
Decidability ofS2S

MSc Thesis(Afstudeerscriptie)

written by

Christian Kissig
(born May 29th, 1981 in Riesa, Germany)

under the supervision ofDr. Yde VenemaandDr. Clemens Kupke, and submitted to
the Board of Examiners in partial fulfillment of the requirements for the degree of

MSc in Logic

at theUniversiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
August 29th, 2007 Prof. Dr. Peter van Emde Boas

Prof. Dr. Dick de Jongh
Dr. Clemens Kupke
Dr. Yde Venema

Contents

1 Introduction 3

2 Preliminaries 5
2.1 Monadic Second-Order Logic . 5
2.2 Rabin’s Theorem . 6
2.3 Binary Tree Automata . 7
2.4 Word Automata . 9
2.5 Size of Automata . 10

3 Complementing Alternating Binary Tree Automata 11
3.1 Dualising Acceptance Games . 11
3.2 Direction Normal Form . 12
3.3 Complementation . 15

4 Non-Determinising Alternating Binary Tree Automata 19
4.1 Towards Relational Macrostates .19
4.2 Bad Traces through Sequences of Relations 21
4.3 Finding Sequences of Relations without Bad Traces 22
4.4 Complexity . 24

5 Formulas of S2S and Alternating Binary Tree Automata 30
5.1 The AtomX ⊆ Y . 30
5.2 The AtomSucd(X,Y) . 32
5.3 Negation and Complementation . 34
5.4 Disjunction and Union . 34
5.5 Existential Quantification and Existential Projection. 36

6 Complexity of the Translation 39
6.1 Complexity of the Translation . 39
6.2 A Non-Elementary Lower-Bound for the Translation 40

7 Non-Emptiness of Alternating Binary Tree Automata 44
7.1 Non-Emptiness of Non-Deterministic Binary Tree Automata 44
7.2 Complexity of the Non-Emptiness Problem 46

1

8 Conclusions 47

A Sequences and Binary Trees 48
A.1 Sequences . 48
A.2 Binary Trees . 48

B Game Theory 50

C Monadic Second-Order Logic for Binary Trees 52
C.1 S2S . 52
C.2 S2SSO . 53
C.3 Equivalence ofS2SandS2SSO . 54

2

Chapter 1

Introduction

Leibniz hoped for a calculus of truth in a universal sense. G¨odel showed with his
Incompleteness Theorem that such a calculus can not exist. Gödels result, however,
left open which particular logics are (un)decidable. For instance, it was not until the
1970s that the undecidability of Hilbert’s Tenth Problem was shown.

Besides decidability, researchers were interested in model checking properties of
infinite structures using finite automata. See [CGP99] for reference. In particular El-
got and Büchi pursued the question which properties can be expressed and verified by
automata. In 1962, Elgot [Elg61] and Büchi [Büc62] showedthat finite state deter-
ministic automata and monadic second-order logic interpreted on finite words, which
is the weak monadic second-order logicWS1S, are equally expressive. In [Büc62],
Büchi showed the same for the monadic second-order logicS1Sof infinite words.
Thereby he obtained an effective translation of formulas ofS1Sinto non-deterministic
word automata with Büchi acceptance condition. In [McN66]McNaughton gener-
alised Büchi’s method and obtained an effective translation of monadic second-order
logic S2Sof binary trees into finite automata.

Using the connection between logics and automata exhibitedby Büchi and Mc-
Naughton, Rabin proved the decidability ofS2Sby reducing the satisfiability problem
to the non-emptiness problem for non-deterministic binarytree automata with Rabin
acceptance condition, which was known to be effectively solvable. From this result
follow immediately various decidability results such as for Presburger arithmetic, for
the monadic second-order logic of trees with arbitrary (butcountable) branching, and
for the monadic second-order logic of countable linear orderings. The most important
contribution, however, is seen in the application of automata theory to logic.

The proof itself has since been considered hard to comprehend by many scholars,
which lead to various improvements. In 1982, Gurevich and Harrington [GH82] gave
a reduction ofS2Sto non-deterministic automata with Muller acceptance condition. In
1995, Muller and Schupp [MS95] refined the reduction. At the heart of their argument
is the non-determinisation of alternating automata. As argued in [CKS81], alternating
automata are closer to classical logics with negation likeS2Sthan non-deterministic
automata.

The behaviour of automata operating on infinite input is given in terms of accep-

3

tance games. For Rabin and Muller automata, these acceptance games are not histo-
ryfree, but bounded memory determined. In order to win a playof such an acceptance
game the players need to have a bounded memory of the play. To quantify the mem-
ory needed, Gurevich and Harrington introduced the latest appearance record (LAR)
which Muller and Schupp adapted as the index appearance record (IAR) for a complex
memory framework. However, for parity automata, acceptance games are historyfree
determined which follows from a result for parity graph games shown independently
by Emerson and Jutla [EJ91], and Mostowski [Mos91]. We elaborate on determinacy
of parity graph games in Appendix B. For the proof that acceptance games for parity
automata are historyfree determined we refer to the literature.

Both infiniteΣ-words andΣ-labelled binary trees are instances of coalgebras for
the respective functorsΣ × (−) taking objectsX to Σ × X andΣ × ((−) × (−)) taking
objectsX to Σ × (X × X). Based on this observation, Venema introduced in [Ven04]
automata recognising generalF-coalgebras for functorsF preserving weak pullbacks.
In both [KV05] and [KV07] the class of alternatingF-coalgebra automata is shown to
be closed under union, existential projection and non-determinisation.

In this text we give a comprehensive proof of Rabin’s Theoremmajorly based on
the concepts used in [KV07]. In Chapter 2 we introduce monadic second-order logic
S2Sin a minimal representation and alternating automata. We prove the class of al-
ternating binary tree automata closed under complementation in Chapter 3. In Chapter
4 we prove that alternating and non-deterministic binary tree automata are equally ex-
pressive by reducing the non-determinisation of alternating binary tree automata to the
determinisation of non-deterministic word automata as shown by Safra in [Saf88]. In
Chapter 5 we define the translation of formulas ofS2Sinto alternating binary tree au-
tomata. In Chapter 7 we give a game-theoretical solution to the non-emptiness problem
for alternating binary tree automata.

4

Chapter 2

Preliminaries

2.1 Monadic Second-Order Logic

Formulas of the monadic second-order logicS2Sare defined as

φ ::= X ⊆ Y | Sucd(X,Y) | ¬φ | φ ∨ φ | ∃X.φ

whereX andY are set variables. A variable occursfreely in φ if it is not bound by a
quantifier. Formally we define the set of free variables in a formulaφ of S2Sinductively
as follows.

FV(X ⊆ Y) := {X,Y}
FV(Sucd(X,Y)) := {X,Y}
FV(¬φ) := FV(φ)
FV(φ ∨ ψ) := FV(φ) ∪ FV(ψ)
FV(∃X.φ) := FV(φ) \ {X}

Formulasφ are interpreted with respect tovaluations of the variables occurring
freely in φ. A valuation of a set variableX is a setvX ⊆ 2∗ of nodes in a binary tree.
A valuation of a setV of set variables is a functionv : V → P(2∗) taking each set
variable inV to its respective interpretation. Note that such a valuation v is isomorphic
to a functionT : 2∗ → P(V) by X ∈ T(p) iff p ∈ v(X) for all variablesX ∈ dom(v) and
nodesp ∈ 2∗. Intuitively, T takes each nodep in a binary tree to a set of variablesX in
whose valuationv(X) p is. Such a functionT is a full binaryP(V)-labelled tree1. Thus
we refer toT as thetree representationof v.

1Compare with Definition A.2.

5

Let φ be a formula ofS2Swith free variables from a setV of set variables. Given
a valuationv of the variables inV, thesemanticsof φ is defined as follows.

v X ⊆ Y iff v(X) ⊆ v(Y)
v sucd(X,Y) iff for all p ∈ 2∗, if p ∈ v(X) thenpd ∈ v(Y)
v ¬φ iff 1v φ

v φ ∨ ψ iff v φ or v ψ

v ∃X.φ iff v[X 7→vX] φ for some valuationvX ⊆ 2∗ of X

wherev[X 7→ vX] is the valuation of the variables inV∪{X} defined byv[X 7→ vX](X) :=
vX andv[X 7→ vX](Y) := v(Y) for all variablesY ∈ dom(v) that are notX. A binary
P(V)-labelled treeT satisfiesφ, written T |= φ, if it is the tree representation of a
valuation satisfyingφ.

A formulaφ is satisfiableif there is a valuation of the free variables ofφ or equiv-
alently a binaryP(FV(φ))-labelled tree satisfyingφ.

2.2 Rabin’s Theorem

The problem of deciding whether a formulaφ of S2Sis satisfiable, is commonly re-
ferred to as theSatisfiability Problem of S2S.

Theorem 2.1(Rabin). The satisfiability problem for the monadic second-order logic
S2S of two successors is decidable.

In his proof [Rab69], Rabin exhibited a connection between formulasφ of S2S
and non-deterministic binary tree automataA such thatA accepts a binaryP(FV(φ))-
labelled treeT iff T satisfiesφ. Thusφ is satisfiable, if there is such a binary treeT
accepted byA. Whence the satisfiability problem forφ reduces to the non-emptiness
problem ofA. For alternating binary tree automata the non-emptiness problem is
known to be effectively decidable.

A formula φ of S2Sas above is interpreted with respect to valuations which are
isomorphic toP(FV(φ))-labelled trees recognised by automata. In the followingwe
introduce binary tree automata not just for the setP(FV(φ)), but for arbitrary alphabets
Σ.

Definition 2.2 (Alphabets). An alphabet is a set whose elements are calledletters.

6

Position Player Admissible Moves Priority
(p, a) ∈ 2∗ × A ∃ {(p,Φ) | Φ ∈ δ(a,T(p))} Ω(a)
(p,Φ) ∈ 2∗ × P(A) ∀ {(p, (a0, a1)) | (a0, a1) ∈ Φ} 0
(p, (a0, a1)) ∈ 2∗ × A× A ∀ {(pd, ad) | d ∈ 2} 0

Table 2.1: Acceptance Game for Alternating Binary Tree Automata

2.3 Binary Tree Automata

We introduce binary tree automata and word automata for the use in subsequent chap-
ters.

Definition 2.3 (Alternating Binary Tree Parity Automata). Given an alphabetΣ, an
alternating binary tree parity automaton is a tuple

A = 〈A,Σ, δ : A× Σ→ PP(A× A), aI ,Ω : A→ ω〉

consisting of

• a finite set A of states,

• a transition functionδ,

• an initial state aI ∈ A, and

• a priority functionΩ assigning automaton states natural numbers

Alternating binary tree automataA as above recognise binaryΣ-labelled trees.
Whether such an automatonA accepts a treeT is defined in terms of the acceptance
gameG(A,T), a parity graph game which proceeds according to the following rules.

1. At position (p, a) ∈ 2∗ × A, ∃ is to choose a setΦ ⊆ A of states fromδ(a,T(p))
which determines the next position (p,Φ).

2. At position (p,Φ) ∈ 2∗ × P(A), ∀ is to choose a pair (a0, a1) of states fromΦ
which yields the next position (p, (a0, a1)).

3. At position (p, (a0, a1)) ∈ 2∗ × (A× A), ∀ is to choose a directiond ∈ {0, 1} and
effectively a successor statead. The next position is (pd, ad).

The above steps constitute one round in the acceptance gameG(A,T). Within each
round we distinguish two stages. We call the first stage, which consists of the first two
steps,static because the position in the input tree is not changed. In the static stage the
players determine the next automaton states. We call the second stage, which consists
of the third step only,dynamic because it determines the next position in the tree.

7

We call positions from 2∗×A basic. The initial position is the basic position (ǫ, aI).
Positions from 2∗×A belong to∃. All other positions from 2∗×P(A×A) and 2∗×(A×A)
belong to∀. Basic positions (p, a) are assigned the priorityΩ(a), whereas all other
positions are assigned priority 0.∃ (∀) wins a finite playπ inG(A,T) if the last position
in π belongs to∀ (∃) and he (she) can not move.∃ (∀) wins an infinite playG(A, t) if
the largest priority of a state occurring infinitely often iseven (odd).
A accepts a binaryΣ-labelled treeT if the initial position (ǫ, aI) is winning for

∃ in the gameG(A,T), and rejectsT otherwise. The set of binary trees accepted by
A is called thelanguageof A and is denoted byL(A). Two automataA andB are
equivalent if they have the same language.

Definition 2.4 (Non-Deterministic Binary Tree Automata). Given an alphabetΣ, a
non-deterministic binary tree automaton is a tuple

A = 〈A,Σ, δ : A× Σ→ P(A× A), aI ,Ω〉

consisting of

• a finite set A of states,

• a transition functionδ,

• an initial state ai ∈ A, and

• a priority functionΩ : A→ ω assigning automaton states natural numbers.

In fact non-deterministic are special cases of alternatingautomata. An alternating
binary tree automaton

A = 〈A,Σ, δ : A× Σ→ PP(A× A), aI ,Ω〉

is callednon-deterministic if for all automaton statesa ∈ A and lettersc ∈ Σ, δ(a, c)
consists of singletons. Additionally we defineco-non-deterministicbinary automata
as alternating binary tree automata such that for alla ∈ A and c ∈ Σ, δ(a, c) is a
singleton or empty. Thereby we obtain characterisations ofthe acceptance games for
non-deterministic and co-non-deterministic automata, such that respectively∀’s and
∃’s choice in the static stages is bounded in the acceptance games for non-deterministic
and co-non-deterministic automata. Deterministic binarytree automata are both, non-
deterministic and co-non-deterministic.

8

2.4 Word Automata

Word automata are defined similarly as binary tree automata.Next we are going to
formally introduce word automata.

Definition 2.5 (Non-deterministic Parity Word Automata). Given an alphabetΣ, a
non-deterministic parity word automaton is a tuple

A = 〈A,Σ, δ : A× Σ→ P(A), aI ,Ω : A→ ω〉

consisting of

• a finite set A of states,

• a transition functionδ,

• an initial state aI ∈ A, and

• a priority functionΩ assigning automaton states natural numbers.

A run of a non-deterministic parity word automaton on an infiniteΣ-word U, is
a sequenceπ of automaton states fromA, such thatπ(0) = aI and for all i < |π| − 1,
π(i + 1) ∈ δ(π(i),U(i)). Such a run isacceptingif it is infinite and the largest priority
of an automaton state occurring infinitely often is even, andrejecting otherwise. A
non-deterministic parity word automatonA accepts an infiniteΣ-wordU if there is an
accepting run ofA onU.

Definition 2.6 (Deterministic Parity Word Automata). Given an alphabetΣ, a deter-
ministic parity word automaton is a tuple

A = 〈A,Σ, δ : A× Σ→ A, aI ,Ω : A→ ω〉

consisting of

• a finite set A of states,

• a transition functionδ,

• an initial state aI ∈ A, and

• a priority functionΩ assigning automaton states natural numbers.

Similarly to non-deterministic word automata acceptance is defined for determin-
istic word automata. Arun of a deterministic parity word automatonA as above on an
infinite Σ-word U is a sequenceπ of automaton states fromA, such thatπ(0) = aI and
δ(π(i),U(i)) = {π(i + 1)} for all i < |π| − 1. Such a runπ is accepting if it is infinite
and the largest priority of an automaton state occurring infinitely often inπ is even, and
rejecting otherwise.A accepts an infiniteΣ-wordU if there is an accepting run ofA on
U.

9

2.5 Size of Automata

We distinguish two measures of word or binary tree automataA = 〈A,Σ, δ, aI ,Ω〉,

1. the size|A| of the state setA, which we refer to as thesizeof A, and

2. the size|ran(Ω)| of the range of the priority function, which we call theindex of
A.

The index ofA is bounded by the size ofA, that is|ran(Ω)| ≤ |A|, so that the index
of a finite state automaton is finite.

10

Chapter 3

Complementing Alternating
Binary Tree Automata

In [CKS81] Chandra, Kozen, and Stockmeyer argued that alternating automata are
closer than non-deterministic automata to classical logicwith negation likeS2S. In this
chapter we devise an algorithm for the complementation of binary tree automata which
is based on the structure of the acceptance game for alternating binary tree automata.
In Section 5.3, we will see that the complementation of automata corresponds to the
negation of formulas.

For the rest of this chapter let

A = 〈A,Σ, δ : A× Σ→ PP(A× A), aI ,Ω〉

be an alternating binary tree automaton.
An automatonA complementary to A is an alternating automaton which accepts

precisely the binary trees rejected byA, that is

L(A) = (Σ)2∗ \ L(A).

In terms of the acceptance games,∃ has for every binaryΣ-labelled treeT a winning
strategy in the gameG(A,T) from the initial position iff ∀ has a winning strategy in the
gameG(A,T) from the initial position.

3.1 Dualising Acceptance Games

Acceptance gamesG(A,T) are parity graph games. For an arbitrary parity graph game
G we can define the dual which is a parity graph gameG with the following property.
∃ has a winning strategy inG from the initial position iff ∀ has a winning strategy inG
from the initial position.

11

Definition 3.1 (Dual Games of Parity Graph Games). Given a parity graph game

G = 〈B∃, B∀,E, bI ,Ω〉,

we define thedual game
G := 〈B∃, B∀,E, bI ,Ω〉

by swapping the positions of∃ and∀

B∃ := B∀ andB∀ := B∃,

and complementing the acceptance condition

Ω(b) := Ω(b) + 1 for all b ∈ B∃ ∪ B∀.

Note that the move functions and the initial board positionscoincide inG andG.

Lemma 3.2. ∃ has a winning strategy from the initial position bI in the parity graph
gameG iff ∀ has a winning strategy from the initial position bI in the dual gameG.

Proof. Because the move functions ofG andG coincide, every play inG is a play inG.
Because furthermore the positions of∃ and∀ are swapped, every strategy of∃ in G is a
strategy for∀ in G. Moreover, every play inG from the initial position consistent with
a strategy of∀ is a play inG played by∃ consistently with the same strategy. Because
the positions of∃ and∀ are swapped, the last positionb of a finite play inG belongs to
∃ iff b belongs to∀ in the gameG. Every finite play won by∃ in G is won by∀ in G.
Because the acceptance condition is complemented, every infinite play inG won by∃
is won by∀ inG. Hence∃’s winning strategy inG from the initial position is a winning
strategy for∀ in the dual gameG from the initial position. The converse follows from
a symmetric argument. �

However, we do not obtain a definition ofA directly from the dual gamesG(A,T)
of acceptance gamesG(A,T), because the dual gamesG(A,T) are in general not of
the shape of acceptance games for any alternating binary tree automaton. First, in
acceptance games the initial position belongs to∃, whereas in the dual games the ini-
tial position belongs to∀. Second,∀ is to choose the direction in acceptance games,
whereas∃ is to choose the direction in the dual games. We will see that both can be
resolved by trivialising the choice of direction.

3.2 Direction Normal Form

In the following we show how to compute from an alternating binary tree automaton
A an equivalent alternating binary tree automatonA′ = 〈A′,Σ, δ′, aI ,Ω

′〉, such that
∀’s choice for direction in the dynamic stage in every round ofan acceptance game
G(A′,T) is predetermined by the choice of automaton states in the static stage of the
same round.

12

For the construction we introduce the special statea∃, so thatA′ := A∪ {a∃}, with
transitionsδ′(a∃, c) := {{(a∃, a∃)}} for every letterc ∈ Σ and an even priorityΩ′(a∃).
Once enteringa∃ in a playπ of an acceptance gameG(A′,T), the automaton remains
in the statea∃ which will then be the only state occurring infinitely often.Because the
priority Ω′(a∃) is even,∃ wins any such playπ. Consequently,∀ should avoida∃, or
looses otherwise.

When every pair (a0, a1) in every set in the range of the transition functionδ is
replaced by two pairs (a0, a∃) and (a∃, a1), ∀ has to decide for the successor state and
for the direction at once in the static stage. We say that an automaton with such a
transition function is in direction normal form.

Definition 3.3 (Direction Normal Form). Let

A′ = 〈A′,Σ, δ : A′ × Σ→ PP(A′ × A′), aI ,Ω
′〉

be an alternating binary tree automaton.A′ is in direction normal form if

1. A′ contains the state a∃ with transitionsδ′(a∃, c) = {{(a∃, a∃)}} for all c ∈ Σ and
with an even priorityΩ′(a∃)

2. the range ofδ′ consists of sets of pairs(a0, a1) where a0 = a∃ or a1 = a∃

Notation 3.4. For convenience we denote pairs(a0, a1) where a1−d = a∃ by�dad from
now on.

Lemma 3.5. Every alternating binary tree automaton is equivalent to one in direction
normal form.

Proof. Let
A = 〈A,Σ, δ : A× Σ→ PP(A× A), aI ,Ω〉

be an alternating binary tree automaton, we define the alternating binary tree automaton

A′ := 〈A′,Σ, δ′ : A′ × Σ→ PP(A′ × A′), aI ,Ω[a∃ 7→ 0]〉1

with states
A′ := A∪ {a∃},

and transitions
δ′(a∃, c) := {{(a∃, a∃)}}

for all c ∈ Σ, and

δ′(a, c) := {{�dad | (a0, a1) ∈ Φ, d ∈ 2} | Φ ∈ δ(a, c)}

for all a ∈ A andc ∈ Σ. The automatonA′ is in direction normal form. We inductively
show for any binaryΣ-labelled tree that (∗) ∃ has a winning strategy in the accep-
tance gameG(A,T) from the initial position (ǫ, aI) iff she has a winning strategy in the
acceptance gameG(A′,T) from the initial postion (ǫ, aI).

1By Ω[a∃ 7→ 0] we denote the priority function mappinga∃ 7→ 0 anda 7→ Ω(a) for all a ∈ dom(Ω) not
beinga∃.

13

(p, a) ∃ // (p,Φ) ∀ // (p, (a0, a1)) ∀ // (pd, ad)

(p, a) ∃ // (p,Φ′) ∀ // (p,�dad)
(∀)

// (pd, ad)

Figure 3.1: A round ofG(A,T) andG(A′,T)

For the left-to-right implication, suppose∃ has a winning strategy in the acceptance
gameG(A,T) from the initial position, we derive a strategy for her in the gameG(A′,T)
such that every play consistent with the derived strategy isover the same basic positions
as a play consistent with∃’s winning strategy in the gameG(A,T).

Initially all plays inG(A′,T) andG(A,T) are in the same position. Letπ′ be a finite
partial play inG(A′,T) from the initial position consistent with the derived strategy
such that the last position is a basic position (p, a). By the induction hypothesis there
is a partial playπ of G(A,T) over the same basic positions asπ′.

Let Φ be the set∃ chooses fromδ(a,T(p)) at position (p, a) in the gameG(A,T)
consistently with her winning strategy. By construction ofδ′, in δ′(a,T(p)) there is a
setΦ′ = {�dad | (a0, a1) ∈ Φ and d ∈ 2}. At the basic position (p, a) of the game
G(A′,T), let ∃ chooseΦ′. Let�dad be the pair that∀ chooses fromΦ′. We assume∀
to choosed for the direction as he needs to avoid loss. Then the next basic position in
π′ is (pd, a). Then there is a pair (a0, a1) in Φ. The basic position (pd, ad) is thus also
a continuation of the playπ consistent with∃’s winning strategy.

We have established that for every playπ′ of G(A′,T) from the initial position
played consistently with the derived strategy, there is a playπ ofG(A,T) from the initial
position consistent with∃’s winning strategy which is over the same basic positions.
Because∃ wins π, the largest priority of an automaton state occurring infinitely often
in π is even. Thus the largest priority of an automaton state occurring infinitely often
in π′ is even as well, so that∃ wins π′, which proves the derived strategy winning for
her.

The right-to-left implication of (∗) follows analogously. Suppose∃ has a winning
strategy in the gameG(A′,T) from the initial position, we derive a strategy for her in
the gameG(A,T) from the initial position such that for every play inG(A,T) from the
initial position consistent with the derived strategy there is a play inG(A′,T) from the
initial position consistent with∃’s winning strategy.

Initially all plays ofG(A′,T) andG(A,T) are in the same position. Letπ be a finite
partial play ofG(A,T) from the initial position consistent with the derived strategy
such that the last position is a basic position (p, a). By the induction hypothesis there
is a partial playπ′ in the gameG(A′,T) from the initial position consistent with∃’s
winning strategy over the same basic positions asπ. LetΦ′ be the set that∃ chooses at
the position (p, a) consistent with her winning strategy. By the constructionof δ′ there
is a setΦ in δ(a, c) such thatΦ′ = {�dad | (a0, a1) ∈ Φ and d ∈ 2}. Let ∃ chooseΦ
in last position (p, a) of the playπ. FromΦ, ∀ draws a pair (a0, a1) and determines the
directiond, the next basic position is then (pd, ad). Then there is pair�dad in Φ′, so

14

that (pd, ad) is an admissible continuation of the playπ′ consistent with∃’s winning
strategy.

We have established that for every playπ of G(A,T) from the initial position con-
sistent with the derived strategy, there is a playπ′ of G(A′,T) from the initial position
consistent with∃’s winning strategy over the same basic positions. Because∃ winsπ′,
it satisfies that the largest priority of an automaton state occurring infinitely often inπ′

is even. Becauseπ andπ′ are over the same basic positions, the largest priority of an
automaton state occurring infinitely often is even as well, so that∃ wins π. Thus the
derived strategy is winning for∃. �

As a result of the previous lemma, we can and indeed will assume A to be in
direction normal form.

3.3 Complementation

In the following we are going to construct an automatonA accepting the binaryΣ-
labelled trees which are rejected byA. In terms of the acceptance games,∃ will have
a winning strategy in the acceptance gameG(A,T) from the initial position iff ∀ has a
winning strategy in the acceptance gameG(A,T) from the initial position which is iff
∃ has a winning strategy in the dual gameG(A,T) from the initial position, by Lemma
3.2.

Moreover, given a winning strategy for∃ in the gameG(A,T) from the initial
position, we want∃ to have a strategy in the gameG(A,T), consistent with which
every play is over the same basic positions as a play inG(A,T) consistent with∃’s
winning strategy. Given a winning strategy for∃ in the gameG(A,T) from the initial
position, we want∃ to have a winning strategy in the gameG(A,T) from the initial
position such that every play from the initial position consistent with that strategy is
over the same basic positions as a play in the gameG(A,T) consistent with∃’s winning
strategy.

Let A have the same initial state asA, then the initial positions coincide in the
acceptance gamesG(A,T) andG(A,T) for any binary treeT.

Suppose∃ has a winning strategy in the acceptance gameG(A,T) from the initial
position. Let (p, a) be a basic position in a play consistent with her winning strategy.
For anyΦ that ∀ could choose fromδ(a,T(p)), ∃ has a winning choice for a pair
(a0, a1). This winning choice can be though of as a substrategyf : P(A×A)→ (A×A)
of ∃’s winning strategy local to the nodep. The range off is a setΦ′ consisting of
the pairs of automaton states that are chosen consistently with ∃’s winning strategy.
∀’s choice forΦ then determines at least one pair of automaton states which is an
element ofΦ ∩ Φ′. The construction ofΦ′ gives rise to the following definition of the
complementary automatonA.

15

Definition 3.6 (Complementation of an Alternating Binary Tree Automaton). Let

A = 〈A,Σ, δ : A× Σ→ PP(A× A), aI ,Ω〉.

be an alternating binary tree automaton in direction normalform, we define the com-
plementation

A := 〈A,Σ, δ : A× Σ→ PP(A× A), aI ,Ω〉

where the transition functionδ is defined such that for all a∈ A and all c∈ Σ,

δ(a, c) := {ran(f) | f : δ(a, c)→
⋃

δ(a, c) such that∀Φ ∈ δ(a, c). f (Φ) ∈ Φ}.

If δ(a, c) is empty, then there is precisely one such choice function,videlicet the
empty one. Thenδ(a, c) contains precisely the empty set∅. If δ(a, c) contains the
empty set then there is no choice functionf , so thatδ(a, c) is empty.

The complementA rejects precisely the trees which are accepted byA.

Proposition 3.7. Let A be in direction normal form,A accepts precisely the binary
Σ-labelled trees rejected byA.

Proof. In the following fix a binaryΣ-labelled treeT. We show that∃ has a winning
strategy in the acceptance gameG(A,T) from the initial position (ǫ, aI) iff ∀ has a
winning strategy in the gameG(A,T) from the initial position (ǫ, aI). By Lemma 3.2,∀
has a winning strategy in the gameG(A,T) from the initial position iff ∃ has a winning
strategy in the dual gameG(A,T) from the initial position. It thus remains to show that
(∗) ∃ has a winning strategy in the gameG(A,T) from the initial position iff she has a
winning strategy in the gameG(A,T) from the initial position.

For the left-to-right direction of (∗) suppose∃ has a winning strategy in the game
G(A,T) from the initial position (ǫ, aI), we derive a strategy for her in the gameG(A,T)
from the initial position (ǫ, aI) with the following property. Every play inG(A,T) from
the initial position consistent with the derived strategy is over the same basic positions
as a play inG(A,T) consistent with∃’s winning strategy.

Initially, the plays ofG(A,T) andG(A,T) are in the same basic position. Letπ
be an finite partial play inG(A,T) from the initial position consistent with the derived
strategy and let (p, a) be the last basic position. By the induction hypothesis there is
a partial playπ′ of G(A,T) consistent with∃’s winning strategy over the same basic
positions asπ. For every setΦ that∀ could choose at position (p, a) in G(A,T), ∃ has
a winning choice for an elementfΦ ∈ Φ. The setΦ′ = { fΦ | Φ ∈ δ(a,T(p))} of all her
winning choices is an element ofδ(a,T(p)) by construction. Let∃ indeed chooseΦ′

and let�da′ be∀’s choice fromΦ′. Then he should choose the directiond or looses
otherwise. The next basic position in the play ofG(A,T) would then be (pd, a′).

The pair�da′ chosen by∀ is a winning choicefΦ of ∃ for someΦ ∈ δ(a,T(p))
which∀ could have chosen at position (p, a) in the gameG(A,T). At position (p,�da′),
∃ is bound to choose the directiond or looses otherwise. We assume the choice ford is
part of her winning strategy. In the play ofG(A,T), (pd, a′) would thus be a next basic
position consistent with∃’s winning strategy.

16

(p, a) ∀ // (p,Φ) ∃ // (p,�da′)
(∃)

// (pd, a′)

(p, a) ∃ // (p,Φ′) ∀ // (p,�da′)
(∀)

// (pd, a′)

Figure 3.2: A round ofG(A,T) andG(A,T)

We have established that every playπ ofG(A,T) from the initial position consistent
with the derived strategy is over the same basic positions asa playπ′ of G(A,T) con-
sistent with∃’s winning strategy. Because∃ winsπ′, it satisfies that the largest priority
of an automaton state occurring infinitely often is even. So does the playπ which is
then won by∃. The derived strategy is thus winning.

For the right-to-left direction of (∗), suppose∃ has a winning strategy in the game
G(A,T) from the initial position, we derive a winning strategy forher in the game
G(A,T) from the initial position, such that every play inG(A,T) consistent with the
derived strategy is over the same basic position as a play in the gameG(A,T) consistent
with her winning strategy.

Initially all plays in G(A,T) andG(A,T) are in the same basic position. Letπ′

be a finite partial play ofG(A,T) from the initial position consistent with the derived
strategy and let (p, a) be the last position ofπ′. By the induction hypothesis there is
a partial playπ of G(A,T) consistent with∃’s winning strategy over the same basic
positions asπ′. LetΦ′ be the set which∃ chooses at position (p, a) in π consistently
with her winning strategy. Suppose at position (p, a) of the play ofG(A,T), ∀ chooses
the setΦ ∈ δ(a,T(p)). By construction ofA, Φ properly intersects withΦ′. Let ∃
choose any element�da′ fromΦ∩Φ′. ∃ should choose the directiond, so that the next
basic position is (pd, a′).

Because�da′ is an element ofΦ′ as well,∀ could choose�da′ in G(A,T). For the
direction he should choosed or looses otherwise. In the play ofG(A,T), (pd, a′) is
thus a possible next basic position consistent with∃’s winning strategy.

We have established that for every playπ′ of G(A,T) from the initial position con-
sistent with the derived strategy, there is a playπ ofG(A,T) consistent with∃’s winning
strategy which is over the same basic positions.π satisfies that the largest priority of
an automaton state occurring infinitely often is even. So doesπ′, so that∃ winsπ′. We
have proven the derived strategy winning for∃. �

In A, a∃ has transitionsδ(a∃, c) = {{(a∃, a∃)}} for every letterc ∈ Σ and an odd
priority Ω(a∃). Whence we calla∃, a∀ in the complementation ofA. Similarly to a∃,
once entering the statea∀, the automaton remains in that state. Because the priority
Ω(a∀) is odd,∃ looses every play froma∀ and has thus to avoida∀.

17

For alternating automata, complementation preserves (almost) the size and index
of an automaton.

Remark 3.8. The complementA ofA is at most of size|A|+1 and of index|ranOmega+
1|.

For the use in subsequent chapters we mention two observations on the comple-
mentation of non-deterministic and co-non-deterministicautomata.

Proposition 3.9. The complementation of a non-deterministic binary tree automaton
in direction normal form is co-non-deterministic.

Proof. Recall that we can see non-deterministic automata as alternating automata with
a transition function whose range consists of singletons, only. Let A = 〈A,Σ, δ :
A× Σ → PP(A× A), aI ,Ω〉 be a non-deterministic binary tree automaton in direction
normal form. The range of the transition functionδ consists of singletons{�da}, only.
For every automaton statea ∈ A and letterc ∈ Σ, there is a unique choice of an element
from each setΦ ∈ δ(a, c), so thatδ(a, c) consists of one element which is the empty set
if δ(a, c) is empty. Hence the complementationA is co-non-deterministic. �

Proposition 3.10.The complementation of a co-non-deterministic binary treeautoma-
ton is non-deterministic.

Proof. LetA = 〈A,Σ, δ : A× Σ→ PP(A× A), aI ,Ω〉 be a co-non-deterministic binary
tree automaton. Replacing each pair (a0, a1) in every set in the range ofδ by the pairs
�0a0 and�1a1, yields an equivalent co-non-deterministic binary tree automaton, so that
we may without loss of generality assume thatA is in direction normal-form. Then for
every statea ∈ A and letterc ∈ Σ, δ(a, c) is a singleton{Φ} or empty. Every choice
function picks precisely one element fromΦ. In the complementary automatonA,
δ(a, c) thus consists of singletons, only. IfΦ is empty, then there is no such choice
function, so thatδ(a, c) is empty. The automatonA is thus non-deterministic. �

18

Chapter 4

Non-Determinising Alternating
Binary Tree Automata

Universal choice in the acceptance game of an alternating binary tree automaton com-
plicates the definition of operations, such as existential projection which we will intro-
duce in the next chapter, or decision procedures, such as forthe non-emptiness problem
of binary tree automata which we will discuss in Chapter 7. Inthis chapter we will see
that alternating binary tree automata and non-deterministic ones are equally expressive.

Theorem 4.1. For every alternating binary tree automaton there is an equivalent non-
deterministic automaton.

We show how to compute a non-deterministic automatonB from an alternating
binary tree automaton

A = 〈A,Σ, δ : A× Σ→ PP(A× A), aI ,Ω〉

such thatA andB are equivalent. We refer to the procedure asnon-determinisation.

4.1 Towards Relational Macrostates

At a basic position (p, a) in the acceptance gameG(A,T) for a binary treeT, ∃ is to
choose a setΦ of automaton states, from which∀ is to choose a particular pair of states.
In the acceptance game for a non-deterministic binary tree automaton,∃ is to choose a
pair of states.

The main idea of non-determinisation is to group all of∀’s possible choices for
pairs of automaton states fromΦ into a pair of sets of automaton states, theB-redistribution
of Φ.

19

Definition 4.2 (B-redistribution). TheB-redistribution of a setΦ ∈ P(A× A) of pairs
of automaton states is the pair(π0[Φ], π1[Φ]) ∈ P(A) × P(A) of sets of automaton
states.1

Let (π0[Φ], π1[Φ]) be theB-redistribution ofΦ. The directiond chosen by∀ deter-
mines a whole set of successor states, videlicetX := πd[Φ]. Each state inX is ad in a
pair (a0, a1) of states inΦ, and is thus an admissible next state ofA in the acceptance
gameG(A,T).

In the next round of the game,∃ has to choose for every statea′ ∈ X from
δ(a′,T(pd)) a setΦa′ with theB-redistribution (π0[Φa′], π1[Φa′]). The choice of the
B-redistribution for every statea′ is coded into binaryA-relationsR0 andR1 such that
Rd[a′] := πdΦa′ for both directionsd ∈ 2. The set of all binaryA-relations is denoted
by Rel(A).

If for some statea′ ∈ X, δ(a′,T(pd)) is empty, then there is noΦa′ ∈ δ(a′,T(pd)), so
thatR0 andR1 are not defined. Ifδ(a′,T(pd)) is empty, then∃ can not move at the basic
position (pd, a′). If insteadδ(a′,T(pd)) := {{(a∀, a∀)}}, then∃ looses the continuing
infinite play from position (pd, a). So defineδ(a, c) := {{(a∀, a∀)}} wheneverδ(a, c) is
empty for a statea ∈ A and a letterc ∈ Σ. In the following we assumeδ(a, c) to be
non-empty for all statesa ∈ A and lettersc ∈ Σ.

A strategy of∃ in the gameG(A,T) from the initial position determines for each
infinite pathp ∈ 2ω, a sequenceρ ∈ (Rel(A))ω of binary A-relations. The sequence
of automaton states occurring in a play consistent with∃’s strategy constitutes a trace
throughρ.

Definition 4.3 (Traces through Sequences of Relations). A trace through a sequence
ρ ∈ (Rel(A))⋆ of binary relations over A is a sequenceτ ∈ A⋆ of automaton states from
A such that for each i< |τ| − 1, (τ(i), τ(i + 1)) ∈ ρ(i). We call a traceτ throughρ full if
|τ| = |ρ| + 1.

Given a priority functionΩ : A→ ω, a traceτ through an infinite Rel(A)-sequence
ρ is bad with respect toΩ if τ is infinite and the largest priorityΩ(a) of an automaton
state a occurring infinitely often inτ is odd.

Bad traces satisfy that the largest priority of a state occurring infinitely often is
odd. By intuition bad traces thus correspond to infinite plays won by∀. Finite traces
correspond to finite plays. By the assumption, thatδ(a, c) is non-empty for alla ∈ A
andc ∈ Σ, ∃ is able to move at every basic position, so that∀ looses all finite plays.
Intuitively, that is why finite traces are not bad.

The languageNBTΩ of infinite Rel(A)-words withno bad traces with respect toΩ
beginning ataI is in fact regular, that isNBTΩ is recognisable by a deterministic word
automaton which we are going to define next.

1We writeπd[Φ] for the elementwise projection{ad | (a0,a1) ∈ Φ} of Φ to d.

20

4.2 Bad Traces through Sequences of Relations

In a first step we define a non-deterministic word automatonMwhich accepts precisely
the infiniteRel(A)-words which contain a bad trace with respect toΩ. Intuitively,M
non-deterministically “guesses” a bad trace through aRel(A)-word.

Definition 4.4. Formally, define

M := 〈A,Rel(A), λ : A× Rel(A)→ P(A), aI ,Ω〉

with transitions
a′ ∈ λ(a,R) iff (a, a′) ∈ R for any R⊆ A× A

and priorities
Ω(a) := Ω(a) + 1 for all a ∈ A.

Property 4.5. M accepts an infinite Rel(A)-word ρ ∈ (Rel(A)ω iff it contains a bad
trace with respect toΩ which begins with aI .

Proof. In the following fix an infiniteRel(A)-wordρ.
For the left-to-right implication, we need to prove that anyaccepting runπ of M

on ρ is a bad trace throughρ beginning withaI . Every run ofM on ρ begins with
aI . Moreover, becauseM is non-deterministic,π must be infinite. In order to prove
π a trace throughρ, it thus remains to show that for alli ∈ ω, (π(i), π(i + 1)) ∈ ρ(i)
which follows immediately fromπ(i + 1) ∈ δ(π(i), ρ(i)) by construction ofδ. We have
established thatπ is a trace throughρ. Becauseπ is an accepting run, the largest priority
Ω(a) of an automaton statea occurring infinitely often inπ is even. Among the states
occurring infinitely often,a has also the largest priorityΩ(a) which is odd, so thatπ is
indeed a bad trace.

For the right-to-left implication, we show that every bad traceτ throughρ beginning
with aI is an accepting run ofM on ρ. Becauseτ is a bad trace,τ is infinite. In order
to proveπ a run ofM onρ, it remains to show that for alli ∈ ω, τ(i + 1) ∈ δ(τ(i), ρ(i))
which is immediate because (τ(i), τ(i + 1)) ∈ ρ(i) by definition of traces. Becauseτ is
bad, it satisfies that the largest priorityΩ(a) of an automaton statea occurring infinitely
often is odd. The statea has also the largest priorityΩ(a) among the states occurring
infinitely often inτ. Ω(a) is even, so thatτ is an accepting run. �

In [Saf88] Safra presented a procedure to compute from an equivalent deterministic
word automatonN from a non-deterministic word automatonM, that is to determinise
M. Let

N = 〈N,Rel(A), λ′ : N × Rel(A)→ N, nI ,Ω
′〉

be a deterministic word automaton accepting precisely the infinite Rel(A)-words ac-
cepted byM. The following is immediate.

21

Property 4.6. N accepts an infinite Rel(A)-word U iff U contains a bad trace with
respect toΩ beginning with aI .

We are looking for a deterministic word automaton acceptingprecisely the infinite
Rel(A)-words which do not contain a bad trace with respect toΩ which begins withaI ,
that is the complement of the language ofN. BecauseN is deterministic, complement-
ingN amounts to complementing the acceptance condition. Formally, define

N := 〈N,Rel(A), λ′ : N × Σ→ P(N), nI ,Ω
′)〉.

such that for every staten ∈ N, Ω′(n) = Ω′(n) + 1.

Property 4.7. N accepts an infinite Rel(A)-word U iff U does not contain a bad trace
with respect toΩ which begins with aI .

Proof. BecauseN andN have the same state set, the same initial state, and the same
transition function, every run ofN is a run ofN and vice versa. BecauseN is deter-
ministic, for everyRel(A)-wordρ there is a unique runπ of N onρ which is accepting
for N iff π is a rejecting run ofN onρ. HenceN accepts the complement ofL(N) and
thus also the complement ofL(M). BecauseM accepts precisely the infiniteRel(A)-
words containing a bad trace which begins withaI , N accepts precisely the infinite
Rel(A)-words not containing a bad trace which begins withaI . �

4.3 Finding Sequences of Relations without Bad Traces

BecauseA is alternating,∃ has in general multiple choices forΦ in every basic position
of the acceptance gameG(A,T). Each possible choice forΦ corresponds to a possible
choice for the pair (R0,R1) of relations. UsingA andN we define a non-deterministic
binary tree automatonB which “guesses” the relationsR0 andR1.

Definition 4.8. Define the non-deterministic binary tree automaton

B := 〈N,Σ, δ′ : N × Σ→ P(N × N), nI ,Ω
′〉

with transitions
(n0, n1) ∈ δ

′(n, c)

iff

• there are binary relations R0 and R1 such that for each a∈ A, (R0[a],R1[a]) is
theB-redistribution for someΦ ∈ δ(a, c)

• andλ′(n,R0) = n0 andλ′(n,R1) = n1

The transition functionλ uniquely maps relationsR0 andR1 to successor statesn0

andn1, respectively. For every choice of a pair (n0, n1) of states fromδ′(n, c) there is
thus a supporting choice of relations (R0,R1) such thatnd = λ(n,Rd). Below we will
thus speak of a choice of relations, when referring to a choice of successor states.

Proposition 4.9. A andB are equivalent.

22

Proof. We show that (∗) A accepts a binaryP(V)-labelled treeT iff B acceptsT.
For the left-to-right implication, supposeA accepts a binaryP(V)-labelled treeT,

so that∃ has a winning strategy in the gameG(A,T) from the initial position (ǫ, aI).
We derive a winning strategy for her in the gameG(B,T) from the initial position
(ǫ, nI). Along a play ofG(B,T), ∃ chooses binaryA-relations which determine the
automaton states as given in the definition 4.8 above. Letρ be the sequence ofA-
relations chosen by∃ in a play ofG(B,T) from the initial position consistently with
the derived strategy. We show that every trace throughρ beginning withaI is the
sequence of automaton states in the basic positions of a playin G(A,T) from the initial
position played consistently with∃’s winning strategy.

Let π′ be a finite partial play ofG(B,T) from the initial position and the last ba-
sic position ofπ′ be (p, n). Let furthermoreρ be the sequence of relations which∃
chose along the playπ′. By the induction hypothesis, any full trace throughρ with
the last statea corresponds to a play ofG(A,T) from the initial position with the last
basic position (p, a). LetΦa be the set which∃ chooses at position (p, a) in G(A,T)
consistently with her winning strategy. BecauseG(A,T) is historyfree determined,
Φa is well-defined. At position (p, n) let ∃ choose relationsR0 andR1 with the fol-
lowing properties. For every statea terminal in a full trace throughρ, Rd[a] is the
B-redistribution ofΦa which∃ would choose at position (p, a) in G(A,T) consistently
with her winning strategy. For all other statesb, Rd[b] be theB-redistribution of some
setΦ ∈ δ(b,T(p)). The relationsR0 andR1 then uniquely determine the next automaton
statesn0 andn1, respectively.

Let d be the direction which∀ chooses, then the next basic position inG(B,T) is
(pd, nd). By definition ofB-redistributions, every automaton statea′ in Rd[a] is the
statead in a pair (a0, a1) from Φa, so that (pd, a′) is an admissible next position in
G(A,T) consistent with∃’s winning strategy.

The largest priority of an automaton state occurring infinitely often in a play in
G(A,T) from the initial position consistent with∃’s winning strategy is even, so that
every trace throughρ beginning withaI is not bad and thusρ is accepted byN in a
unique runπ such thatπ(i + 1) = λ(π(i), ρ(i)), for all i ∈ ω. Moreover the automaton
states inπ and the playπ′ of G(B,T) coincide by definition 4.8, so that∃ wins the play
π′.

For the right-to-left direction of (∗) suppose thatB accepts a binaryP(V)-labelled
treeT, so that∃ has a winning strategy in the gameG(B,T) from the initial postion
(ǫ, nI). We derive a strategy for her inG(A,T), such that every play consistent with the
derived strategy corresponds to a trace through the relations chosen by∃ in G(B,T)
consistently with her winning strategy.

Let π be a finite partial play ofG(A,T) from the initial position consistent with
the derived strategy and let (p, a) be the last basic position ofπ. By the induction
hypothesis,a is the last state in a traceτ through the sequenceρ of A-relations chosen
by ∃ in a finite partial playπ′ of G(B,T) from the initial position consistent with her
winning strategy. Let the basic position (p, n) be the last position inπ′. At position
(p, n), ∃ chooses relationsR0 andR1 which determine the next automaton statesn0 and
n1. By definition ofδ, for eacha ∈ A, (R0[a],R1[a]) is theB-redistribution of someΦ
in δ(a,T(p)). Thus at position (p, a),∃ can and should choose suchΦ. ∀ chooses a pair
(a0, a1) from Φ and a directiond. The next basic position inG(A,T) is then (pd, ad).

23

A M

B N N

//

D

��oooo

ND

��

Figure 4.1: Reduction of the Non-Determinisation (ND) of Alternating Binary Tree
Automata to the Determinisation (D) of Word Automata

Becausead ∈ πdΦ, it is (a, ad) ∈ Rd. So thatτad, that isτ with ad appended, is a trace
throughρRd, that isρ with Rd appended.

Hence every playπ in G(A,T) consistent with∃’s winning strategy is over the
automaton states of a trace through the relations chosen inG(B,T) consistent with∃’s
winning strategy. Every such trace satisfies that the largest priority of an automaton
state occurring infinitely often is even, so that∃ wins the corresponding playπ. �

If A is co-non-deterministic, the non-determinisation ofA is deterministic.

Proposition 4.10(Non-Determinisation of Co-Non-Deterministic Automata). The non-
determinisationB of a co-non-deterministic automatonA is deterministic.

Proof. BecauseA is co-non-deterministic,δ(a, c) is a singleton for alla ∈ A andc ∈ Σ.
By the definition of the non-determinisation, there is precisely one pair (R0,R1) in
δ′(R, c), so thatB is deterministic. �

4.4 Complexity

Summarising the construction of non-determinisation in this chapter, we have reduced
the non-determinisation of alternating binary tree automata to the determinisation of
non-deterministic word automata as schematised in Figure 4.1. In the following we will
recollect the details of the reduction, and moreover prove the converse, namely that the
determinisation of non-deterministic word automata reduces to the non-determinisation
of alternating binary tree automata. We obtain that the non-determinisation of alternat-
ing binary tree automata is as complex as the determinisation of non-deterministic word
automata.

In a first step we obtained fromA, a non-deterministic word automatonM which
accepts an infiniteRel(A)-wordρ iff ρ contains a bad trace with respect toΩ beginning
with aI . M has the same size and index asA. DeterminisingM yielded an equivalent
deterministic word automatonN. ComplementingN we obtained the deterministic
automatonN of the same size and index asN. N accepts precisely the infiniteRel(A)-
words without bad traces with respect toΩ beginning withaI . Finally we constructed
the non-deterministic binary tree automatonB equivalent toA. B is of the same size
and index asN. HenceA has the same size and index asM, andB has the same size and

24

index asN. We have established that the non-determinisation of binary tree automata
is at most as hard as the determinisation of word automata.

In the remainder of this chapter we give a reduction of the determinisation of
non-deterministic word automata to the non-determinisation of binary tree automata
as shown in Figure 4.2. Essentially, determinising a word automaton eliminates∃’s
choice in the static stage of the acceptance game, whereas non-determinising a binary
tree automaton eliminates∀’s choice in the static stage. We will use the idea from
Chapter 3 that complementing an alternating binary tree automaton effectively swaps
the roles of∃ and∀.

From a given non-deterministic word automatonM we derive a non-deterministic
binary tree automatonA which accepts precisely the binary treesTU whose leftmost
path is labelled in order with letters from aΣ-word U which is accepted byM. Es-
sential to the construction is that, for each automaton state ofM and letter fromΣ, we
fix a direction, so that we obtain the non-deterministic binary tree automaton in direc-
tion normal form. BecauseA is non-deterministic and in direction normal form, com-
plementation yields a co-non-deterministic automatonA by Proposition 3.10. Non-
determinising the co-non-deterministic binary tree automatonA yields a deterministic
automatonB by Proposition 4.10. FromB we derive a deterministic word automaton
N which rejects precisely the infiniteΣ-wordsU for whichB rejects the leftU-treeTU .
Finally we show that the automatonN complementary to the automatonN is equivalent
toM.

For the rest of this section, let

M = 〈M,Σ, λ : M × Σ→ P(M),mI ,Ω〉

be a non-deterministic word automaton. ToM we add the special statesm∃ andm∀
with

• transitionsλ(m∃, c) = {m∃} andλ(m∀, c) = {m∀} for all lettersc ∈ Σ

• and prioritiesΩ(m∃) = 0 andΩ(m∀) = 1.

Once entering the statem∃,M remains in the statem∃ which is then the only state
occurring infinitely often in a playπ of an acceptance gameG(M,U). Because the
priority of m∃ is even,∃ wins every such playπ. Hence∀ should avoidm∃. Similarly,
onceM has entered the statem∀, M remains inm∀ which is then the only automaton
state occurring infinitely often. Becausem∀ has an odd priority,∀ wins every play with
the statem∀, so that∃ should avoidm∀.
M recognises infinite words overΣ. For an infiniteΣ-wordU we define leftU-trees

as follows.

Definition 4.11 (Left U-Tree). Given an infiniteΣ-word U ∈ Σω, a left U-tree TU is
a binaryΣ-labelled tree, whose leftmost path is labelled with U, thatis for all p ∈ 0∗,
TU(p) = U(|p|).

FromM we construct an alternating binary tree automatonA accepting every left
U-tree for every wordU accepted byM. Define

A := 〈M,Σ, δ : M × Σ→ PP(M × M),mI ,Ω〉

25

M A A

N N B

// //

ND

��oooo

D

��

Figure 4.2: Reduction of the Determinisation (D) of Non-Deterministic Word Au-
tomata to the Non-Determinisation (ND) of Alternating Binary Tree Automata

with transitionsδ(m, c) := {(m,m∃)} | m′ ∈ λ(m, c)}, for all m ∈ M andc ∈ Σ.
Note that∀’s choice for direction is predetermined in each round, because he should

avoid the automaton statem∃. For convenience we keep the notation�0m for the pair
(m,m∃) as introduced in Chapter 3.

Claim 4.12. M accepts an infiniteΣ-word U iff A accepts any left U-tree TU .

Proof. SupposeM accepts an infiniteΣ-wordU, then there is an accepting runπ ∈ Mω

of M on U. The runπ yields a winning strategy for∃ in the gameG(A,TU) from
the initial position (ǫ,mI), such that there is only one play which is over the same
automaton states asπ. Initially the play inG(A,T) is at position (ǫ,mI) and mI is
the initial state ofπ. Let the play consistent with the derived strategy be at the basic
position (p,m) such thatπ(|p|) = m. The successorπ(|p| + 1) of π(|p|), is an element
of λ(m,U(p)). Then there is a pair�0m in δ(m,TU(p)), which∃ should choose at the
basic position (p,m) of the gameG(A,TU). ∀ is then bound to choose the direction
d = 0, so that the next basic position is (p0, π(|p0|). Becauseπ is accepting, the largest
priority of an automaton state occurring infinitely often inπ is even. Hence∃ wins the
play consistent with the derived strategy.

For the right-to-left direction, suppose∃ has a winning strategy in the gameG(A,TU)
from the initial position (ǫ,mI). Then there is only one play consistent with her winning
strategy, becauseA is direction normal form, and this play is infinite. We show that
the automaton states in the play form an accepting run ofM onU. Initially, every play
in G(A,TU) is at position (ǫ,mI) andmI is the initial state of any run ofM on U. Let
�0m′ be the pair which∃ chooses at a basic position (p,m) for which π(|p| − 1) = m.
∀ is bound to choose the direction 0, so that the next basic position is (p0,m′). The
successor statem′ is then an element ofλ(m,U(|p|)) by definition ofδ, and hence an ad-
missible continuation ofπ||p|. Moreoverπ is accepting because the play consistent with
∃’s winning strategy satisfies that the largest priority of anautomaton state occurring
infinitely often is even. �

BecauseA is non-deterministic and in direction normal form, the complement

A = 〈M,Σ, δ : A× Σ→ PP(M × M),mI ,Ω〉

is co-non-deterministic as in Proposition 3.9. For allm ∈ M andc ∈ Σ, δ(m, c) is thus
a singleton or empty. In the latter case, if there arem andc such thatδ(m, c) is empty,

26

∃ can not move at the basic position (p,m) of an acceptance gameG(A,T) if T(p) = c.
Then defineδ(m, c) := {{(m∀,m∀)}}, so that∃ looses the continuing infinite play from
(p,m). We may thus assume without loss of generality thatδ(m, c) is a singleton for all
m ∈ M andc ∈ Σ.

By Proposition 4.10, non-determinisingA then yields a deterministic binary tree
automaton

B = 〈B,Σ, δ′ : B× Σ→ P(B× B), bI ,Ω
′〉,

which rejects precisely the leftU-trees. FromB we can easily obtain a deterministic
word automaton.

N = 〈B,Σ, λ′ : N × Σ→ N, bI ,Ω
′〉

such that
λ′(b, c) = b′ if π0(δ′(b, c)) = {b′}.

ThenN rejects the infiniteΣ-words for whichB rejects all leftU-trees. Note thatB and
N are of the same size and index.

Claim 4.13. N rejects a word U iff B rejects all left U-trees.

Proof. For the left-to-right implication suppose thatN rejects an infiniteΣ-word U.
BecauseN is deterministic, there is a unique runπ of N on U which is rejecting. We
show inductively that if∀ steadily chooses the left direction in a play ofG(B,T) from
the initial position, then the play consists of the states from the run ofN onU. Initially,
the play is at position (ǫ, bI), the initial state of the run isbI . Let the play be in position
(p, b). By the induction hypothesis, the run is in stateb at index|p|, that isπ(|p|) = b.
By definition of left U-trees,TU(p) = U(|p|). Becauseλ′(b,U(|p|)) = π(|p| + 1), by
construction ofN, it is δ′(b,TU(|p|) = {(π(|p| + 1), b1)}, so that∃ is bound to choose
the pair ((π(|p| + 1), b1) of states. Let∀ choose the left direction, then the next basic
position is (p0, π(|p| + 1). We have established, that the play inG(B,TU) contains the
states of the runπ. Becauseπ is rejecting, the largest priority of an automaton state
occurring infinitely often in the play is odd, so that∀ wins the play ofG(B,TU) from
the initial position andB rejectsTU .

For the right-to-left implication, we need an additional property of the automaton
B. Therefor we firstly digress on the complementation and non-determinisation as we
have introduced in the previous and the current chapter.

By construction,A is non-deterministic and in direction normal form, so that for
eacha ∈ A and c ∈ Σ, δ(a, c) consists of singletons{�0a′}. ThenA is co-non-
deterministic such that for eacha ∈ A andc ∈ Σ, δ(a, c) = {{�0a′ | {�0a′} ∈ δ(a, c)}}.
The right side of theB-redistribution (π0{�0a′} ∈ δ(a, c)}, π1{�0a′} ∈ δ(a, c)}) is then
the singleton{a∃}. Moreoverδ(a∃, c) contains for anyc ∈ Σ, only the singleton
{(a∃, a∃)} whoseB-redistribution is ({a∃}, {a∃}). Thus any trace through the relations
chosen by∃ in the acceptanceG(B,T) for any binary treeT on a path with is not
strictly leftmost is infinite and containsa∃ as the only automaton state occurring in-
finitely often. Any such trace can thus not be bad. Along any play ofG(B,T) from the
initial position, where∀ does not strictly choose the left direction,∃ chooses relations
which do not have bad traces.∀ will thus loose every such play. Hence we can and will
assume that∀ prefers to choose the left direction.

27

SupposeB rejects a leftU-treeTU , so that∀ has a winning strategy in the accep-
tance gameG(B,TU) from the initial position (ǫ, bI). By the previous argument we can
assume∀ to choose the left direction throughout the play. Because furthermoreB is
deterministic, the strategy is trivial, so that there is precisely a playπ from the initial
position winning for∀. We show inductively that the basic positionsπ contain automa-
ton states ofN which in order constitute a run ofN on U. For the base case, initially
the run ofN is in statebI , the initial position ofG(B,TU) is (ǫ, bI). Suppose we are at
position (p, b) in the playπ, whereδ′(b,TU(p)) = (b0, b1). By the previous argument
∀ chooses the left direction 0, so that the next position is (p0, b0). By the induction
hypothesis, the run ofN on U is in stateb at index|p|. By definition of leftU-trees,
U(|p|) = TU(p). By construction ofN, λ′(b,U(p)) = b0, so that the next state in the
run ofN onU is b0.

BecauseB is deterministic,π is infinite. Because furthermoreπ is winning for
∀, the largest priorityΩ′(b) of an automaton stateb occurring infinitely often inπ is
odd. Thus the largest priority of an automaton state occurring infinitely often in the
corresponding run ofN on U, is odd as well. The run is thus rejecting. BecauseN is
deterministic, there is only one run ofN onU, so thatN rejectsU. �

ComplementingN yields the deterministic word automatonNwhich accepts a word
U iff N rejectsU. ThusN accepts precisely the wordsU for whichB and thus alsoA
reject all leftU-trees which is iff A accept a leftU-tree which is iffM acceptsU. Hence
N andM are equivalent.

Theorem 4.14. The non-determinisation of alternating automata has a complexity
constant in order of the complexity of the determinisation of non-deterministic word
automata.

In [Pit06] Piterman shows an upper bound for complexity of the determinisation of
non-deterministic word automata with Streett acceptance condition.

Recall that a non-deterministic word automaton

M = 〈M,Σ, λ : M × Σ→ P(M),mI ,Ω〉

with parity acceptance condition accepts an infiniteΣ-word U iff there is an accepting
run π of M on U. Such a runπ is a sequence of automaton states, such thatπ is
accepting if the largest priority of an automaton state occurring infinitely often inπ is
even. Thus the priority functionΩ distinguishes the set of accepting runs within the set
of all M-sequences.

The set of accepting runs can also be described aStreett acceptance condition,
which consists of a setAcc⊆ P(M)×P(M) of pairs (E, F) of sets of automaton states,
theStreett acceptance set. A run is accepting with respect to the Streett acceptance
condition if for every pair (E, F) in Accand for every automaton statem ∈ E occurring
infinitely often, there is a statem′ ∈ F occurring infinitely often.

From a parity acceptance condition we can derive an equivalent Streett acceptance
condition.

Proposition 4.15. For every priority functionΩ there is a Streett acceptance set Acc
such that a runπ ∈ M⋆ is accepting with respect to the parity acceptance condition iff

28

π is accepting with respect to the Streett condition. Moreover Acc has the same size as
the domain dom(Ω) ofΩ.

Proof. Let M = 〈M,Σ, λ,mI ,Ω〉 be a non-deterministic parity word automaton with
priority functionΩ : M → ω, we define a Streett acceptance setAcc such that for
every automaton statem ∈ M with odd priorityΩ(m), there is a pair ({m}, {m′ | Ω(m) <
Ω(m′) andΩ(m′) even}) in Acc.

Let π be a run ofM on some infiniteΣ-word accepting with respect to the parity
acceptance condition. The largest priority of an automatonstatem occurring infinitely
often inπ is thus even, that is for every state with odd priority which occurs infinitely
often, there is a state of larger and even priority which occurs infinitely often. Thus for
every pair (E, F) ∈ Accwith E = {m}, wheneverm with odd priority occurs infinitely
often, so does a statem′ ∈ F with even priority. Henceπ is accepting with respect to
the Streett acceptance condition as well.

Conversely, ifπ is accepting with respect to the Streett acceptance condition, then
for every pair (E, F) ∈ Acc with E = {m}, wheneverm occurs infinitely often inπ,
so does a state inF. Because for every statem with odd priority, there is such a pair
(E, F) ∈ Acc, whenever a state with odd priority occurs infinitely often,so does a state
with larger and even priority. Henceπ is accepting with respect to the parity acceptance
condition as well. �

Let M′ be a non-deterministic word automaton of sizen and with Streett accep-
tance condition with an acceptance setAccof cardinalityk. Nir Piterman showed that
there is an equivalent deterministic word automaton with parity acceptance condition
which has sizenn(k+2)+2(k+ 1)2n(k+1) and index 2n(k+ 1). Together with the result from
Proposition 4.15, we obtain the following corollary.

Corollary 4.16 (An Upper Bound for the Complexity of the Determinisation ofNon-De-
terministic Parity Word Automata). For every non-deterministic parity word automa-
ton of size n and index k there is an equivalent parity word automaton of size nn(k+2)+2(k+
1)2n(k+1) and index2n(k+ 1).

Using Theorem 4.14 we obtain from the above corollary an upper bound for the
complexity of the non-determinisation of alternating binary tree parity automata.

Corollary 4.17 (An Upper Bound for the Complexity of the Non-Determinisation of
Alternating Binary Tree Parity Automata). For every alternating binary tree automa-
ton of size n and index k there is an equivalent binary tree parity automaton of size
nn(k+2)+2(k+ 1)2n(k+1) + 2 and index2n(k+ 1)+ 2.

29

Chapter 5

Formulas of S2S and
Alternating Binary Tree
Automata

In this chapter we explicate the connection between formulas of S2Sand alternating
binary tree automata, which establishes the reduction of the satisfiability problem for
S2Sto the non-emptiness problem for alternating binary tree automata. The connection
is manifested in the following central theorem.

Theorem 5.1. For every formulaφ of S2S there is an alternating automatonA accept-
ing precisely the full binaryP(FV(φ))-labelled trees satisfyingφ.

Let φ be a formula ofS2S. By structural induction onφ we construct for any setV
of variables containing the free variables ofφ, an alternating binary tree automatonAV

φ

accepting precisely the binaryP(V)-labelled trees satisfyingφ.
In particular in Section 5.3, we will make use of the complementation of alternat-

ing binary tree automata which we introduced in Chapter 3. Therefor we want each
automatonAV

φ
to have the special statesa∃ anda∀ as introduced in Chapter 3.

For the base cases, we define in Sections 5.1 and 5.2 automataAV
X⊆Y andAV

Sucd(X,Y)
accepting the binary trees satisfyingX ⊆ Y andSucd(X,Y), respectively. Given au-
tomataAV

φ
andAV

ψ
accepting the binary trees satisfying formulasφ or ψ, respectively,

we define automataAV
¬φ

,AV
φ∨ψ

, andAV
∃X.φ accepting binaryP(V)-labelled trees satisfy-

ing formulas¬φ, φ ∨ ψ, or∃X.φ, respectively, in Sections 5.3, 5.4, and 5.5.

5.1 The AtomX ⊆ Y

Let X andY be variables. For any setV of variables containingX andY, we define an
automatonAV

X⊆Y accepting the binaryP(V)-labelled treesT satisfyingX ⊆ Y. Such a
binary treeT satisfiesX ⊆ Y iff it is the representationT of a valuationv satisfying

30

X ⊆ Y. By definition of the semantics ofS2S, v satisfiesX ⊆ Y iff v(X) ⊆ v(Y), which
is iff all nodesp ∈ 2∗ satisfyY ∈ T(p) wheneverX ∈ T(p).

Definition 5.2. Define the alternating binary tree automaton

AV
X⊆Y := 〈A,P(V), δ : A× P(V)→ PP(A× A), a,Ω〉

with states
A := {a, a∃, a∀},

and transitions

δ(a,Z) :=

{

{{(a, a)}} if X < Z or Y ∈ Z
∅ otherwise

δ(a∃,Z) := {{(a∃, a∃)}}

δ(a∀,Z) := {{(a∀, a∀)}}

for all sets Z⊆ V, and priorities

Ω(a) := 0 andΩ(a∃) := 0 andΩ(a∀) := 1.

The automatonAV
X⊆Y has size 3 and index 2.

Intuitively, in a play of the acceptance gameG(AV
X⊆Y,T), AV

X⊆Y remains in statea.
For any nodep whereX ∈ T(p) andY < T(p), δ(a,T(p)) is empty, so that∃ can not
move at position (p, a). If otherwiseX < T(p) or Y ∈ T(p), thenδ(a,T(p)) contains
precisely the singleton{(a, a)}, so that for both directions the automaton remains in the
statea.

Claim 5.3. For any set V containing X and Y,AV
X⊆Y accepts a binaryP(V)-labelled

tree T iff T satisfies X⊆ Y.

Proof. In the following fix a binaryP(V)-labelled treeT.
For the right-to-left implication, supposeT satisfiesX ⊆ Y, that is for all nodes

p ∈ 2∗, Y ∈ T(p) wheneverX ∈ T(p). We show that every play of the acceptance
gameG(AV

X⊆Y,T) from the initial position is infinite and over basic positions with the
automaton statea, only. Because the priority ofa is even, every such play would be
won by∃, so thatAV

X⊆Y would acceptT.
In any basic position (p, a), and thus also in the initial position (ǫ, a), δ(a,T(p)) is

the singleton{{(a, a)}}. At position (p, a), ∃ can only choose the set{(a, a)} from which
∀ can only choose the pair (a, a). Given∀’s choiced for the direction, the next basic
position is (pd, a) where the argument recurs.

For the left-to-right implication, we prove the contrapositive. Suppose that there
is a nodep ∈ 2∗, whereX ∈ T(p), but Y < T(p). We may assumep closest to the
root with this property, because the ancestorship relationis well-founded. We define a
winning strategy for∀ in the gameG(AV

X⊆Y,T) from the initial position (ǫ, aI) directing
the play into the position (p, a), where∃ can not move and looses. ThenAV

X⊆Y would
rejectT.

31

Let the play ofG(AV
X⊆Y,T) be at the basic position (p′, a) for any ancestorp′ of

p. Thus p′ may also be the root nodeǫ. By assumptionp′ satisfiesY ∈ T(p′) if
X ∈ T(p′), so thatδ(a,T(p′)) is the singleton{{(a, a)}} from which∃ can only choose
the set{(a, a)}. From the latter∀ can only choose the pair (a, a). For the direction let
him choosep(|p′|) which is the next direction in the path towardsp. The next basic
position is then (p||p′ |+1, a).

Eventually, the play will arrive at position (p, a). BecauseX ∈ T(p) andY < T(p),
δ(a,T(p)) is empty, so that∃ can not move in (p, a) and looses. �

5.2 The AtomSucd(X,Y)

Let X andY be variables and letd ∈ 2 be a direction. For any setV of variables con-
tainingX andY, we define the automatonAV

Sucd(X,Y) accepting the binaryP(V)-labelled
treesT satisfyingSucd(X,Y). T satisfiesSucd(X,Y) iff it is the tree representation of
a valuationv satisfyingSucd(X,Y) which is iff pd ∈ v(Y) wheneverp ∈ v(X). ThusT
satisfiesSucd(X,Y) iff for all nodesp ∈ 2∗, Y ∈ T(pd) wheneverX ∈ T(p).

Definition 5.4. Define the alternating binary tree automaton

AV
Sucd(X,Y) := 〈A,P(V), δ : A× P(V)→ PP(A× A), a,Ω〉

with states
A := {a, as, a∃, a∀}

with transitions

δ(a,Z) =

{

{{(a0, a1) | ad = as, a1−d = a}} if X ∈ Z
{{(a, a)}} otherwise

δ(as,Z) =

∅ if Y < Z
{{(a0, a1) | ad = as, a1−d = a}} if Y ∈ Z and X∈ Z
{{(a, a)}} otherwise

δ(a∃,Z) := {{(a∃, a∃)}}

δ(a∀,Z) := {{(a∀, a∀)}}

for all sets Z⊆ V, and priorities

Ω(a) := 0, Ω(as) := 0, Ω(a∃) := 0, andΩ(a∀) := 1.

The automatonAV
Sucd(X,Y) has size 4 and index 2.

Claim 5.5. For any set V of variables containing both X and Y,AV
Sucd(X,Y) accepts a

binaryP(V)-labelled tree T iff T satisfies Sucd(X,Y).

Proof. In the following fix a binaryP(V)-labelled treeT.
For the right-to-left implication, suppose for all nodesp ∈ 2∗, Y ∈ T(pd) whenever

X ∈ T(p). We show that any play of the acceptance gameG(AV
Sucd(X,Y),T) is infinite and

32

over basic positions with the automaton statesa andas, only. Because the priorities of
a andas are even,∃ would win every such play, so thatAV

Sucd(X,Y) would acceptT.
Let the last basic position of a finite partial play ofG(AV

Sucd(X,Y),T) be (p, a). If
X < T(p), thenδ(a,T(p)) is the singleton{{(a, a)}}. At position (p, a), ∃ can only
choose the set{(a, a)} from which∀ can only choose the pair (a, a). If ∀ choosesd′ for
the direction, the next basic position is (pd′, a), where the argument recurs. IfX ∈ T(p),
thenδ(a,T(p)) is the singleton{{(a0, a1)}} wheread = as anda1−d = a. At position
(p, a), ∃ can only choose the set{(a0, a1)} from which∀ can only choose (a0, a1). If he
chooses direction 1−d, the next basic position is (p(1−d), a) with the automaton state
a. Otherwise the next basic position is (pd, as) with the automaton stateas.

Let the last basic position of a finite partial play ofG(AV
Sucd(X,Y),T) be (p, as). By

assumptionp satisfiesY ∈ T(p). If X < T(p), δ(as,T(p)) is the singleton{{(a, a)}}. At
position (p, as), ∃ can only choose the set{(a, a)} from which∀ can only choose (a, a).
Given choiced′ of ∀ for the direction, the next basic position is (pd′, a), where the
argument above recurs. If otherwiseX ∈ T(p), then it has to be verified forpd whether
Y ∈ T(pd). The setδ(as,T(p)) consists such of the singleton{{(a0, a1)}}. At position
(p, as), ∃ then only choose the set{(a0, a1)} from which∀ can only choose (a0, a1). If ∀
chooses the directiond, the next basic position is (pd, as) where the argument recurs,
and otherwise (p(1− d), a) where the argument above recurs.

For the left-to-right implication we prove the contrapositive. Suppose that there is
a nodep for which X ∈ T(p), butY < T(p). Because the ancestorship relation is well-
founded for binary trees, we may assumep to be closest to the root with this property.
Then we derive a strategy for∀ according to which he directs the play towards one of
the basic positions (p, a) or (p, as) where∃ can not move and looses. ThenAV

Sucd(X,Y)
would rejectT.

Let the last basic position of a finite partial play ofG(AV
Sucd(X,Y),T) from the initial

position be (p′, a) for p′ an ancestor ofp. Note thatp′ can also be the root nodeǫ. By
the assumption abovep′ satisfies thatY ∈ T(p′) wheneverX ∈ T(p′). If X < T(p′)
thenδ(a,T(p′)) is the singleton{{(a, a)}}, so that at position (p′, a), ∃ can only choose
the set{(a, a)} from which∀ can then only choose the pair (a, a). For the direction
let ∀ choosep(|p′|) which is the next direction in the path towardsp. The next basic
position is then (p||p′ |+1, a). If X ∈ T(p′) thenδ(a,T(p′)) is the singleton{{(a0, a1)}}
wheread = as anda1−d = a. At position (p′, a), ∃ can only choose the set{(a0, a1)}
from which∀ can only choose the pair (a0, a1). Let ∀ choosep(|p′|) for the direction.
The next basic position is (p||p′|+1, ap(|p′ |)).

Let the last basic position of a finite partial play ofG(AV
Sucd(X,Y),T) be (p′, as) for p′

an ancestor ofp. By assumptionp′ satisfiesY ∈ T(p′). If X < T(p′) thenδ(a,T(p′))
is the singleton{{(a, a)}}. At position (p′, as), ∃ can only choose the set{(a, a)} from
which ∀ can only choose the pair (a, a). For the direction let∀ choosep(|p′|) so that
the next basic position is (p||p′ |+1, a). If X ∈ T(p′), thenδ(a,T(p′)) is the singleton
{{(a0, a1)}} wheread = as anda1−d = a. At position (p′, as), ∃ can only choose the
singleton{(a0, a1)} from which∀ can only chooses the pair (a0, a1). For the direction
let ∀ choosep(|p′|) so that the next basic position is (p||p′|+1, ap(|p′ |)).

Eventually the play will arrive at position (p, a) or (p, as). BecauseX ∈ T(p),
δ(a,T(p)) or respectivelyδ(as,T(p)) is the singleton{{(a0, a1)}} wheread = as and

33

a1−d = a. ∃ can only choose the singleton{(a0, a1)} from which∀ can only choose
(a0, a1). For the direction let∀ choosed, so that the next basic position is (pd, as).
BecauseY < T(pd), δ(a,T(pd)) is empty. So that∃ can not move at position (pd, as)
and looses.

We have proven the derived strategy for∀ winning, so that∃ does not have a win-
ning strategy inG(AV

Sucd(X,Y),T) from the initial position. �

5.3 Negation and Complementation

Let φ be a formula ofS2S. For any setV of variables containing the free variables of
¬φ, we define an automatonAV

¬φ accepting a binaryP(V)-labelled treeT iff T satisfies
¬φ which is iff T does not satisfyφ.

By the induction hypothesis, for any setV of variables containing the free variables
of φ, there is an automatonAV

φ
which accepts a binaryP(V)-labelled treeT iff T sat-

isfiesφ. Becauseφ and¬φ have the same free variables, every set containing the free

variables of¬φ contains the free variables ofφ. We can thus defineAV
¬φ

:= AV
φ
. By

Proposition 3.7,AV
φ

accepts a binaryΣ-labelled treeT iff AV
φ

rejectsT which is iff T
does not satisfyφ. The following is immediate.

Corollary 5.6. For any set V of variables containing the free variables of¬φ, AV
¬φ

accepts a binaryP(V)-labelled tree T iff T satisfies¬φ.

By Remark 3.8 complementation preserves the size and index of automata having
the special statea∃. HenceAV

¬φ
has the same size and index asAV

φ
. Moreover, in the

complemented automatona∀ takes over the role ofa∃ and vice versa, so that we can
assumeA¬φ to have both special states.

5.4 Disjunction and Union

Letφ andψ be formulas ofS2S. For any setV of variables containing the free variables
of φ ∨ ψ we construct an alternating binary tree automatonAV

φ∨ψ
accepting a binary

P(V)-labelled treeT iff T satisfiesφ ∨ ψ. By the semantics,T satisfiesφ ∨ ψ iff T
satisfiesφ or ψ.

By the induction hypothesis there is for every setV of variables containing the free
variables ofφ an alternating binary tree automaton

AV
φ = 〈Aφ,P(V), δφ : Aφ × P(V)→ PP(Aφ × Aφ), a

φ

I ,Ωφ〉

accepting a binaryP(V)-labelled treeT iff T satisfiesφ. Similarly, there is forψ an
alternating automaton

AV
ψ = 〈Aψ,P(V), δψ : Aψ × P(V)→ PP(Aψ × Aψ), aψI ,Ωψ〉.

Because any set containing the free variables ofφ ∨ ψ contains the free variables of
bothφ andψ, we can defineAV

φ∨ψ
as follows.

34

Definition 5.7. Define the alternating binary tree automaton

A
V
φ∨ψ := 〈A,P(V), δ : A× P(V)→ PP(A× A), aI ,Ω〉

with states
A := {aI , a∃, a∀} ⊎ (Aφ \ {, a∃, a∀}) ⊎ (Aψ \ {a∃, a∀})

and transitions

• δ(aI ,Z) := δφ(a
φ

I ,Z) ∪ δψ(aψI ,Z)

• for any state a∈ Aφ ∩ A, δ(a,Z) := δφ(a,Z)

• for any state a∈ Aψ ∩ A, δ(a,Z) := δψ(a,Z)

for all subsets Z⊆ V, and priorities

• Ω(aI) := 0

• for any state a∈ Aφ ∩ A,Ω(a) := Ωφ(a)

• for any state a∈ Aψ ∩ A,Ω(a) := Ωψ(a)

BecauseAV
φ

andAV
ψ

share the statesa∃ anda∀,AV
φ∨ψ

contains only one of each. The
size ofAV

φ∨ψ is thus at most|AV
φ |+ |A

V
φ | −3. The index ofAV

φ∨ψ is at most|Ωφ|+ |Ωψ| −2,
becauseaI can be assigned an arbitrary priority.

Then the automatonAV
φ∨ψ

has the desired property.

Claim 5.8. For any set V of variables containing the free variables ofφ ∨ ψ, AV
φ∨ψ

accepts the binaryΣ-labelled tree T iff T satisfiesφ ∨ ψ.

Proof. For the right-to-left implication, supposeAV
φ accepts a binaryP(V)-labelled tree

T, so that∃ has a winning strategy in the acceptance gameG(AV
φ
,T) from the initial

position (ǫ, aφI). LetΦ be the set∃ chooses fromδφ(a
φ

I ,T(ǫ)) at the initial position con-
sistently with her winning strategy. By construction ofδ,Φ is an element ofδ(aI ,T(p))
as well. At the initial position (ǫ, aI) of the gameG(AV

φ∨ψ,T) let∃ chooseΦ. Every pair
(a0, a1) which∀ can choose fromΦ in G(AV

φ∨ψ
,T), he could choose inG(AV

φ
,T). Thus

any admissible next basic position (d, ad) in G(AV
φ∨ψ

,T) consistent with the derived
strategy, is an admissible next basic position inG(AV

φ
,T) consistent with∃’s winning

strategy. Becauseδφ∨ψ andδφ coincide on the same automaton states fromAφ, ∃ can
apply her winning strategy inG(AV

φ∨ψ,T) from the basic position (d, ad). Every play in
G(AV

φ∨ψ
,T) from (d, ad) consistent with∃’s strategy is a play inG(AV

φ
,T) from (d, ad)

consistent with∃ winning strategy. Thus∃ wins any such play inG(AV
φ∨ψ

,T). Hence
the automatonAV

φ∨ψ
acceptsT. The case where∃ has a winning strategy inG(AV

ψ
,T)

is symmetric.
For the left-to-right implication, suppose thatAV

φ∨ψ accepts a binaryP(V)-labelled
treeT, so that∃ has a winning strategy in the gameG(AV

φ∨ψ
,T). Let Φ be the set

which ∃ chooses at the initial position (ǫ, aI) consistently with her winning strategy.
By construction ofδ, Φ is an element of eitherδφ(aφ,T(ǫ)) or δψ(aψ,T(ǫ)). For the

35

moment suppose the first. At the initial position (ǫ, aφI) of G(AV
φ
,T) let ∃ choose the

setΦ. Every pair (a0, a1) that ∀ can choose fromΦ in G(AV
φ
,T), he could choose

in G(AV
φ∨ψ,T). So every next basic position (d, ad) in G(AV

φ ,T) consistent with∃’s
strategy is an admissible next basic position inG(AV

φ∨ψ
,T) consistent with∃’s winning

strategy. Becauseδ andδφ coincide on all automaton states fromAφ, every playπ in
G(AV

φ
,T) from (d, ad) consistent with the derived strategy is over the same positions

as a play inG(AV
φ∨ψ

,T) consistent with∃’s winning strategy.∃ thus wins any such
play π, so that the derived strategy is winning. HenceAV

φ acceptsT. The case where

Φ ∈ δψ(aψI ,T(ǫ)) is analogous. �

5.5 Existential Quantification and Existential Projec-
tion

In the following we construct for all setsV of variables containing the free variables of
∃X.φ, an alternating binary tree automatonAV

∃X.φ accepting precisely the binaryP(V)-
labelled trees satisfying∃X.φ. Every binaryP(V)-labelled treeT : 2∗ → P(V) repre-
sents a valuationv : V → 2∗, such thatT satisfies∃X.φ iff v satisfies∃X.φ. By the
semantics ofS2S, such a valuationv satisfies∃X.φ iff there is a valuationvX ⊆ 2∗ such
thatv[X 7→ vX] satisfiesφ, wherev[X 7→ vX] is the valuation of the variables inV∪ {X}
mappingX 7→ vX and coinciding withv on all other variables inV. BecauseV contains
the free variables in∃X.φ, V ∪ {X} contains the free variables ofφ. Thus the induc-
tion hypothesis applies and yields an automatonAV∪{X}

φ
accepting precisely the binary

P(V ∪ {X})-labelled trees satisfyingφ.
Chosen arbitrarily,V can contain the variableX. Letv1 andv2 be the two valuations

of V which agree on the variables inV \ {X}. Becausev1[X 7→ vX] = v2[X 7→ vX] for
any valuationvX ⊆ 2∗, v1 andv2 are equivalent relative to∃X.φ, that isv1 satisfies
∃X.φ iff v2 does. Thus it makes sense to focus on valuationsv of the variables in
V \ {X}, that isv = v1|V\{X}. We call such a valuationv the projection of v1 (v2) to
V \ {X}. Subsequently we denote the projection ofv1 (v2) to V \ {X} by πv1 (πv2). Let
T1 be the tree representation ofv1, then the tree representationT of v is defined by
T(p) := T1(p) \ {X} for all nodesp ∈ 2∗. Analogously, we callT theprojection of T1

(T2) to V \ {X} which we denote byπT1 (πT2).
We defineAV

∃X.φ as theexistential projection π∃V\{X}A
V∪{X}
φ

of AV∪{X}
φ

which is an
alternating binary tree automaton accepting a binaryP(V)-labelled treeT′ iff there is a
P(V ∪ {X})-labelled treeT accepted byAV∪{X}

φ of whichT′ is the projection toV \ {X},
that isT′ = πT.

We define the existential projectionπ∃V\{X}A
V∪{X}
φ

in two steps. Firstly, we obtain

from AV∪{X}
φ an equivalent non-deterministic binary tree automatonB as described in

Chapter 4. Secondly, forB we define the existential projection as follows.

36

Definition 5.9 (Existential Projection of Binary Tree Automata). Let

B = 〈B,V ∪ {X}, δ‘ : B× (V ∪ {X})→ P(B× B)

be a non-deterministic binary tree automaton recognisingP(V ∪ {X})-labelled trees.
The existential projection ofB to V\{X} is the non-deterministic binary tree automaton

π∃V\{X}B := 〈B,P(V), π∃V\{X}δ : B× P(V \ {X})→ P(B× B), bI ,Ω〉

with transitions
π∃V\{X}δ(b,Z) := δ(b,Z) ∪ δ(b,Z∪ {X})

for all Z ⊆ V.

Proposition 5.10. Let B be a non-deterministic binary tree automaton recognising
P(V ∪ {X})-labelled trees, and letπ∃X\{X}B be the projection ofB to V \ {X}. Then

π∃V\{X}B accepts a binaryP(V \ {X})-labelled tree T iff T is the projection of some
binaryP(V ∪ {X})-labelled tree T′ accepted byB.

Proof. Supposeπ∃V\{X}B accepts a binaryP(V \ {X})-labelled treeT, then∃ has a win-
ning strategy in the acceptance gameG(π∃V\{X}B,T) from the initial position (ǫ, bI). We
construct a binaryP(V∪{X})-labelled treeT′ accepted byB and derive a winning strat-
egy for∃ inductively on a playπ′ of G(B,T′) from the initial position consistent with
the derived strategy, such thatπ is a play ofG(π∃V\{X}B,T) consistent with∃’s winning
strategy.

Initially all plays inG(π∃V\{X}B,T) andG(B,T′) are in the same position, videlicet
(ǫ, bI). Let π be a finite partial play ofG(B,T′) from the initial position consistent
with ∃’s winning strategy and let the basic position (p, b) be the last position inπ.
By the induction hypothesis,π is a play ofG(π∃V\{X}B,T). Let (b0, b1) be the pair of
states which∃ chooses at position (p, b) consistently with her winning strategy. By
construction ofπ∃V\{X}δ, the pair (b0, b1) is either inδ(b,T(p)) or in δ(b,T(p) ∪ {X}). In
the first case, letT′(p) := T(p). In the latter case, letT′(p) := T(p) ∪ {X}. Then∃
can choose the same pair (b0, b1) of states at position (p, b) in the gameG(B,T′). Let
d be the direction which∀ chooses, then (pd, bd) is the next position inG(B,T′), and
an admissible continuation of the playπ in G(π∃V\{X}B,T) consistently with∃’s winning
strategy.

Because∃’s strategy inG(π∃V\{X}B,T) is winning, she is able to move in every basic
position of a play from the initial position consistent withher winning strategy. Also
∀ is able to move. The set of all plays consistently with∃’s winning strategy thus
completely determinesT′.

For the converse direction suppose that∃ has a winning strategy from the initial
position (ǫ, bI) in the gameG(B,T′) for a binaryP(V∪{X})-labelled treeT′. We derive
a winning strategy for her in the gameG(π∃V\{X}B,T) from the initial position whereT is
the projection ofT′ to V\{X}, such that every playπ from the initial position consistent
with the derived strategy is a play ofG(B,T′) consistent with∃’s winning strategy.

Initially all plays inG(B,T′) andG(π∃V\{X}B,T) are in the same basic position, that is
(ǫ, bI). Letπ be a finite partial play ofG(π∃V\{X}B,T) from the initial position consistent
with the derived strategy. And let the basic position (p, b) be the last position ofπ. By

37

the induction hypothesisπ is a play ofG(B,T′). Let (b0, b1) be the pair of states which
∃ chooses at position (p, b) consistently with her winning strategy. By construction
of π∃V\{X}δ, the same pair (b0, b1) is an element ofπ∃V\{X}δ(b,T

′(p) \ {X}) which equals
π∃V\{X}δ(b,T(p)). At position (p, b) in the gameG(π∃V\{X}B,T), let ∃ choose the same
pair (b0, b1). Given a choiced of ∀ for the direction, the next position inG(π∃V\{X}B,T)
is (pd, bd) which is an admissible continuation of the playπ in G(B,T′) consistently
with ∃’s winning strategy.

�

By construction,B andπ∃XB are of the same size and index. However, due to the
non-determinisationB is of size exponential in the size ofAV∪{X}

φ
. Concretely, letn be

the size and letk be the index ofAV∪{X}
φ

, thenAV
∃X.φ has size at mostnn(k+2)+2(k+1)2n(k+1)

and index at most 2n(k+ 1) by Corollary 4.17.

Definition 5.11. Define
AV
∃X.φ := π∃V\{X}B

whereB is the non-determinisation ofAV∪{X}
φ

.

Claim 5.12. For any set V of variables containing the free variables of∃X.φ, AV
∃X.φ

accepts precisely the binaryP(V)-labelled trees T satisfying∃X.φ.

Proof. By Proposition 5.10,π∃X\{X}B accepts precisely the projectionsπT of binary

treesT accepted byB and thusAV∪{X}
φ

. Thusπ∃X\{X}B accepts the tree representationT
of a valuationv iff there is a valuationvX of X such thatB accepts the tree representation
of v[X 7→ vX]. By Proposition 4.9,AV∪{X} andB are equivalent, so that the following is
immediate.AV

∃X.φ accepts the tree presentationT of a valuationv iff there is a valuation

vX such thatAV∪{X}
φ accepts the tree representation ofv[X 7→ vX], that is iff T satisfies

∃X.φ. �

In the next Chapter we will make use of the following observation. Therefor recall
from the preliminaries that non-deterministic automata can be seen as special cases of
alternating automata.

Remark 5.13. The existential projection of an alternating binary tree automaton is
non-deterministic.

38

Chapter 6

Complexity of the Translation

We devote this chapter to the question how efficient our translation is.

6.1 Complexity of the Translation

Before, we define the notion of size for formulas ofS2S.

Definition 6.1 (Size ofS2SFormulas). The size|φ| of a formulaφ of S2S is inductively
defined as

|X ⊆ Y| := 1
|Sucd(X,Y)| := 1 for both d∈ 2
|φ1 ∨ φ2| := |φ1| + |φ2| + 1
|∃X.φ| := |φ| + 1

We recollect the complexity results we obtained for the individual constructions.

|AV
X⊆Y| = 3 |ΩX⊆Y| = 2
|AV

Sucd(X,Y)| = 3 |ΩSucd(X,Y) | = 2
|AV
¬φ
| = |AV

φ
| |Ω¬φ| = |Ωφ|

|AV
φ∨ψ| = |A

V
φ | + |A

V
ψ | + 1 |Ωφ∨ψ| ≤ |Ωφ| + |Ωψ|

|AV
∃X.φ| = |A

V
φ
|
|AV

φ
|∗(|Ωφ |+2)+2(|Ωφ| + 1)2|A

V
φ
|(|Ωφ |+1)

|Ω∃X.φ| = 2|AV
φ
|(|Ωφ| + 1)

Except for the existential quantification, the translationis linear. Existential projec-
tion, however, necessitates non-determinisation which yields an automaton exponential
in the size of the alternating automaton. Whence the translation of S2Sinto alternating
automata is of non-elementary complexity. In the rest of this Chapter we justify this
property.

39

6.2 A Non-Elementary Lower-Bound for the Transla-
tion

In [Rei02] Reinhardt establishes a non-elementary lower bound for the complexity
of the translation of formulas ofS1S into alternating word automata. We adapt his
argument toS2S. In the following we construct a formulaφP

n of size linear inn which
specifies a property of binary trees which can be recognised by an alternating binary
tree automaton of size non-elementary inn, only.

We construct by induction overn a formulaφP
n satisfied by a binaryP({P})-labelled

tree T iff there are precisely two{P}-labelled nodes along one path. Moreover the
nodes have a distance ofF(n), videlicet one node is (F(n) − 1)-accessible from the
other, whereF(n) is a non-elementary function defined by

F(0) = 1 and F(n+ 1) = F(n) ∗ 2F(n).

Convention 6.2. We call the node in P which is closer to the root x, the other node y.

In the induction basis, we construct a formulaφP
1 which establishes that there are (1)

precisely (2) two nodesx andy labelled with{P} such thaty is an immediate successor
of x (3).

φP
0 := ∃X.∃Y. S ing(X) ∧ X ⊆ P∧ S ing(Y) ∧ Y ⊆ P∧ (1)

(∀Z.Z ⊆ P→ Z ⊆ X ∨ Z ⊆ Y)∧ (2)
Suc0(X,Y) ∨ Suc1(X,Y) (3)

For the induction hypothesis we assume for ann ∈ N a formulaφP
n with a free

variableP which holds in a binaryP({P})-labelled treeT iff there are precisely two
{P}-labelled nodes with a distance ofF(n).

GivenφP
n , we define a formulaφP

n+1 with a free variableP which is satisfied by a
P({P})-labelled tree iff there are precisely two{P}-labelled nodes with a distance of
F(n) ∗ 2F(n).

X Y
Block 0 1 2 ... 2F(n)

The segment of a path fromx to y can be thought of as being split into 2F(n) blocks.
Let the blocks be numbered such that the block closest to the root has the smallest
number. Each such number can be coded binarly withF(n) bits. Each block is supposed
to consist ofF(n) nodes so that we can assign each block a bit, such that by convention
the node closest to the root holds the least significant bit ofthe block’s address.

X Y
Block 0 1 2 ... 2F(n)

C 0000...0 1000...0 0100...0 ... 1111...1
B 1000...0 1000...0 1000...0 ... 1000...0

40

The assignment with bits is realised through a variableC, such that the valuation
of C consists of all nodes which are labelled with bit value 1. Forauxiliary purposes
we will use a set variableB whose valuations consists of the nodes which mark the
beginning of each block. In the following we specify the property which the valuations
of B andC have to satisfy.

For auxiliary purposes, we introduce two set variables,I andJ, which are assigned
singletons of nodes with a distance ofF(n). The latter is realised through a formulaφP

n .
Therefor letP be a doubleton containing the nodes ofI andJ, only. We refer toI and
J as pointers, because we will use them to express properties of any two nodes with a
distanceF(n). The propertyPointersspecifies thatP holds precisely (2) the two nodes
from I andJ (1) which have distanceF(n) (3).

Pointers:= ∃P. Sing(I) ∧ S ing(J) ∧ I ⊆ P∧ J ⊆ P∧ (1)
(∀K.K ⊆ P→ Empty(K) ∨ I ⊆ K ∨ J ⊆ K)∧ (2)
φP

n (3)

Singis defined as in Appendix C. See the appendix also for the definitions ofEmpty
and=.

If we have ensured that the pointersI andJ have distanceF(n), we can specify the
valuation ofB. B has to containX andY (1) and all nodes inB have to have a distance
multiple in F(n), that is wheneverI is in B, so isJ and vice versa (2) and all nodesK
in between are not inB (3).

PropB := X ⊆ B∧ Y ⊆ B∧ (1)
(I ⊆ B↔ J ⊆ B)∧ (2)
∀K.I < K ∧ K < J→ Empty(K) ∨ K * B (3)

Thereby≤ denotes the reflexive ancestor relation and< its strict part.X is an ancestor
of Y, X ≤ Y, if both are in a ”family” F (1) of which X is the origin (2) and the
”parents”P of every ”group”G within F is contained inF (3), or in other terms:F is
closed under descendance.

X ≤ Y := ∃F. X ⊆ F ∧ Y ⊆ F∧ (1)
∀G.G ⊆ F ∧ ¬Empty(G)→ ¬(Suc0(G,X) ∨ Suc1(G,X))∧ (2)
∀G.G ⊆ F → ∃P.(Suc0(G,P) ∨ Suc1(G,P)) ∧ P ⊆ F (3)

We define< as the strict part ofX ≤ Y.

X < Y := X ≤ Y∧ X , Y

For brevity we will write I < K < J for I < K ∧ K < J and similarlyI ≤ K < J
andI < K ≤ J.

Connecting to our previous argument, we distinguish four defining properties of
the construction. The first block has to code 0, so none of the nodes in the first block

41

should be contained in the valuation ofC Respectively, the last block should codeF(n),
so that the valuation ofC should contain all nodes in the last block. We need to ensure
that the least significant bit changes from one block to the next as the initial effect of
incrementing the binary coded number. The second effect is that 1’s are carried over
to the next bit. The properties will be established respectively byFirst, Last, Startand
Carry.

We specify the propertyPropCof the valuation ofC. Let I andJ satisfyPointers.
First specifies that all nodes in the first block, which begins withX, are not labelledC
(1). Startspecifies that the first nodes of two consecutive blocks are with respect toC
not equally labelled (2). IfI is C-labelled andJ is not, then the block thatI belongs to
has a higher value on the bit pointed to byJ then the block ofJ in the corresponding
bit pointed to byJ (3). Whence ’1’ needs to be carried over to the bit succeedingthe
oneJ points to. LetJ+ be an immediate successor ofJ andI+ an immediate successor
of I (4), unlessI+ has exceeded the boundaries of the block,J+ is obtained by adding
1 to the bit ofI+ modulo 2 (5). Analogously toFirst, Last specifies that the nodes in
the last block whose end is marked byY are labelled withC.

First := I ⊆ X↔ ∀K.(I ≤ K < J)→ Empty(K) ∨ K * C (1)
Start := I ⊆ B→ ¬(I ⊆ C↔ J ⊆ C) (2)
Carry := (I ⊆ C ∧ J * C)↔ (3)

∀I+.∀J+. Sing(I+) ∧ (Suc0(I , I+) ∨ Suc1(I , I+))∧
Sing(J+) ∧ (Suc0(J, J+) ∨ Suc1(J, J+))→ (4)
I+ ⊆ B∨ (I+ * C↔ J+ ⊆ C)) (5)

Last := J ⊆ Y↔ ∀K.(I ≤ K < J)→ K ⊆ C (6)

The valuation ofC is determined by all of the four properties above.

PropC := First ∧ Start∧Carry∧ Last

Now we can put the pieces together and formulateφP
n+1 which specifies that there

are precisely (2) two nodesX andY in P (1) such that the segment of a path fromX to Y
is B andC labelled according toPropBandPropC(3), and is thus of lengthF(n)∗2F(n).

φP
n+1 := ∃X.∃Y. Sing(X) ∧ X ⊆ P∧ Sing(Y) ∧ Y ⊆ P∧ (1)

(∀Z.Z ⊆ P→ Empty(Z) ∨ X ⊆ Z ∨ Y ⊆ Z)∧ (2)
∃B.∃C.∀I .∀J.Pointers→ PropB∧ PropC (3)

Note thatφP
n is not clean forn > 1. However, as we already argued in the pre-

liminaries,φP
n can be brought into a clean form by distinctively renaming the bound

variables.
LetA be an alternating binary tree automaton accepting precisely theP({P})-labelled

trees satisfyingφP
n . ThenA has to have at leastF(n) states. Otherwise, while process-

ing a treeT, one automaton statea would occur more than once between the nodesx
andy. Because the acceptance condition can not distinguish between finite numbers of
occurrences of automaton states,a could occur finitely, but arbitrarily often. HenceA
could not recognise the distance betweenx andy.

42

However,φP
n is by construction linear inn. We obtain the following non-elementary

lower bound for the translation of formulas into automata.

Proposition 6.3. There is a formulaφ of S2S for which there is no alternating binary
tree parity automatonA of size elementary in|φ| such thatA accepts a binary tree T iff
T satisfiesφ.

In Chapter 5 we have seen that the existential projection of an alternating automaton
is non-deterministic. Consequently, non-determinisation is needed only once in the
translation of a sequence of nested existential quantifications. In fact, negation is the
only logical operation that spoils non-determinism.

In φP
n+1, the alternation between the existential quantification over X, Y, B andC

and the universal quantification overP makes non-determinisation of the automaton
necessary in each induction step, which leads to the non-elementary complexity.

For non-deterministic automata, complementation increases the size of the automa-
ton exponentially. Then, as Reinhard argues in [Rei02], negation is responsible or the
non-elementary lower bound. Note that our result does not contradict Reinhard’s ob-
servation.

43

Chapter 7

Non-Emptiness of Alternating
Binary Tree Automata

The non-emptiness problemfor an alternating binary tree automatonA consists in
deciding whetherA accepts some binaryΣ-labelled tree, that is whether the language
L(A) is non-empty. We reduce the non-emptiness problem for alternating automata to
the non-emptiness problem for non-deterministic automata, for which we give a game
theoretic solution.

Theorem 7.1. The non-emptiness problem for alternating automata is decidable.

As described in Chapter 4 we obtain from an alternating binary tree automatonA a
non-deterministic binary tree automaton

B = 〈B,Σ, δ : B× Σ→ P(B× B), bI ,Ω〉

accepting precisely the same binaryΣ-labelled trees asA. HenceL(A) is non-empty
iff L(B) is non-empty.

7.1 Non-Emptiness of Non-Deterministic Binary Tree
Automata

Suppose there is a binary treeT for which ∃ has a winning strategy from the initial
position in the gameG(B,T). At a basic position (p, b) of the gameG(B,T), ∃ chooses
a pair (b0, b1) from δ(b,T(p)) consistently with her winning strategy. Hence there is a
letter c ∈ Σ, videlicetT(p), for which∃ can choose a pair (b0, b1) from δ(b, c), such
that the next position, (pd, b) for bothd ∈ 2, is winning for∃. This idea underlies the
construction of thenon-emptiness game,G,∅(B), a parity graph game, which proceeds
according to the following rules.

44

Position Player Admissible Moves Priority
b ∈ B ∃

⋃

c∈Σ δ(b, c) Ω(b)
(b0, b1) ∈ B× B ∀ {bd | d ∈ 2} 0

Table 7.1: The Non-Emptiness GameG,∅(B)

1. At a positionb ∈ B, ∃ chooses a letterc ∈ Σ and a pair (b0, b1) from δ(b, c). The
next position is then (b0, b1).

2. At a position (b0, b1) ∈ B× B, ∀ chooses a directiond ∈ 2 which determines the
next positionbd.

We call positions from the setB basic. Basic positionsb are assigned the priority
Ω(b), all other positions are assigned priority 0.
∃ (∀) wins a finite playπ of G,∅(B), if the last position ofπ belongs to∀ (∃) and he

(she) can not move.∃ (∀) wins an infinite play if the largest priority of an automaton
state occurring infinitely often is even (odd). The non-emptiness gameG,∅(B) is a
parity graph game, and thus enjoys history-free determinacy. We refer to Appendix B
for more details.

Proposition 7.2. B accepts some binaryΣ-labelled tree iff ∃ has a winning strategy in
G,∅(B) from the initial position bI .

Proof. For the left-to-right implication, suppose there is a binary Σ-labelled treeT
for which ∃ has a winning strategy in the acceptance gameG(B,T) from the initial
position. We derive a winning strategy for her in the non-emptiness gameG,∅(B) from
the initial positionbI , such that every play consistent with the derived strategy is over
the same automaton states as a play inG(B,T) consistent with∃’s winning strategy.
Initially the play inG,∅(B) is at positionbI , any play inG(B,T) is in (ǫ, bI). Suppose
the play ofG,∅(B) is at positionb, then there is by the induction hypothesis a play
of G(B,T) consistent with∃’s winning strategy over the same automaton states as the
play inG,∅(B). Suppose∃ chooses the pair (b0, b1) from δ(b,T(p)), in G,∅(B) let her
choose the same pair. Any directiond which ∀ chooses in response, he could have
chosen inG(B,T), so that (pd, bd) is a continuation ofπ consistent with∃’s winning
strategy.∃ wins the play inG,∅(B) because the largest priority of an automaton state
occurring infinitely often in the play ofG(B,T) and thus also in the play ofG,∅(B) is
even. Thus the derived strategy is winning for∃.

For the right-to-left implication, suppose∃ has a winning strategy in the non-
emptiness gameG,∅(B) from the initial position. We derive a binaryΣ-labelled tree
and a winning strategy for∃ in the gameG(B,T), such that every play inG(B,T) is
over the automaton states of a play inG,∅(B) consistent with∃’s winning strategy. Ini-
tially, the play inG(B,T) is at position (ǫ, bI), any play ofG,∅(B) in bI . Let the play
in G(B,T) be at position (p, b), then there is by the induction hypothesis as a play of
G,∅(B) over the same automaton states as the play inG(B,T). Let (b0, b1) be the pair of
automaton states which∃ chooses at positionb in G,∅(B) consistent with her winning
strategy. Then there is a letterc ∈ Σ for which (b0, b1) ∈ δ(b, c). DefineT(p) := c.

45

Let∃ choose (b0, b1) at position (p, b) of G(B,T). ∀ chooses a directiond, determining
the next basic position (pd, bd). ∀ could have chosen the same direction inG,∅(B),
so that basic position continuingπ is bd. We have established that for every play of
G(B,T) there is a play ofG,∅(B) over the same automaton states. Thus∃ wins the play
in G(B,T) because the largest priority of an automaton state occurring infinite often is
even. Hence the derived strategy is winning for∃. �

7.2 Complexity of the Non-Emptiness Problem

BecauseB has finitely many states, the non-emptiness game is a finite parity graph
game. Deciding whether the initial positionbI of such a finite parity graph game is
winning for∃ or ∀ is called the parity graph game problem.

Definition 7.3 (The Parity Graph Game Problem). For a finite parity graph gameG,
the parity graph game problem forG consists in determining whether a board position
b is a winning position of∃ or ∀.

Emerson and Julta showed in [EJ91], that the parity graph game problem is at
most exponential in the number of board positions. Given a partition of the board
into winning regions, that is sets of winning positions, for∃ and∀, it can be verified
in polynomial time, whether there is a consistent winning strategy from a particular
board position. Hence the parity graph game problem is in NP,and in co-NP due to the
symmetry of the problem. Moreover, as shown in [Jur98] that there is for every parity
graph game precisely one such partition, so that the parity graph game problem is in
U-NP and co-U-NP.

46

Chapter 8

Conclusions

This text is the first comprehensive recollection of Rabin’soriginal argument improved
in various aspects. Alternation facilitates complementation, though at the price of non-
determinisation which is needed for the existential projection of alternating automata.
Because of the parity acceptance condition the acceptance game is historyfree deter-
mined, which is crucial for the construction of the non-emptiness game.

The definitions of non-determinisation, existential projection and non-emptiness
game are based on the more general coalgebraic constructions used in [KV05] and
[KV07] for F-coalgebra automata. The relational approach to non-determinisation
as given in Chapter 4 stems from [AN01]. Essential for the construction is theB-
redistribution, an instance of theF-redistribution for the binary tree functorB taking
objectsX to pairsX×X. For the functorB, theF-redistribution is an easy construction.
We expect a similar experience with other polynomial functors.

In Chapter 3 we have given an algorithm to compute the complement of a binary
tree automaton. It is unlikely that the method used allows the generalisation to arbitrary
F-coalgebra automata. In fact the question whether for everyF-coalgebra automaton
there is a complementary one is still open. Recall that we have defined universal quan-
tification as the dual of existential quantification using negation. The weaker question,
whetherF-coalgebra automata are closed under universal projection, the dual of exis-
tential projection, is still open as well.

47

Appendix A

Sequences and Binary Trees

For anyalphabetΣ we define sequences, or words, of letters fromΣ and binary trees
labelled with letters fromΣ.

A.1 Sequences

Definition A.1 (Sequences). Given an alphabetΣ, a sequence of letters fromΣ, or Σ-

sequence orΣ-word for short, is a partial function U
...ω→ Σ such that if U(i) is defined

for some i∈ ω, so is U(j) for all j below i.

Thelength |U | of aΣ-sequence is the number of indicesi whereU(i) is defined. The
emptyΣ-sequenceǫ has length 0. AΣ-sequence is finite if there is an indexi ∈ ω such
thatU(i) is undefined, and infinite otherwise. The set of finiteΣ-sequences is denoted
asΣ∗, the set of infiniteΣ-sequences is denoted asΣω, and the set of allΣ-sequences is
denoted asΣ⋆, so thatΣ⋆ = Σ∗ ∪ Σω.

We denote the last letter of a finiteΣ-sequenceU as Last(U) and define it as
Last(U) := U(|U | − 1).

A Σ-sequenceU′ is an initial subsequence, or subsequence for short, of aΣ-
sequenceU if |U′| ≤ |U | and for all i whereU′(i) is defined,U(i) = U′(i). A sub-
sequenceU′ of aΣ-sequenceU is proper if additionally|U | < |U′|.

Given a finiteΣ-sequenceU and an arbitraryΣ-sequenceU′, we define thecon-
catenationUU′ of U andU′ such that for alli < |U |, (UU′)(i) := U(i) and for all
i ≥ |U |, (UU′)(i) := U′(i − |U |).

A.2 Binary Trees

In binary trees we distinguish two directions, “left” and “right”, which are respectively
denoted by 0 and 1 and collected in the two-element set 2. Finite paths through binary
trees are then finite 2-sequences. We identify nodes with therespective path from the
root node. The root node itself is then the empty sequenceǫ. A Σ-labelling associates
nodes with letters fromΣ. We identify full binaryΣ-labelled trees with their labellings.

48

Definition A.2 (Binary Trees). Full binary Σ-labelled trees are functions

T : 2∗ → Σ.

Given a nodep, we call a nodep′ a child of p if p′ is the left or right successor of
p, that isp′ = p0 or p′ = p1. A nodep′ is adescendentof p, or p is anancestorof
p′, if p is a proper initial subsequence ofp′.

Remark A.3. Note that in the literature, binary trees are often described as rooted
acyclic graphs with out-degree 2, that is tuples〈V,E, r, λ〉 consisting of a set V of
vertices, a mapping E: V → V × V, a root node r, and a labellingλ : V → Σ. Let
V = 2∗, E : p 7→ (p0, p1) for all p ∈ 2∗, r = ǫ, andλ : p 7→ T(p), then the definition
by graphs is easily seen to be equivalent to our definition above.

49

Appendix B

Game Theory

In the following we will formally introduce two-player parity graph games, or parity
graph games for short. For a more concise account of these games the reader is referred
to [GTW02].

Parity graph games are played by two players,∃ (Eloise) and∀ (Abelard) who
oppose each other.

Definition B.1 (Parity Graph Games). A two-player parity graph game is a tupleG =
〈B∃, B∀,E, bI ,Ω〉 with

• disjoint sets B∃ and B∀ of board positions of∃ and∀, respectively

• a move relation E⊆ B× B mapping positions to admissible successors

• an initial position bI ∈ B∃ ∪ B∀

The setB = B∃ ∪ B∀ is called theboard of G, the tuple〈B∃, B∀,E〉 thearenaof G.
We say positions fromB∃ belong to∃ and positions fromB∀ belong to∀.

Definition B.2 (Plays). A partial play, or play for short, is a sequence of board posi-
tions. We call a partial playtotal if it is infinite or if it is finite and there is no admissible
successor for the last position. Otherwise a partial play isinitial.

A finite playπ is won by∃ (∀) if the last positionLast(π) belongs to∀ (∃) and there
is no admissible successor ofLast(π). We then say that∀ (∃) can not move in the last
position ofπ.

The outcome of infinite plays of parity graph games is determined by the priorities
of the board positions occurring in the play.∃ wins an infinite play of a parity graph
game if the largest priority occurring infinitely is even,∀ wins if the largest priority
occurring infinitely is odd.

Definition B.3 (Strategies). A strategy of ∃ (∃) in a parity graph gameG as above
from a position b0 is a partial mapping taking each initial play b0b1 . . .bn, where bn
belongs to∃ (∀), to an admissible successor of bn.

50

We say a playπ is played consistentlywith a strategyσ of ∃ if for all proper
initial playsπ′ of π, that is proper subsequencesπ′ of π, where the last position ofπ′

belongs to∃, the next position equals the position determined by the strategy, that is
π(|π′|) = σ(π′). The same definition applies to strategies of∀ as well.

A strategyσ of ∃ is winning for∃ if she wins any play consistent withσ. Similarly
for strategies of∀.

We call a strategyσ positional if for any two initial playsπ andπ′ for which the
last positions coincide, that isLast(π) = Last(π′),σ(π) equalsσ(π′). In informal terms,
a positional strategy depends on the last position, only.

In parity graph games, plays consistent with strategies of aplayer constitute sets
in a Borel algebra. Martin showed in [Mar75] that such sets are determined. As a
consequence, in every position one of the players has a winning strategy. We call a
position from which∃ (∀) has a winning strategy, awinning position of ∃ (∀).

In 1991 it was shown independently by Emerson and Jutla in [EJ91], and Mostowski
in [Mos91], that parity graph games arehistoryfree determined, that is they enjoy the
following property. Whenever∃ (∀) has a winning strategy in a parity graph gameG
from a positionb, then she (he) has a positional winning strategy fromb.

51

Appendix C

Monadic Second-Order Logic
for Binary Trees

In the following we define the monadic second-order logicS2Sfor binary trees, and
the minimal second-order only languageS2SSO which we then prove equivalent toS2S.
The latter entitles us to useS2SSO as a replacement forS2Sthroughout the text.

C.1 S2S

Convention C.1. We write individual variables in lower case, set variables in upper
case.

Definition C.2 (Syntax ofS2S). Given individual variables x and y and a set variable
X, we define formulas ofS2S as follows.

φ ::= X(x) | sucd(x, y) | ¬φ | φ ∧ φ | φ ∨ φ | ∃x.φ(x) | ∃X.φ(X)

Moreover we define the usual abbreviationsφ ∧ ψ := ¬φ ∨ ¬ψ, φ → ψ := ¬φ ∨ ψ,
φ↔ ψ := (φ→ ψ) ∧ (ψ→ φ), ∀x.φ(X) := ¬∃x.¬φ(x), and∀X.φ(X) := ¬∃X.¬φ(X).

A variable occurs freely inφ if it is not bound by a quantifier. Formally the set
FVFO(φ) of free individual variables and the setFVS O(φ) of free set variables in a
formulaφ of S2Sare defined as follows.

FVFO(X(x)) := {x} FVS O(X(x)) := {X}
FVFO(sucd(x, y)) := {x, y} FVS O(sucd(x, y)) := ∅
FVFO(¬φ) := FVFO(φ) FVS O(¬φ) := FVS O(φ)
FVFO(φ ∨ ψ) := FVFO(φ) ∪ FVFO(ψ) FVS O(φ ∨ ψ) := FVS O(φ) ∪ FVS O(ψ)
FVFO(∃x.φ) := FVFO(φ) \ {x} FVS O(∃x.φ) := FVS O(φ)
FVFO(∃X.φ) := FVFO(φ) FVS O(∃X.φ) := FVS O(φ) \ {X}

52

Definition C.3 (Valuations). A valuation of an individual variable is a node p∈ 2∗

in a binary tree, a valuation of all variables in a set W of individual variables is a
function w : W → 2∗. A valuation of a set variable X is a set vX ⊆ 2∗, a valuation
of a set V of set variables is a function v: V → P(2∗) taking each set variable in V
to its valuation. Note that such valuations v of sets of set variables are isomorphic to
P(V)-labelled trees T: 2∗ → P(V) by X ∈ T(p) iff p ∈ v(X) for all p ∈ 2∗. We call
such a tree T thetree representation of the valuation v.

Definition C.4 (Semantics ofS2S). Let φ be a formula ofS2S, and let W be a set
containing the free individual variables, V a set containing the free set variables inφ.
Given valuations w: W → 2∗ and v : V → P(2∗) of the variables in W and in V,
respectively, the semantics ofφ is defined inductively as follows.

w,v X(x) iff v(X) ⊆ v(Y)
w,v sucd(x, y) iff w(y) = w(x)d
w,v ¬φ iff 1w,v φ

w,v φ ∨ ψ iff w,v φ or w,v ψ

w,v ∃x.φ iff w[x7→wx],v φ for some valuation wx ∈ 2∗ of x
w,v ∃X.φ iff w,v[X 7→vX] φ for some valuation vX ⊆ 2∗ of X

Every formulaφ of S2SSO is definable with second-order constructions, only. In the
following we introduce the languageS2SSO, for binary trees which contains second-
order constructions, only.

C.2 S2SSO

Definition C.5 (Syntax ofS2SSO). Given set variables X and Y, we define formulas of
S2SSO inductively as

φ ::= X ⊆ Y | Sucd(X,Y) | ¬φ | φ ∧ φ | φ ∨ φ | ∃X.φ(X).

We also define the usual abbreviationsφ ∧ ψ := ¬φ ∨ ¬ψ, φ → ψ := ¬φ ∨ ψ,
φ↔ ψ := (φ→ ψ) ∧ (ψ→ φ), and∀X.φ(X) := ¬∃X.¬φ(X).

The atomSucd(X,Y) means “all nodes inX have a successor inY”.
For a formulaφ of S2SSO we define the setFV(φ) of free set variables inductively

such that

FV(X ⊆ Y) := {X,Y}
FV(Sucd(X,Y)) := {X,Y}
FV(¬φ) := FV(φ)
FV(φ ∨ ψ) := FV(φ) ∪ FV(ψ)
FV(∃X.φ) := FV(φ) \ {X}

53

Definition C.6 (Semantics ofS2SSO). Letφ be a formula ofS2SSO, and let V be a set
containing the free set variables inφ. Given a valuation v: V → P(2∗) of the variables
in V, the semantics ofφ is defined inductively as follows.

v X ⊆ Y iff v(X) ⊆ v(Y)
v Sucd(X,Y) iff pd ∈ v(Y) whenever p∈ v(X)
v ¬φ iff 1v φ

v φ ∨ ψ iff v φ or v ψ

v ∃X.φ iff v[X 7→vX] φ for some valuation vX ⊆ 2∗ of X

Let φ be a formula ofS2SSO with free set variables from a setV of variables. We
say a valuationv : V → P(2∗) of the variables inV satisfiesφ, writtenv φ iff ~φ�v.
A binaryP(V)-labelled treeT satisfiesφ, T |= φ iff T is the tree representation of a
valuationv satisfyingφ.

C.3 Equivalence of S2S and S2SSO

In the following we show thatS2SandS2SSO are equivalent, that is mutually definable.
Given a formulaφ in S2Swith free individual variables from a setW and free set

variables from a setV, we inductively define a formulaφS0 with free variables from
V ∪ V′ whereV′ is a set consisting precisely of set variablesY for which there is an
individual variabley in W. To leverage the definition we assume that for no individual
variabley ∈W there is a set variableY ∈ V in upper case, so thatV andV′ are disjoint.

Intuitively, we obtainφS O by replacing free individual variablesy in φ whose valu-
ations are nodesp ∈ 2∗ by free set variablesY whose valuations are singletons{p}. For
the latter we define the singleton predicateSingin S2SSO

Sing(X) := ¬Empty(X) ∧ ∀Y.Y ⊆ X⇒ Empty(Y) ∨ X = Y

where
Empty(X) := ∀Z.X ⊆ Z

and
X = Y := X ⊆ Y∧ Y ⊆ X

Definition C.7 (Translation ofS2Sinto S2SSO). We define the inductive translation of
formulasφ of S2S into formulasφS O of S2SSO as follows.

(X(y))S O := Y ⊆ X
(sucd(y1, y2))S O := Sucd(Y1,Y2)
(¬φ(W,V))S O := ¬(φ(W,V)S O

(φ(W,V) ∨ ψ(W,V))S O := (φ(W,V))S O∨ (ψ(W,V))S O

(∃y.φ)S O := ∃Y.Sing(Y) ∧ (φ)S O

(∃X.φ)S O := ∃X.(φ)S O

54

The given translation preserves the semantics in the following sense.

Proposition C.8. Let V′ := {Y | y ∈ FVFO(φ)} be a set of set variables each of which
is an upper case correspondent of a free individual variablein φ. Every valuation
w : FVFO(φ) → 2∗ of the individual variables free inφ can be turned into a valuation
v′ of the set variables in V′ such that

v′(Y) := {w(y)}.

A formulaφ of S2S is then equivalent to a formulaφS O of S2SSO iff w,v φ iff v∪v′ φS O.

Proof. We show thatw,v φ iff v∪v′ φS O by induction onφ.
In the first base case letφ = X(y). The valuationsw andvsatisfyX(y) iffw(y) ∈ v(X)

by the semantics ofS2S, which is iff {w(y)} ⊆ v(X). By definition ofv′, the latter is iff
v′(Y) ⊆ v(X) which is iff (v∪v′)(Y) ⊆ (v∪v′)(X). By the semantics ofS2SSO, the latter
is iff v∪v′ Y ⊆ X.

In the second base case letφ = sucd(x, y). The valuationswandvsatisfy (suc)d(x, y),
w,v sucd(x, y), iff w(y) is the successsor ofw(x) in directiond, w(y) = (w(x))d, which
is iff pd ∈ v′(Y) wheneverp ∈ v′(X). Because we assumeV andV′ to be disjoint, the
unionv∪ v′ is consistent, so that by the semantics ofS2SSO the latter is equivalent to
v∪v′ Sucd(X,Y).

The boolean cases are immediate. The valuationsw andv satisfy¬φ, w,v ¬φ,
iff 1w,v φ iff 1v∪v′ φS O, by the induction hypothesis, which is iff v∪v′ ¬φS O. For the
disjunction,w andv satisfyφ ∨ ψ, w,v φ ∨ ψ, iff w,v φ or w,v ψ which is iff v∪v′ φS O

or v∪v′ ψS O by the induction hypothesis. By the semantics ofS2SSO the latter is iff
v∪v′ φS O∨ ψS O

For the existential first-order quantification,w andv satisfy∃x.φ, w,v ∃x.φ iff there
is a valuationwx of the individual variablex such thatw[x7→wx],v φ. By the induction
hypothesis, there is such a valuationwx iff there is a valuationvX, videlicetvx = {wx},
such that(v∪v′)[X 7→vX] φS O and(v∪v′)[X 7→vX] Sing(X), which is, by the semantics of
S2SSO, iff v∪v′ ∃X.Sing(X) ∧ φS O.

For the existential second-order quantifation,w andv satisfy∃X.φ, w,v ∃X.φ iff
there is a valuationvX of the set variableX such thatw,v[X 7→vX] φ which is, by the
induction hypothesis, iff (v∪v′)[X 7→vX] φS O. By the semantics ofS2SSO the latter is iff
v∪v′ ∃X.φS O. �

In an analogous manner we obtain a converse translation ofS2SSO into S2S.

Definition C.9 (Translation ofS2SSO into S2S). Given a formulaφ of S2SSO with free
variables from a V of set variables, we define by induction a formulaφS2S in S2S with
free variables from V.

(X1 ⊆ X2)S2S := ∀y.X1(y)→ X2(y)
(Sucd(X1,X2))S2S := ∀y1.X1(y1)→ ∃y2.sucd(y1, y2) ∧ X2(y2)
(¬φ)S2S := ¬φS2S

(φ ∨ ψ)S2S := φS2S ∨ φS2S

(∃X.φ)S2S := ∃X.φS2S

55

The given translation preserves the semantics in the following sense.

Proposition C.10. Letφ be a formula ofS2SSO, then for every valuation v: FV(φ)→
2∗ of the set variables free inφ, v φ iff ∅,v φS2S.

Proof. We show by induction onφ thatv φ iff ∅,v φS2S.
In the first base case letφ = X1 ⊆ X2. The valuationv satisfiesX1 ⊆ X2, v X1 ⊆ X2,

iff v(X1) ⊆ v(X2), that is for all nodesp, p ∈ v(X2) wheneverp ∈ v(X1). By the
semantics ofS2S, the latter is iff ∅,v ∀y.X1(y)→ X2(y).

In the second base case letφ = Sucd(X1,X2). The valuationv satsifiesSucd(X1,X2)
iff for all nodesp ∈ v(X1), pd ∈ v(X2), that is there is a nodep′, successor ofp in di-
rectiond, which is inv(X2). By the semantics ofS2S, the latter is iff ∅,v ∀y1.X1(y1)→
∃y2.suc(y1, y2) ∧ X2(y2).

The boolean cases are immediate. For the negation,v ¬φ iff 1v φ iff 1∅,v φFO by
the induction hypothesis which is iff ∅,v ¬φS2S. For the disjuntion,v φ ∨ ψ iff v φ

or v ψ which is by the induction hypothesis iff ∅,v φS2S or ∅,v ψS2S which in turn is
iff ∅,v φS2S ∨ ψS2S.

For the existential second-order quantification,v ∃X.φ iff there is a valuationvX

of X such thatv[X 7→vX] φ which is by the induction hypothesis iff ∅,v[X 7→vX] φS2S. By
the semantics ofS2Sthe latter is iff ∅,v ∃X.φS2S. �

56

Index

acceptance games
basic positions, 8
dynamic stage, 7
static stage, 7

alphabets, 6
alternating binary tree automata

acceptance, 7
acceptance games, 7
definition, 7

automata
index, 10
size, 10

bad traces, 20
binary trees

ancestor, 49
definition, 49
descendents, 49

deterministic word automata
definition, 9
run, 9

languages of binary tree automata, 8
left U-tree, 25

NBTΩ, 20
non-deterministic binary tree automata

definition, 8
non-deterministic word automata

acceptance, 9
definition, 9
run, 9

non-emptiness game, 45

parity graph games, 50
plays, 50
strategies, 50

winning condition, 50
plays

initial plays, 50
partial plays, 50
total plays, 50

S2S
semantics, 53
syntax, 52

S2SSO

semantics, 54
syntax, 53

sequences
definition, 48
length, 48

Streett acceptance condition, 28
subsequence, 48

the satisfiability problem of S2S, 6
traces, 20
tree representation, 53

winning positions, 51
words

definition, 48
length, 48

57

Bibliography

[AN01] Andre Arnold and Damien Niwinsky, editors.Rudiments ofµ-Calculus,
volume 540-28739v. 146 ofStudies in Logic and the Foundations of Math-
ematics. North Holland, February 2001.

[Büc62] Julius Richard Büchi. On a decision method in restricted second-order arith-
metic. In International Congress on Logic, Methodology, and Philosophy
of Science, pages 1–11. Stanford University Press, 1962.

[CGP99] Edmund M. Clark, Orna Grumberg, and Doron A. Peled, editors. Model
Checking. MIT Press, 1999.

[CKS81] Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer. Alternation.J.
ACM, 28(1):114–133, 1981.

[EJ91] E. Allen Emerson and Charanijt S. Jutla. Tree automata, µ-calculus and
determinacy. InProceedings of the 32nd annual symposium on Foundations
of computer science, pages 368–377, Los Alamitos, CA, USA, 1991. IEEE
Computer Society Press.

[Elg61] Calvin C. Elgot. Decision problems of finite automata design and related
arithmetics. pages 21–51, 1961.

[GH82] Yuri Gurevich and Leo Harrington. Trees, Automata, and Games. InSTOC
’82: Proceedings of the fourteenth annual ACM symposium on Theory of
computing, pages 60–65, New York, NY, USA, 1982. ACM Press.

[GTW02] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata,
Logics, and Infinite Games: A Guide to Current Research. Springer-Verlag
New York, Inc., New York, NY, USA, 2002.

[Jur98] Marcin Jurdzinski. Deciding the winner in parity games is in UP and co-UP.
Information Processing Letters, 68(3):119–124, 1998.

[KV05] Clemens Kupke and Yde Venema. Closure properties of coalgebra au-
tomata. InLICS ’05: Proceedings of the 20th Annual IEEE Symposium on
Logic in Computer Science (LICS’ 05), pages 199–208, Washington, DC,
USA, 2005. IEEE Computer Society.

58

[KV07] Clemens Kupke and Yde Venema. Coalgebraic automata theory: Basic
results. Technical report, CWI Amsterdam, 2007.

[Mar75] Donald A. Martin. Borel determinacy. pages 363–371, 1975.

[McN66] Robert McNaughton. Testing and generating infinitesequences by a finite
automata, 1966.

[Mos91] Andrzej Mostowski. Games with forbidden positions. Technical Report 78,
University of Gdansk, 1991.

[MS95] David E. Muller and Paul E. Schupp. Simulating alternating tree automata
by nondeterministic automata: New results and new proofs ofthe theorems
of Rabin, McNaughton and Safra. pages 69–107, 1995.

[Pit06] Nir Piterman. From nondeterministic Büchi and Streett automata to deter-
ministic parity automata.lics, 0:255–264, 2006.

[Rab69] Michael Oser Rabin.Decidability of Second-Order Theories and Automata
on Infinite Trees, pages 1–35. 1969.

[Rei02] Klaus Reinhardt.The Complexity of Translating Logic to Finite Automata,
pages 231–238. Springer Berlin/Heidelberg, 2002.

[Saf88] Shmuel Safra. On the complexity ofω-automata. InProceedings of the 29th
Annual Symposium on Foundations of Computer Science FoCS ’88, pages
319–327. IEEE Computer Society Press, 1988.

[Ven04] Yde Venema. Automata and fixed point logics for coalgebras.Electronic
Notes in Computer Science, 106:355–375, 2004.

59

