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Chapter 1

Introduction

Leibniz hoped for a calculus of truth in a universal sensead& showed with his
Incompleteness Theorem that such a calculus can not ex@@el&result, however,
left open which particular logics are (un)decidable. Fatamce, it was not until the
1970s that the undecidability of Hilbert's Tenth Problermswgaown.

Besides decidability, researchers were interested in hatdeking properties of
infinite structures using finite automata. See [CGP99] féerence. In particular El-
got and Biichi pursued the question which properties caxpeessed and verified by
automata. In 1962, Elgot [Elg61] and Biichi [Biic62] shovildt finite state deter-
ministic automata and monadic second-order logic intéggren finite words, which
is the weak monadic second-order logitS1S are equally expressive. In [Biic62],
Buchi showed the same for the monadic second-order I8¢i6 of infinite words.
Thereby he obtained arffective translation of formulas &1Sinto non-deterministic
word automata with Biichi acceptance condition. In [McN&6&Naughton gener-
alised Buchi’s method and obtained diieetive translation of monadic second-order
logic S2Sof binary trees into finite automata.

Using the connection between logics and automata exhibyeBuchi and Mc-
Naughton, Rabin proved the decidability 2 Sby reducing the satisfiability problem
to the non-emptiness problem for non-deterministic birteeg automata with Rabin
acceptance condition, which was known to lfkeetively solvable. From this result
follow immediately various decidability results such as Rvesburger arithmetic, for
the monadic second-order logic of trees with arbitrary (dautntable ) branching, and
for the monadic second-order logic of countable linear ondgs. The most important
contribution, however, is seen in the application of auttaniaeory to logic.

The proof itself has since been considered hard to compdewemany scholars,
which lead to various improvements. In 1982, Gurevich andikigton [GH82] gave
a reduction 0fS2Sto non-deterministic automata with Muller acceptance diord In
1995, Muller and Schupp [MS95] refined the reduction. At tearhof their argument
is the non-determinisation of alternating automata. Asiedgn [CKS81], alternating
automata are closer to classical logics with negation 8R&Sthan non-deterministic
automata.

The behaviour of automata operating on infinite input is giireterms of accep-



tance games. For Rabin and Muller automata, these accepganees are not histo-
ryfree, but bounded memory determined. In order to win a pfaguch an acceptance
game the players need to have a bounded memory of the playudrdifty the mem-
ory needed, Gurevich and Harrington introduced the lategearance record (LAR)
which Muller and Schupp adapted as the index appearancelr@édr) for a complex
memory framework. However, for parity automata, accepgagames are historyfree
determined which follows from a result for parity graph ganseown independently
by Emerson and Jutla [EJ91], and Mostowski [Mos91]. We alatgoon determinacy
of parity graph games in Appendix B. For the proof that acaept games for parity
automata are historyfree determined we refer to the litleeat

Both infinite -words andx-labelled binary trees are instances of coalgebras for
the respective functors x (-) taking objectsX to £ x X andX x ((-) x (-)) taking
objectsX to £ x (X x X). Based on this observation, Venema introduced in [Ven04]
automata recognising genefalcoalgebras for functors preserving weak pullbacks.
In both [KV05] and [KV07] the class of alternatirfercoalgebra automata is shown to
be closed under union, existential projection and nonrdetgsation.

In this text we give a comprehensive proof of Rabin’s Theorsajorly based on
the concepts used in [KV07]. In Chapter 2 we introduce manadcond-order logic
S2Sin a minimal representation and alternating automata. \Weepthe class of al-
ternating binary tree automata closed under complementatiChapter 3. In Chapter
4 we prove that alternating and non-deterministic binagg iutomata are equally ex-
pressive by reducing the non-determinisation of altengghinary tree automata to the
determinisation of non-deterministic word automata asvshby Safra in [Saf88]. In
Chapter 5 we define the translation of formulass@Sinto alternating binary tree au-
tomata. In Chapter 7 we give a game-theoretical solutiongmbn-emptiness problem
for alternating binary tree automata.



Chapter 2

Preliminaries

2.1 Monadic Second-Order Logic
Formulas of the monadic second-order lo§RSare defined as
¢ =XCY|Sug(X,Y) | =g |V e |AXe

whereX andY are set variables. A variable occursely in ¢ if it is not bound by a
guantifier. Formally we define the set of free variables inrenfida¢g of S2Sinductively
as follows.

FV(XCY) = (X, Y)
FV(Sug(X,Y)) :={X Y}

FV(-¢) = FV(¢)

FV(¢ V) = FV(¢) UFV(y)
FV(3X.0) = FV(¢) \ {X}

Formulasg are interpreted with respect t@luations of the variables occurring
freely in ¢. A valuation of a set variabl¥ is a setvx C 2* of nodes in a binary tree.
A valuation of a seV of set variables is a functiom : V — $(2*) taking each set
variable inV to its respective interpretation. Note that such a valuatig isomorphic
to a functionT : 2* —» P(V) by X € T(p) iff p € v(X) for all variablesX € dom(v) and
nodesp € 2°. Intuitively, T takes each nodein a binary tree to a set of variabl&sin
whose valuationw(X) pis. Such a functiof is a full binaryP(V)-labelled treé. Thus
we refer toT as thetree representationof v.

1Compare with Definition A.2.



Let ¢ be a formula ofS2Swith free variables from a s&t of set variables. Given
a valuatiorv of the variables in/, thesemanticsof ¢ is defined as follows.

Iy XCY iff  v(X) cw(Y)

Iy sug(X,Y) iff forall pe 2, if pev(X)thenpde v(Y)
Iy —¢ iff Wy o

Iy @V iff Fy@orkyy

Iy AX.¢ iff  IFyx—vy ¢ for some valuatiowy € 2 of X

wherev[X — vx] is the valuation of the variables Wiu{X} defined bw[ X — vx](X) :=
vx andv[X - vx](Y) = w(Y) for all variablesY € dom(v) that are noX. A binary
P(V)-labelled treeT satisfiesp, written T E ¢, if it is the tree representation of a
valuation satisfyingp.

A formula¢ is satisfiableif there is a valuation of the free variablesgbr equiv-
alently a binaryP(FV(¢))-labelled tree satisfying.

2.2 Rabin’s Theorem

The problem of deciding whether a formupeof S2Sis satisfiable, is commonly re-
ferred to as th&atisfiability Problem of S2S

Theorem 2.1(Rabin) The satisfiability problem for the monadic second-ordeidog
S2S of two successors is decidable.

In his proof [Rab69], Rabin exhibited a connection betwemmfilas¢ of S2S
and non-deterministic binary tree automatauch thatA accepts a binarf?(FV(¢))-
labelled treeT iff T satisfiesp. Thusg is satisfiable, if there is such a binary trée
accepted byA. Whence the satisfiability problem fgrreduces to the non-emptiness
problem of A. For alternating binary tree automata the non-emptinesbl@m is
known to be &ectively decidable.

A formula ¢ of S2Sas above is interpreted with respect to valuations which are
isomorphic toP(FV(¢))-labelled trees recognised by automata. In the followirgg
introduce binary tree automata not just for theR@tV(¢)), but for arbitrary alphabets
2.

Definition 2.2 (Alphabets) Analphabet is a set whose elements are calletiers.



Position Player | Admissible Moves Priority
(p.@) € 2" XA 3 {(p.@®)|Des@T(P) | Q)
(p, ®) € 2" X P(A) v {(p. (20, @1)) | (80, 21) € D} | O
(p.(a0,81)) € 2" X AXA | ¥ {(pd.aq) | d € 2} 0

Table 2.1: Acceptance Game for Alternating Binary Tree Andta

2.3 Binary Tree Automata

We introduce binary tree automata and word automata forsbkerusubsequent chap-
ters.

Definition 2.3 (Alternating Binary Tree Parity Automatajsiven an alphabek, an
alternating binary tree parity automaton is a tuple

A=(AZ,0:AXI > PPAxXxA),a,Q: A- w)

consisting of
¢ afinite set A of states,
e a transition functiory,
e aninitial state a € A, and
e a priority functionQ assigning automaton states natural numbers

Alternating binary tree automaté as above recognise binaBtlabelled trees.
Whether such an automat@naccepts a tre@& is defined in terms of the acceptance
gameg(A, T), a parity graph game which proceeds according to the fatiguules.

1. At position p,a) € 2* x A, Ais to choose a s&b C A of states frond(a, T(p))
which determines the next positiop, ().

2. At position (p, @) € 2* x P(A), V¥ is to choose a pairag, a;) of states fromDd
which yields the next positiorp( (ag, a1)).

3. At position @, (ag, &1)) € 2* x (Ax A), Y is to choose a directiod € {0, 1} and
effectively a successor statig. The next position isgd, ag).

The above steps constitute one round in the acceptance@@m@). Within each
round we distinguish two stages. We call the first stage, lwbansists of the first two
stepsstatic because the position in the input tree is not changed. Inttiie stage the
players determine the next automaton states. We call tlendestage, which consists
of the third step onlydynamic because it determines the next position in the tree.



We call positions from 2x A basic The initial position is the basic positios, ).
Positions from 2x A belong tod. All other positions from 2xP(AxA) and Z x (AxA)
belong toV. Basic positions(f, a) are assigned the priorit2(a), whereas all other
positions are assigned priority B.(V) wins a finite playr in G(A, T) if the last position
in 7 belongs tov (3) and he (she) can not mova.(¥) wins an infinite playG(A, t) if
the largest priority of a state occurring infinitely oftereigen (odd).

A accepts a binarg-labelled treeT if the initial position €, &) is winning for
din the gameg(A, T), and rejects otherwise. The set of binary trees accepted by
A is called thelanguageof A and is denoted by’ (A). Two automataA andB are
equivalentif they have the same language.

Definition 2.4 (Non-Deterministic Binary Tree Automatajsiven an alphabek, a
non-deterministic binary tree automaton is a tuple

A=(AZ,0:AXxZ > PAXA),a,Q)
consisting of
¢ afinite set A of states,
e a transition functiory,
e aninitial state a € A, and
e a priority functionQ : A — w assigning automaton states natural numbers.

In fact non-deterministic are special cases of alternaintgmata. An alternating
binary tree automaton

A=(AZ,6: AXZ > PPAXA),a,Q)

is callednon-deterministic if for all automaton statea € A and letters € %, 6(a, €)
consists of singletons. Additionally we define-non-deterministicbinary automata
as alternating binary tree automata such that fomai A andc € X, 6(a,c) is a
singleton or empty. Thereby we obtain characterisatiorth®ficceptance games for
non-deterministic and co-non-deterministic automatahghat respectively’s and
I's choice in the static stages is bounded in the acceptameegyfor non-deterministic
and co-non-deterministic automata. Deterministic birtegg automata are both, non-
deterministic and co-non-deterministic.



2.4 Word Automata

Word automata are defined similarly as binary tree automistxt we are going to
formally introduce word automata.

Definition 2.5 (Non-deterministic Parity Word Automatajsiven an alphabek, a
non-deterministic parity word automaton is a tuple

A=(AX6:AXxE - PA),a,Q: A-> w)
consisting of
¢ afinite set A of states,
e a transition functiory,
e aninitial state a € A, and
e a priority functionQ assigning automaton states natural numbers.

A run of a non-deterministic parity word automaton on an infiitevord U, is
a sequence of automaton states from, such thatr(0) = a and for alli < |7] — 1,
7(i + 1) € 6(=(i), U(i)). Such a run iscceptingif it is infinite and the largest priority
of an automaton state occurring infinitely often is even, ejdcting otherwise. A
non-deterministic parity word automata@naccepts an infinit&-word U if there is an
accepting run ofA onU.

Definition 2.6 (Deterministic Parity Word Automata)Given an alphabek, a deter-
ministic parity word automaton is a tuple

A=(AZ0:AxZ > Aq,Q: A-> w)
consisting of
¢ afinite set A of states,
e a transition functiory,
e aninitial state a € A, and
e a priority functionQ assigning automaton states natural numbers.

Similarly to non-deterministic word automata acceptascesfined for determin-
istic word automata. Aun of a deterministic parity word automat@nas above on an
infinite -word U is a sequence of automaton states frody, such thatr(0) = a) and
o(m(i),U(1)) = {n(i + 1)} for all i < |x] — 1. Such a rurmr is acceptingif it is infinite
and the largest priority of an automaton state occurringitefiy often inx is even, and
rejecting otherwiseA accepts an infinit&-word U if there is an accepting run &f on
u.



2.5 Size of Automata
We distinguish two measures of word or binary tree autorata(A, X, 6, a;, Q),

1. the sizdA| of the state sed, which we refer to as thsizeof A, and

2. the sizdran(Q)| of the range of the priority function, which we call threlex of
A.

The index ofA is bounded by the size @, that is[ran(Q2)| < |A|, so that the index
of a finite state automaton is finite.

10



Chapter 3

Complementing Alternating
Binary Tree Automata

In [CKS81] Chandra, Kozen, and Stockmeyer argued thatreltgrg automata are
closer than non-deterministic automata to classical lagfic negation likeS2S In this
chapter we devise an algorithm for the complementationradiyitree automata which
is based on the structure of the acceptance game for altegri@bary tree automata.
In Section 5.3, we will see that the complementation of aatiantorresponds to the
negation of formulas.

For the rest of this chapter let

A=(AZ,6:AXZ > PPAXA),a,Q)

be an alternating binary tree automaton.
An automatorA complementaryto A is an alternating automaton which accepts
precisely the binary trees rejected Aythat is

L(A) = (D)7 \ L(A).

In terms of the acceptance gamadjas for every binarg-labelled tre€l a winning
strategy in the gamg(A, T) from the initial positionff ¥ has a winning strategy in the
gameg(A, T) from the initial position.

3.1 Dualising Acceptance Games
Acceptance gameg(A, T) are parity graph games. For an arbitrary parity graph game
G we can define the dual which is a parity graph gagnaith the following property.

3 has a winning strategy i from the initial position ff ¥ has a winning strategy i
from the initial position.

11



Definition 3.1 (Dual Games of Parity Graph Games}iven a parity graph game
G =(B3,By,E, b, Q),

we define thelual game L _
g = (BH’ BV, E’ b|9Q>

by swapping the positions dfandVY
B := By andBy := Bg,
and complementing the acceptance condition
Q(b) := Q(b) + 1for allb € B U By.
Note that the move functions and the initial board positicoiscide inG andg.

Lemma 3.2. 3 has a winning strategy from the initial position i the parity graph
gameg iff ¥ has a winning strategy from the initial position im the dual games.

Proof. Because the move functions@fandg coincide, every play i is a play inG.
Because furthermore the positionsbéndV are swapped, every strategydin G is a
strategy forv in G. Moreover, every play ig7 from the initial position consistent with

a strategy o¥/ is a play inG played by consistently with the same strategy. Because
the positions ofl andV are swapped, the last positibrof a finite play inG belongs to

3 iff b belongs to¥ in the games. Every finite play won by in G is won byV in G.
Because the acceptance condition is complemented, evfergdmplay inG won by 3

is won byY in G. Hencel's winning strategy irg from the initial position is a winning
strategy forv in the dual gamg from the initial position. The converse follows from
a symmetric argument. O

However, we do not obtain a definition afdirectly from the dual gameg(A, T)
of acceptance gamegy(A, T), because the dual gamgg¢A, T) are in general not of
the shape of acceptance games for any alternating binayatreomaton. First, in
acceptance games the initial position belongd,tavhereas in the dual games the ini-
tial position belongs t&/. Secondy is to choose the direction in acceptance games,
whereas] is to choose the direction in the dual games. We will see tb#t ban be
resolved by trivialising the choice of direction.

3.2 Direction Normal Form

In the following we show how to compute from an alternatingdsy tree automaton
A an equivalent alternating binary tree automatdgn= (A, X, ¢, a,Q’), such that
¥’s choice for direction in the dynamic stage in every roundanfacceptance game
G(A’, T) is predetermined by the choice of automaton states in #ie sttage of the
same round.

12



For the construction we introduce the special stateso thatA’ := AU {ag}, with
transitionsé’(as, ) := {{(as, a3)}} for every letterc € £ and an even prioritf2’(as).
Once enterin@gs in a playz of an acceptance ganggA’, T), the automaton remains
in the stateaz which will then be the only state occurring infinitely ofteBecause the
priority Q’(a3) is even,d wins any such playr. Consequentlyy should avoidas, or
looses otherwise.

When every pairdp, a1) in every set in the range of the transition functidiis
replaced by two pairsag, az) and @, a;1), vV has to decide for the successor state and
for the direction at once in the static stage. We say that &aonzaton with such a
transition function is in direction normal form.

Definition 3.3 (Direction Normal Form) Let
A'=(A56: A XTI - PPA xA)a,Q)
be an alternating binary tree automata#’ is in direction normal form if

1. A contains the statesawith transitionss’(as, ¢) = {{(a3, a3)}} for all ¢ € ¥ and
with an even priorityQ2’(a3)

2. the range ob’ consists of sets of paifsg, a;) where @ = a3 or a; = a3

Notation 3.4. For convenience we denote pa(es, a;) where a_g = a3 by Oqaq from
now on.

Lemma 3.5. Every alternating binary tree automaton is equivalent te @mdirection
normal form.

Proof. Let
A=(AZ,6: AXZ > PPAXA),a,Q)

be an alternating binary tree automaton, we define the aliegbinary tree automaton
A= (N, 2,8 AN XI = PPN x A),a,Q[ag — O])*

with states
A = AU {ag},

and transitions
¢'(ag, ©) := {{(as, a)}}

forallce X, and
¢§'(a,c) = {{Odad | (ap,a1) € ®,d € 2} | ® € 6(a, C)}

foralla e Aandc € X. The automator\’ is in direction normal form. We inductively
show for any binaryz-labelled tree that«) 3 has a winning strategy in the accep-
tance gamg (A, T) from the initial position €, &) iff she has a winning strategy in the
acceptance gan@&A’, T) from the initial postion €, a,).

1By Q[a; — 0] we denote the priority function mappirgg — 0 anda — Q(a) for all a € dom(Q) not
beingas.

13



3

(p.a) (p, ®) — (P, (a0, a1)) — (pd, ay)

(p.&) —> (p. ") — "> (p.Ogs) — > (pd. aq)
Figure 3.1: Around 0G(A, T) andG(A’, T)

For the left-to-right implication, supposkhas a winning strategy in the acceptance
gameg(A, T) from the initial position, we derive a strategy for her ietlamez(A’, T)
such that every play consistent with the derived strategyes the same basic positions
as a play consistent with's winning strategy in the gamg(A, T).

Initially all plays inG(A’, T) andG(A, T) are in the same position. Letbe a finite
partial play inG(A’, T) from the initial position consistent with the derived &gy
such that the last position is a basic positipng). By the induction hypothesis there
is a partial playr of G(A, T) over the same basic positionsses

Let @ be the seH chooses frond(a, T(p)) at position @, a) in the gamez(A, T)
consistently with her winning strategy. By constructionsafin ¢’(a, T(p)) there is a
setd’ = {Ogaq | (a9, a1) € ® and d € 2}. At the basic positiong, a) of the game
G(A’,T), let3 choosed’. LetOgay be the pair tha¥ chooses fron®’. We assumé’
to choosal for the direction as he needs to avoid loss. Then the next Ipasition in
7’ is (pd,a). Then there is a paif, a;) in ®. The basic positiongd, ag) is thus also
a continuation of the play consistent wittd’s winning strategy.

We have established that for every playof G(A’, T) from the initial position
played consistently with the derived strategy, there iagipbf G(A, T) from the initial
position consistent witll's winning strategy which is over the same basic positions.
Becaused wins 7, the largest priority of an automaton state occurring itéigioften
in  is even. Thus the largest priority of an automaton state micguinfinitely often
in ’ is even as well, so that wins z’, which proves the derived strategy winning for
her.

The right-to-left implication of £) follows analogously. Supposthas a winning
strategy in the gamg(A’, T) from the initial position, we derive a strategy for her in
the gamegz (A, T) from the initial position such that for every play@(A, T) from the
initial position consistent with the derived strategy thexa play inG(A’, T) from the
initial position consistent witAl's winning strategy.

Initially all plays of G(A’, T) andG(A, T) are in the same position. Letbe a finite
partial play of G(A, T) from the initial position consistent with the derived stgy
such that the last position is a basic positipng). By the induction hypothesis there
is a partial playr’ in the gameg(A’, T) from the initial position consistent witA’s
winning strategy over the same basic positions.dset @’ be the set thai chooses at
the position f, a) consistent with her winning strategy. By the constructbs’ there
is a set® in §(a, ¢) such thatd’ = {Ogag | (ag,a1) € ® and de 2}. Letd choosed
in last position p, a) of the playr. From®, ¥ draws a pairdg, a;) and determines the
directiond, the next basic position is thepd, a4). Then there is paiogag in @', so

14



that (pd, ag) is an admissible continuation of the play consistent wittd’s winning
strategy.

We have established that for every plapf G(A, T) from the initial position con-
sistent with the derived strategy, there is a ptapf G(A’, T) from the initial position
consistent witld’s winning strategy over the same basic positions. Becawses n’,
it satisfies that the largest priority of an automaton stateiaring infinitely often int’
is even. Because andn’ are over the same basic positions, the largest priority of an
automaton state occurring infinitely often is even as wellth&td wins #. Thus the
derived strategy is winning fat. O

As a result of the previous lemma, we can and indeed will asséinio be in
direction normal form.

3.3 Complementation

In the following we are going to construct an automaforccepting the binarg-
labelled trees which are rejected Ry In terms of the acceptance gamaswill have
a winning strategy in the acceptance gag{e., T) from the initial position ff ¥ has a
winning strategy in the acceptance gag(@\., T) from the initial position which isft
d has a winning strategy in the dual gagé\, T) from the initial position, by Lemma
3.2.

Moreover, given a winning strategy fat in the gameG(A, T) from the initial
position, we wanfd to have a strategy in the ganggA, T), consistent with which
every play is over the same basic positions as a plag(i, T) consistent withd's
winning strategy. Given a winning strategy féiin the gamez(A, T) from the initial
position, we wanfl to have a winning strategy in the garg¢A, T) from the initial
position such that every play from the initial position cistent with that strategy is
over the same basic positions as a play in the g&(ae T) consistent wittd’s winning
strategy.

Let A have the same initial state ds then the initial positions coincide in the
acceptance gamgXA, T) andG(A, T) for any binary tredr .

Supposel has a winning strategy in the acceptance ggitre, T) from the initial
position. Let f, a) be a basic position in a play consistent with her winningtstyy.
For any® that V¥ could choose frond(a, T(p)), 3 has a winning choice for a pair
(a0, a1). This winning choice can be though of as a substrategP(Ax A) — (Ax A)
of F's winning strategy local to the node The range off is a set®’ consisting of
the pairs of automaton states that are chosen consisteitblyg winning strategy.
¥’'s choice for® then determines at least one pair of automaton states wiah i
element of® N @’. The construction o®’ gives rise to the following definition of the
complementary automatan

15



Definition 3.6 (Complementation of an Alternating Binary Tree Automatolngt
A=(AZ,6:AXZ > PPAXA),a,Q).

be an alternating binary tree automaton in direction norrf@im, we define the com-
plementation _ B .
A=(AZ,6:AXZ > PPAXA),a,Q)

where the transition functiodis defined such that for alla A and all ce =,
8(a,¢) := {ran(f) | f : 6(a,c) — Ué(a, ¢) such thatv® € é(a, ¢). f(®) € D}.

If 5(a, c) is empty, then there is precisely one such choice funciratelicet the
empty one. Thers(a,c) contains precisely the empty st If §(a, c) contains the
empty set then there is no choice functifirso tha(a, c) is empty.

The complemen rejects precisely the trees which are accepted by

Proposition 3.7. Let A be in direction normal formA accepts precisely the binary
>-labelled trees rejected .

Proof. In the following fix a binaryz-labelled treel. We show thaf has a winning
strategy in the acceptance ga@éA, T) from the initial position € a) iff ¥ has a
winning strategy in the ganm@(A, T) from the initial position ¢, a). By Lemma 3.2y
has a winning strategy in the gagéA, T) from the initial positionff 3 has a winning
strategy in the dual gan®&(A, T) from the initial position. It thus remains to show that
(x) 3 has a winning strategy in the gargéA, T) from the initial position ff she has a
winning strategy in the gam@(A, T) from the initial position.

For the left-to-right direction of«) supposed has a winning strategy in the game
G(A, T) from the initial position €, &), we derive a strategy for her in the gag@, T)
from the initial position §, &) with the following property. Every play ig(A, T) from
the initial position consistent with the derived strategpver the same basic positions
as a play ing(A, T) consistent withd’s winning strategy.

Initially, the plays ofG(A, T) andG(A, T) are in the same basic position. Let
be an finite partial play iG(A, T) from the initial position consistent with the derived
strategy and letf, a) be the last basic position. By the induction hypothesisehe
a partial playr’ of G(A, T) consistent wittd’'s winning strategy over the same basic
positions asr. For every se thatVv could choose at positiorp(a) in G(A, T), 3 has
a winning choice for an elemeifig € ®. The setd’ = {f, | ® € §(a, T(p))} of all her
winning choices is an element 6fa, T(p)) by construction. LeH indeed choosé’
and letoga’ beV's choice from®’. Then he should choose the directidor looses
otherwise. The next basic position in the playg{f, T) would then be jod, &).

The pairoga’ chosen by is a winning choicefe, of 3 for some® € §(a, T(p))
whichV could have chosen at positiop, @) in the gameg (A, T). At position (p, Oq&’),
dis bound to choose the directidror looses otherwise. We assume the choicelfier
part of her winning strategy. In the play 6{A, T), (pd, &) would thus be a next basic
position consistent witAl’'s winning strategy.
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(p.2) —> (p.®) — > (p.Oua) — (pd. &)
(p,@) —= (p. ) —'> (p.Ogd) —2~ (pd. &)

Figure 3.2: A round oG (A, T) andG(A, T)

We have established that every plagf G(A, T) from the initial position consistent
with the derived strategy is over the same basic positiomsEayn’ of G(A, T) con-
sistent withd's winning strategy. Becauskewins ', it satisfies that the largest priority
of an automaton state occurring infinitely often is even. 8esdthe playr which is
then won byd. The derived strategy is thus winning.

For the right-to-left direction of«), supposel has a winning strategy in the game
G(A, T) from the initial position, we derive a winning strategy foer in the game
G(A,T) from the initial position, such that every play (A, T) consistent with the
derived strategy is over the same basic position as a plégigames (A, T) consistent
with her winning strategy.

Initially all plays in G(A, T) andG(A, T) are in the same basic position. Let
be a finite partial play o&(A, T) from the initial position consistent with the derived
strategy and leti, ) be the last position of’. By the induction hypothesis there is
a partial playr of G(A, T) consistent withd’s winning strategy over the same basic
positions asr’. Let®’ be the set whichl chooses at positiomp(a) in 7 consistently
with her winning strategy. Suppose at positignd) of the play ofG(A, T), ¥ chooses
the setd € §(a, T(p)). By construction ofA, @ properly intersects witld’. Let 3
choose any elemeaya’ from ® N@’. 3 should choose the directiah so that the next
basic position is|fd, &'). _

Becausenga’ is an element o’ as well,¥Y could chooseqa’ in G(A, T). For the
direction he should chooskor looses otherwise. In the play 6f(A, T), (pd, &) is
thus a possible next basic position consistent #ighwinning strategy.

We have established that for every pleyof G(A, T) from the initial position con-
sistent with the derived strategy, there is a ptaf G(A, T) consistent witfd’s winning
strategy which is over the same basic positionsatisfies that the largest priority of
an automaton state occurring infinitely often is even. Sedteso thatd winsa’. We
have proven the derived strategy winning for O

In A, a; has transitiong(as, c) = {{(ag, ag)}} for every letterc € ¥ and an odd
priority Q(as). Whence we cald;, a, in the complementation of. Similarly toas,
once entering the state,, the automaton remains in that state. Because the priority
Q(ay) is 0odd,3 looses every play froray and has thus to avoia,.
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For alternating automata, complementation preservesdslirthe size and index
of an automaton.

Remark 3.8. The complemerﬁ of A is at most of sizgA|+1 and of indexranOmega
1].

For the use in subsequent chapters we mention two obsersaiio the comple-
mentation of non-deterministic and co-non-determinatitomata.

Proposition 3.9. The complementation of a non-deterministic binary treeoa#ton
in direction normal form is co-non-deterministic.

Proof. Recall that we can see non-deterministic automata as attegeutomata with

a transition function whose range consists of singletongy.oLet A = (A, %,6 :

Ax X - PP(Ax A),a,Q) be a non-deterministic binary tree automaton in direction
normal form. The range of the transition functi®consists of singleton®qa}, only.

For every automaton states A and letterc € X, there is a unique choice of an element
from each se® € §(a, ¢), so thats(a, c) consists of one element which is the empty set
if 6(a, c) is empty. Hence the complementatiaris co-non-deterministic. O

Proposition 3.10. The complementation of a co-non-deterministic binary &igt®ma-
ton is non-deterministic.

Proof. LetA = (AX,6: AXXZ - PP(A X A), a, Q) be a co-non-deterministic binary
tree automaton. Replacing each pai, @1) in every set in the range éfby the pairs
Opap ando, a1, yields an equivalent co-non-deterministic binary tre@maton, so that
we may without loss of generality assume thAas in direction normal-form. Then for
every statea € A and letterc € %, §(a, c) is a singleton{®} or empty. Every choice
function picks precisely one element frofn In the complementary automatay
&(a, ¢) thus consists of singletons, only. df is empty, then there is no such choice
function, so thad(a, c) is empty. The automatah is thus non-deterministic. O
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Chapter 4

Non-Determinising Alternating
Binary Tree Automata

Universal choice in the acceptance game of an alternatimgyypiree automaton com-
plicates the definition of operations, such as existentiajiggtion which we will intro-
duce in the next chapter, or decision procedures, such #sfoion-emptiness problem
of binary tree automata which we will discuss in Chapter #hla chapter we will see
that alternating binary tree automata and non-deterngriees are equally expressive.

Theorem 4.1. For every alternating binary tree automaton there is an egleént non-
deterministic automaton.

We show how to compute a non-deterministic automatoinom an alternating
binary tree automaton

A=(AZ,6:AXZ > PPAXA),a,Q)

such thatA andB are equivalent. We refer to the procedurean-determinisation.

4.1 Towards Relational Macrostates

At a basic positionf, a) in the acceptance gangA, T) for a binary treeT, 3 is to
choose a seb of automaton states, from whighis to choose a particular pair of states.
In the acceptance game for a non-deterministic binary teena@atond is to choose a
pair of states.

The main idea of non-determinisation is to group allv¢d possible choices for
pairs of automaton states fralinto a pair of sets of automaton states, $heedistribution
of @.
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Definition 4.2 (B-redistribution) TheB-redistribution of a setd € P(A x A) of pairs
of automaton states is the pdito[®@], 71[®@]) € P(A) x P(A) of sets of automaton
states!

Let (o[ @], 71[D]) be theB-redistribution of®. The directiord chosen by deter-
mines a whole set of successor states, videkcet n4[®@]. Each state i isaq in a
pair (a9, a;) of states in®d, and is thus an admissible next statedoiih the acceptance
gameGg(A, T).

In the next round of the gameé] has to choose for every staéé¢ € X from
6(a, T(pd) a set®, with the B-redistribution fro[®4], m11[P4]). The choice of the
B-redistribution for every stata’ is coded into binanA-relationsRy andR; such that
Ryg[@'] := ng®y for both directiongd € 2. The set of all binanA-relations is denoted
by RelA).

If for some stat&’ € X, §(a’, T(pd)) is empty, thenthereis b, € 6(a’, T(pd)), so
thatRy andR; are not defined. I§(a’, T(pd)) is empty, therd can not move at the basic
position (pd, &). If insteads(a’, T(pd)) := {{(av,av)}}, then3 looses the continuing
infinite play from position pd, a). So defines(a, ¢) := {{(ay, ay)}} wheneveb(a, c) is
empty for a stat@ € A and a letterc € X. In the following we assumé(a, c) to be
non-empty for all statea € A and letters € X.

A strategy ofd in the gameG(A, T) from the initial position determines for each
infinite pathp € 2¢, a sequence € (RelA))“ of binary A-relations. The sequence
of automaton states occurring in a play consistent Wighstrategy constitutes a trace

throughp.

Definition 4.3 (Traces through Sequences of Relations)race through a sequence
p € (RelA))* of binary relations over A is a sequence A* of automaton states from
A such that for each« |7] — 1, (7(i), (i + 1)) € p(i). We call a tracer throughp full if
Il = lol + 1.

Given a priority functio2 : A — w, atracer through an infinite R€A)-sequence
p is bad with respect tq if 7 is infinite and the largest priorit§2(a) of an automaton
state a occurring infinitely often inis odd.

Bad traces satisfy that the largest priority of a state a@grinfinitely often is
odd. By intuition bad traces thus correspond to infinite plewpn byY. Finite traces
correspond to finite plays. By the assumption, #(at c) is non-empty for ala € A
andc € X, dis able to move at every basic position, so tiidboses all finite plays.
Intuitively, that is why finite traces are not bad.

The languag® BT, of infinite Re(A)-words withno badtraces with respect t@
beginning afy is in fact regular, that iSlBTg, is recognisable by a deterministic word
automaton which we are going to define next.

1We write rg[®] for the elementwise projectiofag | (ao, a1) € @} of @ to d.
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4.2 Bad Traces through Sequences of Relations

In a first step we define a non-deterministic word automafamhich accepts precisely
the infinite Re(A)-words which contain a bad trace with respectXo Intuitively, M
non-deterministically “guesses” a bad trace througte$A)-word.

Definition 4.4. Formally, define
M := (A, RelA), 1: Ax Re(A) — P(A), a, Q)

with transitions
a el@R)if (a,a)eRforanyRC Ax A

and priorities .
Qa) :=Q(a)+ 1forallace A

Property 4.5. M accepts an infinite Re\)-word p € (RelA)” iff it contains a bad
trace with respect t® which begins with a

Proof. In the following fix an infiniteRe(A)-word p.

For the left-to-right implication, we need to prove that amcepting rumr of M
onp is a bad trace through beginning witha,. Every run ofM on p begins with
a;. Moreover, becauskl is non-deterministicy must be infinite. In order to prove
m a trace througlp, it thus remains to show that for dlle w, (7(i), n(i + 1)) € p(i)
which follows immediately fromx(i + 1) € 6(x(i), o(i)) by construction ob. We have
established that is a trace through. Becauser is an accepting run, the largest priority
Q(a) of an automaton stateoccurring infinitely often int is even. Among the states
occurring infinitely oftena has also the largest priority(a) which is odd, so that is
indeed a bad trace.

For the right-to-leftimplication, we show that every baatter througho beginning
with & is an accepting run dff onp. Becauser is a bad tracer is infinite. In order
to prover a run ofM on p, it remains to show that for alle w, 7(i + 1) € 6(z(i), p(i))
which is immediate because((), 7(i + 1)) € p(i) by definition of traces. Becauses
bad, it satisfies that the largest prior?ya) of an automaton stageoccurring infinitely
often is odd. The stata has also the largest prioritg(a) among the states occurring
infinitely often int. Q(a) is even, so that is an accepting run. O

In [Saf88] Safra presented a procedure to compute from amaguot deterministic
word automatoiN from a non-deterministic word automatdfy that is to determinise
M. Let

N = (N, Re(A), 2" : N x Rel(A) - N,n;, Q")

be a deterministic word automaton accepting precisely rifiaiie Re(A)-words ac-
cepted byM. The following is immediate.
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Property 4.6. N accepts an infinite R))-word U iff U contains a bad trace with
respect ta2 beginning with a

We are looking for a deterministic word automaton acceppiregisely the infinite
RelA)-words which do not contain a bad trace with respe€? wwhich begins withe,
that is the complement of the languagebfBecauseN is deterministic, complement-
ing N amounts to complementing the acceptance condition. Forndafine

N:=(N,Re(A), 1" : Nx = — P(N),n;, Q).
such that for every statee N, Q'(n) = '(n) + 1.

Property 4.7. N accepts an infinite RgA)-word U iff U does not contain a bad trace
with respect td2 which begins with a

Proof. BecauséN andN have the same state set, the same initial state, and the same
transition function, every run dff is a run ofN and vice versa. Becaugeis deter-
ministic, for everyRe[A)-word p there is a unique rum of N on p which is accepting

for N iff 7 is a rejecting run ol onp. HenceN accepts the complement gi{N) and

thus also the complement gf(M). BecauseM accepts precisely the infiniRe(A)-

words containing a bad trace which begins wéih N accepts precisely the infinite
RelA)-words not containing a bad trace which begins with O

4.3 Finding Sequences of Relations without Bad Traces

Because\ is alternating has in general multiple choices fdrin every basic position
of the acceptance gang¥A, T). Each possible choice fdr corresponds to a possible
choice for the pairRo, Ry) of relations. Usingh andN we define a non-deterministic
binary tree automataR which “guesses” the relatiori® andR;.

Definition 4.8. Define the non-deterministic binary tree automaton
B:=(N,Z,6 : NxZ— P(NxN),n,Q)

with transitions
(no, n]_) S 5’(”, C)
i
¢ there are binary relations frand R such that for each & A, (Ro[a], Ri[a]) is
the B-redistribution for someb € §(a, c)

e andA’(n,Ry) = np andA’(n,Ry) = ny

The transition functiom uniquely maps relation®, andR; to successor stateg
andny, respectively. For every choice of a paiip n;) of states fromy’(n, c) there is
thus a supporting choice of relatiorRy(R;) such thatng = A(n, Ry). Below we will
thus speak of a choice of relations, when referring to a éhofsuccessor states.

Proposition 4.9. A andB are equivalent.
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Proof. We show that£) A accepts a binarf(V)-labelled treeT iff B acceptsT.

For the left-to-right implication, suppoge accepts a binarg(V)-labelled treeT,
so thatd has a winning strategy in the garggA, T) from the initial position &, a)).
We derive a winning strategy for her in the ga@éB, T) from the initial position
(e,ny). Along a play ofG(B, T), 3 chooses binanA-relations which determine the
automaton states as given in the definition 4.8 above. pLle¢ the sequence -
relations chosen byl in a play of G(B, T) from the initial position consistently with
the derived strategy. We show that every trace throudteginning witha, is the
sequence of automaton states in the basic positions of ampéa(A, T) from the initial
position played consistently with's winning strategy.

Let 7’ be a finite partial play o(B, T) from the initial position and the last ba-
sic position ofr’ be (p,n). Let furthermorep be the sequence of relations whidh
chose along the play’. By the induction hypothesis, any full trace throyghvith
the last state corresponds to a play @(A, T) from the initial position with the last
basic position f, a). Let @, be the set whicl chooses at positiorp(a) in G(A, T)
consistently with her winning strategy. Becausé\, T) is historyfree determined,
@, is well-defined. At position g, n) let 3 choose relation&; and R; with the fol-
lowing properties. For every stateterminal in a full trace through, Ry[a] is the
B-redistribution ofd, which 3 would choose at positiorp(a) in G(A, T) consistently
with her winning strategy. For all other statesRy[b] be theB-redistribution of some
setd € §(b, T(p)). The relation®y andR; then uniquely determine the next automaton
statesy andng, respectively.

Let d be the direction whicly chooses, then the next basic positiorGifB, T) is
(pd, ng). By definition of B-redistributions, every automaton statein Ry[a] is the
stateay in a pair @g, a;) from @4, so that pd, a’) is an admissible next position in
G(A, T) consistent witid’'s winning strategy.

The largest priority of an automaton state occurring indilgitoften in a play in
G(A, T) from the initial position consistent witA’s winning strategy is even, so that
every trace througlp beginning witha, is not bad and thug is accepted by in a
unique rune such thatr(i + 1) = A(n(i), p(i)), for all i € w. Moreover the automaton
states intr and the playr’ of G(B, T) coincide by definition 4.8, so thatwins the play
.

For the right-to-left direction of«) suppose thaB accepts a binar$(V)-labelled
treeT, so thatd has a winning strategy in the garg¥B, T) from the initial postion
(e, ny). We derive a strategy for her Gi(A, T), such that every play consistent with the
derived strategy corresponds to a trace through the relatbosen by in G(B, T)
consistently with her winning strategy.

Let 7 be a finite partial play of7(A, T) from the initial position consistent with
the derived strategy and lep,@) be the last basic position af. By the induction
hypothesisa is the last state in a traeethrough the sequengeof A-relations chosen
by 3 in a finite partial playr’ of G(B, T) from the initial position consistent with her
winning strategy. Let the basic positiop, fi) be the last position ir’. At position
(p, n), A chooses relation’, andR; which determine the next automaton statgand
n;. By definition ofs, for eacha € A, (Ro[a], Ry[a]) is the B-redistribution of some
in 6(a, T(p)). Thus at positiong, a), 3 can and should choose subhV chooses a pair
(ag, a1) from ® and a directiord. The next basic position ig(A, T) is then fd, ag).
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Figure 4.1: Reduction of the Non-DeterminisatioM)) of Alternating Binary Tree
Automata to the Determinisatio®] of Word Automata

Becausey € nq®, it is (a, ag) € Ry. So thatray, that ist with ay appended, is a trace
throughpRy, that isp with Ry appended.

Hence every playr in G(A, T) consistent withd’s winning strategy is over the
automaton states of a trace through the relations chosg(BiyiT) consistent witha's
winning strategy. Every such trace satisfies that the laqésrity of an automaton
state occurring infinitely often is even, so tihivins the corresponding play. O

If A is co-non-deterministic, the non-determinisatio\of deterministic.

Proposition 4.10(Non-Determinisation of Co-Non-Deterministic Automat@he non-
determinisatior® of a co-non-deterministic automat@nis deterministic.

Proof. Because is co-non-deterministi@(a, ) is a singleton for ala € Aandc € X.
By the definition of the non-determinisation, there is psety one pair Ry, R1) in
¢’(R, €), so thatB is deterministic. O

4.4 Complexity

Summarising the construction of non-determinisation is thhapter, we have reduced
the non-determinisation of alternating binary tree autianta the determinisation of
non-deterministic word automata as schematised in Figarddthe following we will
recollect the details of the reduction, and moreover prbeebnverse, namely that the
determinisation of non-deterministic word automata reduo the non-determinisation
of alternating binary tree automata. We obtain that the determinisation of alternat-
ing binary tree automata is as complex as the determinisafioon-deterministic word
automata.

In a first step we obtained frod, a hon-deterministic word automatdfi which
accepts an infinitRelA)-wordp iff p contains a bad trace with respectdeginning
with a;. M has the same size and index4asDeterminisingM yielded an equivalent
deterministic word automatoN. Complementingy we obtained the deterministic
automatorN of the same size and index Hs N accepts precisely the infiniRe(A)-
words without bad traces with respect®ddeginning witha,. Finally we constructed
the non-deterministic binary tree automairequivalent toA. B is of the same size
and index a#!. HenceA has the same size and indexX\§sandB has the same size and
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index asN. We have established that the non-determinisation of pittee automata
is at most as hard as the determinisation of word automata.

In the remainder of this chapter we give a reduction of thembeinisation of
non-deterministic word automata to the non-determirosatif binary tree automata
as shown in Figure 4.2. Essentially, determinising a worraaton eliminatesl’'s
choice in the static stage of the acceptance game, wheraagaterminising a binary
tree automaton eliminatéss choice in the static stage. We will use the idea from
Chapter 3 that complementing an alternating binary treeraaton éectively swaps
the roles ofd andV.

From a given non-deterministic word automaidnwve derive a non-deterministic
binary tree automatoA which accepts precisely the binary tréks whose leftmost
path is labelled in order with letters from3aword U which is accepted bil. Es-
sential to the construction is that, for each automatore stfit! and letter fronk, we
fix a direction, so that we obtain the non-deterministic bjyrteee automaton in direc-
tion normal form. Becausa is hon-deterministic and in direction normal form, com-
plementation yields a co-non-deterministic automatohy Proposition 3.10. Non-
determinising the co-non-deterministic binary tree awttonA yields a deterministic
automatorB by Proposition 4.10. Fror® we derive a deterministic word automaton
N which rejects precisely the infinilewordsU for which B rejects the lefU-treeTy.
Finally we show that the automatdhcomplementary to the automatbiris equivalent
to M.

For the rest of this section, let

M=(M,Z,1: MxZ — P(M),m, Q)

be a non-deterministic word automaton. Wowe add the special stateg; andmy
with

e transitionsi(m, €) = {mg} andA(my, ¢) = {my} for all lettersc € =
e and prioritie2(mg) = 0 andQ(my) = 1.

Once entering the states, M remains in the statey; which is then the only state
occurring infinitely often in a playr of an acceptance gangM, U). Because the
priority of my is even,d wins every such play. HenceY¥ should avoidns. Similarly,
onceM has entered the state,, M remains inm, which is then the only automaton
state occurring infinitely often. Becaus®g has an odd priorityy wins every play with
the statamy, so thatd should avoidn,.

M recognises infinite words ov&r For an infiniteX-word U we define leflU-trees
as follows.

Definition 4.11 (Left U-Tree) Given an infinitez-word U € ¢, aleft U-tree Ty is
a binaryX-labelled tree, whose leftmost path is labelled with U, tisgor all p € 0,

Tu(p) = U(Ipl).

FromM we construct an alternating binary tree automatoaccepting every left
U-tree for every wordJ accepted byi. Define

A=(MZ6: MxZ - PPMx M), m,Q)
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Figure 4.2: Reduction of the Determinisatiod)(of Non-Deterministic Word Au-
tomata to the Non-DeterminisatioNDD) of Alternating Binary Tree Automata

with transitionss(m, ¢) := {(m, my)} | m" € A(m,c)}, forallme M andc € X.

Note thaty’s choice for direction is predetermined in each round, bsede should
avoid the automaton state;. For convenience we keep the notatiogm for the pair
(m, mg) as introduced in Chapter 3.

Claim 4.12. M accepts an infinit&€-word U iff A accepts any left U-tree .

Proof. SupposéM accepts an infinit&-word U, then there is an accepting rare M«

of M on U. The runn yields a winning strategy fof in the gameg(A, Ty) from
the initial position € m;), such that there is only one play which is over the same
automaton states as |Initially the play inG(A, T) is at position € m) andm; is
the initial state ofr. Let the play consistent with the derived strategy be at tsch
position (p, m) such thatr(|p]) = m. The successot(|p| + 1) of z(|p]), is an element
of A(m, U(p)). Then there is a paibomin 6(m, Ty(p)), which 3 should choose at the
basic position p, m) of the gamez(A, Ty). V is then bound to choose the direction
d = 0, so that the next basic position {30 7(|p0|). Becauser is accepting, the largest
priority of an automaton state occurring infinitely oftenris even. Hencél wins the
play consistent with the derived strategy.

For the right-to-left direction, suppo3has a winning strategy in the gagéA, Ty)
from the initial position €, m;). Then there is only one play consistent with her winning
strategy, becausé is direction normal form, and this play is infinite. We shovath
the automaton states in the play form an accepting ruvi oh U. Initially, every play
in G(A, Ty) is at position € my) andmy is the initial state of any run dff onU. Let
Opm' be the pair whickld chooses at a basic positiop, (n) for which z(|p| — 1) = m.
¥ is bound to choose the direction 0, so that the next basidiposs (pO, m'). The
successor stat®’ is then an element alfm, U (| p|)) by definition ofs, and hence an ad-
missible continuation of| ;. Moreoverr is accepting because the play consistent with
I's winning strategy satisfies that the largest priority ofeaomaton state occurring
infinitely often is even. O

Because is non-deterministic and in direction normal form, the cdanpent
A=(M,Z,5: AXE - PP(M x M), m;, Q)
is co-non-deterministic as in Proposition 3.9. Fomale M andc € X, 6(m, c) is thus

a singleton or empty. In the latter case, if theremrandc such that(m, ¢) is empty,
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3 can not move at the basic position (n) of an acceptance gangA, T) if T(p) = c.
Then defines(m, ¢) := {{(my, m,)}}, so thatd looses the continuing infinite play from
(p, m). We may thus assume without loss of generality 8ifat c) is a singleton for all
me M andc € X.
By Proposition 4.10, non-determinisidigthen yields a deterministic binary tree
automaton
B =(B,%,6 :BxX — PBxB),b,Q),

which rejects precisely the lefi-trees. FronmB we can easily obtain a deterministic
word automaton.
N=(B,2, 7 :NxZ— Nb,Q")

such that
A'(b,c) = b if mp(6’(b,c)) = {b'}.

ThenN rejects the infinit&-words for whichB rejects all leftU-trees. Note thak and
N are of the same size and index.

Claim 4.13. N rejects a word U ff B rejects all left U-trees.

Proof. For the left-to-right implication suppose th&trejects an infinitez-word U.
BecauseY is deterministic, there is a unique rarof N on U which is rejecting. We
show inductively that if¥ steadily chooses the left direction in a play@(B, T) from
the initial position, then the play consists of the statesifthe run ofN onU. Initially,

the play is at positione by ), the initial state of the run ig,. Let the play be in position
(p, b). By the induction hypothesis, the run is in sthtat index|p|, that isz(|p|) = b.

By definition of leftU-trees,Ty(p) = U(Ipl). Becausel'(b,U(Ipl)) = =(p| + 1), by
construction of, it is ¢’(b, Tu(Ipl) = {(=x(|p| + 1), b1)}, so thatd is bound to choose
the pair (@(|p| + 1), by) of states. Le¥ choose the left direction, then the next basic
position is @0, 7(Jp| + 1). We have established, that the playd(B, Ty) contains the
states of the rumr. Becauser is rejecting, the largest priority of an automaton state
occurring infinitely often in the play is odd, so thatwins the play ofG(B, Ty) from
the initial position andB rejectsTy.

For the right-to-left implication, we need an additionabperty of the automaton
B. Therefor we firstly digress on the complementation and determinisation as we
have introduced in the previous and the current chapter.

By construction A is non-deterministic and in direction normal form, so that f
eacha € A andc € X, 6(a c) consists of singletongopa’}. ThenA is co-non-
deterministic such that for eaghe A andc € X, 6(a,c) = {{Oo@ | {0’} € 6(a, C)}}.
The right side of theB-redistribution fro{Ooa’} € d(a, €)}, m1{Ood’} € d(a, €)}) is then
the singleton{a;}. Moreoveré(as, €) contains for anyc € X, only the singleton
{(a3, a3)} whose®B-redistribution is {a3}, {ag}). Thus any trace through the relations
chosen byd in the acceptancg(B, T) for any binary treel on a path with is not
strictly leftmost is infinite and contairs as the only automaton state occurring in-
finitely often. Any such trace can thus not be bad. Along aay pf G(B, T) from the
initial position, where¥ does not strictly choose the left directiahchooses relations
which do not have bad tracegwill thus loose every such play. Hence we can and will
assume that prefers to choose the left direction.
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SupposeB rejects a leftU-treeTy, so thaty has a winning strategy in the accep-
tance gam& (B, Ty) from the initial position €, by). By the previous argument we can
assumey to choose the left direction throughout the play. BecausthéumoreB is
deterministic, the strategy is trivial, so that there isgmely a playr from the initial
position winning fory. We show inductively that the basic positionsontain automa-
ton states oN which in order constitute a run & onU. For the base case, initially
the run ofN is in stateb, the initial position ofG(B, Ty) is (¢, b)). Suppose we are at
position (o, b) in the playr, whered’ (b, Tu(p)) = (bo, b1). By the previous argument
¥ chooses the left direction 0, so that the next positiorp& lp). By the induction
hypothesis, the run dff on U is in stateb at index|p|. By definition of leftU-trees,
U(lpl) = Tu(p). By construction ofN, 2’(b, U(p)) = by, so that the next state in the
run of N onU is by.

BecauseB is deterministicr is infinite. Because furthermovreis winning for
V¥, the largest priorityQ2’(b) of an automaton state occurring infinitely often inr is
odd. Thus the largest priority of an automaton state ocegrinfinitely often in the
corresponding run aff on U, is odd as well. The run is thus rejecting. Becabisis
deterministic, there is only one run fonU, so thai\ rejectsU. O

Complementind! yields the deterministic word automatirwhich accepts a word
U iff N rejectsU. ThusN accepts precisely the wordisfor which B and thus alse
reject all leftU-trees which isff A accept a lefu-tree which isff M acceptd). Hence
N andM are equivalent.

Theorem 4.14. The non-determinisation of alternating automata has a derity
constant in order of the complexity of the determinisatibman-deterministic word
automata.

In [Pit06] Piterman shows an upper bound for complexity efdeterminisation of
non-deterministic word automata with Streett acceptanoelition.
Recall that a non-deterministic word automaton

M=(M,Z,1: MxZ - P(M),m, Q)

with parity acceptance condition accepts an infikeord U iff there is an accepting
run 7 of M on U. Such a runr is a sequence of automaton states, such #hiat
accepting if the largest priority of an automaton state oweg infinitely often inx is
even. Thus the priority functiof2 distinguishes the set of accepting runs within the set
of all M-sequences.

The set of accepting runs can also be describ&treett acceptance condition
which consists of a sétcc C P(M) x P(M) of pairs E, F) of sets of automaton states,
the Streett acceptance setA run is accepting with respect to the Streett acceptance
condition if for every pair E, F) in Accand for every automaton states E occurring
infinitely often, there is a stat® € F occurring infinitely often.

From a parity acceptance condition we can derive an equivSkeeett acceptance
condition.

Proposition 4.15. For every priority functionQ there is a Streett acceptance set Acc
such that a rurr € M* is accepting with respect to the parity acceptance condliifo
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n is accepting with respect to the Streett condition. Mored\wex has the same size as
the domain dorff2) of Q.

Proof. Let M = (M, X, 2, m;, Q) be a non-deterministic parity word automaton with
priority functionQ : M — w, we define a Streett acceptance &et such that for
every automaton state € M with odd priorityQ(m), there is a pair{(n}, {n7 | Q(m) <
Q(m') andQ(m') even) in Acc

Let 7 be a run ofM on some infinitex-word accepting with respect to the parity
acceptance condition. The largest priority of an automatatem occurring infinitely
often inx is thus even, that is for every state with odd priority whidtwars infinitely
often, there is a state of larger and even priority which eafinitely often. Thus for
every pair g, F) € Accwith E = {m}, whenevem with odd priority occurs infinitely
often, so does a statg € F with even priority. Hencer is accepting with respect to
the Streett acceptance condition as well.

Conversely, ifr is accepting with respect to the Streett acceptance conditien
for every pair E,F) € Accwith E = {m}, whenevem occurs infinitely often inr,
so does a state iR. Because for every stata with odd priority, there is such a pair
(E, F) € Acc whenever a state with odd priority occurs infinitely oftea,does a state
with larger and even priority. Henaes accepting with respect to the parity acceptance
condition as well. ]

Let M’ be a non-deterministic word automaton of sizand with Streett accep-
tance condition with an acceptance Aetof cardinalityk. Nir Piterman showed that
there is an equivalent deterministic word automaton withitpacceptance condition
which has size"&+2+2(k + 1)>k+1) and index B(k + 1). Together with the result from
Proposition 4.15, we obtain the following corollary.

Corollary 4.16 (An Upper Bound for the Complexity of the DeterminisatioriNufn-De-
terministic Parity Word Automata)For every non-deterministic parity word automa-
ton of size n and index k there is an equivalent parity wordenston of size*2+?(k+
1)2+1) and index2n(k + 1).

Using Theorem 4.14 we obtain from the above corollary an uppend for the
complexity of the non-determinisation of alternating lsiniee parity automata.

Corollary 4.17 (An Upper Bound for the Complexity of the Non-Determinisatiof
Alternating Binary Tree Parity Automatajor every alternating binary tree automa-
ton of size n and index k there is an equivalent binary treétpautomaton of size
n"k+2+2(k 4 1)2k+D) 4 2 and indexen(k + 1) + 2.
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Chapter 5

Formulas of S2S and
Alternating Binary Tree
Automata

In this chapter we explicate the connection between formafés2Sand alternating
binary tree automata, which establishes the reductioneo#tisfiability problem for
S2Sto the non-emptiness problem for alternating binary tréeraata. The connection
is manifested in the following central theorem.

Theorem 5.1. For every formulap of S2Sthere is an alternating automatah accept-
ing precisely the full binar?(FV(¢))-labelled trees satisfying.

Let ¢ be a formula 0fS2S By structural induction og we construct for any séat
of variables containing the free variablesgfan alternating binary tree automamy
accepting precisely the binaB(V)-labelled trees satisfying.

In particular in Section 5.3, we will make use of the complatagon of alternat-
ing binary tree automata which we introduced in Chapter 3eré&for we want each
automatorAg to have the special statas anday as introduced in Chapter 3.

For the base cases, we define in Sections 5.1 and 5.2 autaat@andAy . v,
accepting the binary trees satisfyigc Y and Sug(X,Y), respectively. Given au-
tomataAg andA‘w’ accepting the binary trees satisfying formufasr y, respectively,
we define automataY,, Ay, andAY,  accepting binary(V)-labelled trees satisfy-

ing formulas—¢, ¢ v ¥, or AX.¢, respectively, in Sections 5.3, 5.4, and 5.5.

51 The AtomXcCY

Let X andY be variables. For any s&tof variables containing andY, we define an
automatorAng accepting the binarg?(V)-labelled tree§ satisfyingX C Y. Such a
binary treeT satisfiesX C Y iff it is the representatiom of a valuationv satisfying
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X C Y. By definition of the semantics @25 v satisfiesX C Y iff v(X) € v(Y), which
is iff all nodesp € 2* satisfyY € T(p) wheneveiX € T(p).

Definition 5.2. Define the alternating binary tree automaton
AY., = (APV).6: AxP(V) > PP(Ax A),a Q)

with states
A:={a az,ay},

and transitions
{(aa) fXgZorYeZ

6@.2) = { 0 otherwise
0(a3,2) = {{(aq, an)}}
6(as, 2) := {{(av, an)}}

for all sets ZC V, and priorities
Q(a) ;= 0andQ(a3) := 0andQ(ay) := 1.

The automatom;{g has size 3 and index 2.

Intuitively, in a play of the acceptance ga@e&xg, T), A%QY remains in state.
For any nodep whereX € T(p) andY ¢ T(p), 6(a, T(p)) is empty, so thal can not
move at positionf, a). If otherwiseX ¢ T(p) or Y € T(p), thens(a, T(p)) contains
precisely the singletof{a, a)}, so that for both directions the automaton remains in the
statea.

Claim 5.3. For any set V containing X and \AXQY accepts a binaryP(V)-labelled
tree T jf T satisfies X2 Y.

Proof. In the following fix a binaryP(V)-labelled treeT .

For the right-to-left implication, supposk satisfiesX C Y, that is for all nodes
p € 2, Y € T(p) wheneverX € T(p). We show that every play of the acceptance
gameg(AXcY,T) from the initial position is infinite and over basic positowith the
automaton state, only. Because the priority &f is even, every such play would be
won by3, so thatAy,_, would accepf .

In any basic positionf, a), and thus also in the initial positiom,@), 5(a, T(p)) is
the singletori{(a, a)}}. At position (p, @), 3 can only choose the sf, a)} from which
¥ can only choose the paia,(a). GivenV'’s choiced for the direction, the next basic
position is pd, a) where the argument recurs.

For the left-to-right implication, we prove the contrapgdg&. Suppose that there
is a nodep € 2¢, whereX € T(p), butY ¢ T(p). We may assume closest to the
root with this property, because the ancestorship relasiovell-founded. We define a
winning strategy fo” in the gameg(AY,_,, T) from the initial position ¢, a;) directing
the play into the positiong; a), whered can not move and looses. Thewy_,, would
rejectT.
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Let the play ofg(AXCY,T) be at the basic positiorp(, a) for any ancestop’ of
p. Thusp’ may also be the root node By assumptionp’ satisfiesY e T(p') if
X e T(p'), so thats(a, T(p’)) is the singletori{(a, a)}} from which3 can only choose
the set{(a, a)}. From the latteiv can only choose the paia(a). For the direction let
him choosep(|p’|) which is the next direction in the path towargds The next basic
position is then Q| y+1, &).

Eventually, the play will arrive at positiorp(a). BecauseX € T(p) andY ¢ T(p),
6(a, T(p)) is empty, so thall can not move inff, a) and looses. O

5.2 The AtomSug(X,Y)

Let X andY be variables and lat € 2 be a direction. For any s&t of variables con-
taining X andY, we define the automatcmSu XY) accepting the binarg(V)-labelled
treesT satisfyingSug(X,Y). T satlsflesSucaéX Y) iff it is the tree representation of
a valuationv satisfyingSug(X, Y) which is iff pd € v(Y) wheneverp € v(X). ThusT
satisfiesSug(X, Y) iff for all nodesp € 2*, Y € T(pd) wheneveiX € T(p).

Definition 5.4. Define the alternating binary tree automaton

AV

sugey) = (APV), 6 AXP(V) — PP(AX A),a, Q)

with states
A = {a-a aS’ aﬂ’ aV}

with transitions

| @0, &) lag=as,a1g=a)} if XeZ
9@.2) ‘{ (@.a) otherwise

0 ifYegZz
6(@s,2) ={ {{(ag,a) | ag=as,a;-q=2a}} if YeZand XeZ
{{(a,a)}) otherwise

6(as, Z2) = {{(ag, a9)}}
é(ay, 2) := {{(av,ay)}}

for all sets ZC V, and priorities
Q@) :=0, Qag) :=0, Qag) := 0, andQ(ay) := 1.

The automator.Y has size 4 and index 2.

Sug(XY)

Claim 5.5. For any set V of variables containing both X and A,

: ble Sug(xy) acCcepts a
binaryP(V)-labelled tree T ff T satisfies SugX,Y).

Proof. In the following fix a binaryP(V)-labelled tre€T .
For the right-to-left implication, suppose for all nodes 2*, Y € T(pd) whenever
X € T(p). We show that any play of the acceptance gg(m\sfma(x’y), T) is infinite and

32



over basic positions with the automaton stat@sdas, only. Because the priorities of
aandags are even; would win every such play, so thAISUQ(X v would accepT .

Let the last basic position of a finite partial play@(ASqu XY) ,T) be (p, a).

X ¢ T(p), thens(a, T(p)) is the singletor{{(a, a)}}. At posmon (p a), d can only
choose the sdta, a)} from whichV can only choose the paia(a). If ¥ choosesl’ for
the direction, the next basic position {3, a), where the argument recurs Xfe T(p),
thend(a, T(p)) is the singletor{{(ag, a1)}} whereag = as anda;_g = a. At position
(p, @), d can only choose the sfy, a;)} from whichV can only choosegg, a;). If he
chooses direction 4 d, the next basic position ig(1 — d), a) with the automaton state
a. Otherwise the next basic position isd, as) with the automaton stat.

Let the last basic position of a finite partial play@(ASu G0LY)? , T) be (p, as). By
assumptiom satisfiesy € T(p). If X ¢ T(p), 6(as, T(p)) is the singletori{(a, a)}}.
position (p, as), 3 can only choose the sf, a)} from which¥ can only chooseg a)
Given choiced’ of ¥ for the direction, the next basic position ipd, &), where the
argument above recurs. If otherwige= T(p), then it has to be verified fggd whether
Y € T(pd). The sets(as, T(p)) consists such of the singletdf{ag, a;)}}. At position
(p, as), A then only choose the sfty, a1)} from whichV¥ can only choosesg, a;). If V¥
chooses the directioth, the next basic position i€, as) where the argument recurs,
and otherwisef(1 — d), a) where the argument above recurs.

For the left-to-right implication we prove the contrapagt Suppose that there is
a nodep for which X € T(p), butY ¢ T(p). Because the ancestorship relation is well-
founded for binary trees, we may assum be closest to the root with this property.
Then we derive a strategy f&raccording to which he directs the play towards one of
the basic positionsp, a) or (p, as) where3 can not move and looses. Thmqu(XY)
would rejectT.

Let the last basic position of a finite partial play@(ASuQ xy)» 1) from the initial
position be (', a) for p’ an ancestor op. Note thatp’ can also be the root node By
the assumption abovg satisfies thalY € T(p’) wheneverX € T(p’). If X ¢ T(p")
thené(a, T(p)) is the singletori{(a, a)}}, so that at positiong, a), 3 can only choose
the set{(a,a)} from which ¥ can then only choose the pam, &). For the direction
let vV choosep(|p’|) which is the next direction in the path towargds The next basic
position is then g|y+1,&). If X € T(p’) thend(a, T(p')) is the singletor{{(ao, a1)}}
whereayg = as anda;_q = a. At position (o, a), 3 can only choose the séfay, a1)}
from whichV can only choose the paiad, a;). LetV choosep(|p’|) for the direction.
The next basic position i9lg|+1, app))-

Let the last basic position of a finite partial pIay@@ASu G(XY) ,T) be (¢, as) for p’
an ancestor op. By assumptiorp’ satisfiesy € T(p'). If X ¢ T(p') thens(a, T(p"))
is the singletor{{(a, a@)}}. At position (p’, as), 3 can only choose the séfa, a)} from
which ¥ can only choose the paia,(a). For the direction le¥ choosep(|p’|) so that
the next basic position isp(p+1,a). If X € T(p’), thend(a, T(p’)) is the singleton
{{(ag, a1)}} whereay = as anda;_g = a. At position (p’, as), 3 can only choose the
singleton{(ap, a1)} from whichV can only chooses the paiiy a;). For the direction
let vV choosep(|p’]) so that the next basic position ig|iy+1, 8pp)-

Eventually the play will arrive at positionp(a) or (p,as). BecauseX € T(p),
6(a, T(p)) or respectivelys(as, T(p)) is the singletor{{(ag, a;)}} whereay = as and
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a;-q¢ = a. 1 can only choose the singletd(ay, a1)} from which ¥ can only choose
(ag, a1). For the direction le¥ choosed, so that the next basic position ipd, as).
BecauseY ¢ T(pd), 6(a, T(pd)) is empty. So thadl can not move at positiorpg, as)
and looses.

We have proven the derived strategy ¥owinning, so thafl does not have a win-

ning strategy irg(A\S’uQ(X,Y), T) from the initial position. O

5.3 Negation and Complementation

Let ¢ be a formula ofS2S For any seV of variables containing the free variables of
-¢, we define an automato&% accepting a binarf(V)-labelled tre€T iff T satisfies
—-¢ which is iff T does not satisfy.

By the induction hypothesis, for any Séf variables containing the free variables
of ¢, there is an automatafY which accepts a binar(V)-labelled tre€eT iff T sat-
isfies¢. Because and—¢ have the same free variables, every set containing the free

variables of-¢ contains the free variables ¢f We can thus definaY, := A}. By

Proposition 3.7A_¥ accepts a binar{-labelled treerT iff A},{ rejectsT which is iff T
does not satisfy. The following is immediate.

Corollary 5.6. For any set V of variables containing the free variables-gf A\j¢
accepts a binarP(V)-labelled tree T ff T satisfies-¢.

By Remark 3.8 complementation preserves the size and indextomata having
the special states. HenceA\j¢ has the same size and index/S Moreover, in the
complemented automatay takes over the role adz and vice versa, so that we can
assumei, to have both special states.

5.4 Disjunction and Union

Let ¢ andy be formulas 0fS2S For any seV of variables containing the free variables
of ¢ vV ¢ we construct an alternating binary tree automa«;ow accepting a binary
P(V)-labelled treeT iff T satisfiesp v . By the semanticsT satisfiesp v o iff T
satisfiesp or y.

By the induction hypothesis there is for every ¥aif variables containing the free
variables ofp an alternating binary tree automaton

Ay = (A, P(V), 85 1 Ap x P(V) > PP(As X Ag), 8], Q)

accepting a binar(V)-labelled treeT iff T satisfiesp. Similarly, there is fory an
alternating automaton

Ay = (A, P(V), 6y 0 Ay x P(V) > PP(A, x Ay),a, Q).

Because any set containing the free variableg gfy contains the free variables of

both¢ andy, we can define%;{vw as follows.
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Definition 5.7. Define the alternating binary tree automaton
Ay = (APNV),6: AxP(V) > PP(AX A),a, Q)

with states
A={a,a,a/}w(As\ {,ag,av}) W (Ay \ {ag,ay})

and transitions

o §(&,2) =642, 2) U@, 2)

o for any state e&e Ay N A, §(a, Z) = §4(a, 2)

o forany state & A, N A,6(a,2) :=dy(a, 2)
for all subsets Z V, and priorities

e O(a):=0

o for any state &= A; N A, Q(a) := Q4(a)

o for any state &= A, N A, Q(a) := Q,(a)

Because\, andA share the states anday, Ay, contains only one of each. The
size ofA};W is thus at mosﬂA}ﬁ + |A},{| —3. The index ofA}fW is at mostQy| +1Q,] -2,
becaus@, can be assigned an arbitrary priority.

Then the automatomng has the desired property.

Claim 5.8. For any set V of variables containing the free variablessof v, szw

accepts the binar¥-labelled tree T ff T satisfiesp v .

Proof. For the right-to-leftimplication, suppos@é{,{ accepts a binar(V)-labelled tree
T, so thatd has a winning strategy in the acceptance g@&@eY, T) from the initial

position , a‘f). Let® be the seH chooses frorm(a‘l”, T(e)) at the initial position con-
sistently with her winning strategy. By constructionsofd is an element of(ay, T(p))
as well. At the initial positiond, a,) of the gamg;‘(Ang, T) let3d chooseb. Every pair
(ag, a1) which v can choose fron® in g(A¥V¢, T), he could choose ig(AY, T). Thus
any admissible next basic positiod, &) in g(A},{W,T) consistent with the derived
strategy, is an admissible next basic positio@(m};,T) consistent wittd's winning
strategy. Becausgy, andd, coincide on the same automaton states fiyn3 can
apply her winning strategy iQ(A};W, T) from the basic positiond; a4). Every play in
Q(A};V v T) from (d, ag) consistent witid’s strategy is a play ig(AY, T) from (d, ag)
consistent witfd winning strategy. Thud wins any such play iG(AY, . T). Hence

Pvy>
the automatomng acceptsT. The case wherd has a winning strategy ig(AY, T)
is symmetric.

For the left-to-right implication, suppose thﬁgwj accepts a binar(V)-labelled

tree T, so thatd has a winning strategy in the garﬁA},{vw,T). Let @ be the set
which 3 chooses at the initial positior,(@) consistently with her winning strategy.
By construction of5, @ is an element of eithe¥,(a’, T(e)) or 6,(a”, T(e€)). For the
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moment suppose the first. At the initial positicxna(,“’) of g(A};,T) let 3 choose the
set®. Every pair @, a;) thatV can choose fron® in G(AY, T), he could choose

in G(AY,,.T). So every next basic positionl,(ag) in G(A}, T) consistent withd's
strategy is an admissible next basic positio@(m};vw, T) consistent witid’'s winning
strategy. Becausg&andd, coincide on all automaton states froly, every plays in

G(AY,T) from (d, ag) consistent with the derived strategy is over the same ipasit

as a play ing(AXvw,T) consistent withd’s winning strategy.3 thus wins any such

play x, so that the derived strategy is winning. Hemc)‘s acceptsl. The case where
® € 5,(a’, T(€)) is analogous. O

5.5 Existential Quantification and Existential Projec-
tion

In the following we construct for all sets of variables containing the free variables of
dX.¢, an alternating binary tree automat&ﬁx'q) accepting precisely the bina(V)-
labelled trees satisfyingX.¢. Every binaryP(V)-labelled treeT : 2 — P(V) repre-
sents a valuation : V — 2*, such thafl satisfiesdX.¢ iff v satisfiesiX.¢. By the
semantics 06525 such a valuation satisfies1X.¢ iff there is a valuationy € 2* such
thatv[ X — vyx] satisfiesp, wherev[ X - vy] is the valuation of the variables MU {X}
mappingX — vx and coinciding withv on all other variables iN. Becausé&/ contains
the free variables iAX.¢, V U {X} contains the free variables ¢f Thus the induc-
tion hypothesis applies and yields an automa&§H‘X’ accepting precisely the binary
P(V U {X})-labelled trees satisfying.

Chosen arbitrarilyy can contain the variabl€. Letv; andv, be the two valuations
of V which agree on the variablesn\ {X}. Because;[X — vx] = Vo[X — vx] for
any valuationvy C 2%, v; andv; are equivalent relative taX.¢, that isv; satisfies
dX.¢ iff v» does. Thus it makes sense to focus on valuation$ the variables in
V\ {X}, that isv = vi|y\(x;- We call such a valuation the projection of v; (v,) to
V \ {X}. Subsequently we denote the projectiorvpfv,) to V \ {X} by v (7v2). Let
T, be the tree representation of, then the tree representatidnof v is defined by
T(p) := Ta(p) \ {X} for all nodesp € 2*. Analogously, we call the projection of Ty
(T2) to V \ {X} which we denote by Ty (7T>).

We defineAY, , as theexistential projection ry, i " which is an
alternating binary tree automaton accepting a bit({y)-labelled tre€l” iff there is a
P(V U (X})-labelled tredT accepted by, of which T” is the projection to/ \ {X},
thatisT’ = xT.

We define the existential projectioﬂ,\(x}AXU{X} in two steps. Firstly, we obtain

from AY"™ an equivalent non-deterministic binary tree automataas described in
Chapter 4. Secondly, f@ we define the existential projection as follows.

AVUIX AVUIX
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Definition 5.9 (Existential Projection of Binary Tree Automatd)et
B=(B,VU{X},6': Bx(VU{X}) - P(BxB)

be a non-deterministic binary tree automaton recognisit{y U {X})-labelled trees.
The existential projection @& to V\ {X} is the non-deterministic binary tree automaton

T xB = (B, P(V), 1, 50 - BXP(V \ {X}) = P(Bx B), by, Q)

with transitions
”?/\{X}‘S(b’ Z) :=6(b,2) Ué(b, ZU {X})

forallZ Cc V.

Proposition 5.10. Let B be a non-deterministic binary tree automaton recognising
PV U {X})-labelled trees, and Ieiri\{x}B be the projection of3 to V \ {X}. Then
n\a,\{x B accepts a binangP(V \ {X})-labelled tree T f T is the projection of some
binaryP(V U {X})-labelled tree T accepted byB.

Proof. Supposer?,\{x}B accepts a binar?(V \ {X})-labelled treerl, thend has a win-
ning strategy in the acceptance ga@(e\a,\{x}B, T) from the initial position €, by). We
construct a binarP(V U {X})-labelled tre€l” accepted b and derive a winning strat-
egy for3d inductively on a playr’ of G(B, T’) from the initial position consistent with
the derived strategy, such thats a play ofg(yra\(x}B, T) consistent wittd’'s winning
strategy.

Initially all plays in Q(H\H/\{X}B,T) andG(B, T’) are in the same position, videlicet
(e,b)). Letx be a finite partial play ofz(B, T’) from the initial position consistent
with I's winning strategy and let the basic position If) be the last position imr.
By the induction hypothesis; is a play ofg(yra\(x}B,T). Let (bg, b1) be the pair of
states whichd chooses at positionp(b) consistently with her winning strategy. By
construction Oﬁr\al\(x}é, the pair po, by) is either ins(b, T(p)) or in (b, T(p) U {X}). In
the first case, leT’(p) := T(p). In the latter case, I€F’(p) := T(p) U {X}. Thend
can choose the same pdip(b,) of states at positiong, b) in the gamez(B, T’). Let
d be the direction whicl¥ chooses, thenpd, by) is the next position ig(B, T’), and
an admissible continuation of the playn g(yra\(x}B, T) consistently wittd’s winning
strategy.

Becausel's strategy irg(ne,\‘X,B, T) is winning, she is able to move in every basic
position of a play from the initial position consistent wilr winning strategy. Also
¥ is able to move. The set of all plays consistently witk winning strategy thus
completely determines’.

For the converse direction suppose tHdtas a winning strategy from the initial
position €, by) in the gamez(B, T’) for a binaryP(V U{X})-labelled treel”. We derive
awinning strategy for her in the gargén\a,\‘X}B, T) from the initial position wher& is
the projection off’ to V \ {X}, such that every play from the initial position consistent
with the derived strategy is a play 6{B, T’) consistent witia’s winning strategy.

Initially all plays inG(B, T”) andg(yr?,\(x}B, T) are in the same basic position, that is
(e,b)). Letx be afinite partial play o@(n?,\‘X,B, T) from the initial position consistent
with the derived strategy. And let the basic positipnk) be the last position of. By
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the induction hypothesisis a play ofG(B, T’). Let (bo, b;) be the pair of states which
3 chooses at positionp(b) consistently with her winning strategy. By construction
of n\a,\‘X}d, the same pairbp, by) is an element o:fr?,\‘X}d(b,T’(p) \ {X}) which equals
T80, T(P)). At position (p, b) in the gameG(ny, B, T), let 3 choose the same
pair (bo, by). Given a choicel of V for the direction, the next position ?ﬁ(n\a,\(x}B,T)
is (pd, bg) which is an admissible continuation of the playn G(B, T’) consistently
with 3's winning strategy.

O

By constructionB andnyB are of the same size and index. However, due to the
non-determinisatioi® is of size exponential in the size Af};U{X}. Concretely, leth be

the size and let be the index ofs,; "™, thenAY, , has size at most-2>2(k+ 120D
and index at mostigk + 1) by Corollary 4.17.

Definition 5.11. Define
vV o o._ 13
Adyy = Ty x) B

whereB is the non-determinisation (ﬁZU{X}.

Claim 5.12. For any set V of variables containing the free variablesiafg, A\H’Xip
accepts precisely the bina®(V)-labelled trees T satisfyingX.¢.

Proof. By Proposition 5.107r>3(\{X}B accepts precisely the projection3 of binary

treesT accepted by and thusAXU{X}. Thu3n§(\{x}B accepts the tree representation
of avaluatiorviff there is a valuatiomy of X such thaB accepts the tree representation
of V[X  vx]. By Proposition 4.9AVVX) andB are equivalent, so that the following is
immediate AY,, . accepts the tree presentatibof a valuatiorv iff there is a valuation

AX.¢
vy such thataY“™ accepts the tree representationvpf — vy], that is iff T satisfies

¢
AX.e. O

In the next Chapter we will make use of the following obseéprat Therefor recall
from the preliminaries that non-deterministic automatalsa seen as special cases of
alternating automata.

Remark 5.13. The existential projection of an alternating binary treet@maton is
non-deterministic.
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Chapter 6

Complexity of the Translation

We devote this chapter to the question hdticéent our translation is.

6.1 Complexity of the Translation

Before, we define the notion of size for formulas3f#tS

Definition 6.1 (Size of S2SFormulas) The sizég| of a formulag of S2Sis inductively
defined as

Xcv =1

[Sug(X,Y)| :=1forbothde 2
|1V @2 =|oal + g2l +1
[AX.9| =g+ 1

We recollect the complexity results we obtained for thevittlial constructions.

|Aveyl =3 |Qxcyl =2

|A\s/uq(x,v)| =3 1Qsugx | = 2

IAY,| = A7l Q-] = ||

IAY,l = AT+ AY] +1 1Quvul < Q] + Q)
|AY | = AY A2 0 ) 4 ARRI00D 0y o] = 2AY|(10,] + 1)

Except for the existential quantification, the translai®linear. Existential projec-
tion, however, necessitates non-determinisation whietigian automaton exponential
in the size of the alternating automaton. Whence the tréiaslaf S2Sinto alternating
automata is of non-elementary complexity. In the rest of ®lhapter we justify this

property.
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6.2 A Non-Elementary Lower-Bound for the Transla-
tion

In [Rei02] Reinhardt establishes a non-elementary lowembofor the complexity
of the translation of formulas o61Sinto alternating word automata. We adapt his
argument td52S In the following we construct a formuls, of size linear inn which
specifies a property of binary trees which can be recognigezhtalternating binary
tree automaton of size non-elementaryjronly.

We construct by induction overa formulag? satisfied by a binarg({P})-labelled
treeT iff there are precisely twP}-labelled nodes along one path. Moreover the
nodes have a distance Bfn), videlicet one node isH(n) — 1)-accessible from the
other, wherd=(n) is a non-elementary function defined by

F(0)=1and F(n+ 1) = F(n)  2F®.
Convention 6.2. We call the node in P which is closer to the root x, the otherawnd

In the induction basis, we constructa formm[’a/vhich establishes that there are (1)
precisely (2) two nodes andy labelled with{P} such thay is an immediate successor
of x (3).

¢h = IAXAY. SingX)AXCPASINGY)AYCPA (1)
(VZZCP—>ZCXVZCY)A )
Sue(X,Y) v Sug(X,Y) 3)

For the induction hypothesis we assume formraa N a formulagf, with a free
variableP which holds in a binary?({P})-labelled tre€T iff there are precisely two
{P}-labelled nodes with a distance Btn).

Givengf, we define a formula?, , with a free variable® which is satisfied by a
P({P})-labelled treeft there are precisely tw{P}-labelled nodes with a distance of
F(n) = 25O,

S T N O B
Block [0 | 1] 2] .. | 27 |

The segment of a path fromito y can be thought of as being split int6® blocks.
Let the blocks be numbered such that the block closest toabelras the smallest
number. Each such number can be coded binarly R{tf) bits. Each block is supposed
to consist ofF (n) nodes so that we can assign each block a bit, such that byicboa
the node closest to the root holds the least significant lh@block’s address.

| X | | | LY
Block | O 1 2 .| 2FM
C 000Q..0 | 1000Q..0 | 0100Q.0 | ... | 1111.12
B 1000..0 | 1000Q..0 | 100Q..0 | ... | 100Q..0
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The assignment with bits is realised through a varighlsuch that the valuation
of C consists of all nodes which are labelled with bit value 1. &axiliary purposes
we will use a set variabl® whose valuations consists of the nodes which mark the
beginning of each block. In the following we specify the pedy which the valuations
of BandC have to satisfy.

For auxiliary purposes, we introduce two set variables)dJ, which are assigned
singletons of nodes with a distancer(). The latter is realised through a forma.
Therefor letP be a doubleton containing the noded @ndJ, only. We refer td and
J as pointers, because we will use them to express propeftees/dwo nodes with a
distance(n). The propertyPointersspecifies thaP holds precisely (2) the two nodes
from | andJ (1) which have distancgé(n) (3).

Pointers:=  dP. Singdl) ASingJ)Al CPAJCPA D
(VKKCP-o>EmptfK)vI cKvJIC KA (2)
¢n 3)

Singis defined as in Appendix C. See the appendix also for the tiefisiofEmpty
and=.

If we have ensured that the pointérandJ have distancé& (n), we can specify the
valuation ofB. B has to contairX andY (1) and all nodes if8 have to have a distance
multiple in F(n), that is whenever is in B, so isJ and vice versa (2) and all nod&s
in between are notiB (3).

PropB:= XCBAYCBA Q)
(IcBe JCBA (2)
YKl <KAK<J—EmptfK) VK B (3)

Thereby< denotes the reflexive ancestor relation anits strict part.X is an ancestor
of Y, X <Y, if both are in a "family” F (1) of which X is the origin (2) and the
"parents”P of every "group”G within F is contained i (3), or in other termsF is
closed under descendance.

X<Y:= 3IFr. XCFAYCFA 1)
¥G.G C F A =Empty(G) — —(Sue(G, X) v Sua(G, X))A (2)
¥G.GC F - AP(Sug(G,P) v Sug(G,P)APCF 3)

We define< as the strict part oK < .
X<Y:i= X<YAXz#Y

For brevity we will writel < K < Jforl < KA K < Jand similarlyl < K < J
andl <K < J.

Connecting to our previous argument, we distinguish fodindey properties of
the construction. The first block has to code 0, so none of tiiesiin the first block
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should be contained in the valuation@Respectively, the last block should cddg),

so that the valuation d@ should contain all nodes in the last block. We need to ensure
that the least significant bit changes from one block to the ag the initial é&ect of
incrementing the binary coded number. The secdteteis that 1's are carried over

to the next bit. The properties will be established respebtiby First, Last, Startand
Carry.

We specify the propertiPropC of the valuation ofC. Let| andJ satisfyPointers
First specifies that all nodes in the first block, which begins Wtlare not labelledC
(1). Startspecifies that the first nodes of two consecutive blocks atfe nespect taC
not equally labelled (2). If is C-labelled and] is not, then the block thdtbelongs to
has a higher value on the bit pointed to byhen the block ofl in the corresponding
bit pointed to byJ (3). Whence "1’ needs to be carried over to the bit succeettiag
oneJ points to. LetJ™ be an immediate successorbandl* an immediate successor
of I (4), unlesd* has exceeded the boundaries of the blackis obtained by adding
1 to the bit ofl* modulo 2 (5). Analogously t&irst, Last specifies that the nodes in
the last block whose end is marked Byare labelled wittC.

First := IcX e VK(I£K<J)- EmptfK)vVK ¢C (1)
Start:= 1CcB—->-(1cC-JcQ) (2)
Carry:= (1cCAJ¢ZC) e 3

YIT.¥vJ*.  Sindl*) A (Sug(l, I*) v Sug(l, 1*)A
SindJ*) A (Sug(J, J%) v Sug(J,J%) - (4)
I*TcBv(I*¢Ce JTcQ) (5)
Last:= JCYoVK(<K<]))—-KcC (6)

The valuation ofC is determined by all of the four properties above.

PropC := First A StartA Carry A Last

Now we can put the pieces together and formu@g1 which specifies that there
are precisely (2) two nodeéandY in P (1) such that the segment of a path frémo Y
is B andC labelled according t®ropBandPropC(3), and is thus of length (n) + 2F ™.

gh = 3AXAY. SingX) A X S PASINY)AY C PA (1)
(VZZCP-oEmptZ)vXCZVvYCOAn (2)
dB.3C.V1.YJ.Pointers— PropBA PropC 3)

Note thatgl is not clean fom > 1. However, as we already argued in the pre-
liminaries, ¢7 can be brought into a clean form by distinctively renaming iound
variables.

Let A be an alternating binary tree automaton accepting predisef ({P})-labelled
trees satisfying;. ThenA has to have at leagt(n) states. Otherwise, while process-
ing a treeT, one automaton statewould occur more than once between the noxles
andy. Because the acceptance condition can not distinguisheleetfinite numbers of
occurrences of automaton stategould occur finitely, but arbitrarily often. Hence
could not recognise the distance betwaemdy.
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HowevergF is by construction linear in. We obtain the following non-elementary
lower bound for the translation of formulas into automata.

Proposition 6.3. There is a formula of S2S for which there is no alternating binary
tree parity automatom\ of size elementary ig| such thatA accepts a binary tree Tjfi
T satisfiesp.

In Chapter 5 we have seen that the existential projection aftarnating automaton
is non-deterministic. Consequently, non-determinisaitoneeded only once in the
translation of a sequence of nested existential quantdizsit In fact, negation is the
only logical operation that spoils non-determinism.

In ¢f.,, the alternation between the existential quantificatioerdq; Y, B andC
and the universal quantification ovBrmakes non-determinisation of the automaton
necessary in each induction step, which leads to the nanegigary complexity.

For non-deterministic automata, complementation in@e#ze size of the automa-
ton exponentially. Then, as Reinhard argues in [Rei02]atieg is responsible or the
non-elementary lower bound. Note that our result does notradict Reinhard’s ob-
servation.

43



Chapter 7

Non-Emptiness of Alternating
Binary Tree Automata

The non-emptiness problemfor an alternating binary tree automaténconsists in
deciding whetheA accepts some binaBrlabelled tree, that is whether the language
L(A) is non-empty. We reduce the non-emptiness problem fomeltisng automata to
the non-emptiness problem for non-deterministic autopatavhich we give a game
theoretic solution.

Theorem 7.1. The non-emptiness problem for alternating automata isdidie.

As described in Chapter 4 we obtain from an alternating pitree automatoa a
non-deterministic binary tree automaton

B=(B,X,6:BxX— P(BxB),b,Q)

accepting precisely the same binanabelled trees ad. HenceL(A) is nhon-empty
iff £(B) is non-empty.

7.1 Non-Emptiness of Non-Deterministic Binary Tree
Automata

Suppose there is a binary tré@efor which 3 has a winning strategy from the initial
position in the gamg (B, T). At a basic positiong, b) of the gamez(B, T), 4 chooses

a pair (o, by) from §(b, T(p)) consistently with her winning strategy. Hence there is a
letterc € X, videlicetT(p), for which 3 can choose a paibg, b1) from §(b, c), such
that the next position,qd, b) for bothd € 2, is winning ford. This idea underlies the
construction of th@on-emptiness gamgg.¢(B), a parity graph game, which proceeds
according to the following rules.
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Position Player | Admissible Moves| Priority
beB E| UCEZ 6(b, C) Q(b)
(bo,b1) eBxB | VY {by | de?2} 0

Table 7.1: The Non-Emptiness Gai@ey(B)

1. At a positionb € B, d chooses a letter € T and a pair o, by) from 6(b, ¢). The
next position is thenkp, by).

2. At a position b, b;) € B x B, ¥ chooses a directioth € 2 which determines the
next positionby.

We call positions from the s& basic. Basic positiond are assigned the priority
Q(b), all other positions are assigned priority O.

3 (¥) wins a finite playr of G.¢(B), if the last position ofr belongs tov (3) and he
(she) can not moved (VY) wins an infinite play if the largest priority of an automaton
state occurring infinitely often is even (odd). The non-dnmggs games.y(B) is a
parity graph game, and thus enjoys history-free deterrginade refer to Appendix B
for more details.

Proposition 7.2. B accepts some binai+labelled tree jf 3 has a winning strategy in
G+o(B) from the initial position k.

Proof. For the left-to-right implication, suppose there is a bjnarlabelled treeT
for which 3 has a winning strategy in the acceptance g#ti®, T) from the initial
position. We derive a winning strategy for her in the non-gngss gameg .¢(B) from
the initial positionb;, such that every play consistent with the derived strategyer
the same automaton states as a plag(B, T) consistent withd’s winning strategy.
Initially the play inG.¢(B) is at positionby, any play inG(B, T) is in (e, by). Suppose
the play ofG.y(B) is at positionb, then there is by the induction hypothesis a play
of G(B, T) consistent withd’'s winning strategy over the same automaton states as the
play in G.¢(B). Supposel chooses the paibg, b;) from 6(b, T(p)), in G.¢(B) let her
choose the same pair. Any directidnwhich V chooses in response, he could have
chosen ing(B, T), so that pd, by) is a continuation ofr consistent withd’s winning
strategy.d wins the play inG.y(B) because the largest priority of an automaton state
occurring infinitely often in the play of(B, T) and thus also in the play @f.¢(B) is
even. Thus the derived strategy is winning for

For the right-to-left implication, supposg has a winning strategy in the non-
emptiness gamg.y(B) from the initial position. We derive a binaB+labelled tree
and a winning strategy fal in the gameG(B, T), such that every play ig(B, T) is
over the automaton states of a play@m(B) consistent wittd’s winning strategy. Ini-
tially, the play inG(B, T) is at position €, by), any play ofG.y(B) in b,. Let the play
in G(B, T) be at position g, b), then there is by the induction hypothesis as a play of
G+0(B) over the same automaton states as the plg(li T). Let (bo, by) be the pair of
automaton states whichchooses at positiobin G.¢(B) consistent with her winning
strategy. Then there is a lettere T for which (bg, b1) € 6(b,c). DefineT(p) := c.
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Letd chooselfp, by) at position ¢, b) of G(B, T). ¥V chooses a directioth, determining
the next basic positionp@, by). ¥ could have chosen the same directiorgim (B),

so that basic position continuingis by. We have established that for every play of
G(B, T) there is a play o0& ..¢(B) over the same automaton states. THugns the play

in G(B, T) because the largest priority of an automaton state ocwyimfinite often is
even. Hence the derived strategy is winningfor O

7.2 Complexity of the Non-Emptiness Problem

BecauseB has finitely many states, the non-emptiness game is a finitgy graph
game. Deciding whether the initial positidm of such a finite parity graph game is
winning for3 or VY is called the parity graph game problem.

Definition 7.3 (The Parity Graph Game Problermfjor a finite parity graph game,
the parity graph game problem f@ consists in determining whether a board position
b is a winning position ofl or V.

Emerson and Julta showed in [EJ91], that the parity graphegarablem is at
most exponential in the number of board positions. Given rdtjgen of the board
into winning regions, that is sets of winning positions, bandV, it can be verified
in polynomial time, whether there is a consistent winningisgy from a particular
board position. Hence the parity graph game problem is iraN@,in co-NP due to the
symmetry of the problem. Moreover, as shown in [Jur98] thate is for every parity
graph game precisely one such partition, so that the paritglggame problem is in
U-NP and co-U-NP.

46



Chapter 8

Conclusions

This text is the first comprehensive recollection of Rabamiginal argumentimproved
in various aspects. Alternation facilitates complemeatathough at the price of non-
determinisation which is needed for the existential pribgecof alternating automata.
Because of the parity acceptance condition the acceptaroe ¢ historyfree deter-
mined, which is crucial for the construction of the non-eimgss game.

The definitions of non-determinisation, existential potign and non-emptiness
game are based on the more general coalgebraic constsictsea in [KV05] and
[KVO7] for F-coalgebra automata. The relational approach to non{déetesation
as given in Chapter 4 stems from [ANO1]. Essential for thestmction is theB-
redistribution, an instance of thie-redistribution for the binary tree funct@ taking
objectsX to pairsX x X. For the functof, theF-redistribution is an easy construction.
We expect a similar experience with other polynomial funeto

In Chapter 3 we have given an algorithm to compute the comgeimf a binary
tree automaton. Itis unlikely that the method used allowgneralisation to arbitrary
F-coalgebra automata. In fact the question whether for eFetpalgebra automaton
there is a complementary one is still open. Recall that we kdafined universal quan-
tification as the dual of existential quantification usingaton. The weaker question,
whetherF-coalgebra automata are closed under universal projedtierdual of exis-
tential projection, is still open as well.
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Appendix A

Sequences and Binary Trees

For anyalphabetX we define sequences, or words, of letters fibind binary trees
labelled with letters fronk.

A.1 Sequences

Definition A.1 (Sequences)Given an alphabeX, a sequence of letters froE) or -

sequence oE-word for short, is a partial function ty — X such that if i) is defined
for some ie w, sois Uj) for all j below i.

Thelength|U| of aZ-sequence is the number of indideghereU (i) is defined. The
emptyX-sequence has length 0. A-sequence is finite if there is an indeg w such
thatU(i) is undefined, and infinite otherwise. The set of fiitsequences is denoted
asX’, the set of infinitez-sequences is denoted®t$, and the set of alf-sequences is
denoted a¥*, so thatt* = ¥* U .

We denote the last letter of a finiesequencd) asLas{U) and define it as
LastU) := U(U| - 1).

A X-sequencdl)’ is aninitial subsequence or subsequence for short, ofza
sequencdJ if |U’| < |U| and for alli whereU’(i) is defined,U(i) = U’(i). A sub-
sequencé)’ of aX-sequencd is proper if additionallyU| < |U’|.

Given a finiteX-sequencé) and an arbitrang-sequencé)’, we define thecon-
catenationUU’ of U andU’ such that for ali < |U], (UU)(i) := U(i) and for all
i > |U], (WU := Ui = U)).

A.2 Binary Trees

In binary trees we distinguish two directions, “left” andgit”, which are respectively
denoted by 0 and 1 and collected in the two-element set 2teRiaiths through binary
trees are then finite 2-sequences. We identify nodes withetsigective path from the
root node. The root node itself is then the empty sequenéeX-labelling associates
nodes with letters frorl. We identify full binaryX-labelled trees with their labellings.
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Definition A.2 (Binary Trees) Full binary Z-labelled trees are functions
T:2°> 3%,

Given a nodep, we call a nodegy’ a child of pif p’ is the left or right successor of
p, thatisp’ = p0 orp’ = pl. A nodep’ is adescendenbf p, or p is anancestorof
p’, if pis a proper initial subsequence f

Remark A.3. Note that in the literature, binary trees are often descdil@s rooted
acyclic graphs with out-degree 2, that is tupl@s E, r, 1) consisting of a set V of
vertices, a mapping EV — V x V, a root node r, and a labelling : V — X. Let
V=2"E:pw (pO,pl)forall p e 2*,r = ¢ andd : p — T(p), then the definition
by graphs is easily seen to be equivalent to our definitiorvabo
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Appendix B

Game Theory

In the following we will formally introduce two-player payi graph games, or parity
graph games for short. For a more concise account of thesegghmreader is referred
to [GTWO2].

Parity graph games are played by two playétgEloise) and¥ (Abelard) who
oppose each other.

Definition B.1 (Parity Graph Games)A two-player parity graph game is a tuptg=
(Bs, By, E, by, Q) with

e disjoint sets B and B, of board positions ofl andV, respectively
e a move relation EC B x B mapping positions to admissible successors
e an initial position h € By U By

The setB = B3 U By is called theboard of G, the tuple(B3, By, E) thearenaof G.
We say positions fronB5 belong tod and positions fronBy belong tov.

Definition B.2 (Plays) A partial play, or play for short, is a sequence of board posi-
tions. We call a partial playotal if it is infinite or if it is finite and there is no admissible
successor for the last position. Otherwise a partial playnisial.

A finite playx is won by3 (V) if the last positiorLasi(r) belongs tdv (3) and there
is no admissible successorlodist(r). We then say that (3) can not move in the last
position ofr.

The outcome of infinite plays of parity graph games is deteealiby the priorities
of the board positions occurring in the play.wins an infinite play of a parity graph
game if the largest priority occurring infinitely is evefwins if the largest priority
occurring infinitely is odd.

Definition B.3 (Strategies) A strategy of 3 (3) in a parity graph gamez as above
from a position b is a partial mapping taking each initial playgb; .. .b,, where i
belongs tad (V), to an admissible successor of b
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We say a playr is played consistentlywith a strategyo- of 3 if for all proper
initial playsn’ of &, that is proper subsequencesof x, where the last position of
belongs tod, the next position equals the position determined by treegtyy, that is
(') = o(7’). The same definition applies to strategie¥ afs well.

A strategyo of 3 is winning for3 if she wins any play consistent with. Similarly
for strategies o¥/.

We call a strategy- positional if for any two initial playsz andn’ for which the
last positions coincide, thatisast(r) = Lasti(n’), o () equalsor-(z’). In informal terms,
a positional strategy depends on the last position, only.

In parity graph games, plays consistent with strategieslager constitute sets
in a Borel algebra. Martin showed in [Mar75] that such setsdatermined. As a
consequence, in every position one of the players has a mgrstrategy. We call a
position from whichd (V) has a winning strategy,\ainning position of 3 (V).

In 1991 it was shown independently by Emerson and Jutla @IE &nd Mostowski
in [Mos91], that parity graph games dristoryfree determined, that is they enjoy the
following property. Whenevef (¥) has a winning strategy in a parity graph gage
from a positiorb, then she (he) has a positional winning strategy flom
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Appendix C

Monadic Second-Order Logic
for Binary Trees

In the following we define the monadic second-order |dg&Sfor binary trees, and
the minimal second-order only langu&ag2S;o which we then prove equivalent82S
The latter entitles us to U2 S as a replacement f@2Sthroughout the text.

C.1 S2S

Convention C.1. We write individual variables in lower case, set variablesupper
case.

Definition C.2 (Syntax 0fS29. Given individual variables x and y and a set variable
X, we define formulas &2S as follows.

¢ = X(X) [ sua(X.y) [ ~¢ ¢ A |V | IAXH(X) | IXH(X)
Moreover we define the usual abbreviatians ¢ = —¢ vV -, ¢ = ¢ = =g V ¥,
oY= > Y)AW — @), YXP(X) := =TAX=¢(X), andV X.¢(X) := =AX.=¢(X).

A variable occurs freely i if it is not bound by a quantifier. Formally the set
FVEro(¢) of free individual variables and the sEVsd(¢) of free set variables in a
formulag of S2Sare defined as follows.

FVEo(X(X) = {x} FVso(X(X) := {X}

FVeo(sua(x,y)) = {X.y} FVso(sua(x y)) =0

FVeo(—¢) := FVro(¢) FVso(-¢) := FVsd¢)

FVro(¢ V ¢) := FVro(¢) U FVro(¥) FVsolg V ¥) == FVso(¢) U FVsdy)
FVeo(IX.¢) := FVro(e) \ (X} FVso(dx.¢) := FVso(¢)
FVro(IX.9) 1= FVro(9) FVso(dX.¢) := FVso(¢) \ {X}
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Definition C.3 (Valuations) A valuation of an individual variable is a node ¢ 2*
in a binary tree, a valuation of all variables in a set W of inidiual variables is a
function w: W — 2*. A valuation of a set variable X is a sef € 2%, a valuation
of a set V of set variables is a function W — $(2¥) taking each set variable in V
to its valuation. Note that such valuations v of sets of saabtes are isomorphic to
P(V)-labelled trees T: 2 — P(V) by X e T(p) iff p € v(X) for all p € 2*. We call
such a tree T théree representation of the valuation v.

Definition C.4 (Semantics 0fS29. Let ¢ be a formula ofS2S, and let W be a set
containing the free individual variables, V a set contagthe free set variables ip.
Given valuationsw W — 2*and v: V — P(2%) of the variables in W and in V,
respectively, the semantics@fs defined inductively as follows.

Fw.y X(X) iff v(X)cwY)

IFw,v sug(x,y) iff w(y) =w(x)d

Fwy —¢ iff ¥wyo

Fwy @ V¥ iff  Fwy @ OF lbwy ¥

Fwy IX.@ iff  Fuixow,gv ¢ for some valuation we 2* of x
Iy IX.¢ i Fwyxov ¢ for some valuationy € 2* of X

Every formulap of S2&0 is definable with second-order constructions, only. In the
following we introduce the languadg2So, for binary trees which contains second-
order constructions, only.

C.2 S2%o

Definition C.5 (Syntax 0fS2S0). Given set variables X and Y, we define formulas of
S2S0 inductively as

¢:=XCY|SUgX,Y) | = | o Ad|dV | AXP(X).

We also define the usual abbreviations ¢ = =¢ V -, ¢ = ¥ = =~¢p V ¥,
¢ o= - yY) AW — ¢), andVX.p(X) := =IX~¢(X).

The atomSug(X, Y) means “all nodes iXX have a successor If'.
For a formulap of S2S0 we define the sdtV(¢) of free set variables inductively
such that

FV(XCY) = {X, Y}
FV(Sug(X.Y)) :={X Y}

FV(-¢) = FV(¢)

FV(¢ V) =FV(¢) UFV(Y)
FV(3X.¢) = FV(¢) \ {X}
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Definition C.6 (Semantics 062S0). Letg be a formula 055250, and let V be a set
containing the free set variablesn Given a valuation v V — $(2*) of the variables
in V, the semantics @f is defined inductively as follows.

Iy XCY i v(X) CwY)

i Sua(X,Y) if pdew(Y)whenever E v(X)

Iy —¢ if wo

Iy ¢ V¥ if kydoriyy

Iy AX.@ I Fyxe—v ¢ for some valuationy C 2° of X

Let ¢ be a formula 0fS2S0 with free set variables from a s¥tof variables. We
say a valuatiov : V — P(2*) of the variables itV satisfiesg, written -, ¢ iff [¢].
A binary P(V)-labelled treerl satisfiesp, T = ¢ iff T is the tree representation of a
valuationv satisfyinge.

C.3 Equivalence of S2S and S2%

In the following we show thab2SandS2So are equivalent, that is mutually definable.
Given a formulap in S2Swith free individual variables from a s&Y and free set

variables from a se¥/, we inductively define a formulasy with free variables from

V UV’ whereV’ is a set consisting precisely of set variab¥efor which there is an

individual variabley in W. To leverage the definition we assume that for no individual

variabley € W there is a set variabM € V in upper case, so th&tandV’ are disjoint.
Intuitively, we obtaings o by replacing free individual variablgsin ¢ whose valu-

ations are nodeg € 2* by free set variable¥ whose valuations are singletofyg. For

the latter we define the singleton predic&tagin S2So

SingX) := =Empty{X) A VY.Y C X = EmptfY) v X =Y

where
EmptyX) :=VZXCcZ

and
X=Y=XCYAYCX

Definition C.7 (Translation 0fS2Sinto S2&0). We define the inductive translation of
formulasg of S2S into formulasgs o of S2S0 as follows.

XM¥)so =YCX

(sua(y1. ¥2))so = Su(Y1, Y2)

(=¢(W.V))so = (W V)so

(PW V) VYW V))so = (p(W V))soV (W V))so
(Ay-#)so := 3Y.SingY) A (4)so
(IX.¢9)so == 3IX(¢)so
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The given translation preserves the semantics in the follpsense.

Proposition C.8. Let V' := {Y | y € FVro(¢)} be a set of set variables each of which
is an upper case correspondent of a free individual variahlg. Every valuation
w : FVeo(¢) — 2* of the individual variables free i can be turned into a valuation
V' of the set variables in \such that

V(Y) = {w(y)}.
A formulag of S2Sis then equivalent to a formulss o of S2S0 iff Fwy ¢ iff Fwv dso

Proof. We show that-y,y ¢ iff -y ¢so by induction ong.

Inthe first base case lgt= X(y). The valuationsv andv satisfyX(y) iff w(y) € v(X)
by the semantics d2S which is iff {w(y)} € v(X). By definition ofv’, the latter is ff
V' (Y) € v(X) which is iff (vUV')(Y) € (vUV')(X). By the semantics 82, the latter
isiff by Y C X,

Inthe second base casedet sug(x,y). The valuationsvandv satisfy GuQq(X, y),
Fw,y SUGI(X, Y), Iff w(y) is the successsor @f(X) in directiond, w(y) = (w(x))d, which
is iff pd € V'(Y) whenevem € V' (X). Because we assunvweandV’ to be disjoint, the
unionv U V' is consistent, so that by the semantics$S@Sso the latter is equivalent to
v SUG(X,Y).

The boolean cases are immediate. The valuatw@sdv satisfy —¢, Fwy —¢,
iff wwy ¢ iff ¥yuv ¢so, by the induction hypothesis, which i§ iy —¢so. For the
disjunctionw andv satisfy¢ v i, kwy ¢ V i, iff Ikyy @ OF Iy ¥ Which is iff -y ¢so
or kv ¥so by the induction hypothesis. By the semanticsS@Sso the latter is ff
Fvov $soV ¥so

For the existential first-order quantificatiomandv satisfyax.¢, iy, IX.¢ iff there
is a valuatiorwy of the individual variablex such thatrwx-wjv ¢. By the induction
hypothesis, there is such a valuatiwgiff there is a valuationy, videlicetvy = {wy},
such that-uv)x-v,g @so and iFeuv)xe-v,g SINGX), which is, by the semantics of
S2S0, iff kyuv HXSIHqX) A ¢dso.

For the existential second-order quantifatisnandv satisfy AX.¢, iy, IX.¢ iff
there is a valuatioy of the set variableX such thatfrwx—vg ¢ which is, by the
induction hypothesisfli IFyuv)x-v ¢so By the semantics 062, the latter is ft
kv IXdso o

In an analogous manner we obtain a converse translatiB28f, into S2S

Definition C.9 (Translation 0fS2S;0 into S29. Given a formulap of S2S0 with free
variables from a V of set variables, we define by inductiorranfda ¢s,s in S2S with
free variables from V.

(X1 € X2)s2s 1= Vy.Xa(y) — Xa(y)

(SuG (X1, X2))s2s = Yy1.X1(y1) = Fy2.5UG(Y1, Y2) A Xa(Y2)
(=¢)s2s = —s2s

(¢ V ¥)s2s = ¢s2s V Ps2s

(AX.¢)s2s = IX.ps2s

55



The given translation preserves the semantics in the follpsense.

Proposition C.10. Let¢ be a formula 0652%, then for every valuation vFV(¢) —
2* of the set variables free ip, -y ¢ iff oy Ps2s.

Proof. We show by induction og thati-y ¢ iff gy ¢ds2s.

In the first base case lgt= X; C X;. The valuatiorv satisfiesX; C X, -y X1 C Xo,
iff v(X1) € v(X), that is for all node, p € v(X;) wheneverp € v(X;). By the
semantics 0528 the latter isff g, Yy.X1(y) — Xa(y).

In the second base casedet Sug(Xy, X2). The valuatiorv satsifiesSug (X, X2)
iff for all nodesp € v(X1), pd € v(X), that is there is a nodg/, successor op in di-
rectiond, which is inv(Xy). By the semantics 082S the latter isff g Yy1.X1(y1) —
Ayz.sudy1, y2) A Xa(yz).

The boolean cases are immediate. For the negationg iff ik, ¢ iff ¥y, dro by
the induction hypothesis which i iry, —@s2s. For the disjuntioni, ¢ v  iff Iy ¢
or Iry ¢ which is by the induction hypothesif i~y ¢s2s O gy ¥s2s Which in turn is
iff gy Psos V Prsos.

For the existential second-order quantificatiepn,3X.¢ iff there is a valuationy
of X such thatryx—v, ¢ which is by the induction hypothesif irgvix—v, ¢s2s. By
the semantics a82Sthe latter iSff gy AX.Ps2s. O
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syntax, 52
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