ states and/or special flags

12

to detect limit states. Of course, just like in the case of ITTMy, we first need
to establish that we can add flags and extra tapes, while preserving the same
range of computable functions.

2.4 Equivalence results for I[TTM; and variants
thereof

As it turns out, in the case of ITTM; machines, we can again prove a number of
equivalence results, taking a significant amount of inspiration from the theorems
in [HaSe]. We start out by defining the computable join @ of two reals z and y
as usual:

Definition 2.17. If x and y are both reals, we say that:
rdy={2n:neztuU{2n+1:n €y}

We also need a notion that is more general than the earlier defined notion
of a functional computation on an infinite time Turing machine, which allows
us to consider operations by infinite time Turing machines from n-tape inputs
to n-tape outputs, rather than only functions on the reals:

Definition 2.18. We define an operation on an n-tape infinite time Turing
machine from 1,...,x,, using the definite operations ¢”, ¢7, AT, by setting
c{o(xl,...,mn) = x; for all i« € {1,...,n}, and then proceeding as in the
case of a computation from a single real. The operations will be described
by functions ¢, such that ¢r(x1,...,2,) = (Y1,-..,Yn) if & is the ordinal such
that qg:a(xl,...,a:n) = ¢, and cgja(arl, coyxy) =y, foralli € {1,...,n}, and
Yr(x1,...,2,) T if there is no ordinal satisfying this requirement.

With this definition, we will first provide several lemmata, all establishing
the existence of certain operations for ITTM;s with n tapes. After that, we
return to the question whether ITTM;s with varying numbers of tapes have
equivalent computing powers.

On a first glance, even a very simple operation like moving the tape contents
right one cell, seems problematic. A machine that spends the first w steps of
the computation moving the tape contents right one cell is easily constructed,
but we also need to be able to recognize when this operation is done. For this,
in the next proof, and in many of the following ones in this chapter, we will
make use of a technique that enables us to recognize limit states.

Lemma 2.19. For any n > 1, there is an ITTM;y T with n tapes, computing
an operation ¥ such that, for all reals T1,...,Tpn, Y(T1,...,2,)=({k+1:k €
1}ty {k+1:k€x,}).

Proof. The general idea is to make use of a number of special ‘signal states’ in
the set @, and construct the machine so that we are certain that, if one of these
signal states is visited at a successor ordinal stage, it will always read one thing
on the tape, whereas, if one of these states is visited at a limit ordinal stage, it
will read another thing. In this proof, for example, we know that at position 0
of the tapes, we have the content (0,...,0), and construct the machine so that,
if a signal state is visited at a successor ordinal stage, it will always read a 1

13

on the first tape. Moreover, we can make sure that, at a limit ordinal stage,
we will always find ourselves in one of the signal states by making sure that at
least one of these stages will be visited cofinally often, and by making sure that
all signal states have higher identifying numbers than non-signal states.

Having established this general technique, we can now proceed with the
actual computation of the operation in the following way. The set @ of our
machine T will contain the following states:

e For each (aq,...,a,) € {0,1}", a state q[4, a1, ..., a,].

e For each b € {0,1}, and each (ay,...,a,) € {0,1}", a signal state
q[siga, b, a1, ..., ap].

e An initial state ¢s, and a final state ¢, separate from the other states.

We furthermore ensure that the signal states are all assigned the highest identi-
fying numbers: because of this, we can be certain that, if at a limit stage both
signal states and non-signal states have been visited cofinally often, we will find
ourselves in one of the signal states.

We now define the transition function ¢ as follows. For all (ai,...,a,) €
{0,1}", and all (by,...,b,) € {0,1}", we define:

8(gs, (a1,...,an)) = (¢lA,a1,...,a,],(0,...,0),R)
0(q[A a1, ... a,],(b1,...,bn)) = (q[sig,a1,b1,...,b0,],(L,a2,...,a,),0)
0(qlsiga,a1,b1,...,b0n], (1,a2,...,ay)) = (q[A,b1,...,by], (a1,...

d(qlsiga, a1, ... an],(0,...,0)) = (g, (0,...,0),0)

It should be noted that this function is not in fact total on the domain
(Q\gr) x {0,1}™: § is not defined on ¢[sig4, a1, ..., a,], (0,ba,...,b,) if one or
more of the b;s are 1 whereas. We can however extend this § in any way we like
to a total function, and the precise way of doing so will be irrelevant, as these
transitions will never occur in the computation. This remark can be extended
to most of the later proofs where complete descriptions of infinite time Turing
machines are given.

It is fairly easy to see that this machine performs the desired operation.
Starting from state g5, we will first visit a state from the A-group, then a state
from the sig 4-group, then again a state from the A-group, and so on, each time
moving the content of the tape at the current position of the head right one
step. Also, each time we are in a state from the sig 4-group at a stage below w,
we will read a 1 on the first tape, as a direct result of the construction.

At stage w, we will once again find ourselves in a state from the sig 4-group,
but this time we read a 0 on the first tape, signifying that we are done with the
operation, and we move to the final state. O

Lemma 2.20. For any n > 1, there is an ITTM; T with n tapes, computing
an operation ¥ such that, for all reals x1,...,x,, ¥(x1,...,2,) = ({2k : k €
1}, ...,{2k: k € x,}) as long as 0 € x;.

Proof. Consider a machine T" where the set () contains the following states:

e For each (ai,...,a,) € {0,1}", a state ¢[B, a1, ..., an).

14

e For each b € {0,1}, and for each (ai,...,a,) € {0,1}", a signal state
q[sigg, b, a1,...,an).
o States q[A], ¢[C], ¢[D], and ¢[E], another signal state ¢[sig-], and two

states g5 and ¢r separate from all the other states.

Of all these states, we make sure that the signal states are assigned higher
identifying numbers than the rest of the states, and that g[sig] is, in turn,
assigned a higher identifying number than all other signal states. Beyond this,
the exact ordering of the states does not matter.

We can now define the transition function § as follows. For all (aq,...,a,) €
{0,1}", and all (by,...,b,) € {0,1}", we set:

5(gs, (a1, ...,an)) = (qlA], (a1,...an), R)
0(q[4], (a1,...,by)) = (g|B,a1,...,a],(1,...,1),R)

0(q[B,a1,...,an], (b1,...,b,)) = (¢[sigg, a1, b1,...,b,],(0,a2,...,a,),0)
0(qlsigg, a1,b1,...,bs],(0,a2,...,a,)) = (q[B,b1,...,bn], (a1,...,a,), R)
d(q[sigp, a1,b1,...,b,),(1,a2,...,a,)) = (¢[C], (1,a2,...,a,), R)
5(4lCY, (0, ., 0)) = (glsigc); 0, . 0),0)

6(q[C],(1,...,1)) = (q[E],(0,...,0), R)
d(qlsige], (:0)) = (¢[D], (0,...,0), R)
5(q[81gc}7(1,a2,... n)) = (g, (1,a2,...,a,), R)

fs
q[D], (a1, ..., an)) = (4[C], (ay, ...
Q[E]a(aly"'aan)) = (Q[] (a17"'7a7l)
It now remains to be seen that this machine indeed performs the desired

computation. For this, we will make a number of claims, which in combination
establish the desired result.

5(
5(

Sublemma. With T, n, and x1,...,T, as above, and 0 € x1, the following are
true:

1. For each k € N with k > 0, and each i € {1,...,n}, ¢, (x1,...,20) =
2m:m<kAmexzU{2k—1}U{m+k:m >kAm € x;}; and
qF (w1,...,2,) is a state from the sigg-group.

2. For each k € N with k > 0, the cells at positions with indexi € {0,...,2k—
2} do not change between stage w -k and w - (k + 1).

3. g (@1, ..., z,) = qlsige], and for eachi € {1,...,n}, ¢l .(z1,...,2,) =
{2m:m € z;}.

Proof. To start, we observe that there is no transition defined in & that ever
moves the head left, and that the two transitions that do not move the head will
always be followed by another transition that moves the head right. Because
of this, it follows, for any k,m € N, that h5k+2m > m, and moreover, that
cfp,w_,ﬁzm = CZ:p,w~(k+1) forallp < m and alli € {1,...,n}.

We will prove the first claim by induction, first showing the base case where
k =1, and then proving the case k = m + 1 from the assumption that the claim
holds for all k € {1,...,m}.

15

From the initial state, the machine will directly move to state q[A], where
it will write down 1s on all tapes at position 1. From there, the computation
continues with the sequence ¢[B,...] — ¢[sigg,...] — ¢[B,...]..., moving the
content of each position of each tape, starting with index 1, right one step.
Because the set of all states in the sigp-group is visited cofinally often before
w, and because it is a finite set of states, at least one of these states is visited
cofinally often. The only other states that might be visited cofinally often before
w are the states in the B-group: however, because they have a lower identifying
number than the states in the sigg-group, it is certain that ¢l is a state from
the sigg-group. As for the content of the tapes at stage w, it follows that
clo={2m:m<1Amez}U{1}U{m+1:m>1Am e x;}, from which it
is immediate that the first claim holds for the case k = 1.

Now assume that the first claim holds for all elements of {1,...,k}. We
thus know that quTNC is a state from the sigz-group. Now let p be equal to k+ 1.
Fromc!l ,={2m:m<kAmez;}U{2k—1}U{m+k:m>kAme z;} it
follows, that for any r with < k, all the cells at position 2r — 1 are 0 at stage
w - k. Now the computation will go from some cell from the sigz-group at stage
w - k, where it reads a 1 (because 0 € x1), to ¢[C], and alternate between ¢[C],
q[sigo], and ¢[D] until it reads a sequence of ones at position 2k — 1. At this
point, the 1s will be erased, and the head will be moved two more steps to the
right, leaving the content at position 2k intact. Here, at position 2k + 1, a new
sequence of 1s will be written down, and like in the first w steps, the computation
continues by moving the content of every cell from position 2k + 1 onward one
cell to the right, while visiting only states from the B-group and states from
the sigp-group. It thus follows again, that qg(k_s_l) is a state from the sigp-
group. Moreover, we have that c;f’:w.(kﬂ) ={2m:m<kAmex;}U{2kif ke
it U{2k+1}U{m+k+1:m>k+1Am € z;}, which is easily identical to
{2m - m<k+1Amez;}U{2(k+1)—-1}U{m+k+1:m>k+1Amé€Ez;}.
So the first claim also holds for the case p = k + 1, and hence must hold for
all k € N with k£ > 1. For the second claim, it is easy to see that, during the
computation between w-k and w-k+ 1, the head is first moved towards position
2k — 1 without changing anything. Because the head never moves left, it follows
that the cells at positions indexed {0,...,2k — 2} are not changed during this
part of the computation.

For the third claim, note that ¢, , = g[sig¢] for all k > 2, so ¢[sigy] is
visited cofinally often before w?, and hence qu = ¢[sige]. Furthermore, the
second claim implies that, for each & € N with k£ > 0, the cells at positions with
index i € {0,...2k — 2} do not change between stage w - k and w?. Thus, the
value of the cells at w? will be equal to the stabilized positions, and it is easy
to see that this implies that c;fwz (X1, mn) = {2k : k € 2;}. O

It follows directly from the above sublemma, that T performs the desired
operation . O

Lemma 2.21. For any n > 1, there is an ITTM; T with n tapes, computing
an operation v such that, for all reals x1,...,Tn, Y(x1,...,2n) = {k:k+1€
1}, .. {kk+1ex,}).

Proof. Consider a machine T where the set () contains the following states:

16

e For each (aj,...,a,) € {0,1}", a state ¢[0,B,a1,...,a,] and a state
q[1,B,ai,...,a,].

o A state q[4], a state ¢[0, C], a state g[1, C], and two signal states ¢[0, sig]
and ¢[1, sigg].

e An initial state ¢; and a final state ¢¢, both separate from the other states.

Again, we will ensure that the signal states ¢[0, sigp] and ¢[1,sigg] are assigned
the highest identifying numbers. We now define the transition function § as
follows. For all (ay,...,an) € {0,1}", and all (by,...,b,) € {0,1}", we set:

3(qs, (a1, ... an)) = (q[4], (a1,...,a,), R)
0(q[A], (0,as,...,ay,)) = q([0,B,0,az,...,a,],(1,...,1),
8(q[4], (1,as,...,a,)) = q([1,B,1,az,...,a,],(0,...,0),
(¢[0, B, ay,...,ay], (b1,...,by)) = (q[0,sigg, (a1,...,a,), R)

(o9

5(q[17B7a17 s ’an]7 (bh e 7bn)) = (q[lvsigBa (ala e '7an)aR)
)

6(q[0,sigp], (1,...,1)) = (¢[0,C], (1,...,1), R)
6(q[0,sigpl, (0, az, ..., an)) = (g, (0, a2, ..., ax),0)
d(q[1,sigg], (0,...,0)) = (¢[1,C],(0,...,0), R)
0(q[1,siggl, (1,a9,...,an)) = (g, (1,a2,...,ay),0)
0(q[0,CY, (a1,...,ay)) = (¢[0, B, a1, . ..,ay], (1, 1),L)
5(q[1,C, (a1,-..,a,)) = (q[1, B, a1, ...,a,],(0,...,0),L)

We now still need to check that this machine performs the desired computation.
The computation always starts in the state g5, and there moves the head right
one cell without affecting the tape content, while going to state g[A]. With the
head at position 1, in g[A], we distinguish two possibilities: either we read a 1
on the first tape, or we read a 0.

In the case where we read a 1 on the first tape, we go to a state from the
q[1, B, .. .]-group that codes the content that has just been read, move the head
left again, while writing a sequence of Os on the position of the tape with index
1. So, at stage 2, we find ourselves in a state from the ¢[1, B,...] group that
codes the original content of position 1 of the tapes, with the head at position 0.
From this point onward, we can show by induction on the natural numbers, that
for each k: (1) at stage 3k + 2 we are in some state from the ¢[1, B, ...]-group
that codes the original content of the tapes at position k + 1, with the head
at position k, where we write the content that originally was at position k + 1
of the tape, and move right; (2) at stage 3k + 3 we are in state ¢[1, sigg] with
the cell at position k + 1, reading Os that were written there at stage 3k + 1,
and move right again; and (3) at stage 3k + 4 we are in state ¢[1,C] with the
cell at position k + 2, reading the original content of the tape at this position,
replacing it with a sequence of 0s, and moving left again. Moreover, because we
alternate between moving right twice, at stages 3k + 2 and 3k + 3, and moving
left once, at stage 3k + 4, it follows that the cells at any position h € N never
change between stage 3k 4+ 2 and stage w. As a result of all this, at stage w
for every k € N, the original contents of the cells at position k£ + 1 have been

17

written at position k. At stage w, finally, we will be in state ¢[1,sigg], where
we read a 1 on the first tape, and move to the final state.

In the case we read a 0 on the first tape, things go very similar, with the
difference that ¢[0, sigp] now reads 1s in successor states, that ¢[0, C] writes 1s
instead of 0s, and that ¢[0, sigg] will read a 0 on the first tape at stage w. O

Lemma 2.22. For any n > 1 and any ITTM; T with 2n tapes, computing the
operation Y, there is another ITTMy T', with n tapes, computing the operation
Yy, such that, for all reals x1, ..., xon, if Yr(T1,...,2%2n) = (Y1,--.,Y2n), then
wT’(Z‘l ® Tn41s---9Tn S .73271) - (yl S Yn+1s--+-9Yn S an)

Proof. We can carry out this simulation by letting each of the n tapes of the
new machine 7" take the role of two of the tapes of the original machine T'. In
the simulation, the ith tape of the new machine 77, for all ¢ € {1,...,n}, will
be used to store the contents of the ith as well as the i+ nth tape of the original
machine.

The simulation operation itself can be performed in the following way: say, T’
has a set of k internal states @ = {q1, ..., qx}, and 2n tapes. The new machine,
T', with n tapes, will have the following set of states Q’:

e For each i € {1,...,k}, Q" will contain a state g[A,i].

e For each (aj,...,a,) € {0,1}™ and each i € {1,...,k}, @ will contain a
state q[B, i, a;,...,an].

e For each (ay,...,a,) € {0,1}", each i € {1,...,k}, and each A € {L, R},
Q' will contain a state ¢[C, a1, ..., an,1, Al

e For each ¢ € {1,...,k} and each A € {L,R}, Q" will contain a state
q|D, i, Al.

Of all these states, we will say that the states {q[A,1],...,q[A, k]} ‘correspond’
to the original states, and make sure that they are assigned the highest identify-
ing numbers of all the states, as well as that their identifying numbers preserve
the ordering of the original set of states {q1,...,qr}. Also, if the initial state of
T is ¢;, and the final state is ¢;, we set the initial state of 7" to ¢[A,], and the
final state of T” to ¢[A, j].

We now continue by defining the new transition function ¢':

e For each (aq,...,a,) € {0,1}" and each i € {1,...,k}, we set:
8 (qlA,d], (a1, ...,an)) = (q[B,i,a1,...,a,),(a1,...,an), R)

e For each (ai,...,a,) € {0,1}", each (b1,...,b,) € {0,1}", and each i €
{1,...,k}, we first look at

6(qi7(alv"‘vanvbla"'ab’n)) = (ij(cla'~'7Cn7d17~~~»dn)aA)
and then set

6l(q[B7i7a17~-'?an]a(bla"'7bn)) = (q[cacla-'-7cn7j7A]7(d17-~-adn)7L)

18

e For each (ay,...,a,) € {0,1}", each b € {0,1}", each i € {1,...,k}, and
A € {L, R}, we set

3 (q[C, a1, ... an,i,A]Lb) = (q[D,i,A], (a1, ...,a,),A)

e Finally, for each a € {0,1}", each i € {1,...,k}, and each A € {L, R}, we
set:

5/(q[Dviv A]a a) = (Q[A7i]u a, A)

It still remains to be proven that this machine T” correctly performs the
simulation of 7. This will be done, using transfinite induction, in the following

sublemma. We here use the shorthand x for the input reals z1,...,z9, of T,
and the shorthand z’ for the input reals x1 & x,41,. .., T, ® T2, for the input
reals of T".

Sublemma. The following claims hold for all ordinals o, with T, T, n, x, and
' as defined above:

1. If ¢ (@) = qi, then ¢ o(2') = q[A K].
2. 20T (x) = T, ().
3. Forallie{l,...,n}, ¢, o) = clo(@)@cly; ().

4. For all ordinals n < 4 - «, if q[A, 1] is visited at stage n, then n must be
4- 3 for some B < a.

Proof. (1) The case where o = 0: this directly follows from the definitions and
the chosen input of T' and T” respectively.
(2) The case where « is 3 + 1 assume that the above claims hold for the

case 3, so cﬂ_ﬁ(:ﬂ) =cl5(x) @l 5(x), ¢} (x) = qi for some k, and qzlﬁ(x) =

q[A, K], and 2 - hj(z) = hf (z'). Using the shorthand notations h = hf(x)

and h/ = h4T,lﬁ(x’) = 2h, and looking at the individual cells, we furthermore get

¢l gp(@) = cﬂ_@h,(a:/), and], 5, (2) = cﬂ,ah,“(x’) for all i € {1,...,n}.
Now, say, the transition function § gives us:

5(qx, (c{ﬂ)h(x), o cgn,@h(x)) =(q,(a1,...,an,b1,...,by),A))

From the definitions, it will now follow that:

8 (qlA K, (e ap g (@), sl g (2)))
=4 (Q[Avk]7(Cl,ﬁ,h(x)’"'70,71;,5,h(x)))
= (q[B,k, C{ﬁ,h(x)a cee CZ,g,h(x)L (C{B,h(x)v cee cfﬁ,g,h(w))y R)

Because the values of the cells do not change during this step, we will have
¢}y ppin(@) = cly 5, (2) for alli and k. Also, we will have, hj 5, (2') = h'+1
for the head of the machine, and qfﬁﬂ(x’) = q[b, k, clT,ﬁ’h(x), e cf@h(m)] for
the internal states. Looking at the next step of computation, we will get:

5/(Q[kaaC1T,ﬁ,h($),---a Cn.B, r ()], (Cl4ﬂ+1 h’+1()a""C£:4~B+1,h’+1(-r/)))
()], (c

5/(Q[Byk701T,5,h(I),~--a Cn,B,h)], n+1ﬁh(T),. -ng'r;,ﬁ,h(x)))
= (q[C7a17~-~7analaA}7(b17"'7bn)7L)

19

Now, the cells at position h’' 4+ 1 have changed, so that c;j’:;,5+27h/+1(a:’) =0b; for
all i € {1,...,n}. For all k # h/ 41 and all n, we again have cﬂﬁw’k(x’) =

cz:;ﬂ)k(x’). Furthermore, we have qfﬁ_ﬂ(x’) = q[C,aq,...,an,l,A] as well as
hj g4o(x") = h'. For the next step of computation:

8'(qCrar, . an, LAL (g (@), ey o (@)
= 6/(q[ca A1,y 0Qn, l7 A]’ (c{ﬁ7h(x)7 s Cz;,ﬂ7h(x)))
= (q[D,l,Al],(a1,...,a,),A)

Now, the cells at position A’ have also changed, so that cg:;, gean (@) = a; for
alli € {1,...,n}. For cells at position A’ + 1, we still have cﬂ.6+3’h,+1(x’) =b;.
Furthermore, we have hf;ﬂg(m’) = h +V, where V.= -1 if A = L and
W #0, V=0if A=Land ¥/ =0, and V =1 if A = R, and we have
Tes(s) = gD, Al

Because the transition function at the states ¢[D, [, A] will do nothing but
move in direction A, and move to state g[A, 1], it follows that ¢7. (z') = ¢[A,]:
already knowing that g2 (x) = ¢, this fulfils the first claim of the sublemma for
the case av. It also follows that that bl (a') = h4(a’) + 2V, which is easily
equal to 2 - h1(z), fulfilling the second claim of the sublemma.

Finally, the cells: the last step did not affect the content of any of the cells, so
we have cﬂ_avh,ﬂ(x’) = b;, and cﬂ_a’h, (x') = a; for alli € {1,...,n}. For cells
at position k, where k # h' and k # h’ 4+ 1, the content at o has not changed
at all in any of the steps, so cﬂ_%k(x/) = cﬂ_@k(x’). However, from this it
easily follows, because the original machine T replaces its content at position

h with (a1,...,an,b1,...,by,), leaving the remaining cells all intact during the
single step of computation, that the equivalence ¢}, ., (¢') = ¢l (z) ® ¢]\,, ,(z)
indeed holds for 7 € {1,...,n}. In other words, the first three requirements of

the proposition are fulfilled. The fourth claim is immediate from the inductive
assumption and the fact that no state of the type ¢[A,i] was visited at stage
B+1,8+2, 0or 5+3.

(3) The case where « is a limit ordinal. Here we always have that 4- « = a.
Assume gL' () = gi. This means that gy, is visited cofinally often before o during
the computation of T', but it follows directly, with the inductive assumption,
that whenever ¢ is visited at some ordinal 8 < «a, ¢q[A, k] is visited at 4 - § <
a. So g[A, k] is also visited cofinally often before o. Now assume towards a
contradiction that another state, with a higher index, is also visited cofinally
often: because of the construction, this must be some ¢[A4,!] with [> k. But if
q[A, 1] is visited cofinally often by T" before «, then ¢; must be visited cofinally
often by T before «, as g[A,[] can only be visited at ordinals of the form 4 - 3,
and we would have ¢7 (z) = ¢, a contradiction. So ¢1. (') = ¢% (') = q[A, k].
For the second claim of the sublemma, note that because « is a limit ordinal,
hio(a’) =0=2-hl(x).

For the third claim, we have to show two things: (a) if a certain cell in one
of the tapes of T' changes cofinally often before «, then the corresponding cell
of T also changes cofinally often, and (b) if a cell stabilizes at either 0 or 1,
the corresponding cell also stabilizes at the same value. This, however, is a
simple consequence of the fact that, if a certain cell does not change during a
computation of T" between 3 and + 1, the corresponding cell also does not

20

change during the computation of T between 4 - 3 and 4 - 8 + 4; and if a cell
changes once during a computation of T' between 3 and 41, the corresponding
cell also changes exactly once during the computation of T” between 4 - 5 and
4 -3+ 4. The last claim is immediate from the inductive assumption and the
fact that « =4 - «v. O

The original lemma now follows, from the above sublemma, and the fact
that, if T reaches the halting state at «, then T’ reaches the halting state at
4-q. O

Lemma 2.23. For n > 1, there is an ITTM; T with n tapes computing the
operation 1, such that for all reals x1,...,Zn, Y1, Yn, V(T1 D Y1, .., Ty B
yn)={k+1:kexr},....,{k+1:k€x,}), contracting all the x;, discarding
the y;, and leaving an empty cell at the first position.

Proof. We will sketch an algorithm that performs this computation in w time.
The idea is the following: we first move the content of the tapes at position 0
to position 1, leaving zeros at position 0; then move the content of the tapes at
position 4 to position 3, leaving Os at position 4. From this point onward, we
make use of a ‘gap’ of Os, delimited by a 1 at the beginning, and another one at
the end. From this point onward, we go, in each iteration of the computation,
to the right side of the gap, replace the 1s at the end with a 0, remember the
content of the next cell, and put the 1s back two cells right of where they used
to; after this, we go back to the 1s delimiting the left end of the gap, write back
the remembered content, and write down the 1s that delimit the left end one
cell to the right. This process will be continued until stage w, where the tape
content is identical to the desired output. We will again use signal states to
recognize when we are at a limit stage. Whenever we are at a limit stage, we
move to the final state and the computation finishes.
Consider a machine T where the set () contains the following states:

o States q[b], glc], qld], gle], 4[f], alg], qlh]-

e For each (a;,...,a,) € {0,1}", states q[A,aq,...,a,] and ¢[I,aq,...,ay].
o A signal state ¢[sig.], an initial state g5, and a final state g¢.

And define ¢ as follows:

8(gs, (a1, .-, an)), (Q[aaxlw' -axn}v (0,...,0), R)
6((][14,(11, .- 'van]v (ylﬂ cee ayn)) = (q[b]v (zla s 7xn)7R)

6(q[Bl, (a1, -, an)) = (q[C], (a1,.. ., an), R)
6(q[C], (ar, -, an)) = (g[F], (1,...,1), R)
6(q[D], (ay, .., an)) = (¢[E], (1,...,1), R)

5(q[E], (0,...,0)) = (¢[E], (0,...,0), R)
6(qlE], (1,..., 1)) = (¢[F],(0,...,0), R)

(q[F]; (a1 - an)) = (q[G], (ar, ..., an), R)

(qlG], (ar, -, an)) = (glsiggl, (1, ., 1),0),
d(qlsig,], (1,...,1)) = (¢[H], (1,...,1), L)

d(q[H], (a1,...,an)) = (q[L,a1,...,a,],(0,...,0),L)
d(q[I,a1,...,an),(0,...,0)) = (¢[I,a1,...,a4],(0,...,0),L)
0(q[I,a1,...,a,],(1,...,1)) = (¢[D], (a1,...,an), R
d(q[sig,], (0,...,0)) = (g, (0,...,0),0)

~—

Now it remains to be shown that this machine performs the desired computation.
The computation can be divided in two segments: one initial segment, consisting
of of the first nine stages of the computation, and a repeating segment, consisting
of repeatedly visiting the states from groups D until I as well as g[sigy], that
will take up the rest of the computation.

For the first few stages, if 0?70 = (ag,a1,as,...), the computation can be
summarized in the following table. We show the stage we are at, the beginning
of an arbitrary tape, the head position, as well as the stage. To make things
clearer, the position of the head will also be shown in the tape using square
brackets.

« ciTa hl qt

0 [a"],al,a? a3 a*, a®, ab, 0 qs

1 0,[a'],a? a3, a* a, aS,. 1 q[A,dl,...d%)
2 0,a% [a?],a%, a*, a®, ab,. 2 q[B]

3 0’ aoﬂaz’ [a3]3a4’ a5’a6" 3 q[C]

4 0,a°%0a%1,[a"],d%, a,. 4 q[F]

5 0,a%a?1,a% [a%],a,. 5 q|G]

6 0,a°a?1,a*[1],aS,. 5 q[sigs]

7 0,a°a?%1,[a%,1,d5,. 4 q[H)

8 0,a’ a? [1],0,1,a5,. 3 qllai,...,al]
9 0,&0,(12,(14, [0]’1’016, 4 Q[D}

We now go on to make the following inductive claim: consider the function f,
recursively defined on all natural numbers k& > 3, with f(3) =9, and f(n+1) =
f(n)+2n+2. We now claim that, that for each i, and each k > 3, if cZO = 2;BYi,
then:

cg:f(k):{m—f—l:mexi/\mgk}u{ﬂf—l}
u{2m:mex; A2m>2k—-1}U{2m+1:mey; A2m+1> 2k — 1}

In other words, up to position k, CZ £k looks like the desired output; between
positions k 4+ 1 and 2k — 2 it is empty, containing a range of k — 2 zeros; it
contains a 1 at the position 2k — 1, and after position 2k — 1, it looks like x; D y;.
Furthermore, we claim that for each k, q?(k) = ¢[D], and h?(k) =k+1, and we

claim that for all n in between f(k) and f(k + 1), hL > k.

To see that the inductive claim holds for all natural numbers up to k, consider
the following table showing the computation between stage f(k) and f(k+1) =
f(k) 4+ 2k + 2. Here the tape contents between k — 1 and k + 2, and between
2k — 2 to 2k 4+ 1 are shown, and we know, by the inductive assumption, that
there can only be zeros between the positions k + 2 and 2k — 2 of the tapes.
Moreover, these zeros are left intact during this part of the computation: when
T reads zeros in state ¢[E] or any state from the ¢[I,...]-group, it does not

22

change them, but only moves the head left or right, respectively.

a k—1,...,k+2 2k—2,...2k+1 Al qt
7R a,b,[0],0 0,Lcd F+1 4[]
flk)+1 a,b,1,0] 0,1,¢,d k+2 q[E]
fk)+k-3 a,b,1,0 [0],1,¢,d 2k — 2 q|E]
Fk) +k—2 a,b,1,0 0,1, ¢,d % —1 g[E]
f(k)+k*1 aabalao ana [C]vd 2k Q[F]
fk)+k a,b,1,0 0,0,¢,[d] 2k+1 q|G]
fk)+k+1 a,b,1,0 0,0,¢,[1] 2k+1 q[sigq]
Flk) +k+2 a,b,1,0 0,0,[c], 1 % qlH]
fE)+k+3 a,b,1,0 0,[0],0,1 2k—1 qll,c1,..., 0]
fB)+k+4 a,b,1,0 [0],0,0,1 2k—2 q[I,cq,...,cp)
f(k) + 2k a,b,1,[0] 0,0,0,1 k+2 q[l,c1,...,cp]
FR)Y+2k+1 a,b,[1],0 0,0,0,1 k+1 qllci...,cl
F)+2%k+2 abe[0] 0,0,0,1 k+2 ")

The changes on the tape between stage f(k) and f(k) + 2k + 2 consist of the
erasing of the 1s at position 2k—1, the moving of any possible content at position
2k to position k + 1, and replacing any content at 2k + 1 with 1s. From this it
follows that, if we had

czf(k):{m—i—l:mEx,—/\mgk}U{Zk—l}
u{2m:mexz; A2m>2k—-1}U{2m+1:mey; A2m+1>2k—1}

then we now also have

Grgry ={m+1l:mez Am < (k+1)}U{2(k+1)—1}
u{2m:m € x;A2m > 2(k+1)—-1}U{2m+1:m € y; A2m+1 > 2(k+1)—1}

so the first part of the inductive claim holds for the case k4 1. The other claims
follow immediately from a look at the shown part of the computation.

It should be noted that this picture is not entirely accurate in the case
of n — 3: in this case, there is only one zero, as opposed to the two shown.
The only difference here, however, that less zeros will be read, and the stages
[f(kB)+1, f(k)+k—3] and [f(k) + k + 4, f(k) + 2k] of the computation, where
only zeros are read and the tape is moved, are skipped.

The last part of the claim that has just been inductively proven, can easily
be strengthened to hl > k for all n > f(k). This however implies that for every
cell, there is a stage n such that the cell will never be changed after stage n
before w. But now it follows that ¢, = {m +1:m € ¢}, as desired.

Finally, at stage w, we will again be in state ¢[sigs], but this time read a 0,
and move to the final state. O

Lemma 2.24. For all n > 1, the class of operations from n-tape inputs to
n-tape outputs by n-tape ITTM; machines is closed under composition, i.e. if
there is a n-tape machine S computing g, and a n-tape machine R computing
YR, there is a n-tape machine T computing Yr, such that Yr(x1,...,x,) =
Ys(Wr(x1, ..., Tp)) for all (zq,...,2,) € R™

23

Proof. Say R contains m states named q1, ..., ¢, and S contains p states named
@1s---,qp- To compose these two operations, we need to (a) start out with a
simulation of R, and then, when we have reached the state corresponding to the
final state of R, (b) move the head back to position 0, and (c¢) continue with a
simulation of S. The ‘move left’ part might seem straightforward, but we also
need to know when we have finished moving left, for which we, once again, need
a construction with signal states. Consider the machine 7" with the following
states:

e States ¢[R, 1] for each i € {1,...,m} corresponding to the states of R.
e States q[A,i] for ¢ € {1,...,4} for the moving left.
e States ¢[S,] for each i € {1,...,p} corresponding to the states of S.

If ¢, is the initial state of R, then g[R, j] will be the initial state of T', and if gy
is the final state of S, then g[S, k] will be the final state of T. We furthermore
make sure that the states in the R-group have the lowest identifying numbers;
the states in the A group have higher identifying numbers, and the states in the
S group have the highest identifying numbers. In each group, furthermore the
internal order will be so that ¢[X,i] < ¢[X,j] iff ¢ < j.

We now define the function ¢ as follows:

e For all (a;,...,an),(bi,...,by) € {0,1}™, all j,k € {1,...,m}, and all
A€ {L R}, i

5R(qj, (ai, .. .,an)) = (qk, (bl, N ,bn),A)

we set

6T(Q[R,j]’ (aia .- -7an)) = (q[Ra k]7 (bla .- -vbn)’A)

e For all (a;,...,an),(b;,...,b,) € {0,1}", all 5,k € {1,...,p}, and all
A e {L, R}, if

ds(qj, (@i, - an)) = (qr, (b1, ..., bn), A)

we set
5T(Q[S7j]’ (aia .- '70’71)) = (q[Sv k]v (b17 .- 7bn)7A)

e If ¢ is the final state of R, we set, for all (a;,...,a,) € {0,1}™
or(q[R, k], (as,-..,a,)) = (q[A, 1], (as, ..., an),0)

e For all (a;,...,a,) € {0,1}", we set:

or(qlA, 1], (1, az,. .., an)) = (q[A,4],(0,az, ..., an),0)
or(q[A,1],(0, a2, ..., an)) = (q[4,2], (1, a2, ..., axn),0)
or(q[A, 2], (1, as, san)) = (q[4, 3], (0, az, ;@y),0)
or(qlA; 3], (0, az, ..., an)) = (¢[A,1],(0, a2, ..., an), L)
or(qlA,4],(0,az,. .. an)) = (¢[A, 1], (1, a2, ..., an), L)

24

e If ¢ is the initial state of S, we set, for all (a;,...,a,) € {0,1}™

5T(£][A, 3}’ (17 az, ... 70%)) = (q[S’ k}’ (07 ag, ... van)vo)
or(q[A, 4], (1,aq,...,a,)) = (¢[S, k], (1, az,...,ay,),0)

It is easy to verify by induction that, if g is the final state from R, and we have
q¥(xq,...,2,) = qi and cfa(xl, cooyxy) = y; for i € {1,...,n}, then we also
have ¢l (z1,...,2,) = q[R, k], CZQ(QTL coxp) =y fori e {1,...,n}.

It is also easy to verify, again by induction, that if ¢; is the initial state
from S, and g is the final state from S, and we have for some ordinal 3 that
qg(xl, o) = g[S, j], for all i, cfﬁ(ml, ceeyTn) = Y4, and hg(acl, ceey) =
0; and, for some other ordinal n qg(yl,...,yn) = qr and cfn(yl,...,yn) =

z; for all i € {1,...,n}, then we also have qg_m(ml,‘..,xn) q[S, k], and
cgﬁ+n(az1,...,xn) =z forie{l,...,n}.
In order to complete the proof, we only need to show that, if ¢ (2o, ..., 7,) =

q[R, k] where g[R, k] corresponds to the final state of R, there is some other
ordinal 3 such that qg(mo, .oy &y) = q[S, j], where ¢[S, j] corresponds to the
initial state of .S, where the contents of the tapes is identical at stages o and [,
and the head position at (3 is zero. An inspection of the definition of é7 however
reveals that o + w + 1 is this 5. At stage «, we move from state ¢[R, k] to
state q[A,1]. If, in state q[A, 1], we read a 1 on the first tape, we go to q[A4, 4],
replacing the 1 by a 0, and then back to ¢[A, 1], replacing the 0 again by a 1
(thus restoring the tape to the earlier position), and moving the head left. If, in
state g[A, 1], we read a 0 on the first tape, we go to ¢[A4, 2], replacing the 0 by
a 1, then to ¢[A4, 3], replacing the 1 by a 0 again, and then back to ¢[A4, 1] while
moving the head left (again restoring the tape to the earlier position). When
we are at position 0, we cannot move further left, thus this sequence happens
finally often, and the content of the first cell of the first tape is switched between
0 and 1 cofinally often before o +w. However, if the original content of that cell
is a 0, then ¢[A, 3] is visited cofinally often, whereas, if it is a 1, then ¢[A, 4] is
visited cofinally often. So, at stage a+w, we find ourselves either in g[A, 3] or in
q[A, 4], reading a 1 on the first cell of the first tape. If we are in g[A4, 3], we know
this ‘should’ be a zero, and if we are in ¢[A, 4], we know this ‘should’ be a 1.
We restore the content of the tape which now again has the same contents that
it had at stage a, and go on to ¢[S, j] to start the last part of the computation.

From this, it follows that 17 is indeed the desired composition ¢goygr. O

Proposition 2.25. For anyn > 2, and any f, if f is computable by an ITTM;
T with 2n tapes, then f is computable by an ITTM; T' with n tapes.

Proof. We do this by composing the functions that have been shown to exist
in the Lemmata 2.19-2.24. For each i € {19,...,23}, let ¢; be the function
that has been shown to exist in Lemma 2.7 with respect to n (and, in the case
of Lemma 2.23, with respect to T'). Defining ¢, := ¢21 0 ¢a1 © dog © ¢19 and
@p := (21 © Pa3, We observe that:

a1, . yxn) = {2k kex},...,{2k:k€x,}) = (1 00,...,2,D0)
and that
¢b(x1 @yhaxn@yn) = (xla---7xn)

25

It is now easy to see that ¢p(aa(Pa(x1,...,2,))) is the same function as ¢r.
By repeated application of Lemma 2.24, it follows that there is an ITTM; T’
with n tapes computing this function. O

Interestingly, it turns out that I'TTM; machines with only one tape do have
the full power of ITTM; machines with more tapes. The main reason why the
earlier ITTM, machines with one tape were strictly less powerful than ITTM,
machines with multiple tapes, was that the one-tape machines were not closed
under composition. However, Lemma 2.24 also works in the case where n = 1,
giving the following result:

Proposition 2.26. For any function f, if f is computable by an ITTM; T with
2 tapes, then f is computable by an ITTMy T’ with 1 tape.

Proof. Because none of the Lemmata 2.19-2.24 required the number of tapes to
be larger than 1, the proof of Proposition 2.25 carries over almost directly to
the one-tape case. The only possible complication here, is that in the simulated
machine 7', the output appears on the second tape, so we have to make sure that,
if x @ y appears on the only tape of our one-tape machine after the simulation
of T, this is transformed into y, rather than into z. With all ¢; and ¢, as in
the Proposition 2.25, and defining ¢, := @21 0 P21 © ¢a3 0 19, We observe

Pe(r1 ® Y1) = (Y1)

and it is now easy to see that ¢.(¢12(¢a(z1,...,2,))) is the same function as
¢7. Again, this function is computable by a one-tape machine by repeatedly
applying Lemma 2.24. O

Of course, machines with more tapes can, as always, ‘simulate’ machines
with less tapes:

Proposition 2.27. For any n,m > 1, with n > m, if f is computable by an
ITTM; with m tapes, then f is computable by an ITTM; with n tapes.

Proof. This is extremely simple: given a definition of the machine with m tapes,
we can convert it to a definition of a machine with n tapes computing the same
function, by simply ignoring the extra tapes. O

Theorem 2.28. For any n,m > 1, and for any function f, [is computable
by an ITTM; with n tapes if and only if it is computable by an ITTM; with m
tapes.

Proof. We can assume, without loss of generality, that n > m. That we can
simulate a machine with m tapes by a machine with n tapes, now is immediate
from Proposition 2.27. For the other direction, note that by repeatedly applying
Proposition 2.25 (and, if m = 1, applying Proposition 2.26 once) we can conclude
that we can simulate any machine with m 2P tapes for some p such that m-2P >
n, by a machine with m tapes, and Proposition 2.27 gives us that we can simulate
any machine with n tapes by a machine with m-2? tapes. Thus, we can simulate
any machine with n tapes by a machine with m tapes. O

Finally, we again note that we may always add any finite number of scratch
cells at will:

26

Proposition 2.29. For any n > 1, and for any m > 1, the set of functions
computable by ITTM; machines with n tapes and m scratch cells is equivalent
to the set of functions computable by ITTM; machines with n tapes without any
scratch cells.

Proof. The proof of Proposition 2.10 generalizes to the ITTM; case with mini-
mal modifications. O

2.5 Equivalence of ITTM, and I'TTM;

We now return to the question, whether it is possible to simulate an ITTM;
by an ITTM, and vice versa. It turns out that usage of flags and extra states
indeed allows us to do so, in both directions:

Proposition 2.30. For any function f, if f is computable by an ITTM;, then
f is computable by an ITTMy.

Proof. Given a certain ITTM; T (with three tapes), consisting of n states
qi,---,qn, we can simulate its computation by an ITTMy T’ with three tapes
and n flags and stay option in the following way. The main idea of the simulation
will be to use flags to record how often each of the states is visited and, when
we find ourselves in the limit state, use the contents of the flags to determine
which state to move to. The details of the process will be the following:

Say, the original machine T has states ¢i,...,q,. The new machine T’
will have these states, as well as n new states gn11,...q2, and a limit state
Qlim = @2n+1. For each transition of some g; to g in the original J, we now first
go from g; to gn4x while carrying out the essential modifications on the tape
and moving left or right, as well as writing a 1 on the j + 1th flag. Then, at
position ¢+, we do nothing except for erasing the 1 again and going ahead to
position gx. So, each time a state is visited, the flag corresponding to that state
is toggled to 1 and back to 0 again. When we are in the limit state, we look
at all the flags, and move to the state corresponding to the highest flag that is
set to 1, while setting all of the flags back to zero. It should be clear that this
machine 7" computes the exact same function as the original machine T'. O

Proposition 2.31. For any function f, if f is computable by an ITTMy, then
f is computable by an ITTM;.

Proof. The other way around, if we are given a certain ITTMy T with states
qi,---,qn, again with three tapes, we can simulate it by an ITTM; T’ with
three tapes and one flag and stay option. This can be done in the following
way: in addition to the original states q,...,q,, the new machine 7" will have
n additional states, gn+1, ..., g2n. For any transition from g; to g in the original
machine 7', we now first move from ¢; to ¢n4x, performing all the important
modifications on the tapes and head, and making sure a 0 is written on the flag.
At ¢pik, we will do nothing besides again writing a 1 on the flag, and going
ahead to stage qx.

Because every time one of the original states is visited at a non-limit stage,
it is preceded by the visiting of one of these extra states, and because the extra
stages are numbered higher than the original states, we will, at a limit stage,
always find ourselves in one of these new states. And, because the additional

27

states are visited cofinally often, at limit stages we will will read a 1 on the
extra flag, signaling that we are in a limit state. By reading a 1 on this flag in
one of the new states, we recognize that we are in fact in a limit state, and we
now go on to the special limit state. O

It should be noted that the ITTM; just defined is actually able to ‘see’
whenever it is at a limit stage of the computation. This fact will be used in a
few later theorems!

All in all, it turns out that almost all of the types of infinite time Turing
machines are equivalent with regards to the class of functions they can compute:
the only exception we have, are ITTMgy machines with only one tape and no
additional flags.

Still, this will not be our last word on the equivalence between different
types of Hamkins-Kidder machines: after we have defined the important time
and space complexity classes in chapter 4, we still need to find out whether those
are invariant between the different types and subtypes of machines defined in
this chapter.

28

Chapter 3

Clockability and writability

Two notions that will play an important role in the remainder of this thesis, are
the notion of clockability of ordinals, and the notion of writability of reals as
well as of ordinals. In [HaLe], a variety of theorems about clockable and writable
ordinals are proven, of which we will mention the most relevant ones here. It
should be noted that, in this chapter, we only consider ITTM, machines with
three tapes—in all likelihood, however, invariance of writability, clockability,
etc. between most of the variations from chapter 2 can be easily, but tediously,
proven.

3.1 Definitions

Definition 3.1. We call an ordinal « clockable if there is an infinite time Turing
machine T', such that ¢, () = ¢ or, in other words, that T' reaches the halt
state at time a + 1. Likewise, we call an ordinal « z-clockable if there is an
infinite time Turing machine T that reaches the halting state ¢ at time a+1 on
input z. We call the supremum of all clockable ordinals -y, and the supremum
of all z-clockable ordinals +*.

One may wonder why we have used the ordinal o + 1 here, instead of the
more obvious . The prime reason for this is convention: this was the original
definition in [HaLe], and a lot of the results in earlier papers about clockable
ordinals would need to be modified if we left out the +1 part. Besides this,
an inspection of the definitions in chapter 2 should make it obvious that it is
impossible that ¢ (x) = ¢ for any = and any limit ordinal . In the case of
ITTMy machines, this is because we have ¢ # qum. In the case of ITTM;
machines, it is likewise impossible to first reach ¢¢ at a limit ordinal stage, due
to the fact that, if we are in any state at a limit ordinal stage, this means that
this state has been visited before cofinally often.

Before going on defining the notion of writable reals and ordinals, let us
make precise what we mean when we say that a real ‘codes an’ ordinal:

Definition 3.2. Using an arbitrary pairing function 7 : N x N — N, we can
regard any real a as a relation R on the natural numbers, by considering it
as a subset of N x N. We say that a real a codes an ordinal « if there is an
isomorphism between (Field(R), R) and («, €).

29

Definition 3.3. We call a real v writable if there is an infinite time Turing
machine T, such that ¢ () = v. We call an ordinal « writable if there is a
writable real x coding a. We call a real v z-writable, for another real x, if there
is an infinite time Turing machine T" such that ¢ () = v. We call an ordinal «
x-writable, if there is an xz-writable real coding ar. We call the supremum of all
writable ordinals A\, and the supremum of all z-writable ordinals A*.

Definition 3.4. We call a real v eventually writable if it is writable, or if there
is an infinite time Turing machine T, such that ¢r () 7, and there is an ordinal
«, such that Cgﬂ(@) = v for all 8 > «. In this case, T" at some stage writes
v on the output tape, never to change it afterwards, but without ever halting.
Likewise, we can again define eventually writable ordinals, eventually z-writable
reals, and eventually z-writable ordinals, analogous to Definition 3.3. We call ¢
the supremum of all eventually writable ordinals, and (* the supremum of all
eventually x-writable ordinals.

Definition 3.5. We call a real v accidentally writable if there is an infinite time
Turing machine T, some ¢ € {1,2,3}, and some ordinal «, such that c;fu ®) =
v. Likewise, we can define accidentally writable ordinals, and accidentally x-
writable reals and ordinals, again analogous to Definition 3.3. We call ¥ the
supremum of all accidentally writable ordinals, and ¥* the supremum of all

accidentally x-writable ordinals.

Definition 3.6. For any ¢ € {1,2,3}, and any n € N, we say that cell n of
tape ¢ stabilizes before oo on a computation by T from z, if there is an ordinal
B < «, such that czTnB(:c) =l .(z), and cZTnB(:c) = cl' () for all n with

i,n,a i1,
08 < n < a. We say that an cell has stabilized at an ordinal 3, before «, if
¢l np(@) =cl, (x), and ¢, 5(x) = ¢, () for all n with 8 < 7 < a. In the

latter case, the specification ‘before o’ may be left out if it is clear from the
context.

3.2 Results

It easily follows from the definitions that, for any x € R, A” and (* are countable.
After all, reals can only code countable ordinals, there are only countably many
infinite time Turing machines, and each of them can only write, or eventually
write, one ordinal at most starting from x. Hence A* and (* are unions of
countably many countable ordinals, and are thus also countable. In the case
of v* and X*, this is less obvious: on a first glance, nothing seems to exclude
the possibility that very large, uncountable, ordinals may be clockable, or that
a single machine T" can end up writing a code for every single countable ordinal
accidentally, which would imply that >* = w;. However, it has turned out that
both X% and «* are in fact countable. We will soon give with a reproduction of
[HaLe, Theorem 1.1].
We start by giving the following lemma:

Lemma 3.7. If a and 3 are ordinals, and the snapshot at « is identical to the
snapshot at B, then, for all ordinals n, the snapshot at a + n is identical to the
snapshot at B+ 7.

Proof. This can easily be proven using ordinal induction on 7. O

30

Proposition 3.8. For all ITTMysT and all reals x, there are countable ordinals
a and B, with a < B, such that the snapshots at o, B, and at wy are identical,
and such that for any ordinal p > (3, there is an ordinal § with o < 6 < [3, such
that the snapshots at i and at § are identical.

Proof. Taking any ITTM T and any real z, we define the two following sets,
with respect to the computation by T from x:

A = {(n,i) : cell n of tape i stabilizes before w; }

B = {(n,1) : cell n of tape i does not stabilize before wy }

We furthermore define the function f : A — wy that assigns to each (n,i) € A
the least ordinal i such that cell n of tape i is stabilized at n. Looking at the
range of f, we see a countable set of countable ordinals, the supremum of which
is also a countable ordinal. We set § = sup f[A], and now know that 6§ < wy,
and that all the cells that stabilize before w; are already stabilized at 6.

For each (n,i) € B, we know that the nth cell of tape i does not stabilize
before wy, so it has to change at some point between 6 and w;. We thus can
define the function gy : B — w; that assigns to each (n,i) € B the least
ordinal 7 larger than # such that c;fnn(x) # cznﬂ(x). Setting ap = sup go[B],
we obtain a countable ordinal «g such that every cell that has not stabilized
at 6 has changed at least once (but possibly more often) between 6 and «y.
We can repeat this process, and for each oy define ;11 as the least ordinal
larger than a, such that each cell in B has changed at least once between o;
and ajy1. We now set @ = sup{a; : ¢ € N}, obtaining another countable
ordinal, strictly larger than all «;. The ordinal o must be a limit ordinal,
as it is a supremum of an infinite, increasing, sequence of ordinals, so we get
aX(z) = qim = ¢l (), and AL (z) = 0 = hl (x). For all (n,i) € A, we must
have that ¢l ; (z) = ¢l ; , (), because these cells are all stabilized at 6. For
all (n,i) € B, it is immediate that a cell n at tape i cannot possibly stabilize
before «, because it has to change at least between each «; and each aji1. It
thus follows that ¢ ; 5(z) = 1 = ¢, (), and the result ¢ (z) = ¢f,, (z)
follows.

Starting from the ordinal a that has been obtained, we can repeat the above
process again, to find another increasing sequence of ordinals j3; : ¢ € N, where
every cell (n,i) € B changes at least once between « and [y, and between (; and
Bit1 for all 4 € N, and eventually another ordinal 8 = sup{f; : ¢ € N} at which
the snapshot is again identical to that at w;, and now necessarily also identical
to that at . This concludes the proof of the first part of the proposition.

For the second claim of the proposition, assume towards a contradiction that
it does not hold, and let i > /3 be the smallest ordinal for which it fails. We now
define C' as the set of all ordinals smaller than y at which the snapshot is equal
to that at wy, and 7 as the supremum of this set. It follows that the snapshot
at n itself is equal to that at wy: all of the cells in A must have the same value
as at wi, because n > 3, and all of the cells in B must have the value 1, like
at stage wi, because either n € C, or there are cofinally many ordinals 6 below
7 such that the snapshot at 6 is identical to that at w. Now let Kk = p —n. If
Kk > f — a, it follows that n + (8 — a) < p, and by Lemma 3.7 it would then
follow that the snapshot at n+ (8 — «) is identical to that at wi + (8 — «), and
hence to 8 = a+ (6 — «), and hence to wy, a contradiction. But if k < (8 — «),

31

it would follow from the same lemma that the snapshot at stage u = n+ K is
identical to that at a + x, which is below 3, so again a contradiction. It thus
follows that the second claim must hold for all ordinals larger than S. O

Proposition 3.9. For all reals x, X is countable.

Proof. For all machines T and all reals z, there is, as a result of Proposition
3.8, a countable ordinal (3, such that all reals that are accidentally written by
T from x must be written at some point before 5. So any machine T' can only
accidentally write countably many different ordinals, and, because there are
only countably many different ITTMs, it follows that 3% is a countable union
of countable sets of countable ordinals, and hence countable. O

Proposition 3.10. For all reals x, v* is countable.

Proof. If o is an x-clockable ordinal, then a must be countable as a result of
Proposition 3.8. Because there are only countably many machines T, there
can only be countably many x-clockable ordinals, so v* is a countable union of
countable ordinals, and hence countable. O

It is immediate from the definitions that every writable ordinal is eventually
writable, and every eventually writable ordinal is accidentally writable. So at
the very least, we know that A* < ¢* < ¥%. It has turned out that this result
can be strengthened to * < (* < ¥*:

Proposition 3.11. For any real x, A" is eventually x-writable.

Proof. For any x, consider the relation <, where p<q if ¢,(z) and ¢4(x) both are
finishing computations that output the code for an ordinal, and ¢,(z) codes a
smaller ordinal than ¢q(x). It is clear that this relation has the same order type
as A", and thus is a code for A*. However, we can eventually write this relation,
with an infinite time Turing machine T" that simultaneously simulates the com-
putation of all other infinite time Turing machines on input z, using the first
tape for this simulation. Whenever one of the w many simulated computations,
say, that of ¢, ends, we compare it to all the computations ¢, that finished
earlier on: for any of these g that output a real coding a smaller ordinal than
the ordinal coded by p, we write a 1 at position (g,p) of the output tape, and
for any of these g that output a real coding a larger ordinal than p, we write a
1 at position (p, q) of the output tape. Onward from the point where the simul-
taneous computation of all infinite time Turing machines has simulated every
stage before A* of every machine, we can be sure that none of the simulated
computations will ever finish at any later point, so the output tape stays intact
from this point onward. But exactly at this point the relation p < ¢ is written
on the output tape: it follows that A" is eventually writable. O

Proposition 3.12. For any x, the class of accidentally x-writable ordinals is
closed downward.

Proof. Consider a three-tape machine 7" that accidentally writes some ordinal
a from input z. We can now construct a machine 7" that first stretches the
input = such that, after the stretching operation, we have {3 -k : k € 2} on the
tape, and then simulates the operation of T” using only the first tape. After
each step, we check for each of the three simulated tapes if it contains a real

32

x coding an ordinal «. If it does, we write, in turn, every restriction of x, and
hence, every ordinal 3 < « to one of the two other tapes. But now T" clearly
accidentally writes every ordinal § < «, proving that the class of accidentally
writable ordinals is closed downward. O

Proposition 3.13. For any real x, * is accidentally x-writable.

Proof. Consider a computation that, stage by stage, simulates the computation
of all computations on input z. At any stage, after that step of the simulation
has finished, we check which of the snapshots code ordinals, and write a code for
the union of those ordinals to the output tape. Because every non-halting com-
putation will eventually repeat at some countable stage, all eventually writable
ordinals are certainly written down at the supremum of these stages. So, at this
stage, some ordinal larger than (* is written to the tape. Because the class of
accidentally writable ordinals is downward closed, it follows that {(” also has to
be accidentally writable. O

We can now establish the strict inequality A* < (¥ < X*:
Proposition 3.14. For any real x, * < {* < X*.

Proof. From any infinite time Turing machine 7', we can construct a new infinite
time Turing machine 7", simulating the computation of T', but simulating the
output tape of T on another, non-output tape, and which, after each computa-
tion step of the simulation, checks if one of the simulated tapes contains a real
coding an ordinal « and, if it does, writes a real coding a+1 on the output tape,
except in the case where a real coding av+1 is already on the output tape, where
the output tape is simply left intact. It follows that, if T" eventually writes «,
T’ eventually writes a+ 1, and if T accidentally writes «, T accidentally writes
a + 1. So any successor of an eventually or accidentally z-writable ordinal is
also eventually or accidentally z-writable. Hence A* +1 is eventually z-writable,
but it cannot be z-writable as A* is the supremum of all z-writable ordinals,
and thus A* < (” can be strengthened to * < (*. Likewise, from the fact that
¢® 41 is accidentally z-writable, it follows that (¥ < X*. O

Proposition 3.15. For any real z, we have A* < ~® and, in particular, we
have \ < 7.

Proof. This is a part of [HaLe, Order-type Theorem 3.8]. Say, « is an x-writable
ordinal that is coded by the z-writable real y, and n is a natural number. Now
consider an ITTMy T}, that, on input z, first performs the algorithm that
writes y on the third tape, and then, in exactly w steps, deletes the input tape
while writing {n} on it. After this, it one by one erases the least element from
the field of y, until the point where it finds that n is the least element left on
it, at which it halts directly.

If 8 < «, there is a unique ordinal ng such that the erased part of y up to
ng has the same order type as 3. Now assume that 8 < 7 < «, and consider
the infinite time Turing machines Ty ,, and T, ,, . It is easy to see that the
computation of T), ,,, from x takes strictly longer than the computation of T), ,,
from z: because the order type of the erased part up to ng is smaller than the
order type of the erased part up to n,, T}, », will at some point have ng as least
number on the tape, and continue the computation, whereas 7T}, ,, will halt at
the same stage.

33

Now let f be the function that maps every ordinal § < « to the time it takes
for a computation by Ty, to halt from input z. We now know that if 8 < n, we
will also have f(8) < f(n), with f(5) and f(n) both being z-clockable ordinals.
This in turn implies that there are at least o many z-clockable ordinals, and
hence that o < 4*. Because this argument works for every writable ordinal «,
it can be concluded that A* < ~7. O

A major question that was unsolved in [HalLe|, was the question whether
every clockable ordinal was writable or, in other words, whether v was equal to
A. It was proven later that this is indeed the case. To show this, we first need
the following theorem, which is an adaptation of [We, Corollary 2.1]:

Proposition 3.16. For all reals x, and for any computation by an infinite time
Turing machine T from x that does not halt by time X%, the snapshot at time
(" 1is the same as that at time X*.

Proof. In order to prove this lemma, we will show two things:

1. If a cell has, during the computation of a Hamkins-Kidder machine T', at
time X%, stabilized at either value 0 or 1, the point of stabilization must
be before time ¢*.

2. If a cell is, during the computation of a Hamkins-Kidder machine T', not
stabilized at time X%, and thus has the value 1 as a result of the limsup
operation, it cannot possibly be stabilized at time (” either, and thus must
have the value 1 at time (*, too.

Because, at time X7, all cells are either stabilized, in which case the first claim
applies, or not stabilized, in which case the second claim applies, the two claims
combined imply that the snapshot at 37 is exactly that at (*.

To see that the first claim holds, we assume that a position n on a tape has
stabilized at time X*. This means that there must be some ordinal § < %%,
such that the cell at n never changes anymore after stage §. We will provide an
algorithm that eventually writes §, which proves that § is eventually writable
from x or, in other words, 6 < (*. Consider an algorithm that performs a
simultaneous computation of all Hamkins-Kidder machines starting from the
input z. At every stage of the computation of this algorithm, we obtain a real,
for which we can test if it codes an ordinal. If we continue this process, we will
eventually exhaust all ordinals accidentally writable from x or, in other words,
all ordinals up to ¥*. Whenever this algorithm provides us with an ordinal «,
we simulate the computation of the machine T up to the point of this ordinal,
and check if T is stabilized by time «. If it has, we look for the exact point of
stabilization . If there is no ordinal written on the output tape, we write (3
on the output tape; and if there is an ordinal y on the output tape, we check if
B > p. Ifit is, we write 3 on the output tape, and if it is not, we keep the output
tape as it is. Because eventually we will find some accidentally writable ordinal
that is larger than §, at some point the true stabilizing point § will be written
on the tape; and, because position n of the tape never changes afterwards, there
can be no (temporary) stabilizing point larger than the true stabilizing point,
so ¢ will never be overwritten. It thus follows that § is eventually writable, and
hence that § < ¢*.

34

To see that the second claim holds, we assume that a position n on a tape is
not stabilized by time X*. As of yet, there still is a possibility that this position
is temporarily stabilized at an earlier stage, such as (¥, and destabilizes later on.
To exclude this possibility, we will start by assuming towards a contradiction
that position n is stabilized by time (*. In this case, there must be a point
of stabilization § < (*, which is eventually writable by some machine S with
input = because it is below (*. Consider a machine S which eventually writes
the ordinal § starting from input z. Again, we regard this machine as providing
a stream of reals, some of which may code ordinals, this time noting that the
stream will eventually stop, with the ordinal § being the final ordinal. Each
time we obtain a new ordinal « from the stream, we will simulate the machine
T, looking for the smallest stage 0 where the cell at n changes after this point
«. This 8 must always exist, because « is accidentally writable, and we know
that cell n is not stabilized at the supremum of accidentally writable ordinals
*. Each time we obtain such an ordinal 3, we write it to the output tape.
Eventually, when the ordinal § is passed on as the final ordinal of the stream,
the first ordinal u where n changes after § will be written to the output tape.
Because of the assumption that ¢ is the point of stabilization before (¥, however,
it must follow that p > ¢*. This, however, is contradictory, because we have
an algorithm that eventually writes pu, and (* is the supremum of eventually
writable ordinals from x. So the assumption that n is stabilized by time (*
must be false. Therefore, if a cell is not stabilized at stage ¥* (and, because
of that, has value 1 at that stage), it cannot be possibly stabilized at stage ¢*
either (and, because of that, also has value 1 at stage (*). O

Right now, we still need one more auxiliary lemma to enable us to prove the
equality of A and ~:

Proposition 3.17. If we have ¥* < X%, then we also have * = ~v*.

Proof. Assume, towards a contradiction, that 4* is larger than A* but smaller
than 3%. Then there has to be a z-clockable ordinal § in between A and
>*, which must be witnessed by some infinite time Turing machine T that
reaches the halt state at stage 0+ 1 from input x. Now consider the algorithm
that simultaneously simulates the computation of all other infinite time Turing
machines; at every stage of this simulation, we obtain a real z, and check if it
codes an ordinal. If x codes an ordinal 7, we write a copy of z to the scratch
tape, simulate the computation of T from x, and at every step of this second
simulation, we erase the least element of what is left of the real z. Eventually,
we either end up with an empty field, (if n < 8+ 1), in which case we go on
with the original simulation, and continue the search for new ordinals; or the
simulation of T finishes before x is emptied (if 5+ 1 < 7). In the latter case,
we continue by writing 7 on the output tape, and let the computation halt.
Because the first simulation will eventually generate a code for every acci-
dentally x writable ordinal, the second case will always occur at some point,
and some 7 larger than § will be written to the output tape. This however
contradicts the assumption that 3 > A*, so A* = ~” follows from v* < ¥* . [

Now we can show that, indeed, the suprema of the clockable and writable
ordinals are identical:

35

Proposition 3.18. For any x, we have v* < X% and hence, by Proposition
3.17, \X* =~". In particular, A =y is true.

Proof. Assume towards a contradiction that v* > ¥*. In this case, there has
to be an clockable ordinal that is not accidentally writable. In Proposition 3.16
it was shown that the snapshots at stage (* and ¥* were equal, and by the
assumption that v* > X%, there has to be a computation by an ITTMy T from
x that terminates after 3%. As a result, there has to be a least ordinal o > %%,
such that the snapshot at stage «, in the computation by T from x, does not
occur between (¥ and ¥*. We will now show that there can be no such ordinal
a, 50 ¥¥ < X7 has to be true. Let us call the repeating snapshot that occurs at
both ¢* and »* R.

It follows from Lemma 3.7 that if R occurs at some ordinal 6, R will also
occur at 6 + (X% — ¢*). Also, if 8 < « is a limit of a set A of ordinals where
R occurs, it follows that R must occur at [itself: cells that are stabilized at
either 0 or 1 never change their value between (* and ¥*, and as a result of
8 < a, never change between (* and 3, and cells that are not stabilized are 1
at all ordinals in A, and thus at 3 as well.

Now consider the ordinal @ > ¥*, as defined before. It is impossible that
« is a successor ordinal 8 + 1, because the snapshot at 3 has to be equal to
the snapshot at) for some (* < n < 3%, and hence the snapshot at « must be
equal to that at n+ 1. So « has to be a limit ordinal. Now let ¢ be the limit of
all ordinals ¢ smaller than « such that R occurs at £. By the previous claim, R
has to occur at § itself, and as a result, also has to occur at 6 + (X% — ¢*). But
this is contradictory: either § + (X% — (%) is smaller than «, in which case § is
not the limit we defined it as, or it is larger than or equal to «, but then there
must be (because § < «) some 6 smaller than (X% — ¢*) such that § + 6 = «a.
This however gives that the snapshot at 6 + 6 is identical to the snapshot at
¢* + 6, a contradiction. So the assumption has to be false, and v* < X* must
be true. O

Finally, we note that the class of writable ordinals is downward closed, that
every clockable ordinal is writable, and the classes of writable and clockable
ordinals are closed under addition and multiplication:

Proposition 3.19. The class of x-writable ordinals is closed downward, i.e. if
« is z-writable, and f < «, then B is x-writable. Hence, if a < A\, then « is
writable.

Proof. See also [HaLe, No Gaps Theorem 3.7]. Consider an algorithm that
writes a real z coding a. We can modify this into an algorithm writing a
real coding [, by restricting x to the part isomorphic to the initial segment
B Ca. O

Corollary 3.20. If a is clockable, then « is writable.

Proof. This follows from Propositions 3.18 and 3.19. O
Proposition 3.21. If a and B are clockable, then so are a+ 3 and o - (3.
Proof. See [HaLe, Theorem 3.9). O

Proposition 3.22. If a and 3 are writable, then so are o+ (8 and « - 3.

36

Proof. If a and 3 are writable, there are clockable ordinals n > « and 6 > (.
We have n+60 > a+ (3 and n-0 > a - 3; we also have, by Proposition 3.19, that
1+ 6 and n - 0 are clockable and, hence, writable. Because the class of writable
ordinals is downward closed, it follows that o + 3 and « - § are writable. O

37

Chapter 4

Time and space complexity

In analogy to the case of regular, finite-time Turing machines, complexity classes
such as P and NP have been defined for infinite time Turing machines. In
contrast to the situation for regular Turing machines, a number of important
results, such as P # NP, have been established, sometimes with the help of
descriptive set theory, in particular by reducing questions about the complexity
classes to questions about analytic sets. Some main results can be found in [Sc],
[DeHaSc], and [HaWe]. In this thesis, the definitions relating to nondeterministic
computation and to classes such as NP and NPSPACE, as well as the major
results related to those classes, will be given in chapter 7.

In this chapter we provide definitions for the deterministic classes P and
PSPACE and, following that, consider to which degree these classes stay in-
variant between a number of different variations on the infinite time Turing
machine architecture, such as the type of machine that is being used (ITTM,
or ITTM;), and the number of tapes and flags.

So far, the amount of literature on space complexity issues in infinite time
Turing machines is rather scarce. This can be explained quite easily by the fact
that, on infinite time Turing machines, almost any non-trivial computation will
end up using all the w cells of the tape. The most basic definition of space
complexity—measuring the number of cells used—thus becomes meaningless.
The definitions for the space complexity that will be given in this thesis will
largely reflect one of the definitions given in [Lg].

4.1 Time complexity: definitions

To start with, we will give a few definitions providing a basic notation that can
be used to write down the time it takes to make a certain computation for a
certain Turing machine.

Definition 4.1. If T is a machine that eventually reaches the halting state g,
and « is the unique ordinal such that ¢ (z) = ¢¢, then we say that time(z,T) =
a.

Definition 4.2. For any set A C R, we say that A is decidable by an infinite
time Turing machine, if there exists an infinite time Turing machine T, such
that ¢r(z) =1 for all x € A, and ¢p(x) =0 for all x ¢ A.

38

Definition 4.3. For any function f that assigns an ordinal to every real, and
any infinite time Turing machine T, we say that T is a time f machine if
time(z, T) is defined for all x and, for all z € R, we have time(x,T) < f(z).!
For any ordinal &, we say that T is a time ¢ machine if T' is a time f machine
for the constant function f with f(z) = ¢ for all x.

Using these definitions, we can define the notions of P; machines, P, ma-
chines, and finally, the class P. The following definitions originally appeared in
[Sc]:

Definition 4.4. The family of all sets of reals that are decidable by a time f
machine is denoted by Py. For any ordinal £, P¢ denotes the family of all sets
of reals that are decidable by a time 1 machine for some n < &.

Definition 4.5. The class P is defined as the class P,«. Likewise, we define
the class Py as equal to P for the function f such that f(z) = w{ for all
x, and we define the class P, as equal to Py for the function f such that
f(z) = wi+w+1 for all . As usual, wy here stands for the least z-admissible
ordinal.

Finally, we will define the class of all decidable reals:

Definition 4.6. Dec denotes the class of all sets of reals that are decidable by
any infinite time Turing machine.

4.2 The weak halting problem h

Other than the main complexity classes, it will also be useful for later to have
defined the weak halting problem h, as well as variants of it bounded by an
ordinal specifying the time a computation is allowed to take.

Definition 4.7. We let h denote the set {e: ¢.(e) | 0}. Furthermore, for any
a, we let h, denote the set {e: ¢.(e) | 0 Atime(e,e) < a}

It should be noted that these definitions of the weak halting problem A and
its relativized versions differ somewhat from the usual definitions, which are
based on the mere termination of computations, rather than on termination
with output 0. The main reason why this is done is that it allows for somewhat
more elegant and simpler proofs of a number of theorems. For the purposes of
this thesis, the definitions given here will suffice.

We have the following results about the weak halting problem and its variants
bounded by an ordinal:

Proposition 4.8. h ¢ Dec

Proof. This was proven, using a similar, but different, definition of h, in [HaLe,
Theorem 4.4]. Assume, towards a contradiction, that h € Dec. Then there
must be an ITTM, coded by some number e, computing h, such that ¢.(z) |
for all z. So, it follows that also ¢.(e) |. But now it follows that ¢.(e) = 1, if
and only if ¢.(e) | 0, if and only if ¢.(e) = 0, a contradiction. So the assumption
must be false, and h ¢ Dec. O

1For a discussion on why we used < here (and in the later definitions), rather than <, see
Appendix A.

39

Proposition 4.9. For every ordinal o, we have hy ¢ Poyq.

Proof. See also [DeHaSc, Lemma 8]. Assume, towards a contradiction, that
ha € Pot1. Then there must be an I'TTMj coded by some number e, computing
hea, such that ¢.(z) | with time(x,e) < § for all z, for some 8 < « + 1. This
implies that ¢.(x) | with time(z, e) < « for all z, and thus also that ¢.(e) | with
time(e, e) < . But now it follows that ¢.(e) = 1, if and only if e € h,, if and
only if ¢.(e) = 0, a contradiction. So it must be the case that hy, ¢ Py O

The bounded variants of the halting problem, however, are still decidable in
general:

Proposition 4.10. For every writable ordinal a, we have h, € Dec

Proof. See also [HaLe, Theorem 4.5]. For our h,, the proof is easy as well: we
first write « on the tape, and then, given any input ¢, simulate the computation
of ¢;(i), using the ordinal « to count the number of steps used in the computa-
tion. Either the computation will finish before stage «, in which case we output
1 if the output of the simulation is 0, and 0 otherwise, or we will reach stage «
without having finished, in which case we output 0. This algorithm outputs 1
on exactly the elements of h, that terminate with output 0. O

4.3 Godel’s constructible hierarchy

Later on in this thesis, we will, on various occasions, need to make use of Godel’s
constructible hierarchy. Its main use will be the notion of space complexity that
will be defined in the next section. Here, we will restate the definitions of the
hierarchy, as well as a number of basic propositions which will be of relevance
later on. In doing so, we will largely follow the approach in [Ku].

First of all, we need the notion of a relativization of a formula to a certain
set A:

Definition 4.11. By inductions on formulae, we define the relativization ¢*
of all formulae ¢ to a set A as follows: (a) (z = y)? is (z = v), (b) (z € y)4

is €y, (c) (AY)*is ¢* A, (d) (m9)* is ~(¢?), and (e) (Fzg)? is
Jaz(z € AN ¢P).

Now we can define the definable power set operation D in the following way:

Definition 4.12. D(A) := {B : There is a formula ¢(y, ..., Yy, z) using only
constants from A, and with all free variables shown, and there are elements
V1,...,0, € Asuch that B = {z € A: ¢ (v1,...,0,7)}}

The idea here is that D(A) contains all subsets of A which are definable from
a finite number of elements of A by a formula relativized to A.

Definition 4.13. Now we can define the constructible hierarchy relative to a
set x in the following way using transfinite recursion:

1. Lo[z] = TC(z) (where TC(x) is the transitive closure of x),
2. Loy1[z] = D(Lg[x]), and

3. Lyfz] = U§<a L¢[z] when « is a limit ordinal.

40

Lemma 4.14. For any ordinal a and any set w, Ly [w] is transitive.

Proof. We prove this by ordinal induction. For the base case where a = 0, ob-
serve that Lg[w] is defined as the transitive closure of w, and is hence transitive.

In the case where @ = (8 + 1, consider any element z € L,[w], and an
element y € x. We have to show that y € L,[w]. By definition, because
L,[w] = D(Lglw]), it follows that C Lg[w], and hence that y € Lg[w]. By
the inductive hypothesis, Lg[w] itself is transitive, and thus, for all z € y,
we have that z € Lg[w]. It now follows that we can define y in Lg[a] as
{z € Lg[w] : © € y}. Hence, Ly[a] is transitive.

In the case where « is a limit ordinal, consider any element = € L, [w]. By
definition, there has to be a § < «, such that « € L¢[w]. For any y € z, we
have, by the inductive hypothesis, that y € L¢[w], and hence that y € L [w],
completing the proof. O

Lemma 4.15. For any two ordinals «, 3, such that o < 3, and any set w, we
have that if © € Lo [w], then also x € Lglw].

Proof. When (is a limit ordinal, this is a direct consequence of the definition.
When (3 is a successor ordinal, we either have that there is a natural number n
such that 0 = a + n, or we have that there is a limit ordinal v and a natural
number n such that a < vy and g =~ + n.

Now, observe that if z € L, [w] for any ordinal a, we have, by the transitivity
of L, [w], that © C L, w], and hence we have that z is definable from L [w]:
x={y € Ly[w] : y € z}. So we have that x € L1 [w].

From this it follows inductively that if © € L,[w], then, for any natural
number n, x € L, 4, [w], completing the proof in both of the named cases. O

Lemma 4.16. For any ordinal a and any set w, o € Lyq1[w].

Proof. The proof goes by transfinite recursion. We distinguish the following
three cases:

1. ais 0: We have that 0 = 0 = {z € w : © # z} which is in D(w) by
definition, and hence in L [w].

2. ais f+ 1: Assume that 8 € Lgyi[w]. Then we have (by the regular
definition of ordinals) that a = 8 U {4}, and we can now see that a =
{z € Ly[w] : x = 8V z € 8}, and hence a € Ly41[w].

3. ais a limit ordinal: clearly we have for any 8 < « that § € Lg4q[w], and
hence that § € L,[w]. We can now distinguish two situations: either we
already have a € L, [w], in which case we surely have o € Ly41[w], or
we have that a = {z € L,[w] : is an ordinal}, in which case we have a
definition of « from L, [w], and hence also « € Ly 41 [w]. O

We now turn to the observation, that if a certain subset of w occurs at a
certain level @ > w41 in the constructible hierarchy, any other subset of w that
differs from this set by only finitely many elements occurs at the same level a.

Lemma 4.17. If « > w, and A C w, and A € Ly[w] for a certain set w, and
for a certain set B, |(A\B) U (B\A)| < w, then B € Ly[w].

41

Proof. We may assume that a is a successor ordinal. To see why, consider
that, if « is a limit ordinal, and A € L,[w], there has to be a successor ordinal
B < a, such that A € Lg[w], and if we have B € Lg[w], it directly follows that
B € Ly [w].

Now let B\A = {b1,...,b;}, and let A\B = {a1,...a,}, and let us say that
a =+ 1. We have, by definition, that A € D(L,[w]), and hence there is a for-

mula ¢ and elements vy, ..., vy such that A = {x € L, [w] : ¢*(v1,..., vk, 2)}.
But now we can also define B from L,[w] as follows: B = {z € L,[w] :
(¢4 (v1,.. v 2) V(e =b1V...Ve =by) A=z =a1 V...V2 = ay)}.
From this, it follows that also B € L, [w]. O

4.4 Space complexity: definitions

With regards to time complexity, the definitions of the classes were relatively
natural: like in the case of finite Turing machines, we could simply look at the
amount of time in which sets could be decided. In the case of space complex-
ity, things turn out to be less simple. The most obvious way to define space
complexity—simply by counting the number of cells used in the computation—
appears to be quite pointless here, as almost all computations except for a few
trivial ones, would take up all of the w cells of the tapes.

A reasonable alternative to simply counting the number of cells used, and
the alternative chosen in [Lo], is to look at the complexity of the reals that are
written on the tape. This could be done in various ways—one of them being
Godel’s constructible L-hierarchy that we defined in section 4.3: to compute
the space complexity of a computation starting from a certain input x we could,
for example, look at the levels of the hierarchy relativized to z, look at which
level all the snapshots of the tapes appear, and define the space complexity of a
computation as the ordinal corresponding to the level of the ‘most complicated’
real that occurs during the computation. More precisely:

Definition 4.18. We define:
L. ¢ (x) := min{n : sup{c}, : i € {1,2,3}} € Ly[x]}, and
2. space(z, T) := sup{({ : £ < time(z,T)}

With this we can, analogously to the case of time complexity, define space f
machines for any f, and, from there, the space classes PSPACE;, PSPACE,,
ete.:

Definition 4.19. For any infinite time Turing machine T', we say that T is
a space [machine if, for all z € R, we have space(z,T) < f(z). For any
ordinal £, we say that T is a space ¢ machine if T is a space f machine for
the constant function f such that f(z) = £ for all .

Definition 4.20. For any function f, we let PSPACE/ denote the class of all
sets of reals that are decidable by a space f machine. For any ordinal &, we let
PSPACE:; denote the class of all sets of reals that are decidable by a space n
machine for some 1 < &.

Definition 4.21. The class PSPACE is defined as the class PSPACE,..
Likewise, we define the class PSPACE, as equal to PSPACE;/ for the function

42

f such that f(x) = wf for all z, and the class PSPACE, ; is defined as
PSPACE;/ for the function f such that f(z) = w{ +w + 1 for all .

4.5 Invariance under different I'TTM-models

4.5.1 Invariance of time complexity

In chapter 2, we have introduced different variants of the infinite time Turing
machine architecture: the ITTM, type as well as the ITTM; type, and beyond
that, we have introduced variants with a varying number of tapes and flags.
This leads us to wonder whether the space and time complexity classes in this
chapter are invariant between these types of machines. As it turns out, this
equivalence can be shown for most limit ordinals between most different types
of machines. To show this, we first give two propositions that establish the
invariance of time complexity, at limit ordinals, between machines with three
tapes, and machines with extra tapes and/or flags.

In the following two propositions, simulations similar, but not identical,
to those given in chapter 2 will be provided. The main difference with the
simulations in chapter 2 is that, this time, we set up the simulation such that
no contraction operation is necessary. We do this by ensuring that the only tape
being simulated on the second tape of the simulation, is the original second tape,
and ensuring that the first cell of tape 2 of the simulation corresponds to the
first cell of the original tape 2. Combined with the fact that we are considering
machines deciding sets, i.e. machines with) and {0} (a.k.a. 0 and 1) as only
output values, this eliminates the need for a contraction operation. Other than
this, the stretching part of the simulation provided differs from the ones in
chapter 2, in the sense that here we put a stretched copy of the first tape on
the third tape, with the help of the second tape: this can be done in time w,
rather than the w? needed for the stretching operation of Lemma 2.20. Finally,
the actual simulation here simulates n tapes on 1 tape, instead of 2n tapes on
n tapes.

Proposition 4.22. If a is a limit ordinal larger than or equal to w?, and we
have some n > 3 and some m > 0, then any set A can be decided by an ITTTMg
with 3 tapes in time (B for some B < «, if and only if it can be decided by an
ITTMy with n tapes and m flags in time n for some n < «.

Proof. We can simulate a machine with n tapes by a machine with 3 tapes in
the following way: we first put a stretched copy of the input tape on the third
tape, leaving n — 2 empty cells between each cell of the input tape, while filling
the first tape with zeros. This can be performed in w steps if we make use of
the second tape as auxiliary tape while performing this operation. When we
find ourself in the limit state, reading a 0 on the first tape, we know that the
preparatory work has been finished, and the actual simulation can begin. We
now write a 1 on the first tape, never to change afterwards, and start simulating
the original computation, with all the n tapes except for the second one being
simulated on the third tape, and the second tape of the original tape being
simulated on the positions 0,0 + n,0 + 2n,...,0 + kn, ... of the second tape.
This way, we will end up having a 1 on the first position of the output tape
if and only if we have a 1 on the first position of the simulated output tape.

43

Moreover, each step in the original computation is now simulated by a fixed
finite number of steps. In this simulation, only one new limit is introduced, at
the very beginning, and this extra limit becomes irrelevant from the point w?
onward.

Furthermore, we can simulate flags with extra tapes, again without intro-
ducing new limits. So it is clear that a machine with n > 3 tapes and m > 0
flags can be simulated by a machine with three tapes, without introducing any
new limits. However, we still need to make sure that, also in the case of flags,
we actually stay uniformly below «: after all, the task of reading/writing the
simulated flag cell involves moving the head to the first cell of the tape and
back again, and the number of steps it takes to do this is not fixed, but rather
depends on the position of the head. If « is a limit ordinal larger than w?, con-
sider the following: say, the simulated computation takes at most 6 4+ n steps,
where § > w? is a limit ordinal and n is a natural number. The first € steps are
simulated in exactly @ steps, as no new limits are introduced beyond w?, and at
stage 6, the position of the head is 0. As a result, during the last n steps, the
position of the head will always be smaller than or equal to n. We now let k
denote the maximum number of steps it can take to move from a head position
< n to 0 to read/write the flag, and back again. We now are sure that the
simulating computation takes at most 8+ k- n steps, so we are indeed uniformly
below «. In the case where « itself is w?, we can use a similar kind of reasoning:
the difference here is that the simulating machine takes an additional w steps,
but it will still stay uniformly below w?.

For the other direction, we can simply ignore the extra tapes and flags,
and thus carry out the computation in exactly the same time as the original
computation. O

Proposition 4.23. If a is a limit ordinal larger than or equal to w?, and we
have some n > 3 and some m > 0, then any set A can be decided by an ITTM;
with 3 tapes in time B for some B < «, if and only if it can be decided by an
ITTM; with n tapes and m scratch cells in time n for some n < a.

Proof. Here we can use the same tactic as in the Proposition 4.22; we only need
to take into account the fact that, after the first w steps, we now will not find
ourselves in a limit state, but rather in the highest-numbered state that has
been visited cofinally often. We can solve this by again using a ‘signaling’ state
that will always read a 1 somewhere (for example on the first tape) in successor
states, but that will read a 0 in a limit state. Once we reach this signaling state,
reading a 0, we go on to the actual simulated computation, and the further
details of the proof are be identical to those of Proposition 4.22. O

We now turn to the invariance of time complexity, again at limit ordinals,
between ITTMgs and ITTM;s:

Proposition 4.24. If « is a limit ordinal larger than or equal to w?, and the
set A can be decided by an ITTMy machine (with three tapes) in time (3 for
some B < «, then it can be decided by an ITTM; machine (with three tapes) in
time n for some n < a.

Proof. We start by noting that, in the simulation described in Proposition 2.30,
no new limits are introduced and, in fact, there is a one-to-one equivalence of
the limits of the simulating machine and the simulated machine. So we know

44

that any ITTMy machine can be simulated by an I'TTM; machine with extra
flags while staying uniformly below the same limits; from Proposition 4.22, it
now follows, that this machine can also be simulated by an ITTM; machine
with 3 tapes and no flags. O

Proposition 4.25. If a is a limit ordinal larger than or equal to w?, and the
set A can be decided by an ITTMy machine in time B for some 3 < «a, then it
can be decided by an ITTMy machine in time n for some n < a.

Proof. Looking at Proposition 2.31, we can draw much of the same conclusions
as in Proposition 4.24, with the difference that in this case, we actually only need
one single flag. Again, there are no new limits introduced during the simulation
itself, and we only need to introduce a single new limit at the very beginning,
which already becomes irrelevant at stage w?. O

So, as it turns out, there is an equivalence, at the level of all limit ordinals
from w? onward, between a wide range of differently defined machines: ITTM,
and ITTM;-machines with three or more tapes and an arbitrary finite number
of flags are all effectively equivalent.

4.5.2 Invariance of space complexity

As we have seen, we have a reasonable degree of invariance of time complexity
under the different models and varying numbers of tapes. We now turn to the
question whether the same thing holds for space complexity. It turns out that,
again, we have such an invariance, this time not only for limit ordinals but also
for successor ordinals. For this proof, we first need two auxiliary lemmata:

Lemma 4.26. For any number n € N, any k < 0 and any set w, the set
corresponding to the function f: N — N such that f(m) =nm+k for all m is
in Ly1[w].

Proof. 1t is easily checked that, for all sets A, B, and C, the properties A =
(B,C), A=BxC, A=BuWC (ie. A= ({0} xB)U{{0}} x(C)), ‘A is
an ordinal’, and, for finite sets, ‘A is equinumerous with B’ are all describable
by first order formulae relativized to L [w]. So, the notions a + 5 and « - 3
are describable as, ‘The ordinal equinumerous with a & 3’ and ‘The ordinal
equinumerous with « x 3, respectively. As a result, we can describe f with the
description: ‘The family of sets of the type (z,y), such that x and y are (finite)
ordinals and y = x - n + k’. O

Lemma 4.27. For any family of sets Ai,..., A, and any ordinal o > w, the
following holds: if A; € Ly[w)] for every i, then the set B such that (n-k+ (i —
1)) € B— k€ A; is also in L, w].

Proof. We can describe B as the set of (finite) ordinals x such that there are
ordinals k and i such that k € A; and x = n-k+(i—1). If o is a successor ordinal
B+ 1, it can easily be checked that these notions are describable by a formula
relativized to Lglw]. If « is a limit ordinal, there must be some successor ordinal
3 < « such that A; € Lg[w] for every ¢, and it follows that B is in Lg[w] and,
hence, also must be in L [w]. O

45

With these lemmata, it is easy to establish the invariance of the defined
space complexity classes between ITTMy and ITTM;, and between the number
n of tapes used for any n > 3.

Proposition 4.28. If T is an ITTMy with n > 3 tapes and m > 0 flags,
deciding some set A, there is an ITTMg S with 3 tapes, also deciding A, such
that space(z,T) = space(z, S) for every real x.

Proof. We consider the simulation of T" on a three tape machine, as described
in Proposition 4.22, that first puts a stretched copy of the first tape on the third
tape, then simulates the computation of T using the second tape to simulate
the original second tape, and the third tape to simulate all other tapes.

Using Lemmata 4.26 and 4.27, it is easy to see that the space complexity of
the simulation is identical to the space complexity of the original computation
under the simulation described in Proposition 4.22. O

A consequence from this theorem is the fact, that flags never increase the
space complexity of a computation, at least as long as this complexity is already
as least as large as w, simply because flags can be considered as extra tapes with
an extremely low (finite) complexity, which are always in L, [z] for every z.

Proposition 4.29. IfT is an ITTMy with 3 tapes, deciding some set A, there is
an ITTM; S with 8 tapes, also deciding A, such that space(z,T) = space(z, S)
for every real x.

Proof. If we perform the simulation described in 2.31, we can note that this is
essentially a computation that only introduces a finite number of new flags and,
other than that, will have exactly the same content on the three main tapes as
the simulated computation. Because, as we have seen, flags will never introduce
any extra space complexity, the space complexity of the simulating computation
will be identical to that of the simulated computation. O

Proposition 4.30. If T is an ITTM; with n > 3 tapes and m > 0 flags,
deciding some set A, there is an ITTM; S with 3 tapes, also deciding A, such
that space(z,T) = space(x, S) for every real x.

Proof. This goes exactly analogous to 4.28. O

Here again, it should be noted that, as a result, flags never increase the space
complexity of a computation, as long as this complexity is already larger than
or equal to w.

Proposition 4.31. IfT is an ITTM; with 3 tapes, deciding some set A, there is
an ITTMg S with 3 tapes, also deciding A, such that space(z,T) = space(x, S)
for every real x.

Proof. Here we can again make the same observation as in 4.29: the simulation
as described in 2.30 only introduces a finite number of flags, and, other than
that, will have the exact same tape contents on the three main tapes. O

From the above we can conclude that, at least in the case of ordinals larger
than w, the exact type of machine used makes no difference whatsoever with
regard to which space complexity classes a certain set A does and does not
belong to. To show that a certain set is, or is not, in a certain space complexity
class, we may therefore use any machine we like, with an arbitrary number of
extra tapes and an arbitrary number of flags/scratch cells.

46

Chapter 5

The question P = PSPACE

5.1 P C PSPACE for infinite time Turing ma-
chines

First of all, we want to be sure that P is always a subset of PSPACE. Due
to the somewhat unusual definition of PSPACE, however, it is not directly
evident that it is indeed true that the space complexity of a computation will
always be equal to or smaller than the time complexity. In this section, it will
be shown that this indeed is the case. This will be done by showing that we can
represent any I'TTM-computation of length «, starting from a set w, within the
level L, [w] of the constructible hierarchy. We will first define what we mean
with a ‘representation’ of an ITTM computation:

Definition 5.1. We use the notation CZ (w) for a representation of an ITTM
computation of a machine 7" from w in « steps, of the form

Ca (w) = {(B, 45 (w), hs (w),] 5(w), 3 5(2), ¢5 5(w)) : B < a}

where (3 is an ordinal representing the stage, and qg(w), hg(w)7 cgﬁ(w) are as
they were defined earlier.

Lemma 5.2. When we have a suitable representation of Turing machines as
finite sets, the notion ‘a one step ITTM computation by a machine T from the
state t = (q, h,c1,ca,c3) results in a state t' = (¢', B, ¢, ch, ch) is representable
by a formula of first order logic.

Proof. Let us take the following representation of Turing machines: a Turing
machine T is a set of tuples of the form (q,ds,ds,ds, m,d},d}, d%, q'), where g
is the current state, ¢’ is the new state, both represented as a natural number,
dy,ds, ds are the symbols read on the tape (either 0 or 1), m is the direction in
which the Turing machine will move (either 0, left, or 1, right), and d}, d5, d}
are the new contents of the tapes at position h.

With this formulation, we can represent the above notion as: ‘There are
q,dy,dg,ds, m,d},dy, ds, ¢ such that (q,dy,ds,ds, m,d},dy,d5,q') € T, there
are h, c1, ca, c3 such that t = (g, h, 1, 2, ¢3), and there are b/, ¢}, ch, c§ such that
t'= (¢, I, cy, ch), for which the following further properties hold: if m equals

47

0, =h—1,or,if h =0, then A’ = 0, and if m equals 1, K’ = h + 1; for each
d;, h € ¢; if and only if d; = 1, and for each d}, h € ¢ if and only if d, = 1.
This can be written as a (rather long, which is why it is avoided here) first-order
formula without too much further thinking work. O

Lemma 5.3. The notion ‘X = CL(w): X represents an ITTM computation
from w in « steps’ is representable by a formula of first order logic.

Proof. Note that X represents an ITTM computation from w in « steps, if and
only if:

1. Every element of X is of the form (3, g, h, ¢1, c2, ¢3) where [is an ordinal
smaller than or equal to a.

2. If we have (8,q1,h1,c1,1,¢2,1,¢3,1) € X and (8, g2, ha,c1,2,¢2.2,¢32) € X,
then q1 = g2, h1 = ha, c1,1 = c1,2, C2,1 = 2.2 and ¢3,1 = ¢32.

3. We have (0, gs, ho, ¢1,0, C2,0, ¢3,0) Where g5 is the initial state of the Turing
machine, ho = O, C1,0 = W, C2,0 = €C3,0 = (Z)

4. If B is a successor ordinal v + 1, and 8 < «, then there are elements
(v,q1,h1,¢1,1,¢21,¢31) and (5, g2, h, €1,2,¢2.2,¢3,2) such that a one step
Turing computation from the snapshot (qi,h1,¢1,1,¢2,1,¢3,1) results in
(g2, ha,c1,2,¢2.2,¢3.2).

5. If B is a limit ordinal, then there is an element f3, q, h, ¢1, c2, c3 such that
q is the limit state of the Turing machine, h = 0, and for each of ¢,
we have that = € ¢; if and only if for every ordinal v < (3 there is
an ordinal § greater than or equal to v and smaller than 8 such that
if (8,¢',1,ch,ch,c5) € X, then x € ¢

It should be clear that all of these notions are representable by a formula of first
order logic in the language of set theory. O

Now we will turn to the main theorem. The final aim will be to show, that all
computations starting from an input w of length o can be carried out while only
having tape contents slightly more complicated than in L, [w]. The addition of
‘slightly’ here only signifies that one needs a small finite fixed extra number
of steps—the construction made here assumes gives a crude upper bound of
12, although the precise number might be lower than that. First, we need an
additional auxiliary lemma:

Lemma 5.4. If §8,q,h,c1,co,c5 are all in Ly[w], then (8,q,h,c1,ca,c3) is in
La+10[’w].

Proof. We assume that (ca, c3) is defined as {{ca2}, {co,c3}}. If co and c¢3 are in
L., then {co} and {¢z,c3} are definable subsets of L, and are thus in L,1.
Consequently, {{c2},{c2,c3}} is a definable subset of L,+1, and is hence in
La+2.

Assuming that (8, q,h,c1,c2,c3) is defined as (6, (q, (h, (c1, (c2,¢3))))), it
easily follows by repeating the above procedure that (3,q,h,c1,ca,c3) is in
La+10- l

Now we will turn to the main theorem, which will be proved using a kind of
simultaneous induction:

48

Theorem 5.5. The following propositions are true:

1. For any infinite ordinal o and any input set w C w, we have that c{a (w),
3 o(w), ¢ (w) are in Loga[w]. If a is a finite ordinal, however, we can

only be sure that the sets are in Ly o[w].

2. If a is a successor ordinal above w and is equal to B + n, where n is a
natural number, then cf ,(w), 3 ,(w), c3 ,(w) are in Lgyi[w]. This is a

strengthening of the above property.

3. For any ordinal o > w and any input set w C w, we have (o, qL (w), hL (w),
T T T cL
Cl,a(w)aCQ,a(w)vc&a(w)) 04+11[w]'

4. For any ordinal @ > w and any input set w C w, we have CL(w) €

La+12[w]'

Proof. The tactic here will be to first show that, for any «, if property (1) holds
for all ordinals smaller than or equal to «, and property (4) holds for all ordinals
strictly smaller than «, then properties (2), (3), and (4) hold for «. Then, we
will show that if properties (1), (2), (3), and (4) hold for all ordinals strictly
smaller than «, then property (1) also holds for «.

e 1 — 2: We use here the fact that, assuming o > w, and a = §+n, for each
iin {1,2,3}, cgjﬁ(w) and cg:a(w) can only differ by finitely many elements.
Using 4.17, it follows from czﬁ(w) € L [w] that ¢f ,(w) € Ly [w].

e 1 — 3: By Lemma 4.16, we have that a € Ly41[w] for any w. Because
qL(w) and hI(w) are finite sets, they are also in L,1[w] by the assump-
tion that « is infinite, and the desired result follows from the assumption
of (1) and an application of Lemma 5.4.

e 1 (+3) — 4 for successor ordinals: If « is a successor ordinal § + 1, then
we have that z is in CZ(w) if and only if z € CJ(w) or if z is equal
to (a, gl (w), hE(w), cf ,(w), 5, (w), 3, (w)). Because by the inductive
hypothesis CBT(w) and hence, by transitivity, every element of it, is in
Lgyi2[w], or Lot11[w], and because by (3)—which was already proven
from (1)—(a, % (w), hi,(w), cf o (w), cF ,(w), c3 ,(w)) is in Ly, it fol-
lows that CT (w) is a definable subset of L4 11[w], and hence an element
of La+12 [w]

e 1 (+3) — 4 for limit ordinals: If « is a limit ordinal, note that, for any
8 < a, we have by the inductive hypothesis that C’ﬁT(w) € Lgt12]w], and
hence also that C} (w) € La[w]. Now consider the following set CZ, (w):

{X € Lo[w] : 3B(BEanX € CF(w)}

Note that 8 € « basically just says, ‘G is an ordinal smaller than «’.
This set is clearly a set definable from L,[w], and it is the union of all
computations from w in less than « steps. To obtain CZ(w), we only
need to add (a, ¢% (w), b, (w), cf ,(w),cf ,(w),c3 ,(w)) to this set, which
can be done easily like in the above case of successor ordinals.

49

e Property (1) for finite ordinals: note that, at stage n, because the head
starts at 0 and can only move forward one step at a time, the head can
only be at a location between 0 and n. Because of this, the only positions
of cg:n that can have changed by stage n are the positions in the range
[0,n — 1]. Because we have ¢f, = w and ¢f , = 5, = 0, we also have
Cg:o S Ll[w]

Now, we can define ¢f,, as (¢]o\{j1,...,5}) U{k1,... , km}, which is a
definable subset of L,[w] as a result of the fact that all the j and k are
not larger than n — 1 and are thus elements of L, [w].

e Inductive case for successor ordinals larger than w: If « is a successor
ordinal 3 + 1, for each i € {1,2,3} ¢, (w) and ¢]5(w) can only differ
by one element. Taking the largest limit ordinal v below «, such that
a = v+ n, an appeal to Lemma 4.17 (and possibly to case (2) for g, if
3 itself is a successor ordinal) suffices to show that for each i € {1,2,3},

T isin L4 [w] and hence also in Lqq[w].

ci,a

e Inductive case for limit ordinals: if « is a limit ordinal, we have, by induc-
tive assumption, that for all 8 < «, C’g(w) € Lgt12[w], and hence, also
that CF (w) € La[w].

To start, let us find a way of identifying ordinals smaller than « in Ly, [w].
If o ¢ L,[w], the set of ordinals in L,[w] is exactly the set of ordinals
smaller than «a: in this case we can identify any ordinal smaller than « in
L, [w] with the property Ord(x). If somehow we do have a € L, [w], we
can identify any ordinal smaller than « in L, [w] with the property = € a.
Depending on which case we are in, let us take the appropriate property.

Now note that the definition of cells at limit values implies that « € cza (w)
if and only if for every ordinal 8 < «, there is an ordinal v < a with v > g,
such that 2 € ¢/ (w). We can now define ¢, (w) in the following way:

cza (w) is the set of all n € w, such that for every ordinal § < « there is

an ordinal v < « with v > 3, such that n is an element of the ¢ + 3th
T : T
argument of C (w) (i.e. n € ¢, (w)).

Although it should be noted that we have proved property (3) and (4) only
for infinite ordinals, this does not pose a problem, because for any finite n, we
have that CI'(w) will occur at at least some finite stage of Godel’s Constructible
hierarchy. As a result, we will have CT (w) € L, [w] for any finite n, and the
inductive steps will still work for the w-case. O

This directly gives us the following result about P and PSPACE:

Corollary 5.6. For any function f, we have Py C PSPACE; 5, where f + 2
is the function such that (f + 2)(z) = f(x) + 2 for all x.

Proof. Let T be a machine deciding A in time f. That means that for all inputs
x, the computation has length time(z,T) < f(x). Fix some & < time(z,T) <
fT(as) By Theorem 5.5, we have CZg(SC) € Leyo[z] for ¢ € {1,2,3}, and hence
Ci,f(‘r) € Ly(p)42lz]. O

50

Indeed, we almost have Py C PSPACE;: the obstacle preventing this
result consists of the finite computation stages n, at which we only have shown
¢l (w) € Lygo[w], rather than the desired ¢, (w) € L1 [w].

T,n

Proposition 5.7. For any infinite time Turing machine T and any real x, if
time(x,T) > w, we have space(z,T) < time(z,T). Also, if time(z,T) < w,
we have space(z,T) < w. Hence, for any function f such that f(x) > w for
all x, every time f machine is a space f machine, and consequently we have
P; C PSPACE;.

Proof. Assume that « > w and o = time(z,T). For any { < a with £ > w,
we have, by Theorem 5.5, cgjg(x) € L¢iq[z] (here we have +1 instead of +2
because £ > w) for i € {1,2,3}, and hence ¢ ((x) € Lq[z]. For finite £, we have
cie(x) € Ly[z] for i € {1,2,3}, and again ¢/ () € La[z]. Finally, we notice
that a must be equal to f+1 for some 3, as infinite time Turing machines cannot
halt at limit ordinal stages. It is also immediate from the definition of infinite
time Turing machines that c;f’:ﬂ(ac) and czﬁ +1(z) can only differ by one element
at most. Because of this, it follows from ¢ 3(x) € Lo [z] that ¢ 5, (x) € La[x]
using Lemma 4.17 and the fact that o > w. So at all stages of the computations,
the content of the tape is inside Lg[z], so we have space(z,T) < 3, and hence
space(z,T) < time(z,T).

If « < wand o = time(z,T), we have for all £ < «, by Theorem 5.5,
CZE(I) € L, [z] for i € {1,2,3}, and space(z,T) < w now follows directly. O

5.2 The question whether P; = PSPACE;

Now we have seen that, in all cases where the range of f contains only infinite
ordinals, Py is a subset of PSPACE;/, one is inclined to wonder whether this
inclusion can be shown to be proper. In this section, we will show that this,
indeed, is the case at least for a number of functions f.

5.2.1 P, # PSPACE, for ordinals up to w?

For the first result, the idea will be to construct a function that can be shown
to be PSPACE,, 2, but that, at the same time, can also be shown to be not
P, for any a < w?. This will be done using the notion of arithmetical reals,
which are defined more-or-less analogously to arithmetic sets of reals.

First, we observe the following fact about the location of recursive sets in
Godel’s constructible hierarchy:

Lemma 5.8. For any recursive set w € R, we can write w on the tape in w
steps, and thus we have that w € Ly,41[0], and thus also w € Ly41[x] for any
reR.

Proof. Because w is recursive, there is a Turing machine 7" that halts on all
inputs n € N, such that ¢r(n) = 1 if and only if n € w. Now consider an ITTM
that, in turn, for each number n, simulates the machine 7', and then writes the
correct number to the nth cell of the output tape. Because every individual
computation will terminate in a finite number of steps, this can be done in w
steps, and we can go directly from the limit state to the halting state. O

51

We will now consider the notion of arithmetical sets of natural numbers: a
set S C N is arithmetical if and only if there is a formula ¢ of PA such that
¢(r) < z € N.

Lemma 5.9. The set A:= {x € R: x is arithmetical}, is not arithmetical.
Proof. This is shown in Example 13.1.9 in [Co]. O
This gives us the following result:

Lemma 5.10. For any ordinal o < w?, the set
A:={x e R:x is arithmetical}
is not in P,.

Proof. By Theorem 2.6 in [HaLe|, the arithmetic sets are exactly the sets which
can be decided in time w - n for some n € N. Because A is not arithmetical, it
cannot be decided by any algorithm using a bounded finite number of limits,

and hence, it is not in P, for any a < w?. O

It turns out, however, that this set A is in PSPACE,,:

Theorem 5.11. The set
A:={z € R:x is arithmetical}

is in PSPACE, ;2.

Proof. First, we can note that we can, without any problems, enumerate all
possible formulae that determine arithmetic sets, on one of the scratch tapes:
every formula can be coded by a set which is finite, and hence in PSPACE,,.
Now, we may also assume that this enumeration only gives formulae in a normal
form, with all quantifiers at the front.

Given a formula ¢, we can also determine for any = whether ¢(z) holds, by
only writing down finite sets on a scratch tape. That this is the way can be
shown by induction: if ¢ is quantifier free, we can simply evaluate the formula; if
¢ has an existential quantifier at the front and is of the form 3z, we can write
down every possible value n for 1 at the front of the scratch tape, recursively
evaluate ¥[n/xz1] (which is possible by the inductive assumption) using the rest
of the scratch tape; succeed if this is successful, and fail otherwise; if ¢ has a
universal quantifier at the front and is of the form Vzi¢, we again write down
every possible value n for 1 at the front of the scratch tape, recursively evaluate
¥[n/x1], and now fail if this fails, and continue otherwise.

Now, the strategy for the whole function will be:

1. enumerate over all possible formulae in the aforementioned normal form;

2. for each such formula, test for each x whether the formula holds for z if
and only if the zth position on the input tape is a 1;

3. succeed if we have found such a formula, and fail otherwise.

This is all possible while writing down only recursive sets. O

52

This gives us the following result on P and PSPACE:

Theorem 5.12. For any « such that a« > w+ 2 and o < w2, we have that
P, C PSPACE,, and even stronger, we have that P, C PSPACE 5.

Proof. This follows directly from the earlier results. O

Now we have shown that, for a certain number of a that are infinite, but
still very low in the hierarchy of ordinals, the inclusion P, C PSPACE, is a
strict one. We might now wonder if we can also show a similar thing for any
a larger than w?. It appears that this indeed is the case for recursive successor
ordinals a. The strategy in showing this will be to show, that, for all recursive
ordinals, h, € PSPACE,; which, together with the already known fact that
he ¢ Pot1, gives the desired result.

5.2.2 The case of recursive ordinals

We will now show that the inequality P, # PSPACE, holds for much wider
range of ordinals. From Proposition 4.9, we know that for all o, h, ¢ Pot1.
It turns out, however, that for all recursive ordinals «, we do have that h, €
PSPACE,::

Proposition 5.13. For any recursive ordinal o, such that o > w + 1, we have
ho € PSPACE, ;.

Proof. We can compute h,, in the following way, by making use of an I'TTM,
with several scratch tapes: to start, we will check whether the input corresponds
to a natural number; if it does not, then we output 0, and if it does, we continue.
Then, we will look if this natural number corresponds to a coding of an ITTMy—
again, we output 0 if this is not the case, and if it is, we continue. Note that the
computation so far can be performed by only writing finite sets on the scratch
tapes.

Now the real work can begin. First we write down the ordinal «, on the first
scratch tape. Because « is recursive, we can do this in w steps, so we are sure
that the content of the first scratch tape, at all times, will be inside L, 11][z]
and, because a > w + 1, also inside L [z].

Once this is done, we will check for all ordinals 8 smaller than « (which can
be easily found simply by restricting the ordinal written on the tape to all the
elements smaller than a certain element, without affecting the space complexity
in any way), whether the eth ITTMj has reached the halt state by stage 8. If it
turns out that this is the case, we look at the output: if the output is 0, then we
will finish the computation by writing 1 on the output tape, and otherwise we
finish by writing 0 on the output tape. If we reach stage # during the simulation
without having halted, we go on checking with the next ordinal. Finally, if we
have exhausted all ordinals 8 < «, we again finish by writing 0 on the output
tape.

In the case where « is a limit ordinal, we are now done, because we know that
no machine can halt at any limit ordinal stage. In the case where « is a successor
ordinal i+ 1, however, we will additionally check whether the computation has
finished at « itself.

For any 3 < a, we know that ¢ s[z] € Lo[z] for i € {1,2,3}. Furthermore,

in the case where a is a successor ordinal 7+ 1, we know that ¢, [z] and ¢/ ,[x]

53

can only differ by one element at most, and because « and 71 are known to be
infinite, we obtain L, [z] from Ly [z] using Lemma 4.17.

It follows that this computation never writes a set on any of the tapes that
is not in Ly [x]. This proves that h, € PSPACE, indeed holds. O

Hence we have:

Theorem 5.14. For every recursive successor ordinal o > w + 1, P, C

PSPACE, holds.

Unfortunately, however, this process cannot be easily extended to work for
limit ordinals: given a limit ordinal o, we can still compute h, by only writing
out information of space complexity less than « on tape, but it seems hard, if
not impossible, to do this bounded by a specific ordinal § below «.

5.2.3 The case of clockable ordinals

It is, however, possible, to extend the above process to many writable successor
ordinals. The strategy here is essentially the same as in the case of recursive
ordinals: we know that h, cannot be in P,41, and then we show that h, €
PSPACE, ;. In the case of clockable ordinals, we can make use of the following
theorem due to Philip Welch (Lemma 15 in [DeHaSc]):

Theorem 5.15. If a is a clockable ordinal, then every ordinal up to the next
admissible beyond « is writable in time o + w.

Besides this, we already know that o € L,11[0]. However, we will also
have o U {{{{0}},n} : n < B} € La41[0] for any 8 < w. Because these sets
{{{®}},n} are not ordinals, it is immediate that o and {{{{0}},n} : n < 8} are
always disjoint. Thus, we can consider these sets o U {{{{0}},n} : n < 3} as
alternative representations for the ordinals up to a+w, that are within L1[0].
This way, using this ‘alternative’ representation of the ordinals between o and
a+w, instead of the regular ones, in combination with the fact that the snapshots
cfa 4nlz] can only differ from cza [x] by finitely many elements, we can represent
computations of length a+w from z within L, [z] using a construction similar
to that in section 5.1.

This gives us that, for clockable «, every ordinal up to the next admissible
ordinal beyond a can be written on the tape with the content of the tape inside
L.+2[0] at all stages. This gives us the following theorem:

Theorem 5.16. If (8 is a clockable ordinal, and « is a successor ordinal between

B+ 3 and the next admissible after (3, then we have P, C PSPACE,,.

Proof. This goes largely analogous to the case of Proposition 5.13, with the
major difference that we can now write a on the tape while staying inside
Lgi2[0]. As a result from this, if « = n+ 1, we get from n > § + 2 that
h, € PSPACE, 1, whereas h,, ¢ P, 1, giving the desired result. O

5.2.4 The case of suitable functions f

We can extend the above results from ordinals to suitable functions as defined
in [DeHaSc]. There, a suitable function is defined as follows:

54

Definition 5.17. A function or a function-like operation f from R to the ordi-
nals is called suitable whenever, for all reals z and y, <7 y implies f(z) < f(y),
and if we have, for all z, f(z) > w+ 1. The symbol <t here stands for ordinary
Turing reducibility as defined in e.g. [Co].

It turns out that most of the ‘special’ functions and operations that we have
considered in this thesis are in fact suitable:

Proposition 5.18. For any ordinal « > w+1, the constant function fo(x) =
is suitable. Furthermore, the functions f1(x) = wi, fa(z) = wi+w+1, f3(x)
AT, fa(x) = ¢, and f5(x) = X7 are all suitable.

«

Proof. For constant functions, we have fy(x) = fo(y), and hence fo(x) < fo(y)
in all cases, so also in the specific case where x <t y. Hence, all constant
functions are suitable.

For the function fi(x) = wf, assume that z <t y, and assume that, for
some ordinal o, @ < w{. This means that « is a z-recursive ordinal, and hence,
that there is some real a coding «, such that a <t x. Now a <7 y follows by
transitivity of <r, and thus « is also an y-recursive ordinal, and hence, a < w?.
From this, w{ < w{ directly follows. The case of fa(x) = wi +w + 1 follows
directly, because o < # impliesa+w+1 < 34+ w+ 1.

For the function f3(x) = A%, assume that <t y, and assume that o < A%,
or, in other words, that « is a x-writable ordinal. We can now write o from
y, by first computing = from y, and then going on with the computation that
writes o from z. Hence, « < N, and f3(x) < f3(y) follows directly. The cases
of the functions (* and ¥* go nearly identically. O

We have the following results about suitable functions:
Theorem 5.19. For any suitable function f and any set A of natural numbers,
(i) A€ Py if and only if A € Pry41
(ii)) A € PSPACEy if and only if A € PSPACEj(0)4+1

Proof. (i) was originally proven in [DeHaSc, Theorem 26]; here we will provide
a slightly modified version of the proof. Because for any natural number n, we
have 0 =1 n, we get f(0) = f(n) by the assumption of suitability; also, we have
0 =7 N, so f(0) = f(N); moreover, for any real number z, we have 0 <r x, and
hence f(0) < f(x). Now consider the constant function g such that g(x) = f(0)
for all z. As a direct result of the definition, we obtain Py = P,. We also
have g(z) < f(z) for all z, so the result Py, C P is immediate.

For the converse, assume that A € Py, and that 7" is a time f machine
deciding A. We now construct a time g machine T”, which performs the same
computation as T, while, during the first w steps of the computation, simulta-
neously checking if the input actually codes a natural number or the entire set
N. Because a natural number n, when considered as a real, is equal to the set
{0,...,n — 1}, and any such set corresponds to a natural number n, it follows
that a real = does not correspond to a natural number or the complete set N if
and only if the string 01 occurs in it. We now ensure that 7", during the first w
steps, searches for the string 01, and halts whenever this string is encountered,
while simultaneously simulating 7T'. After we first reach the limit state, we know

95

that the input did not contain the string 01, and we continue the original com-
putation of T. If no 01 is encountered, the input x must be either a natural
number n, or the complete set of natural numbers N, and it will finish within
time f(x) = f(0). If a 01 is encountered in the input z, it is encountered within
the first w steps, and hence f(z) < w < f(0). So T” is a time f(0)-machine
deciding A, and hence, A € P f(g)41-

(ii) can be proven similarly. It again follows directly that PSPACE ()41 C
PSPACE;. The converse now is a bit simpler. If T is a space f machine de-
ciding A, consider the following machine T’: on input x, we first check, without
making any modifications (and thus, while staying within Lg[z]), whether z is
a natural number. We output 0 if it does not, and if it does, we continue the
computation of which we now know that space(z,T) < f(x) = f(0). Because
at the start of this computation, the tape is still unchanged, and the algorithm
performed after the check if z is a natural number, is identical, we also obtain
space(z,T) < f(0). It is now clear that space(z,T") < f(0) for all z, so T" is
a space f(0)-machine deciding 4, so A € PSPACE (). O

Now, because for any «, the set h, always consists of only natural numbers,
we can directly extend the earlier results about ordinals to results about suitable
functions f:

Theorem 5.20. If f is a suitable function, and f(0) is either recursive, or a
clockable ordinal, such that there is an ordinal 8 such that f(0) is between G+ 2
and the next admissible ordinal after (3, then we have Py C PSPACEy.

Proof. On one hand, we have h¢)41 ¢ P)42 from Proposition 4.9, which, by
Theorem 5.19 gives us hyy+1 ¢ Pry1. On the other hand, we have hyy11 €
PSPACE)2 from either Proposition 5.13 or Proposition 5.16, which gives
us hy)41 € PSPACE;,;. Hence we have Py # PSPACEy, and the result
follows. O

5.2.5 However, P; = PSPACE; for ‘almost all’ f

So far, we have shown that, for certain classes of ‘low’ functions f and ordinals
o, there is a strict inclusion Py C PSPACE;. This brings us to wonder we
can also find functions and ordinals where this strict inclusion does not hold,
and instead we have an equality Py = PSPACE;.

It is easy to see that we will have this equality, at least for very high, non-
countable, ordinals and functions: if we have o > wq, then we must have P, =
Dec, and because we also have PSPACE, C Dec and P, C PSPACE,, we
indeed obtain P, = PSPACE,. However, we can generalize this towards a
wider range of functions:

Proposition 5.21. If f satisfies f(z) > A for all z, then we have Py =
PSPACE;.

Proof. We clearly have Py = Dec because f is, on all =, larger than the
supremum of halting times of ITTM computable functions on input z, as a
result of the fact that v* = A* for all x (Proposition 3.18). Also, we have
P; C PSPACEy;, as well as PSPACE; C Dec. Hence, we have Py = Dec =
PSPACE;. O

56

As this class of functions f is a superset of the class of functions f—called
‘almost all f’ there—for which it is shown, in [HaWe], that Py # NP, we can,
with a little wink, indeed say that we have Py = PSPACE; for ‘almost all’ f.

o7

Chapter 6

Koepke machines

So far, we have only looked at extensions of Turing machines into ordinal time:
in the earlier defined Hamkins-Kidder machines, the length of the tape, however,
has remained of size w. In this chapter, we will consider a different approach
towards infinitary computation than the one outlined in the earlier chapters,
which has been outlined by Peter Koepke in [Ko]. There, so-called ‘ordinal
Turing machines’ are defined, which not only are able to have computation
lengths of (in principle) any ordinal length, but also have a class-sized tape
with the size of the class of all ordinals.

As it turns out, these machines are strictly more powerful than the earlier
Hamkins-Kidder model of infinite time Turing machines: it has been shown in
[L6] that the Hamkins-Kidder weak halting problem h is decidable by one of
these Ordinal machines.

In this chapter, we will look at the analogues of the problems about time and
space complexity classes presented in earlier chapters. Although in principle,
here it is possible to look at classes of decidable ordinals (which need not even be
sets!), in this thesis, the P and PSPACE classes will be defined as containing
only sets of reals decidable within a certain time and space complexity.

From this point onward, we will generally refer to the earlier classes P,
PSPACE and the likes, defined with respect to Hamkins-Kidder computations,
as PUK and PSPACEM¥ respectively, whereas we will call the classes relating
to Koepke’s ‘ordinal Turing machine’ as P¥ and PSPACEKX. Similarly, we will
refer to the earlier defined weak halting problem A as hHK from now on.

6.1 Definitions

The definition of Koepke machines will be largely similar to that of Hamkins-
Kidder machines of the ITTM;-type; the only major difference being in the
length of the tapes:

Definition 6.1. An ordinal Turing machine or a Koepke machine is, like the
ITTM; machines, defined by a tuple of the form

T =(Q,0,qs,q5)

where @) is a set of internal states, ¢ is a transition function from (Q\{gs} x

58

{0,133 to @ x {0,1}> x {L, R} and g¢5,qs € Q are two special states called the
initial and halting state, such that ¢, # g7 holds.

In the case of ordinal Turing machines, we will again use the same notations
qg(w)7 h%(w), czﬁ(w), and ¢r(w) = v as in Definition 2.2.

The computation, too, will go largely analogous to that of Hamkins-Kidder
machines as outlined in Definition 2.1, with the following exceptions:

1. If a machine, during a computation, is ordered to move ‘left’ while the head
is at a limit ordinal, it moves to position 0. Formally: if A% (z) = 8 where
(3 is a limit ordinal, and the third component of §(¢L, (c{@a, cgﬁ’a, C;B,Q))
is L, then AL, | (z) = 0.

2. At limit stages of the computation, the position of the head will, instead of
0, be set to the liminf of the earlier stages visited by the head. Formally:
if o is a limit ordinal, then hL(x) = lim inf{h%(x) 1B < a}.

3. Like in the ITTM;-type Hamkins-Kidder machines, at limit stages, the
state will be equal to the limsup of the earlier visited states. Formally:

4 (z) = limsup{g} (z) : B < a}.

As a result of defining the position of the head at limit stages as the lim inf
of the earlier head positions, it follows directly that the head position may, at
some point, be an infinite ordinal. This, in turn implies that infinite ordinals
may be written to, or again deleted from the tapes: as a result, for an arbitrary
ordinal «, any € R, and any ¢ € {1,2, 3}, cza (z) need not be a real anymore,
but can in principle be any set of ordinals. In principle, we could also remove
the restriction that the input of a function be a real, and replace it with the
weaker requirement that it be a set of ordinals. However, in this thesis we will
not do this, and focus only at computations by Koepke machines starting from
reals.

Now we have defined the Koepke machines and their computation, we con-
tinue by defining the complexity classes P and PSPACE. In the case of P, the
definitions are largely identical to those for Hamkins-Kidder machines:

Definition 6.2. If T is a machine that eventually reaches the halting state
qr, and « is the smallest ordinal such that ¢l (z) = ¢, then we say that
time(z,T) = a.

Definition 6.3. For any Koepke machine 7', we say that 7" is a time f machine
if, for all z € R, we have time(z,T) < f(z). For any ordinal £, we say that T
is a time ¢ machine if T is a time f machine for the constant function f such
that f(z) = ¢ for all z € R.

Using these definitions, we can define the classes P? and PX for functions
f and ordinals «, just like we did the same thing earlier for Hamkins-Kidder
machines.

Definition 6.4. For any function f, we let Pﬁf denote the class of all sets of

reals that are decidable by a time f machine. For any ordinal £, we let P?
denote the class of all sets of reals that are decidable by a time 7 machine for
some 1 < &.

59

For the space complexity classes, we are now able to use a much simpler
definition than in the case of Hamkins-Kidder machines: we can simply define
space(x,T) as the largest « that occurs as the position of the head at some
stage of the computation:

Definition 6.5. If T' is a machine that, at one point reaches the halting state
gr, and time(z,T) = «, we define space(z,T) = sup{hg(w) : B8 <a}.

Definition 6.6. For any infinite time Turing machine T, we say that T is a
space [machine if, for all x € R, we have space(z,T) < f(z). For any
ordinal £, we say that T is a space ¢ machine if T is a space f machine for
the constant function f such that f(x) = ¢ for all z € R.

Definition 6.7. For any function f, we let PSPACE? denote the class of all
sets of reals that are decidable by a space f machine. For any ordinal &, we let
PSPACE? denote the class of all sets of reals that are decidable by a space
machine for some 7 < &.

An immediate result of these definitions, is that a computation of a Koepke
machine can never take more space than it can take time:

Proposition 6.8. For all f and all o, we have P? C PSPACE;{ and PX C
PSPACEY respectively.

Proof. Tt is easy to see by ordinal induction on «, that we have hl(z) < «
for all x and all «. From this, it follows immediately from the definitions that
space(z,T) < time(z,T). Hence, for any ordinal o, we have A € PSPACEL
if A € PX and for any function f, we have A € PSPACE? if Ae Pff. O

6.2 Variants on the Koepke machine architec-
ture

Like in the case of Hamkins-Kidder machines, we can again consider variations
on the standard Koepke machine model. Although we will not define an ana-
logue of ITTM(machines here, we will briefly mention Koepke machines with
n tapes for n # 3 and Koepke machines with stay option.

Proposition 6.9. For any m and any n, a set A is decidable by a Koepke
machine with m tapes and n scratch cells if and only if it is decidable by a
Koepke machine with m tapes and n scratch cells and a stay option.

Proof. Proposition 2.7 can be applied after making exactly the same modifica-
tions that were made in Proposition 2.9. O

Proposition 6.10. For anyn € N, withn > 2, a set A is decidable by a Koepke
machine with n tapes if and only it is decidable by a Koepke machine with 2
tapes.

Proof. Because we only are considering sets of reals here, we only have to deal
with inputs that are real numbers. Assume that A is decidable by a Koepke
machine 7" with n tapes. We can now construct a Koepke machine 77 with 2
tapes as follows:

60

e T’ starts out by stretching the input such that, if z is the input, after
the stretching operation we find {(n — 1) - k : k € z} on the first tape.
We again can use a signal state to recognize when we are done with this
operation, and ensure this signal state only reads 1s at successor ordinals;
at stage w we will find ourselves with the head at position w, in this signal
state, and read a 0, and move left so that the head position will again be
0.

e After this, we simulate the original n tape machine on our 2 tape machine,
using the second tape to simulate the output tape, and the first tape to
simulate the n—1 other tapes. We make sure that we have a fixed number k
such that each step by T is simulated by k& steps of T”, and moreover ensure
that, for any ordinal o such that a = k- 8 for some k, hl(z) = (n—1)-n
for some 7.

An important difference from the case of Hamkins-Kidder machines, is the head
position at limit stages: by making sure that the least ordinal visited cofinally
often will always be some ordinal «, such that o = k - 3, we can ensure that T’
will correctly simulate T'.

Because the only tape being simulated on the second tape is the original
second tape, and because first cell of the second tape of T' corresponds to the
first cell of the second tape of T, it follows that ¢r(z) = 1 if and only if
qu/ (Jj) =1.]

This gives us the following corollary:

Corollary 6.11. For any m,n > 2, a set A is decidable by a Koepke machine
with m tapes if and only if it is decidable by a Koepke machine with n tapes.

6.3 Time complexity for Koepke machines

We can prove a number of theorems about time complexity for Koepke machines:
to start with, it turns out that for many recursive ordinals «, a Koepke machine
can compute exactly the same sets in time « that a Hamkins-Kidder machine
can:

Proposition 6.12. For any recursive ordinal o larger than w?, where o = f+1,
and f3 is a limit ordinal, we have PEK = PX,

Proof. Assume that A € PX. This means that A is decidable by a time 7
machine for some n < «, which, because @ = § + 1, here can be restated as:
A is decidable by a time § Koepke machine. Then A is, by Proposition 6.8,
decidable by a time § Koepke machine that uses 3 or less cells. Because [is
a recursive ordinal, we can write a code for 8 on the tape in w steps. After
that, we can simulate the Koepke algorithm on a tape of size § on our w-sized
tape. Because every step of the simulated computation will be simulated by a
finite number of steps of the simulating computation, and because the simulated
computation takes less than § steps (the halting state cannot be reached at
itself, because [is a limit ordinal), the simulating computation will also take
less than 3 steps. Because 3 > w?, the complete algorithm will take less than
w + B = [steps in total. O

61

This equivalence between the time complexity classes of Koepke machines
and Hamkins-Kidder machines also holds at the level A\, the supremum of all
writable ordinals:

Proposition 6.13. PIfK = PE\(.

Proof. Assume that A is decidable by a time « Koepke machine T', where @ < A
or, in other words, « is a writable ordinal as a result of the fact that the class of
writable ordinals is downward closed (Proposition 3.19). Clearly this machine
T is also a space a machine, so the computation can use at most « cells. Say,
« is writable by a Hamkins-Kidder machine in time 8. Now (§ too must be a
writable ordinal, due to the fact that it is clockable as there is a computation
starting on input 0 finishing in time (3, and the fact that every clockable ordinal
is writable as a result of Corollary 3.20. After writing a code for o on the tape
in 0 steps, we can continue by simulating the Koepke algorithm by simulating
a tape of size «, in time less than «. Thus, we can decide A with a Hamkins-
Kidder machine in time § + «, which is again a writable ordinal by Proposition
3.22, and hence smaller than . O

It turns out, that in fact, an equality of the above type still holds up to the
level 3%, the supremum of all ordinals accidentally writable on input z:

Proposition 6.14. P, = PIK,

Proof. Assume that a set A is in PX,. Then it follows from Proposition 6.8
that A is in PSPACEgm7 and we know that there is an accidentally z-writable
ordinal « such that, if we can write a on the tape, we can compute A on a
Hamkins-Kidder machine, simulating an a-sized fragment of the tape of the
Koepke machine within space w, based upon the just-found coding of a.

The tactic now is to construct a Hamkins-Kidder machine, that simulates
all other Hamkins-Kidder machines on input x, and in doing so, performs an
algorithm that, one by one, writes all reals that are accidentally writable from x
on one of the scratch tapes. We can be sure that every real that is accidentally
writable from z will be written on one of the scratch tapes at some point; and,
each time a real is written on the scratch tape this way, we check if it codes an
ordinal. If it does, we continue simulating the computation using this ordinal
as tape length: eventually we will either run out of space, in which we continue
the algorithm writing accidentally writable reals on the tape, or it will turn out
that we have sufficient space, in which case the computation will finish.

This computation will eventually halt, because a real coding an ordinal equal
to or larger than « will be written on the tape at some point and, as all halting
computations will halt before A*, we know that the computation will halt before
AT, So, it follows that the set A is in PEE(. O

This gives us the following corollary:
Corollary 6.15. P¥, = Dec'®

Proof. We have PIE% C Dec™ as a result of Dec™ = Pf\I,TK and ng = Dec®
(the latter equality holds because * = 4%, so all halting computations from x
must halt before A%). O

62

6.4 Space complexity for Koepke machines

Now we will take a quick look look at space complexity issues for Koepke-type
Ordinal machines.

Proposition 6.16. Dec'™ C PSPACEE+2

Proof. Assume that A € Dec™®. We may assume, as a result of the equivalences
shown in section 2.5, that A is decided by an ITTM; machine that is able to
recognize when it is at a limit stage. We now can simulate A on a Koepke
machine with tape length w + 1 by moving left w times' at any limit state,
and besides this, simply computing the same program that the Hamkins-Kidder
machine uses. O

Proposition 6.17. PSPACEX, C DecK

Proof. In the proof Proposition 6.14, it was shown that PSPACEgm CPK In
combination with the fact that Pg\lf(= Dec™, this gives the desired result. [

These two results combined give an interesting result: together they imply
that it does not really matter how much extra space you use on an ordinal
Turing machine, as long as it does not go beyond %*. In particular, we have:

Corollary 6.18. For any ordinal a, such that o« > w+1 and a < ¥+ 1, and
for any function f such that we have f(x) > w and f(z) < X% for all z, we
have respectively that PSPACEE = Dec™ or PSPACEY = Dec"¥.

So, it turns out that, even with space ¥* at our disposal, we are unable
to compute any functions that a Hamkins-Kidder machine cannot compute.
Moreover, we can now establish a relationship between the PSPACEX-classes
and the PX¥-classes in a few cases.

Proposition 6.19. For any ordinal o, such that « > w+1 and a < A, we have
that PX C PSPACEE.

Proof. On one side, we know from Corollary 6.18 that PSPACEE = Dec™¥,
and on the other side, we know that PX C Dec'¥. O

Proposition 6.20. For functions f such that, for oll x, ¥* > f(x) > A%, we
have PSPACE = P¥X = Dec"".

Proof. On one side, from Corollary 6.18 it follows that PSPACEIf< = Dec¥,
On the other side, we know that P? D Pf\is, and from Proposition 6.14 we
know that P¥X, = PIX. From the fact that PIK = Dec"™™ it thus follows
that P? D Dec™. So we know that PSPACEIf(= Dec™®, as well as that
P'If(D Dec'™®. Finally, from Proposition 6.8 we know that PI; C PSPACEY,
so that we must have P? = Dec¥, completing the proof. O

1If, at a limit state, the head is at position n < w, we need to move left n times in order
to make sure that the new head position is 0; and if the head is at position w itself, we need
to move left only once; so, by ensuring that the machine gets the instruction to move left w
times in a row, we ensure ourselves that we end up with the head at position 0, as desired,
regardless of the original tape position.

63

At the same time, we will prove in Proposition 6.21 that Koepke machines
are in fact more powerful than Hamkins-Kidder machines, even when it comes
to computing sets of reals. To see this, we will let ourselves be guided by the
following question: are there any countable functions or ordinals, such that
there are functions computable by a Koepke machine, bounded in space by
respectively that ordinal or function, that are not decidable by any Hamkins-
Kidder machine?

It turns out that this, indeed is the case. With Proposition 3.16, we can
show that the weak halting problem % is indeed in PSPACES Lo

Proposition 6.21. h € PSPACE§+2.

Proof. We will sketch a possible way to compute h in PSPACE% 2 space. First
we will simply check if the input codes a natural number n; if it does not, we
simply output 0.

If it does, we know that either the computation of Hamkins-Kidder machine
n on input n will finish before time A, or, as a result of Proposition 3.16 the
contents of the tape at stage ¢ will be identical to that at stage 3.

Now, we will simulate the (non-halting) computation of A on input n, but,
using a scratch tape, we will keep track of all the w-sized tapes at any stage. If
we start a new step in the computation, we will first check if the configuration
at this step is equal to one at an earlier step. If this is the case, we halt. Because
the tape of the simulated computation has size w, at any time «, we will have
used at most w - a tape. This leaves us with the following two possibilities:

e The Hamkins-Kidder machine n, on input n, finishes before time A. In
this case, n € h, and we output 1, and we have used less than w -\ < X
space.

e The Hamkins-Kidder machine n, on input n, never finishes, and the con-
tent of stage ¥ will be equal to that at time ¢ due to Proposition 3.16.
We will realize this during the checking stage at step ¥, and at that point
the used part of the tape has size X.

In either case, we will use at most ¥ space during the computation, and thus
we have obtained a computation of h in PSPACEL 1o Space. O

The consequences of the above are essentially the following: up to the level of
3%, Koepke machines bounded in space up to level ¥ cannot compute any sets
that Hamkins-Kidder machines cannot compute. However, just above the level
3 this changes: in fact, the weak halting problem h is contained in PSPACE% 12
as well as in PSPACE? with f the function such that f(z) = X 4 1 for all
x €N, and f(z) =w+1 for all z € R\N.

64

Chapter 7

Nondeterministic
computation

In this chapter we will look at the idea of nondeterministic computation, applied
to Hamkins-Kidder machines as well as Koepke machines. Whereas the earlier
part of this thesis was mostly focussed on several variations of the question

P~ PSPACE, and the question P Z NP has already been treated in earlier
literature, in this chapter we will mostly focus on the questions NP Z PSPACE

and PSPACE = NPSPACE respectively. Because the definitions for space
complexity differ so widely, the two cases of Hamkins-Kidder machines and
Koepke machines have to be treated separately.

7.1 Nondeterministic computation in the case of
Hamkins-Kidder machines

7.1.1 Time complexity

For the task of defining nondeterministic classes of computation, there appear
to be two possible approaches to incorporate the notion of indeterminism: first,
we can try to provide for the nondeterminism by taking letting machines take
‘arbitrary’ reals as extra argument in addition to the standard argument; and
second, we can try to define a notion of a ‘nondeterministic infinite time Tur-
ing machine’; define computations by such machines, and base our notions of
complexity classes on those definitions. In most of the earlier papers, such as
[Sc], [DeHaSc|, and [HaWe], the first approach was taken; in [Ld], on the other
hand, the second approach was introduced. However, it turns out, and is proven
in [Lo], that, in many of the important cases, the two different definitions are
equivalent. Here, both definitions will be given, and the equivalence between
the two will again be proven. The original NP class will here be called NP’,
whereas we will use the notation NP for the class based upon nondeterministic
infinite time Turing machines.

Definition 7.1. For any function f and any set A, we say that A € NP, if
there is a time f machine T such that for any x, we have that x € A if and

65

only if there is a real y such that T accepts x @ y. Likewise, for any ordinal «
and any set A, we say that A € NP’,, if there is a time n machine T for some
1 < a, such that for any z, we have that € A if and only if there is a real y
such that T accepts = & y.

Now let us continue with the second approach, and define nondeterministic
infinite time Turing machines. The main modification from the standard ITTM,
model that we need to make in order to allow nondeterministic computation,
essentially comes down to allowing the transition function ¢ to be any relation,
rather than a function, so that from any state and tape content, there may be
different possible courses of action.

Definition 7.2. A nondeterministic infinite time Turing machine is de-
fined like a regular ITTM, but here d is a relation between (Q\g¢) x {0,1}* and
Q x {0,1}® x {L, R}, rather than a function.

We need to take some care in defining the notion of a ‘computation’ for
nondeterministic machines. A first attempt to come up with a definition would
be, to say that a computation of a nondeterministic infinite time Turing machine
is any function-like definite operation A such that:

o — (qa(x)v ha(x), Cl,a(x)a 02,04(55)7 037,1(.7;))

which is defined on all ordinals. This definition, however, is problematic, because
A is necessarily a proper class, as it would contain an element for every ordinal.
Moreover, we are not even guaranteed that any such A even exists as a class,
because we do not have an explicit definition of A.

We, however, can define partial computations much easier: we say that any
set A is a partial computation on a machine T from z, if A is a function:

a — (QCE(J:)7 ha(.lf), Cl,a(x)v CQ,a('r)7 C3,a(x))

that has a downward closed set of ordinals as domain, and which satisfies the
requirements of an infinite time Turing machine computation named in Defi-
nition 2.2. On any partial computation p by a nondeterministic infinite time
Turing machine from z, we can now also define the operations ¢?, h%, and ¢
for i € {1,2,3} as the current head, the head position, and the content of the
tape respectively at stage a of the partial computation p, and we can define
len(p) as the largest ordinal in the domain of p. We call a partial computation
a halting computation, if ¢ occurs at some point in it.! If p is a halting
computation by a machine T from input z, and if len(p) = «, we furthermore
write time(z, T, p) = a.

We now define the notion of uniform halting a nondeterministic computa-
tion by T from z: we say that a nondeterministic infinite time Turing machine
T halts uniformly on input z, if: a) the class of all halting computations is a
set A, and b) every partial computation computation on 7" has an extension in
A. Furthermore, we say that a nondeterministic infinite time Turing machine
T uniformly halts in time f, if it uniformly halts, and, on every halting
computation by T from z, the state ¢ is reached at, or before, f(z).

LIf g¢ occurs anywhere in a partial computation, it must be necessarily at the last stage of it,
as a result of the definition of § as a relation between (Q\gr) x {0,1}3 and @ x {0,1}3 x {L, R}

66

Definition 7.3. For any nondeterministic infinite time Turing machine T', we
say that T'is a nondeterministic time f machine if for all z, the computation
of T on z uniformly halts at time f(z). For any ordinal £, we say that T is a
nondeterministic time £ machine if 7' is a nondeterministic time f machine
for the constant function f such that f(z) = ¢ for all x.

Definition 7.4. For any function f, we let NP denote the class of all sets of
reals that are decidable by a nondeterministic time f machine. For any ordinal
&, we let NP¢ denote the class of all sets of reals that are decidable by a time
7 machine for some 7 < &.

The classes NP, NP, , and NP are also defined analogously to the classes
P, P,, and P,,. We also let NDec denote the class of all sets that are
decidable by any nondeterministic infinite time Turing machine.

Finally, we will define classes that contain all the sets which have a comple-
ment in the NP-classes:

Definition 7.5. For any function, f, we let coNP; denote the class of all sets
of reals A such that A € coNPy if and only if P(R)\A € NP;. Similarly, for
any ordinal «, we let coNP, denote the class of all sets of reals A such that
A € coNP,, if and only if P(R)\A € NP,,.

The equivalence, or at least equivalence for ‘important’ ordinals and func-
tions, between the NP-classes and the NP’-classes is established by the follow-
ing proofs, which appeared earlier as Proposition 11 in [Lo]:

Proposition 7.6. Let f be a function from R, the powerset of N, to Ord, the
class of ordinals, such that f(z) > w? for all x. Then, if A € NP';, we also
have A € NPy.

Proof. Assume that A € NPy, and that for all z, f(z) > w?. We now know
that there is a time f machine T such that for any x, z € A if and only if there
is a real y such that T accepts @ y. We now can construct a nondeterministic
machine that first, in w steps, writes down a real nondeterministically on the
even positions of the tape, and then copies the action of 7. This is a nonde-
terministic Hamkins-Kidder machine that decides A in w+ f(x) steps. Because
f(z) > w? w+ f(z) must be equal to f(z), so it follows that A € NP. O

Proposition 7.7. Let f be a function from R, the powerset of N, to Ord, the
class of ordinals, such that w-2- f(x) = f(x) for all z, and f(z) < wy for all x.
Then, if A € NPy, we also have A € NP'y.

Proof. Assume that A € NP;. Then there is a nondeterministic Hamkins-
Kidder machine T that, on any input z finishes before time f(z) on every
branch of the computation. Because f(x) is a countable ordinal, there is some
real coding f(x) as a relation on the natural numbers. If we regard this real
as a relation on the natural numbers, we can now regard every natural number
occurring in the field of y as corresponding to a possible stage of the compu-
tation, where a finite number of choices is possible. For every branch of the
computation T'(z), we have a function N — N, that for any natural number
corresponding to a stage of the computation belonging to that branch, assigns
a number corresponding to the choice that has to be made at that branch. This
function can be represented by a real number.

67

Now consider the following Hamkins-Kidder machine 7" that, given a certain
input, interprets it as a combination of three reals (z ®y) @ z. This machine will
consider x as a code for an ordinal, and y as function f from N to N determining
choices to make at points during this computation. This machine will simulate
the nondeterministic machine T" making the choices prescribed by y. At any
stage of the computation, we will look for the lowest element of the current
ordinal coded by x. If there is no such element, we will find this in w steps
and output 0. If there is such an element, we remember the natural number
n coding it, and look through y for the value f(n). The latter can be done
in finitely many steps. After this, we can simulate the computation of T' on
the input z making the choice corresponding to the value f(n) in finitely many
steps and, if we find out that the computation of T would terminate with a
certain value, terminate with the same value. So, for every step of the original
computation, the simulated computation will take at most w - 2 steps. Because
the computation of T on every branch of the computation will finish before time
f(x), it follows that, on all inputs, the simulated computation will finish before
time w - 2 - f(z) = f(x).

Now, it still needs to be shown that T actually accepts the set A nondeter-
ministically. First, consider the situation where a € A. In that case, there is a
branch b of the computation by T that witnesses the fact that a € A. Moreover,
we know that this branch maximally has the length f(a) and, because f(a) is a
countable ordinal, we know that there is some real coding f(a). Another real,
y, will code exactly those choices made in the branch b. But now it follows that
the computation of 77 on input (x ®y) ® a will simulate the branch in question,
and thus output 1. Conversely, consider the situation where a ¢ A. In this
case, we still have the fact that all branches b of the computation by 1" starting
from b finish within time f(a) and, furthermore, that in all these branches, the
output of T will be 0. There are two possibilities for a computation of 77 on
any input (z @ y) @ a: either z codes some ordinal, or it does not. If it does
not, the computation can still start on a well-founded initial part of z. If this
initial part is long enough, that will result in the computation of T" on one the
branches being simulated to the end, resulting in the output 0. If it is not long
enough, the computation will at one point result in a stage where no least el-
ement can be found on z, and here, again, 0 will be output. In the situation
where = codes some ordinal, either this ordinal will be long enough, resulting in
one of the branches being simulated and 0 being output; or it will be too short,
again resulting in the output 0. So, on any input (z @ y) ® a, 0 will be output.

It follows that a computation of 7" on a outputs 1 if and only if there is a
real z such that a computation of T on = @ a outputs 1, in the required time,
completing the theorem. O

7.1.2 Time complexity: results

Now we have shown that the two different definitions of the NP-classes are
(mostly) equivalent, we first can mention a number of earlier results that were
proven using the ‘old’ definition of the NP-classes, that is, our NP’-classes.
Note that Proposition 7.6 alone is already enough to show this: if we know that
NP’ contains elements that P; does not contain, these elements must, due
to Proposition 7.6, also be in NPy, so the inequality of P and NP follows
directly.

68

Lemma 7.8. NP’/ o\P,, # 0, and hence NP, 2\Py,, # 0, and hence P, #
NP, for any o such that a > w+ 2 and o < wy.

Proof. See [Sc, Theorem 2.10]. O
Corollary 7.9. P # NP.
Lemma 7.10. NP/ \P_, # (), and hence NP \P, # 0, and hence P, #

NP., .
Proof. See [Sc, Corollary 2.14]. O
Lemma 7.11. NP/ \P,, # 0, and hence NP \P.. # 0, and hence
P, #NP .

Proof. This is a weakening of [HaWe, Theorem 1.8]. O

7.1.3 Space complexity: definitions

Turning to the case of space complexity classes, we can again define the classes
NPSPACE analogously to the NP and PSPACE cases. In this case we will
follow [L&] and only stick to the option of defining the space complexity classes
in terms of nondeterministic machines.

Here we need an adaptation of Definition 4.18 that takes into account the
existence of different branches:

Definition 7.12. If T is a nondeterministic infinite time Turing machine, and
p is a halting computation by T from z, we define:

L £y(p) :=min{n: Vi€ {1,2,3} : ¢} € Ly[z]}
2. space(z,T,p) := sup{{,(p) : v < &}

Definition 7.13. For any nondeterministic infinite time Turing machine T,
we say that T is a nondeterministic space f machine if 7" uniformly halts
on all inputs z € R, and, for any halting computation p starting from any
z € R, we have space(z,T,p) < f(z). For any ordinal &, we say that T is
a nondeterministic space ¢ machine if T is a nondeterministic space f
machine for the constant function f such that f(x) = ¢ for all x.

Definition 7.14. For any function f, we let NPSPACE/ denote the class of
all sets of reals that are decidable by a nondeterministic space f machine. For
any ordinal &, we let NPSPACE, denote the class of all sets of reals that are
decidable by a nondeterministic space n machine for some n < &.

Again, the classes NPSPACE, NPSPACE,, and NPSPACE, ; are also
defined analogously to the classes PSPACE, PSPACE,, and PSPACE, ..

A direct result of the definitions is the following fact:

Proposition 7.15. For all f and all o, PSPACE}" C NPSPACE}" and
PSPACE!® C NPSPACE!® respectively.

69

Proof. Given an infinite time Turing machine 7', it is immediate that T' also
fulfils the definition of a nondeterministic infinite time Turing machine, in which
no branching occurs. The space complexity of any halting computation of T,
when seen as nondeterministic machine, thus is identical to the space complexity
of T when seen as regular machine. O

Again, we can define nondeterministic ITTM;s, nondeterministic machines
with varying numbers of tapes, with additional scratch cells, with stay options,
et cetera. Moreover, all of the results that were given in chapter 2 about the
equivalence between different types of infinite time Turing machines (ITTMg and
ITTM;, both with variations in the number of tapes and the number of scratch
cells) generalize to the case of nondeterministic machines. All of the stretching,
contracting operations, and operations doing nothing else than simply moving
left, can be directly taken over, while the actual nondeterminism is incorporated
in the operation performing the actual simulation. Without a proof, we will now
state that at least:

Proposition 7.16. For any set A, A is decidable by a nondeterministic ITTMq
if and only if it is decidable by a nondeterministic ITTM;.

7.2 The relationship between the classes NP
and NPSPACE

With all preliminary work done, we now can go on to the real problem, that is,
to investigate the relationship between the classes NPy and NPSPACE;.

The main problem here, and the reason why we have difficulties even estab-
lishing results that are trivial for regular, finite, Turing machines, is that there
are machines for which we know that we have time(x,T,p) < « for all halting
computations p, which nonetheless can write down very complicated reals on
the tape. An example of such a machine would be the machine, that, in w steps,
nondeterministically writes an 1 or a 0 on each of the w cells of the tape. After
only w steps, every real already occurs on one of the branches. So, whereas in the
earlier cases the maxim ‘an algorithm never takes more space than it takes time’
always held, we have no certainty about that in this case, and even counterex-
amples. As a result, to even prove something such as NPHK € NPSPACE!K
we have to find, for every set A in NPHX gnother machine, which also computes
A, but which is guaranteed to be limited in space by NPSPACE" . Whether
this is at all possible, remains an open question.

The situation, however, is not entirely hopeless: we may still try to ap-
proach things, by showing that a complicated set, such the set of all reals cod-
ing wellordered sets, occurs at a very low level in the NPSPACE-hierarchy.
This turns out to be a feasible method indeed, and it appears that the set of
non-wellordered sets appears in NPSPACE,, ;. We first define the set WO:

Definition 7.17. The set WO is defined as {x € R : x codes a wellorder}.
Proposition 7.18. WO € NPSPACE,,

Proof. We here use the fact that a real x codes a wellorder if and only if it is a
linear order that contains no infinitely descending chains. To see if a real x is

70

in WO, therefore, it will suffice to provide a nondeterministic Turing machine
with an algorithm, that will first recognize any real that is not a linear order;
and following that, if an infinitely descending chain is present, recognize it on
at least one of the branches.

First of all, we can easily recognize if a real z codes a linear order R by first
checking if it is total, then checking if it is antisymmetric, and then checking
if it is transitive. These things can all be done by only writing finite sets or
possibly N on the tape.

For the rest of the task, the task of recognizing an infinitely descending chain
S1,82,... with s;Rs;11 and s; € Field(R) for i € N, we should first note that
there must be another infinite sequence t1, to, ... with ¢;Rt;11 and ¢; € Field(R)
for i € N, such that for all ¢;, the index of ¢; is lower than the index of ¢;11. The
trick that we can use to keep the space complexity ‘low’, is to only keep track
of the last element of the (possibly infinite) sequence, deleting all the earlier
elements.

Now, we first need to find an initial element for the sequence, and then move
along the field of the order from left to right. For each element we find, on one
branch we pick it as the starting element of the sequence, and on another branch
we do not. On the branch where we do, we put a flag on one of the scratch
tapes at the index of the element, and put another flag on to indicate that we
have found a first element. On the branch where we do not, we simply continue
the search for a starting element.

When we have found at least one element for a sequence, we go on alongside
the natural numbers, and for each number, we check if the element corresponding
to it in the order is lower than our current lowest element. If it is, on one new
branch we put a flag on this element as the new lowest element, deleting the
previous lowest element, and on another branch we ignore it and keep the current
lowest element.

When we reach a limit state, there are three possibilities:

1. The ‘found a first element’ flag is off, and (necessarily) the ‘lowest element’
tape is empty. We have not found an infinite descending sequence, and
output 0.

2. The ‘found a first element’ flag is on, and there is exactly one 1 on the
‘lowest element’ tape. This means that this element has been chosen
as ‘lowest element’ somewhere, but never been erased afterwards, so no
lower elements have been chosen. Again, we have not found an infinite
descending sequence, and output 0.

3. The ‘found a first element’ flag is on, and the ‘lowest element’ tape is
empty. This means that every element that has been chosen as lowest
element at one point, has been updated by a lower element afterwards.
This however means that we have found an infinite descending sequence,
and output 1.

This computation halts in all branches, and only writes very simple sets—
finite ones containing one element, in fact—on the scratch tapes. It follows from
this that the computation is in NPSPACE, ;. O

We now refer to the following lemma about the analytical hierarchy (for
background information on the analytical hierarchy, see e.g. [Ro]):

71

Lemma 7.19. For every X1 set A, there is a recursive function f, such that
r€A < f(zx) e WO

Proof. Corollary 20b in section 16.4 of [Ro] shows that, for every Il set B,
there is a recursive function f, such that x € B <= f(z) € WO. Now assume
that A is 1. This implies that A is II}, and there is a recursive function f,
such that x € A <= f(x) € WO. This same function f witnesses that
r €A < f(z) e WO. O

Because all ¥} sets are reducible to the compliment of WO by a recursive
function, we can generalize Lemma 7.19 to the following result:

Proposition 7.20. For any ¥} set A, we have A € NPSPACE, 5.

Proof. Because A is X1, we know that there must be some recursive function
f, such that * € A «— f(z) € WO. We can now proceed by first computing
the function f on the input, which takes us w time, and then performing the
earlier algorithm to search an infinite descending sequence. Because, during
the latter part of the computation, the content of the tape will only ever differ
finitely many cells from the earlier result f(x), we are guaranteed that the space
complexity of any of the snapshots will never go beyond the w + 2 level. It now
follows that, indeed, A € NPSPACE,, .. O

Which gives us the following result:

Proposition 7.21. We have NP, C NPSPACE, o and hence, for any or-
dinal o such that w+1 < a < w?K also NP, C NPSPACE,,.

7

Proof. Theorem 5 from [DeHaSc] shows that NP, = X1, and because the
function fy(x) = wi satisfies the conditions of Propositions 7.6 and 7.7, NP =
¥1 follows.

From this and Proposition 7.20, it is a direct consequence that NP, C
NPSPACE, 2, and the desired result follows. The second result then di-
rectly follows from the fact that NP, C NP, if a < w$¥, and the fact that
NPSPACE,;; C NPSPACE,, if « > w+ 1. O

Of course, this is not much: we have shown one instance of the problem
NP, € NPSPACE,, a problem which, in the case of finite Turing machine
computations and, as we will soon see, also in the case of nondeterministic
Koepke machines, is trivially easy to solve.

7.3 Nondeterministic computation in the case of
Koepke machines

In the case of Koepke machines, things seem to be looking a little bit brighter.
Here we have a definition of space complexity that is simpler and more intu-
itive, and it turns out that we have a few analogues for some of the theorems
about deterministic Koepke machine computation, such as Proposition 6.16 and
Proposition 6.17. We start out by giving the—unsurprising—definitions, and
continue by presenting a number of results.

72

7.3.1 Definitions

Definition 7.22. A nondeterministic Koepke machine is defined like a
regular Koepke machine, but here again ¢ is a relation between @ x {0,1}3 and
Q x {0,1}® x {L, R}, rather than a function.

We again define the notions of partial computations, halting compu-
tations, uniform halting, and uniformly halting in time f, like we did in
the case of nondeterministic Hamkins-Kidder machines.

Definition 7.23. For any nondeterministic Koepke machine T, we say that T
is a nondeterministic time f Koepke machine if for all z, the computation
of T on z uniformly halts at time f(z). For any ordinal £, we say that T is a
nondeterministic time { Koepke machine if T is a nondeterministic time
f Koepke machine for the constant function f with f(x) = ¢ for all .

Definition 7.24. For any function f, we let NP? denote the class of all sets
of reals that are decidable by a nondeterministic time f Koepke machine. For
any ordinal &, we let NP? denote the class of all sets of reals that are decidable
by a nondeterministic time n Koepke machine for some n < &.

Definition 7.25. For any nondeterministic Koepke machine T, we say that T
is a nondeterministic space f Koepke machine if, for all branches of the
computation, and for all x, the position of the head always stays at or below
f(x). For any ordinal £, we say that T is a nondeterministic space £ Koepke
machine if T is a nondeterministic space f Koepke machine for the constant
function f with f(z) = ¢ for all

Definition 7.26. For any function f, we let NPSPACE? denote the class
of all sets of reals that are decidable by a nondeterministic space f Koepke
machine. For any ordinal &, we let NPPACE? denote the class of all sets of
reals that are decidable by a nondeterministic time 1 Koepke machine for some

n<€.

For Koepke machines, at least it becomes evident directly that the ‘sanity
check’ ‘time complexity classes are smaller than or equal to the corresponding
space complexity classes’ holds. Here, just like in the case of finite Turing
machines, but unlike in that of Hamkins-Kidder machines, one ‘time unit’ extra
in a computation can mean at most one ‘space unit’ extra:

Proposition 7.27. For all f and all o, we have NP? - NPSPACE? and
NPS C NPSPACEE respectively.

Proof. It is easy to see by ordinal induction on a, we have hl(x) < a for any z
and any « on all branches. From this, it follows immediately from the definitions
that space(z,T,p) < time(z,T,p) for all halting computations p. Hence, for

any ordinal «, we have A € NPSPACES if Ae NPE, and for any function f,
we have A € NPSPACE} if A € NP}, O

Also, Proposition 7.15 carries over directly to the case of Koepke machines.

Proposition 7.28. For all f and all o, PSPACE}" C NPSPACE}" and
PSPACE!® € NPSPACE!® respectively.

Proof. Like in Proposition 7.15. O

73

7.3.2 Results

To start, we notice that any set that is nondeterministically decidable by a
Hamkins-Kidder machine, is decidable by a nondeterministic Koepke machine
using only space w + 2:

Proposition 7.29. NDec"™™ C NPSPACEE_|r2

Proof. Assume that A € NDec'™. By Proposition 7.16, we may assume that
A is decided by a nondeterministic ITTM; machine that is able to recognize
when it is at a limit stage. We now can simulate A on a nondeterministic
Koepke machine with tape length w + 1 by moving left w times at any limit
stage, and besides this, simply computing the original program used by the
Hamkins-Kidder machine. O

However, even stronger than in the previous case, where the longer tapes
did not give us any extra power until length ¢*, it turns out that now, we do
not gain any strength from the longer tapes even until length w;.

Proposition 7.30. NPSPACE], C NDec"®

Proof. Assume that we have A € NPSPACEEI. In that case, there is a count-
able ordinal «, such that all branches of the machine T', which decides A, take
less than « space on any input x € R.

We can now run a nondeterministic Hamkins-Kidder program, that first
nondeterministically writes a real out in w steps, such that, after w steps, every
real occurs on one branch of the tape. After this, on every branch we start
checking if the real we have codes an ordinal: if it does not, output 0. If it
does, we can simulate the computation of the machine T using this ordinal as
our tape: if the program ever finishes without running out of tape, give the
obtained output. If the program does not finish without running out of tape,
we can output 0.

Because A is computable within countable space by a Koepke machine, we
know that, for every z, on at least one of the branches, the space in the simulated
machine will be enough. As a result, if x € A, there will be at least one such
branch where this will be recognized and the Hamkins-Kidder machine will
actually output 1 as a result. O

A result of this is that, in the NPSPACEX hierarchy, we will have equality
all the way between w + 2 and wy:

Proposition 7.31. For any ordinal o such that w + 2 < a < wy, we have that
NPSPACEX = NDec"¥.

Proof. This follows directly from the Propositions 7.29 and 7.30. O

And, because we know that NDec™ is a larger set than Dec™ we also
obtain the following result relating NPSPACEX and PSPACEKX:

Proposition 7.32. For any ordinal o such that w4+ 2 < a < X, we have that
PSPACEY C NPSPACEY.

Proof. On one side, we know that PSPACEL(C Dec™ and hence that h #*
PSPACEE. On the other side, we know that h € NDecHK, and hence that
h € NPSPACEE. O

74

Furthermore, we obtain the following analogue to Proposition 6.13:
Proposition 7.33. NP{¥ = NPX.

Proof. Assume that A is decidable by a nondeterministic time 1 Koepke ma-
chine, where 7 < A or, in other words, 7 is a writable ordinal. Clearly this com-
putation can only use at most 7 cells on any of the branches. Say, n is writable
by a Hamkins-Kidder machine in time 6. Now 6 too must be a writable ordinal,
due to Corollary 3.20, and the fact that it is clockable as there is a computation
starting on input O finishing in time 6. After writing a code for 1 on the tape
in 6 steps, we can continue by simulating the Koepke algorithm by simulating a
tape of size 7, in time less than 7. Thus, we can decide A with a nondetermin-
istic Hamkins-Kidder machine in time 6 + n, which is again a writable ordinal
by Proposition 3.22, and hence smaller than . O

We also have:
Proposition 7.34. For any ordinal o < \, we have NPEX ¢ NPYK,

Proof. Because a < A, there is a clockable ordinal n > «, and by [HaLe, Many
Gaps Theorem 3.6], there are at least i gaps in the clockable ordinals of size 7.
So there must be a gap in the clockable ordinals starting at some ordinal larger
than 7. Let 3 be the least ordinal larger than 7 starting a gap in the clockable
ordinals of size larger than n: (3 again is a writable ordinal, and hence smaller
than A. From [DeHaSc, Theorem 17], it follows that PEIK = NPEIK ﬂcoNPgK,

and from [DeHaSc, Corollary 18] it follows that PYK = NP*ncoNPYX. But,
because PEIK C PIK it follows that NPEIK N coNPgK C NP&IK N coNPI;K,
and hence that both NPEIK ¢ NPY¥ and coNPEIK C coNPY¥, from which

=

the initial claim follows. O
Which gives us the following result relating NP* and NPSPACEX:

Proposition 7.35. For any ordinal o such that w + 2 < a < X\, we have that
NPX ¢ NPSPACEX.

Proof. On one side, we have that NPX C NPY, and hence NPX C NDec"¥.
On the other hand, we have that NDec" = NPSPACEY, from which the
result follows. O

(0]

Chapter 8

Conclusions

At the beginning of this thesis, we set out to look at the relationship between
the classes of the family P and those of the family PSPACE. We found that,
in the case of Hamkins-Kidder machines and the case of Koepke machines, the
inclusions Py C PSPACE; generally held. In the case of Hamkins-Kidder
machines, the only exceptions are finite ordinals « functions f where the range
of f contains finite ordinals. In the case of Koepke machines, both inclusions
hold, just like in the case of ordinary, finite, Turing machines, trivially, as a
result of the general fact that ‘a computation cannot use more space than time’.

For a number of cases, we also proved the strict inclusions Py C PSPACEy
and P, C PSPACE,. In the cases of Hamkins-Kidder machines, these cases
are: (a) ordinals in between w + 2 and w + 2, (b) recursive successor ordinals
larger than w + 1, and (c) successor ordinals « such that there is a clockable
ordinal 3 such that o < §+ 3 and « is smaller than the next admissible ordinal
after 6. In the case of Koepke machine, the strict inclusion is proven to hold
for all ordinals « such that w +1 < a < A.

For other functions f, we have proved that equality holds between P; and
PSPACE;. In the case of Hamkins-Kidder machines, this was shown for all
f such that f(x) < A* for all z, and in the case of Koepke machines, this was
shown for all f such that A* < f(z) < X*.

Besides the relationship between the classes P and PSPACE, we also looked
at the relationship between the classes NP and NPSPACE, and the relation-
ship between the classes PSPACE and NPSPACE. Regarding the relation-
ship between NP and NPSPACE, the results for Hamkins-Kidder machines
are few and far between: so far, the only thing that has been shown, was the
inclusion NP, € NPSPACE, for a very limited range of ordinals. In the
case of Koepke machines, however, the inclusions NP, € NPSPACE, and
NPy C NPSPACE;/ again hold trivially, and furthermore, for ordinals o with
w42 < a < A, we proved that the strict inclusion NP, C NPSPACE, holds.

Regarding the relationship between PSPACE and NPSPACE, the inclu-
sions PSPACE; C NPSPACE; and PSPACE, C NPSPACE,, hold triv-
ially for all @ and all f, both in the case of Hamkins-Kidder and Koepke ma-
chines, as a direct result of the fact that any Hamkins-Kidder machine and any
Koepke machine also fulfils the requirements of a nondeterministic Hamkins-
Kidder machine and a nondeterministic Koepke machine, respectively. In the
case of Koepke machines, moreover, we showed that for all ordinals a with

76

w+ 2 < a < X, the strict inclusion PSPACE, C NPSPACE,, holds.

Other than establishing the relationship between different complexity classes,
a large part of this thesis also was—partly because these results were needed to
give sufficiently formal proofs of the later theorems—concerned with proving the
equality of variants in the models of Infinite Turing computation. An important
equivalence shown is that between the ITTMg and ITTM; models, and variants
of those models with different numbers of tapes and/or scratch cells.

Still, quite a few questions so far remain unsolved: so far, we have not
managed to find the truth or falsity of either P C PSPACE, P, C PSPACE,,
or P, C PSPACE, . The main technique we used to prove the equality of
P, and PSPACE,, namely showing that a certain halting set is in PSPACE,,
but not in P, does not appear to work here.

Furthermore, we have not looked at all at the computation of Koepke ma-
chines beyond stage w;. Especially in the case of Koepke machines, though,
many of the ‘main’ questions were solved for important classes of countable
ordinals.

Other than this, there seems to be a large amount of theorems that appear
to fit in the ‘easy but tedious’ category—many of which have not been proven
rigorously yet. For example, here we can think of the invariance of clockable,
accidentally writable, and eventually writable ordinals between the different
type of models: especially the latter seem to be easily proven with the right
type of simulation.

All these open and unsolved issues could, in principle, be material for further
investigation.

7

Appendix A

Variations in the definitions
of Pf and PSPACEf

A.1 Variations in the definition of P;

In chapter 4, we defined P as the family of all sets of reals A, such that A is
decidable by a time f machine, that is, a machine T, such that time(z,T) <
f(z) for all z.

In [Sc] however, we find another definition, namely:

We say that A € Py if there is a Turing machine T such that (a)
x € A if and only if T accepts x and (b) T halts on all inputs x after
< f(z) many steps.

In this paper, it is not made clear what exactly is meant with ‘after a many
steps’; however, in section 3 of [Hale], in the definition of clockable ordinals,
‘halting in exactly « steps’ is clarified as ‘the ath step of computation is the
act of changing to the halt state’. Because ‘the ath step of computation’ must
be equal to ‘the step going from stage a to stage o + 1!, this would, in our
terminology be equivalent to g2 11 =g

So the definition in [Sc] is, in our terminology, equivalent to: ‘A € P/ if and
only if there is an infinite time Turing machine T', such that T" accepts A, and,
for all z, time(x,T) < f(z) + 1'—as ‘halting within « steps’ only implies the
halt state must be reached at stage o+ 1. However, time(z,T) < f(z) + 1 can
be written as time(x,T) < f(x), so this definition is equivalent to the definition
in this thesis.

In [HaWe], we find yet another definition:

We say that A € Py if there is an (infinite time) Turing machine
computable function ¢, so that (i) A is decidable by ¢, thatisz € A
if and only if ¢.(x) | 1, and (ii) for all z € 2, ¢.(z) | in at most
f(2) many steps.

Here the ‘less than’ clause is replaced by an ‘at most’ clause: in our termi-
nology, thus, this definition can be rephrased as: ‘A € P/ if and only if there

1Otherwise, no limit ordinal could possibly be clockable as there would be no ath stage
for limit ordinals

78

is an infinite time Turing machine T, such that T accepts A, and, for all z,
time(z,T) < f(z)+ 1.

A third definition can be found in [L]: here, like in this thesis, a set is
considered to be in Py if and only if it is decidable by a time f machine.
However, the definition of a time f machine in [L6] differs from our definition:
there, a time f machine is defined as a machine T" such that time(z,T) < f(z)
for all x.

Because of this, for successor ordinals 8 and for functions f, it follows that
the classes P; and P, from the definition in [HaWe] correspond to the classes
Ps41 and Poyq according to the definition in [Sc], and to the classes Py o and
P42 according to the definition in [Ld].

The classes P, for limit ordinals «, on the other hand, do not differ between
the various definitions, as P, is defined as ‘decidable by a time £ machine for
some £ < o, and if £ < o, then £ +1 < @ and £ +2 < a as « is a limit ordinal.

Likewise, in the definition of the weak halting problem h, relativized to «,
it might appear to be a deviation from the earlier definition that we made the
requirement time(e,e) < o, and not time(e,e) < a. However, time(e,e) < «
corresponds directly to the notion ‘halts in less than « many steps’ that was
used in [DeHaSc].

A.2 Variations in the definition of PSPACE;

Also with regard to the definition of the space complexity classes, the definitions
in this thesis differ from those in [L&], and they do so in exactly the same way
our time complexity classes differ from those in [L&]. The operation space(z,T)
is still defined identically, but whereas we define a space f machine as a machine
T such that space(z,T) < f(z), in [L&] this is defined as space(z,T) < f(z)?.

If we use the definitions from [L&] in both the cases of time and space com-
plexity, almost all of the results in this thesis will still hold. There are a few
theorems where this is not directly evident, or where small changes have to be
made:

e Proposition 5.13 has to be restated as ‘For every ordinal «, we have h,, ¢
P.io’.

e Corollary 5.7, still holds, as we still have space(z,T) < time(z,T).

e In Theorems 5.11 and 5.12, all occurrences of PSPACE, > have to be
replaced by PSPACE,, 3.

e In Proposition 5.13, we are only guaranteed that h, € PSPACE,.,
and hence, in Theorem 5.14, we in first instance can only obtain P, C
PSPACE,, for successors of successor ordinals larger than w+2. Likewise,
Theorem 5.16 only works for successors of successor ordinals between 344
and the next admissible after (.

e In Proposition 7.18, we have to replace w+1 with w42, and in Proposition
7.20, we have to replace w + 2 with w + 3.

2 Actually, no precise definition is given at all in [L&], but this definition is implied as the
notation with < was given in the definition of NP, which was given explicitly.

79

If, on the other hand, we use the definition of space complexity classes from
[L6] in combination with the definition of time complexity classes from [Sc],
things turn out to be more problematic: for example, in this case, we are not
guaranteed that Py C PSPACEy, but only Py C PSPACE; ;.

80

Bibliography

[Co]

[DeHaSc]

[HaLe]

[HaSc]

[HaSe]

S. Barry Cooper, Computability Theory, Chapman & Hall/CRC,
2004

Vinay Deolalikar, Joel David Hamkins, Ralf-Dieter Schindler, P #
NP Nco—NP for infinite time Turing machines, Journal of Logic
and Computation 15 (2005), pp. 577-592

Joel David Hamkins and Andy Lewis: infinite time Turing ma-
chines, Journal Of Symbolic Logic 65 (2000), pp. 567-604

Joel David Hamkins and Daniel Evan Seabold: Infinite Time Tur-
ing Machines With Only One Tape, Mathematical Logic Quarterly
47 (2001), pp. 271-287

Joel David Hamkins, Daniel Evan Seabold, infinite time Turing
machines With Only One Tape, Mathematical Logic Quarterly, 47
(2001) 2, pp. 271-287

Joel David Hamkins and Philip D. Welch, Py # NP for almost
all f, Mathematical Logic Quarterly, 49(2003) 5, pp. 536-540

Peter Koepke, Turing computations on ordinals, Bulletin of Sym-
bolic Logic 11 (2005), pp. 377-397

Kenneth Kunen, Set Theory, An Introduction to Independence
Proofs, North-Holland, 1980

Benedikt Lowe: Space bounds for infinitary computation, in Logical
Approaches to Computational Barriers, Springer (2006), pp. 319-
329

Hartley Rogers, Jr., Theory of Recursive Functions and Effective
Computability, McGraw-Hill Book Company, 1967

Ralf Schindler, P # NP for infinite time Turing machines, Monat-
shefte der Mathematik 139 (2003), pp. 335-340

Philip D. Welch, The Length of infinite time Turing machine Com-
putations, Bulletin of the London Mathematical Society 32 (2000),
pp. 129-136

Philip D. Welch, Bounding lemmata for non-deterministic halting
times of transfinite Turing machines

81

